-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmodels.py
229 lines (174 loc) · 7.87 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import math
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from constants import *
def make_mlp(dim_list):
layers = []
for dim_in, dim_out in zip(dim_list[:-1], dim_list[1:]):
layers.append(nn.Linear(dim_in, dim_out))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def get_noise(shape):
return torch.randn(*shape).cuda()
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.h_dim = H_DIM
self.embedding_dim = EMBEDDING_DIM
self.encoder = nn.LSTM(self.embedding_dim, self.h_dim, 1)
self.spatial_embedding = nn.Linear(2, self.embedding_dim)
def init_hidden(self, batch):
h = torch.zeros(1, batch, self.h_dim).cuda()
c = torch.zeros(1, batch, self.h_dim).cuda()
return (h, c)
def forward(self, obs_traj):
padded = len(obs_traj.shape) == 4
npeds = obs_traj.size(1)
total = npeds * (MAX_PEDS if padded else 1)
obs_traj_embedding = self.spatial_embedding(obs_traj.view(-1, 2))
obs_traj_embedding = obs_traj_embedding.view(-1, total, self.embedding_dim)
state = self.init_hidden(total)
output, state = self.encoder(obs_traj_embedding, state)
final_h = state[0]
if padded:
final_h = final_h.view(npeds, MAX_PEDS, self.h_dim)
else:
final_h = final_h.view(npeds, self.h_dim)
return final_h
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.seq_len = PRED_LEN
self.h_dim = H_DIM
self.embedding_dim = EMBEDDING_DIM
self.decoder = nn.LSTM(self.embedding_dim, self.h_dim, 1)
self.spatial_embedding = nn.Linear(2, self.embedding_dim)
self.hidden2pos = nn.Linear(self.h_dim, 2)
def forward(self, last_pos, last_pos_rel, state_tuple):
npeds = last_pos.size(0)
pred_traj_fake_rel = []
decoder_input = self.spatial_embedding(last_pos_rel)
decoder_input = decoder_input.view(1, npeds, self.embedding_dim)
for _ in range(self.seq_len):
output, state_tuple = self.decoder(decoder_input, state_tuple)
rel_pos = self.hidden2pos(output.view(-1, self.h_dim))
curr_pos = rel_pos + last_pos
embedding_input = rel_pos
decoder_input = self.spatial_embedding(embedding_input)
decoder_input = decoder_input.view(1, npeds, self.embedding_dim)
pred_traj_fake_rel.append(rel_pos.view(npeds, -1))
last_pos = curr_pos
pred_traj_fake_rel = torch.stack(pred_traj_fake_rel, dim=0)
return pred_traj_fake_rel
class PhysicalAttention(nn.Module):
def __init__(self):
super(PhysicalAttention, self).__init__()
self.L = ATTN_L
self.D = ATTN_D
self.D_down = ATTN_D_DOWN
self.bottleneck_dim = BOTTLENECK_DIM
self.embedding_dim = EMBEDDING_DIM
self.spatial_embedding = nn.Linear(2, self.embedding_dim)
self.pre_att_proj = nn.Linear(self.D, self.D_down)
mlp_pre_dim = self.embedding_dim + self.D_down
mlp_pre_attn_dims = [mlp_pre_dim, 512, self.bottleneck_dim]
self.mlp_pre_attn = make_mlp(mlp_pre_attn_dims)
self.attn = nn.Linear(self.L*self.bottleneck_dim, self.L)
def forward(self, vgg, end_pos):
npeds = end_pos.size(0)
end_pos = end_pos[:, 0, :]
curr_rel_embedding = self.spatial_embedding(end_pos)
curr_rel_embedding = curr_rel_embedding.view(-1, 1, self.embedding_dim).repeat(1, self.L, 1)
vgg = vgg.view(-1, self.D)
features_proj = self.pre_att_proj(vgg)
features_proj = features_proj.view(-1, self.L, self.D_down)
mlp_h_input = torch.cat([features_proj, curr_rel_embedding], dim=2)
attn_h = self.mlp_pre_attn(mlp_h_input.view(-1, self.embedding_dim+self.D_down))
attn_h = attn_h.view(npeds, self.L, self.bottleneck_dim)
attn_w = F.softmax(self.attn(attn_h.view(npeds, -1)), dim=1)
attn_w = attn_w.view(npeds, self.L, 1)
attn_h = torch.sum(attn_h * attn_w, dim=1)
return attn_h
class SocialAttention(nn.Module):
def __init__(self):
super(SocialAttention, self).__init__()
self.h_dim = H_DIM
self.bottleneck_dim = BOTTLENECK_DIM
self.embedding_dim = EMBEDDING_DIM
mlp_pre_dim = self.embedding_dim + self.h_dim
mlp_pre_attn_dims = [mlp_pre_dim, 512, self.bottleneck_dim]
self.spatial_embedding = nn.Linear(2, self.embedding_dim)
self.mlp_pre_attn = make_mlp(mlp_pre_attn_dims)
self.attn = nn.Linear(MAX_PEDS*self.bottleneck_dim, MAX_PEDS)
def repeat(self, tensor, num_reps):
col_len = tensor.size(1)
tensor = tensor.unsqueeze(dim=1).repeat(1, num_reps, 1)
tensor = tensor.view(-1, col_len)
return tensor
def forward(self, h_states, end_pos):
npeds = h_states.size(0)
curr_rel_pos = end_pos[:, :, :] - end_pos[:, 0:1, :]
curr_rel_embedding = self.spatial_embedding(curr_rel_pos.view(-1, 2))
curr_rel_embedding = curr_rel_embedding.view(npeds, MAX_PEDS, self.embedding_dim)
mlp_h_input = torch.cat([h_states, curr_rel_embedding], dim=2)
attn_h = self.mlp_pre_attn(mlp_h_input.view(-1, self.embedding_dim+self.h_dim))
attn_h = attn_h.view(npeds, MAX_PEDS, self.bottleneck_dim)
attn_w = F.softmax(self.attn(attn_h.view(npeds, -1)), dim=1)
attn_w = attn_w.view(npeds, MAX_PEDS, 1)
attn_h = torch.sum(attn_h * attn_w, dim=1)
return attn_h
class TrajectoryGenerator(nn.Module):
def __init__(self):
super(TrajectoryGenerator, self).__init__()
self.obs_len = OBS_LEN
self.pred_len = PRED_LEN
self.mlp_dim = MLP_DIM
self.h_dim = H_DIM
self.embedding_dim = EMBEDDING_DIM
self.bottleneck_dim = BOTTLENECK_DIM
self.noise_dim = NOISE_DIM
self.encoder = Encoder()
self.sattn = SocialAttention()
self.pattn = PhysicalAttention()
self.decoder = Decoder()
input_dim = self.h_dim + 2*self.bottleneck_dim
mlp_decoder_context_dims = [input_dim, self.mlp_dim, self.h_dim - self.noise_dim]
self.mlp_decoder_context = make_mlp(mlp_decoder_context_dims)
def add_noise(self, _input):
npeds = _input.size(0)
noise_shape = (self.noise_dim,)
z_decoder = get_noise(noise_shape)
vec = z_decoder.view(1, -1).repeat(npeds, 1)
return torch.cat((_input, vec), dim=1)
def forward(self, obs_traj, obs_traj_rel, vgg_list):
npeds = obs_traj_rel.size(1)
final_encoder_h = self.encoder(obs_traj_rel)
end_pos = obs_traj[-1, :, :, :]
attn_s = self.sattn(final_encoder_h, end_pos)
attn_p = self.pattn(vgg_list, end_pos)
mlp_decoder_context_input = torch.cat([final_encoder_h[:, 0, :], attn_s, attn_p], dim=1)
noise_input = self.mlp_decoder_context(mlp_decoder_context_input)
decoder_h = self.add_noise(noise_input)
decoder_h = torch.unsqueeze(decoder_h, 0)
decoder_c = torch.zeros(1, npeds, self.h_dim).cuda()
state_tuple = (decoder_h, decoder_c)
last_pos = obs_traj[-1, :, 0, :]
last_pos_rel = obs_traj_rel[-1, :, 0, :]
pred_traj_fake_rel = self.decoder(last_pos, last_pos_rel, state_tuple)
return pred_traj_fake_rel
class TrajectoryDiscriminator(nn.Module):
def __init__(self):
super(TrajectoryDiscriminator, self).__init__()
self.mlp_dim = MLP_DIM
self.h_dim = H_DIM
self.encoder = Encoder()
real_classifier_dims = [self.h_dim, self.mlp_dim, 1]
self.real_classifier = make_mlp(real_classifier_dims)
def forward(self, traj, traj_rel):
final_h = self.encoder(traj_rel)
scores = self.real_classifier(final_h)
return scores