-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
299 lines (231 loc) · 9.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from os.path import dirname, abspath, join, exists
import os
import logging
from datetime import datetime
from sklearn.metrics import precision_recall_fscore_support
def get_logger(model_name, args):
BASE_DIR = dirname(abspath(__file__))
LOG_DIR = join(BASE_DIR, 'logs')
# LOG_DIR = '/output'
if not exists(LOG_DIR):
os.mkdir(LOG_DIR)
flag = (args.add_features)
log_filename = '{model_name}-{class_to_train}-{adding}-{abl}.log'.format(model_name=model_name,class_to_train=args.class_to_train, adding=str(flag), abl=args.abl)
log_filepath = join(LOG_DIR, log_filename)
logger = logging.getLogger('deep-text_classification-logger')
if not logger.handlers: # execute only if logger doesn't already exist
fileHandler = logging.FileHandler(log_filepath.format(datetime=datetime.now()))
streamHandler = logging.StreamHandler(os.sys.stdout)
formatter = logging.Formatter('[%(levelname)s] %(asctime)s > %(message)s', datefmt='%m-%d %H:%M:%S')
fileHandler.setFormatter(formatter)
streamHandler.setFormatter(formatter)
logger.addHandler(fileHandler)
logger.addHandler(streamHandler)
logger.setLevel(logging.INFO)
return logger
def pad(t, length):
if length == t.size(0):
return t
else:
return torch.cat([t, Variable(t.data.new(length - t.size(0), *t.size()[1:]).zero_())])
def pack_list_sequence(inputs, l):
batch_list = []
max_l = max(list(l))
batch_size = len(inputs)
for b_i in range(batch_size):
batch_list.append(pad(inputs[b_i], max_l))
pack_batch_list = torch.stack(batch_list, dim=1)
return pack_batch_list
def pack_for_rnn_seq(inputs, lengths):
"""
:param inputs: [T * B * D]
:param lengths: [B]
:return:
"""
_, sorted_indices = lengths.sort()
'''
Reverse to decreasing order
'''
r_index = reversed(list(sorted_indices))
s_inputs_list = []
lengths_list = []
reverse_indices = np.zeros(lengths.size(0), dtype=np.int64)
for j, i in enumerate(r_index):
s_inputs_list.append(inputs[:, i, :].unsqueeze(1))
lengths_list.append(lengths[i])
reverse_indices[i] = j
reverse_indices = list(reverse_indices)
s_inputs = torch.cat(s_inputs_list, 1)
packed_seq = nn.utils.rnn.pack_padded_sequence(s_inputs, lengths_list)
return packed_seq, reverse_indices
def unpack_from_rnn_seq(packed_seq, reverse_indices):
unpacked_seq, _ = nn.utils.rnn.pad_packed_sequence(packed_seq)
s_inputs_list = []
for i in reverse_indices:
s_inputs_list.append(unpacked_seq[:, i, :].unsqueeze(1))
return torch.cat(s_inputs_list, 1)
def auto_rnn_bilstm(lstm: nn.LSTM, seqs, lengths):
batch_size = seqs.size(1)
state_shape = lstm.num_layers * 2, batch_size, lstm.hidden_size
h0 = c0 = Variable(seqs.data.new(*state_shape).zero_())
packed_pinputs, r_index = pack_for_rnn_seq(seqs, lengths)
output, (hn, cn) = lstm(packed_pinputs, (h0, c0))
output = unpack_from_rnn_seq(output, r_index)
return output
def auto_rnn_bigru(gru: nn.GRU, seqs, lengths):
batch_size = seqs.size(1)
state_shape = gru.num_layers * 2, batch_size, gru.hidden_size
h0 = Variable(seqs.data.new(*state_shape).zero_())
packed_pinputs, r_index = pack_for_rnn_seq(seqs, lengths)
output, hn = gru(packed_pinputs, h0)
output = unpack_from_rnn_seq(output, r_index)
return output
def select_last(inputs, lengths, hidden_size):
"""
:param inputs: [T * B * D] D = 2 * hidden_size
:param lengths: [B]
:param hidden_size: dimension
:return: [B * D]
"""
batch_size = inputs.size(1)
batch_out_list = []
for b in range(batch_size):
batch_out_list.append(torch.cat((inputs[lengths[b] - 1, b, :hidden_size],
inputs[0, b, hidden_size:])
)
)
out = torch.stack(batch_out_list)
return out
def channel_weighted_sum(s, w, l, sharpen=None):
batch_size = w.size(1)
result_list = []
for b_i in range(batch_size):
if sharpen:
b_w = w[:l[b_i], b_i, :] * sharpen
else:
b_w = w[:l[b_i], b_i, :]
b_s = s[:l[b_i], b_i, :] # T, D
soft_b_w = F.softmax(b_w.transpose(0, 1)).transpose(0, 1)
# print(soft_b_w)
# print('soft:', )
# print(soft_b_w)
result_list.append(torch.sum(soft_b_w * b_s, dim=0)) # [T, D] -> [1, D]
return torch.cat(result_list, dim=0)
def pack_to_matching_matrix(s1, s2, cat_only=[False, False]):
t1 = s1.size(0)
t2 = s2.size(0)
batch_size = s1.size(1)
d = s1.size(2)
expanded_p_s1 = s1.expand(t2, t1, batch_size, d)
expanded_p_s2 = s2.view(t2, 1, batch_size, d)
expanded_p_s2 = expanded_p_s2.expand(t2, t1, batch_size, d)
if not cat_only[0] and not cat_only[1]:
matrix = torch.cat((expanded_p_s1, expanded_p_s2), dim=3)
elif not cat_only[0] and cat_only[1]:
matrix = torch.cat((expanded_p_s1, expanded_p_s2, expanded_p_s1 * expanded_p_s2), dim=3)
else:
matrix = torch.cat((expanded_p_s1,
expanded_p_s2,
torch.abs(expanded_p_s1 - expanded_p_s2),
expanded_p_s1 * expanded_p_s2), dim=3)
# matrix = torch.cat((expanded_p_s1,
# expanded_p_s2), dim=3)
return matrix
def max_along_time(inputs, lengths):
"""
:param inputs: [T * B * D]
:param lengths: [B]
:return: [B * D] max_along_time
"""
ls = list(lengths)
b_seq_max_list = []
for i, l in enumerate(ls):
seq_i = inputs[:l, i, :]
seq_i_max, _ = seq_i.max(dim=0)
seq_i_max = seq_i_max.squeeze()
b_seq_max_list.append(seq_i_max)
return torch.stack(b_seq_max_list)
def text_conv1d(inputs, l1, conv_filter: nn.Linear, k_size, dropout=None, list_in=False,
gate_way=True):
"""
:param inputs: [T * B * D]
:param l1: [B]
:param conv_filter: [k * D_in, D_out * 2]
:param k_size:
:param dropout:
:param padding:
:param list_in:
:return:
"""
k = k_size
batch_size = l1.size(0)
d_in = inputs.size(2) if not list_in else inputs[0].size(1)
unit_d = conv_filter.out_features // 2
pad_n = (k - 1) // 2
zeros_padding = Variable(inputs[0].data.new(pad_n, d_in).zero_())
batch_list = []
input_list = []
for b_i in range(batch_size):
masked_in = inputs[:l1[b_i], b_i, :] if not list_in else inputs[b_i]
if gate_way:
input_list.append(masked_in)
b_inputs = torch.cat([zeros_padding, masked_in, zeros_padding], dim=0)
for i in range(l1[b_i]):
# print(b_inputs[i:i+k])
batch_list.append(b_inputs[i:i+k].view(k * d_in))
batch_in = torch.stack(batch_list, dim=0)
a, b = torch.chunk(conv_filter(batch_in), 2, 1)
out = a * F.sigmoid(b)
out_list = []
start = 0
for b_i in range(batch_size):
if gate_way:
out_list.append(torch.cat((input_list[b_i], out[start:start + l1[b_i]]), dim=1))
else:
out_list.append(out[start:start + l1[b_i]])
start = start + l1[b_i]
# max_out_list = []
# for b_i in range(batch_size):
# max_out, _ = torch.max(out_list[b_i], dim=0)
# max_out_list.append(max_out)
# max_out = torch.cat(max_out_list, 0)
#
# print(out_list)
return out_list
def compute_binary_accuracy_f1(model, data_loader, logger):
model.eval()
correct_pred, num_examples = 0, 0
predict_res = []
truth_res = []
all_cost = []
m = nn.Sigmoid()
with torch.no_grad():
for batch_idx, batch_data in enumerate(data_loader):
data_input, data_len, data_features, labels = batch_data
batch_size = len(data_len)
labels = labels.view(-1)
logits = model(data_input, data_features, l1=data_len, batch_size=batch_size)
cost = F.binary_cross_entropy_with_logits(logits, labels)
all_cost.append(cost.cpu().detach().data)
predict_res += list(torch.round(m(logits)).cpu().detach().numpy())
truth_res += [y for y in list(labels.cpu().detach().numpy())]
acc, f1_metrics = get_accuracy(truth_res, predict_res)
#print("Truth: ", truth_res)
#print("P :", predict_res)
logger.info("Acc: %.3f , F1 messures are %s ."%(acc, str(f1_metrics)))
return acc, f1_metrics, np.mean(all_cost)
def get_accuracy(truth, pred):
assert (len(truth) == len(pred))
#print(len(truth))
right = 0
for i in range(len(truth)):
if truth[i] == pred[i]:
right += 1.0
# add f1 metrics values.
all_value = precision_recall_fscore_support(truth,pred, average="binary")
return right / len(truth), all_value