This repository has been archived by the owner on Jan 24, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdraft-ietf-lamps-pkix-shake-01.txt
560 lines (338 loc) · 19.7 KB
/
draft-ietf-lamps-pkix-shake-01.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
LAMPS WG P. Kampanakis
Internet-Draft Cisco Systems
Intended status: Standards Track Q. Dang
Expires: August 20, 2018 NIST
February 16, 2018
Internet X.509 Public Key Infrastructure: Additional SHAKE Algorithms
and Identifiers for RSA and ECDSA
draft-ietf-lamps-pkix-shake-01
Abstract
This document describes the conventions for using the SHAKE family of
hash functions in the Internet X.509 as one-way hash functions with
the RSA and ECDSA signature algorithms; the conventions for the
associated subject public keys are also described. Digital
signatures are used to sign messages, certificates and CRLs
(Certificate Revocation Lists).
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 20, 2018.
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
Kampanakis & Dang Expires August 20, 2018 [Page 1]
Internet-Draft SHAKE identifiers in X.509 February 2018
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Change Log . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Message Digest Algorithms . . . . . . . . . . . . . . . . . . 3
3.1. One-way Extensible-Output-Function SHAKEs . . . . . . . . 3
3.2. Mask Generation SHAKEs . . . . . . . . . . . . . . . . . 4
4. Signature Algorithms . . . . . . . . . . . . . . . . . . . . 4
4.1. RSASSA-PSS with SHAKEs . . . . . . . . . . . . . . . . . 4
4.2. ECDSA with SHAKEs . . . . . . . . . . . . . . . . . . . . 5
5. Public Key Algorithms . . . . . . . . . . . . . . . . . . . . 6
6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 7
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7
8. Security Considerations . . . . . . . . . . . . . . . . . . . 7
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 8
9.1. Normative References . . . . . . . . . . . . . . . . . . 8
9.2. Informative References . . . . . . . . . . . . . . . . . 9
Appendix A. ASN.1 module . . . . . . . . . . . . . . . . . . . . 9
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 9
1. Change Log
[ EDNOTE: Remove this section before publication. ]
o draft-ietf-lamps-pkix-shake-01:
* Changed titles and section names.
* Removed DSA after WG discussions.
* Updated shake OID names and parameters, added MGF1 section.
* Updated RSASSA-PSS section.
* Added Public key algorithm OIDs.
* Populated Introduction and IANA sections.
o draft-ietf-lamps-pkix-shake-00:
* Initial version
Kampanakis & Dang Expires August 20, 2018 [Page 2]
Internet-Draft SHAKE identifiers in X.509 February 2018
2. Introduction
This document describes several cryptographic algorithms which may be
used with the Internet X.509 Certificate and CRL profile [RFC5280].
It describes the OIDs for variable length SHAKE algorithms introduced
in [SHA3] and how they can be used in X.509 certificates. [ EDNOTE:
Update here. ]
3. Message Digest Algorithms
This section describes two one-way hash functions and digital
signature algorithms using these functions, which may be used to sign
certificates and CRLs, and identifies OIDs (Object Identifiers) for
public keys contained in certificates.
3.1. One-way Extensible-Output-Function SHAKEs
The SHA-3 family of one-way hash functions is specified in [SHA3].
In the SHA-3 family, two extendable-output functions, called SHAKE128
and SHAKE256 are defined. Four hash functions, SHA3-224, SHA3-256,
SHA3-384, and SHA3-512 are also defined but are out of scope for this
document. SHAKE is a variable length hash function. The output
lengths, in bits, of the SHAKE hash functions is defined by the
parameter d. The corresponding collision and preimage resistance
security levels for SHAKE128 and SHAKE256 are respectively
min(d/2,128) and min(d,128) and min(d/2,256) and min(d,256). The
Object Identifiers (OIDs) for these two hash functions are defined in
[shake-nist-oids] and are included here for convenience:
id-shake128-len OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistalgorithm(4) hashalgs(2) 17 }
ShakeOutputLen ::= INTEGER -- Output length in octets
When using the id-shake128-len algorithm identifier, the parameters
MUST be present, and they MUST employ the ShakeOutputLen syntax that
contains an encoded positive integer value at least 32 in this
specification.
id-shake256-len OBJECT IDENTIFIER ::= { joint-iso-itu-t(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistalgorithm(4) hashalgs(2) 18 }
ShakeOutputLen ::= INTEGER -- Output length in octets
When using the id-shake256-len algorithm identifier, the parameters
MUST be present, and they MUST employ the ShakeOutputLen syntax that
Kampanakis & Dang Expires August 20, 2018 [Page 3]
Internet-Draft SHAKE identifiers in X.509 February 2018
contains an encoded positive integer value at least 64 in this
specification.
3.2. Mask Generation SHAKEs
The RSASSA-PSS signature algorithm uses a mask generation function.
A mask generation function takes an octet string of variable length
and a desired output length as input, and outputs an octet string of
the desired length. The mask generation function used in RSASSA-PSS
is defined in [RFC8017], but we include it here as well for
convenience:
id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }
The parameters field associated with id-mgf1 MUST have a
hashAlgorithm value that identifies the hash used with MGF1. To use
SHAKE as this hash, this parameter MUST be id-shake128-len or id-
shake256-len as specified in Section 3.1 above.
4. Signature Algorithms
4.1. RSASSA-PSS with SHAKEs
The RSASSA-PSS signature algorithm identifier and its parameters are
specifed in [RFC4055]:
id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }
RSASSA-PSS-params ::= SEQUENCE {
hashAlgorithm HashAlgorithm,
maskGenAlgorithm MaskGenAlgorithm,
saltLength INTEGER,
trailerField INTEGER }
This document adds two new hash algorithm choices and two new choices
for mask generation functions. These are the SHAKE128 and SHAKE256
algorithm identifiers specified in Section 3.1.
When SHAKE128 or SHAKE256 is used as the hashAlgorithm, it MUST also
be used as the maskGenAlgorithm.
When used as the hashAlgorithm, the SHAKE128 or SHAKE256 output-
length must be either 32 or 64 bytes respectively. In these cases,
the parameters MUST be present, and they MUST employ the
ShakeOutputLen syntax that contains an encoded positive integer value
of 32 or 64 for id-shake128-len or id-shake256-len algorithm
identifier respectively.
Kampanakis & Dang Expires August 20, 2018 [Page 4]
Internet-Draft SHAKE identifiers in X.509 February 2018
When id-shake128-len or id-shake256-len algorithm identifier is used
as the id-mfg1 maskGenAlgorithm parameter, the ShakeOutputLen
parameter must be (n - 264)/8 or (n - 520)/8 respectively for
SHAKE128 and SHAKE256, where n is the RSA modulus in bits. For
example, when RSA modulus n is 2048, ShakeOutputLen must be 223 or
191 when id-shake128-len or id-shake256-len is are used respectively.
The parameter saltLength MUST be 32 or 64 bytes respectively for the
SHAKE128 and SHA256 OIDs.
4.2. ECDSA with SHAKEs
The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
"Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Standard (ECDSA)" [X9.62]. The
ASN.1 OIDs of ECDSA signature algorithms using SHAKE128 and SHAKE256,
are below:
id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { joint-iso-ccitt(2)
country(16) us(840) organization(1) gov(101) csor(3) algorithms(4)
id-ecdsa-with-shake(3) x }
id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { joint-iso-ccitt(2)
country(16) us(840) organization(1) gov(101) csor(3) algorithms(4)
id-ecdsa-with-shake(3) y }
[ EDNOTE: "x" and "y" will be specified by NIST later. ]
When the id-ecdsa-with-SHAKE128 or id-ecdsa-with-SHAKE256, algorithm
identifier appears in the algorithm field as an AlgorithmIdentifier,
the encoding MUST omit the parameters field. That is, the
AlgorithmIdentifier SHALL be a SEQUENCE of one component, the OID
ecdsa-with-SHAKE128 or ecdsa-with-SHAKE256.
Conforming CA implementations MUST specify the hash algorithm
explicitly using the OIDs specified in Section 3.2 above when
encoding ECDSA/SHAKE signatures in certificates and CRLs.
Conforming client implementations that process ECDSA signatures with
any of the SHAKE hash algorithms when processing certificates and
CRLs MUST recognize the corresponding OIDs specified in Sections 3.1
and 3.2 above.
Kampanakis & Dang Expires August 20, 2018 [Page 5]
Internet-Draft SHAKE identifiers in X.509 February 2018
Encoding rules for ECDSA signature values are specified in [RFC4055],
Section 2.2.3, and [RFC5480].
Conforming CA implementations that generate ECDSA signatures in
certificates or CRLs MUST generate such ECDSA signatures in
accordance with all the requirements specified in Sections 7.2 and
7.3 of [X9.62] or with all the requirements specified in
Section 4.1.3 of [SEC1]. They MAY also generate such ECDSA
signatures in accordance with all the recommendations in [X9.62] or
[SEC1] if they have a stated policy that requires conformance to
these standards. These standards above may have not specified
SHAKE128 and SHAKE256 as hash algorithm options. However, SHAKE128
and SHAKE256 with output length being 32 and 64 octets respectively
are subtitutions for 256 and 512-bit output hash algorithms such as
SHA256 and SHA512 used in the standards.
5. Public Key Algorithms
The conventions for RSA and ECDSA public keys are as specified in
[RFC3279], [RFC4055] and [RFC5480]. We include them here for
convenience.
[RFC3279] defines the following OID for RSA with NULL parameters.
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}
Additionally, [RFC4055] adds the corresponding RSASSA-PSS OID public
key identifier and parameters (also shown in Section 4 of this
document). The parameters may be either absent or present when
RSASSA-PSS OID is used as subject public key information.
id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }
If id-RSASSA-PSS is used in the public key identifier with
parameters, Section 3.3 of [RFC4055] describes that the signature
algorithm parameters MUST match the parameters in the key structure
algorithm identifier except the saltLength field. The saltLength
field in the signature parameters MUST be greater or equal to that in
the key parameters field. If the id-RSASSA-PSS parameters are NULL
no further parameter validation is necessary.
For ECDSA, [RFC5480] defines the EC public key identifier and its
parameters as
Kampanakis & Dang Expires August 20, 2018 [Page 6]
Internet-Draft SHAKE identifiers in X.509 February 2018
id-ecPublicKey OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
ECParameters ::= CHOICE {
namedCurve OBJECT IDENTIFIER
-- implicitCurve NULL
-- specifiedCurve SpecifiedECDomain }
The ECParameters associated with the ECDSA public key in the signer's
certificate SHALL apply to the verification of the signature.
6. Acknowledgements
We would like to thank Sean Turner for his valuable contributions to
this document.
7. IANA Considerations
This document uses several registries that were originally created in
[shake-nist-oids]. No further registries are required. [ EDNOTE:
Update here. ]
8. Security Considerations
SHAKE128 and SHAKE256 are one-way extensible-output functions. Their
output length depends on a required length of the consumming
application.
The SHAKEs are deterministic functions. Like any other deterministic
functions, executing each function with the same input multiple times
will produce the same output. Therefore, users should not expect
unrelated outputs (with the same or different output lengths) from
excuting a SHAKE function with the same input multiple times.
Implementations must protect the signer's private key. Compromise of
the signer's private key permits masquerade.
When more than two parties share the same message-authentication key,
data origin authentication is not provided. Any party that knows the
message-authentication key can compute a valid MAC, therefore the
content could originate from any one of the parties.
Implementations must randomly generate message-authentication keys
and one-time values, such as the k value when generating a ECDSA
signature. In addition, the generation of public/private key pairs
relies on random numbers. The use of inadequate pseudo-random number
generators (PRNGs) to generate such cryptographic values can result
in little or no security. The generation of quality random numbers
Kampanakis & Dang Expires August 20, 2018 [Page 7]
Internet-Draft SHAKE identifiers in X.509 February 2018
is difficult. [RFC4086] offers important guidance in this area, and
[SP800-90A] series provide acceptable PRNGs.
Implementers should be aware that cryptographic algorithms may become
weaker with time. As new cryptanalysis techniques are developed and
computing performance improves, the work factor to break a particular
cryptographic algorithm will reduce. Therefore, cryptographic
algorithm implementations should be modular allowing new algorithms
to be readily inserted. That is, implementers should be prepared to
regularly update the set of algorithms in their implementations.
9. References
9.1. Normative References
[RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
2002, <https://www.rfc-editor.org/info/rfc3279>.
[RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
Algorithms and Identifiers for RSA Cryptography for use in
the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile", RFC 4055,
DOI 10.17487/RFC4055, June 2005,
<https://www.rfc-editor.org/info/rfc4055>.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
<https://www.rfc-editor.org/info/rfc5280>.
[RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
"Elliptic Curve Cryptography Subject Public Key
Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
<https://www.rfc-editor.org/info/rfc5480>.
[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
"PKCS #1: RSA Cryptography Specifications Version 2.2",
RFC 8017, DOI 10.17487/RFC8017, November 2016,
<https://www.rfc-editor.org/info/rfc8017>.
Kampanakis & Dang Expires August 20, 2018 [Page 8]
Internet-Draft SHAKE identifiers in X.509 February 2018
[SHA3] National Institute of Standards and Technology, "SHA-3
Standard - Permutation-Based Hash and Extendable-Output
Functions FIPS PUB 202", August 2015,
<https://www.nist.gov/publications/sha-3-standard-
permutation-based-hash-and-extendable-output-functions>.
9.2. Informative References
[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC 4086,
DOI 10.17487/RFC4086, June 2005,
<https://www.rfc-editor.org/info/rfc4086>.
[SEC1] Standards for Efficient Cryptography Group, "SEC 1:
Elliptic Curve Cryptography", May 2009,
<http://www.secg.org/sec1-v2.pdf>.
[shake-nist-oids]
National Institute of Standards and Technology, "Computer
Security Objects Register", October 2017,
<https://csrc.nist.gov/Projects/Computer-Security-Objects-
Register/Algorithm-Registration>.
[SP800-90A]
National Institute of Standards and Technology,
"Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. NIST SP 800-90A",
June 2015,
<http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-90Ar1.pdf>.
[X9.62] American National Standard for Financial Services (ANSI),
"X9.62-2005 Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature
Standard (ECDSA)", November 2005.
Appendix A. ASN.1 module
[ EDNOTE: More here. ]
Authors' Addresses
Panos Kampanakis
Cisco Systems
Email: [email protected]
Kampanakis & Dang Expires August 20, 2018 [Page 9]
Internet-Draft SHAKE identifiers in X.509 February 2018
Quynh Dang
NIST
100 Bureau Drive, Stop 8930
Gaithersburg, MD 20899-8930
USA
Email: [email protected]
Kampanakis & Dang Expires August 20, 2018 [Page 10]