-
-
Notifications
You must be signed in to change notification settings - Fork 424
/
Copy pathLongest-Mountain-in-Array.cpp
62 lines (55 loc) · 1.79 KB
/
Longest-Mountain-in-Array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
Difficulty: medium
runtime: 36ms
*/
/*
Let's call any (contiguous) subarray B (of A) a mountain if the following properties hold:B.length >= 3
There exists some 0 < i < B.length - 1 such that B[0] < B[1] < ... B[i-1] < B[i] > B[i+1] > ... > B[B.length - 1]
(Note that B could be any subarray of A, including the entire array A.)
Given an array A of integers, return the length of the longest mountain. Return 0 if there is no mountain.
Note:
0 <= A.length <= 10000
0 <= A[i] <= 10000
Example 1:
Input: [2,1,4,7,3,2,5]
Output: 5
Explanation: The largest mountain is [1,4,7,3,2] which has length 5.
Example 2:
Input: [2,2,2]
Output: 0
Explanation: There is no mountain.
Followup:
Can you solve it using only one pass? YES
Can you solve it in O(1) space? YES
___________________________________________________________________________________________________________________________
CodeExplain:
while treversing the array..we have to just count increasing and decreasing numbers.
and maximize the addition of increasing and decreasing numbers.
*/
class Solution {
public:
int longestMountain(vector<int>& A) {
int n=A.size();
if(n<3)
return 0;
int ans = 0, left = 0, right = 0;// left = increasing, right = decreasing
for(int i=1;i<n;i++)
{
if(A[i]>A[i-1]){ //increasing count
if(right){
left=0;
right=0;
}
left += (1 + (left==0));
}
else if(A[i]<A[i-1] && left) //right = decreasing count
right += 1;
else{ //same numbers
left=0;
right=0;
}
ans = max((left + right) * (left && right), ans); //maximize the ans
}
return ans;
}
};