-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpre_process.py
134 lines (112 loc) · 4.91 KB
/
pre_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
from glob import glob
from python_speech_features import fbank
import librosa
import numpy as np
import pandas as pd
import pickle
from multiprocessing import Pool
import silence_detector
import config as c
from config import SAMPLE_RATE
from time import time
np.set_printoptions()
#pd.set_option('display.height', 1000)
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pd.set_option('max_colwidth', 100)
def find_files(directory, pattern='**/*.wav'):
"""Recursively finds all files matching the pattern."""
return glob(os.path.join(directory, pattern), recursive=True)
def VAD(audio):
chunk_size = int(SAMPLE_RATE*0.05) # 50ms
index = 0
sil_detector = silence_detector.SilenceDetector(15)
nonsil_audio=[]
while index + chunk_size < len(audio):
if not sil_detector.is_silence(audio[index: index+chunk_size]):
nonsil_audio.extend(audio[index: index + chunk_size])
index += chunk_size
return np.array(nonsil_audio)
def read_audio(filename, sample_rate=SAMPLE_RATE):
audio, sr = librosa.load(filename, sr=sample_rate, mono=True)
audio = VAD(audio.flatten())
start_sec, end_sec = c.TRUNCATE_SOUND_SECONDS
start_frame = int(start_sec * SAMPLE_RATE)
end_frame = int(end_sec * SAMPLE_RATE)
if len(audio) < (end_frame - start_frame):
au = [0] * (end_frame - start_frame)
for i in range(len(audio)):
au[i] = audio[i]
audio = np.array(au)
return audio
def normalize_frames(m,epsilon=1e-12):
return [(v - np.mean(v)) / max(np.std(v),epsilon) for v in m]
def extract_features(signal=np.random.uniform(size=48000), target_sample_rate=SAMPLE_RATE):
filter_banks, energies = fbank(signal, samplerate=target_sample_rate, nfilt=64, winlen=0.025) #filter_bank (num_frames , 64),energies (num_frames ,)
filter_banks = normalize_frames(filter_banks)
frames_features = filter_banks # (num_frames , 64)
num_frames = len(frames_features)
return np.reshape(np.array(frames_features),(num_frames, 64, 1)) #(num_frames,64, 1)
def data_catalog(dataset_dir=c.DATASET_DIR, pattern='*.npy'):
libri = pd.DataFrame()
libri['filename'] = find_files(dataset_dir, pattern=pattern)
libri['filename'] = libri['filename'].apply(lambda x: x.replace('\\', '/')) # normalize windows paths
libri['speaker_id'] = libri['filename'].apply(lambda x: x.split('/')[-1].split('-')[0])
num_speakers = len(libri['speaker_id'].unique())
print("speaker: "+libri['speaker_id'])
print('Found {} files with {} different speakers.'.format(str(len(libri)).zfill(7), str(num_speakers).zfill(5)))
# print(libri.head(10))
return libri
def prep(libri,out_dir=c.DATASET_DIR,name='0'):
start_time = time()
i=0
for i in range(len(libri)):
orig_time = time()
filename = libri[i:i+1]['filename'].values[0]
target_filename = out_dir + filename.split("/")[-1].split('.')[0] + '.npy'
if os.path.exists(target_filename):
if i % 10 == 0: print("task:{0} No.:{1} Exist File:{2}".format(name, i, filename))
continue
raw_audio = read_audio(filename)
feature = extract_features(raw_audio, target_sample_rate=SAMPLE_RATE)
if feature.ndim != 3 or feature.shape[0] < c.NUM_FRAMES or feature.shape[1] !=64 or feature.shape[2] != 1:
print('there is an error in file:',filename)
continue
np.save(target_filename, feature)
if i % 100 == 0:
print("task:{0} cost time per audio: {1:.3f}s No.:{2} File name:{3}".format(name, time() - orig_time, i, filename))
print("task %s runs %d seconds. %d files" %(name, time()-start_time,i))
def preprocess_and_save(wav_dir=c.WAV_DIR,out_dir=c.DATASET_DIR):
orig_time = time()
libri = data_catalog(wav_dir, pattern='**/*.wav')
#/home/dodo/WorkSpace/AI/Zalo-Challenge/clone/audio/train/19
print("extract fbank from audio and save as npy, using multiprocessing pool........ ")
p = Pool(5)
patch = int(len(libri)/5)
for i in range(5):
if i < 4:
slibri=libri[i*patch: (i+1)*patch]
else:
slibri = libri[i*patch:]
print("task %s slibri length: %d" %(i, len(slibri)))
p.apply_async(prep, args=(slibri,out_dir,i))
print('Waiting for all subprocesses done...')
p.close()
p.join()
print("Extract audio features and save it as npy file, cost {0} seconds".format(time()-orig_time))
print("---------------------------------------------------")
def test():
libri = data_catalog()
filename = 'audio/train/19/19-198-0000.wav'
raw_audio = read_audio(filename)
print(filename)
feature = extract_features(raw_audio, target_sample_rate=SAMPLE_RATE)
print(filename)
if __name__ == '__main__':
# test()
dirs = os.listdir("audio/train")
print(dirs)
for ii in dirs:
preprocess_and_save("audio/train/"+ii)