-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathfft_ma_2d.m
310 lines (265 loc) · 9.92 KB
/
fft_ma_2d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
% fft_ma_2d :
% Call :
% [out,z,options,logL]=fft_ma_2d(x,y,Va,options)
%
% x: array, ex : x=1:1:80:
% y: array, ex : y=1:1:50:
% Va: variogram def, ex : Va="1 Sph (10,30,.25)";
%
% options.gmean
% options.gvar
% options.pad_x : Padding in x-direction (number of pixels [def=nx])
% options.pad_y : Padding in y-direction (number of pixels [def=ny])
% options.wx,options.wx : wraparound padding around the simulation area
% when using sequential Gibbs simulation.
% [def, options.wx=max(range)/dx,options.wy=max(range)/dy]
%
%
% "
% Ravalec, M.L. and Noetinger, B. and Hu, L.Y.},
% Mathematical Geology 32(6), 2000, pp 701-723
% The FFT moving average (FFT-MA) generator: An efficient numerical
% method for generating and conditioning Gaussian simulations
% "
%
% Examples:
% % 1D
% x=1:1:512;y=1;
% Va='1 Gau(20)';
% [out,z]=fft_ma_2d(x,y,Va);
% plot(x,out);colorbar
%
% % 2D
% x=[1:1:50];y=1:1:80;
% direction=30; % 30 degrees from north
% h_max=10;
% h_min=5;
% aniso=h_min/h_max;
% Va='1 Sph(10,30,5/10)';
% [out,z]=fft_ma_2d(x,y,Va);
% imagesc(x,y,out);colorbar
%
%
% x=[1:1:50];y=1:1:80;
% Va='1 Sph(10,30,.25)';
% [out1,z_rand]=fft_ma_2d(x,y,Va);
% ii=10000:20000;
% z_rand(ii)=randn(size(z_rand(ii)));
% options.z_rand=z_rand;
% [out2,z_rand2]=fft_ma_2d(x,y,Va,options);
% subplot(1,3,1),imagesc(x,y,[out1]);colorbar;axis image;cax=caxis;
% subplot(1,3,2),imagesc(x,y,[out2]);caxis(cax);colorbar;axis image
% subplot(1,3,3),imagesc(x,y,[out2-out1]);colorbar;axis image
%
% Using proper semivariogram anisotropy specification (Feb, 2012)
% original (FFT_MA_2D) Knud S. Cordua (June 2009)
% Thomas M. Hansen (September, 2009)
% Jan Frydendall (April, 2011) Zero padding
% UPDATE TO WORK WITH RESIM
%
function [out,z_rand,options,logL]=fft_ma_2d(x,y,Va,options)
if nargin==0
x=[1:1:50];y=1:1:80;
Va='1 Sph(10,30,.25)';
[out1,z_rand]=fft_ma_2d(x,y,Va);
ii=1:(prod(size(z_rand))/4);
z_rand(ii)=randn(size(z_rand(ii)));
options.z_rand=z_rand;
options.pad_x=0;
options.pad_y=0;
[out2,z_rand2,options]=fft_ma_2d(x,y,Va,options);
subplot(1,3,1),imagesc(x,y,[out1]);colorbar;axis image;cax=caxis;
subplot(1,3,2),imagesc(x,y,[out2]);caxis(cax);colorbar;axis image
subplot(1,3,3),imagesc(x,y,[out2-out1]);colorbar;axis image
out=out2;
return
end
options.null='';
%if (isfield(options,'constant_C'));disp(options.constant_C);end
if ~isfield(options,'resim_type'); options.resim_type=2;end
if ~isstruct(Va);Va=deformat_variogram(Va);end
if ~isfield(options,'wrap_around');options.wrap_around=1;end
if ~isfield(options,'gmean');options.gmean=0;end
if ~isfield(options,'gvar');options.gvar=sum([Va.par1]);end
nx=length(x);
ny=length(y);
if nx>1; dx=x(2)-x(1); else dx=1; end
if ny>1; dy=y(2)-y(1); else dy=1; end
if isfield(options,'pad');
if length(options.pad)==1, options.pad=[1 1].*options.pad;end
try;options.pad_x=options.pad(1);end
try;options.pad_y=options.pad(2);end
end
%if ~isfield(options,'pad_x');options.pad_x=2*nx-1;end
%if ~isfield(options,'pad_y');options.pad_y=ny-1;end
if ~isfield(options,'pad_x');options.pad_x=nx;end
if ~isfield(options,'pad_y');options.pad_y=ny;end
if ~isfield(options,'padpow2');options.padpow2=0;end
if isfield(options,'w');
if length(options.w)==1, options.w=[1 1].*options.w;end
try;options.wx=options.w(1);end
try;options.wy=options.w(2);end
end
if ~isfield(options,'wx');
if options.resim_type==1
options.wx=0;
else
options.wx = 2*ceil(semivar_get_max_range(Va)./dx);
end
end
if ~isfield(options,'wy');
if options.resim_type==1
options.wy=0;
else
options.wy = 2*ceil(semivar_get_max_range(Va)./dy);
end
end
if length(x)==1; x=[x x+.0001]; end
if length(y)==1; y=[y y+.0001]; end
org.nx=nx;
org.ny=ny;
ny_c=ny+options.pad_y;
nx_c=nx+options.pad_x;
x_all=[0:1:(nx_c-1)].*dx+x(1);
y_all=[0:1:(ny_c-1)].*dy+y(1);
%% REMOVE OLD COVARIANCE OF options.constant_C=0
if (isfield(options,'constant_C'));
if options.constant_C==0;
try;options=rmfield(options,'C');end
try;options=rmfield(options,'fftC');end
end
end
%% SETUP COVARIANCE MODEL
if (~isfield(options,'C'))&(~isfield(options,'fftC'));
if (options.padpow2==1)
nx_c=2.^nextpow2(nx_c);
ny_c=2.^nextpow2(ny_c);
end
x1=[0:1:(nx_c-1)].*dx;
y1=[0:1:(ny_c-1)].*dy;
if (~isfield(options,'X'))|(~isfield(options,'Y'));
[options.X options.Y]=meshgrid(x1,y1);
end
%if nx>1, h_x=options.X-x1(ceil(nx_c/2)+1);else;h_x=options.X;end
%if ny>1, h_y=options.Y-y1(ceil(ny_c/2)+1);else;h_y=options.Y;end
if nx>1, h_x=options.X-x1(ceil(nx_c/2));else;h_x=options.X;end
if ny>1, h_y=options.Y-y1(ceil(ny_c/2));else;h_y=options.Y;end
C=precal_cov([0 0],[h_x(:) h_y(:)],Va);
options.C=reshape(C,ny_c,nx_c);
end
%% COMPUTE FFT and PAD
if ~isfield(options,'fftC');
options.fftC=fft2(fftshift(options.C));
end
%% normal deviates
if isfield(options,'z_rand')
% use given set
z_rand=options.z_rand;
else
% create a new set
z_rand=randn(size(options.fftC));
end
%% RESIMULATION
if isfield(options,'lim');
% use a border zone correspoding to twice the size of the
% maximum range
% make sure we only pad around simulation
% box, if needed
%if options.wx > (size(z_rand,2)-nx);options.wx=0,end
%if options.wy > (size(z_rand,1)-ny);options.wy=0;end
%keyboard
if options.wx > (size(z_rand,2)-nx);options.wx=(size(z_rand,2)-nx);end
if options.wy > (size(z_rand,1)-ny);options.wy=(size(z_rand,1)-ny);end
if (options.resim_type==1)|(options.resim_type==3)
%% BOX TYPE RESIMULATION
if isfield(options,'pos');
[options.used]=set_resim_data(x_all,y_all,z_rand,options.lim,options.pos,options.wrap_around);
else
% CHOOSE CENTER OF BOX AUTOMATICALLY
% wx, wy, allow selecting from the center also in a area just
% outside the simulation area, the border zone. This is done to ensure that
% nodes at the edge of the simulation error are allowe to vary.
x0=ceil((rand(1)*(nx+2*options.wx)))-ceil(options.wx);
y0=ceil((rand(1)*(ny+2*options.wy)))-ceil(options.wy);
if x0<1; x0=size(z_rand,2)+x0;end
if y0<1; y0=size(z_rand,1)+y0;end
if x0>size(z_rand,2); x0=x0-size(z_rand,2);end
if y0>size(z_rand,1); y0=y0-size(z_rand,1);end
% we do not use options.pos, but options.pos_used, such that
% opions.pos is not fixed for for subsequent calls top fft_ma
options.pos_used=[x_all(x0) y_all(y0)];
[options.used]=set_resim_data(x(1)+[0:(size(z_rand,2)-1)]*dx,y(1)+[0:(size(z_rand,1)-1)]*dy,z_rand,options.lim,options.pos_used,options.wrap_around);
% random selection within box
if options.resim_type==3;
ii=find(options.used==0);
nii=length(ii);
pert_proc_in_box=0.1; %numbe of hard data in box to perturb
i_random=randomsample(nii,ceil(pert_proc_in_box*nii));
options.used(ii(i_random))=1;
end
end
ii=find(options.used==0);
z_rand_new=randn(size(z_rand(ii)));
z_rand(ii) = z_rand_new;
else
% RANDOM SET TYPE RESIMULATION
n_resim=options.lim(1);
nz_rand=prod(size(z_rand));
if n_resim<=1
% use n_resim as a proportion of all random deviates
n_resim=n_resim.*nz_rand;
end
if ((n_resim<2)&&(n_resim>1))
n_resim=1;
end
n_resim=floor(n_resim);
n_resim = min([n_resim nz_rand]);
% ADD PADDING !!!!
N_all=(nx+options.wx)*(ny+options.wy);
n_resim = min([n_resim N_all]);
if (n_resim~=N_all)
% next line use a lot of CPU if n_resim is high
ii=randomsample(N_all,n_resim);
% next two lines use less CPU if_n_resim is high
%ii_inv=randomsample(N_all,N_all-n_resim);
%ii=setxor(1:1:N_all,ii_inv);
else
ii=1:1:N_all;
end
z_rand_new=randn(size(z_rand(ii)));
[iy,ix]=ind2sub([ny+options.wy,nx+options.wx],ii);
wx0=ceil(options.wx/2);
wy0=ceil(options.wy/2);
for k=1:length(ii);
x0=ix(k)-wx0;
y0=iy(k)-wy0;
if x0<1; x0=size(z_rand,2)+x0;end
if y0<1; y0=size(z_rand,1)+y0;end
if x0>size(z_rand,2); x0=x0-size(z_rand,2);end
if y0>size(z_rand,1); y0=y0-size(z_rand,1);end
z_rand(y0,x0)=z_rand_new(k);
end
end
end
%% linear combinartion of the perturbed paramaters
if (isfield(options,'gradual') && isfield(options,'z_rand'))
if options.gradual<1
if exist('gaussian_linear_combine','file')
i_perturbed=find((options.z_rand-z_rand)~=0);
z_rand(i_perturbed) = gaussian_linear_combine(options.z_rand(i_perturbed),z_rand(i_perturbed),options.gradual,0);
end
end
end
%% Inverse FFT
%out=(ifft2( sqrt((options.fftC)).*fft2(z_rand,options.nf(1),options.nf(2)) ));
out=(ifft2( sqrt((options.fftC)).*fft2(z_rand) ));
options.out=out;
out=real(out(1:ny,1:nx))+options.gmean;
if org.nx==1; out=out(:,1); end
if org.ny==1; out=out(1,:); end
% Prior Likelihood
logL = -.5*sum(z_rand(:).^2);
options.nx=nx;
options.ny=ny;
options.nx_c=nx_c;
options.ny_c=ny_c;