We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
以下是报错 错误使用 vl_nnconv FILTERS are larger than the DATA (including padding). 出错 vl_simplenn (第 97 行) res(i+1).x = vl_nnconv(res(i).x, l.weights{1}, l.weights{2}, ... 出错 DnCNN_train>process_epoch (第 182 行) res = vl_simplenn(net, inputs, dzdy, res, ... 出错 DnCNN_train (第 111 行) [net, state] = process_epoch(net, state, imdb, opts, 'train'); 出错 Demo_Train_model_64_25_Res_Bnorm_Adam (第 41 行) [net, info] = DnCNN_train(net, ...
我debug了一下,好像是因为在vl_simplenn.m的第95-117行对层的种类判断的时候没有对bnorm层处理,不知道是我哪里运行错了吗
switch l.type case 'conv' res(i+1).x = vl_nnconv(res(i).x, l.weights{1}, l.weights{2}, ... 'pad', l.pad, ... 'stride', l.stride, ... 'dilate', l.dilate, ... l.opts{:}, ... cudnn{:}) ; case 'concat' if size(sigmas,1)~=size(res(i).x,1) sigmaMap = bsxfun(@times,ones(size(res(i).x,1),size(res(i).x,2),1,size(res(i).x,4)),permute(sigmas,[3 4 1 2])) ; res(i+1).x = vl_nnconcat({res(i).x,sigmaMap}) ; else res(i+1).x = vl_nnconcat({res(i).x,sigmas}) ; end case 'SubP' res(i+1).x = vl_nnSubP(res(i).x, [],'scale',l.scale) ; case 'relu' leak = {} ; res(i+1).x = vl_nnrelu(res(i).x,[],leak{:}) ; end
The text was updated successfully, but these errors were encountered:
No branches or pull requests
以下是报错
错误使用 vl_nnconv
FILTERS are larger than the DATA (including padding).
出错 vl_simplenn (第 97 行)
res(i+1).x = vl_nnconv(res(i).x, l.weights{1}, l.weights{2}, ...
出错 DnCNN_train>process_epoch (第 182 行)
res = vl_simplenn(net, inputs, dzdy, res, ...
出错 DnCNN_train (第 111 行)
[net, state] = process_epoch(net, state, imdb, opts, 'train');
出错 Demo_Train_model_64_25_Res_Bnorm_Adam (第 41 行)
[net, info] = DnCNN_train(net, ...
我debug了一下,好像是因为在vl_simplenn.m的第95-117行对层的种类判断的时候没有对bnorm层处理,不知道是我哪里运行错了吗
The text was updated successfully, but these errors were encountered: