From c388cab5edd95f6911958658ec7b071f2d95fe1b Mon Sep 17 00:00:00 2001 From: Philip Eisenlohr Date: Wed, 25 Sep 2024 05:56:12 +0000 Subject: [PATCH] from_parallel consistent with from_basis --- python/damask/_crystal.py | 2 +- python/damask/_rotation.py | 24 +++++++++++++++++------- python/tests/test_Rotation.py | 12 ++++++++++-- 3 files changed, 28 insertions(+), 10 deletions(-) diff --git a/python/damask/_crystal.py b/python/damask/_crystal.py index 04a276248..f5bcc2269 100644 --- a/python/damask/_crystal.py +++ b/python/damask/_crystal.py @@ -1241,4 +1241,4 @@ def relation_operations(self, o_p = np.stack((o.to_frame(uvw=o_p[:,0] if o_l != 'hP' else util.Bravais_to_Miller(uvtw=o_p[:,0])), o.to_frame(hkl=o_p[:,1] if o_l != 'hP' else util.Bravais_to_Miller(hkil=o_p[:,1]))), axis=-2) - return (o_l,Rotation.from_parallel(a=m_p,b=o_p)) + return (o_l,Rotation.from_parallel(a=m_p,b=o_p,active=True)) diff --git a/python/damask/_rotation.py b/python/damask/_rotation.py index 3739ae936..026344948 100644 --- a/python/damask/_rotation.py +++ b/python/damask/_rotation.py @@ -811,7 +811,7 @@ def as_homochoric(self) -> np.ndarray: Returns ------- h : numpy.ndarray, shape (...,3) - Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3). + Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3π/4)^(1/3). Examples -------- @@ -831,7 +831,7 @@ def as_cubochoric(self) -> np.ndarray: Returns ------- x : numpy.ndarray, shape (...,3) - Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3). + Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2 π^(2/3). Examples -------- @@ -1062,7 +1062,8 @@ def from_matrix(R: np.ndarray, @staticmethod def from_parallel(a: np.ndarray, - b: np.ndarray ) -> 'Rotation': + b: np.ndarray, + active: bool = False ) -> 'Rotation': """ Initialize from pairs of two orthogonal basis vectors. @@ -1072,11 +1073,20 @@ def from_parallel(a: np.ndarray, Two three-dimensional vectors of first orthogonal basis. b : numpy.ndarray, shape (...,2,3) Corresponding three-dimensional vectors of second basis. + active : bool, optional + Consider rotations as active, i.e. return (B^-1⋅A) instead of (B⋅A^-1). + Defaults to False. Returns ------- new : damask.Rotation + Notes + ----- + If rotations $A = [a_1,a_2,a_1 × a_2]^T$ and B = $[b_1,b_2,b_1 × b_2]^T$ + are considered "active", the resulting rotation will be $B^{-1}⋅A$ instead + of the default result $B⋅A^{-1}$. + Examples -------- >>> import damask @@ -1095,10 +1105,10 @@ def from_parallel(a: np.ndarray, am = np.stack([ a_[...,0,:], a_[...,1,:], - np.cross(a_[...,0,:],a_[...,1,:]) ],axis=-1) + np.cross(a_[...,0,:],a_[...,1,:]) ],axis=-1 if active else -2) bm = np.stack([ b_[...,0,:], b_[...,1,:], - np.cross(b_[...,0,:],b_[...,1,:]) ],axis=-1) + np.cross(b_[...,0,:],b_[...,1,:]) ],axis=-1 if active else -2) return Rotation.from_basis(am).misorientation(Rotation.from_basis(bm)) @@ -1156,7 +1166,7 @@ def from_homochoric(h: np.ndarray, Parameters ---------- h : numpy.ndarray, shape (...,3) - Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3). + Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3π/4)^(1/3). P : int ∈ {-1,1}, optional Sign convention. Defaults to -1. @@ -1186,7 +1196,7 @@ def from_cubochoric(x: np.ndarray, Parameters ---------- x : numpy.ndarray, shape (...,3) - Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3). + Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2 π^(2/3). P : int ∈ {-1,1}, optional Sign convention. Defaults to -1. diff --git a/python/tests/test_Rotation.py b/python/tests/test_Rotation.py index 4cb198741..8c4aa9b41 100644 --- a/python/tests/test_Rotation.py +++ b/python/tests/test_Rotation.py @@ -789,8 +789,16 @@ def test_matrix(self,multidim_rotations,normalize): def test_parallel(self,multidim_rotations): a = np.array([[1.42,0.0,0.0], [0.0,0.3,0.0]]) - assert Rotation.from_parallel(a,multidim_rotations[...,np.newaxis]@a).allclose( multidim_rotations) - assert Rotation.from_parallel(multidim_rotations[...,np.newaxis]@a,a).allclose(~multidim_rotations) + b = ~multidim_rotations[...,np.newaxis]@a # actively rotate a axes as new b axes + assert Rotation.from_parallel(a,b).allclose( multidim_rotations) + assert Rotation.from_parallel(b,a).allclose(~multidim_rotations) + + + def test_basis_parallel_consistency(self,multidim_rotations): + M = multidim_rotations.as_matrix() + assert Rotation.from_basis(M).allclose( + Rotation.from_parallel(np.broadcast_to(np.identity(3),M.shape)[...,:2,:], + M[...,:2,:])) @pytest.mark.parametrize('normalize',[True,False])