-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcvncheckfreesurfer.m
167 lines (141 loc) · 5.53 KB
/
cvncheckfreesurfer.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
function cvncheckfreesurfer(subjectid,outputdir,skip,dims)
% function cvncheckfreesurfer(subjectid,outputdir,skip,dims)
%
% <subjectid> is like 'C0001'
% <outputdir> is like '/home/stone-ext1/anatomicals/C0001/checkfreesurfer'
% <skip> (optional) is number of slices to increment by. Default: 1.
% <dims> (optional) is a vector of slice dimensions to process. Default: [1 2 3].
%
% Write out diagnostic images of the FreeSurfer output.
% The images show slices through the T1 and contours of the white and
% pial surfaces overlaid on these slices.
%
% history:
% - 2020/05/09 - fix fstoint issue. change to use vox2ras-tkr.
% internal constants
colors = {[0 .4 0] [0 1 0];
[0 .4 .4] [0 1 1]}; % LH is green, RH is cyan; white is darker, pial is lighter
postfun = {@(x) flipdim(rotatematrix(x,1,2,2),1) ... % post-process the image files
@(x) rotatematrix(x,1,2,1) ...
@(x) flipdim(flipdim(rotatematrix(x,1,2,-1),1),2) };
% input
if ~exist('skip','var') || isempty(skip)
skip = 1;
end
if ~exist('dims','var') || isempty(dims)
dims = [1 2 3];
end
% calc
fsdir = sprintf('%s/%s',cvnpath('freesurfer'),subjectid);
% load T1 anatomy (can either be standard 1-mm isotropic 256 x 256 x 256, or something else!)
file0 = sprintf('%s/mri/T1.mgz',fsdir);
%OLD: anat = fstoint(double(load_mgh(file0))); % NOTICE the fstoint!
anat = double(load_mgh(file0));
xyzsize = size(anat);
assert(xyzsize(1)==xyzsize(2) & xyzsize(2)==xyzsize(3)); % assume isotropic, equal matrix size
%assert(isequal(xyzsize,[256 256 256]));
% derive FS-related transforms
[status,result] = unix(sprintf('mri_info --vox2ras-tkr %s',file0)); assert(status==0);
Torig = eval(['[' result ']']); % vox2ras-tkr
% % load T2
% file0 = sprintf('%s/mri/T2.mgz',fsdir);
% t2exists = wantt2 && exist(file0,'file');
% if t2exists
% anatt2 = fstoint(double(load_mgh(file0))); % NOTICE the fstoint!
% end
% load surfaces
prefixes = {'lh' 'rh'};
surfs = {'white' 'pial'};
vertices = {}; faces = {};
for p=1:length(prefixes)
for q=1:length(surfs)
[vertices{p,q},faces{p,q}] = freesurfer_read_surf_kj(sprintf('%s/surf/%s.%s',fsdir,prefixes{p},surfs{q}));
end
end
% post-process surfaces for internal MATLAB use
for p=1:length(prefixes)
for q=1:length(surfs)
vertices{p,q} = vertices{p,q}'; % 3 x V
vertices{p,q}(4,:) = 1; % 4 x V
vertices{p,q} = inv(Torig)*vertices{p,q}; % map from rastkr to vox (this is 0-based where 0 is center of first voxel)
vertices{p,q}(1:3,:) = vertices{p,q}(1:3,:) + 1; % now 1-based
%OLD: vertices{p,q}(1:3,:) = (vertices{p,q}(1:3,:) - .5)/256 * xyzsize(1) + .5; % DEAL WITH POTENTIALLY DIFFERENT RESOLUTION
faces{p,q} = faces{p,q}(:,[1 3 2]); % now: F x 3
end
end
% calc neighbors
neighbors = {};
for p=1:length(prefixes)
for q=1:length(surfs)
neighbors{p,q} = facestoneighbors(faces{p,q},size(vertices{p,q},2));
end
end
% figure out a reasonable contrast range for the T1
rng = prctile(anat(:),[1 99]);
% if t2exists
% rngt2 = prctile(anatt2(:),[1 99]);
% end
% process each slice orientation
for dim=dims
fprintf('processing dim %d',dim);
% process each slice
for sl=1:skip:xyzsize(dim)
statusdots(sl,xyzsize(dim));
% prepare
figureprep([100 100 900 900]);
subplotresize(1,1); hold on;
% get slice through the T1
anatslice = squeeze(subscript(anat,indexall(3,dim,sl)));
% if t2exists
% anatslicet2 = squeeze(subscript(anatt2,indexall(3,dim,sl)));
% end
% visualize the slice
hh = imagesc(anatslice,rng);
colormap(gray);
% unnecessary:
% set(hh,'XData',resamplingindices(1,xyzsize(2),size(anatslice,2)));
% set(hh,'YData',resamplingindices(1,xyzsize(1),size(anatslice,1)));
% deal with axis
axis equal;
axis([.5 size(anatslice,2)+.5 .5 size(anatslice,1)+.5]);
set(gca,'YDir','reverse');
% visualize the surface contours
h = [];
for p=1:length(prefixes)
for q=1:length(surfs)
isects = findfaceintersections(vertices{p,q},faces{p,q},dim,sl,neighbors{p,q});
if isempty(isects)
continue;
end
[faces0,vertices0,fvad0] = joinfaceintersections(vertices{p,q},isects);
iix = find(all(abs(vertices0-sl)<1e-3,1)); % weird precision issue
h = [h patch('Faces',faces0,'Vertices',fliplr(vertices0(:,setdiff(1:3,iix))), ...
'FaceVertexAlphaData',fvad0,'FaceColor','none','LineWidth',1,'EdgeColor',colors{p,q},'EdgeAlpha',.5)];
end
end
% init
files = {};
% write out volume with contours on top
set(h,'EdgeAlpha',.5);
set(hh,'CData',anatslice);
caxis(rng);
files = [files figurewrite(sprintf('slice%03d',sl),[],[],sprintf('%s/view%d_T1_surf',outputdir,dim),1)];
% write out raw volume
set(h,'EdgeAlpha',0);
files = [files figurewrite(sprintf('slice%03d',sl),[],[],sprintf('%s/view%d_T1_vol',outputdir,dim),1)];
% % deal with T2
% if t2exists
% set(h,'EdgeAlpha',.5);
% set(hh,'CData',anatslicet2);
% caxis(rngt2);
% files = [files figurewrite(sprintf('slice%03d',sl),[],[],sprintf('%s/view%d_T2_surf',outputdir,dim),1)];
% set(h,'EdgeAlpha',0);
% files = [files figurewrite(sprintf('slice%03d',sl),[],[],sprintf('%s/view%d_T2_vol',outputdir,dim),1)];
% end
% finally, close the figure!
close;
% perform post-processing
processimages(files,postfun{dim});
end
fprintf('done.\n');
end