/* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+extern "C" {
+#endif
+
+
+/*
+** Add the ability to override 'extern'
+*/
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
+#endif
+
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+
+
+/*
+** These no-op macros are used in front of interfaces to mark those
+** interfaces as either deprecated or experimental. New applications
+** should not use deprecated interfaces - they are support for backwards
+** compatibility only. Application writers should be aware that
+** experimental interfaces are subject to change in point releases.
+**
+** These macros used to resolve to various kinds of compiler magic that
+** would generate warning messages when they were used. But that
+** compiler magic ended up generating such a flurry of bug reports
+** that we have taken it all out and gone back to using simple
+** noop macros.
+*/
+#define SQLITE_DEPRECATED
+#define SQLITE_EXPERIMENTAL
+
+/*
+** Ensure these symbols were not defined by some previous header file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
+#ifdef SQLITE_VERSION_NUMBER
+# undef SQLITE_VERSION_NUMBER
+#endif
+
+/*
+** CAPI3REF: Compile-Time Library Version Numbers
+**
+** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
+** evaluates to a string literal that is the SQLite version in the
+** format "X.Y.Z" where X is the major version number (always 3 for
+** SQLite3) and Y is the minor version number and Z is the release number.)^
+** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
+** numbers used in [SQLITE_VERSION].)^
+** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
+** be larger than the release from which it is derived. Either Y will
+** be held constant and Z will be incremented or else Y will be incremented
+** and Z will be reset to zero.
+**
+** Since version 3.6.18, SQLite source code has been stored in the
+** Fossil configuration management
+** system. ^The SQLITE_SOURCE_ID macro evalutes to
+** a string which identifies a particular check-in of SQLite
+** within its configuration management system. ^The SQLITE_SOURCE_ID
+** string contains the date and time of the check-in (UTC) and an SHA1
+** hash of the entire source tree.
+**
+** See also: [sqlite3_libversion()],
+** [sqlite3_libversion_number()], [sqlite3_sourceid()],
+** [sqlite_version()] and [sqlite_source_id()].
+*/
+#define SQLITE_VERSION "3.6.23.1"
+#define SQLITE_VERSION_NUMBER 3006023
+#define SQLITE_SOURCE_ID "2010-03-26 22:28:06 b078b588d617e07886ad156e9f54ade6d823568e"
+
+/*
+** CAPI3REF: Run-Time Library Version Numbers
+** KEYWORDS: sqlite3_version, sqlite3_sourceid
+**
+** These interfaces provide the same information as the [SQLITE_VERSION],
+** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
+** but are associated with the library instead of the header file. ^(Cautious
+** programmers might include assert() statements in their application to
+** verify that values returned by these interfaces match the macros in
+** the header, and thus insure that the application is
+** compiled with matching library and header files.
+**
+**
+** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
+** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
+** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
+**
)^
+**
+** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
+** macro. ^The sqlite3_libversion() function returns a pointer to the
+** to the sqlite3_version[] string constant. The sqlite3_libversion()
+** function is provided for use in DLLs since DLL users usually do not have
+** direct access to string constants within the DLL. ^The
+** sqlite3_libversion_number() function returns an integer equal to
+** [SQLITE_VERSION_NUMBER]. ^The sqlite3_sourceid() function returns
+** a pointer to a string constant whose value is the same as the
+** [SQLITE_SOURCE_ID] C preprocessor macro.
+**
+** See also: [sqlite_version()] and [sqlite_source_id()].
+*/
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API const char *sqlite3_sourceid(void);
+SQLITE_API int sqlite3_libversion_number(void);
+
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+/*
+** CAPI3REF: Run-Time Library Compilation Options Diagnostics
+**
+** ^The sqlite3_compileoption_used() function returns 0 or 1
+** indicating whether the specified option was defined at
+** compile time. ^The SQLITE_ prefix may be omitted from the
+** option name passed to sqlite3_compileoption_used().
+**
+** ^The sqlite3_compileoption_get() function allows interating
+** over the list of options that were defined at compile time by
+** returning the N-th compile time option string. ^If N is out of range,
+** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
+** prefix is omitted from any strings returned by
+** sqlite3_compileoption_get().
+**
+** ^Support for the diagnostic functions sqlite3_compileoption_used()
+** and sqlite3_compileoption_get() may be omitted by specifing the
+** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
+**
+** See also: SQL functions [sqlite_compileoption_used()] and
+** [sqlite_compileoption_get()] and the [compile_options pragma].
+*/
+SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
+SQLITE_API const char *sqlite3_compileoption_get(int N);
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/*
+** CAPI3REF: Test To See If The Library Is Threadsafe
+**
+** ^The sqlite3_threadsafe() function returns zero if and only if
+** SQLite was compiled mutexing code omitted due to the
+** [SQLITE_THREADSAFE] compile-time option being set to 0.
+**
+** SQLite can be compiled with or without mutexes. When
+** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
+** are enabled and SQLite is threadsafe. When the
+** [SQLITE_THREADSAFE] macro is 0,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite concurrently from more than one thread.
+**
+** Enabling mutexes incurs a measurable performance penalty.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** ^The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by an application to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the [SQLITE_THREADSAFE] macro.
+**
+** This interface only reports on the compile-time mutex setting
+** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
+** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
+** can be fully or partially disabled using a call to [sqlite3_config()]
+** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
+** or [SQLITE_CONFIG_MUTEX]. ^(The return value of the
+** sqlite3_threadsafe() function shows only the compile-time setting of
+** thread safety, not any run-time changes to that setting made by
+** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
+** is unchanged by calls to sqlite3_config().)^
+**
+** See the [threading mode] documentation for additional information.
+*/
+SQLITE_API int sqlite3_threadsafe(void);
+
+/*
+** CAPI3REF: Database Connection Handle
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by a pointer to an instance of
+** the opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
+** is its destructor. There are many other interfaces (such as
+** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on an
+** sqlite3 object.
+*/
+typedef struct sqlite3 sqlite3;
+
+/*
+** CAPI3REF: 64-Bit Integer Types
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
+** The sqlite_int64 and sqlite_uint64 types are supported for backwards
+** compatibility only.
+**
+** ^The sqlite3_int64 and sqlite_int64 types can store integer values
+** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
+** sqlite3_uint64 and sqlite_uint64 types can store integer values
+** between 0 and +18446744073709551615 inclusive.
+*/
+#ifdef SQLITE_INT64_TYPE
+ typedef SQLITE_INT64_TYPE sqlite_int64;
+ typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 sqlite_int64;
+ typedef unsigned __int64 sqlite_uint64;
+#else
+ typedef long long int sqlite_int64;
+ typedef unsigned long long int sqlite_uint64;
+#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite3_int64
+#endif
+
+/*
+** CAPI3REF: Closing A Database Connection
+**
+** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
+** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
+** successfullly destroyed and all associated resources are deallocated.
+**
+** Applications must [sqlite3_finalize | finalize] all [prepared statements]
+** and [sqlite3_blob_close | close] all [BLOB handles] associated with
+** the [sqlite3] object prior to attempting to close the object. ^If
+** sqlite3_close() is called on a [database connection] that still has
+** outstanding [prepared statements] or [BLOB handles], then it returns
+** SQLITE_BUSY.
+**
+** ^If [sqlite3_close()] is invoked while a transaction is open,
+** the transaction is automatically rolled back.
+**
+** The C parameter to [sqlite3_close(C)] must be either a NULL
+** pointer or an [sqlite3] object pointer obtained
+** from [sqlite3_open()], [sqlite3_open16()], or
+** [sqlite3_open_v2()], and not previously closed.
+** ^Calling sqlite3_close() with a NULL pointer argument is a
+** harmless no-op.
+*/
+SQLITE_API int sqlite3_close(sqlite3 *);
+
+/*
+** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
+*/
+typedef int (*sqlite3_callback)(void*,int,char**, char**);
+
+/*
+** CAPI3REF: One-Step Query Execution Interface
+**
+** The sqlite3_exec() interface is a convenience wrapper around
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
+** that allows an application to run multiple statements of SQL
+** without having to use a lot of C code.
+**
+** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
+** semicolon-separate SQL statements passed into its 2nd argument,
+** in the context of the [database connection] passed in as its 1st
+** argument. ^If the callback function of the 3rd argument to
+** sqlite3_exec() is not NULL, then it is invoked for each result row
+** coming out of the evaluated SQL statements. ^The 4th argument to
+** to sqlite3_exec() is relayed through to the 1st argument of each
+** callback invocation. ^If the callback pointer to sqlite3_exec()
+** is NULL, then no callback is ever invoked and result rows are
+** ignored.
+**
+** ^If an error occurs while evaluating the SQL statements passed into
+** sqlite3_exec(), then execution of the current statement stops and
+** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
+** is not NULL then any error message is written into memory obtained
+** from [sqlite3_malloc()] and passed back through the 5th parameter.
+** To avoid memory leaks, the application should invoke [sqlite3_free()]
+** on error message strings returned through the 5th parameter of
+** of sqlite3_exec() after the error message string is no longer needed.
+** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
+** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
+** NULL before returning.
+**
+** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
+** routine returns SQLITE_ABORT without invoking the callback again and
+** without running any subsequent SQL statements.
+**
+** ^The 2nd argument to the sqlite3_exec() callback function is the
+** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
+** callback is an array of pointers to strings obtained as if from
+** [sqlite3_column_text()], one for each column. ^If an element of a
+** result row is NULL then the corresponding string pointer for the
+** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
+** sqlite3_exec() callback is an array of pointers to strings where each
+** entry represents the name of corresponding result column as obtained
+** from [sqlite3_column_name()].
+**
+** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
+** to an empty string, or a pointer that contains only whitespace and/or
+** SQL comments, then no SQL statements are evaluated and the database
+** is not changed.
+**
+** Restrictions:
+**
+**
+** - The application must insure that the 1st parameter to sqlite3_exec()
+** is a valid and open [database connection].
+**
- The application must not close [database connection] specified by
+** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
+**
- The application must not modify the SQL statement text passed into
+** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
+**
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** CAPI3REF: Result Codes
+** KEYWORDS: SQLITE_OK {error code} {error codes}
+** KEYWORDS: {result code} {result codes}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicates success or failure.
+**
+** New error codes may be added in future versions of SQLite.
+**
+** See also: [SQLITE_IOERR_READ | extended result codes]
+*/
+#define SQLITE_OK 0 /* Successful result */
+/* beginning-of-error-codes */
+#define SQLITE_ERROR 1 /* SQL error or missing database */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
+#define SQLITE_EMPTY 16 /* Database is empty */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Auxiliary database format error */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
+/* end-of-error-codes */
+
+/*
+** CAPI3REF: Extended Result Codes
+** KEYWORDS: {extended error code} {extended error codes}
+** KEYWORDS: {extended result code} {extended result codes}
+**
+** In its default configuration, SQLite API routines return one of 26 integer
+** [SQLITE_OK | result codes]. However, experience has shown that many of
+** these result codes are too coarse-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 and later) include
+** support for additional result codes that provide more detailed information
+** about errors. The extended result codes are enabled or disabled
+** on a per database connection basis using the
+** [sqlite3_extended_result_codes()] API.
+**
+** Some of the available extended result codes are listed here.
+** One may expect the number of extended result codes will be expand
+** over time. Software that uses extended result codes should expect
+** to see new result codes in future releases of SQLite.
+**
+** The SQLITE_OK result code will never be extended. It will always
+** be exactly zero.
+*/
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+#define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
+#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
+#define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
+#define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
+#define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
+#define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8) )
+
+/*
+** CAPI3REF: Flags For File Open Operations
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the xOpen method of the
+** [sqlite3_vfs] object.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
+#define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */
+#define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
+#define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
+#define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
+#define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
+
+/*
+** CAPI3REF: Device Characteristics
+**
+** The xDeviceCapabilities method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of the these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+
+/*
+** CAPI3REF: File Locking Levels
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object.
+*/
+#define SQLITE_LOCK_NONE 0
+#define SQLITE_LOCK_SHARED 1
+#define SQLITE_LOCK_RESERVED 2
+#define SQLITE_LOCK_PENDING 3
+#define SQLITE_LOCK_EXCLUSIVE 4
+
+/*
+** CAPI3REF: Synchronization Type Flags
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. If the lower four bits of the flag
+** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
+** If the lower four bits equal SQLITE_SYNC_FULL, that means
+** to use Mac OS X style fullsync instead of fsync().
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+/*
+** CAPI3REF: OS Interface Open File Handle
+**
+** An [sqlite3_file] object represents an open file in the
+** [sqlite3_vfs | OS interface layer]. Individual OS interface
+** implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object
+**
+** Every file opened by the [sqlite3_vfs] xOpen method populates an
+** [sqlite3_file] object (or, more commonly, a subclass of the
+** [sqlite3_file] object) with a pointer to an instance of this object.
+** This object defines the methods used to perform various operations
+** against the open file represented by the [sqlite3_file] object.
+**
+** If the xOpen method sets the sqlite3_file.pMethods element
+** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
+** may be invoked even if the xOpen reported that it failed. The
+** only way to prevent a call to xClose following a failed xOpen
+** is for the xOpen to set the sqlite3_file.pMethods element to NULL.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
+** flag may be ORed in to indicate that only the data of the file
+** and not its inode needs to be synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+**
+** - [SQLITE_LOCK_NONE],
+**
- [SQLITE_LOCK_SHARED],
+**
- [SQLITE_LOCK_RESERVED],
+**
- [SQLITE_LOCK_PENDING], or
+**
- [SQLITE_LOCK_EXCLUSIVE].
+**
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method checks whether any database connection,
+** either in this process or in some other process, is holding a RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false otherwise.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument is an
+** integer opcode. The third argument is a generic pointer intended to
+** point to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves all opcodes less than 100 for its own use.
+** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+**
+** - [SQLITE_IOCAP_ATOMIC]
+**
- [SQLITE_IOCAP_ATOMIC512]
+**
- [SQLITE_IOCAP_ATOMIC1K]
+**
- [SQLITE_IOCAP_ATOMIC2K]
+**
- [SQLITE_IOCAP_ATOMIC4K]
+**
- [SQLITE_IOCAP_ATOMIC8K]
+**
- [SQLITE_IOCAP_ATOMIC16K]
+**
- [SQLITE_IOCAP_ATOMIC32K]
+**
- [SQLITE_IOCAP_ATOMIC64K]
+**
- [SQLITE_IOCAP_SAFE_APPEND]
+**
- [SQLITE_IOCAP_SEQUENTIAL]
+**
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+**
+** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
+** in the unread portions of the buffer with zeros. A VFS that
+** fails to zero-fill short reads might seem to work. However,
+** failure to zero-fill short reads will eventually lead to
+** database corruption.
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
+** interface.
+**
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to. This capability
+** is used during testing and only needs to be supported when SQLITE_TEST
+** is defined.
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+#define SQLITE_GET_LOCKPROXYFILE 2
+#define SQLITE_SET_LOCKPROXYFILE 3
+#define SQLITE_LAST_ERRNO 4
+
+/*
+** CAPI3REF: Mutex Handle
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: OS Interface Object
+**
+** An instance of the sqlite3_vfs object defines the interface between
+** the SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system".
+**
+** The value of the iVersion field is initially 1 but may be larger in
+** future versions of SQLite. Additional fields may be appended to this
+** object when the iVersion value is increased. Note that the structure
+** of the sqlite3_vfs object changes in the transaction between
+** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
+** modified.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list. Neither the application code nor the VFS
+** implementation should use the pNext pointer.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** SQLite will guarantee that the zFilename parameter to xOpen
+** is either a NULL pointer or string obtained
+** from xFullPathname(). SQLite further guarantees that
+** the string will be valid and unchanged until xClose() is
+** called. Because of the previous sentence,
+** the [sqlite3_file] can safely store a pointer to the
+** filename if it needs to remember the filename for some reason.
+** If the zFilename parameter is xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. Whenever the
+** xFilename parameter is NULL it will also be the case that the
+** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
+**
+** The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
+**
+** SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+**
+** - [SQLITE_OPEN_MAIN_DB]
+**
- [SQLITE_OPEN_MAIN_JOURNAL]
+**
- [SQLITE_OPEN_TEMP_DB]
+**
- [SQLITE_OPEN_TEMP_JOURNAL]
+**
- [SQLITE_OPEN_TRANSIENT_DB]
+**
- [SQLITE_OPEN_SUBJOURNAL]
+**
- [SQLITE_OPEN_MASTER_JOURNAL]
+**
+**
+** The file I/O implementation can use the object type flags to
+** change the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen method:
+**
+**
+** - [SQLITE_OPEN_DELETEONCLOSE]
+**
- [SQLITE_OPEN_EXCLUSIVE]
+**
+**
+** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases, journals and for subjournals.
+**
+** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** with the [SQLITE_OPEN_CREATE] flag, which are both directly
+** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
+** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
+** SQLITE_OPEN_CREATE, is used to indicate that file should always
+** be created, and that it is an error if it already exists.
+** It is not used to indicate the file should be opened
+** for exclusive access.
+**
+** At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. The xOpen method does not have to
+** allocate the structure; it should just fill it in. Note that
+** the xOpen method must set the sqlite3_file.pMethods to either
+** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
+** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
+** element will be valid after xOpen returns regardless of the success
+** or failure of the xOpen call.
+**
+** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
+** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test whether a file is at least readable. The file can be a
+** directory.
+**
+** SQLite will always allocate at least mxPathname+1 bytes for the
+** output buffer xFullPathname. The exact size of the output buffer
+** is also passed as a parameter to both methods. If the output buffer
+** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
+** handled as a fatal error by SQLite, vfs implementations should endeavor
+** to prevent this by setting mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), and xCurrentTime() interfaces
+** are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained.
+** The xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. The xCurrentTime()
+** method returns a Julian Day Number for the current date and time.
+**
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ int (*xGetLastError)(sqlite3_vfs*, int, char *);
+ /* New fields may be appended in figure versions. The iVersion
+ ** value will increment whenever this happens. */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method
+**
+** These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. They determine
+** what kind of permissions the xAccess method is looking for.
+** With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks whether the file exists.
+** With SQLITE_ACCESS_READWRITE, the xAccess method
+** checks whether the file is both readable and writable.
+** With SQLITE_ACCESS_READ, the xAccess method
+** checks whether the file is readable.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1
+#define SQLITE_ACCESS_READ 2
+
+/*
+** CAPI3REF: Initialize The SQLite Library
+**
+** ^The sqlite3_initialize() routine initializes the
+** SQLite library. ^The sqlite3_shutdown() routine
+** deallocates any resources that were allocated by sqlite3_initialize().
+** These routines are designed to aid in process initialization and
+** shutdown on embedded systems. Workstation applications using
+** SQLite normally do not need to invoke either of these routines.
+**
+** A call to sqlite3_initialize() is an "effective" call if it is
+** the first time sqlite3_initialize() is invoked during the lifetime of
+** the process, or if it is the first time sqlite3_initialize() is invoked
+** following a call to sqlite3_shutdown(). ^(Only an effective call
+** of sqlite3_initialize() does any initialization. All other calls
+** are harmless no-ops.)^
+**
+** A call to sqlite3_shutdown() is an "effective" call if it is the first
+** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
+** an effective call to sqlite3_shutdown() does any deinitialization.
+** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
+**
+** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
+** is not. The sqlite3_shutdown() interface must only be called from a
+** single thread. All open [database connections] must be closed and all
+** other SQLite resources must be deallocated prior to invoking
+** sqlite3_shutdown().
+**
+** Among other things, ^sqlite3_initialize() will invoke
+** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
+** will invoke sqlite3_os_end().
+**
+** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
+** ^If for some reason, sqlite3_initialize() is unable to initialize
+** the library (perhaps it is unable to allocate a needed resource such
+** as a mutex) it returns an [error code] other than [SQLITE_OK].
+**
+** ^The sqlite3_initialize() routine is called internally by many other
+** SQLite interfaces so that an application usually does not need to
+** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
+** calls sqlite3_initialize() so the SQLite library will be automatically
+** initialized when [sqlite3_open()] is called if it has not be initialized
+** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
+** compile-time option, then the automatic calls to sqlite3_initialize()
+** are omitted and the application must call sqlite3_initialize() directly
+** prior to using any other SQLite interface. For maximum portability,
+** it is recommended that applications always invoke sqlite3_initialize()
+** directly prior to using any other SQLite interface. Future releases
+** of SQLite may require this. In other words, the behavior exhibited
+** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
+** default behavior in some future release of SQLite.
+**
+** The sqlite3_os_init() routine does operating-system specific
+** initialization of the SQLite library. The sqlite3_os_end()
+** routine undoes the effect of sqlite3_os_init(). Typical tasks
+** performed by these routines include allocation or deallocation
+** of static resources, initialization of global variables,
+** setting up a default [sqlite3_vfs] module, or setting up
+** a default configuration using [sqlite3_config()].
+**
+** The application should never invoke either sqlite3_os_init()
+** or sqlite3_os_end() directly. The application should only invoke
+** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
+** interface is called automatically by sqlite3_initialize() and
+** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
+** implementations for sqlite3_os_init() and sqlite3_os_end()
+** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
+** When [custom builds | built for other platforms]
+** (using the [SQLITE_OS_OTHER=1] compile-time
+** option) the application must supply a suitable implementation for
+** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
+** implementation of sqlite3_os_init() or sqlite3_os_end()
+** must return [SQLITE_OK] on success and some other [error code] upon
+** failure.
+*/
+SQLITE_API int sqlite3_initialize(void);
+SQLITE_API int sqlite3_shutdown(void);
+SQLITE_API int sqlite3_os_init(void);
+SQLITE_API int sqlite3_os_end(void);
+
+/*
+** CAPI3REF: Configuring The SQLite Library
+**
+** The sqlite3_config() interface is used to make global configuration
+** changes to SQLite in order to tune SQLite to the specific needs of
+** the application. The default configuration is recommended for most
+** applications and so this routine is usually not necessary. It is
+** provided to support rare applications with unusual needs.
+**
+** The sqlite3_config() interface is not threadsafe. The application
+** must insure that no other SQLite interfaces are invoked by other
+** threads while sqlite3_config() is running. Furthermore, sqlite3_config()
+** may only be invoked prior to library initialization using
+** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
+** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
+** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
+** Note, however, that ^sqlite3_config() can be called as part of the
+** implementation of an application-defined [sqlite3_os_init()].
+**
+** The first argument to sqlite3_config() is an integer
+** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
+** what property of SQLite is to be configured. Subsequent arguments
+** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
+** in the first argument.
+**
+** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
+** ^If the option is unknown or SQLite is unable to set the option
+** then this routine returns a non-zero [error code].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_config(int, ...);
+
+/*
+** CAPI3REF: Configure database connections
+** EXPERIMENTAL
+**
+** The sqlite3_db_config() interface is used to make configuration
+** changes to a [database connection]. The interface is similar to
+** [sqlite3_config()] except that the changes apply to a single
+** [database connection] (specified in the first argument). The
+** sqlite3_db_config() interface should only be used immediately after
+** the database connection is created using [sqlite3_open()],
+** [sqlite3_open16()], or [sqlite3_open_v2()].
+**
+** The second argument to sqlite3_db_config(D,V,...) is the
+** configuration verb - an integer code that indicates what
+** aspect of the [database connection] is being configured.
+** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE].
+** New verbs are likely to be added in future releases of SQLite.
+** Additional arguments depend on the verb.
+**
+** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
+** the call is considered successful.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...);
+
+/*
+** CAPI3REF: Memory Allocation Routines
+** EXPERIMENTAL
+**
+** An instance of this object defines the interface between SQLite
+** and low-level memory allocation routines.
+**
+** This object is used in only one place in the SQLite interface.
+** A pointer to an instance of this object is the argument to
+** [sqlite3_config()] when the configuration option is
+** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
+** By creating an instance of this object
+** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
+** during configuration, an application can specify an alternative
+** memory allocation subsystem for SQLite to use for all of its
+** dynamic memory needs.
+**
+** Note that SQLite comes with several [built-in memory allocators]
+** that are perfectly adequate for the overwhelming majority of applications
+** and that this object is only useful to a tiny minority of applications
+** with specialized memory allocation requirements. This object is
+** also used during testing of SQLite in order to specify an alternative
+** memory allocator that simulates memory out-of-memory conditions in
+** order to verify that SQLite recovers gracefully from such
+** conditions.
+**
+** The xMalloc and xFree methods must work like the
+** malloc() and free() functions from the standard C library.
+** The xRealloc method must work like realloc() from the standard C library
+** with the exception that if the second argument to xRealloc is zero,
+** xRealloc must be a no-op - it must not perform any allocation or
+** deallocation. ^SQLite guarantees that the second argument to
+** xRealloc is always a value returned by a prior call to xRoundup.
+** And so in cases where xRoundup always returns a positive number,
+** xRealloc can perform exactly as the standard library realloc() and
+** still be in compliance with this specification.
+**
+** xSize should return the allocated size of a memory allocation
+** previously obtained from xMalloc or xRealloc. The allocated size
+** is always at least as big as the requested size but may be larger.
+**
+** The xRoundup method returns what would be the allocated size of
+** a memory allocation given a particular requested size. Most memory
+** allocators round up memory allocations at least to the next multiple
+** of 8. Some allocators round up to a larger multiple or to a power of 2.
+** Every memory allocation request coming in through [sqlite3_malloc()]
+** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
+** that causes the corresponding memory allocation to fail.
+**
+** The xInit method initializes the memory allocator. (For example,
+** it might allocate any require mutexes or initialize internal data
+** structures. The xShutdown method is invoked (indirectly) by
+** [sqlite3_shutdown()] and should deallocate any resources acquired
+** by xInit. The pAppData pointer is used as the only parameter to
+** xInit and xShutdown.
+**
+** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. For all other methods, SQLite
+** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
+** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
+** it is by default) and so the methods are automatically serialized.
+** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
+** methods must be threadsafe or else make their own arrangements for
+** serialization.
+**
+** SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+*/
+typedef struct sqlite3_mem_methods sqlite3_mem_methods;
+struct sqlite3_mem_methods {
+ void *(*xMalloc)(int); /* Memory allocation function */
+ void (*xFree)(void*); /* Free a prior allocation */
+ void *(*xRealloc)(void*,int); /* Resize an allocation */
+ int (*xSize)(void*); /* Return the size of an allocation */
+ int (*xRoundup)(int); /* Round up request size to allocation size */
+ int (*xInit)(void*); /* Initialize the memory allocator */
+ void (*xShutdown)(void*); /* Deinitialize the memory allocator */
+ void *pAppData; /* Argument to xInit() and xShutdown() */
+};
+
+/*
+** CAPI3REF: Configuration Options
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the first argument to the [sqlite3_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_config()] to make sure that
+** the call worked. The [sqlite3_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+**
+** - SQLITE_CONFIG_SINGLETHREAD
+** - There are no arguments to this option. ^This option sets the
+** [threading mode] to Single-thread. In other words, it disables
+** all mutexing and puts SQLite into a mode where it can only be used
+** by a single thread. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to change the [threading mode] from its default
+** value of Single-thread and so [sqlite3_config()] will return
+** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
+** configuration option.
+**
+** - SQLITE_CONFIG_MULTITHREAD
+** - There are no arguments to this option. ^This option sets the
+** [threading mode] to Multi-thread. In other words, it disables
+** mutexing on [database connection] and [prepared statement] objects.
+** The application is responsible for serializing access to
+** [database connections] and [prepared statements]. But other mutexes
+** are enabled so that SQLite will be safe to use in a multi-threaded
+** environment as long as no two threads attempt to use the same
+** [database connection] at the same time. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Multi-thread [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_MULTITHREAD configuration option.
+**
+** - SQLITE_CONFIG_SERIALIZED
+** - There are no arguments to this option. ^This option sets the
+** [threading mode] to Serialized. In other words, this option enables
+** all mutexes including the recursive
+** mutexes on [database connection] and [prepared statement] objects.
+** In this mode (which is the default when SQLite is compiled with
+** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
+** to [database connections] and [prepared statements] so that the
+** application is free to use the same [database connection] or the
+** same [prepared statement] in different threads at the same time.
+** ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** it is not possible to set the Serialized [threading mode] and
+** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
+** SQLITE_CONFIG_SERIALIZED configuration option.
+**
+** - SQLITE_CONFIG_MALLOC
+** - ^(This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The argument specifies
+** alternative low-level memory allocation routines to be used in place of
+** the memory allocation routines built into SQLite.)^ ^SQLite makes
+** its own private copy of the content of the [sqlite3_mem_methods] structure
+** before the [sqlite3_config()] call returns.
+**
+** - SQLITE_CONFIG_GETMALLOC
+** - ^(This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods]
+** structure is filled with the currently defined memory allocation routines.)^
+** This option can be used to overload the default memory allocation
+** routines with a wrapper that simulations memory allocation failure or
+** tracks memory usage, for example.
+**
+** - SQLITE_CONFIG_MEMSTATUS
+** - ^This option takes single argument of type int, interpreted as a
+** boolean, which enables or disables the collection of memory allocation
+** statistics. ^(When memory allocation statistics are disabled, the
+** following SQLite interfaces become non-operational:
+**
+** - [sqlite3_memory_used()]
+**
- [sqlite3_memory_highwater()]
+**
- [sqlite3_soft_heap_limit()]
+**
- [sqlite3_status()]
+**
)^
+** ^Memory allocation statistics are enabled by default unless SQLite is
+** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
+** allocation statistics are disabled by default.
+**
+**
+** - SQLITE_CONFIG_SCRATCH
+** - ^This option specifies a static memory buffer that SQLite can use for
+** scratch memory. There are three arguments: A pointer an 8-byte
+** aligned memory buffer from which the scrach allocations will be
+** drawn, the size of each scratch allocation (sz),
+** and the maximum number of scratch allocations (N). The sz
+** argument must be a multiple of 16. The sz parameter should be a few bytes
+** larger than the actual scratch space required due to internal overhead.
+** The first argument must be a pointer to an 8-byte aligned buffer
+** of at least sz*N bytes of memory.
+** ^SQLite will use no more than one scratch buffer per thread. So
+** N should be set to the expected maximum number of threads. ^SQLite will
+** never require a scratch buffer that is more than 6 times the database
+** page size. ^If SQLite needs needs additional scratch memory beyond
+** what is provided by this configuration option, then
+** [sqlite3_malloc()] will be used to obtain the memory needed.
+**
+** - SQLITE_CONFIG_PAGECACHE
+** - ^This option specifies a static memory buffer that SQLite can use for
+** the database page cache with the default page cache implemenation.
+** This configuration should not be used if an application-define page
+** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
+** There are three arguments to this option: A pointer to 8-byte aligned
+** memory, the size of each page buffer (sz), and the number of pages (N).
+** The sz argument should be the size of the largest database page
+** (a power of two between 512 and 32768) plus a little extra for each
+** page header. ^The page header size is 20 to 40 bytes depending on
+** the host architecture. ^It is harmless, apart from the wasted memory,
+** to make sz a little too large. The first
+** argument should point to an allocation of at least sz*N bytes of memory.
+** ^SQLite will use the memory provided by the first argument to satisfy its
+** memory needs for the first N pages that it adds to cache. ^If additional
+** page cache memory is needed beyond what is provided by this option, then
+** SQLite goes to [sqlite3_malloc()] for the additional storage space.
+** ^The implementation might use one or more of the N buffers to hold
+** memory accounting information. The pointer in the first argument must
+** be aligned to an 8-byte boundary or subsequent behavior of SQLite
+** will be undefined.
+**
+** - SQLITE_CONFIG_HEAP
+** - ^This option specifies a static memory buffer that SQLite will use
+** for all of its dynamic memory allocation needs beyond those provided
+** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
+** There are three arguments: An 8-byte aligned pointer to the memory,
+** the number of bytes in the memory buffer, and the minimum allocation size.
+** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
+** to using its default memory allocator (the system malloc() implementation),
+** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
+** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
+** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
+** allocator is engaged to handle all of SQLites memory allocation needs.
+** The first pointer (the memory pointer) must be aligned to an 8-byte
+** boundary or subsequent behavior of SQLite will be undefined.
+**
+** - SQLITE_CONFIG_MUTEX
+** - ^(This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The argument specifies
+** alternative low-level mutex routines to be used in place
+** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the
+** content of the [sqlite3_mutex_methods] structure before the call to
+** [sqlite3_config()] returns. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
+** return [SQLITE_ERROR].
+**
+** - SQLITE_CONFIG_GETMUTEX
+** - ^(This option takes a single argument which is a pointer to an
+** instance of the [sqlite3_mutex_methods] structure. The
+** [sqlite3_mutex_methods]
+** structure is filled with the currently defined mutex routines.)^
+** This option can be used to overload the default mutex allocation
+** routines with a wrapper used to track mutex usage for performance
+** profiling or testing, for example. ^If SQLite is compiled with
+** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
+** the entire mutexing subsystem is omitted from the build and hence calls to
+** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
+** return [SQLITE_ERROR].
+**
+** - SQLITE_CONFIG_LOOKASIDE
+** - ^(This option takes two arguments that determine the default
+** memory allocation for the lookaside memory allocator on each
+** [database connection]. The first argument is the
+** size of each lookaside buffer slot and the second is the number of
+** slots allocated to each database connection.)^ ^(This option sets the
+** default lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
+** verb to [sqlite3_db_config()] can be used to change the lookaside
+** configuration on individual connections.)^
+**
+** - SQLITE_CONFIG_PCACHE
+** - ^(This option takes a single argument which is a pointer to
+** an [sqlite3_pcache_methods] object. This object specifies the interface
+** to a custom page cache implementation.)^ ^SQLite makes a copy of the
+** object and uses it for page cache memory allocations.
+**
+** - SQLITE_CONFIG_GETPCACHE
+** - ^(This option takes a single argument which is a pointer to an
+** [sqlite3_pcache_methods] object. SQLite copies of the current
+** page cache implementation into that object.)^
+**
+**
+*/
+#define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
+#define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
+#define SQLITE_CONFIG_SERIALIZED 3 /* nil */
+#define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
+#define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */
+#define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
+#define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
+#define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
+#define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
+#define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
+/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
+#define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
+#define SQLITE_CONFIG_PCACHE 14 /* sqlite3_pcache_methods* */
+#define SQLITE_CONFIG_GETPCACHE 15 /* sqlite3_pcache_methods* */
+#define SQLITE_CONFIG_LOG 16 /* xFunc, void* */
+
+/*
+** CAPI3REF: Configuration Options
+** EXPERIMENTAL
+**
+** These constants are the available integer configuration options that
+** can be passed as the second argument to the [sqlite3_db_config()] interface.
+**
+** New configuration options may be added in future releases of SQLite.
+** Existing configuration options might be discontinued. Applications
+** should check the return code from [sqlite3_db_config()] to make sure that
+** the call worked. ^The [sqlite3_db_config()] interface will return a
+** non-zero [error code] if a discontinued or unsupported configuration option
+** is invoked.
+**
+**
+** - SQLITE_DBCONFIG_LOOKASIDE
+** - ^This option takes three additional arguments that determine the
+** [lookaside memory allocator] configuration for the [database connection].
+** ^The first argument (the third parameter to [sqlite3_db_config()] is a
+** pointer to an memory buffer to use for lookaside memory.
+** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
+** may be NULL in which case SQLite will allocate the
+** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
+** size of each lookaside buffer slot. ^The third argument is the number of
+** slots. The size of the buffer in the first argument must be greater than
+** or equal to the product of the second and third arguments. The buffer
+** must be aligned to an 8-byte boundary. ^If the second argument to
+** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
+** rounded down to the next smaller
+** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]
+**
+**
+*/
+#define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
+
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes
+**
+** ^The sqlite3_extended_result_codes() routine enables or disables the
+** [extended result codes] feature of SQLite. ^The extended result
+** codes are disabled by default for historical compatibility.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid
+**
+** ^Each entry in an SQLite table has a unique 64-bit signed
+** integer key called the [ROWID | "rowid"]. ^The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. ^If
+** the table has a column of type [INTEGER PRIMARY KEY] then that column
+** is another alias for the rowid.
+**
+** ^This routine returns the [rowid] of the most recent
+** successful [INSERT] into the database from the [database connection]
+** in the first argument. ^If no successful [INSERT]s
+** have ever occurred on that database connection, zero is returned.
+**
+** ^(If an [INSERT] occurs within a trigger, then the [rowid] of the inserted
+** row is returned by this routine as long as the trigger is running.
+** But once the trigger terminates, the value returned by this routine
+** reverts to the last value inserted before the trigger fired.)^
+**
+** ^An [INSERT] that fails due to a constraint violation is not a
+** successful [INSERT] and does not change the value returned by this
+** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. ^(When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.)^
+**
+** ^For the purposes of this routine, an [INSERT] is considered to
+** be successful even if it is subsequently rolled back.
+**
+** This function is accessible to SQL statements via the
+** [last_insert_rowid() SQL function].
+**
+** If a separate thread performs a new [INSERT] on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert [rowid],
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert [rowid].
+*/
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified
+**
+** ^This function returns the number of database rows that were changed
+** or inserted or deleted by the most recently completed SQL statement
+** on the [database connection] specified by the first parameter.
+** ^(Only changes that are directly specified by the [INSERT], [UPDATE],
+** or [DELETE] statement are counted. Auxiliary changes caused by
+** triggers or [foreign key actions] are not counted.)^ Use the
+** [sqlite3_total_changes()] function to find the total number of changes
+** including changes caused by triggers and foreign key actions.
+**
+** ^Changes to a view that are simulated by an [INSTEAD OF trigger]
+** are not counted. Only real table changes are counted.
+**
+** ^(A "row change" is a change to a single row of a single table
+** caused by an INSERT, DELETE, or UPDATE statement. Rows that
+** are changed as side effects of [REPLACE] constraint resolution,
+** rollback, ABORT processing, [DROP TABLE], or by any other
+** mechanisms do not count as direct row changes.)^
+**
+** A "trigger context" is a scope of execution that begins and
+** ends with the script of a [CREATE TRIGGER | trigger].
+** Most SQL statements are
+** evaluated outside of any trigger. This is the "top level"
+** trigger context. If a trigger fires from the top level, a
+** new trigger context is entered for the duration of that one
+** trigger. Subtriggers create subcontexts for their duration.
+**
+** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
+** not create a new trigger context.
+**
+** ^This function returns the number of direct row changes in the
+** most recent INSERT, UPDATE, or DELETE statement within the same
+** trigger context.
+**
+** ^Thus, when called from the top level, this function returns the
+** number of changes in the most recent INSERT, UPDATE, or DELETE
+** that also occurred at the top level. ^(Within the body of a trigger,
+** the sqlite3_changes() interface can be called to find the number of
+** changes in the most recently completed INSERT, UPDATE, or DELETE
+** statement within the body of the same trigger.
+** However, the number returned does not include changes
+** caused by subtriggers since those have their own context.)^
+**
+** See also the [sqlite3_total_changes()] interface, the
+** [count_changes pragma], and the [changes() SQL function].
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and not meaningful.
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified
+**
+** ^This function returns the number of row changes caused by [INSERT],
+** [UPDATE] or [DELETE] statements since the [database connection] was opened.
+** ^(The count returned by sqlite3_total_changes() includes all changes
+** from all [CREATE TRIGGER | trigger] contexts and changes made by
+** [foreign key actions]. However,
+** the count does not include changes used to implement [REPLACE] constraints,
+** do rollbacks or ABORT processing, or [DROP TABLE] processing. The
+** count does not include rows of views that fire an [INSTEAD OF trigger],
+** though if the INSTEAD OF trigger makes changes of its own, those changes
+** are counted.)^
+** ^The sqlite3_total_changes() function counts the changes as soon as
+** the statement that makes them is completed (when the statement handle
+** is passed to [sqlite3_reset()] or [sqlite3_finalize()]).
+**
+** See also the [sqlite3_changes()] interface, the
+** [count_changes pragma], and the [total_changes() SQL function].
+**
+** If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and not meaningful.
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query
+**
+** ^This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+**
+** ^It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a [database connection] that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** ^If an SQL operation is very nearly finished at the time when
+** sqlite3_interrupt() is called, then it might not have an opportunity
+** to be interrupted and might continue to completion.
+**
+** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
+** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
+** that is inside an explicit transaction, then the entire transaction
+** will be rolled back automatically.
+**
+** ^The sqlite3_interrupt(D) call is in effect until all currently running
+** SQL statements on [database connection] D complete. ^Any new SQL statements
+** that are started after the sqlite3_interrupt() call and before the
+** running statements reaches zero are interrupted as if they had been
+** running prior to the sqlite3_interrupt() call. ^New SQL statements
+** that are started after the running statement count reaches zero are
+** not effected by the sqlite3_interrupt().
+** ^A call to sqlite3_interrupt(D) that occurs when there are no running
+** SQL statements is a no-op and has no effect on SQL statements
+** that are started after the sqlite3_interrupt() call returns.
+**
+** If the database connection closes while [sqlite3_interrupt()]
+** is running then bad things will likely happen.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3*);
+
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete
+**
+** These routines are useful during command-line input to determine if the
+** currently entered text seems to form a complete SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. ^These routines return 1 if the input string
+** appears to be a complete SQL statement. ^A statement is judged to be
+** complete if it ends with a semicolon token and is not a prefix of a
+** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator. ^Whitespace
+** and comments that follow the final semicolon are ignored.
+**
+** ^These routines return 0 if the statement is incomplete. ^If a
+** memory allocation fails, then SQLITE_NOMEM is returned.
+**
+** ^These routines do not parse the SQL statements thus
+** will not detect syntactically incorrect SQL.
+**
+** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
+** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
+** automatically by sqlite3_complete16(). If that initialization fails,
+** then the return value from sqlite3_complete16() will be non-zero
+** regardless of whether or not the input SQL is complete.)^
+**
+** The input to [sqlite3_complete()] must be a zero-terminated
+** UTF-8 string.
+**
+** The input to [sqlite3_complete16()] must be a zero-terminated
+** UTF-16 string in native byte order.
+*/
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
+
+/*
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
+**
+** ^This routine sets a callback function that might be invoked whenever
+** an attempt is made to open a database table that another thread
+** or process has locked.
+**
+** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
+** is returned immediately upon encountering the lock. ^If the busy callback
+** is not NULL, then the callback might be invoked with two arguments.
+**
+** ^The first argument to the busy handler is a copy of the void* pointer which
+** is the third argument to sqlite3_busy_handler(). ^The second argument to
+** the busy handler callback is the number of times that the busy handler has
+** been invoked for this locking event. ^If the
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
+** ^If the callback returns non-zero, then another attempt
+** is made to open the database for reading and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that it will be invoked
+** when there is lock contention. ^If SQLite determines that invoking the busy
+** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
+** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
+** Consider a scenario where one process is holding a read lock that
+** it is trying to promote to a reserved lock and
+** a second process is holding a reserved lock that it is trying
+** to promote to an exclusive lock. The first process cannot proceed
+** because it is blocked by the second and the second process cannot
+** proceed because it is blocked by the first. If both processes
+** invoke the busy handlers, neither will make any progress. Therefore,
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
+** will induce the first process to release its read lock and allow
+** the second process to proceed.
+**
+** ^The default busy callback is NULL.
+**
+** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
+** when SQLite is in the middle of a large transaction where all the
+** changes will not fit into the in-memory cache. SQLite will
+** already hold a RESERVED lock on the database file, but it needs
+** to promote this lock to EXCLUSIVE so that it can spill cache
+** pages into the database file without harm to concurrent
+** readers. ^If it is unable to promote the lock, then the in-memory
+** cache will be left in an inconsistent state and so the error
+** code is promoted from the relatively benign [SQLITE_BUSY] to
+** the more severe [SQLITE_IOERR_BLOCKED]. ^This error code promotion
+** forces an automatic rollback of the changes. See the
+**
+** CorruptionFollowingBusyError wiki page for a discussion of why
+** this is important.
+**
+** ^(There can only be a single busy handler defined for each
+** [database connection]. Setting a new busy handler clears any
+** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
+** will also set or clear the busy handler.
+**
+** The busy callback should not take any actions which modify the
+** database connection that invoked the busy handler. Any such actions
+** result in undefined behavior.
+**
+** A busy handler must not close the database connection
+** or [prepared statement] that invoked the busy handler.
+*/
+SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
+
+/*
+** CAPI3REF: Set A Busy Timeout
+**
+** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
+** for a specified amount of time when a table is locked. ^The handler
+** will sleep multiple times until at least "ms" milliseconds of sleeping
+** have accumulated. ^After at least "ms" milliseconds of sleeping,
+** the handler returns 0 which causes [sqlite3_step()] to return
+** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
+**
+** ^Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+**
+** ^(There can only be a single busy handler for a particular
+** [database connection] any any given moment. If another busy handler
+** was defined (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.)^
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
+
+/*
+** CAPI3REF: Convenience Routines For Running Queries
+**
+** Definition: A result table is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated UTF-8 strings.
+** There are (N+1)*M elements in the array. The first M pointers point
+** to zero-terminated strings that contain the names of the columns.
+** The remaining entries all point to query results. NULL values result
+** in NULL pointers. All other values are in their UTF-8 zero-terminated
+** string representation as returned by [sqlite3_column_text()].
+**
+** A result table might consist of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** As an example of the result table format, suppose a query result
+** is as follows:
+**
+**
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+**
+**
+** There are two column (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array names azResult. Then azResult holds this content:
+**
+**
+** azResult[0] = "Name";
+** azResult[1] = "Age";
+** azResult[2] = "Alice";
+** azResult[3] = "43";
+** azResult[4] = "Bob";
+** azResult[5] = "28";
+** azResult[6] = "Cindy";
+** azResult[7] = "21";
+**
+**
+** ^The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter and returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the application has finished with the result from sqlite3_get_table(),
+** it should pass the result table pointer to sqlite3_free_table() in order to
+** release the memory that was malloced. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** ^(The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or
+** [sqlite3_errmsg()].)^
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* An open database */
+ const char *zSql, /* SQL to be evaluated */
+ char ***pazResult, /* Results of the query */
+ int *pnRow, /* Number of result rows written here */
+ int *pnColumn, /* Number of result columns written here */
+ char **pzErrmsg /* Error msg written here */
+);
+SQLITE_API void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions
+**
+** These routines are work-alikes of the "printf()" family of functions
+** from the standard C library.
+**
+** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. ^Both routines return a
+** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** ^(In sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf().)^ This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. ^(Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer.)^ We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. ^The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** These routines all implement some additional formatting
+** options that are useful for constructing SQL statements.
+** All of the usual printf() formatting options apply. In addition, there
+** is are "%q", "%Q", and "%z" options.
+**
+** ^(The %q option works like %s in that it substitutes a null-terminated
+** string from the argument list. But %q also doubles every '\'' character.
+** %q is designed for use inside a string literal.)^ By doubling each '\''
+** character it escapes that character and allows it to be inserted into
+** the string.
+**
+** For example, assume the string variable zText contains text as follows:
+**
+**
+** char *zText = "It's a happy day!";
+**
+**
+** One can use this text in an SQL statement as follows:
+**
+**
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+**
+**
+** Because the %q format string is used, the '\'' character in zText
+** is escaped and the SQL generated is as follows:
+**
+**
+** INSERT INTO table1 VALUES('It''s a happy day!')
+**
+**
+** This is correct. Had we used %s instead of %q, the generated SQL
+** would have looked like this:
+**
+**
+** INSERT INTO table1 VALUES('It's a happy day!');
+**
+**
+** This second example is an SQL syntax error. As a general rule you should
+** always use %q instead of %s when inserting text into a string literal.
+**
+** ^(The %Q option works like %q except it also adds single quotes around
+** the outside of the total string. Additionally, if the parameter in the
+** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
+** single quotes).)^ So, for example, one could say:
+**
+**
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+**
+**
+** The code above will render a correct SQL statement in the zSQL
+** variable even if the zText variable is a NULL pointer.
+**
+** ^(The "%z" formatting option works like "%s" but with the
+** addition that after the string has been read and copied into
+** the result, [sqlite3_free()] is called on the input string.)^
+*/
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific VFS implementation. The
+** Windows VFS uses native malloc() and free() for some operations.
+**
+** ^The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** ^If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. ^If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** ^Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. ^The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_realloc().
+**
+** ^(The sqlite3_realloc() interface attempts to resize a
+** prior memory allocation to be at least N bytes, where N is the
+** second parameter. The memory allocation to be resized is the first
+** parameter.)^ ^ If the first parameter to sqlite3_realloc()
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
+** ^If the second parameter to sqlite3_realloc() is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
+** ^sqlite3_realloc() returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if sufficient memory is unavailable.
+** ^If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc() and the prior allocation is freed.
+** ^If sqlite3_realloc() returns NULL, then the prior allocation
+** is not freed.
+**
+** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
+** is always aligned to at least an 8 byte boundary.
+**
+** In SQLite version 3.5.0 and 3.5.1, it was possible to define
+** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
+** implementation of these routines to be omitted. That capability
+** is no longer provided. Only built-in memory allocators can be used.
+**
+** The Windows OS interface layer calls
+** the system malloc() and free() directly when converting
+** filenames between the UTF-8 encoding used by SQLite
+** and whatever filename encoding is used by the particular Windows
+** installation. Memory allocation errors are detected, but
+** they are reported back as [SQLITE_CANTOPEN] or
+** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
+**
+** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else pointers obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
+** not yet been released.
+**
+** The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+*/
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void sqlite3_free(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** routines, which form the built-in memory allocation subsystem.
+**
+** ^The [sqlite3_memory_used()] routine returns the number of bytes
+** of memory currently outstanding (malloced but not freed).
+** ^The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()] since the high-water mark
+** was last reset. ^The values returned by [sqlite3_memory_used()] and
+** [sqlite3_memory_highwater()] include any overhead
+** added by SQLite in its implementation of [sqlite3_malloc()],
+** but not overhead added by the any underlying system library
+** routines that [sqlite3_malloc()] may call.
+**
+** ^The memory high-water mark is reset to the current value of
+** [sqlite3_memory_used()] if and only if the parameter to
+** [sqlite3_memory_highwater()] is true. ^The value returned
+** by [sqlite3_memory_highwater(1)] is the high-water mark
+** prior to the reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random [ROWID | ROWIDs] when inserting new records into a table that
+** already uses the largest possible [ROWID]. The PRNG is also used for
+** the build-in random() and randomblob() SQL functions. This interface allows
+** applications to access the same PRNG for other purposes.
+**
+** ^A call to this routine stores N bytes of randomness into buffer P.
+**
+** ^The first time this routine is invoked (either internally or by
+** the application) the PRNG is seeded using randomness obtained
+** from the xRandomness method of the default [sqlite3_vfs] object.
+** ^On all subsequent invocations, the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks
+**
+** ^This routine registers a authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** ^The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. ^The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. ^If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then the [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. ^When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied.
+**
+** ^The first parameter to the authorizer callback is a copy of the third
+** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
+** to the callback is an integer [SQLITE_COPY | action code] that specifies
+** the particular action to be authorized. ^The third through sixth parameters
+** to the callback are zero-terminated strings that contain additional
+** details about the action to be authorized.
+**
+** ^If the action code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+** ^If the action code is [SQLITE_DELETE] and the callback returns
+** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
+** [truncate optimization] is disabled and all rows are deleted individually.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted source, to ensure that the SQL statements
+** do not try to access data they are not allowed to see, or that they do not
+** try to execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** ^(Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call.)^ ^Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** The authorizer callback must not do anything that will modify
+** the database connection that invoked the authorizer callback.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
+** statement might be re-prepared during [sqlite3_step()] due to a
+** schema change. Hence, the application should ensure that the
+** correct authorizer callback remains in place during the [sqlite3_step()].
+**
+** ^Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()], unless
+** as stated in the previous paragraph, sqlite3_step() invokes
+** sqlite3_prepare_v2() to reprepare a statement after a schema change.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** CAPI3REF: Authorizer Return Codes
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorize certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. ^(The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+*/
+/******************************************* 3rd ************ 4th ***********/
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* Operation NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
+#define SQLITE_REINDEX 27 /* Index Name NULL */
+#define SQLITE_ANALYZE 28 /* Table Name NULL */
+#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
+#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
+#define SQLITE_FUNCTION 31 /* NULL Function Name */
+#define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
+#define SQLITE_COPY 0 /* No longer used */
+
+/*
+** CAPI3REF: Tracing And Profiling Functions
+** EXPERIMENTAL
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** ^The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
+** SQL statement text as the statement first begins executing.
+** ^(Additional sqlite3_trace() callbacks might occur
+** as each triggered subprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.)^
+**
+** ^The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. ^The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
+SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
+
+/*
+** CAPI3REF: Query Progress Callbacks
+**
+** ^This routine configures a callback function - the
+** progress callback - that is invoked periodically during long
+** running calls to [sqlite3_exec()], [sqlite3_step()] and
+** [sqlite3_get_table()]. An example use for this
+** interface is to keep a GUI updated during a large query.
+**
+** ^If the progress callback returns non-zero, the operation is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI progress dialog box.
+**
+** The progress handler must not do anything that will modify
+** the database connection that invoked the progress handler.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+*/
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+
+/*
+** CAPI3REF: Opening A New Database Connection
+**
+** ^These routines open an SQLite database file whose name is given by the
+** filename argument. ^The filename argument is interpreted as UTF-8 for
+** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
+** order for sqlite3_open16(). ^(A [database connection] handle is usually
+** returned in *ppDb, even if an error occurs. The only exception is that
+** if SQLite is unable to allocate memory to hold the [sqlite3] object,
+** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
+** object.)^ ^(If the database is opened (and/or created) successfully, then
+** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error following a failure of any
+** of the sqlite3_open() routines.
+**
+** ^The default encoding for the database will be UTF-8 if
+** sqlite3_open() or sqlite3_open_v2() is called and
+** UTF-16 in the native byte order if sqlite3_open16() is used.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [database connection] handle should be released by
+** passing it to [sqlite3_close()] when it is no longer required.
+**
+** The sqlite3_open_v2() interface works like sqlite3_open()
+** except that it accepts two additional parameters for additional control
+** over the new database connection. ^(The flags parameter to
+** sqlite3_open_v2() can take one of
+** the following three values, optionally combined with the
+** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
+** and/or [SQLITE_OPEN_PRIVATECACHE] flags:)^
+**
+**
+** ^(- [SQLITE_OPEN_READONLY]
+** - The database is opened in read-only mode. If the database does not
+** already exist, an error is returned.
)^
+**
+** ^(- [SQLITE_OPEN_READWRITE]
+** - The database is opened for reading and writing if possible, or reading
+** only if the file is write protected by the operating system. In either
+** case the database must already exist, otherwise an error is returned.
)^
+**
+** ^(- [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
+** - The database is opened for reading and writing, and is creates it if
+** it does not already exist. This is the behavior that is always used for
+** sqlite3_open() and sqlite3_open16().
)^
+**
+**
+** If the 3rd parameter to sqlite3_open_v2() is not one of the
+** combinations shown above or one of the combinations shown above combined
+** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
+** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
+** then the behavior is undefined.
+**
+** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
+** opens in the multi-thread [threading mode] as long as the single-thread
+** mode has not been set at compile-time or start-time. ^If the
+** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
+** in the serialized [threading mode] unless single-thread was
+** previously selected at compile-time or start-time.
+** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
+** eligible to use [shared cache mode], regardless of whether or not shared
+** cache is enabled using [sqlite3_enable_shared_cache()]. ^The
+** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
+** participate in [shared cache mode] even if it is enabled.
+**
+** ^If the filename is ":memory:", then a private, temporary in-memory database
+** is created for the connection. ^This in-memory database will vanish when
+** the database connection is closed. Future versions of SQLite might
+** make use of additional special filenames that begin with the ":" character.
+** It is recommended that when a database filename actually does begin with
+** a ":" character you should prefix the filename with a pathname such as
+** "./" to avoid ambiguity.
+**
+** ^If the filename is an empty string, then a private, temporary
+** on-disk database will be created. ^This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** ^The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system interface that
+** the new database connection should use. ^If the fourth parameter is
+** a NULL pointer then the default [sqlite3_vfs] object is used.
+**
+** Note to Windows users: The encoding used for the filename argument
+** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** sqlite3_open() or sqlite3_open_v2().
+*/
+SQLITE_API int sqlite3_open(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open16(
+ const void *filename, /* Database filename (UTF-16) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
+
+/*
+** CAPI3REF: Error Codes And Messages
+**
+** ^The sqlite3_errcode() interface returns the numeric [result code] or
+** [extended result code] for the most recent failed sqlite3_* API call
+** associated with a [database connection]. If a prior API call failed
+** but the most recent API call succeeded, the return value from
+** sqlite3_errcode() is undefined. ^The sqlite3_extended_errcode()
+** interface is the same except that it always returns the
+** [extended result code] even when extended result codes are
+** disabled.
+**
+** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF-8 or UTF-16 respectively.
+** ^(Memory to hold the error message string is managed internally.
+** The application does not need to worry about freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.)^
+**
+** When the serialized [threading mode] is in use, it might be the
+** case that a second error occurs on a separate thread in between
+** the time of the first error and the call to these interfaces.
+** When that happens, the second error will be reported since these
+** interfaces always report the most recent result. To avoid
+** this, each thread can obtain exclusive use of the [database connection] D
+** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
+** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
+** all calls to the interfaces listed here are completed.
+**
+** If an interface fails with SQLITE_MISUSE, that means the interface
+** was invoked incorrectly by the application. In that case, the
+** error code and message may or may not be set.
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
+
+/*
+** CAPI3REF: SQL Statement Object
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represents a single SQL statement.
+** This object is variously known as a "prepared statement" or a
+** "compiled SQL statement" or simply as a "statement".
+**
+** The life of a statement object goes something like this:
+**
+**
+** - Create the object using [sqlite3_prepare_v2()] or a related
+** function.
+**
- Bind values to [host parameters] using the sqlite3_bind_*()
+** interfaces.
+**
- Run the SQL by calling [sqlite3_step()] one or more times.
+**
- Reset the statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+**
- Destroy the object using [sqlite3_finalize()].
+**
+**
+** Refer to documentation on individual methods above for additional
+** information.
+*/
+typedef struct sqlite3_stmt sqlite3_stmt;
+
+/*
+** CAPI3REF: Run-time Limits
+**
+** ^(This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct. The function returns the old limit.)^
+**
+** ^If the new limit is a negative number, the limit is unchanged.
+** ^(For the limit category of SQLITE_LIMIT_XYZ there is a
+** [limits | hard upper bound]
+** set by a compile-time C preprocessor macro named
+** [limits | SQLITE_MAX_XYZ].
+** (The "_LIMIT_" in the name is changed to "_MAX_".))^
+** ^Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper bound.
+**
+** Run-time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** web browser that has its own databases for storing history and
+** separate databases controlled by JavaScript applications downloaded
+** off the Internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attack. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** New run-time limit categories may be added in future releases.
+*/
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
+
+/*
+** CAPI3REF: Run-Time Limit Categories
+** KEYWORDS: {limit category} {*limit categories}
+**
+** These constants define various performance limits
+** that can be lowered at run-time using [sqlite3_limit()].
+** The synopsis of the meanings of the various limits is shown below.
+** Additional information is available at [limits | Limits in SQLite].
+**
+**
+** ^(- SQLITE_LIMIT_LENGTH
+** - The maximum size of any string or BLOB or table row.
- )^
+**
+** ^(
- SQLITE_LIMIT_SQL_LENGTH
+** - The maximum length of an SQL statement, in bytes.
)^
+**
+** ^(- SQLITE_LIMIT_COLUMN
+** - The maximum number of columns in a table definition or in the
+** result set of a [SELECT] or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.
)^
+**
+** ^(- SQLITE_LIMIT_EXPR_DEPTH
+** - The maximum depth of the parse tree on any expression.
)^
+**
+** ^(- SQLITE_LIMIT_COMPOUND_SELECT
+** - The maximum number of terms in a compound SELECT statement.
)^
+**
+** ^(- SQLITE_LIMIT_VDBE_OP
+** - The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement.
)^
+**
+** ^(- SQLITE_LIMIT_FUNCTION_ARG
+** - The maximum number of arguments on a function.
)^
+**
+** ^(- SQLITE_LIMIT_ATTACHED
+** - The maximum number of [ATTACH | attached databases].)^
+**
+** ^(- SQLITE_LIMIT_LIKE_PATTERN_LENGTH
+** - The maximum length of the pattern argument to the [LIKE] or
+** [GLOB] operators.
)^
+**
+** ^(- SQLITE_LIMIT_VARIABLE_NUMBER
+** - The maximum number of variables in an SQL statement that can
+** be bound.
)^
+**
+** ^(- SQLITE_LIMIT_TRIGGER_DEPTH
+** - The maximum depth of recursion for triggers.
)^
+**
+*/
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+#define SQLITE_LIMIT_TRIGGER_DEPTH 10
+
+/*
+** CAPI3REF: Compiling An SQL Statement
+** KEYWORDS: {SQL statement compiler}
+**
+** To execute an SQL query, it must first be compiled into a byte-code
+** program using one of these routines.
+**
+** The first argument, "db", is a [database connection] obtained from a
+** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
+** [sqlite3_open16()]. The database connection must not have been closed.
+**
+** The second argument, "zSql", is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
+** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
+** use UTF-16.
+**
+** ^If the nByte argument is less than zero, then zSql is read up to the
+** first zero terminator. ^If nByte is non-negative, then it is the maximum
+** number of bytes read from zSql. ^When nByte is non-negative, the
+** zSql string ends at either the first '\000' or '\u0000' character or
+** the nByte-th byte, whichever comes first. If the caller knows
+** that the supplied string is nul-terminated, then there is a small
+** performance advantage to be gained by passing an nByte parameter that
+** is equal to the number of bytes in the input string including
+** the nul-terminator bytes.
+**
+** ^If pzTail is not NULL then *pzTail is made to point to the first byte
+** past the end of the first SQL statement in zSql. These routines only
+** compile the first statement in zSql, so *pzTail is left pointing to
+** what remains uncompiled.
+**
+** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
+** to NULL. ^If the input text contains no SQL (if the input is an empty
+** string or a comment) then *ppStmt is set to NULL.
+** The calling procedure is responsible for deleting the compiled
+** SQL statement using [sqlite3_finalize()] after it has finished with it.
+** ppStmt may not be NULL.
+**
+** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
+** otherwise an [error code] is returned.
+**
+** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
+** recommended for all new programs. The two older interfaces are retained
+** for backwards compatibility, but their use is discouraged.
+** ^In the "v2" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. This causes the [sqlite3_step()] interface to
+** behave differently in three ways:
+**
+**
+** -
+** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. ^If the schema has changed in
+** a way that makes the statement no longer valid, [sqlite3_step()] will still
+** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is
+** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the
+** error go away. Note: use [sqlite3_errmsg()] to find the text
+** of the parsing error that results in an [SQLITE_SCHEMA] return.
+**
+**
+** -
+** ^When an error occurs, [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes]. ^The legacy behavior was that
+** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
+** and the application would have to make a second call to [sqlite3_reset()]
+** in order to find the underlying cause of the problem. With the "v2" prepare
+** interfaces, the underlying reason for the error is returned immediately.
+**
+**
+** -
+** ^If the value of a [parameter | host parameter] in the WHERE clause might
+** change the query plan for a statement, then the statement may be
+** automatically recompiled (as if there had been a schema change) on the first
+** [sqlite3_step()] call following any change to the
+** [sqlite3_bind_text | bindings] of the [parameter].
+**
+**
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+
+/*
+** CAPI3REF: Retrieving Statement SQL
+**
+** ^This interface can be used to retrieve a saved copy of the original
+** SQL text used to create a [prepared statement] if that statement was
+** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table. SQLite uses dynamic typing
+** for the values it stores. ^Values stored in sqlite3_value objects
+** can be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. A internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
+** or if SQLite is run in one of reduced mutex modes
+** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
+** then there is no distinction between protected and unprotected
+** sqlite3_value objects and they can be used interchangeably. However,
+** for maximum code portability it is recommended that applications
+** still make the distinction between between protected and unprotected
+** sqlite3_value objects even when not strictly required.
+**
+** ^The sqlite3_value objects that are passed as parameters into the
+** implementation of [application-defined SQL functions] are protected.
+** ^The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used with
+** [sqlite3_result_value()] and [sqlite3_bind_value()].
+** The [sqlite3_value_blob | sqlite3_value_type()] family of
+** interfaces require protected sqlite3_value objects.
+*/
+typedef struct Mem sqlite3_value;
+
+/*
+** CAPI3REF: SQL Function Context Object
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. ^A pointer to an sqlite3_context object
+** is always first parameter to [application-defined SQL functions].
+** The application-defined SQL function implementation will pass this
+** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
+** [sqlite3_aggregate_context()], [sqlite3_user_data()],
+** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
+** and/or [sqlite3_set_auxdata()].
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements
+** KEYWORDS: {host parameter} {host parameters} {host parameter name}
+** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
+**
+** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
+** literals may be replaced by a [parameter] that matches one of following
+** templates:
+**
+**
+** - ?
+**
- ?NNN
+**
- :VVV
+**
- @VVV
+**
- $VVV
+**
+**
+** In the templates above, NNN represents an integer literal,
+** and VVV represents an alphanumeric identifer.)^ ^The values of these
+** parameters (also called "host parameter names" or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** ^The first argument to the sqlite3_bind_*() routines is always
+** a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants.
+**
+** ^The second argument is the index of the SQL parameter to be set.
+** ^The leftmost SQL parameter has an index of 1. ^When the same named
+** SQL parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** ^The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_index()] API if desired. ^The index
+** for "?NNN" parameters is the value of NNN.
+** ^The NNN value must be between 1 and the [sqlite3_limit()]
+** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
+**
+** ^The third argument is the value to bind to the parameter.
+**
+** ^(In those routines that have a fourth argument, its value is the
+** number of bytes in the parameter. To be clear: the value is the
+** number of bytes in the value, not the number of characters.)^
+** ^If the fourth parameter is negative, the length of the string is
+** the number of bytes up to the first zero terminator.
+**
+** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
+** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
+** string after SQLite has finished with it. ^If the fifth argument is
+** the special value [SQLITE_STATIC], then SQLite assumes that the
+** information is in static, unmanaged space and does not need to be freed.
+** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
+** SQLite makes its own private copy of the data immediately, before
+** the sqlite3_bind_*() routine returns.
+**
+** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
+** (just an integer to hold its size) while it is being processed.
+** Zeroblobs are intended to serve as placeholders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | incremental BLOB I/O] routines.
+** ^A negative value for the zeroblob results in a zero-length BLOB.
+**
+** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
+** for the [prepared statement] or with a prepared statement for which
+** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
+** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
+** routine is passed a [prepared statement] that has been finalized, the
+** result is undefined and probably harmful.
+**
+** ^Bindings are not cleared by the [sqlite3_reset()] routine.
+** ^Unbound parameters are interpreted as NULL.
+**
+** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
+** [error code] if anything goes wrong.
+** ^[SQLITE_RANGE] is returned if the parameter
+** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
+
+/*
+** CAPI3REF: Number Of SQL Parameters
+**
+** ^This routine can be used to find the number of [SQL parameters]
+** in a [prepared statement]. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** placeholders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** ^(This routine actually returns the index of the largest (rightmost)
+** parameter. For all forms except ?NNN, this will correspond to the
+** number of unique parameters. If parameters of the ?NNN form are used,
+** there may be gaps in the list.)^
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Name Of A Host Parameter
+**
+** ^The sqlite3_bind_parameter_name(P,N) interface returns
+** the name of the N-th [SQL parameter] in the [prepared statement] P.
+** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.)^
+** ^Parameters of the form "?" without a following integer have no name
+** and are referred to as "nameless" or "anonymous parameters".
+**
+** ^The first host parameter has an index of 1, not 0.
+**
+** ^If the value N is out of range or if the N-th parameter is
+** nameless, then NULL is returned. ^The returned string is
+** always in UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()] or
+** [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+
+/*
+** CAPI3REF: Index Of A Parameter With A Given Name
+**
+** ^Return the index of an SQL parameter given its name. ^The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
+** is returned if no matching parameter is found. ^The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+*/
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+
+/*
+** CAPI3REF: Reset All Bindings On A Prepared Statement
+**
+** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
+** the [sqlite3_bind_blob | bindings] on a [prepared statement].
+** ^Use this routine to reset all host parameters to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number Of Columns In A Result Set
+**
+** ^Return the number of columns in the result set returned by the
+** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
+** statement that does not return data (for example an [UPDATE]).
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Column Names In A Result Set
+**
+** ^These routines return the name assigned to a particular column
+** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF-8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF-16 string. ^The first parameter is the [prepared statement]
+** that implements the [SELECT] statement. ^The second parameter is the
+** column number. ^The leftmost column is number 0.
+**
+** ^The returned string pointer is valid until either the [prepared statement]
+** is destroyed by [sqlite3_finalize()] or until the next call to
+** sqlite3_column_name() or sqlite3_column_name16() on the same column.
+**
+** ^If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** ^The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
+
+/*
+** CAPI3REF: Source Of Data In A Query Result
+**
+** ^These routines provide a means to determine the database, table, and
+** table column that is the origin of a particular result column in
+** [SELECT] statement.
+** ^The name of the database or table or column can be returned as
+** either a UTF-8 or UTF-16 string. ^The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** ^The returned string is valid until the [prepared statement] is destroyed
+** using [sqlite3_finalize()] or until the same information is requested
+** again in a different encoding.
+**
+** ^The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** ^The first argument to these interfaces is a [prepared statement].
+** ^These functions return information about the Nth result column returned by
+** the statement, where N is the second function argument.
+** ^The left-most column is column 0 for these routines.
+**
+** ^If the Nth column returned by the statement is an expression or
+** subquery and is not a column value, then all of these functions return
+** NULL. ^These routine might also return NULL if a memory allocation error
+** occurs. ^Otherwise, they return the name of the attached database, table,
+** or column that query result column was extracted from.
+**
+** ^As with all other SQLite APIs, those whose names end with "16" return
+** UTF-16 encoded strings and the other functions return UTF-8.
+**
+** ^These APIs are only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
+**
+** If two or more threads call one or more of these routines against the same
+** prepared statement and column at the same time then the results are
+** undefined.
+**
+** If two or more threads call one or more
+** [sqlite3_column_database_name | column metadata interfaces]
+** for the same [prepared statement] and result column
+** at the same time then the results are undefined.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Declared Datatype Of A Query Result
+**
+** ^(The first parameter is a [prepared statement].
+** If this statement is a [SELECT] statement and the Nth column of the
+** returned result set of that [SELECT] is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned.)^ ^If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** ^The returned string is always UTF-8 encoded.
+**
+** ^(For example, given the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** and the following statement to be compiled:
+**
+** SELECT c1 + 1, c1 FROM t1;
+**
+** this routine would return the string "VARIANT" for the second result
+** column (i==1), and a NULL pointer for the first result column (i==0).)^
+**
+** ^SQLite uses dynamic run-time typing. ^So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. ^Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Evaluate An SQL Statement
+**
+** After a [prepared statement] has been prepared using either
+** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
+** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
+** must be called one or more times to evaluate the statement.
+**
+** The details of the behavior of the sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "v2" interface
+** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
+** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "v2" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** ^With the "v2" interface, any of the other [result codes] or
+** [extended result codes] might be returned as well.
+**
+** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. ^If the statement is a [COMMIT]
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a [COMMIT] and occurs within a
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** ^[SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
+**
+** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
+** is returned each time a new row of data is ready for processing by the
+** caller. The values may be accessed using the [column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
+** violation) has occurred. sqlite3_step() should not be called again on
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** ^With the legacy interface, a more specific error code (for example,
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. ^In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** Goofy Interface Alert: In the legacy interface, the sqlite3_step()
+** API always returns a generic error code, [SQLITE_ERROR], following any
+** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
+** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
+** specific [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
+** then the more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "v2" interface is recommended.
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number of columns in a result set
+**
+** ^The sqlite3_data_count(P) the number of columns in the
+** of the result set of [prepared statement] P.
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Fundamental Datatypes
+** KEYWORDS: SQLITE_TEXT
+**
+** ^(Every value in SQLite has one of five fundamental datatypes:
+**
+**
+** - 64-bit signed integer
+**
- 64-bit IEEE floating point number
+**
- string
+**
- BLOB
+**
- NULL
+**
)^
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
+** SQLITE_TEXT.
+*/
+#define SQLITE_INTEGER 1
+#define SQLITE_FLOAT 2
+#define SQLITE_BLOB 4
+#define SQLITE_NULL 5
+#ifdef SQLITE_TEXT
+# undef SQLITE_TEXT
+#else
+# define SQLITE_TEXT 3
+#endif
+#define SQLITE3_TEXT 3
+
+/*
+** CAPI3REF: Result Values From A Query
+** KEYWORDS: {column access functions}
+**
+** These routines form the "result set" interface.
+**
+** ^These routines return information about a single column of the current
+** result row of a query. ^In every case the first argument is a pointer
+** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
+** that was returned from [sqlite3_prepare_v2()] or one of its variants)
+** and the second argument is the index of the column for which information
+** should be returned. ^The leftmost column of the result set has the index 0.
+** ^The number of columns in the result can be determined using
+** [sqlite3_column_count()].
+**
+** If the SQL statement does not currently point to a valid row, or if the
+** column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** ^The sqlite3_column_type() routine returns the
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. ^The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
+** returned by sqlite3_column_type() is only meaningful if no type
+** conversions have occurred as described below. After a type conversion,
+** the value returned by sqlite3_column_type() is undefined. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** ^The value returned does not include the zero terminator at the end
+** of the string. ^For clarity: the value returned is the number of
+** bytes in the string, not the number of characters.
+**
+** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero terminated. ^The return
+** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
+** pointer, possibly even a NULL pointer.
+**
+** ^The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
+** but leaves the result in UTF-16 in native byte order instead of UTF-8.
+** ^The zero terminator is not included in this count.
+**
+** ^The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
+** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
+** or [sqlite3_value_bytes()], then the behavior is undefined.
+**
+** These routines attempt to convert the value where appropriate. ^For
+** example, if the internal representation is FLOAT and a text result
+** is requested, [sqlite3_snprintf()] is used internally to perform the
+** conversion automatically. ^(The following table details the conversions
+** that are applied:
+**
+**
+**
+** Internal Type | Requested Type | Conversion
+**
+** |
---|
NULL | INTEGER | Result is 0
+** |
NULL | FLOAT | Result is 0.0
+** |
NULL | TEXT | Result is NULL pointer
+** |
NULL | BLOB | Result is NULL pointer
+** |
INTEGER | FLOAT | Convert from integer to float
+** |
INTEGER | TEXT | ASCII rendering of the integer
+** |
INTEGER | BLOB | Same as INTEGER->TEXT
+** |
FLOAT | INTEGER | Convert from float to integer
+** |
FLOAT | TEXT | ASCII rendering of the float
+** |
FLOAT | BLOB | Same as FLOAT->TEXT
+** |
TEXT | INTEGER | Use atoi()
+** |
TEXT | FLOAT | Use atof()
+** |
TEXT | BLOB | No change
+** |
BLOB | INTEGER | Convert to TEXT then use atoi()
+** |
BLOB | FLOAT | Convert to TEXT then use atof()
+** |
BLOB | TEXT | Add a zero terminator if needed
+** |
+**
)^
+**
+** The table above makes reference to standard C library functions atoi()
+** and atof(). SQLite does not really use these functions. It has its
+** own equivalent internal routines. The atoi() and atof() names are
+** used in the table for brevity and because they are familiar to most
+** C programmers.
+**
+** ^Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** ^(Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+**
+** - The initial content is a BLOB and sqlite3_column_text() or
+** sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.
+** - The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.
+** - The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.
+**
)^
+**
+** ^Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer points to will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometimes they
+** are not possible and in those cases prior pointers are invalidated.
+**
+** ^(The safest and easiest to remember policy is to invoke these routines
+** in one of the following ways:
+**
+**
+** - sqlite3_column_text() followed by sqlite3_column_bytes()
+** - sqlite3_column_blob() followed by sqlite3_column_bytes()
+** - sqlite3_column_text16() followed by sqlite3_column_bytes16()
+**
)^
+**
+** In other words, you should call sqlite3_column_text(),
+** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
+** into the desired format, then invoke sqlite3_column_bytes() or
+** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
+** to sqlite3_column_text() or sqlite3_column_blob() with calls to
+** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
+** with calls to sqlite3_column_bytes().
+**
+** ^The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. ^The memory space used to hold strings
+** and BLOBs is freed automatically. Do not pass the pointers returned
+** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** ^(If a memory allocation error occurs during the evaluation of any
+** of these routines, a default value is returned. The default value
+** is either the integer 0, the floating point number 0.0, or a NULL
+** pointer. Subsequent calls to [sqlite3_errcode()] will return
+** [SQLITE_NOMEM].)^
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object
+**
+** ^The sqlite3_finalize() function is called to delete a [prepared statement].
+** ^If the statement was executed successfully or not executed at all, then
+** SQLITE_OK is returned. ^If execution of the statement failed then an
+** [error code] or [extended error code] is returned.
+**
+** ^This routine can be called at any point during the execution of the
+** [prepared statement]. ^If the virtual machine has not
+** completed execution when this routine is called, that is like
+** encountering an error or an [sqlite3_interrupt | interrupt].
+** ^Incomplete updates may be rolled back and transactions canceled,
+** depending on the circumstances, and the
+** [error code] returned will be [SQLITE_ABORT].
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Reset A Prepared Statement Object
+**
+** The sqlite3_reset() function is called to reset a [prepared statement]
+** object back to its initial state, ready to be re-executed.
+** ^Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
+** or if [sqlite3_step(S)] has never before been called on S,
+** then [sqlite3_reset(S)] returns [SQLITE_OK].
+**
+** ^If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+**
+** ^The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions
+** KEYWORDS: {function creation routines}
+** KEYWORDS: {application-defined SQL function}
+** KEYWORDS: {application-defined SQL functions}
+**
+** ^These two functions (collectively known as "function creation routines")
+** are used to add SQL functions or aggregates or to redefine the behavior
+** of existing SQL functions or aggregates. The only difference between the
+** two is that the second parameter, the name of the (scalar) function or
+** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
+** for sqlite3_create_function16().
+**
+** ^The first parameter is the [database connection] to which the SQL
+** function is to be added. ^If an application uses more than one database
+** connection then application-defined SQL functions must be added
+** to each database connection separately.
+**
+** The second parameter is the name of the SQL function to be created or
+** redefined. ^The length of the name is limited to 255 bytes, exclusive of
+** the zero-terminator. Note that the name length limit is in bytes, not
+** characters. ^Any attempt to create a function with a longer name
+** will result in [SQLITE_ERROR] being returned.
+**
+** ^The third parameter (nArg)
+** is the number of arguments that the SQL function or
+** aggregate takes. ^If this parameter is -1, then the SQL function or
+** aggregate may take any number of arguments between 0 and the limit
+** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
+** parameter is less than -1 or greater than 127 then the behavior is
+** undefined.
+**
+** The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. Any SQL function implementation should be able to work
+** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
+** more efficient with one encoding than another. ^An application may
+** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
+** times with the same function but with different values of eTextRep.
+** ^When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+** If there is only a single implementation which does not care what text
+** encoding is used, then the fourth argument should be [SQLITE_ANY].
+**
+** ^(The fifth parameter is an arbitrary pointer. The implementation of the
+** function can gain access to this pointer using [sqlite3_user_data()].)^
+**
+** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
+** pointers to C-language functions that implement the SQL function or
+** aggregate. ^A scalar SQL function requires an implementation of the xFunc
+** callback only; NULL pointers should be passed as the xStep and xFinal
+** parameters. ^An aggregate SQL function requires an implementation of xStep
+** and xFinal and NULL should be passed for xFunc. ^To delete an existing
+** SQL function or aggregate, pass NULL for all three function callbacks.
+**
+** ^It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing preferred text encodings. ^SQLite will use
+** the implementation that most closely matches the way in which the
+** SQL function is used. ^A function implementation with a non-negative
+** nArg parameter is a better match than a function implementation with
+** a negative nArg. ^A function where the preferred text encoding
+** matches the database encoding is a better
+** match than a function where the encoding is different.
+** ^A function where the encoding difference is between UTF16le and UTF16be
+** is a closer match than a function where the encoding difference is
+** between UTF8 and UTF16.
+**
+** ^Built-in functions may be overloaded by new application-defined functions.
+** ^The first application-defined function with a given name overrides all
+** built-in functions in the same [database connection] with the same name.
+** ^Subsequent application-defined functions of the same name only override
+** prior application-defined functions that are an exact match for the
+** number of parameters and preferred encoding.
+**
+** ^An application-defined function is permitted to call other
+** SQLite interfaces. However, such calls must not
+** close the database connection nor finalize or reset the prepared
+** statement in which the function is running.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+
+/*
+** CAPI3REF: Text Encodings
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
+*/
+#define SQLITE_UTF8 1
+#define SQLITE_UTF16LE 2
+#define SQLITE_UTF16BE 3
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* sqlite3_create_function only */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+
+/*
+** CAPI3REF: Deprecated Functions
+** DEPRECATED
+**
+** These functions are [deprecated]. In order to maintain
+** backwards compatibility with older code, these functions continue
+** to be supported. However, new applications should avoid
+** the use of these functions. To help encourage people to avoid
+** using these functions, we are not going to tell you what they do.
+*/
+#ifndef SQLITE_OMIT_DEPRECATED
+SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
+SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
+SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
+#endif
+
+/*
+** CAPI3REF: Obtaining SQL Function Parameter Values
+**
+** The C-language implementation of SQL functions and aggregates uses
+** this set of interface routines to access the parameter values on
+** the function or aggregate.
+**
+** The xFunc (for scalar functions) or xStep (for aggregates) parameters
+** to [sqlite3_create_function()] and [sqlite3_create_function16()]
+** define callbacks that implement the SQL functions and aggregates.
+** The 4th parameter to these callbacks is an array of pointers to
+** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
+** each parameter to the SQL function. These routines are used to
+** extract values from the [sqlite3_value] objects.
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** object results in undefined behavior.
+**
+** ^These routines work just like the corresponding [column access functions]
+** except that these routines take a single [protected sqlite3_value] object
+** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
+**
+** ^The sqlite3_value_text16() interface extracts a UTF-16 string
+** in the native byte-order of the host machine. ^The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF-16 strings as big-endian and little-endian respectively.
+**
+** ^(The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words, if the value is a string that looks like a number)
+** then the conversion is performed. Otherwise no conversion occurs.
+** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
+**
+** Please pay particular attention to the fact that the pointer returned
+** from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context
+**
+** Implementions of aggregate SQL functions use this
+** routine to allocate memory for storing their state.
+**
+** ^The first time the sqlite3_aggregate_context(C,N) routine is called
+** for a particular aggregate function, SQLite
+** allocates N of memory, zeroes out that memory, and returns a pointer
+** to the new memory. ^On second and subsequent calls to
+** sqlite3_aggregate_context() for the same aggregate function instance,
+** the same buffer is returned. Sqlite3_aggregate_context() is normally
+** called once for each invocation of the xStep callback and then one
+** last time when the xFinal callback is invoked. ^(When no rows match
+** an aggregate query, the xStep() callback of the aggregate function
+** implementation is never called and xFinal() is called exactly once.
+** In those cases, sqlite3_aggregate_context() might be called for the
+** first time from within xFinal().)^
+**
+** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer if N is
+** less than or equal to zero or if a memory allocate error occurs.
+**
+** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
+** determined by the N parameter on first successful call. Changing the
+** value of N in subsequent call to sqlite3_aggregate_context() within
+** the same aggregate function instance will not resize the memory
+** allocation.)^
+**
+** ^SQLite automatically frees the memory allocated by
+** sqlite3_aggregate_context() when the aggregate query concludes.
+**
+** The first parameter must be a copy of the
+** [sqlite3_context | SQL function context] that is the first parameter
+** to the xStep or xFinal callback routine that implements the aggregate
+** function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+
+/*
+** CAPI3REF: User Data For Functions
+**
+** ^The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions
+**
+** ^The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data
+**
+** The following two functions may be used by scalar SQL functions to
+** associate metadata with argument values. If the same value is passed to
+** multiple invocations of the same SQL function during query execution, under
+** some circumstances the associated metadata may be preserved. This may
+** be used, for example, to add a regular-expression matching scalar
+** function. The compiled version of the regular expression is stored as
+** metadata associated with the SQL value passed as the regular expression
+** pattern. The compiled regular expression can be reused on multiple
+** invocations of the same function so that the original pattern string
+** does not need to be recompiled on each invocation.
+**
+** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
+** associated by the sqlite3_set_auxdata() function with the Nth argument
+** value to the application-defined function. ^If no metadata has been ever
+** been set for the Nth argument of the function, or if the corresponding
+** function parameter has changed since the meta-data was set,
+** then sqlite3_get_auxdata() returns a NULL pointer.
+**
+** ^The sqlite3_set_auxdata() interface saves the metadata
+** pointed to by its 3rd parameter as the metadata for the N-th
+** argument of the application-defined function. Subsequent
+** calls to sqlite3_get_auxdata() might return this data, if it has
+** not been destroyed.
+** ^If it is not NULL, SQLite will invoke the destructor
+** function given by the 4th parameter to sqlite3_set_auxdata() on
+** the metadata when the corresponding function parameter changes
+** or when the SQL statement completes, whichever comes first.
+**
+** SQLite is free to call the destructor and drop metadata on any
+** parameter of any function at any time. ^The only guarantee is that
+** the destructor will be called before the metadata is dropped.
+**
+** ^(In practice, metadata is preserved between function calls for
+** expressions that are constant at compile time. This includes literal
+** values and [parameters].)^
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
+
+
+/*
+** CAPI3REF: Constants Defining Special Destructor Behavior
+**
+** These are special values for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. ^If the destructor
+** argument is SQLITE_STATIC, it means that the content pointer is constant
+** and will never change. It does not need to be destroyed. ^The
+** SQLITE_TRANSIENT value means that the content will likely change in
+** the near future and that SQLite should make its own private copy of
+** the content before returning.
+**
+** The typedef is necessary to work around problems in certain
+** C++ compilers. See ticket #2191.
+*/
+typedef void (*sqlite3_destructor_type)(void*);
+#define SQLITE_STATIC ((sqlite3_destructor_type)0)
+#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
+
+/*
+** CAPI3REF: Setting The Result Of An SQL Function
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the [parameter binding] family of
+** functions used to bind values to host parameters in prepared statements.
+** Refer to the [SQL parameter] documentation for additional information.
+**
+** ^The sqlite3_result_blob() interface sets the result from
+** an application-defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+**
+** ^The sqlite3_result_zeroblob() interfaces set the result of
+** the application-defined function to be a BLOB containing all zero
+** bytes and N bytes in size, where N is the value of the 2nd parameter.
+**
+** ^The sqlite3_result_double() interface sets the result from
+** an application-defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** ^The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** ^SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. ^SQLite interprets the error
+** message string from sqlite3_result_error() as UTF-8. ^SQLite
+** interprets the string from sqlite3_result_error16() as UTF-16 in native
+** byte order. ^If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** ^If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** ^The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** ^The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. ^By default,
+** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** ^The sqlite3_result_toobig() interface causes SQLite to throw an error
+** indicating that a string or BLOB is too long to represent.
+**
+** ^The sqlite3_result_nomem() interface causes SQLite to throw an error
+** indicating that a memory allocation failed.
+**
+** ^The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** ^The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** ^The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** ^The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** ^SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is negative, then SQLite takes result text from the 2nd parameter
+** through the first zero character.
+** ^If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or BLOB result when it has
+** finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
+** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
+** assumes that the text or BLOB result is in constant space and does not
+** copy the content of the parameter nor call a destructor on the content
+** when it has finished using that result.
+** ^If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained from
+** from [sqlite3_malloc()] before it returns.
+**
+** ^The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that the [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** ^A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that received
+** the [sqlite3_context] pointer, the results are undefined.
+*/
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
+
+/*
+** CAPI3REF: Define New Collating Sequences
+**
+** These functions are used to add new collation sequences to the
+** [database connection] specified as the first argument.
+**
+** ^The name of the new collation sequence is specified as a UTF-8 string
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string for sqlite3_create_collation16(). ^In all cases
+** the name is passed as the second function argument.
+**
+** ^The third argument may be one of the constants [SQLITE_UTF8],
+** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
+** routine expects to be passed pointers to strings encoded using UTF-8,
+** UTF-16 little-endian, or UTF-16 big-endian, respectively. ^The
+** third argument might also be [SQLITE_UTF16] to indicate that the routine
+** expects pointers to be UTF-16 strings in the native byte order, or the
+** argument can be [SQLITE_UTF16_ALIGNED] if the
+** the routine expects pointers to 16-bit word aligned strings
+** of UTF-16 in the native byte order.
+**
+** A pointer to the user supplied routine must be passed as the fifth
+** argument. ^If it is NULL, this is the same as deleting the collation
+** sequence (so that SQLite cannot call it anymore).
+** ^Each time the application supplied function is invoked, it is passed
+** as its first parameter a copy of the void* passed as the fourth argument
+** to sqlite3_create_collation() or sqlite3_create_collation16().
+**
+** ^The remaining arguments to the application-supplied routine are two strings,
+** each represented by a (length, data) pair and encoded in the encoding
+** that was passed as the third argument when the collation sequence was
+** registered. The application defined collation routine should
+** return negative, zero or positive if the first string is less than,
+** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
+**
+** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** except that it takes an extra argument which is a destructor for
+** the collation. ^The destructor is called when the collation is
+** destroyed and is passed a copy of the fourth parameter void* pointer
+** of the sqlite3_create_collation_v2().
+** ^Collations are destroyed when they are overridden by later calls to the
+** collation creation functions or when the [database connection] is closed
+** using [sqlite3_close()].
+**
+** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const void *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+
+/*
+** CAPI3REF: Collation Needed Callbacks
+**
+** ^To avoid having to register all collation sequences before a database
+** can be used, a single callback function may be registered with the
+** [database connection] to be invoked whenever an undefined collation
+** sequence is required.
+**
+** ^If the function is registered using the sqlite3_collation_needed() API,
+** then it is passed the names of undefined collation sequences as strings
+** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
+** the names are passed as UTF-16 in machine native byte order.
+** ^A call to either function replaces the existing collation-needed callback.
+**
+** ^(When the callback is invoked, the first argument passed is a copy
+** of the second argument to sqlite3_collation_needed() or
+** sqlite3_collation_needed16(). The second argument is the database
+** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
+** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
+** sequence function required. The fourth parameter is the name of the
+** required collation sequence.)^
+**
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const char*)
+);
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const void*)
+);
+
+#if SQLITE_HAS_CODEC
+/*
+** Specify the key for an encrypted database. This routine should be
+** called right after sqlite3_open().
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+SQLITE_API int sqlite3_key(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The key */
+);
+
+/*
+** Change the key on an open database. If the current database is not
+** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
+** database is decrypted.
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+SQLITE_API int sqlite3_rekey(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The new key */
+);
+
+/*
+** Specify the activation key for a SEE database. Unless
+** activated, none of the SEE routines will work.
+*/
+SQLITE_API void sqlite3_activate_see(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+
+#ifdef SQLITE_ENABLE_CEROD
+/*
+** Specify the activation key for a CEROD database. Unless
+** activated, none of the CEROD routines will work.
+*/
+SQLITE_API void sqlite3_activate_cerod(
+ const char *zPassPhrase /* Activation phrase */
+);
+#endif
+
+/*
+** CAPI3REF: Suspend Execution For A Short Time
+**
+** ^The sqlite3_sleep() function causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
+**
+** ^If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. ^The number of milliseconds of sleep actually
+** requested from the operating system is returned.
+**
+** ^SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object.
+*/
+SQLITE_API int sqlite3_sleep(int);
+
+/*
+** CAPI3REF: Name Of The Folder Holding Temporary Files
+**
+** ^(If this global variable is made to point to a string which is
+** the name of a folder (a.k.a. directory), then all temporary files
+** created by SQLite when using a built-in [sqlite3_vfs | VFS]
+** will be placed in that directory.)^ ^If this variable
+** is a NULL pointer, then SQLite performs a search for an appropriate
+** temporary file directory.
+**
+** It is not safe to read or modify this variable in more than one
+** thread at a time. It is not safe to read or modify this variable
+** if a [database connection] is being used at the same time in a separate
+** thread.
+** It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been called and that this variable remain unchanged
+** thereafter.
+**
+** ^The [temp_store_directory pragma] may modify this variable and cause
+** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
+** the [temp_store_directory pragma] always assumes that any string
+** that this variable points to is held in memory obtained from
+** [sqlite3_malloc] and the pragma may attempt to free that memory
+** using [sqlite3_free].
+** Hence, if this variable is modified directly, either it should be
+** made NULL or made to point to memory obtained from [sqlite3_malloc]
+** or else the use of the [temp_store_directory pragma] should be avoided.
+*/
+SQLITE_API char *sqlite3_temp_directory;
+
+/*
+** CAPI3REF: Test For Auto-Commit Mode
+** KEYWORDS: {autocommit mode}
+**
+** ^The sqlite3_get_autocommit() interface returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. ^Autocommit mode is on by default.
+** ^Autocommit mode is disabled by a [BEGIN] statement.
+** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out whether SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
+
+/*
+** CAPI3REF: Find The Database Handle Of A Prepared Statement
+**
+** ^The sqlite3_db_handle interface returns the [database connection] handle
+** to which a [prepared statement] belongs. ^The [database connection]
+** returned by sqlite3_db_handle is the same [database connection]
+** that was the first argument
+** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
+** create the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Find the next prepared statement
+**
+** ^This interface returns a pointer to the next [prepared statement] after
+** pStmt associated with the [database connection] pDb. ^If pStmt is NULL
+** then this interface returns a pointer to the first prepared statement
+** associated with the database connection pDb. ^If no prepared statement
+** satisfies the conditions of this routine, it returns NULL.
+**
+** The [database connection] pointer D in a call to
+** [sqlite3_next_stmt(D,S)] must refer to an open database
+** connection and in particular must not be a NULL pointer.
+*/
+SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Commit And Rollback Notification Callbacks
+**
+** ^The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is [COMMIT | committed].
+** ^Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** ^The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
+** ^Any callback set by a previous call to sqlite3_rollback_hook()
+** for the same database connection is overridden.
+** ^The pArg argument is passed through to the callback.
+** ^If the callback on a commit hook function returns non-zero,
+** then the commit is converted into a rollback.
+**
+** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
+** return the P argument from the previous call of the same function
+** on the same [database connection] D, or NULL for
+** the first call for each function on D.
+**
+** The callback implementation must not do anything that will modify
+** the database connection that invoked the callback. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the commit
+** or rollback hook in the first place.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^Registering a NULL function disables the callback.
+**
+** ^When the commit hook callback routine returns zero, the [COMMIT]
+** operation is allowed to continue normally. ^If the commit hook
+** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
+** ^The rollback hook is invoked on a rollback that results from a commit
+** hook returning non-zero, just as it would be with any other rollback.
+**
+** ^For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** ^The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+** ^The rollback callback is not invoked if a transaction is
+** rolled back because a commit callback returned non-zero.
+**
+** See also the [sqlite3_update_hook()] interface.
+*/
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Data Change Notification Callbacks
+**
+** ^The sqlite3_update_hook() interface registers a callback function
+** with the [database connection] identified by the first argument
+** to be invoked whenever a row is updated, inserted or deleted.
+** ^Any callback set by a previous call to this function
+** for the same database connection is overridden.
+**
+** ^The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted.
+** ^The first argument to the callback is a copy of the third argument
+** to sqlite3_update_hook().
+** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
+** or [SQLITE_UPDATE], depending on the operation that caused the callback
+** to be invoked.
+** ^The third and fourth arguments to the callback contain pointers to the
+** database and table name containing the affected row.
+** ^The final callback parameter is the [rowid] of the row.
+** ^In the case of an update, this is the [rowid] after the update takes place.
+**
+** ^(The update hook is not invoked when internal system tables are
+** modified (i.e. sqlite_master and sqlite_sequence).)^
+**
+** ^In the current implementation, the update hook
+** is not invoked when duplication rows are deleted because of an
+** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
+** invoked when rows are deleted using the [truncate optimization].
+** The exceptions defined in this paragraph might change in a future
+** release of SQLite.
+**
+** The update hook implementation must not do anything that will modify
+** the database connection that invoked the update hook. Any actions
+** to modify the database connection must be deferred until after the
+** completion of the [sqlite3_step()] call that triggered the update hook.
+** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
+** database connections for the meaning of "modify" in this paragraph.
+**
+** ^The sqlite3_update_hook(D,C,P) function
+** returns the P argument from the previous call
+** on the same [database connection] D, or NULL for
+** the first call on D.
+**
+** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
+** interfaces.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3*,
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
+ void*
+);
+
+/*
+** CAPI3REF: Enable Or Disable Shared Pager Cache
+** KEYWORDS: {shared cache}
+**
+** ^(This routine enables or disables the sharing of the database cache
+** and schema data structures between [database connection | connections]
+** to the same database. Sharing is enabled if the argument is true
+** and disabled if the argument is false.)^
+**
+** ^Cache sharing is enabled and disabled for an entire process.
+** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
+** sharing was enabled or disabled for each thread separately.
+**
+** ^(The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue use the sharing mode
+** that was in effect at the time they were opened.)^
+**
+** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
+** successfully. An [error code] is returned otherwise.)^
+**
+** ^Shared cache is disabled by default. But this might change in
+** future releases of SQLite. Applications that care about shared
+** cache setting should set it explicitly.
+**
+** See Also: [SQLite Shared-Cache Mode]
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int);
+
+/*
+** CAPI3REF: Attempt To Free Heap Memory
+**
+** ^The sqlite3_release_memory() interface attempts to free N bytes
+** of heap memory by deallocating non-essential memory allocations
+** held by the database library. Memory used to cache database
+** pages to improve performance is an example of non-essential memory.
+** ^sqlite3_release_memory() returns the number of bytes actually freed,
+** which might be more or less than the amount requested.
+*/
+SQLITE_API int sqlite3_release_memory(int);
+
+/*
+** CAPI3REF: Impose A Limit On Heap Size
+**
+** ^The sqlite3_soft_heap_limit() interface places a "soft" limit
+** on the amount of heap memory that may be allocated by SQLite.
+** ^If an internal allocation is requested that would exceed the
+** soft heap limit, [sqlite3_release_memory()] is invoked one or
+** more times to free up some space before the allocation is performed.
+**
+** ^The limit is called "soft" because if [sqlite3_release_memory()]
+** cannot free sufficient memory to prevent the limit from being exceeded,
+** the memory is allocated anyway and the current operation proceeds.
+**
+** ^A negative or zero value for N means that there is no soft heap limit and
+** [sqlite3_release_memory()] will only be called when memory is exhausted.
+** ^The default value for the soft heap limit is zero.
+**
+** ^(SQLite makes a best effort to honor the soft heap limit.
+** But if the soft heap limit cannot be honored, execution will
+** continue without error or notification.)^ This is why the limit is
+** called a "soft" limit. It is advisory only.
+**
+** Prior to SQLite version 3.5.0, this routine only constrained the memory
+** allocated by a single thread - the same thread in which this routine
+** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
+** applied to all threads. The value specified for the soft heap limit
+** is an upper bound on the total memory allocation for all threads. In
+** version 3.5.0 there is no mechanism for limiting the heap usage for
+** individual threads.
+*/
+SQLITE_API void sqlite3_soft_heap_limit(int);
+
+/*
+** CAPI3REF: Extract Metadata About A Column Of A Table
+**
+** ^This routine returns metadata about a specific column of a specific
+** database table accessible using the [database connection] handle
+** passed as the first function argument.
+**
+** ^The column is identified by the second, third and fourth parameters to
+** this function. ^The second parameter is either the name of the database
+** (i.e. "main", "temp", or an attached database) containing the specified
+** table or NULL. ^If it is NULL, then all attached databases are searched
+** for the table using the same algorithm used by the database engine to
+** resolve unqualified table references.
+**
+** ^The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively. Neither of these parameters
+** may be NULL.
+**
+** ^Metadata is returned by writing to the memory locations passed as the 5th
+** and subsequent parameters to this function. ^Any of these arguments may be
+** NULL, in which case the corresponding element of metadata is omitted.
+**
+** ^(
+**
+** Parameter | Output Type | Description
+**
+** |
---|
5th | const char* | Data type
+** |
6th | const char* | Name of default collation sequence
+** |
7th | int | True if column has a NOT NULL constraint
+** |
8th | int | True if column is part of the PRIMARY KEY
+** |
9th | int | True if column is [AUTOINCREMENT]
+** |
+**
)^
+**
+** ^The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid only until the next
+** call to any SQLite API function.
+**
+** ^If the specified table is actually a view, an [error code] is returned.
+**
+** ^If the specified column is "rowid", "oid" or "_rowid_" and an
+** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
+** parameters are set for the explicitly declared column. ^(If there is no
+** explicitly declared [INTEGER PRIMARY KEY] column, then the output
+** parameters are set as follows:
+**
+**
+** data type: "INTEGER"
+** collation sequence: "BINARY"
+** not null: 0
+** primary key: 1
+** auto increment: 0
+**
)^
+**
+** ^(This function may load one or more schemas from database files. If an
+** error occurs during this process, or if the requested table or column
+** cannot be found, an [error code] is returned and an error message left
+** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^
+**
+** ^This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+);
+
+/*
+** CAPI3REF: Load An Extension
+**
+** ^This interface loads an SQLite extension library from the named file.
+**
+** ^The sqlite3_load_extension() interface attempts to load an
+** SQLite extension library contained in the file zFile.
+**
+** ^The entry point is zProc.
+** ^zProc may be 0, in which case the name of the entry point
+** defaults to "sqlite3_extension_init".
+** ^The sqlite3_load_extension() interface returns
+** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+** ^If an error occurs and pzErrMsg is not 0, then the
+** [sqlite3_load_extension()] interface shall attempt to
+** fill *pzErrMsg with error message text stored in memory
+** obtained from [sqlite3_malloc()]. The calling function
+** should free this memory by calling [sqlite3_free()].
+**
+** ^Extension loading must be enabled using
+** [sqlite3_enable_load_extension()] prior to calling this API,
+** otherwise an error will be returned.
+**
+** See also the [load_extension() SQL function].
+*/
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Derived from zFile if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+);
+
+/*
+** CAPI3REF: Enable Or Disable Extension Loading
+**
+** ^So as not to open security holes in older applications that are
+** unprepared to deal with extension loading, and as a means of disabling
+** extension loading while evaluating user-entered SQL, the following API
+** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
+**
+** ^Extension loading is off by default. See ticket #1863.
+** ^Call the sqlite3_enable_load_extension() routine with onoff==1
+** to turn extension loading on and call it with onoff==0 to turn
+** it back off again.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+
+/*
+** CAPI3REF: Automatically Load An Extensions
+**
+** ^This API can be invoked at program startup in order to register
+** one or more statically linked extensions that will be available
+** to all new [database connections].
+**
+** ^(This routine stores a pointer to the extension entry point
+** in an array that is obtained from [sqlite3_malloc()]. That memory
+** is deallocated by [sqlite3_reset_auto_extension()].)^
+**
+** ^This function registers an extension entry point that is
+** automatically invoked whenever a new [database connection]
+** is opened using [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()].
+** ^Duplicate extensions are detected so calling this routine
+** multiple times with the same extension is harmless.
+** ^Automatic extensions apply across all threads.
+*/
+SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));
+
+/*
+** CAPI3REF: Reset Automatic Extension Loading
+**
+** ^(This function disables all previously registered automatic
+** extensions. It undoes the effect of all prior
+** [sqlite3_auto_extension()] calls.)^
+**
+** ^This function disables automatic extensions in all threads.
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void);
+
+/*
+****** EXPERIMENTAL - subject to change without notice **************
+**
+** The interface to the virtual-table mechanism is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+*/
+
+/*
+** Structures used by the virtual table interface
+*/
+typedef struct sqlite3_vtab sqlite3_vtab;
+typedef struct sqlite3_index_info sqlite3_index_info;
+typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
+typedef struct sqlite3_module sqlite3_module;
+
+/*
+** CAPI3REF: Virtual Table Object
+** KEYWORDS: sqlite3_module {virtual table module}
+** EXPERIMENTAL
+**
+** This structure, sometimes called a a "virtual table module",
+** defines the implementation of a [virtual tables].
+** This structure consists mostly of methods for the module.
+**
+** ^A virtual table module is created by filling in a persistent
+** instance of this structure and passing a pointer to that instance
+** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
+** ^The registration remains valid until it is replaced by a different
+** module or until the [database connection] closes. The content
+** of this structure must not change while it is registered with
+** any database connection.
+*/
+struct sqlite3_module {
+ int iVersion;
+ int (*xCreate)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xConnect)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
+ int (*xDisconnect)(sqlite3_vtab *pVTab);
+ int (*xDestroy)(sqlite3_vtab *pVTab);
+ int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
+ int (*xClose)(sqlite3_vtab_cursor*);
+ int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv);
+ int (*xNext)(sqlite3_vtab_cursor*);
+ int (*xEof)(sqlite3_vtab_cursor*);
+ int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
+ int (*xBegin)(sqlite3_vtab *pVTab);
+ int (*xSync)(sqlite3_vtab *pVTab);
+ int (*xCommit)(sqlite3_vtab *pVTab);
+ int (*xRollback)(sqlite3_vtab *pVTab);
+ int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg);
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
+};
+
+/*
+** CAPI3REF: Virtual Table Indexing Information
+** KEYWORDS: sqlite3_index_info
+** EXPERIMENTAL
+**
+** The sqlite3_index_info structure and its substructures is used to
+** pass information into and receive the reply from the [xBestIndex]
+** method of a [virtual table module]. The fields under **Inputs** are the
+** inputs to xBestIndex and are read-only. xBestIndex inserts its
+** results into the **Outputs** fields.
+**
+** ^(The aConstraint[] array records WHERE clause constraints of the form:
+**
+** column OP expr
+**
+** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is
+** stored in aConstraint[].op.)^ ^(The index of the column is stored in
+** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
+** expr on the right-hand side can be evaluated (and thus the constraint
+** is usable) and false if it cannot.)^
+**
+** ^The optimizer automatically inverts terms of the form "expr OP column"
+** and makes other simplifications to the WHERE clause in an attempt to
+** get as many WHERE clause terms into the form shown above as possible.
+** ^The aConstraint[] array only reports WHERE clause terms that are
+** relevant to the particular virtual table being queried.
+**
+** ^Information about the ORDER BY clause is stored in aOrderBy[].
+** ^Each term of aOrderBy records a column of the ORDER BY clause.
+**
+** The [xBestIndex] method must fill aConstraintUsage[] with information
+** about what parameters to pass to xFilter. ^If argvIndex>0 then
+** the right-hand side of the corresponding aConstraint[] is evaluated
+** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
+** is true, then the constraint is assumed to be fully handled by the
+** virtual table and is not checked again by SQLite.)^
+**
+** ^The idxNum and idxPtr values are recorded and passed into the
+** [xFilter] method.
+** ^[sqlite3_free()] is used to free idxPtr if and only if
+** needToFreeIdxPtr is true.
+**
+** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
+** the correct order to satisfy the ORDER BY clause so that no separate
+** sorting step is required.
+**
+** ^The estimatedCost value is an estimate of the cost of doing the
+** particular lookup. A full scan of a table with N entries should have
+** a cost of N. A binary search of a table of N entries should have a
+** cost of approximately log(N).
+*/
+struct sqlite3_index_info {
+ /* Inputs */
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
+ int iColumn; /* Column on left-hand side of constraint */
+ unsigned char op; /* Constraint operator */
+ unsigned char usable; /* True if this constraint is usable */
+ int iTermOffset; /* Used internally - xBestIndex should ignore */
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
+ int iColumn; /* Column number */
+ unsigned char desc; /* True for DESC. False for ASC. */
+ } *aOrderBy; /* The ORDER BY clause */
+ /* Outputs */
+ struct sqlite3_index_constraint_usage {
+ int argvIndex; /* if >0, constraint is part of argv to xFilter */
+ unsigned char omit; /* Do not code a test for this constraint */
+ } *aConstraintUsage;
+ int idxNum; /* Number used to identify the index */
+ char *idxStr; /* String, possibly obtained from sqlite3_malloc */
+ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
+ int orderByConsumed; /* True if output is already ordered */
+ double estimatedCost; /* Estimated cost of using this index */
+};
+#define SQLITE_INDEX_CONSTRAINT_EQ 2
+#define SQLITE_INDEX_CONSTRAINT_GT 4
+#define SQLITE_INDEX_CONSTRAINT_LE 8
+#define SQLITE_INDEX_CONSTRAINT_LT 16
+#define SQLITE_INDEX_CONSTRAINT_GE 32
+#define SQLITE_INDEX_CONSTRAINT_MATCH 64
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation
+** EXPERIMENTAL
+**
+** ^These routines are used to register a new [virtual table module] name.
+** ^Module names must be registered before
+** creating a new [virtual table] using the module and before using a
+** preexisting [virtual table] for the module.
+**
+** ^The module name is registered on the [database connection] specified
+** by the first parameter. ^The name of the module is given by the
+** second parameter. ^The third parameter is a pointer to
+** the implementation of the [virtual table module]. ^The fourth
+** parameter is an arbitrary client data pointer that is passed through
+** into the [xCreate] and [xConnect] methods of the virtual table module
+** when a new virtual table is be being created or reinitialized.
+**
+** ^The sqlite3_create_module_v2() interface has a fifth parameter which
+** is a pointer to a destructor for the pClientData. ^SQLite will
+** invoke the destructor function (if it is not NULL) when SQLite
+** no longer needs the pClientData pointer. ^The sqlite3_create_module()
+** interface is equivalent to sqlite3_create_module_v2() with a NULL
+** destructor.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData /* Client data for xCreate/xConnect */
+);
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *p, /* Methods for the module */
+ void *pClientData, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object
+** KEYWORDS: sqlite3_vtab
+** EXPERIMENTAL
+**
+** Every [virtual table module] implementation uses a subclass
+** of this object to describe a particular instance
+** of the [virtual table]. Each subclass will
+** be tailored to the specific needs of the module implementation.
+** The purpose of this superclass is to define certain fields that are
+** common to all module implementations.
+**
+** ^Virtual tables methods can set an error message by assigning a
+** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
+** take care that any prior string is freed by a call to [sqlite3_free()]
+** prior to assigning a new string to zErrMsg. ^After the error message
+** is delivered up to the client application, the string will be automatically
+** freed by sqlite3_free() and the zErrMsg field will be zeroed.
+*/
+struct sqlite3_vtab {
+ const sqlite3_module *pModule; /* The module for this virtual table */
+ int nRef; /* NO LONGER USED */
+ char *zErrMsg; /* Error message from sqlite3_mprintf() */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Virtual Table Cursor Object
+** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
+** EXPERIMENTAL
+**
+** Every [virtual table module] implementation uses a subclass of the
+** following structure to describe cursors that point into the
+** [virtual table] and are used
+** to loop through the virtual table. Cursors are created using the
+** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
+** by the [sqlite3_module.xClose | xClose] method. Cursors are used
+** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
+** of the module. Each module implementation will define
+** the content of a cursor structure to suit its own needs.
+**
+** This superclass exists in order to define fields of the cursor that
+** are common to all implementations.
+*/
+struct sqlite3_vtab_cursor {
+ sqlite3_vtab *pVtab; /* Virtual table of this cursor */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Declare The Schema Of A Virtual Table
+** EXPERIMENTAL
+**
+** ^The [xCreate] and [xConnect] methods of a
+** [virtual table module] call this interface
+** to declare the format (the names and datatypes of the columns) of
+** the virtual tables they implement.
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
+
+/*
+** CAPI3REF: Overload A Function For A Virtual Table
+** EXPERIMENTAL
+**
+** ^(Virtual tables can provide alternative implementations of functions
+** using the [xFindFunction] method of the [virtual table module].
+** But global versions of those functions
+** must exist in order to be overloaded.)^
+**
+** ^(This API makes sure a global version of a function with a particular
+** name and number of parameters exists. If no such function exists
+** before this API is called, a new function is created.)^ ^The implementation
+** of the new function always causes an exception to be thrown. So
+** the new function is not good for anything by itself. Its only
+** purpose is to be a placeholder function that can be overloaded
+** by a [virtual table].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+
+/*
+** The interface to the virtual-table mechanism defined above (back up
+** to a comment remarkably similar to this one) is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+**
+****** EXPERIMENTAL - subject to change without notice **************
+*/
+
+/*
+** CAPI3REF: A Handle To An Open BLOB
+** KEYWORDS: {BLOB handle} {BLOB handles}
+**
+** An instance of this object represents an open BLOB on which
+** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
+** ^Objects of this type are created by [sqlite3_blob_open()]
+** and destroyed by [sqlite3_blob_close()].
+** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the BLOB.
+** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O
+**
+** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same BLOB that would be selected by:
+**
+**
+** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
+**
)^
+**
+** ^If the flags parameter is non-zero, then the BLOB is opened for read
+** and write access. ^If it is zero, the BLOB is opened for read access.
+** ^It is not possible to open a column that is part of an index or primary
+** key for writing. ^If [foreign key constraints] are enabled, it is
+** not possible to open a column that is part of a [child key] for writing.
+**
+** ^Note that the database name is not the filename that contains
+** the database but rather the symbolic name of the database that
+** appears after the AS keyword when the database is connected using [ATTACH].
+** ^For the main database file, the database name is "main".
+** ^For TEMP tables, the database name is "temp".
+**
+** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
+** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
+** to be a null pointer.)^
+** ^This function sets the [database connection] error code and message
+** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
+** functions. ^Note that the *ppBlob variable is always initialized in a
+** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
+** regardless of the success or failure of this routine.
+**
+** ^(If the row that a BLOB handle points to is modified by an
+** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
+** then the BLOB handle is marked as "expired".
+** This is true if any column of the row is changed, even a column
+** other than the one the BLOB handle is open on.)^
+** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
+** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
+** ^(Changes written into a BLOB prior to the BLOB expiring are not
+** rolled back by the expiration of the BLOB. Such changes will eventually
+** commit if the transaction continues to completion.)^
+**
+** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
+** the opened blob. ^The size of a blob may not be changed by this
+** interface. Use the [UPDATE] SQL command to change the size of a
+** blob.
+**
+** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
+** and the built-in [zeroblob] SQL function can be used, if desired,
+** to create an empty, zero-filled blob in which to read or write using
+** this interface.
+**
+** To avoid a resource leak, every open [BLOB handle] should eventually
+** be released by a call to [sqlite3_blob_close()].
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Close A BLOB Handle
+**
+** ^Closes an open [BLOB handle].
+**
+** ^Closing a BLOB shall cause the current transaction to commit
+** if there are no other BLOBs, no pending prepared statements, and the
+** database connection is in [autocommit mode].
+** ^If any writes were made to the BLOB, they might be held in cache
+** until the close operation if they will fit.
+**
+** ^(Closing the BLOB often forces the changes
+** out to disk and so if any I/O errors occur, they will likely occur
+** at the time when the BLOB is closed. Any errors that occur during
+** closing are reported as a non-zero return value.)^
+**
+** ^(The BLOB is closed unconditionally. Even if this routine returns
+** an error code, the BLOB is still closed.)^
+**
+** ^Calling this routine with a null pointer (such as would be returned
+** by a failed call to [sqlite3_blob_open()]) is a harmless no-op.
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB
+**
+** ^Returns the size in bytes of the BLOB accessible via the
+** successfully opened [BLOB handle] in its only argument. ^The
+** incremental blob I/O routines can only read or overwriting existing
+** blob content; they cannot change the size of a blob.
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally
+**
+** ^(This function is used to read data from an open [BLOB handle] into a
+** caller-supplied buffer. N bytes of data are copied into buffer Z
+** from the open BLOB, starting at offset iOffset.)^
+**
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
+** less than zero, [SQLITE_ERROR] is returned and no data is read.
+** ^The size of the blob (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** ^An attempt to read from an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT].
+**
+** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_write()].
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally
+**
+** ^This function is used to write data into an open [BLOB handle] from a
+** caller-supplied buffer. ^N bytes of data are copied from the buffer Z
+** into the open BLOB, starting at offset iOffset.
+**
+** ^If the [BLOB handle] passed as the first argument was not opened for
+** writing (the flags parameter to [sqlite3_blob_open()] was zero),
+** this function returns [SQLITE_READONLY].
+**
+** ^This function may only modify the contents of the BLOB; it is
+** not possible to increase the size of a BLOB using this API.
+** ^If offset iOffset is less than N bytes from the end of the BLOB,
+** [SQLITE_ERROR] is returned and no data is written. ^If N is
+** less than zero [SQLITE_ERROR] is returned and no data is written.
+** The size of the BLOB (and hence the maximum value of N+iOffset)
+** can be determined using the [sqlite3_blob_bytes()] interface.
+**
+** ^An attempt to write to an expired [BLOB handle] fails with an
+** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
+** before the [BLOB handle] expired are not rolled back by the
+** expiration of the handle, though of course those changes might
+** have been overwritten by the statement that expired the BLOB handle
+** or by other independent statements.
+**
+** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
+** Otherwise, an [error code] or an [extended error code] is returned.)^
+**
+** This routine only works on a [BLOB handle] which has been created
+** by a prior successful call to [sqlite3_blob_open()] and which has not
+** been closed by [sqlite3_blob_close()]. Passing any other pointer in
+** to this routine results in undefined and probably undesirable behavior.
+**
+** See also: [sqlite3_blob_read()].
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
+** ^Names are case sensitive.
+** ^Names are zero-terminated UTF-8 strings.
+** ^If there is no match, a NULL pointer is returned.
+** ^If zVfsName is NULL then the default VFS is returned.
+**
+** ^New VFSes are registered with sqlite3_vfs_register().
+** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
+** ^The same VFS can be registered multiple times without injury.
+** ^To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** ^(If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.)^
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. ^(The following
+** implementations are available in the SQLite core:
+**
+**
+** - SQLITE_MUTEX_OS2
+**
- SQLITE_MUTEX_PTHREAD
+**
- SQLITE_MUTEX_W32
+**
- SQLITE_MUTEX_NOOP
+**
)^
+**
+** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. ^The SQLITE_MUTEX_OS2,
+** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
+** are appropriate for use on OS/2, Unix, and Windows.
+**
+** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. In this case the
+** application must supply a custom mutex implementation using the
+** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
+** before calling sqlite3_initialize() or any other public sqlite3_
+** function that calls sqlite3_initialize().)^
+**
+** ^The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. ^If it returns NULL
+** that means that a mutex could not be allocated. ^SQLite
+** will unwind its stack and return an error. ^(The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+**
+** - SQLITE_MUTEX_FAST
+**
- SQLITE_MUTEX_RECURSIVE
+**
- SQLITE_MUTEX_STATIC_MASTER
+**
- SQLITE_MUTEX_STATIC_MEM
+**
- SQLITE_MUTEX_STATIC_MEM2
+**
- SQLITE_MUTEX_STATIC_PRNG
+**
- SQLITE_MUTEX_STATIC_LRU
+**
- SQLITE_MUTEX_STATIC_LRU2
+**
)^
+**
+** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
+** cause sqlite3_mutex_alloc() to create
+** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. ^SQLite will only request a recursive mutex in
+** cases where it really needs one. ^If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
+** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
+** a pointer to a static preexisting mutex. ^Six static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. ^But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+**
+** ^The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. ^SQLite is careful to deallocate every
+** dynamic mutex that it allocates. The dynamic mutexes must not be in
+** use when they are deallocated. Attempting to deallocate a static
+** mutex results in undefined behavior. ^SQLite never deallocates
+** a static mutex.
+**
+** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. ^If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
+** upon successful entry. ^(Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter.)^ ^(If the same thread tries to enter any other
+** kind of mutex more than once, the behavior is undefined.
+** SQLite will never exhibit
+** such behavior in its own use of mutexes.)^
+**
+** ^(Some systems (for example, Windows 95) do not support the operation
+** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
+** will always return SQLITE_BUSY. The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^
+**
+** ^The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. ^(The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated. SQLite will
+** never do either.)^
+**
+** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
+** sqlite3_mutex_leave() is a NULL pointer, then all three routines
+** behave as no-ops.
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Methods Object
+** EXPERIMENTAL
+**
+** An instance of this structure defines the low-level routines
+** used to allocate and use mutexes.
+**
+** Usually, the default mutex implementations provided by SQLite are
+** sufficient, however the user has the option of substituting a custom
+** implementation for specialized deployments or systems for which SQLite
+** does not provide a suitable implementation. In this case, the user
+** creates and populates an instance of this structure to pass
+** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
+** Additionally, an instance of this structure can be used as an
+** output variable when querying the system for the current mutex
+** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
+**
+** ^The xMutexInit method defined by this structure is invoked as
+** part of system initialization by the sqlite3_initialize() function.
+** ^The xMutexInit routine is calle by SQLite exactly once for each
+** effective call to [sqlite3_initialize()].
+**
+** ^The xMutexEnd method defined by this structure is invoked as
+** part of system shutdown by the sqlite3_shutdown() function. The
+** implementation of this method is expected to release all outstanding
+** resources obtained by the mutex methods implementation, especially
+** those obtained by the xMutexInit method. ^The xMutexEnd()
+** interface is invoked exactly once for each call to [sqlite3_shutdown()].
+**
+** ^(The remaining seven methods defined by this structure (xMutexAlloc,
+** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
+** xMutexNotheld) implement the following interfaces (respectively):
+**
+**
+** - [sqlite3_mutex_alloc()]
+** - [sqlite3_mutex_free()]
+** - [sqlite3_mutex_enter()]
+** - [sqlite3_mutex_try()]
+** - [sqlite3_mutex_leave()]
+** - [sqlite3_mutex_held()]
+** - [sqlite3_mutex_notheld()]
+**
)^
+**
+** The only difference is that the public sqlite3_XXX functions enumerated
+** above silently ignore any invocations that pass a NULL pointer instead
+** of a valid mutex handle. The implementations of the methods defined
+** by this structure are not required to handle this case, the results
+** of passing a NULL pointer instead of a valid mutex handle are undefined
+** (i.e. it is acceptable to provide an implementation that segfaults if
+** it is passed a NULL pointer).
+**
+** The xMutexInit() method must be threadsafe. ^It must be harmless to
+** invoke xMutexInit() mutiple times within the same process and without
+** intervening calls to xMutexEnd(). Second and subsequent calls to
+** xMutexInit() must be no-ops.
+**
+** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
+** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory
+** allocation for a static mutex. ^However xMutexAlloc() may use SQLite
+** memory allocation for a fast or recursive mutex.
+**
+** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
+** called, but only if the prior call to xMutexInit returned SQLITE_OK.
+** If xMutexInit fails in any way, it is expected to clean up after itself
+** prior to returning.
+*/
+typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
+struct sqlite3_mutex_methods {
+ int (*xMutexInit)(void);
+ int (*xMutexEnd)(void);
+ sqlite3_mutex *(*xMutexAlloc)(int);
+ void (*xMutexFree)(sqlite3_mutex *);
+ void (*xMutexEnter)(sqlite3_mutex *);
+ int (*xMutexTry)(sqlite3_mutex *);
+ void (*xMutexLeave)(sqlite3_mutex *);
+ int (*xMutexHeld)(sqlite3_mutex *);
+ int (*xMutexNotheld)(sqlite3_mutex *);
+};
+
+/*
+** CAPI3REF: Mutex Verification Routines
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. ^The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. ^The SQLite core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. ^External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** ^These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread.
+**
+** ^The implementation is not required to provided versions of these
+** routines that actually work. If the implementation does not provide working
+** versions of these routines, it should at least provide stubs that always
+** return true so that one does not get spurious assertion failures.
+**
+** ^If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But the
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. ^The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+#ifndef NDEBUG
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
+#endif
+
+/*
+** CAPI3REF: Mutex Types
+**
+** The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants.
+**
+** The set of static mutexes may change from one SQLite release to the
+** next. Applications that override the built-in mutex logic must be
+** prepared to accommodate additional static mutexes.
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MASTER 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
+#define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
+
+/*
+** CAPI3REF: Retrieve the mutex for a database connection
+**
+** ^This interface returns a pointer the [sqlite3_mutex] object that
+** serializes access to the [database connection] given in the argument
+** when the [threading mode] is Serialized.
+** ^If the [threading mode] is Single-thread or Multi-thread then this
+** routine returns a NULL pointer.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files
+**
+** ^The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. ^The
+** name of the database "main" for the main database or "temp" for the
+** TEMP database, or the name that appears after the AS keyword for
+** databases that are added using the [ATTACH] SQL command.
+** ^A NULL pointer can be used in place of "main" to refer to the
+** main database file.
+** ^The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. ^The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** ^If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. ^This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. The underlying xFileControl method might
+** also return SQLITE_ERROR. There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method.
+**
+** See also: [SQLITE_FCNTL_LOCKSTATE]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface
+**
+** ^The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. ^The first parameter is an operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meanings are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_FIRST 5
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+#define SQLITE_TESTCTRL_FAULT_INSTALL 9
+#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
+#define SQLITE_TESTCTRL_PENDING_BYTE 11
+#define SQLITE_TESTCTRL_ASSERT 12
+#define SQLITE_TESTCTRL_ALWAYS 13
+#define SQLITE_TESTCTRL_RESERVE 14
+#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
+#define SQLITE_TESTCTRL_ISKEYWORD 16
+#define SQLITE_TESTCTRL_LAST 16
+
+/*
+** CAPI3REF: SQLite Runtime Status
+** EXPERIMENTAL
+**
+** ^This interface is used to retrieve runtime status information
+** about the preformance of SQLite, and optionally to reset various
+** highwater marks. ^The first argument is an integer code for
+** the specific parameter to measure. ^(Recognized integer codes
+** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].)^
+** ^The current value of the parameter is returned into *pCurrent.
+** ^The highest recorded value is returned in *pHighwater. ^If the
+** resetFlag is true, then the highest record value is reset after
+** *pHighwater is written. ^(Some parameters do not record the highest
+** value. For those parameters
+** nothing is written into *pHighwater and the resetFlag is ignored.)^
+** ^(Other parameters record only the highwater mark and not the current
+** value. For these latter parameters nothing is written into *pCurrent.)^
+**
+** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** non-zero [error code] on failure.
+**
+** This routine is threadsafe but is not atomic. This routine can be
+** called while other threads are running the same or different SQLite
+** interfaces. However the values returned in *pCurrent and
+** *pHighwater reflect the status of SQLite at different points in time
+** and it is possible that another thread might change the parameter
+** in between the times when *pCurrent and *pHighwater are written.
+**
+** See also: [sqlite3_db_status()]
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
+
+
+/*
+** CAPI3REF: Status Parameters
+** EXPERIMENTAL
+**
+** These integer constants designate various run-time status parameters
+** that can be returned by [sqlite3_status()].
+**
+**
+** ^(- SQLITE_STATUS_MEMORY_USED
+** - This parameter is the current amount of memory checked out
+** using [sqlite3_malloc()], either directly or indirectly. The
+** figure includes calls made to [sqlite3_malloc()] by the application
+** and internal memory usage by the SQLite library. Scratch memory
+** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
+** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
+** this parameter. The amount returned is the sum of the allocation
+** sizes as reported by the xSize method in [sqlite3_mem_methods].
)^
+**
+** ^(- SQLITE_STATUS_MALLOC_SIZE
+** - This parameter records the largest memory allocation request
+** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
+** internal equivalents). Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.
)^
+**
+** ^(- SQLITE_STATUS_PAGECACHE_USED
+** - This parameter returns the number of pages used out of the
+** [pagecache memory allocator] that was configured using
+** [SQLITE_CONFIG_PAGECACHE]. The
+** value returned is in pages, not in bytes.
)^
+**
+** ^(- SQLITE_STATUS_PAGECACHE_OVERFLOW
+** - This parameter returns the number of bytes of page cache
+** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The
+** returned value includes allocations that overflowed because they
+** where too large (they were larger than the "sz" parameter to
+** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
+** no space was left in the page cache.
)^
+**
+** ^(- SQLITE_STATUS_PAGECACHE_SIZE
+** - This parameter records the largest memory allocation request
+** handed to [pagecache memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.
)^
+**
+** ^(- SQLITE_STATUS_SCRATCH_USED
+** - This parameter returns the number of allocations used out of the
+** [scratch memory allocator] configured using
+** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not
+** in bytes. Since a single thread may only have one scratch allocation
+** outstanding at time, this parameter also reports the number of threads
+** using scratch memory at the same time.
)^
+**
+** ^(- SQLITE_STATUS_SCRATCH_OVERFLOW
+** - This parameter returns the number of bytes of scratch memory
+** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
+** buffer and where forced to overflow to [sqlite3_malloc()]. The values
+** returned include overflows because the requested allocation was too
+** larger (that is, because the requested allocation was larger than the
+** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
+** slots were available.
+**
)^
+**
+** ^(- SQLITE_STATUS_SCRATCH_SIZE
+** - This parameter records the largest memory allocation request
+** handed to [scratch memory allocator]. Only the value returned in the
+** *pHighwater parameter to [sqlite3_status()] is of interest.
+** The value written into the *pCurrent parameter is undefined.
)^
+**
+** ^(- SQLITE_STATUS_PARSER_STACK
+** - This parameter records the deepest parser stack. It is only
+** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].
)^
+**
+**
+** New status parameters may be added from time to time.
+*/
+#define SQLITE_STATUS_MEMORY_USED 0
+#define SQLITE_STATUS_PAGECACHE_USED 1
+#define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
+#define SQLITE_STATUS_SCRATCH_USED 3
+#define SQLITE_STATUS_SCRATCH_OVERFLOW 4
+#define SQLITE_STATUS_MALLOC_SIZE 5
+#define SQLITE_STATUS_PARSER_STACK 6
+#define SQLITE_STATUS_PAGECACHE_SIZE 7
+#define SQLITE_STATUS_SCRATCH_SIZE 8
+
+/*
+** CAPI3REF: Database Connection Status
+** EXPERIMENTAL
+**
+** ^This interface is used to retrieve runtime status information
+** about a single [database connection]. ^The first argument is the
+** database connection object to be interrogated. ^The second argument
+** is the parameter to interrogate. ^Currently, the only allowed value
+** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED].
+** Additional options will likely appear in future releases of SQLite.
+**
+** ^The current value of the requested parameter is written into *pCur
+** and the highest instantaneous value is written into *pHiwtr. ^If
+** the resetFlg is true, then the highest instantaneous value is
+** reset back down to the current value.
+**
+** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for database connections
+** EXPERIMENTAL
+**
+** These constants are the available integer "verbs" that can be passed as
+** the second argument to the [sqlite3_db_status()] interface.
+**
+** New verbs may be added in future releases of SQLite. Existing verbs
+** might be discontinued. Applications should check the return code from
+** [sqlite3_db_status()] to make sure that the call worked.
+** The [sqlite3_db_status()] interface will return a non-zero error code
+** if a discontinued or unsupported verb is invoked.
+**
+**
+** ^(- SQLITE_DBSTATUS_LOOKASIDE_USED
+** - This parameter returns the number of lookaside memory slots currently
+** checked out.
)^
+**
+*/
+#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
+
+
+/*
+** CAPI3REF: Prepared Statement Status
+** EXPERIMENTAL
+**
+** ^(Each prepared statement maintains various
+** [SQLITE_STMTSTATUS_SORT | counters] that measure the number
+** of times it has performed specific operations.)^ These counters can
+** be used to monitor the performance characteristics of the prepared
+** statements. For example, if the number of table steps greatly exceeds
+** the number of table searches or result rows, that would tend to indicate
+** that the prepared statement is using a full table scan rather than
+** an index.
+**
+** ^(This interface is used to retrieve and reset counter values from
+** a [prepared statement]. The first argument is the prepared statement
+** object to be interrogated. The second argument
+** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter]
+** to be interrogated.)^
+** ^The current value of the requested counter is returned.
+** ^If the resetFlg is true, then the counter is reset to zero after this
+** interface call returns.
+**
+** See also: [sqlite3_status()] and [sqlite3_db_status()].
+*/
+SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
+
+/*
+** CAPI3REF: Status Parameters for prepared statements
+** EXPERIMENTAL
+**
+** These preprocessor macros define integer codes that name counter
+** values associated with the [sqlite3_stmt_status()] interface.
+** The meanings of the various counters are as follows:
+**
+**
+** - SQLITE_STMTSTATUS_FULLSCAN_STEP
+** - ^This is the number of times that SQLite has stepped forward in
+** a table as part of a full table scan. Large numbers for this counter
+** may indicate opportunities for performance improvement through
+** careful use of indices.
+**
+** - SQLITE_STMTSTATUS_SORT
+** - ^This is the number of sort operations that have occurred.
+** A non-zero value in this counter may indicate an opportunity to
+** improvement performance through careful use of indices.
+**
+**
+*/
+#define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
+#define SQLITE_STMTSTATUS_SORT 2
+
+/*
+** CAPI3REF: Custom Page Cache Object
+** EXPERIMENTAL
+**
+** The sqlite3_pcache type is opaque. It is implemented by
+** the pluggable module. The SQLite core has no knowledge of
+** its size or internal structure and never deals with the
+** sqlite3_pcache object except by holding and passing pointers
+** to the object.
+**
+** See [sqlite3_pcache_methods] for additional information.
+*/
+typedef struct sqlite3_pcache sqlite3_pcache;
+
+/*
+** CAPI3REF: Application Defined Page Cache.
+** KEYWORDS: {page cache}
+** EXPERIMENTAL
+**
+** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
+** register an alternative page cache implementation by passing in an
+** instance of the sqlite3_pcache_methods structure.)^ The majority of the
+** heap memory used by SQLite is used by the page cache to cache data read
+** from, or ready to be written to, the database file. By implementing a
+** custom page cache using this API, an application can control more
+** precisely the amount of memory consumed by SQLite, the way in which
+** that memory is allocated and released, and the policies used to
+** determine exactly which parts of a database file are cached and for
+** how long.
+**
+** ^(The contents of the sqlite3_pcache_methods structure are copied to an
+** internal buffer by SQLite within the call to [sqlite3_config]. Hence
+** the application may discard the parameter after the call to
+** [sqlite3_config()] returns.)^
+**
+** ^The xInit() method is called once for each call to [sqlite3_initialize()]
+** (usually only once during the lifetime of the process). ^(The xInit()
+** method is passed a copy of the sqlite3_pcache_methods.pArg value.)^
+** ^The xInit() method can set up up global structures and/or any mutexes
+** required by the custom page cache implementation.
+**
+** ^The xShutdown() method is called from within [sqlite3_shutdown()],
+** if the application invokes this API. It can be used to clean up
+** any outstanding resources before process shutdown, if required.
+**
+** ^SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
+** the xInit method, so the xInit method need not be threadsafe. ^The
+** xShutdown method is only called from [sqlite3_shutdown()] so it does
+** not need to be threadsafe either. All other methods must be threadsafe
+** in multithreaded applications.
+**
+** ^SQLite will never invoke xInit() more than once without an intervening
+** call to xShutdown().
+**
+** ^The xCreate() method is used to construct a new cache instance. SQLite
+** will typically create one cache instance for each open database file,
+** though this is not guaranteed. ^The
+** first parameter, szPage, is the size in bytes of the pages that must
+** be allocated by the cache. ^szPage will not be a power of two. ^szPage
+** will the page size of the database file that is to be cached plus an
+** increment (here called "R") of about 100 or 200. ^SQLite will use the
+** extra R bytes on each page to store metadata about the underlying
+** database page on disk. The value of R depends
+** on the SQLite version, the target platform, and how SQLite was compiled.
+** ^R is constant for a particular build of SQLite. ^The second argument to
+** xCreate(), bPurgeable, is true if the cache being created will
+** be used to cache database pages of a file stored on disk, or
+** false if it is used for an in-memory database. ^The cache implementation
+** does not have to do anything special based with the value of bPurgeable;
+** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
+** never invoke xUnpin() except to deliberately delete a page.
+** ^In other words, a cache created with bPurgeable set to false will
+** never contain any unpinned pages.
+**
+** ^(The xCachesize() method may be called at any time by SQLite to set the
+** suggested maximum cache-size (number of pages stored by) the cache
+** instance passed as the first argument. This is the value configured using
+** the SQLite "[PRAGMA cache_size]" command.)^ ^As with the bPurgeable
+** parameter, the implementation is not required to do anything with this
+** value; it is advisory only.
+**
+** ^The xPagecount() method should return the number of pages currently
+** stored in the cache.
+**
+** ^The xFetch() method is used to fetch a page and return a pointer to it.
+** ^A 'page', in this context, is a buffer of szPage bytes aligned at an
+** 8-byte boundary. ^The page to be fetched is determined by the key. ^The
+** mimimum key value is 1. After it has been retrieved using xFetch, the page
+** is considered to be "pinned".
+**
+** ^If the requested page is already in the page cache, then the page cache
+** implementation must return a pointer to the page buffer with its content
+** intact. ^(If the requested page is not already in the cache, then the
+** behavior of the cache implementation is determined by the value of the
+** createFlag parameter passed to xFetch, according to the following table:
+**
+**
+** createFlag | Behaviour when page is not already in cache
+** |
---|
0 | Do not allocate a new page. Return NULL.
+** |
1 | Allocate a new page if it easy and convenient to do so.
+** Otherwise return NULL.
+** |
2 | Make every effort to allocate a new page. Only return
+** NULL if allocating a new page is effectively impossible.
+** |
)^
+**
+** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If
+** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
+** attempt to unpin one or more cache pages by spilling the content of
+** pinned pages to disk and synching the operating system disk cache. After
+** attempting to unpin pages, the xFetch() method will be invoked again with
+** a createFlag of 2.
+**
+** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
+** as its second argument. ^(If the third parameter, discard, is non-zero,
+** then the page should be evicted from the cache. In this case SQLite
+** assumes that the next time the page is retrieved from the cache using
+** the xFetch() method, it will be zeroed.)^ ^If the discard parameter is
+** zero, then the page is considered to be unpinned. ^The cache implementation
+** may choose to evict unpinned pages at any time.
+**
+** ^(The cache is not required to perform any reference counting. A single
+** call to xUnpin() unpins the page regardless of the number of prior calls
+** to xFetch().)^
+**
+** ^The xRekey() method is used to change the key value associated with the
+** page passed as the second argument from oldKey to newKey. ^If the cache
+** previously contains an entry associated with newKey, it should be
+** discarded. ^Any prior cache entry associated with newKey is guaranteed not
+** to be pinned.
+**
+** ^When SQLite calls the xTruncate() method, the cache must discard all
+** existing cache entries with page numbers (keys) greater than or equal
+** to the value of the iLimit parameter passed to xTruncate(). ^If any
+** of these pages are pinned, they are implicitly unpinned, meaning that
+** they can be safely discarded.
+**
+** ^The xDestroy() method is used to delete a cache allocated by xCreate().
+** All resources associated with the specified cache should be freed. ^After
+** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
+** handle invalid, and will not use it with any other sqlite3_pcache_methods
+** functions.
+*/
+typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
+struct sqlite3_pcache_methods {
+ void *pArg;
+ int (*xInit)(void*);
+ void (*xShutdown)(void*);
+ sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
+ void (*xCachesize)(sqlite3_pcache*, int nCachesize);
+ int (*xPagecount)(sqlite3_pcache*);
+ void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
+ void (*xUnpin)(sqlite3_pcache*, void*, int discard);
+ void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
+ void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
+ void (*xDestroy)(sqlite3_pcache*);
+};
+
+/*
+** CAPI3REF: Online Backup Object
+** EXPERIMENTAL
+**
+** The sqlite3_backup object records state information about an ongoing
+** online backup operation. ^The sqlite3_backup object is created by
+** a call to [sqlite3_backup_init()] and is destroyed by a call to
+** [sqlite3_backup_finish()].
+**
+** See Also: [Using the SQLite Online Backup API]
+*/
+typedef struct sqlite3_backup sqlite3_backup;
+
+/*
+** CAPI3REF: Online Backup API.
+** EXPERIMENTAL
+**
+** The backup API copies the content of one database into another.
+** It is useful either for creating backups of databases or
+** for copying in-memory databases to or from persistent files.
+**
+** See Also: [Using the SQLite Online Backup API]
+**
+** ^Exclusive access is required to the destination database for the
+** duration of the operation. ^However the source database is only
+** read-locked while it is actually being read; it is not locked
+** continuously for the entire backup operation. ^Thus, the backup may be
+** performed on a live source database without preventing other users from
+** reading or writing to the source database while the backup is underway.
+**
+** ^(To perform a backup operation:
+**
+** - sqlite3_backup_init() is called once to initialize the
+** backup,
+**
- sqlite3_backup_step() is called one or more times to transfer
+** the data between the two databases, and finally
+**
- sqlite3_backup_finish() is called to release all resources
+** associated with the backup operation.
+**
)^
+** There should be exactly one call to sqlite3_backup_finish() for each
+** successful call to sqlite3_backup_init().
+**
+** sqlite3_backup_init()
+**
+** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
+** [database connection] associated with the destination database
+** and the database name, respectively.
+** ^The database name is "main" for the main database, "temp" for the
+** temporary database, or the name specified after the AS keyword in
+** an [ATTACH] statement for an attached database.
+** ^The S and M arguments passed to
+** sqlite3_backup_init(D,N,S,M) identify the [database connection]
+** and database name of the source database, respectively.
+** ^The source and destination [database connections] (parameters S and D)
+** must be different or else sqlite3_backup_init(D,N,S,M) will file with
+** an error.
+**
+** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
+** returned and an error code and error message are store3d in the
+** destination [database connection] D.
+** ^The error code and message for the failed call to sqlite3_backup_init()
+** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
+** [sqlite3_errmsg16()] functions.
+** ^A successful call to sqlite3_backup_init() returns a pointer to an
+** [sqlite3_backup] object.
+** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
+** sqlite3_backup_finish() functions to perform the specified backup
+** operation.
+**
+** sqlite3_backup_step()
+**
+** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
+** the source and destination databases specified by [sqlite3_backup] object B.
+** ^If N is negative, all remaining source pages are copied.
+** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
+** are still more pages to be copied, then the function resturns [SQLITE_OK].
+** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
+** from source to destination, then it returns [SQLITE_DONE].
+** ^If an error occurs while running sqlite3_backup_step(B,N),
+** then an [error code] is returned. ^As well as [SQLITE_OK] and
+** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
+** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
+**
+** ^The sqlite3_backup_step() might return [SQLITE_READONLY] if the destination
+** database was opened read-only or if
+** the destination is an in-memory database with a different page size
+** from the source database.
+**
+** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
+** the [sqlite3_busy_handler | busy-handler function]
+** is invoked (if one is specified). ^If the
+** busy-handler returns non-zero before the lock is available, then
+** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
+** sqlite3_backup_step() can be retried later. ^If the source
+** [database connection]
+** is being used to write to the source database when sqlite3_backup_step()
+** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
+** case the call to sqlite3_backup_step() can be retried later on. ^(If
+** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
+** [SQLITE_READONLY] is returned, then
+** there is no point in retrying the call to sqlite3_backup_step(). These
+** errors are considered fatal.)^ The application must accept
+** that the backup operation has failed and pass the backup operation handle
+** to the sqlite3_backup_finish() to release associated resources.
+**
+** ^The first call to sqlite3_backup_step() obtains an exclusive lock
+** on the destination file. ^The exclusive lock is not released until either
+** sqlite3_backup_finish() is called or the backup operation is complete
+** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
+** sqlite3_backup_step() obtains a [shared lock] on the source database that
+** lasts for the duration of the sqlite3_backup_step() call.
+** ^Because the source database is not locked between calls to
+** sqlite3_backup_step(), the source database may be modified mid-way
+** through the backup process. ^If the source database is modified by an
+** external process or via a database connection other than the one being
+** used by the backup operation, then the backup will be automatically
+** restarted by the next call to sqlite3_backup_step(). ^If the source
+** database is modified by the using the same database connection as is used
+** by the backup operation, then the backup database is automatically
+** updated at the same time.
+**
+** sqlite3_backup_finish()
+**
+** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
+** application wishes to abandon the backup operation, the application
+** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
+** ^The sqlite3_backup_finish() interfaces releases all
+** resources associated with the [sqlite3_backup] object.
+** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
+** active write-transaction on the destination database is rolled back.
+** The [sqlite3_backup] object is invalid
+** and may not be used following a call to sqlite3_backup_finish().
+**
+** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
+** sqlite3_backup_step() errors occurred, regardless or whether or not
+** sqlite3_backup_step() completed.
+** ^If an out-of-memory condition or IO error occurred during any prior
+** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
+** sqlite3_backup_finish() returns the corresponding [error code].
+**
+** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
+** is not a permanent error and does not affect the return value of
+** sqlite3_backup_finish().
+**
+** sqlite3_backup_remaining(), sqlite3_backup_pagecount()
+**
+** ^Each call to sqlite3_backup_step() sets two values inside
+** the [sqlite3_backup] object: the number of pages still to be backed
+** up and the total number of pages in the source databae file.
+** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
+** retrieve these two values, respectively.
+**
+** ^The values returned by these functions are only updated by
+** sqlite3_backup_step(). ^If the source database is modified during a backup
+** operation, then the values are not updated to account for any extra
+** pages that need to be updated or the size of the source database file
+** changing.
+**
+** Concurrent Usage of Database Handles
+**
+** ^The source [database connection] may be used by the application for other
+** purposes while a backup operation is underway or being initialized.
+** ^If SQLite is compiled and configured to support threadsafe database
+** connections, then the source database connection may be used concurrently
+** from within other threads.
+**
+** However, the application must guarantee that the destination
+** [database connection] is not passed to any other API (by any thread) after
+** sqlite3_backup_init() is called and before the corresponding call to
+** sqlite3_backup_finish(). SQLite does not currently check to see
+** if the application incorrectly accesses the destination [database connection]
+** and so no error code is reported, but the operations may malfunction
+** nevertheless. Use of the destination database connection while a
+** backup is in progress might also also cause a mutex deadlock.
+**
+** If running in [shared cache mode], the application must
+** guarantee that the shared cache used by the destination database
+** is not accessed while the backup is running. In practice this means
+** that the application must guarantee that the disk file being
+** backed up to is not accessed by any connection within the process,
+** not just the specific connection that was passed to sqlite3_backup_init().
+**
+** The [sqlite3_backup] object itself is partially threadsafe. Multiple
+** threads may safely make multiple concurrent calls to sqlite3_backup_step().
+** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
+** APIs are not strictly speaking threadsafe. If they are invoked at the
+** same time as another thread is invoking sqlite3_backup_step() it is
+** possible that they return invalid values.
+*/
+SQLITE_API sqlite3_backup *sqlite3_backup_init(
+ sqlite3 *pDest, /* Destination database handle */
+ const char *zDestName, /* Destination database name */
+ sqlite3 *pSource, /* Source database handle */
+ const char *zSourceName /* Source database name */
+);
+SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
+SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
+SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
+
+/*
+** CAPI3REF: Unlock Notification
+** EXPERIMENTAL
+**
+** ^When running in shared-cache mode, a database operation may fail with
+** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
+** individual tables within the shared-cache cannot be obtained. See
+** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
+** ^This API may be used to register a callback that SQLite will invoke
+** when the connection currently holding the required lock relinquishes it.
+** ^This API is only available if the library was compiled with the
+** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
+**
+** See Also: [Using the SQLite Unlock Notification Feature].
+**
+** ^Shared-cache locks are released when a database connection concludes
+** its current transaction, either by committing it or rolling it back.
+**
+** ^When a connection (known as the blocked connection) fails to obtain a
+** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
+** identity of the database connection (the blocking connection) that
+** has locked the required resource is stored internally. ^After an
+** application receives an SQLITE_LOCKED error, it may call the
+** sqlite3_unlock_notify() method with the blocked connection handle as
+** the first argument to register for a callback that will be invoked
+** when the blocking connections current transaction is concluded. ^The
+** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
+** call that concludes the blocking connections transaction.
+**
+** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
+** there is a chance that the blocking connection will have already
+** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
+** If this happens, then the specified callback is invoked immediately,
+** from within the call to sqlite3_unlock_notify().)^
+**
+** ^If the blocked connection is attempting to obtain a write-lock on a
+** shared-cache table, and more than one other connection currently holds
+** a read-lock on the same table, then SQLite arbitrarily selects one of
+** the other connections to use as the blocking connection.
+**
+** ^(There may be at most one unlock-notify callback registered by a
+** blocked connection. If sqlite3_unlock_notify() is called when the
+** blocked connection already has a registered unlock-notify callback,
+** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
+** called with a NULL pointer as its second argument, then any existing
+** unlock-notify callback is cancelled. ^The blocked connections
+** unlock-notify callback may also be canceled by closing the blocked
+** connection using [sqlite3_close()].
+**
+** The unlock-notify callback is not reentrant. If an application invokes
+** any sqlite3_xxx API functions from within an unlock-notify callback, a
+** crash or deadlock may be the result.
+**
+** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
+** returns SQLITE_OK.
+**
+** Callback Invocation Details
+**
+** When an unlock-notify callback is registered, the application provides a
+** single void* pointer that is passed to the callback when it is invoked.
+** However, the signature of the callback function allows SQLite to pass
+** it an array of void* context pointers. The first argument passed to
+** an unlock-notify callback is a pointer to an array of void* pointers,
+** and the second is the number of entries in the array.
+**
+** When a blocking connections transaction is concluded, there may be
+** more than one blocked connection that has registered for an unlock-notify
+** callback. ^If two or more such blocked connections have specified the
+** same callback function, then instead of invoking the callback function
+** multiple times, it is invoked once with the set of void* context pointers
+** specified by the blocked connections bundled together into an array.
+** This gives the application an opportunity to prioritize any actions
+** related to the set of unblocked database connections.
+**
+** Deadlock Detection
+**
+** Assuming that after registering for an unlock-notify callback a
+** database waits for the callback to be issued before taking any further
+** action (a reasonable assumption), then using this API may cause the
+** application to deadlock. For example, if connection X is waiting for
+** connection Y's transaction to be concluded, and similarly connection
+** Y is waiting on connection X's transaction, then neither connection
+** will proceed and the system may remain deadlocked indefinitely.
+**
+** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
+** detection. ^If a given call to sqlite3_unlock_notify() would put the
+** system in a deadlocked state, then SQLITE_LOCKED is returned and no
+** unlock-notify callback is registered. The system is said to be in
+** a deadlocked state if connection A has registered for an unlock-notify
+** callback on the conclusion of connection B's transaction, and connection
+** B has itself registered for an unlock-notify callback when connection
+** A's transaction is concluded. ^Indirect deadlock is also detected, so
+** the system is also considered to be deadlocked if connection B has
+** registered for an unlock-notify callback on the conclusion of connection
+** C's transaction, where connection C is waiting on connection A. ^Any
+** number of levels of indirection are allowed.
+**
+** The "DROP TABLE" Exception
+**
+** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
+** always appropriate to call sqlite3_unlock_notify(). There is however,
+** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
+** SQLite checks if there are any currently executing SELECT statements
+** that belong to the same connection. If there are, SQLITE_LOCKED is
+** returned. In this case there is no "blocking connection", so invoking
+** sqlite3_unlock_notify() results in the unlock-notify callback being
+** invoked immediately. If the application then re-attempts the "DROP TABLE"
+** or "DROP INDEX" query, an infinite loop might be the result.
+**
+** One way around this problem is to check the extended error code returned
+** by an sqlite3_step() call. ^(If there is a blocking connection, then the
+** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
+** the special "DROP TABLE/INDEX" case, the extended error code is just
+** SQLITE_LOCKED.)^
+*/
+SQLITE_API int sqlite3_unlock_notify(
+ sqlite3 *pBlocked, /* Waiting connection */
+ void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
+ void *pNotifyArg /* Argument to pass to xNotify */
+);
+
+
+/*
+** CAPI3REF: String Comparison
+** EXPERIMENTAL
+**
+** ^The [sqlite3_strnicmp()] API allows applications and extensions to
+** compare the contents of two buffers containing UTF-8 strings in a
+** case-indendent fashion, using the same definition of case independence
+** that SQLite uses internally when comparing identifiers.
+*/
+SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
+
+/*
+** CAPI3REF: Error Logging Interface
+** EXPERIMENTAL
+**
+** ^The [sqlite3_log()] interface writes a message into the error log
+** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
+** ^If logging is enabled, the zFormat string and subsequent arguments are
+** passed through to [sqlite3_vmprintf()] to generate the final output string.
+**
+** The sqlite3_log() interface is intended for use by extensions such as
+** virtual tables, collating functions, and SQL functions. While there is
+** nothing to prevent an application from calling sqlite3_log(), doing so
+** is considered bad form.
+**
+** The zFormat string must not be NULL.
+**
+** To avoid deadlocks and other threading problems, the sqlite3_log() routine
+** will not use dynamically allocated memory. The log message is stored in
+** a fixed-length buffer on the stack. If the log message is longer than
+** a few hundred characters, it will be truncated to the length of the
+** buffer.
+*/
+SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
+#endif
+
+#if 0
+} /* End of the 'extern "C"' block */
+#endif
+#endif
+
+
+/************** End of sqlite3.h *********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include hash.h in the middle of sqliteInt.h ******************/
+/************** Begin file hash.h ********************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implemenation
+** used in SQLite.
+*/
+#ifndef _SQLITE_HASH_H_
+#define _SQLITE_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct Hash Hash;
+typedef struct HashElem HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, some of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+**
+** All elements of the hash table are on a single doubly-linked list.
+** Hash.first points to the head of this list.
+**
+** There are Hash.htsize buckets. Each bucket points to a spot in
+** the global doubly-linked list. The contents of the bucket are the
+** element pointed to plus the next _ht.count-1 elements in the list.
+**
+** Hash.htsize and Hash.ht may be zero. In that case lookup is done
+** by a linear search of the global list. For small tables, the
+** Hash.ht table is never allocated because if there are few elements
+** in the table, it is faster to do a linear search than to manage
+** the hash table.
+*/
+struct Hash {
+ unsigned int htsize; /* Number of buckets in the hash table */
+ unsigned int count; /* Number of entries in this table */
+ HashElem *first; /* The first element of the array */
+ struct _ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct HashElem {
+ HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ const char *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3HashInit(Hash*);
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData);
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey);
+SQLITE_PRIVATE void sqlite3HashClear(Hash*);
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Hash h;
+** HashElem *p;
+** ...
+** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
+** SomeStructure *pData = sqliteHashData(p);
+** // do something with pData
+** }
+*/
+#define sqliteHashFirst(H) ((H)->first)
+#define sqliteHashNext(E) ((E)->next)
+#define sqliteHashData(E) ((E)->data)
+/* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */
+/* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */
+
+/*
+** Number of entries in a hash table
+*/
+/* #define sqliteHashCount(H) ((H)->count) // NOT USED */
+
+#endif /* _SQLITE_HASH_H_ */
+
+/************** End of hash.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include parse.h in the middle of sqliteInt.h *****************/
+/************** Begin file parse.h *******************************************/
+#define TK_SEMI 1
+#define TK_EXPLAIN 2
+#define TK_QUERY 3
+#define TK_PLAN 4
+#define TK_BEGIN 5
+#define TK_TRANSACTION 6
+#define TK_DEFERRED 7
+#define TK_IMMEDIATE 8
+#define TK_EXCLUSIVE 9
+#define TK_COMMIT 10
+#define TK_END 11
+#define TK_ROLLBACK 12
+#define TK_SAVEPOINT 13
+#define TK_RELEASE 14
+#define TK_TO 15
+#define TK_TABLE 16
+#define TK_CREATE 17
+#define TK_IF 18
+#define TK_NOT 19
+#define TK_EXISTS 20
+#define TK_TEMP 21
+#define TK_LP 22
+#define TK_RP 23
+#define TK_AS 24
+#define TK_COMMA 25
+#define TK_ID 26
+#define TK_INDEXED 27
+#define TK_ABORT 28
+#define TK_ACTION 29
+#define TK_AFTER 30
+#define TK_ANALYZE 31
+#define TK_ASC 32
+#define TK_ATTACH 33
+#define TK_BEFORE 34
+#define TK_BY 35
+#define TK_CASCADE 36
+#define TK_CAST 37
+#define TK_COLUMNKW 38
+#define TK_CONFLICT 39
+#define TK_DATABASE 40
+#define TK_DESC 41
+#define TK_DETACH 42
+#define TK_EACH 43
+#define TK_FAIL 44
+#define TK_FOR 45
+#define TK_IGNORE 46
+#define TK_INITIALLY 47
+#define TK_INSTEAD 48
+#define TK_LIKE_KW 49
+#define TK_MATCH 50
+#define TK_NO 51
+#define TK_KEY 52
+#define TK_OF 53
+#define TK_OFFSET 54
+#define TK_PRAGMA 55
+#define TK_RAISE 56
+#define TK_REPLACE 57
+#define TK_RESTRICT 58
+#define TK_ROW 59
+#define TK_TRIGGER 60
+#define TK_VACUUM 61
+#define TK_VIEW 62
+#define TK_VIRTUAL 63
+#define TK_REINDEX 64
+#define TK_RENAME 65
+#define TK_CTIME_KW 66
+#define TK_ANY 67
+#define TK_OR 68
+#define TK_AND 69
+#define TK_IS 70
+#define TK_BETWEEN 71
+#define TK_IN 72
+#define TK_ISNULL 73
+#define TK_NOTNULL 74
+#define TK_NE 75
+#define TK_EQ 76
+#define TK_GT 77
+#define TK_LE 78
+#define TK_LT 79
+#define TK_GE 80
+#define TK_ESCAPE 81
+#define TK_BITAND 82
+#define TK_BITOR 83
+#define TK_LSHIFT 84
+#define TK_RSHIFT 85
+#define TK_PLUS 86
+#define TK_MINUS 87
+#define TK_STAR 88
+#define TK_SLASH 89
+#define TK_REM 90
+#define TK_CONCAT 91
+#define TK_COLLATE 92
+#define TK_BITNOT 93
+#define TK_STRING 94
+#define TK_JOIN_KW 95
+#define TK_CONSTRAINT 96
+#define TK_DEFAULT 97
+#define TK_NULL 98
+#define TK_PRIMARY 99
+#define TK_UNIQUE 100
+#define TK_CHECK 101
+#define TK_REFERENCES 102
+#define TK_AUTOINCR 103
+#define TK_ON 104
+#define TK_INSERT 105
+#define TK_DELETE 106
+#define TK_UPDATE 107
+#define TK_SET 108
+#define TK_DEFERRABLE 109
+#define TK_FOREIGN 110
+#define TK_DROP 111
+#define TK_UNION 112
+#define TK_ALL 113
+#define TK_EXCEPT 114
+#define TK_INTERSECT 115
+#define TK_SELECT 116
+#define TK_DISTINCT 117
+#define TK_DOT 118
+#define TK_FROM 119
+#define TK_JOIN 120
+#define TK_USING 121
+#define TK_ORDER 122
+#define TK_GROUP 123
+#define TK_HAVING 124
+#define TK_LIMIT 125
+#define TK_WHERE 126
+#define TK_INTO 127
+#define TK_VALUES 128
+#define TK_INTEGER 129
+#define TK_FLOAT 130
+#define TK_BLOB 131
+#define TK_REGISTER 132
+#define TK_VARIABLE 133
+#define TK_CASE 134
+#define TK_WHEN 135
+#define TK_THEN 136
+#define TK_ELSE 137
+#define TK_INDEX 138
+#define TK_ALTER 139
+#define TK_ADD 140
+#define TK_TO_TEXT 141
+#define TK_TO_BLOB 142
+#define TK_TO_NUMERIC 143
+#define TK_TO_INT 144
+#define TK_TO_REAL 145
+#define TK_ISNOT 146
+#define TK_END_OF_FILE 147
+#define TK_ILLEGAL 148
+#define TK_SPACE 149
+#define TK_UNCLOSED_STRING 150
+#define TK_FUNCTION 151
+#define TK_COLUMN 152
+#define TK_AGG_FUNCTION 153
+#define TK_AGG_COLUMN 154
+#define TK_CONST_FUNC 155
+#define TK_UMINUS 156
+#define TK_UPLUS 157
+
+/************** End of parse.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+#include
+#include
+#include
+#include
+#include
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite_int64
+# define LONGDOUBLE_TYPE sqlite_int64
+# ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
+# endif
+# define SQLITE_OMIT_DATETIME_FUNCS 1
+# define SQLITE_OMIT_TRACE 1
+# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+# undef SQLITE_HAVE_ISNAN
+#endif
+#ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (1e99)
+#endif
+
+/*
+** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
+** afterward. Having this macro allows us to cause the C compiler
+** to omit code used by TEMP tables without messy #ifndef statements.
+*/
+#ifdef SQLITE_OMIT_TEMPDB
+#define OMIT_TEMPDB 1
+#else
+#define OMIT_TEMPDB 0
+#endif
+
+/*
+** The "file format" number is an integer that is incremented whenever
+** the VDBE-level file format changes. The following macros define the
+** the default file format for new databases and the maximum file format
+** that the library can read.
+*/
+#define SQLITE_MAX_FILE_FORMAT 4
+#ifndef SQLITE_DEFAULT_FILE_FORMAT
+# define SQLITE_DEFAULT_FILE_FORMAT 1
+#endif
+
+/*
+** Determine whether triggers are recursive by default. This can be
+** changed at run-time using a pragma.
+*/
+#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
+# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
+#endif
+
+/*
+** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
+** on the command-line
+*/
+#ifndef SQLITE_TEMP_STORE
+# define SQLITE_TEMP_STORE 1
+#endif
+
+/*
+** GCC does not define the offsetof() macro so we'll have to do it
+** ourselves.
+*/
+#ifndef offsetof
+#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
+#endif
+
+/*
+** Check to see if this machine uses EBCDIC. (Yes, believe it or
+** not, there are still machines out there that use EBCDIC.)
+*/
+#if 'A' == '\301'
+# define SQLITE_EBCDIC 1
+#else
+# define SQLITE_ASCII 1
+#endif
+
+/*
+** Integers of known sizes. These typedefs might change for architectures
+** where the sizes very. Preprocessor macros are available so that the
+** types can be conveniently redefined at compile-type. Like this:
+**
+** cc '-DUINTPTR_TYPE=long long int' ...
+*/
+#ifndef UINT32_TYPE
+# ifdef HAVE_UINT32_T
+# define UINT32_TYPE uint32_t
+# else
+# define UINT32_TYPE unsigned int
+# endif
+#endif
+#ifndef UINT16_TYPE
+# ifdef HAVE_UINT16_T
+# define UINT16_TYPE uint16_t
+# else
+# define UINT16_TYPE unsigned short int
+# endif
+#endif
+#ifndef INT16_TYPE
+# ifdef HAVE_INT16_T
+# define INT16_TYPE int16_t
+# else
+# define INT16_TYPE short int
+# endif
+#endif
+#ifndef UINT8_TYPE
+# ifdef HAVE_UINT8_T
+# define UINT8_TYPE uint8_t
+# else
+# define UINT8_TYPE unsigned char
+# endif
+#endif
+#ifndef INT8_TYPE
+# ifdef HAVE_INT8_T
+# define INT8_TYPE int8_t
+# else
+# define INT8_TYPE signed char
+# endif
+#endif
+#ifndef LONGDOUBLE_TYPE
+# define LONGDOUBLE_TYPE long double
+#endif
+typedef sqlite_int64 i64; /* 8-byte signed integer */
+typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
+typedef INT16_TYPE i16; /* 2-byte signed integer */
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
+typedef INT8_TYPE i8; /* 1-byte signed integer */
+
+/*
+** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
+** that can be stored in a u32 without loss of data. The value
+** is 0x00000000ffffffff. But because of quirks of some compilers, we
+** have to specify the value in the less intuitive manner shown:
+*/
+#define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
+
+/*
+** Macros to determine whether the machine is big or little endian,
+** evaluated at runtime.
+*/
+#ifdef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const int sqlite3one = 1;
+#else
+SQLITE_PRIVATE const int sqlite3one;
+#endif
+#if defined(i386) || defined(__i386__) || defined(_M_IX86)\
+ || defined(__x86_64) || defined(__x86_64__)
+# define SQLITE_BIGENDIAN 0
+# define SQLITE_LITTLEENDIAN 1
+# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
+#else
+# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
+# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
+# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
+#endif
+
+/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+** These macros are designed to work correctly on both 32-bit and 64-bit
+** compilers.
+*/
+#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+/*
+** Round up a number to the next larger multiple of 8. This is used
+** to force 8-byte alignment on 64-bit architectures.
+*/
+#define ROUND8(x) (((x)+7)&~7)
+
+/*
+** Round down to the nearest multiple of 8
+*/
+#define ROUNDDOWN8(x) ((x)&~7)
+
+/*
+** Assert that the pointer X is aligned to an 8-byte boundary. This
+** macro is used only within assert() to verify that the code gets
+** all alignment restrictions correct.
+**
+** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
+** underlying malloc() implemention might return us 4-byte aligned
+** pointers. In that case, only verify 4-byte alignment.
+*/
+#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
+# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0)
+#else
+# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
+#endif
+
+
+/*
+** An instance of the following structure is used to store the busy-handler
+** callback for a given sqlite handle.
+**
+** The sqlite.busyHandler member of the sqlite struct contains the busy
+** callback for the database handle. Each pager opened via the sqlite
+** handle is passed a pointer to sqlite.busyHandler. The busy-handler
+** callback is currently invoked only from within pager.c.
+*/
+typedef struct BusyHandler BusyHandler;
+struct BusyHandler {
+ int (*xFunc)(void *,int); /* The busy callback */
+ void *pArg; /* First arg to busy callback */
+ int nBusy; /* Incremented with each busy call */
+};
+
+/*
+** Name of the master database table. The master database table
+** is a special table that holds the names and attributes of all
+** user tables and indices.
+*/
+#define MASTER_NAME "sqlite_master"
+#define TEMP_MASTER_NAME "sqlite_temp_master"
+
+/*
+** The root-page of the master database table.
+*/
+#define MASTER_ROOT 1
+
+/*
+** The name of the schema table.
+*/
+#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
+
+/*
+** A convenience macro that returns the number of elements in
+** an array.
+*/
+#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
+
+/*
+** The following value as a destructor means to use sqlite3DbFree().
+** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
+*/
+#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree)
+
+/*
+** When SQLITE_OMIT_WSD is defined, it means that the target platform does
+** not support Writable Static Data (WSD) such as global and static variables.
+** All variables must either be on the stack or dynamically allocated from
+** the heap. When WSD is unsupported, the variable declarations scattered
+** throughout the SQLite code must become constants instead. The SQLITE_WSD
+** macro is used for this purpose. And instead of referencing the variable
+** directly, we use its constant as a key to lookup the run-time allocated
+** buffer that holds real variable. The constant is also the initializer
+** for the run-time allocated buffer.
+**
+** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
+** macros become no-ops and have zero performance impact.
+*/
+#ifdef SQLITE_OMIT_WSD
+ #define SQLITE_WSD const
+ #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
+ #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
+SQLITE_API int sqlite3_wsd_init(int N, int J);
+SQLITE_API void *sqlite3_wsd_find(void *K, int L);
+#else
+ #define SQLITE_WSD
+ #define GLOBAL(t,v) v
+ #define sqlite3GlobalConfig sqlite3Config
+#endif
+
+/*
+** The following macros are used to suppress compiler warnings and to
+** make it clear to human readers when a function parameter is deliberately
+** left unused within the body of a function. This usually happens when
+** a function is called via a function pointer. For example the
+** implementation of an SQL aggregate step callback may not use the
+** parameter indicating the number of arguments passed to the aggregate,
+** if it knows that this is enforced elsewhere.
+**
+** When a function parameter is not used at all within the body of a function,
+** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
+** However, these macros may also be used to suppress warnings related to
+** parameters that may or may not be used depending on compilation options.
+** For example those parameters only used in assert() statements. In these
+** cases the parameters are named as per the usual conventions.
+*/
+#define UNUSED_PARAMETER(x) (void)(x)
+#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
+
+/*
+** Forward references to structures
+*/
+typedef struct AggInfo AggInfo;
+typedef struct AuthContext AuthContext;
+typedef struct AutoincInfo AutoincInfo;
+typedef struct Bitvec Bitvec;
+typedef struct CollSeq CollSeq;
+typedef struct Column Column;
+typedef struct Db Db;
+typedef struct Schema Schema;
+typedef struct Expr Expr;
+typedef struct ExprList ExprList;
+typedef struct ExprSpan ExprSpan;
+typedef struct FKey FKey;
+typedef struct FuncDef FuncDef;
+typedef struct FuncDefHash FuncDefHash;
+typedef struct IdList IdList;
+typedef struct Index Index;
+typedef struct IndexSample IndexSample;
+typedef struct KeyClass KeyClass;
+typedef struct KeyInfo KeyInfo;
+typedef struct Lookaside Lookaside;
+typedef struct LookasideSlot LookasideSlot;
+typedef struct Module Module;
+typedef struct NameContext NameContext;
+typedef struct Parse Parse;
+typedef struct RowSet RowSet;
+typedef struct Savepoint Savepoint;
+typedef struct Select Select;
+typedef struct SrcList SrcList;
+typedef struct StrAccum StrAccum;
+typedef struct Table Table;
+typedef struct TableLock TableLock;
+typedef struct Token Token;
+typedef struct Trigger Trigger;
+typedef struct TriggerPrg TriggerPrg;
+typedef struct TriggerStep TriggerStep;
+typedef struct UnpackedRecord UnpackedRecord;
+typedef struct VTable VTable;
+typedef struct Walker Walker;
+typedef struct WherePlan WherePlan;
+typedef struct WhereInfo WhereInfo;
+typedef struct WhereLevel WhereLevel;
+
+/*
+** Defer sourcing vdbe.h and btree.h until after the "u8" and
+** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
+** pointer types (i.e. FuncDef) defined above.
+*/
+/************** Include btree.h in the middle of sqliteInt.h *****************/
+/************** Begin file btree.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite B-Tree file
+** subsystem. See comments in the source code for a detailed description
+** of what each interface routine does.
+*/
+#ifndef _BTREE_H_
+#define _BTREE_H_
+
+/* TODO: This definition is just included so other modules compile. It
+** needs to be revisited.
+*/
+#define SQLITE_N_BTREE_META 10
+
+/*
+** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
+** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
+*/
+#ifndef SQLITE_DEFAULT_AUTOVACUUM
+ #define SQLITE_DEFAULT_AUTOVACUUM 0
+#endif
+
+#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
+#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
+#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
+
+/*
+** Forward declarations of structure
+*/
+typedef struct Btree Btree;
+typedef struct BtCursor BtCursor;
+typedef struct BtShared BtShared;
+typedef struct BtreeMutexArray BtreeMutexArray;
+
+/*
+** This structure records all of the Btrees that need to hold
+** a mutex before we enter sqlite3VdbeExec(). The Btrees are
+** are placed in aBtree[] in order of aBtree[]->pBt. That way,
+** we can always lock and unlock them all quickly.
+*/
+struct BtreeMutexArray {
+ int nMutex;
+ Btree *aBtree[SQLITE_MAX_ATTACHED+1];
+};
+
+
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ const char *zFilename, /* Name of database file to open */
+ sqlite3 *db, /* Associated database connection */
+ Btree **ppBtree, /* Return open Btree* here */
+ int flags, /* Flags */
+ int vfsFlags /* Flags passed through to VFS open */
+);
+
+/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
+** following values.
+**
+** NOTE: These values must match the corresponding PAGER_ values in
+** pager.h.
+*/
+#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
+#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
+#define BTREE_MEMORY 4 /* In-memory DB. No argument */
+#define BTREE_READONLY 8 /* Open the database in read-only mode */
+#define BTREE_READWRITE 16 /* Open for both reading and writing */
+#define BTREE_CREATE 32 /* Create the database if it does not exist */
+
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
+SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
+SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*);
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree);
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
+SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int);
+
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
+
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
+
+/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
+** of the following flags:
+*/
+#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
+#define BTREE_ZERODATA 2 /* Table has keys only - no data */
+#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
+
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*);
+SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
+
+SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
+
+/*
+** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta
+** should be one of the following values. The integer values are assigned
+** to constants so that the offset of the corresponding field in an
+** SQLite database header may be found using the following formula:
+**
+** offset = 36 + (idx * 4)
+**
+** For example, the free-page-count field is located at byte offset 36 of
+** the database file header. The incr-vacuum-flag field is located at
+** byte offset 64 (== 36+4*7).
+*/
+#define BTREE_FREE_PAGE_COUNT 0
+#define BTREE_SCHEMA_VERSION 1
+#define BTREE_FILE_FORMAT 2
+#define BTREE_DEFAULT_CACHE_SIZE 3
+#define BTREE_LARGEST_ROOT_PAGE 4
+#define BTREE_TEXT_ENCODING 5
+#define BTREE_USER_VERSION 6
+#define BTREE_INCR_VACUUM 7
+
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree*, /* BTree containing table to open */
+ int iTable, /* Index of root page */
+ int wrFlag, /* 1 for writing. 0 for read-only */
+ struct KeyInfo*, /* First argument to compare function */
+ BtCursor *pCursor /* Space to write cursor structure */
+);
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
+SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);
+
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
+ BtCursor*,
+ UnpackedRecord *pUnKey,
+ i64 intKey,
+ int bias,
+ int *pRes
+);
+SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*);
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
+ const void *pData, int nData,
+ int nZero, int bias, int seekResult);
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
+SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
+SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
+SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
+SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64);
+SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*);
+
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
+SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
+
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
+SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
+
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
+#endif
+
+#ifndef SQLITE_OMIT_BTREECOUNT
+SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
+SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
+#endif
+
+/*
+** If we are not using shared cache, then there is no need to
+** use mutexes to access the BtShared structures. So make the
+** Enter and Leave procedures no-ops.
+*/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
+#else
+# define sqlite3BtreeEnter(X)
+# define sqlite3BtreeEnterAll(X)
+#endif
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
+#ifndef NDEBUG
+ /* These routines are used inside assert() statements only. */
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
+#endif
+#else
+
+# define sqlite3BtreeLeave(X)
+# define sqlite3BtreeEnterCursor(X)
+# define sqlite3BtreeLeaveCursor(X)
+# define sqlite3BtreeLeaveAll(X)
+# define sqlite3BtreeMutexArrayEnter(X)
+# define sqlite3BtreeMutexArrayLeave(X)
+# define sqlite3BtreeMutexArrayInsert(X,Y)
+
+# define sqlite3BtreeHoldsMutex(X) 1
+# define sqlite3BtreeHoldsAllMutexes(X) 1
+#endif
+
+
+#endif /* _BTREE_H_ */
+
+/************** End of btree.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include vdbe.h in the middle of sqliteInt.h ******************/
+/************** Begin file vdbe.h ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Header file for the Virtual DataBase Engine (VDBE)
+**
+** This header defines the interface to the virtual database engine
+** or VDBE. The VDBE implements an abstract machine that runs a
+** simple program to access and modify the underlying database.
+*/
+#ifndef _SQLITE_VDBE_H_
+#define _SQLITE_VDBE_H_
+
+/*
+** A single VDBE is an opaque structure named "Vdbe". Only routines
+** in the source file sqliteVdbe.c are allowed to see the insides
+** of this structure.
+*/
+typedef struct Vdbe Vdbe;
+
+/*
+** The names of the following types declared in vdbeInt.h are required
+** for the VdbeOp definition.
+*/
+typedef struct VdbeFunc VdbeFunc;
+typedef struct Mem Mem;
+typedef struct SubProgram SubProgram;
+
+/*
+** A single instruction of the virtual machine has an opcode
+** and as many as three operands. The instruction is recorded
+** as an instance of the following structure:
+*/
+struct VdbeOp {
+ u8 opcode; /* What operation to perform */
+ signed char p4type; /* One of the P4_xxx constants for p4 */
+ u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */
+ u8 p5; /* Fifth parameter is an unsigned character */
+ int p1; /* First operand */
+ int p2; /* Second parameter (often the jump destination) */
+ int p3; /* The third parameter */
+ union { /* fourth parameter */
+ int i; /* Integer value if p4type==P4_INT32 */
+ void *p; /* Generic pointer */
+ char *z; /* Pointer to data for string (char array) types */
+ i64 *pI64; /* Used when p4type is P4_INT64 */
+ double *pReal; /* Used when p4type is P4_REAL */
+ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
+ VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
+ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
+ Mem *pMem; /* Used when p4type is P4_MEM */
+ VTable *pVtab; /* Used when p4type is P4_VTAB */
+ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
+ int *ai; /* Used when p4type is P4_INTARRAY */
+ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */
+ } p4;
+#ifdef SQLITE_DEBUG
+ char *zComment; /* Comment to improve readability */
+#endif
+#ifdef VDBE_PROFILE
+ int cnt; /* Number of times this instruction was executed */
+ u64 cycles; /* Total time spent executing this instruction */
+#endif
+};
+typedef struct VdbeOp VdbeOp;
+
+
+/*
+** A sub-routine used to implement a trigger program.
+*/
+struct SubProgram {
+ VdbeOp *aOp; /* Array of opcodes for sub-program */
+ int nOp; /* Elements in aOp[] */
+ int nMem; /* Number of memory cells required */
+ int nCsr; /* Number of cursors required */
+ int nRef; /* Number of pointers to this structure */
+ void *token; /* id that may be used to recursive triggers */
+};
+
+/*
+** A smaller version of VdbeOp used for the VdbeAddOpList() function because
+** it takes up less space.
+*/
+struct VdbeOpList {
+ u8 opcode; /* What operation to perform */
+ signed char p1; /* First operand */
+ signed char p2; /* Second parameter (often the jump destination) */
+ signed char p3; /* Third parameter */
+};
+typedef struct VdbeOpList VdbeOpList;
+
+/*
+** Allowed values of VdbeOp.p4type
+*/
+#define P4_NOTUSED 0 /* The P4 parameter is not used */
+#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
+#define P4_STATIC (-2) /* Pointer to a static string */
+#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
+#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
+#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
+#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
+#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
+#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
+#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
+#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
+#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
+#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
+#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
+#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
+#define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */
+
+/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
+** is made. That copy is freed when the Vdbe is finalized. But if the
+** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
+** gets freed when the Vdbe is finalized so it still should be obtained
+** from a single sqliteMalloc(). But no copy is made and the calling
+** function should *not* try to free the KeyInfo.
+*/
+#define P4_KEYINFO_HANDOFF (-16)
+#define P4_KEYINFO_STATIC (-17)
+
+/*
+** The Vdbe.aColName array contains 5n Mem structures, where n is the
+** number of columns of data returned by the statement.
+*/
+#define COLNAME_NAME 0
+#define COLNAME_DECLTYPE 1
+#define COLNAME_DATABASE 2
+#define COLNAME_TABLE 3
+#define COLNAME_COLUMN 4
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
+#else
+# ifdef SQLITE_OMIT_DECLTYPE
+# define COLNAME_N 1 /* Store only the name */
+# else
+# define COLNAME_N 2 /* Store the name and decltype */
+# endif
+#endif
+
+/*
+** The following macro converts a relative address in the p2 field
+** of a VdbeOp structure into a negative number so that
+** sqlite3VdbeAddOpList() knows that the address is relative. Calling
+** the macro again restores the address.
+*/
+#define ADDR(X) (-1-(X))
+
+/*
+** The makefile scans the vdbe.c source file and creates the "opcodes.h"
+** header file that defines a number for each opcode used by the VDBE.
+*/
+/************** Include opcodes.h in the middle of vdbe.h ********************/
+/************** Begin file opcodes.h *****************************************/
+/* Automatically generated. Do not edit */
+/* See the mkopcodeh.awk script for details */
+#define OP_Goto 1
+#define OP_Gosub 2
+#define OP_Return 3
+#define OP_Yield 4
+#define OP_HaltIfNull 5
+#define OP_Halt 6
+#define OP_Integer 7
+#define OP_Int64 8
+#define OP_Real 130 /* same as TK_FLOAT */
+#define OP_String8 94 /* same as TK_STRING */
+#define OP_String 9
+#define OP_Null 10
+#define OP_Blob 11
+#define OP_Variable 12
+#define OP_Move 13
+#define OP_Copy 14
+#define OP_SCopy 15
+#define OP_ResultRow 16
+#define OP_Concat 91 /* same as TK_CONCAT */
+#define OP_Add 86 /* same as TK_PLUS */
+#define OP_Subtract 87 /* same as TK_MINUS */
+#define OP_Multiply 88 /* same as TK_STAR */
+#define OP_Divide 89 /* same as TK_SLASH */
+#define OP_Remainder 90 /* same as TK_REM */
+#define OP_CollSeq 17
+#define OP_Function 18
+#define OP_BitAnd 82 /* same as TK_BITAND */
+#define OP_BitOr 83 /* same as TK_BITOR */
+#define OP_ShiftLeft 84 /* same as TK_LSHIFT */
+#define OP_ShiftRight 85 /* same as TK_RSHIFT */
+#define OP_AddImm 20
+#define OP_MustBeInt 21
+#define OP_RealAffinity 22
+#define OP_ToText 141 /* same as TK_TO_TEXT */
+#define OP_ToBlob 142 /* same as TK_TO_BLOB */
+#define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/
+#define OP_ToInt 144 /* same as TK_TO_INT */
+#define OP_ToReal 145 /* same as TK_TO_REAL */
+#define OP_Eq 76 /* same as TK_EQ */
+#define OP_Ne 75 /* same as TK_NE */
+#define OP_Lt 79 /* same as TK_LT */
+#define OP_Le 78 /* same as TK_LE */
+#define OP_Gt 77 /* same as TK_GT */
+#define OP_Ge 80 /* same as TK_GE */
+#define OP_Permutation 23
+#define OP_Compare 24
+#define OP_Jump 25
+#define OP_And 69 /* same as TK_AND */
+#define OP_Or 68 /* same as TK_OR */
+#define OP_Not 19 /* same as TK_NOT */
+#define OP_BitNot 93 /* same as TK_BITNOT */
+#define OP_If 26
+#define OP_IfNot 27
+#define OP_IsNull 73 /* same as TK_ISNULL */
+#define OP_NotNull 74 /* same as TK_NOTNULL */
+#define OP_Column 28
+#define OP_Affinity 29
+#define OP_MakeRecord 30
+#define OP_Count 31
+#define OP_Savepoint 32
+#define OP_AutoCommit 33
+#define OP_Transaction 34
+#define OP_ReadCookie 35
+#define OP_SetCookie 36
+#define OP_VerifyCookie 37
+#define OP_OpenRead 38
+#define OP_OpenWrite 39
+#define OP_OpenEphemeral 40
+#define OP_OpenPseudo 41
+#define OP_Close 42
+#define OP_SeekLt 43
+#define OP_SeekLe 44
+#define OP_SeekGe 45
+#define OP_SeekGt 46
+#define OP_Seek 47
+#define OP_NotFound 48
+#define OP_Found 49
+#define OP_IsUnique 50
+#define OP_NotExists 51
+#define OP_Sequence 52
+#define OP_NewRowid 53
+#define OP_Insert 54
+#define OP_InsertInt 55
+#define OP_Delete 56
+#define OP_ResetCount 57
+#define OP_RowKey 58
+#define OP_RowData 59
+#define OP_Rowid 60
+#define OP_NullRow 61
+#define OP_Last 62
+#define OP_Sort 63
+#define OP_Rewind 64
+#define OP_Prev 65
+#define OP_Next 66
+#define OP_IdxInsert 67
+#define OP_IdxDelete 70
+#define OP_IdxRowid 71
+#define OP_IdxLT 72
+#define OP_IdxGE 81
+#define OP_Destroy 92
+#define OP_Clear 95
+#define OP_CreateIndex 96
+#define OP_CreateTable 97
+#define OP_ParseSchema 98
+#define OP_LoadAnalysis 99
+#define OP_DropTable 100
+#define OP_DropIndex 101
+#define OP_DropTrigger 102
+#define OP_IntegrityCk 103
+#define OP_RowSetAdd 104
+#define OP_RowSetRead 105
+#define OP_RowSetTest 106
+#define OP_Program 107
+#define OP_Param 108
+#define OP_FkCounter 109
+#define OP_FkIfZero 110
+#define OP_MemMax 111
+#define OP_IfPos 112
+#define OP_IfNeg 113
+#define OP_IfZero 114
+#define OP_AggStep 115
+#define OP_AggFinal 116
+#define OP_Vacuum 117
+#define OP_IncrVacuum 118
+#define OP_Expire 119
+#define OP_TableLock 120
+#define OP_VBegin 121
+#define OP_VCreate 122
+#define OP_VDestroy 123
+#define OP_VOpen 124
+#define OP_VFilter 125
+#define OP_VColumn 126
+#define OP_VNext 127
+#define OP_VRename 128
+#define OP_VUpdate 129
+#define OP_Pagecount 131
+#define OP_Trace 132
+#define OP_Noop 133
+#define OP_Explain 134
+
+/* The following opcode values are never used */
+#define OP_NotUsed_135 135
+#define OP_NotUsed_136 136
+#define OP_NotUsed_137 137
+#define OP_NotUsed_138 138
+#define OP_NotUsed_139 139
+#define OP_NotUsed_140 140
+
+
+/* Properties such as "out2" or "jump" that are specified in
+** comments following the "case" for each opcode in the vdbe.c
+** are encoded into bitvectors as follows:
+*/
+#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
+#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
+#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
+#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
+#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
+#define OPFLG_OUT2 0x0020 /* out2: P2 is an output */
+#define OPFLG_OUT3 0x0040 /* out3: P3 is an output */
+#define OPFLG_INITIALIZER {\
+/* 0 */ 0x00, 0x01, 0x05, 0x04, 0x04, 0x10, 0x00, 0x02,\
+/* 8 */ 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x24, 0x24,\
+/* 16 */ 0x00, 0x00, 0x00, 0x24, 0x04, 0x05, 0x04, 0x00,\
+/* 24 */ 0x00, 0x01, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02,\
+/* 32 */ 0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x00, 0x00,\
+/* 40 */ 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x08,\
+/* 48 */ 0x11, 0x11, 0x11, 0x11, 0x02, 0x02, 0x00, 0x00,\
+/* 56 */ 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x01,\
+/* 64 */ 0x01, 0x01, 0x01, 0x08, 0x4c, 0x4c, 0x00, 0x02,\
+/* 72 */ 0x01, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
+/* 80 */ 0x15, 0x01, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c,\
+/* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x02, 0x24, 0x02, 0x00,\
+/* 96 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
+/* 104 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x00, 0x01, 0x08,\
+/* 112 */ 0x05, 0x05, 0x05, 0x00, 0x00, 0x00, 0x01, 0x00,\
+/* 120 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01,\
+/* 128 */ 0x00, 0x00, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00,\
+/* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04,\
+/* 144 */ 0x04, 0x04,}
+
+/************** End of opcodes.h *********************************************/
+/************** Continuing where we left off in vdbe.h ***********************/
+
+/*
+** Prototypes for the VDBE interface. See comments on the implementation
+** for a description of what each of these routines does.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*);
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
+SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int);
+SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
+SQLITE_PRIVATE void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int);
+SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8);
+SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int);
+#ifndef SQLITE_OMIT_TRACE
+SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*);
+#endif
+
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int);
+SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
+
+
+#ifndef NDEBUG
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
+# define VdbeComment(X) sqlite3VdbeComment X
+SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
+# define VdbeNoopComment(X) sqlite3VdbeNoopComment X
+#else
+# define VdbeComment(X)
+# define VdbeNoopComment(X)
+#endif
+
+#endif
+
+/************** End of vdbe.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include pager.h in the middle of sqliteInt.h *****************/
+/************** Begin file pager.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem. The page cache subsystem reads and writes a file a page
+** at a time and provides a journal for rollback.
+*/
+
+#ifndef _PAGER_H_
+#define _PAGER_H_
+
+/*
+** Default maximum size for persistent journal files. A negative
+** value means no limit. This value may be overridden using the
+** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
+*/
+#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
+ #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
+#endif
+
+/*
+** The type used to represent a page number. The first page in a file
+** is called page 1. 0 is used to represent "not a page".
+*/
+typedef u32 Pgno;
+
+/*
+** Each open file is managed by a separate instance of the "Pager" structure.
+*/
+typedef struct Pager Pager;
+
+/*
+** Handle type for pages.
+*/
+typedef struct PgHdr DbPage;
+
+/*
+** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
+** reserved for working around a windows/posix incompatibility). It is
+** used in the journal to signify that the remainder of the journal file
+** is devoted to storing a master journal name - there are no more pages to
+** roll back. See comments for function writeMasterJournal() in pager.c
+** for details.
+*/
+#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))
+
+/*
+** Allowed values for the flags parameter to sqlite3PagerOpen().
+**
+** NOTE: These values must match the corresponding BTREE_ values in btree.h.
+*/
+#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
+#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
+
+/*
+** Valid values for the second argument to sqlite3PagerLockingMode().
+*/
+#define PAGER_LOCKINGMODE_QUERY -1
+#define PAGER_LOCKINGMODE_NORMAL 0
+#define PAGER_LOCKINGMODE_EXCLUSIVE 1
+
+/*
+** Valid values for the second argument to sqlite3PagerJournalMode().
+*/
+#define PAGER_JOURNALMODE_QUERY -1
+#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
+#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
+#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
+#define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */
+#define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */
+
+/*
+** The remainder of this file contains the declarations of the functions
+** that make up the Pager sub-system API. See source code comments for
+** a detailed description of each routine.
+*/
+
+/* Open and close a Pager connection. */
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs*,
+ Pager **ppPager,
+ const char*,
+ int,
+ int,
+ int,
+ void(*)(DbPage*)
+);
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
+
+/* Functions used to configure a Pager object. */
+SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*, int);
+SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
+SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int);
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
+SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int);
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
+
+/* Functions used to obtain and release page references. */
+SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
+#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
+
+/* Operations on page references. */
+SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*);
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
+
+/* Functions used to manage pager transactions and savepoints. */
+SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*, int*);
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int);
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager);
+
+/* Functions used to query pager state and configuration. */
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*);
+SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
+SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
+
+/* Functions used to truncate the database file. */
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);
+
+/* Functions to support testing and debugging. */
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
+#endif
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
+SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
+ void disable_simulated_io_errors(void);
+ void enable_simulated_io_errors(void);
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+#endif /* _PAGER_H_ */
+
+/************** End of pager.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include pcache.h in the middle of sqliteInt.h ****************/
+/************** Begin file pcache.h ******************************************/
+/*
+** 2008 August 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem.
+*/
+
+#ifndef _PCACHE_H_
+
+typedef struct PgHdr PgHdr;
+typedef struct PCache PCache;
+
+/*
+** Every page in the cache is controlled by an instance of the following
+** structure.
+*/
+struct PgHdr {
+ void *pData; /* Content of this page */
+ void *pExtra; /* Extra content */
+ PgHdr *pDirty; /* Transient list of dirty pages */
+ Pgno pgno; /* Page number for this page */
+ Pager *pPager; /* The pager this page is part of */
+#ifdef SQLITE_CHECK_PAGES
+ u32 pageHash; /* Hash of page content */
+#endif
+ u16 flags; /* PGHDR flags defined below */
+
+ /**********************************************************************
+ ** Elements above are public. All that follows is private to pcache.c
+ ** and should not be accessed by other modules.
+ */
+ i16 nRef; /* Number of users of this page */
+ PCache *pCache; /* Cache that owns this page */
+
+ PgHdr *pDirtyNext; /* Next element in list of dirty pages */
+ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */
+};
+
+/* Bit values for PgHdr.flags */
+#define PGHDR_DIRTY 0x002 /* Page has changed */
+#define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before
+ ** writing this page to the database */
+#define PGHDR_NEED_READ 0x008 /* Content is unread */
+#define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */
+#define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */
+
+/* Initialize and shutdown the page cache subsystem */
+SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
+SQLITE_PRIVATE void sqlite3PcacheShutdown(void);
+
+/* Page cache buffer management:
+** These routines implement SQLITE_CONFIG_PAGECACHE.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n);
+
+/* Create a new pager cache.
+** Under memory stress, invoke xStress to try to make pages clean.
+** Only clean and unpinned pages can be reclaimed.
+*/
+SQLITE_PRIVATE void sqlite3PcacheOpen(
+ int szPage, /* Size of every page */
+ int szExtra, /* Extra space associated with each page */
+ int bPurgeable, /* True if pages are on backing store */
+ int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
+ void *pStress, /* Argument to xStress */
+ PCache *pToInit /* Preallocated space for the PCache */
+);
+
+/* Modify the page-size after the cache has been created. */
+SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int);
+
+/* Return the size in bytes of a PCache object. Used to preallocate
+** storage space.
+*/
+SQLITE_PRIVATE int sqlite3PcacheSize(void);
+
+/* One release per successful fetch. Page is pinned until released.
+** Reference counted.
+*/
+SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**);
+SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*);
+
+SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */
+SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */
+SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */
+SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */
+
+/* Change a page number. Used by incr-vacuum. */
+SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno);
+
+/* Remove all pages with pgno>x. Reset the cache if x==0 */
+SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x);
+
+/* Get a list of all dirty pages in the cache, sorted by page number */
+SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*);
+
+/* Reset and close the cache object */
+SQLITE_PRIVATE void sqlite3PcacheClose(PCache*);
+
+/* Clear flags from pages of the page cache */
+SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *);
+
+/* Discard the contents of the cache */
+SQLITE_PRIVATE void sqlite3PcacheClear(PCache*);
+
+/* Return the total number of outstanding page references */
+SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*);
+
+/* Increment the reference count of an existing page */
+SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*);
+
+SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*);
+
+/* Return the total number of pages stored in the cache */
+SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*);
+
+#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
+/* Iterate through all dirty pages currently stored in the cache. This
+** interface is only available if SQLITE_CHECK_PAGES is defined when the
+** library is built.
+*/
+SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
+#endif
+
+/* Set and get the suggested cache-size for the specified pager-cache.
+**
+** If no global maximum is configured, then the system attempts to limit
+** the total number of pages cached by purgeable pager-caches to the sum
+** of the suggested cache-sizes.
+*/
+SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
+#endif
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/* Try to return memory used by the pcache module to the main memory heap */
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
+#endif
+
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);
+
+#endif /* _PCACHE_H_ */
+
+/************** End of pcache.h **********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/************** Include os.h in the middle of sqliteInt.h ********************/
+/************** Begin file os.h **********************************************/
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file (together with is companion C source-code file
+** "os.c") attempt to abstract the underlying operating system so that
+** the SQLite library will work on both POSIX and windows systems.
+**
+** This header file is #include-ed by sqliteInt.h and thus ends up
+** being included by every source file.
+*/
+#ifndef _SQLITE_OS_H_
+#define _SQLITE_OS_H_
+
+/*
+** Figure out if we are dealing with Unix, Windows, or some other
+** operating system. After the following block of preprocess macros,
+** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER
+** will defined to either 1 or 0. One of the four will be 1. The other
+** three will be 0.
+*/
+#if defined(SQLITE_OS_OTHER)
+# if SQLITE_OS_OTHER==1
+# undef SQLITE_OS_UNIX
+# define SQLITE_OS_UNIX 0
+# undef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# undef SQLITE_OS_OS2
+# define SQLITE_OS_OS2 0
+# else
+# undef SQLITE_OS_OTHER
+# endif
+#endif
+#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
+# define SQLITE_OS_OTHER 0
+# ifndef SQLITE_OS_WIN
+# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
+# define SQLITE_OS_WIN 1
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 0
+# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 1
+# else
+# define SQLITE_OS_WIN 0
+# define SQLITE_OS_UNIX 1
+# define SQLITE_OS_OS2 0
+# endif
+# else
+# define SQLITE_OS_UNIX 0
+# define SQLITE_OS_OS2 0
+# endif
+#else
+# ifndef SQLITE_OS_WIN
+# define SQLITE_OS_WIN 0
+# endif
+#endif
+
+/*
+** Determine if we are dealing with WindowsCE - which has a much
+** reduced API.
+*/
+#if defined(_WIN32_WCE)
+# define SQLITE_OS_WINCE 1
+#else
+# define SQLITE_OS_WINCE 0
+#endif
+
+
+/*
+** Define the maximum size of a temporary filename
+*/
+#if SQLITE_OS_WIN
+# include
+# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
+#elif SQLITE_OS_OS2
+# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
+# include