-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsv_to_graphs.py
72 lines (53 loc) · 2.61 KB
/
csv_to_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python3
######################################################
# File: csv_to_graph.py
# Author: Bart Gajderowicz
# Date: May 6, 2022
# Description:
# create visual graphs from csv/excel test data files
######################################################
import os
from misc_lib import *
from graph_lib import *
import numpy as np
import pandas as pd
import networkx as nx
xls = pd.ExcelFile('csv/unit_tests3.xlsx')
funding = pd.read_excel(xls,'Funding', header=1)
funding = funding.dropna(how='all')
services = pd.read_excel(xls,'Services', header=1)
services = services.dropna(how='all')
programs = pd.read_excel(xls,'Programs', header=1)
programs = programs.dropna(how='all')
models = pd.read_excel(xls,'LogicModels', header=1)
models = models.dropna(how='all')
orgs = pd.read_excel(xls,'Organizations', header=1)
orgs = orgs.dropna(how='all')
df = funding[['Funding','receivedFrom','fundersProgram','receivedAmount','forProgram']].merge(programs[['Program', 'hasService']], left_on='forProgram', right_on=['Program']).\
merge(services[['Service','hasRequirement','hasCode']], left_on=['hasService'], right_on=['Service']).\
merge(models[['LogicModel','forOrganization', 'hasProgram']], left_on=['fundersProgram'], right_on=['hasProgram']).\
merge(models[['LogicModel','forOrganization', 'hasProgram']], left_on=['Program'], right_on=['hasProgram'])
df = df.rename(columns={
'LogicModel_x':'fromLogicModel',
'LogicModel_y':'toLogicModel',
'receivedFrom':'fromOrg',
'forOrganization_y':'toOrg',
'hasProgram_x':'fromProgram',
'hasProgram_y':'toProgram',
'hasCode':'serviceCode',
})
funding_df = df[['Funding','fromLogicModel','toLogicModel','fromOrg','toOrg','fromProgram','toProgram','receivedAmount', 'Service','serviceCode']].\
drop_duplicates()
service_df = []
for (org,ser),grp in df[df.serviceCode!='CL-Funding'][['toOrg','serviceCode','hasRequirement']].drop_duplicates().groupby(['toOrg','serviceCode']):
codes = flatten([cs.replace('cids:hasCode CL-','').split(',') for cs in grp.hasRequirement.values])
codes = [c.strip() for c in codes]
for code in codes:
service_df.append([org,ser,code])
service_df = pd.DataFrame(service_df,columns=['toOrg','serviceCode', 'clientCode'])
color_tab = gen_color_tab(pd.concat([funding_df, service_df]), cols=['Funding','toOrg'])
G0 = nx.MultiDiGraph()
_=[G0.add_edge(y,x,weight=w, title=w, color=clamp(color_tab[f])) for [f,x,y,w] in funding_df[['Funding','fromOrg','toOrg','receivedAmount']].values]
_=[G0.add_edge(y,x) for [x,y] in service_df[['toOrg','serviceCode']].values]
G0 = update_graph(G0)
plot_g_pyviz(G0, filename='by_service_codes.html')