-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_sleep.py
144 lines (101 loc) · 4.54 KB
/
deep_sleep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import mne, npa
from npa import NPA
from mne.io import read_raw_edf
from mne import Epochs, read_epochs, concatenate_epochs
from mne.time_frequency import psd_welch, psd_multitaper
from mne.datasets.sleep_physionet.age import fetch_data
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import numpy as np
from fooof import FOOOF, FOOOFGroup
import argparse, time, os
colours = ['goldenrod', 'forestgreen', 'navy', 'rebeccapurple']
subjects = list(range(20))
mapping = {'EOG horizontal': 'eog',
'Resp oro-nasal': 'misc',
'EMG submental': 'misc',
'Temp rectal': 'misc',
'Event marker': 'misc'}
event_ids = {'Sleep stage W': 1,
'Sleep stage 1': 2,
'Sleep stage 2': 3,
'Sleep stage 3': 4,
'Sleep stage 4': 5,
'Sleep stage R': 6}
stages = sorted(event_ids.keys())
bg_slope = dict()
for stage in stages:
bg_slope[stage] = []
preproc_types = ['NPA', 'Bandpass', 'Highpass', 'Raw']
data_dir = 'c:/Users/doyle/mne_data/physionet-sleep-data/'
def save_epochs(epochs, subject_id, session_id, preproc):
for stage in stages:
try:
epochs[stage].save(data_dir + '/epochs/' + preproc + '_' + stage[-1] + '_' + str(subject_id) + '_' + str(session_id) + '-epo.fif', overwrite=True)
except Exception as e:
print(e)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Automatic Sleep Scoring with NPA.')
args = parser.parse_args()
os.makedirs(data_dir + '/epochs/', exist_ok=True)
os.makedirs(data_dir + '/FOOOFs/', exist_ok=True)
print('Arguments for this experiment:', args)
start_all = time.time()
all_epochs = []
datafiles = fetch_data(subjects=list(range(20)))
# fg = FOOOFGroup(peak_width_limits=[1, 12.0])
for eeg_filename, label_filename in datafiles:
eeg = mne.io.read_raw_edf(eeg_filename, preload=True, verbose=0)
labels = mne.read_annotations(label_filename)
subject_id = int(eeg_filename.split('\\')[-1][3:5])
session_id = int(eeg_filename.split('\\')[-1][5])
eeg.set_annotations(labels, emit_warning=False)
eeg.set_channel_types(mapping)
chunk_length = 2.
tmax = chunk_length - 1. / eeg.info['sfreq']
events, _ = mne.events_from_annotations(eeg, event_id=event_ids, chunk_duration=chunk_length, verbose=0)
eeg_info = eeg.info.copy()
try:
epochs = mne.Epochs(raw=eeg, events=events, event_id=event_ids, tmin=0., tmax=tmax, baseline=None, picks='eeg', verbose=0)
save_epochs(epochs, subject_id, session_id, 'raw')
except Exception as e:
print('RAW:', e)
freq_range = [1, 45]
psd, freq = psd_welch(eeg, fmin=freq_range[0], fmax=freq_range[1], picks='eeg', n_jobs=2, verbose=0)
print(psd.shape, freq.shape)
ff = FOOOF(peak_threshold=2.0, aperiodic_mode='knee', peak_width_limits=(1.0, 10.0), verbose=False)
ff.fit(freq, psd[0,:], freq_range=freq_range)
ff.plot(save_fig=True, file_name=str(subject_id) + '_' + str(session_id), file_path=data_dir+'/FOOOFs/')
amp = npa.NPA(ff, eeg.info['sfreq'])
amp.fit_filters(peak_mode='normal')
time_series = eeg.get_data()
print('EEG shape:', time_series.shape)
time_series[0:2, :] = amp.amplify(time_series[0:2, :])
eeg = mne.io.RawArray(np.float64(time_series), eeg_info, verbose=0)
try:
epochs = mne.Epochs(raw=eeg, events=events, event_id=event_ids, tmin=0., tmax=tmax, baseline=None, picks='eeg')
save_epochs(epochs, subject_id, session_id, 'npa')
except Exception as e:
print('NPA:', e)
# for stage in stages:
# psd, freq = psd_welch(epochs[stage], n_jobs=-1)
#
# try:
# fg.fit(freqs=freq, power_spectra=psd[:, 0], freq_range=[2, 45], n_jobs=-1)
# exps = fg.get_params('aperiodic_params', 'exponent')
#
# bg_slope[stage].extend(exps)
# except Exception as e:
# print(e)
#
# param_fig, param_axes = plt.subplots(1, 1, sharey=True, sharex=True)
#
# for stage_idx, stage in enumerate(stages):
# param_axes.hist(bg_slope[stage], density=True, label=stage[-1])
#
# param_axes.legend(shadow=True, fancybox=True)
# param_fig.savefig(data_dir + 'results.png')
elapsed = time.time() - start_all
print('Took', elapsed / 60, 'minutes')