-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoptimizer.py
240 lines (207 loc) · 9.05 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import copy
import torch
import math
from functools import partial
from torch.optim import lr_scheduler
import importlib
from torch.autograd import Variable
import numpy as np
#
# __all__ = ['build_optimizer']
#
#
# def build_optimizer(optim_config, lr_scheduler_config, epochs, step_each_epoch, model):
# from . import lr
# config = copy.deepcopy(optim_config)
# optim = getattr(torch.optim, config.pop('name'))(params=model.parameters(), **config)
#
# lr_config = copy.deepcopy(lr_scheduler_config)
# lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
# lr_scheduler = getattr(lr, lr_config.pop('name'))(**lr_config)(optimizer=optim)
# return optim, lr_scheduler
class StepLR(object):
def __init__(self,
step_each_epoch,
step_size,
warmup_epoch=0,
gamma=0.1,
last_epoch=-1,
**kwargs):
super(StepLR, self).__init__()
self.step_size = step_each_epoch * step_size
self.gamma = gamma
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch
def __call__(self, optimizer):
return lr_scheduler.LambdaLR(optimizer, self.lambda_func, self.last_epoch)
def lambda_func(self, current_step):
if current_step < self.warmup_epoch:
return float(current_step) / float(max(1, self.warmup_epoch))
return self.gamma ** (current_step // self.step_size)
class MultiStepLR(object):
def __init__(self,
step_each_epoch,
milestones,
warmup_epoch=0,
gamma=0.1,
last_epoch=-1,
**kwargs):
super(MultiStepLR, self).__init__()
self.milestones = [step_each_epoch * e for e in milestones]
self.gamma = gamma
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch
def __call__(self, optimizer):
return lr_scheduler.LambdaLR(optimizer, self.lambda_func, self.last_epoch)
def lambda_func(self, current_step):
if current_step < self.warmup_epoch:
return float(current_step) / float(max(1, self.warmup_epoch))
return self.gamma ** len([m for m in self.milestones if m <= current_step])
class ConstLR(object):
def __init__(self,
step_each_epoch,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(ConstLR, self).__init__()
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
def __call__(self, optimizer):
return lr_scheduler.LambdaLR(optimizer, self.lambda_func, self.last_epoch)
def lambda_func(self, current_step):
if current_step < self.warmup_epoch:
return float(current_step) / float(max(1.0, self.warmup_epoch))
return 1.0
class LinearLR(object):
def __init__(self,
epochs,
step_each_epoch,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(LinearLR, self).__init__()
self.epochs = epochs * step_each_epoch
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
def __call__(self, optimizer):
return lr_scheduler.LambdaLR(optimizer, self.lambda_func, self.last_epoch)
def lambda_func(self, current_step):
if current_step < self.warmup_epoch:
return float(current_step) / float(max(1, self.warmup_epoch))
return max(0.0, float(self.epochs - current_step) / float(max(1, self.epochs - self.warmup_epoch)))
class CosineAnnealingLR(object):
def __init__(self,
epochs,
step_each_epoch,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(CosineAnnealingLR, self).__init__()
self.epochs = epochs * step_each_epoch
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
def __call__(self, optimizer):
return lr_scheduler.LambdaLR(optimizer, self.lambda_func, self.last_epoch)
def lambda_func(self, current_step, num_cycles=0.5):
if current_step < self.warmup_epoch:
return float(current_step) / float(max(1, self.warmup_epoch))
progress = float(current_step - self.warmup_epoch) / float(max(1, self.epochs - self.warmup_epoch))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
class PolynomialLR(object):
def __init__(self,
step_each_epoch,
epochs,
lr_end=1e-7,
power=1.0,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(PolynomialLR, self).__init__()
self.lr_end = lr_end
self.power = power
self.epochs = epochs * step_each_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.last_epoch = last_epoch
def __call__(self, optimizer):
lr_lambda = partial(
self.lambda_func,
lr_init=optimizer.defaults["lr"],
)
return lr_scheduler.LambdaLR(optimizer, lr_lambda, self.last_epoch)
def lambda_func(self, current_step, lr_init):
if current_step < self.warmup_epoch:
return float(current_step) / float(max(1, self.warmup_epoch))
elif current_step > self.epochs:
return self.lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lr_range = lr_init - self.lr_end
decay_steps = self.epochs - self.warmup_epoch
pct_remaining = 1 - (current_step - self.warmup_epoch) / decay_steps
decay = lr_range * pct_remaining ** self.power + self.lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
def get_no_weight_decay_param(model, config):
param_names = config['optimizer']['no_weight_decay_param']['param_names']
weight_decay = config['optimizer']['no_weight_decay_param']['weight_decay']
is_on = config['optimizer']['no_weight_decay_param']['is_ON']
if not is_on:
return model.parameters()
base_param = []
no_weight_decay_param = []
for (name, param) in model.named_parameters():
is_no_weight = False
for param_name in param_names:
if param_name in name:
is_no_weight = True
break
if is_no_weight:
no_weight_decay_param.append(param)
else:
base_param.append(param)
Outparam = [{'params': base_param}, {'params': no_weight_decay_param, 'weight_decay': weight_decay}]
return Outparam
def fix_param(model, opt):
param_names = ['pos_embed', 'norm'] # config['optimizer']['no_weight_decay_param']['param_names']
weight_decay = 0. # config['optimizer']['no_weight_decay_param']['weight_decay']
is_on = True # config['optimizer']['no_weight_decay_param']['is_ON']
STN_ON = True # config['model']['STN']['STN_ON']
stn_lr = opt.base_lr # config['model']['STN']['stn_lr']
base_param = []
stn_param = []
no_weight_decay_param = []
for (name, param) in model.named_parameters():
is_no_weight = False
for param_name in param_names:
if param_name in name:
# print(param_name)
is_no_weight = True
break
if is_no_weight:
no_weight_decay_param.append(param)
elif 'stn' in name:
stn_param.append(param)
else:
base_param.append(param)
Outparam = [{'params': base_param}, {'params': stn_param}, {'params': no_weight_decay_param}]
if STN_ON:
Outparam[1]['lr'] = stn_lr
if is_on:
Outparam[2]['weight_decay'] = weight_decay
return Outparam
def lr_warm(base_lr, epoch, warm_epoch):
return (base_lr/warm_epoch)*(epoch+1)
def adjust_learning_rate_warm(opt, optimizer, epoch):
lr = lr_warm(opt.base_lr, epoch, 2) # lr_warm(config['optimizer']['base_lr'], epoch,config['train']['warmepochs'])
optimizer.param_groups[0]['lr'] = lr
if 'TPS' in opt.Transformation:
stn_lr = opt.base_lr # config['model']['STN']['stn_lr']
lr = lr_warm(stn_lr, epoch, 2) # lr_warm(stn_lr, epoch,config['train']['warmepochs'])
optimizer.param_groups[1]['lr'] = lr
def adjust_learning_rate_cos(opt, optimizer, epoch):
initial_learning_rate, step, decay_steps, alpha = opt.base_lr, epoch - 2, opt.num_epochs - 2, 0
step = min(step, decay_steps)
cosine_decay = 0.5 * (1 + math.cos(math.pi * step / decay_steps))
decayed = (1 - alpha) * cosine_decay + alpha
optimizer.param_groups[0]['lr'] = initial_learning_rate * decayed
if 'TPS' in opt.Transformation:
stn_lr = opt.base_lr * decayed # config['model']['STN']['stn_lr'] * decayed
optimizer.param_groups[1]['lr'] = stn_lr