-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathprintImpactsTable.py
executable file
·131 lines (105 loc) · 2.81 KB
/
printImpactsTable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
import argparse
import os
import re
import sys
import json
import math
cols = {
'exp' : 'black',
'bkg_stat' : 'blue',
'bkg_th' : 'magenta',
'sig_th' : 'red'
}
names = {
'exp' : 'Experimental',
'bkg_stat' : 'Background Stat.',
'bkg_th' : 'Background Theory',
'sig_th' : 'Signal Theory'
}
poi_labels = {
'RV' : r'\mu_{\mathrm{V}}',
'RF' : r'\mu_{\mathrm{F}}',
'r' : r'\mu'
}
def SymErr(vals):
return (vals[2]-vals[0]) / 2.
def LargestImpact(param, pois):
vals = []
for p in pois:
vals.append(abs(param['impact_'+p]))
return max(vals)
def LargestRank(param, pois):
vals = []
for p in pois:
vals.append(abs(param['rank_'+p]))
return min(vals)
parser = argparse.ArgumentParser(
add_help=True
)
parser.add_argument('-i', '--input')
parser.add_argument('-g', '--groups')
parser.add_argument('--max', default=20, type=float)
args = parser.parse_args()
with open(args.input) as infile:
data = json.load(infile)
with open(args.groups) as infile:
groups_in = json.load(infile)
groups = {}
for key, val in groups_in.iteritems():
for v in val: groups[v] = key
POIs = [x['name'] for x in data['POIs']]
params = data['params']
# Create ranking information
for p in POIs:
params.sort(key = lambda k : LargestImpact(k, [p]), reverse=True)
for i, par in enumerate(params):
par['rank_'+p] = i+1
latex_start = r'\tiny\begin{tabular}{lr@{$ \,\,\pm\,\, $}l'
latex_start += r'rr' * len(POIs)
latex_start += r'}'
header = (
'Nuisance parameters '
r'& \multicolumn{2}{c}{$(\hat{\theta} - \theta_{0})/\Delta\theta$}'
)
for p in POIs:
header += r'& $\Delta\hat{'+ poi_labels[p] + r'}$ & Rank '
header += '\\\\\n\\hline'
latex_end = (
r'\hline'
r'\end{tabular}'
)
print latex_start
print r'\hline'
print r'Parameters of interest & \multicolumn{2}{l}{Best-fit} \\'
print r'\hline'
fmt = '%-60s & %-5.2f & %-5.2f'
for p in data['POIs']:
line = ''
line += fmt % ('$'+poi_labels[p['name']]+'$', p['fit'][1], SymErr(p['fit']))
line += '\\\\'
print line
print r'\hline'
print header
for poi in POIs:
params.sort(key = lambda k : LargestRank(k, [poi]))
for i,p in enumerate(data['params']):
if i >= args.max: break
name = p['name'].replace('_', '\\_')
line = ''
if groups.has_key(p['name']):
line += '\\color{' + cols[groups[p['name']]] + '} '
line += fmt % (name, p['fit'][1] - p['prefit'][1], SymErr(p['fit'])/SymErr(p['prefit']))
for poix in POIs:
line += '& %-5.2f & %-4i' % (p['impact_'+poix], p['rank_'+poix])
line += '\\\\'
print line
print '\\hline'
line = '\multicolumn{5}{l}{Nuisance groups: '
sublines = []
for label,col in cols.iteritems():
sublines.append('\\textcolor{' + col + '}{' + names[label] + '}')
line += ', '.join(sublines)
line += '}\\\\'
print line
print latex_end