forked from sensorium/Mozzi
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStateVariable.h
executable file
·219 lines (181 loc) · 5.59 KB
/
StateVariable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*
* StateVariable.h
*
* This implementation copyright 2012 Tim Barrass.
*
* This file is part of Mozzi.
*
* Mozzi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
*
*/
/**
State Variable Filter (approximation of Chamberlin version)
Informed by pseudocode at http://www.musicdsp.org/showone.php?id=23 and http://www.musicdsp.org/showone.php?id=142.
Here's the original:
---------------------
cutoff = cutoff freq in Hz
fs = sampling frequency //(e.g. 44100Hz)
f = 2 sin (pi * cutoff / fs) //[approximately]
q = resonance/bandwidth [0 < q <= 1] most res: q=1, less: q=0
low = lowpass output
high = highpass output
band = bandpass output
notch = notch output
scale = q
low=high=band=0;
//--beginloop
low = low + f * band;
high = scale * input - low - q*band;
band = f * high + band;
notch = high + low;
//--endloop
----------------------
References :
Hal Chamberlin, Musical Applications of Microprocessors, 2nd Ed, Hayden Book Company 1985. pp 490-492.
Jon Dattorro, Effect Design Part 1, J. Audio Eng. Soc., Vol 45, No. 9, 1997 September
*/
#ifndef STATEVARIABLE_H_
#define STATEVARIABLE_H_
#include "Arduino.h"
#include "util/atomic.h"
#include "mozzi_fixmath.h"
#include "math.h"
#include "mozzi_utils.h"
#include "meta.h"
enum filter_types {LOWPASS,BANDPASS,HIGHPASS,NOTCH};
/** A State Variable filter which offers 12db resonant low, high, bandpass and notch modes.
@tparam FILTER_TYPE choose between LOWPASS, BANDPASS, HIGHPASS and NOTCH.
@note To save processing time, this version of the filter does not saturate internally,
so any resonant peaks are unceremoniously truncated. It may be worth adding code to
constrain the internal variables to enable resonant saturating effects.
@todo Try adding code to constrain the internal variables to enable resonant
saturating effects.
*/
template <int8_t FILTER_TYPE>
class StateVariable
{
public:
/** Constructor.
*/
StateVariable()
{
}
/** Set how resonant the filter will be.
@param resonance a uint8_t value between 1 and 255.
The lower this value is, the more resonant the filter.
At very low values, the filter can output loud peaks which can exceed
Mozzi's output range, so you may need to attenuate the output in your sketch.
@note Timing < 500 ns
*/
void setResonance(Q0n8 resonance){
// qvalue goes from 255 to 0, representing .999 to 0 in fixed point
// lower q, more resonance
q = resonance;
//ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
//{
scale = (Q0n8)sqrt((unsigned int) resonance<<8);
//}
}
/** Set the centre or corner frequency of the filter.
@param centre_freq 20 - 4096 Hz (AUDIO_RATE/4).
This will be the cut-off frequency for LOWPASS and HIGHPASS, and the
centre frequency to pass or reduce for BANDPASS and NOTCH.
@note Timing 25-30us
@note The frequency calculation is VERY "approximate". This really needs to be fixed.
*/
void setCentreFreq(unsigned int centre_freq){
// simple frequency tuning with error towards nyquist (reference? where did this come from?)
//f = (Q1n15)(((Q16n16_2PI*centre_freq)>>AUDIO_RATE_AS_LSHIFT)>>1);
f = (Q15n16)((Q16n16_2PI*centre_freq)>>(AUDIO_RATE_AS_LSHIFT)); // this works best for now
//f = (Q15n16)(((Q16n16_2PI*centre_freq)<<(16-AUDIO_RATE_AS_LSHIFT))>>16); // a small shift left and a round 16 right is faster than big non-uint8_t-aligned right in one go
//float ff = Q16n16_to_float(((Q16n16_PI*centre_freq))>>AUDIO_RATE_AS_LSHIFT);
//f = float_to_Q15n16(2.0f *sin(ff));
//}
}
/** Calculate the next sample, given an input signal.
@param input the signal input.
@return the signal output.
@note Timing: 16 - 20 us
*/
inline
int next(int input)
{
// chooses a different next() function depending on whether the
// filter is declared as LOWPASS, BANDPASS, HIGHPASS or NOTCH.
// See meta.h.
return next(input, Int2Type<FILTER_TYPE>());
}
private:
int low, band;
Q0n8 q,scale;
volatile Q15n16 f;
/** Calculate the next sample, given an input signal.
@param in the signal input.
@return the signal output.
@note Timing: 16 - 20 us
*/
inline
int next(int input, Int2Type<LOWPASS>)
{
//setPin13High();
low += ((f*band)>>16);
int high = (((long)input - low - (((long)band * q)>>8))*scale)>>8;
band += ((f*high)>>16);
//int notch = high + low;
//setPin13Low();
return low;
}
/** Calculate the next sample, given an input signal.
@param input the signal input.
@return the signal output.
@note Timing:
*/
inline
int next(int input, Int2Type<BANDPASS>)
{
//setPin13High();
low += ((f*band)>>16);
int high = (((long)input - low - (((long)band * q)>>8))*scale)>>8;
band += ((f*high)>>16);
//int notch = high + low;
//setPin13Low();
return band;
}
/** Calculate the next sample, given an input signal.
@param input the signal input.
@return the signal output.
@note Timing:
*/
inline
int next(int input, Int2Type<HIGHPASS>)
{
//setPin13High();
low += ((f*band)>>16);
int high = (((long)input - low - (((long)band * q)>>8))*scale)>>8;
band += ((f*high)>>16);
//int notch = high + low;
//setPin13Low();
return high;
}
/** Calculate the next sample, given an input signal.
@param input the signal input.
@return the signal output.
@note Timing: 16 - 20 us
*/
inline
int next(int input, Int2Type<NOTCH>)
{
//setPin13High();
low += ((f*band)>>16);
int high = (((long)input - low - (((long)band * q)>>8))*scale)>>8;
band += ((f*high)>>16);
int notch = high + low;
//setPin13Low();
return notch;
}
};
/**
@example 11.Audio_Filters/StateVariableFilter/StateVariableFilter.ino
This example demonstrates the StateVariable class.
*/
#endif /* STATEVARIABLE_H_ */