-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMITIndoorDataset.py
97 lines (78 loc) · 2.49 KB
/
MITIndoorDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch.utils.data as data
import numpy
import os
from torchvision.datasets import folder as dataset_parser
def make_dataset(
dataset_root,
imageRoot,
split,
classes,
class_to_anno,
subset=False,
create_val=True,
):
if split == "test":
with open(os.path.join(dataset_root, "TestImages.txt"), "r") as f:
imgList = f.readlines()
else:
if split == "val":
assert create_val
with open(os.path.join(dataset_root, "TrainImages.txt"), "r") as f:
imgList = f.readlines()
imgList = [x.rstrip("\n") for x in imgList]
if split in ["train", "val"] and create_val:
valNum = numpy.ceil(0.333 * len(imgList)).astype(int)
numpy.random.seed(0)
numpy.random.shuffle(imgList)
if split == "train":
imgList = imgList[valNum:]
else:
imgList = imgList[:valNum]
numpy.random.seed()
annoList = [class_to_anno[x.split("/")[0]] for x in imgList]
img = []
for img_name, anno in zip(imgList, annoList):
img.append((os.path.join(imageRoot, img_name), anno))
return img
class MITIndoorDataset(data.Dataset):
def __init__(
self,
dataset_root,
split,
subset=False,
transform=None,
create_val=True,
target_transform=None,
loader=dataset_parser.default_loader,
):
self.loader = loader
self.dataset_root = dataset_root
self.imageRoot = os.path.join(dataset_root, "Images")
self.split = split
self.classes = list(os.listdir(self.imageRoot))
self.classes.sort()
self.class_to_anno = {x: i for i, x in enumerate(self.classes)}
self.imgs = make_dataset(
self.dataset_root,
self.imageRoot,
split,
self.classes,
self.class_to_anno,
subset,
create_val=create_val,
)
self.transform = transform
self.target_transform = target_transform
self.dataset_name = "mit_indoor"
def __getitem__(self, index):
path, target = self.imgs[index]
img = self.loader(path)
if self.transform is not None:
img = [x(img) for x in self.transform]
if self.target_transform is not None:
target = self.target_transform(target)
return (*img, target, path)
def get_num_classes(self):
return len(self.classes)
def __len__(self):
return len(self.imgs)