-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntervals.py~
executable file
·156 lines (82 loc) · 3.73 KB
/
Intervals.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/bin/sh /cvmfs/icecube.opensciencegrid.org/py2-v2/icetray-start
#METAPROJECT icerec/V05-01-00
import os
import numpy as np
import ingredients as ING
from scipy.stats import poisson
TS = []
mass = [100,200,350,500,750,1000,2500,5000,7500,10000,25000,50000,75000,100000]
channel = [5,8,11,13]
life = [0.00042,0.042,0.42,4.2]
medmass = [10,100,1000,10000]
#loop over all cases
for Mass in range(14):
TS_dost = []
for Channel in range(4):
TS_dust = []
for Life in range(4):
TS_dist = []
for Medmass in range(4):
TS_dast = []
for n_s in range(81):
if os.path.isfile("/home/ctoennis/analyses/standard_analysis_framework/WIMP_TS/TS_m" + str(Mass) + "-med" + str(Medmass) + "-gl" + str(Life) + "-ch" + str(Channel) + "-ns"+ str(n_s)+".txt"):
TS_dast.append(ING.H1D.FromFile("/home/ctoennis/analyses/standard_analysis_framework/WIMP_TS/TS_m" + str(Mass) + "-med" + str(Medmass) + "-gl" + str(Life) + "-ch" + str(Channel) + "-ns"+ str(n_s)+".txt")) # get TS distributions
else:
TS_dast.append("none")
TS_dist.append(TS_dast)
TS_dust.append(TS_dist)
TS_dost.append(TS_dust)
TS.append(TS_dost)
pois = []
print "poissonian is being calculated"
#now reweight the distributions to take statistic variations into account
for Mass in range(14):
pois_dost = []
for Channel in range(4):
pois_dust = []
for Life in range(4):
pois_dist = []
for Medmass in range(4):
pois_dast = []
# print(Mass,Channel,Life,Medmass)
if os.path.isfile("/home/ctoennis/analyses/standard_analysis_framework/WIMP_TS/TS_m" + str(Mass) + "-med" + str(Medmass) + "-gl" + str(Life) + "-ch" + str(Channel) + "-ns0.txt"):
for n_s in [0.1*x for x in range(1,801)]:
h_new = ING.H1D.Empty(TS[13][3][3][3][3].low, TS[13][3][3][3][3].high, TS[13][3][3][3][3].nbin)
for n_2 in range(81):
if os.path.isfile("/home/ctoennis/analyses/standard_analysis_framework/WIMP_TS/TS_m" + str(Mass) + "-med" + str(Medmass) + "-gl" + str(Life) + "-ch" + str(Channel) + "-ns"+ str(n_2)+".txt"):
if TS[Mass][Channel][Life][Medmass][n_2] == "none":
continue
h_new.AddH1(TS[Mass][Channel][Life][Medmass][n_2],poisson.pmf(n_2,n_s))
h_new.Write("/home/ctoennis/analyses/standard_analysis_framework/WIMP_TS/POIS_m" + str(Mass) + "-med" + str(Medmass) + "-gl" + str(Life) + "-ch" + str(Channel) + "_ns" +str(10*n_s) + ".txt")
pois_dast.append(h_new)
else:
for n_s in [0.1*x for x in range(1,801)]:
pois_dast.append("none")
pois_dist.append(pois_dast)
pois_dust.append(pois_dist)
pois_dost.append(pois_dust)
pois.append(pois_dost)
print "sensitivities are being calculated"
#Now get the confidence intervals and set a sensitivity
for Channel in range(4):
for Life in range(4):
for Medmass in range(4):
infile = open("/home/ctoennis/analyses/standard_analysis_framework/WIMP_TS/ns_limit_c" + str(channel[Channel]) + "_l" + str(life[Life]) + "_med" + str(medmass[Medmass]) + ".txt",'w')
for Mass in range(14):
if TS[Mass][Channel][Life][Medmass][0] == "none":
continue
back = TS[Mass][Channel][Life][Medmass][0].GetFCInterval(0.5)
limit = pois[Mass][Channel][Life][Medmass][0].nbin
# print back
for n_s in range(1,800):
if pois[Mass][Channel][Life][Medmass][n_s]=="none":
continue
derp = pois[Mass][Channel][Life][Medmass][n_s].GetFCInterval(0.9)
# print("derp: "+ str(derp))
if derp[0] > back[1]:
limit = (n_s-1)*0.1
break
if limit > 100:
continue
infile.write(str(Mass) + " " + str(limit) + "\n")
print str(Mass) + " " + str(limit)