-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_clip.py
192 lines (181 loc) · 12.4 KB
/
train_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import torch.nn as nn
import torch
from torch.utils.data import DataLoader
from torch import optim
import tqdm
import json
import numpy as np
from utils.dataset import *
from utils.model import *
from utils.promptclip import *
import random
import yaml
from datetime import datetime
import sys
from transformers import CLIPImageProcessor
from transformers.utils import logging
class PropertyClassifierEvaluator:
def evaluate(self, preds, labels):
return self.get_correct_num(preds, labels)
def get_correct_num(self, preds, labels):
return (labels == torch.argmax(preds, dim=1)).sum().item()
def main(configs, exp_name, g, device):
# data
image_processor = CLIPImageProcessor.from_pretrained(configs["use_clip"])
train_dataset = CLIPPropertyUniqueDataset(image_processor=image_processor, data_path=configs["data_dir"], split_name="train", flip_p=configs["flip_p"])
val_dataset = CLIPPropertyUniqueDataset(image_processor=image_processor, data_path=configs["data_dir"], split_name="val")
test_dataset = CLIPPropertyUniqueDataset(image_processor=image_processor, data_path=configs["data_dir"], split_name="test")
train_loader = DataLoader(train_dataset, batch_size=configs["batch_size"], shuffle=True, worker_init_fn=seed_worker, generator=g)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, worker_init_fn=seed_worker, generator=g)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, worker_init_fn=seed_worker, generator=g)
# models
encoder = CLIPTactileEncoder(clip_model=configs["use_clip"]).to(device)
classifier = CLIPClassifier(output_size=configs["output_size"]).to(device)
if configs["prompt_learning"]:
clip = PromptLearningCLIPModel.from_pretrained(configs["use_clip"], configs).to(device)
else:
clip = CLIPModel.from_pretrained(configs["use_clip"]).to(device)
vificlip = ViFiCLIP(clip, freeze_text_encoder=True).to(device)
if configs["prompt_learning"]:
for name, param in vificlip.named_parameters():
# Make sure that VPT prompts are updated
if "VPT" in name:
param.requires_grad_(True)
else:
param.requires_grad_(False)
# training
evaluator = PropertyClassifierEvaluator()
loss_fn = torch.nn.CrossEntropyLoss()
optimizer_clip = torch.optim.AdamW(vificlip.parameters(), lr=configs["lr"])
optimizer_classifier = torch.optim.AdamW(classifier.parameters(), lr=configs["classifier_lr"])
scheduler_clip = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_clip, T_max=len(train_loader) / configs["gradient_accumulation_steps"], eta_min=configs["lr"] / 100)
scheduler_classifier = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_classifier, T_max=len(train_loader) / configs["gradient_accumulation_steps"], eta_min=configs["classifier_lr"] / 100)
best_val_acc = -1
epochs = configs["num_epochs"]
for epoch in tqdm.tqdm(range(epochs)):
total_train_hardness_correct, total_train_roughness_correct, total_train_texture_correct, total_train_combined_correct = 0, 0, 0, 0
num_train_samples = 0
vificlip.train()
classifier.train()
for train_batch_step, batch in enumerate(t:=tqdm.tqdm(train_loader)):
objects_tactile_frames, hardness_labels, roughness_labels, texture_labels, all_indices = batch
hardness_labels, roughness_labels, texture_labels = hardness_labels.to(device), roughness_labels.to(device), texture_labels.to(device)
batch_size = objects_tactile_frames[0].shape[0]
all_tactile_embeds = []
for otf in objects_tactile_frames:
video_features, _, _, _ = vificlip(otf.to(device), None, None, all_indices)
all_tactile_embeds.append(video_features) # [(batch_size, output_size)]
all_tactile_embeds = torch.cat(all_tactile_embeds, dim=-1) # (batch_size, output_size)
hardness_preds, roughness_preds, texture_preds = classifier(all_tactile_embeds)
loss = (loss_fn(hardness_preds, hardness_labels) + loss_fn(roughness_preds, roughness_labels) + loss_fn(texture_preds, texture_labels)) / configs["gradient_accumulation_steps"]
loss.backward()
if (train_batch_step + 1) % configs["gradient_accumulation_steps"] == 0:
optimizer_clip.step()
optimizer_classifier.step()
scheduler_clip.step()
scheduler_classifier.step()
optimizer_clip.zero_grad()
optimizer_classifier.zero_grad()
num_train_samples += batch_size
total_train_hardness_correct += evaluator.evaluate(hardness_preds, hardness_labels)
total_train_roughness_correct += evaluator.evaluate(roughness_preds, roughness_labels)
total_train_texture_correct += evaluator.evaluate(texture_preds, texture_labels)
combined_preds = torch.cat([torch.unsqueeze(torch.argmax(hardness_preds, dim=-1), dim=-1), torch.unsqueeze(torch.argmax(roughness_preds, dim=-1), dim=-1), torch.unsqueeze(torch.argmax(texture_preds, dim=-1), dim=-1)], dim=-1)
combined_labels = torch.cat([torch.unsqueeze(hardness_labels, dim=-1), torch.unsqueeze(roughness_labels, dim=-1), torch.unsqueeze(texture_labels, dim=-1)], dim=-1)
total_train_combined_correct += np.sum(np.all(combined_preds.cpu().detach().numpy() == combined_labels.cpu().detach().numpy(), axis=-1))
# validation
vificlip.eval()
classifier.eval()
# total_val_correct = 0
total_val_hardness_correct, total_val_roughness_correct, total_val_texture_correct, total_val_combined_correct = 0, 0, 0, 0
num_val_samples = 0
with torch.no_grad():
for val_sample_step, batch in enumerate(t:=tqdm.tqdm(val_loader)):
objects_tactile_frames, hardness_labels, roughness_labels, texture_labels, all_indices = batch
hardness_labels, roughness_labels, texture_labels = hardness_labels.to(device), roughness_labels.to(device), texture_labels.to(device)
batch_size = objects_tactile_frames[0].shape[0]
all_tactile_embeds = []
for otf in objects_tactile_frames:
video_features, _, _, _ = vificlip(otf.to(device), None, None, all_indices)
all_tactile_embeds.append(video_features) # [(batch_size, output_size), (batch_size, output_size)]
all_tactile_embeds = torch.cat(all_tactile_embeds, dim=-1) # (batch_size, output_size * 2)
hardness_preds, roughness_preds, texture_preds = classifier(all_tactile_embeds)
num_val_samples += batch_size
total_val_hardness_correct += evaluator.evaluate(hardness_preds, hardness_labels)
total_val_roughness_correct += evaluator.evaluate(roughness_preds, roughness_labels)
total_val_texture_correct += evaluator.evaluate(texture_preds, texture_labels)
combined_preds = torch.cat([torch.unsqueeze(torch.argmax(hardness_preds, dim=-1), dim=-1), torch.unsqueeze(torch.argmax(roughness_preds, dim=-1), dim=-1), torch.unsqueeze(torch.argmax(texture_preds, dim=-1), dim=-1)], dim=-1)
combined_labels = torch.cat([torch.unsqueeze(hardness_labels, dim=-1), torch.unsqueeze(roughness_labels, dim=-1), torch.unsqueeze(texture_labels, dim=-1)], dim=-1)
total_val_combined_correct += np.sum(np.all(combined_preds.cpu().detach().numpy() == combined_labels.cpu().detach().numpy(), axis=-1))
total_test_hardness_correct, total_test_roughness_correct, total_test_texture_correct, total_test_combined_correct = 0, 0, 0, 0
num_test_samples = 0
with torch.no_grad():
for test_sample_step, batch in enumerate(t:=tqdm.tqdm(test_loader)):
objects_tactile_frames, hardness_labels, roughness_labels, texture_labels, all_indices = batch
hardness_labels, roughness_labels, texture_labels = hardness_labels.to(device), roughness_labels.to(device), texture_labels.to(device)
batch_size = objects_tactile_frames[0].shape[0]
all_tactile_embeds = []
for otf in objects_tactile_frames:
video_features, _, _, _ = vificlip(otf.to(device), None, None, all_indices)
all_tactile_embeds.append(video_features) # [(batch_size, output_size), (batch_size, output_size)]
all_tactile_embeds = torch.cat(all_tactile_embeds, dim=-1) # (batch_size, output_size * 2)
hardness_preds, roughness_preds, texture_preds = classifier(all_tactile_embeds)
num_test_samples += batch_size
total_test_hardness_correct += evaluator.evaluate(hardness_preds, hardness_labels)
total_test_roughness_correct += evaluator.evaluate(roughness_preds, roughness_labels)
total_test_texture_correct += evaluator.evaluate(texture_preds, texture_labels)
combined_preds = torch.cat([torch.unsqueeze(torch.argmax(hardness_preds, dim=-1), dim=-1), torch.unsqueeze(torch.argmax(roughness_preds, dim=-1), dim=-1), torch.unsqueeze(torch.argmax(texture_preds, dim=-1), dim=-1)], dim=-1)
combined_labels = torch.cat([torch.unsqueeze(hardness_labels, dim=-1), torch.unsqueeze(roughness_labels, dim=-1), torch.unsqueeze(texture_labels, dim=-1)], dim=-1)
total_test_combined_correct += np.sum(np.all(combined_preds.cpu().detach().numpy() == combined_labels.cpu().detach().numpy(), axis=-1))
print(f"\nTRAIN epoch: {epoch+1} / {epochs}")
print(f"TRAIN accuracies [hardness, roughness, texture, combined]: {total_train_hardness_correct / num_train_samples}, {total_train_roughness_correct / num_train_samples}, {total_train_texture_correct / num_train_samples}, {total_train_combined_correct / num_train_samples}")
print(f"VAL accuracies [hardness, roughness, texture, combined]: {total_val_hardness_correct / num_val_samples}, {total_val_roughness_correct / num_val_samples}, {total_val_texture_correct / num_val_samples}, {total_val_combined_correct / num_val_samples}")
print(f"TEST accuracies [hardness, roughness, texture, combined]: {total_test_hardness_correct / num_test_samples}, {total_test_roughness_correct / num_test_samples}, {total_test_texture_correct / num_test_samples}, {total_test_combined_correct / num_test_samples}")
if total_val_combined_correct / num_val_samples > best_val_acc:
print("Saving encoder...")
best_val_acc = total_val_combined_correct / num_val_samples
encoder.model.vision_model = vificlip.clip_model.vision_model
torch.save(encoder.state_dict(), f"{configs['exps_path']}/{exp_name}/encoder.pt")
torch.save(classifier.state_dict(), f"{configs['exps_path']}/{exp_name}/classifier.pt")
torch.save(vificlip.state_dict(), f"{configs['exps_path']}/{exp_name}/vificlip.pt")
if __name__ == "__main__":
exp_type = f"train_clip"
config_path = f'configs/{exp_type}_config.yaml'
# get configs
with open(config_path, 'r') as file:
configs = yaml.safe_load(file)
exp_id = input("Identifier for experiment: ")
if len(exp_id) == 0:
exp_id = exp_type
else:
exp_id = exp_type + "_" + exp_id
# make stats and weights folders
now = datetime.now()
exp_name = now.strftime("%Y_%m_%d_%H_%M_%S")
exp_name = exp_name + "_" + exp_id
os.makedirs(f"{configs['exps_path']}", exist_ok=True)
os.makedirs(f"{configs['exps_path']}/{exp_name}", exist_ok=True)
with open(f"{configs['exps_path']}/{exp_name}/{exp_type}_config.yaml", 'w') as file:
documents = yaml.dump(configs, file)
file.close()
# log outputs
sys.stdout = open(f"{configs['exps_path']}/{exp_name}/log.txt", 'w')
logging.set_verbosity_error()
# seed
torch.manual_seed(configs["seed"])
torch.random.manual_seed(configs["seed"])
torch.cuda.manual_seed(configs["seed"])
torch.cuda.manual_seed_all(configs["seed"])
# torch.use_deterministic_algorithms(True)
random.seed(configs["seed"])
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
g = torch.Generator()
g.manual_seed(configs["seed"])
device = f'cuda:{configs["cuda"]}' # for inputs and model if not device_map
print("Training CLIP...")
main(configs, exp_name, g, device)
print("\nCLIP trained!")