-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollateral_analysis.py
323 lines (263 loc) · 10.9 KB
/
collateral_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from scipy.stats import lognorm
from scipy.optimize import root_scalar
import math
from abc import ABC, abstractmethod
import sys
import argparse
"""
This program is the result of a game-theoretical analysis on collateral for IPC subnets.
For more information on that analysis, see:
https://docs.google.com/document/d/17KQfgiaaNsXPzDRshhMBVyr-gtQX2UmisqwhXdDSwuM/edit#
"""
# Define command-line arguments
parser = argparse.ArgumentParser(description="Program description")
parser.add_argument("-n", type=float, help="Number of members in the committee", default=-1.0)
parser.add_argument("-q", type=float, help="Quorum size", default=-1.0)
parser.add_argument("-f", type=float, help="Rational adversary threshold", default=-1.0)
parser.add_argument("-a", type=float, help="Number of branches in equivocation attack", default=-1.0)
parser.add_argument("-C", type=float, help="Minimum total collateral of the committee", default=-1.0)
parser.add_argument("-c", type=float, help="Minimum collateral per member", default=-1.0)
parser.add_argument("-w", type=float, help="Block delay between unstaking request and actual collateral released", default=-1.0)
parser.add_argument("-o", type=float, help="Transaction finalization delay in number of blocks", default=-1.0)
parser.add_argument("-t", type=float, help="Block production time", default=-1.0)
parser.add_argument("-m", type=float, help="Balance of attackers in equivocation attack", default=-1.0)
parser.add_argument("-dist", type=float, help="(UNUSED FOR NOW) Select option of message delay distribution (currently only lognormal with mu=-1.0, sigma=1)", default=-1.0)
parser.add_argument("-opt", type=int, help="Select the parameter to recommend for incentive-compatibility against equivocation attack", default=-1)
class RandomDistribution(ABC):
@abstractmethod
def cdf(self, x):
pass
def ppf(self, p):
pass
class LogNormalDistribution(RandomDistribution):
def __init__(self, mu, sigma):
self.mu = mu
self.sigma = sigma
def cdf(self, x):
return lognorm.cdf(x, s=self.sigma, scale=math.exp(self.mu))
def ppf(self, p):
return lognorm.ppf(p, s=self.sigma, scale=math.exp(self.mu))
def get_n():
args = parser.parse_args()
if args.n >= 0:
return args.n
else:
return float(input("Enter the number of players in the committee: "))
def get_q():
args = parser.parse_args()
if args.q >= 0:
return args.q
else:
return float(input("Enter the quorum size: "))
def get_f():
args = parser.parse_args()
if args.f >= 0:
return args.f
else:
return float(input("Enter the rational adversary threshold: "))
def get_a(needed:bool):
args = parser.parse_args()
if args.a >= 0:
return args.a
elif needed:
return float(input("Enter the number of branches in equivocation attack: "))
return 0
def get_C(needed:bool):
args = parser.parse_args()
if args.C >= 0:
return args.C
elif needed:
return float(input("Enter the minimum total collateral: "))
return 0
def get_c(needed:bool):
args = parser.parse_args()
if args.c >= 0:
return args.c
elif needed:
return float(input("Enter the minimum collateral per player: "))
return 0
def get_w():
args = parser.parse_args()
if args.w >= 0:
return args.w
else:
return float(input("Enter the block delay between unstaking request and actual collateral released "))
def get_omega():
args = parser.parse_args()
if args.o >= 0:
return args.o
else:
return float(input("Enter the transaction finalization delay in number of blocks: "))
def get_t():
args = parser.parse_args()
if args.t >= 0:
return args.t
else:
return float(input("Enter the block production time (in seconds): "))
def get_m():
args = parser.parse_args()
if args.m >= 0:
return args.m
else:
return float(input("Enter the balance of attackers in equivocation attack: "))
def get_dist():
mu = -1.0
sigma = 1.0
return LogNormalDistribution(mu=mu, sigma=sigma)
def starting_menu():
print("Select the parameter to recommend for incentive-compatibility against equivocation attack")
print("1. Attackers balance to multiply spend")
print("2. Transaction/block finalization delay")
print("3. Adversarial size")
return input("Your option: ")
def get_opt():
args = parser.parse_args()
if args.opt >= 0:
return args.opt
else:
return starting_menu()
# returns the maximum number of branches that can be performed by an attacker of that power
def fork_max_branches(n, q, f):
a = (n - f) / (q - f)
return int(a)
# returns the minimum adversary that can perform a multiple spending attack with a branches
def minimum_adversary(a, n, q):
f = (a*q-n)/(a-1)
return int(f)
# If expected_total_loss is positive, that means that attackers will lose that amount in expectation from performing the attack with the provided parameters. If it is negative, the attackers will win the absolute value of that amount in expectation.
def expected_total_loss(a, C, m, w, omega, x_dist: RandomDistribution):
value = x_dist.cdf(w)*C - (a-1)*(1-x_dist.cdf(omega))*m
return value
# maximum_safe_spend returns the maximum amount that the attackers would not multiply spend
# as they would in expectation lose more than they win
# this is useful for a subnet to decide a delayed time to return collateral
# in order to tolerate a specific rational adversary
def maximum_safe_spend(a, C, w, omega, dist: RandomDistribution):
return (C*dist.cdf(w))/((a-1)*(1-dist.cdf(omega)))
# minimum_collateral returns the minimum collateral for which the attackers would not multiply spend
# as they would in expectation lose more than they win
# this is useful for a subnet's configuration
# in order to tolerate a specific rational adversary
def minimum_collateral(a, w, omega, m, dist: RandomDistribution):
return ((a-1)*m*(1-dist.cdf(omega)))/dist.cdf(w)
# minimum_finalization_delay returns the minimum tx finalization delay for which the attackers would not multiply spend
# as they would in expectation lose more than they win
# this is useful for applications if they want to tolerate an adversary greater
# than what the particular subnet's default parameters tolerates, in that they
# can require delayed finalization of their transactions for their application
# depending on the transaction balance or the block's balance where the transaction is included.
def minimum_finalization_delay(a, C, w, m, dist: RandomDistribution):
target_cdf = (m*(a-1)-C*dist.cdf(w))/(m*(a-1))
if target_cdf <= 0.0:
return 0
return dist.ppf(target_cdf)
def collateral_lower_bound(total_collateral, collateral, n):
if int(total_collateral) == 0:
return collateral*n
if int(collateral) == 0:
return total_collateral
return max(total_collateral, collateral*n)
def main():
option = get_opt()
if option == 1:
dist = get_dist()
n = get_n()
q = get_q()
f = get_f()
a = get_a(False)
if a == 0:
a = fork_max_branches(n, q, f)
if a == 1:
sys.exit("The adversary is not big enough to equivocate given the quorum size")
C = get_C(False)
needed = False
if C==0:
needed = True
c = get_c(needed)
C = collateral_lower_bound(C, c, n)
w_blocks = get_w()
blocktime = get_t()
w = blocktime * w_blocks
omega_blocks = get_omega()
omega = omega_blocks*blocktime
c = C/n
slashable_collateral = minimum_adversary(a, n, q)*c
m = maximum_safe_spend(a, slashable_collateral, w, omega, dist)
print("With the given parameters, the subnet is incentive-compatible against a rational adversary trying to multiply spend up to {:.3f} coins".format(m))
elif option == 2:
dist = get_dist()
n = get_n()
q = get_q()
f = get_f()
a = get_a(False)
if a == 0:
a = fork_max_branches(n, q, f)
if a == 1:
sys.exit("The adversary is not big enough to equivocate given the quorum size")
C = get_C(False)
needed = False
if C==0:
needed = True
c = get_c(needed)
C = collateral_lower_bound(C, c, n)
w_blocks = get_w()
blocktime = get_t()
w = blocktime * w_blocks
c = C/n
slashable_collateral = minimum_adversary(a, n, q)*c
m = get_m()
omega_time = minimum_finalization_delay(a, slashable_collateral, w, m, dist)
print("With the given parameters, the subnet is incentive-compatible against a rational adversary trying to multiply spend by delaying finalization at least {} blocks".format(math.ceil(omega_time/blocktime)))
elif option == 3:
dist = get_dist()
n = get_n()
q = get_q()
m = get_m()
a = get_a(False)
C = get_C(False)
needed = False
if C==0:
needed = True
c = get_c(needed)
C = collateral_lower_bound(C, c, n)
w_blocks = get_w()
blocktime = get_t()
w = blocktime * w_blocks
omega_blocks = get_omega()
omega = omega_blocks*blocktime
c = C/n
f = math.ceil(n/3)-1
for f_sim in reversed(range(int(2*q-n),int(q-1))):
a = fork_max_branches(n,q,f_sim)
slashable_collateral = minimum_adversary(a, n, q)*c
m_sim = maximum_safe_spend(a, slashable_collateral, w, omega, dist)
if m_sim >= m:
f = f_sim
break;
print("With the given parameters, the subnet is incentive-compatible against a rational adversary of size {} validators ({}% of the committee)".format(f, f*100.0/n))
elif option == 4:
dist = get_dist()
n = get_n()
q = get_q()
f = get_f()
a = get_a(False)
m = get_m()
if a == 0:
a = fork_max_branches(n, q, f)
if a == 1:
sys.exit("The adversary is not big enough to equivocate given the quorum size")
w_blocks = get_w()
blocktime = get_t()
w = blocktime * w_blocks
omega_blocks = get_omega()
omega = omega_blocks*blocktime
C = minimum_collateral(a, w, omega, m, dist)
c = C/minimum_adversary(a, n, q)
print("With the given parameters, the subnet is incentive-compatible against a rational adversary if it stakes {:.3f} coins, meaning each of the {} validators stores {:.2f} coins".format(C, int(n), c))
else:
sys.exit("Invalid option {} selected".format(option))
def op1_parameters():
# If no, then draw from the default libp2p measurements lognormal mu=-1.0 sigma=1.0
return dist, n, q, f, max_a, C, w, omega
if __name__ == "__main__":
main()