-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
106 lines (93 loc) · 3.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#-*- encoding: UTF-8 -*-
# import sys
# reload(sys)
# sys.setdefaultencoding("utf-8")
import time
import torch
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
from tqdm import tqdm
import numpy as np
import math
import sys
import random
# import torch.multiprocessing as mp
from util.util import calc_psnr as calc_psnr
#from util.util import calc_psnr_np as calc_psnr
def setup_seed(seed=0):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
setup_seed(seed=0)
opt = TrainOptions().parse()
dataset_train = create_dataset(opt.dataset_name, 'train', opt)
dataset_size_train = len(dataset_train)
print('The number of training images = %d' % dataset_size_train)
dataset_val = create_dataset(opt.dataset_name, 'val', opt)
dataset_size_val = len(dataset_val)
print('The number of val images = %d' % dataset_size_val)
model = create_model(opt)
model.setup(opt)
visualizer = Visualizer(opt)
total_iters = ((model.start_epoch * (dataset_size_train // opt.batch_size)) \
// opt.print_freq) * opt.print_freq
for epoch in range(model.start_epoch + 1, opt.niter + opt.niter_decay + 1):
# training
epoch_start_time = time.time()
epoch_iter = 0
model.train()
iter_data_time = iter_start_time = time.time()
for i, data in enumerate(dataset_train):
if total_iters % opt.print_freq == 0:
t_data = time.time() - iter_data_time
total_iters += 1 #opt.batch_size
epoch_iter += 1 #opt.batch_size
model.set_input(data)
model.optimize_parameters()
if total_iters % opt.print_freq == 0:
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time)
visualizer.print_current_losses(
epoch, epoch_iter, losses, t_comp, t_data, total_iters)
if opt.save_imgs: # Too many images
visualizer.display_current_results(
'train', model.get_current_visuals(), total_iters)
iter_start_time = time.time()
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d'
% (epoch, total_iters))
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %.3f sec'
% (epoch, opt.niter + opt.niter_decay,
time.time() - epoch_start_time))
model.update_learning_rate()
# val
if opt.calc_psnr:
model.eval()
val_iter_time = time.time()
tqdm_val = tqdm(dataset_val)
psnr = [0.0] * dataset_size_val
time_val = 0
for i, data in enumerate(tqdm_val):
model.set_input(data)
time_val_start = time.time()
with torch.no_grad():
model.test()
time_val += time.time() - time_val_start
res = model.get_current_visuals()
# print(res['data_dslrwarp'], res['data_out'])
psnr[i] = calc_psnr(res['data_hr'], res['data_sr'])
if opt.save_imgs:
visualizer.display_current_results('val', res, epoch)
visualizer.print_psnr(epoch, opt.niter + opt.niter_decay, time_val, np.mean(psnr))
# visualizer.writer.add_scalar('val/psnr', np.mean(psnr), epoch)
# print('End of epoch %d / %d (Val) \t Time Taken: %.3f s \t PSNR: %f'
# % (epoch, opt.niter + opt.niter_decay, time_val, np.mean(psnr)))
sys.stdout.flush()