-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.py
466 lines (374 loc) · 16.3 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
"""
Some simple logging functionality, inspired by rllab's logging.
Logs to a tab-separated-values file (path/to/output_directory/progress.txt)
"""
import json
import joblib
import shutil
import numpy as np
import tensorflow as tf
import os.path as osp, time, atexit, os
# from spinup.utils.mpi_tools import proc_id, mpi_statistics_scalar
# from spinup.utils.serialization_utils import convert_json
DEFAULT_DATA_DIR = osp.join(osp.abspath(osp.dirname(__file__)),'data')
color2num = dict(
gray=30,
red=31,
green=32,
yellow=33,
blue=34,
magenta=35,
cyan=36,
white=37,
crimson=38
)
def convert_json(obj):
""" Convert obj to a version which can be serialized with JSON. """
if is_json_serializable(obj):
return obj
else:
if isinstance(obj, dict):
return {convert_json(k): convert_json(v)
for k,v in obj.items()}
elif isinstance(obj, tuple):
return (convert_json(x) for x in obj)
elif isinstance(obj, list):
return [convert_json(x) for x in obj]
elif hasattr(obj,'__name__') and not('lambda' in obj.__name__):
return convert_json(obj.__name__)
elif hasattr(obj,'__dict__') and obj.__dict__:
obj_dict = {convert_json(k): convert_json(v)
for k,v in obj.__dict__.items()}
return {str(obj): obj_dict}
return str(obj)
def is_json_serializable(v):
try:
json.dumps(v)
return True
except:
return False
def mpi_statistics_scalar(x, with_min_and_max=False):
"""
Get mean/std and optional min/max of scalar x across MPI processes.
Args:
x: An array containing samples of the scalar to produce statistics
for.
with_min_and_max (bool): If true, return min and max of x in
addition to mean and std.
"""
x = np.array(x, dtype=np.float32)
global_sum, global_n = [np.sum(x), len(x)]
mean = global_sum / global_n
global_sum_sq = np.sum((x - mean)**2)
std = np.sqrt(global_sum_sq / global_n) # compute global std
if with_min_and_max:
global_min = np.min(x) if len(x) > 0 else np.inf
global_max = np.max(x) if len(x) > 0 else -np.inf
return mean, std, global_min, global_max
return mean, std
def setup_logger_kwargs(exp_name, seed=None, data_dir=None, datestamp=False):
"""
Sets up the output_dir for a logger and returns a dict for logger kwargs.
If no seed is given and datestamp is false,
::
output_dir = data_dir/exp_name
If a seed is given and datestamp is false,
::
output_dir = data_dir/exp_name/exp_name_s[seed]
If datestamp is true, amend to
::
output_dir = data_dir/YY-MM-DD_exp_name/YY-MM-DD_HH-MM-SS_exp_name_s[seed]
You can force datestamp=True by setting ``FORCE_DATESTAMP=True`` in
``spinup/user_config.py``.
Args:
exp_name (string): Name for experiment.
seed (int): Seed for random number generators used by experiment.
data_dir (string): Path to folder where results should be saved.
Default is the ``DEFAULT_DATA_DIR`` in ``spinup/user_config.py``.
datestamp (bool): Whether to include a date and timestamp in the
name of the save directory.
Returns:
logger_kwargs, a dict containing output_dir and exp_name.
"""
# # Datestamp forcing
# datestamp = datestamp or FORCE_DATESTAMP
# Make base path
ymd_time = time.strftime("%Y-%m-%d_") if datestamp else ''
relpath = ''.join([ymd_time, exp_name])
if seed is not None:
# Make a seed-specific subfolder in the experiment directory.
if datestamp:
hms_time = time.strftime("%Y-%m-%d_%H-%M-%S")
subfolder = ''.join([hms_time, '-', exp_name, '_s', str(seed)])
else:
subfolder = ''.join([exp_name, '_s', str(seed)])
relpath = osp.join(relpath, subfolder)
data_dir = data_dir or DEFAULT_DATA_DIR
logger_kwargs = dict(output_dir=osp.join(data_dir, relpath),
exp_name=exp_name)
return logger_kwargs
def colorize(string, color, bold=False, highlight=False):
"""
Colorize a string.
This function was originally written by John Schulman.
"""
attr = []
num = color2num[color]
if highlight: num += 10
attr.append(str(num))
if bold: attr.append('1')
return '\x1b[%sm%s\x1b[0m' % (';'.join(attr), string)
def restore_tf_graph(sess, fpath):
"""
Loads graphs saved by Logger.
Will output a dictionary whose keys and values are from the 'inputs'
and 'outputs' dict you specified with logger.setup_tf_saver().
Args:
sess: A Tensorflow session.
fpath: Filepath to save directory.
Returns:
A dictionary mapping from keys to tensors in the computation graph
loaded from ``fpath``.
"""
tf.saved_model.loader.load(
sess,
[tf.saved_model.tag_constants.SERVING],
fpath
)
model_info = joblib.load(osp.join(fpath, 'model_info.pkl'))
graph = tf.get_default_graph()
model = dict()
model.update({k: graph.get_tensor_by_name(v) for k,v in model_info['inputs'].items()})
model.update({k: graph.get_tensor_by_name(v) for k,v in model_info['outputs'].items()})
return model
class Logger:
"""
A general-purpose logger.
Makes it easy to save diagnostics, hyperparameter configurations, the
state of a training run, and the trained model.
"""
def __init__(self, output_dir=None, output_fname='progress.txt', exp_name=None):
"""
Initialize a Logger.
Args:
output_dir (string): A directory for saving results to. If
``None``, defaults to a temp directory of the form
``/tmp/experiments/somerandomnumber``.
output_fname (string): Name for the tab-separated-value file
containing metrics logged throughout a training run.
Defaults to ``progress.txt``.
exp_name (string): Experiment name. If you run multiple training
runs and give them all the same ``exp_name``, the plotter
will know to group them. (Use case: if you run the same
hyperparameter configuration with multiple random seeds, you
should give them all the same ``exp_name``.)
"""
# if proc_id()==0:
if True: # No MPI
self.output_dir = output_dir or "/tmp/experiments/%i"%int(time.time())
if osp.exists(self.output_dir):
print("Warning: Log dir %s already exists! Storing info there anyway."%self.output_dir)
else:
os.makedirs(self.output_dir)
self.output_file = open(osp.join(self.output_dir, output_fname), 'w')
atexit.register(self.output_file.close)
print(colorize("Logging data to %s"%self.output_file.name, 'green', bold=True))
else:
self.output_dir = None
self.output_file = None
self.first_row=True
self.log_headers = []
self.log_current_row = {}
self.exp_name = exp_name
def log(self, msg, color='green'):
"""Print a colorized message to stdout."""
# if proc_id()==0:
if True:
print(colorize(msg, color, bold=True))
def log_tabular(self, key, val):
"""
Log a value of some diagnostic.
Call this only once for each diagnostic quantity, each iteration.
After using ``log_tabular`` to store values for each diagnostic,
make sure to call ``dump_tabular`` to write them out to file and
stdout (otherwise they will not get saved anywhere).
"""
if self.first_row:
self.log_headers.append(key)
else:
assert key in self.log_headers, "Trying to introduce a new key %s that you didn't include in the first iteration"%key
assert key not in self.log_current_row, "You already set %s this iteration. Maybe you forgot to call dump_tabular()"%key
self.log_current_row[key] = val
def save_config(self, config):
"""
Log an experiment configuration.
Call this once at the top of your experiment, passing in all important
config vars as a dict. This will serialize the config to JSON, while
handling anything which can't be serialized in a graceful way (writing
as informative a string as possible).
Example use:
.. code-block:: python
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
"""
config_json = convert_json(config)
if self.exp_name is not None:
config_json['exp_name'] = self.exp_name
# if proc_id()==0:
if True:
output = json.dumps(config_json, separators=(',',':\t'), indent=4, sort_keys=True)
print(colorize('Saving config:\n', color='cyan', bold=True))
print(output)
with open(osp.join(self.output_dir, "config.json"), 'w') as out:
out.write(output)
def save_state(self, state_dict, itr=None):
"""
Saves the state of an experiment.
To be clear: this is about saving *state*, not logging diagnostics.
All diagnostic logging is separate from this function. This function
will save whatever is in ``state_dict``---usually just a copy of the
environment---and the most recent parameters for the model you
previously set up saving for with ``setup_tf_saver``.
Call with any frequency you prefer. If you only want to maintain a
single state and overwrite it at each call with the most recent
version, leave ``itr=None``. If you want to keep all of the states you
save, provide unique (increasing) values for 'itr'.
Args:
state_dict (dict): Dictionary containing essential elements to
describe the current state of training.
itr: An int, or None. Current iteration of training.
"""
if True:
# if proc_id()==0:
fname = 'vars.pkl' if itr is None else 'vars%d.pkl'%itr
try:
joblib.dump(state_dict, osp.join(self.output_dir, fname))
except:
self.log('Warning: could not pickle state_dict.', color='red')
if hasattr(self, 'tf_saver_elements'):
self._tf_simple_save(itr)
def setup_tf_saver(self, sess, inputs, outputs):
"""
Set up easy model saving for tensorflow.
Call once, after defining your computation graph but before training.
Args:
sess: The Tensorflow session in which you train your computation
graph.
inputs (dict): A dictionary that maps from keys of your choice
to the tensorflow placeholders that serve as inputs to the
computation graph. Make sure that *all* of the placeholders
needed for your outputs are included!
outputs (dict): A dictionary that maps from keys of your choice
to the outputs from your computation graph.
"""
self.tf_saver_elements = dict(session=sess, inputs=inputs, outputs=outputs)
self.tf_saver_info = {'inputs': {k:v.name for k,v in inputs.items()},
'outputs': {k:v.name for k,v in outputs.items()}}
def _tf_simple_save(self, itr=None):
"""
Uses simple_save to save a trained model, plus info to make it easy
to associated tensors to variables after restore.
"""
# if proc_id()==0:
if True:
assert hasattr(self, 'tf_saver_elements'), \
"First have to setup saving with self.setup_tf_saver"
fpath = 'simple_save' + ('%d'%itr if itr is not None else '')
fpath = osp.join(self.output_dir, fpath)
if osp.exists(fpath):
# simple_save refuses to be useful if fpath already exists,
# so just delete fpath if it's there.
shutil.rmtree(fpath)
tf.saved_model.simple_save(export_dir=fpath, **self.tf_saver_elements)
joblib.dump(self.tf_saver_info, osp.join(fpath, 'model_info.pkl'))
def dump_tabular(self):
"""
Write all of the diagnostics from the current iteration.
Writes both to stdout, and to the output file.
"""
# if proc_id()==0:
if True:
vals = []
key_lens = [len(key) for key in self.log_headers]
max_key_len = max(15,max(key_lens))
keystr = '%'+'%d'%max_key_len
fmt = "| " + keystr + "s | %15s |"
n_slashes = 22 + max_key_len
print("-"*n_slashes)
for key in self.log_headers:
val = self.log_current_row.get(key, "")
valstr = "%8.3g"%val if hasattr(val, "__float__") else val
print(fmt%(key, valstr))
vals.append(val)
print("-"*n_slashes)
if self.output_file is not None:
if self.first_row:
self.output_file.write("\t".join(self.log_headers)+"\n")
self.output_file.write("\t".join(map(str,vals))+"\n")
self.output_file.flush()
self.log_current_row.clear()
self.first_row=False
class EpochLogger(Logger):
"""
A variant of Logger tailored for tracking average values over epochs.
Typical use case: there is some quantity which is calculated many times
throughout an epoch, and at the end of the epoch, you would like to
report the average / std / min / max value of that quantity.
With an EpochLogger, each time the quantity is calculated, you would
use
.. code-block:: python
epoch_logger.store(NameOfQuantity=quantity_value)
to load it into the EpochLogger's state. Then at the end of the epoch, you
would use
.. code-block:: python
epoch_logger.log_tabular(NameOfQuantity, **options)
to record the desired values.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.epoch_dict = dict()
def store(self, **kwargs):
"""
Save something into the epoch_logger's current state.
Provide an arbitrary number of keyword arguments with numerical
values.
"""
for k,v in kwargs.items():
if not(k in self.epoch_dict.keys()):
self.epoch_dict[k] = []
self.epoch_dict[k].append(v)
def log_tabular(self, key, val=None, with_min_and_max=False, average_only=False):
"""
Log a value or possibly the mean/std/min/max values of a diagnostic.
Args:
key (string): The name of the diagnostic. If you are logging a
diagnostic whose state has previously been saved with
``store``, the key here has to match the key you used there.
val: A value for the diagnostic. If you have previously saved
values for this key via ``store``, do *not* provide a ``val``
here.
with_min_and_max (bool): If true, log min and max values of the
diagnostic over the epoch.
average_only (bool): If true, do not log the standard deviation
of the diagnostic over the epoch.
"""
if val is not None:
super().log_tabular(key,val)
else:
v = self.epoch_dict[key]
vals = np.concatenate(v) if isinstance(v[0], np.ndarray) and len(v[0].shape)>0 else v
stats = mpi_statistics_scalar(vals, with_min_and_max=with_min_and_max)
super().log_tabular(key if average_only else 'Average' + key, stats[0])
if not(average_only):
super().log_tabular('Std'+key, stats[1])
if with_min_and_max:
super().log_tabular('Max'+key, stats[3])
super().log_tabular('Min'+key, stats[2])
self.epoch_dict[key] = []
# def get_stats(self, key):
# """
# Lets an algorithm ask the logger for mean/std/min/max of a diagnostic.
# """
# v = self.epoch_dict[key]
# vals = np.concatenate(v) if isinstance(v[0], np.ndarray) and len(v[0].shape)>0 else v
# return mpi_statistics_scalar(vals)