-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMain.idr
529 lines (429 loc) · 24.7 KB
/
Main.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
module Main
import Types
%access public export
namespace TwoValidator
ElectionState : Type
ElectionState = ((ProposerId, ProposerWeight, ProposerPriority), (ProposerId, ProposerWeight, ProposerPriority))
diffPriority : ElectionState -> ProposerPriority
diffPriority ((_, _, a), (_, _, b)) = a - b
incrementElect : ElectionState -> (ElectionState, ProposerId)
incrementElect ((aId, aWeight, aPriority), (bId, bWeight, bPriority)) =
let newPriorityA = aPriority + aWeight
newPriorityB = bPriority + bWeight
totalWeight = aWeight + bWeight
in if newPriorityA >= newPriorityB then
(((aId, aWeight, newPriorityA - totalWeight), (bId, bWeight, newPriorityB)), aId)
else
(((aId, aWeight, newPriorityA), (bId, bWeight, newPriorityB - totalWeight)), bId)
joinApply : (ElectionState, List ProposerId) -> (ElectionState, List ProposerId)
joinApply (previousState, results) = (fst result, snd result :: results)
where result : (ElectionState, ProposerId)
result = incrementElect previousState
joinApplyElects : (pr : (ElectionState, List ProposerId)) -> fst (incrementElect (fst pr)) = fst (joinApply pr)
joinApplyElects (s, l) = Refl
incrementElectMany : (n : Nat) -> (s : ElectionState) -> (ElectionState, List ProposerId)
incrementElectMany Z state = (state, [])
incrementElectMany (S k) state = joinApply (incrementElectMany k state)
incrementElectManyApplies : (n : Nat) -> (s : ElectionState) ->
(fst (incrementElectMany (S n) s) =
fst (incrementElect (fst (incrementElectMany n s))))
incrementElectManyApplies Z s = Refl
incrementElectManyApplies (S k) s =
rewrite joinApplyElects (joinApply (incrementElectMany k s)) in
Refl
diffPositive : (idA : ProposerId) -> (idB : ProposerId) -> (wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB : ProposerPriority) -> (prf : (pA + wA) >= (pB + wB) = True) ->
((incrementElect ((idA, wA, pA), (idB, wB, pB))) = (((idA, wA, (pA + wA) - (wA + wB)), (idB, wB, (pB + wB))), idA))
diffPositive idA idB wA wB pA pB prf =
rewrite (ifEq
(((idA, wA, (pA + wA) - (wA + wB)), (idB, wB, (pB + wB))), idA)
(((idA, wA, (pA + wA)), (idB, wB, (pB + wB) - (wA + wB))), idB)
prf) in
Refl
diffNegative : (idA : ProposerId) -> (idB : ProposerId) -> (wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB: ProposerPriority) -> (prf : (pA + wA) >= (pB + wB) = False) ->
((incrementElect ((idA, wA, pA), (idB, wB, pB))) = (((idA, wA, (pA + wA)), (idB, wB, (pB + wB) - (wA + wB))), idB))
diffNegative idA idB wA wB pA pB prf =
rewrite (ifNeq
(((idA, wA, (pA + wA) - (wA + wB)), (idB, wB, (pB + wB))), idA)
(((idA, wA, (pA + wA)), (idB, wB, (pB + wB) - (wA + wB))), idB)
prf) in
Refl
EqEither : (a : t) -> (b : t) -> (c : t) -> Type
EqEither a b c = (a = b) `Either` (a = c)
resultEither : (idA : ProposerId) -> (idB : ProposerId) -> (wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB: ProposerPriority) -> EqEither (incrementElect ((idA, wA, pA), (idB, wB, pB)))
(((idA, wA, (pA + wA) - (wA + wB)), (idB, wB, (pB + wB))), idA) (((idA, wA, (pA + wA)), (idB, wB, (pB + wB) - (wA + wB))), idB)
resultEither idA idB wA wB pA pB =
case excludedBool ((pA + wA) >= (pB + wB)) of
Left prf => Left $ diffPositive idA idB wA wB pA pB prf
Right prf => Right $ diffNegative idA idB wA wB pA pB prf
wAConserved' : (s : ElectionState) -> snd3 (fst (fst (incrementElect s))) = snd3 (fst s)
wAConserved' ((idA, wA, pA), (idB, wB, pB)) =
case resultEither idA idB wA wB pA pB of
Left prf => rewrite prf in Refl
Right prf => rewrite prf in Refl
wAConserved : (s : ElectionState) -> (n : Nat) -> snd3 (fst (fst (incrementElectMany n s))) = snd3 (fst s)
wAConserved s Z = Refl
wAConserved s (S k) =
rewrite incrementElectManyApplies k s in
rewrite wAConserved' (fst (incrementElectMany k s)) in
rewrite wAConserved s k in
Refl
wBConserved' : (s : ElectionState) -> snd3 (snd (fst (incrementElect s))) = snd3 (snd s)
wBConserved' ((idA, wA, pA), (idB, wB, pB)) =
case resultEither idA idB wA wB pA pB of
Left prf => rewrite prf in Refl
Right prf => rewrite prf in Refl
wBConserved : (s : ElectionState) -> (n : Nat) -> snd3 (snd (fst (incrementElectMany n s))) = snd3 (snd s)
wBConserved s Z = Refl
wBConserved s (S k) =
rewrite incrementElectManyApplies k s in
rewrite wBConserved' (fst (incrementElectMany k s)) in
rewrite wBConserved s k in
Refl
diffChange : (idA : ProposerId) -> (idB : ProposerId) -> (wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB: ProposerPriority) ->
(diffPriority (fst (incrementElect ((idA, wA, pA), (idB, wB, pB)))) - diffPriority ((idA, wA, pA), (idB, wB, pB)) = -2 * wB, snd (incrementElect ((idA, wA, pA), (idB, wB, pB))) = idA) `Either`
(diffPriority (fst (incrementElect ((idA, wA, pA), (idB, wB, pB)))) - diffPriority ((idA, wA, pA), (idB, wB, pB)) = 2 * wA, snd (incrementElect ((idA, wA, pA), (idB, wB, pB))) = idB)
diffChange idA idB wA wB pA pB = case resultEither idA idB wA wB pA pB of
Left prf => rewrite prf in Left (rewrite (sym (plusMinus2Helper pA pB wA wB)) in Refl, Refl)
Right prf => rewrite prf in Right (rewrite (sym (plusMinus2Helper' pA pB wA wB)) in Refl, Refl)
countJoin : (x : ProposerId) -> (n : Nat) -> (s : ElectionState) -> (prf : (if snd (incrementElect (fst (incrementElectMany n s))) == x then 1 else 0) = 1) -> count x (snd (joinApply (incrementElectMany n s))) = 1 + count x (snd (incrementElectMany n s))
countJoin x n s prf = ?countJoin
countJoin' : (x : ProposerId) -> (n : Nat) -> (s : ElectionState) -> (prf : (if snd (incrementElect (fst (incrementElectMany n s))) == x then 1 else 0) = 0) -> count x (snd (joinApply (incrementElectMany n s))) = 0 + count x (snd (incrementElectMany n s))
countJoin' x n s prf = ?countJoin'
-- Prove the total change in priority difference over n calls of incrementElect.
totalDiff : (idA : ProposerId) -> (idB : ProposerId) -> (wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB: ProposerPriority) -> (n: Nat) ->
(ns ** (n = fst ns + snd ns,
fst ns = count idA (snd (incrementElectMany n ((idA, wA, pA), (idB, wB, pB)))),
snd ns = count idB (snd (incrementElectMany n ((idA, wA, pA), (idB, wB, pB)))),
diffPriority (fst (incrementElectMany n ((idA, wA, pA), (idB, wB, pB)))) - diffPriority ((idA, wA, pA), (idB, wB, pB)) = (2 * wA * natToInteger (snd ns)) - (2 * wB * natToInteger (fst ns))
))
totalDiff idA idB wA wB pA pB Z = ((0, 0) ** (Refl, Refl, Refl,
replace {P = \x => diffPriority (fst (incrementElectMany 0 ((idA, wA, pA), (idB, wB, pB)))) - diffPriority ((idA, wA, pA), (idB, wB, pB)) = x}
(sym zeroEqwAwB) diffEqZero))
where
zeroEqwAwB : (2 * wA * 0) - (2 * wB * 0) = 0
zeroEqwAwB =
rewrite multZeroZero (2 * wA) in
rewrite multZeroZero (2 * wB) in
Refl
diffEqZero : diffPriority (fst (incrementElectMany 0 ((idA, wA, pA), (idB, wB, pB)))) - diffPriority ((idA, wA, pA), (idB, wB, pB)) = 0
diffEqZero =
rewrite (addSubSingle (pA - pB)) in
Refl
totalDiff idA idB wA wB pA pB (S k) =
let ((idA', wA', pA'), (idB', wB', pB')) = previousState
((nA, nB) ** (eq, cA, cB, diffEq)) = previous in
case diffChange idA' idB' wA' wB' pA' pB' of
Left prfA =>
let proofEq = the ((if snd (incrementElect (fst (incrementElectMany k ((idA, wA, pA), (idB, wB, pB))))) == idA then 1 else 0) = 1) (?proofeq)
proofNeq = the ((if snd (incrementElect (fst (incrementElectMany k ((idA, wA, pA), (idB, wB, pB))))) == idB then 1 else 0) = 0) (?proofneq) in
(((nA + 1, nB)) **
(rewrite plusCommutative (nA + 1) nB in rewrite plusCommutative nA 1 in rewrite eq in rewrite plusCommutative nA nB in rewrite plusSuccRightSucc nB nA in Refl,
rewrite (sym (plusSuccRightSucc nA 0)) in
rewrite cA in
rewrite countJoin idA k ((idA, wA, pA), (idB, wB, pB)) proofEq in
rewrite plusZeroRightNeutral (count idA (snd (incrementElectMany k ((idA, wA, pA), (idB, wB, pB))))) in
Refl,
rewrite cB in
rewrite countJoin' idB k ((idA, wA, pA), (idB, wB, pB)) proofNeq in
Refl,
?totalDiffLeft
))
Right prfB =>
let proofEq = the ((if snd (incrementElect (fst (incrementElectMany k ((idA, wA, pA), (idB, wB, pB))))) == idB then 1 else 0) = 1) (?proofeq)
proofNeq = the ((if snd (incrementElect (fst (incrementElectMany k ((idA, wA, pA), (idB, wB, pB))))) == idA then 1 else 0) = 0) (?proofneq) in
(((nA, nB + 1)) **
(rewrite plusCommutative nA (nB + 1) in rewrite plusCommutative nB 1 in rewrite eq in rewrite plusCommutative nA nB in Refl,
rewrite cA in
rewrite countJoin' idA k ((idA, wA, pA), (idB, wB, pB)) proofNeq in
Refl,
rewrite (sym (plusSuccRightSucc nB 0)) in
rewrite cB in
rewrite countJoin idB k ((idA, wA, pA), (idB, wB, pB)) proofEq in
rewrite plusZeroRightNeutral (count idB (snd (incrementElectMany k ((idA, wA, pA), (idB, wB, pB))))) in
Refl,
?totalDiffRight
))
where
-- Inductive state.
previousState : ElectionState
previousState = fst (incrementElectMany k ((idA, wA, pA), (idB, wB, pB)))
previousEq : previousState = fst (incrementElectMany k ((idA, wA, pA), (idB, wB, pB)))
previousEq = Refl
-- Inductive case.
previous : (ns ** (k = fst ns + snd ns,
fst ns = count idA (snd (incrementElectMany k ((idA, wA, pA), (idB, wB, pB)))),
snd ns = count idB (snd (incrementElectMany k ((idA, wA, pA), (idB, wB, pB)))),
diffPriority (fst (incrementElectMany k ((idA, wA, pA), (idB, wB, pB)))) - diffPriority ((idA, wA, pA), (idB, wB, pB)) = (2 * wA * natToInteger (snd ns)) - (2 * wB * natToInteger (fst ns))
))
previous = totalDiff idA idB wA wB pA pB k
-- Prove maximum bound in diff over a single incrementElect call.
diffDiff : (idA : ProposerId) -> (idB : ProposerId) -> (wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB: ProposerPriority) -> (wA >= 0 = True) -> (wB >= 0 = True)
-> (abs (pA - pB) <= (wA + wB) = True)
-> (abs (diffPriority (fst (incrementElect ((idA, wA, pA), (idB, wB, pB))))) <= (wA + wB) = True)
diffDiff idA idB wA wB pA pB wAPos wBPos prf =
case excludedBool ((pA + wA) >= (pB + wB)) of
Left prf' =>
rewrite leftCase prf' in
rewrite leftFinal prf' in
Refl
Right prf' =>
rewrite rightCase prf' in
rewrite rightFinal prf' in
Refl
where
-- Just reduction...
leftCase : ((pA + wA) >= (pB + wB) = True) -> diffPriority (fst (incrementElect ((idA, wA, pA), (idB, wB, pB)))) = (pA - pB - 2 * wB)
leftCase prgte =
rewrite diffPositive idA idB wA wB pA pB prgte in
rewrite oneTwoNeg' pA pB wA wB in
Refl
leftLowerBound : ((pA + wA) >= (pB + wB) = True) -> (pA - pB - 2 * wB) >= -(wA + wB) = True
leftLowerBound lbound = llemma5
where
llemma1 : ((pA + wA) >= (wB + pB) = True)
llemma1 = rewrite plusComm wB pB in lbound
llemma2 : (pA + wA - pB) >= wB = True
llemma2 = rewrite (sym $ addSubCancels wB pB) in congSub' {c=pB} llemma1
llemma2' : (pA - pB + wA) >= wB = True
llemma2' = rewrite (minusSwitch pA wA pB) in llemma2
llemma3 : pA - pB >= wB - wA = True
llemma3 = rewrite (sym $ addSubCancels (pA - pB) wA) in congSub' {c=wA} llemma2'
llemma4 : pA - pB - 2 * wB >= wB - wA - 2 * wB = True
llemma4 = congSub' llemma3
llemma5 : (pA - pB - 2 * wB) >= -(wA + wB) = True
llemma5 = rewrite negDistr wA wB in rewrite oneTwoNeg (-wA) wB in rewrite plusComm' wA wB in llemma4
leftUpperBound : ((pA + wA) >= (pB + wB) = True) -> (pA - pB - 2 * wB) <= (wA + wB) = True
leftUpperBound lbound = lePos (leMul wBPos) $ fst $ splitAbs prf
leftFinal : ((pA + wA) >= (pB + wB) = True) -> abs (pA - pB - 2 * wB) <= (wA + wB) = True
leftFinal lbound = joinAbs (leftLowerBound lbound, leftUpperBound lbound)
rightCase : ((pA + wA) >= (pB + wB) = False) -> diffPriority (fst (incrementElect ((idA, wA, pA), (idB, wB, pB)))) = (pA - pB + 2 * wA)
rightCase prngte =
rewrite diffNegative idA idB wA wB pA pB prngte in
rewrite oneTwoPos pA pB wA wB in
Refl
rightLowerBound : ((pA + wA) >= (pB + wB) = False) -> (pA - pB + 2 * wA) >= -(wA + wB) = True
rightLowerBound rbound = gePos (leMul wAPos) $ snd $ splitAbs' prf
rightUpperBound : ((pA + wA) >= (pB + wB) = False) -> (pA - pB + 2 * wA) <= (wA + wB) = True
rightUpperBound rbound = gteFalseLe rlemma5
where
rlemma1 : ((pA + wA) >= (wB + pB) = False)
rlemma1 = rewrite plusComm wB pB in rbound
rlemma2 : (pA + wA - pB) >= wB = False
rlemma2 = rewrite (sym $ addSubCancels wB pB) in congSubF' {c=pB} rlemma1
rlemma2' : (pA - pB + wA) >= wB = False
rlemma2' = rewrite (minusSwitch pA wA pB) in rlemma2
rlemma3 : pA - pB >= wB - wA = False
rlemma3 = rewrite (sym $ addSubCancels (pA - pB) wA) in congSubF' {c=wA} rlemma2'
rlemma4 : pA - pB + 2 * wA >= wB - wA + 2 * wA = False
rlemma4 = congPlusF' rlemma3
rlemma5 : pA - pB + 2 * wA >= wA + wB = False
rlemma5 = rewrite plusComm wA wB in rewrite oneTwoPos' wB wA in rlemma4
rightFinal : ((pA + wA) >= (pB + wB) = False) -> abs (pA - pB + 2 * wA) <= (wA + wB) = True
rightFinal rbound = joinAbs (rightLowerBound rbound, rightUpperBound rbound)
-- Prove maximum bound on diff in incrementElectMany calls by induction.
diffDiffMany : (idA : ProposerId) -> (idB : ProposerId) -> (wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB: ProposerPriority) -> (n : Nat) ->
(wA >= 0 = True) -> (wB >= 0 = True) ->
(abs (pA - pB) <= (wA + wB) = True) ->
(abs (diffPriority (fst (incrementElectMany n ((idA, wA, pA), (idB, wB, pB))))) <= (wA + wB) = True)
diffDiffMany idA idB wA wB pA pB Z wAPos wBPos prf = prf
diffDiffMany idA idB wA wB pA pB (S k) wAPos wBPos prf =
rewrite applies in
rewrite step in
Refl
where
state : ElectionState
state = ((idA, wA, pA), (idB, wB, pB))
kstate : ElectionState
kstate = (fst (incrementElectMany k state))
inductive : (abs (diffPriority kstate)) <= (wA + wB) = True
inductive = diffDiffMany idA idB wA wB pA pB k wAPos wBPos prf
cons1 : snd3 (fst kstate) = wA
cons1 = wAConserved state k
cons2 : snd3 (snd kstate) = wB
cons2 = wBConserved state k
inductive' : (abs (diffPriority kstate)) <= ((snd3 (fst kstate)) + (snd3 (snd kstate))) = True
inductive' = rewrite cons1 in rewrite cons2 in inductive
applies : fst (incrementElectMany (S k) state) = fst (incrementElect kstate)
applies = incrementElectManyApplies k state
step : (abs (diffPriority (fst (incrementElect kstate))) <= (wA + wB) = True)
step = final
where
idA' : ProposerId
idA' = fst3 (fst kstate)
wA' : ProposerWeight
wA' = snd3 (fst kstate)
pA' : ProposerPriority
pA' = thd3 (fst kstate)
idB' : ProposerId
idB' = fst3 (snd kstate)
wB' : ProposerWeight
wB' = snd3 (snd kstate)
pB' : ProposerPriority
pB' = thd3 (snd kstate)
wAPos' : wA' >= 0 = True
wAPos' = rewrite cons1 in wAPos
wBPos' : wB' >= 0 = True
wBPos' = rewrite cons2 in wBPos
kseq : ((idA', wA', pA'), (idB', wB', pB')) = kstate
kseq = eqls kstate
inductive'' : abs (pA' - pB') <= wA' + wB' = True
inductive'' = replace {P = \x => (abs (diffPriority x)) <= ((snd3 (fst x)) + (snd3 (snd x))) = True} (sym kseq) inductive'
final' : abs (diffPriority (fst (incrementElect ((idA', wA', pA'), (idB', wB', pB'))))) <= (wA' + wB') = True
final' = diffDiff idA' idB' wA' wB' pA' pB' wAPos' wBPos' inductive''
wAC : wA = wA'
wAC = rewrite cons1 in Refl
wBC : wB = wB'
wBC = rewrite cons2 in Refl
final'' : (abs (diffPriority (fst (incrementElect kstate))) <= (wA' + wB') = True)
final'' = replace {P = \x => abs (diffPriority (fst (incrementElect x))) <= (wA' + wB') = True} kseq final'
final : (abs (diffPriority (fst (incrementElect kstate))) <= (wA + wB) = True)
final =
replace {P = \x => (abs (diffPriority (fst (incrementElect kstate))) <= (x + wB) = True)} (sym wAC) $
replace {P = \x => (abs (diffPriority (fst (incrementElect kstate))) <= (wA' + x) = True)} (sym wBC) $
final''
-- This function just simplifies the inequality to an upper bound on nA.
reduceHelper : (wA, wB : ProposerWeight) -> (nA, n : Integer) ->
((((wB * nA) - (wA * (n - nA))) <= (wA + wB)) = True) ->
nA <= (n * (wA `div` (wA + wB))) + 1 = True
reduceHelper wA wB nA n lemma1 =
lemma11
where
-- Progressively simplify / rearrange to solve for nA.
lemma2 : (((nA * wB) - ((wA * n) - (wA * nA))) <= (wA + wB)) = True
lemma2 =
rewrite multComm nA wB in
rewrite sym (multSubDistr wA n nA) in
lemma1
lemma3 : (((nA * wB) + (nA * wA) - (wA * n)) <= (wA + wB)) = True
lemma3 =
rewrite multComm nA wA in
rewrite (sym (minusCancels (nA * wB) (wA * n) (wA * nA))) in
lemma2
lemma4 : (((wB + wA) * nA - (wA * n)) <= (wA + wB)) = True
lemma4 =
rewrite (multPlusDistr wB wA nA) in
rewrite multComm wA nA in
rewrite multComm wB nA in
lemma3
lemma5 : (((wB + wA) * nA + (wA * n) - (wA * n)) <= (wA + wB) + (wA * n)) = True
lemma5 =
rewrite (sym (plusMinus ((wB + wA) * nA) (wA * n) (wA * n))) in
congPlus lemma4
lemma6 : (((wB + wA) * nA) <= (wA + wB) + (wA * n)) = True
lemma6 =
rewrite (sym (addSubCancels ((wB + wA) * nA) (wA * n))) in
lemma5
lemma7 : (((wA + wB) * nA) <= (wA + wB) + (wA * n)) = True
lemma7 = replace {P = \x => x * nA <= (wA + wB) + (wA * n) = True} (plusComm wB wA) lemma6
lemma8 : ((nA * (wA + wB)) <= (wA + wB) + (wA * n)) = True
lemma8 = rewrite multComm nA (wA + wB) in lemma7
lemma9 : ((nA * (wA + wB) `div` (wA + wB)) <= ((wA + wB) + (wA * n)) `div` (wA + wB)) = True
lemma9 = congDiv lemma8
lemma10 : nA <= (((wA + wB) + (wA * n)) `div` (wA + wB)) = True
lemma10 = rewrite (sym (multDivCancels nA (wA + wB))) in lemma9
lemma11 : nA <= (n * (wA `div` (wA + wB))) + 1 = True
lemma11 =
rewrite plusComm (n * (wA `div` (wA + wB))) 1 in
rewrite (sym (multDivComm n wA (wA + wB))) in
rewrite multComm n wA in
rewrite (sym (divEq (wA + wB))) in
rewrite (sym (divPlusDistr (wA + wB) (wA * n) (wA + wB))) in
lemma10
reduceInequality : (wA, wB : ProposerWeight) -> (nA, nB, n : Integer) ->
(nA + nB = n) ->
((abs ((wB * nA) - (wA * nB)) <= (wA + wB)) = True) ->
(nA >= (n * (wA `div` (wA + wB))) - 1 = True,
nA <= (n * (wA `div` (wA + wB))) + 1 = True)
reduceInequality wA wB nA nB n neq abslt =
(first, second)
where
-- Split out the first part of the bound on priority difference.
lteqA : ((wB * nA) - (wA * nB)) <= (wA + wB) = True
lteqA = fst (splitAbs abslt)
-- Split out the second part of the bound on priority difference.
lteqB : ((wA * nB) - (wB * nA)) <= (wA + wB) = True
lteqB = snd (splitAbs abslt)
-- Turn into an inequality on nA.
initialForA : (((wB * nA) - (wA * (n - nA))) <= (wA + wB)) = True
initialForA =
rewrite (sym (congSubEq nA nB n neq)) in
lteqA
-- Turn into an inequality on nB.
initialForB : (((wA * nB) - (wB * (n - nB))) <= (wB + wA)) = True
initialForB =
rewrite plusComm wB wA in
rewrite (sym (congSubEq nB nA n (rewrite plusComm nB nA in neq))) in
lteqB
-- Solve for the upper bound on nB.
finalForB : nB <= (n * (wB `div` (wB + wA))) + 1 = True
finalForB = reduceHelper wB wA nB n initialForB
-- This sequence of lemmas just transforms the upper bound on nB into a lower bound on nA.
lemma1 : n - nA <= (n * (wB `div` (wB + wA))) + 1 = True
lemma1 = rewrite (sym (congSubEq nA nB n neq)) in finalForB
lemma2 : nA - n >= -((n * (wB `div` (wB + wA))) + 1) = True
lemma2 = congNegSwap lemma1
lemma3 : nA >= -((n * (wB `div` (wB + wA))) + 1) + n = True
lemma3 = rewrite (sym (addSubCancels' nA n)) in congPlus' lemma2
lemma4 : nA >= -((n * ((wB + wA - wA) `div` (wB + wA))) + 1) + n = True
lemma4 = rewrite addSubCancels wB wA in lemma3
lemma5 : nA >= -((n * ((wB + wA) `div` (wB + wA) - (wA `div` (wB + wA)))) + 1) + n = True
lemma5 = rewrite (sym (divSubDistr (wB + wA) wA (wB + wA))) in lemma4
lemma6 : nA >= -((n * (1 - (wA `div` (wB + wA)))) + 1) + n = True
lemma6 = replace {P = \x => nA >= -((n * (x - (wA `div` (wB + wA)))) + 1) + n = True} (divEq (wB + wA)) lemma5
lemma7 : nA >= -(n * (1 - (wA `div` (wB + wA)))) + (-1) + n = True
lemma7 =
rewrite (sym (negDistr (n * (1 - (wA `div` (wB + wA)))) 1)) in lemma6
lemma8 : nA >= -((n * 1) - (n * (wA `div` (wB + wA)))) + (-1) + n = True
lemma8 =
rewrite (sym (multSubDistr n 1 (wA `div` (wB + wA)))) in
lemma7
lemma9 : nA >= -(n - (n * (wA `div` (wB + wA)))) + (-1) + n = True
lemma9 = replace {P = \x => nA >= -(x - (n * (wA `div` (wB + wA)))) + (-1) + n = True} (mulByOne n) lemma8
lemma10 : nA >= (n * (wA `div` (wB + wA))) - n - 1 + n = True
lemma10 =
rewrite (sym (plusNeg ((n * (wA `div` (wB + wA))) - n) 1)) in
rewrite (sym (negSubDistr n (n * (wA `div` (wB + wA))))) in lemma9
lemma11 : nA >= (n * (wA `div` (wB + wA))) - 1 = True
lemma11 = rewrite (sym (plusAssocElim (n * (wA `div` (wB + wA))) n 1)) in lemma10
-- Isolate the final lower bound on nA.
first : nA >= (n * (wA `div` (wA + wB))) - 1 = True
first = rewrite (plusComm wA wB) in lemma11
-- Solve for the final upper bound on nA.
second : nA <= (n * (wA `div` (wA + wB))) + 1 = True
second = reduceHelper wA wB nA n initialForA
-- Final statement proving the desired fairness criteria given an initial bound on the difference in proposer priority.
fairlyProportional : (idA : ProposerId) -> (idB : ProposerId) ->
(wA : ProposerWeight) -> (wB : ProposerWeight) ->
(pA : ProposerPriority) -> (pB: ProposerPriority) -> (n : Nat) ->
(wA >= 0 = True) -> (wB >= 0 = True) ->
(abs(pA - pB) <= (wA + wB) = True) ->
((natToInteger $ count idA (snd (incrementElectMany n ((idA, wA, pA), (idB, wB, pB)))))
>= ((natToInteger n * (wA `div` (wA + wB))) - 1) = True,
(natToInteger $ count idA (snd (incrementElectMany n ((idA, wA, pA), (idB, wB, pB)))))
<= ((natToInteger n * (wA `div` (wA + wB))) + 1) = True)
fairlyProportional idA idB wA wB pA pB n wAPos wBPos initial =
-- Calculate the total difference in priorities.
let ((nA, nB) ** (neq, nAeq, nBeq, diffEq)) = totalDiff idA idB wA wB pA pB n in
rewrite (sym nAeq) in
-- Substitute out the calculated total difference for the known bound on priority change (the lemmas just perform arithmetic simplification).
let lemma1 = the (abs (2 * wA * (natToInteger nB) - 2 * wB * (natToInteger nA)) <= 2*wA + 2*wB = True) (rewrite (sym diffEq) in diffDiffBound)
lemma2 = leAcrossAbsMul {a=2} {gt=Refl} {b=wA * natToInteger nB} {c=wB * natToInteger nA} {d=wA} {e=wB} (rewrite multDistr3 2 wA (natToInteger nB) in rewrite multDistr3 2 wB (natToInteger nA) in lemma1)
lemma3 = the ((abs ((wB * natToInteger nA) - (wA * natToInteger nB)) <= (wA + wB)) = True) (rewrite (absNeg {a = (wB * natToInteger nA)} {b = (wA * natToInteger nB)}) in lemma2) in
-- Reduce the inequality to solve for bounds on nA.
let (f, s) = (reduceInequality wA wB (natToInteger nA) (natToInteger nB) (natToInteger n) (sym $ convEq neq) lemma3) in
(f, s)
where
state : ElectionState
state = ((idA, wA, pA), (idB, wB, pB))
diffBound : (abs (diffPriority (fst (incrementElectMany n state))) <= (wA + wB) = True)
diffBound = diffDiffMany idA idB wA wB pA pB n wAPos wBPos initial
diffDiffBound : (abs (diffPriority (fst (incrementElectMany n state)) - diffPriority state) <= (2*wA + 2*wB) = True)
diffDiffBound = rewrite (sym $ multAddDistr 2 wA wB) in absSubBound diffBound initial
{- TODO n-validator case, preferably just via an equivalence proof from the 2-validator case. -}