-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval_drive.py
83 lines (60 loc) · 2.64 KB
/
eval_drive.py
1
import osfrom sklearn.metrics import recall_score, roc_auc_score, accuracy_score, confusion_matrixfrom util import *import scipy.misc as mcdata_location = ''testing_images_loc = data_location + 'Drive/test/images/'testing_label_loc = data_location + 'Drive/test/label/'test_files = os.listdir(testing_images_loc)test_data = []test_label = []desired_size=592for i in test_files: im = mc.imread(testing_images_loc + i) label = mc.imread(testing_label_loc + i.split('_')[0] + '_manual1.png') old_size = im.shape[:2] # old_size is in (height, width) format delta_w = desired_size - old_size[1] delta_h = desired_size - old_size[0] top, bottom = delta_h // 2, delta_h - (delta_h // 2) left, right = delta_w // 2, delta_w - (delta_w // 2) color = [0, 0, 0] color2 = [0] new_im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) new_label = cv2.copyMakeBorder(label, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color2) test_data.append(cv2.resize(new_im, (desired_size, desired_size))) temp = cv2.resize(new_label, (desired_size, desired_size)) _, temp = cv2.threshold(temp, 127, 255, cv2.THRESH_BINARY) test_label.append(temp)test_data = np.array(test_data)test_label = np.array(test_label)x_test = test_data.astype('float32') / 255.y_test = test_label.astype('float32') / 255.x_test = np.reshape(x_test, (len(x_test), desired_size, desired_size, 3)) # adapt this if using `channels_first` image data formaty_test = np.reshape(y_test, (len(y_test), desired_size, desired_size, 1)) # adapt this if using `channels_first` imy_test=crop_to_shape(y_test,(len(y_test), 584, 565, 1))from RSAN import *model=RSANet(input_size=(desired_size,desired_size,3),start_neurons=1,keep_prob=1,lr=1e-3)weight="Drive/Model/RSAN.h5"if os.path.isfile(weight): model.load_weights(weight)import timestart = time.clock()y_pred = model.predict(x_test)y_pred= crop_to_shape(y_pred,(20,584,565,1))y_pred_threshold = []i=0for y in y_pred: _, temp = cv2.threshold(y, 0.5, 1, cv2.THRESH_BINARY) y_pred_threshold.append(temp) y = y * 255 cv2.imwrite('Drive/test/result/%d.png' % i, y) i+=1y_test = list(np.ravel(y_test))y_pred_threshold = list(np.ravel(y_pred_threshold))tn, fp, fn, tp = confusion_matrix(y_test, y_pred_threshold).ravel()print('Sensitivity:', recall_score(y_test, y_pred_threshold))print('Specificity:', tn / (tn + fp))print("F1:",2*tp/(2*tp+fn+fp))print('Accuracy:', accuracy_score(y_test, y_pred_threshold))print('AUC:', roc_auc_score(y_test, list(np.ravel(y_pred))))