-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
157 lines (130 loc) · 5.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*`-
"""
Created on Sat August 1, 2020
@author: Fuqiang
This is the code for TactileSGNet. You may cite it as follows:
Gu, F., Sng, W., Taunyazov, T., & Soh, H. (2020). TactileSGNet: A Spiking Graph Neural Network for Event-based Tactile Object Recognition,IROS 2020.
"""
from __future__ import print_function
import os
import time
from datetime import date
import torchvision.transforms as transforms
import numpy as np
from sklearn.metrics import confusion_matrix
from torch.utils.data import Dataset, DataLoader
from tactileSGNet import*
from torch.autograd import Variable
import random
import tqdm
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
np.random.seed(0)
random.seed(0)
# model name
model_name = '_TactileSGNet_' # tactile
# hyperparameter setting
num_classes = 36
k = 3 # number of nodes to be connected for constructing graph
num_run = 1
learning_rate = 1e-3 #1e-3
num_epochs = 100
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Event-based tactile dataset
class tactileDataset(Dataset):
def __init__(self, data_path, train=True):
if train:
self.files = os.listdir(data_path + '/train')
self.file_path = data_path + '/train/'
else:
self.files = os.listdir(data_path + '/test')
self.file_path = data_path + '/test/'
def __getitem__(self, index):
fileName = self.files[index]
nameStr = fileName.split('_label_')
label = int(nameStr[-1].split('.')[0])
data = torch.from_numpy(np.load(self.file_path + fileName)) #torch.FloatTensor(np.load(self.file_path + fileName))
label = torch.LongTensor([label])
return data, label
def __len__(self):
return len(self.files)
# Decay learning rate
def lr_scheduler(optimizer, epoch, init_lr = 0.01, lr_decay_epoch=30):
if epoch % lr_decay_epoch == 0 and epoch > 1:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.1
return optimizer
# Tactile dataset
data_path = 'Ev-Objects/'
trainDataset = tactileDataset(data_path, train=True)
testDataset = tactileDataset(data_path, train=False)
# run for num_run times
best_acc = torch.zeros(num_run)
acc_list = list([])
training_loss_list = list([])
test_loss_list = list([])
net_list = list([])
for run in range(num_run):
model = TactileSGNet(num_classes, k, device=device)
model.to(device)
criterion = nn.MSELoss() #nn.MSELoss(reduction='sum') #nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, amsgrad=True)
acc = torch.zeros(num_epochs)
training_loss = torch.zeros(num_epochs)
test_loss = torch.zeros(num_epochs)
for epoch in range(num_epochs):
start_time = time.time()
running_loss = 0
for trainData, trainLabel in tqdm.tqdm(trainDataset):
model.zero_grad()
optimizer.zero_grad()
trainData = trainData.to(device)
outputs = model(trainData)
labels_ = torch.zeros(1, num_classes).scatter_(1, trainLabel.view(-1, 1), 1)
loss = criterion(outputs.cpu(), labels_)
running_loss += loss.item()
loss.backward()
optimizer.step()
training_loss[epoch] = running_loss
# testing
correct = 0
total = 0
optimizer = lr_scheduler(optimizer, epoch, learning_rate, 40)
running_loss = 0
with torch.no_grad():
for testData, testLabel in testDataset:
optimizer.zero_grad()
outputs = model(testData, False)
labels_ = torch.zeros(1, num_classes).scatter_(1, testLabel.view(-1, 1), 1)
loss = criterion(outputs.cpu(), labels_)
running_loss += loss.item()
_, predicted = outputs.cpu().max(0)
total += float(testLabel.size(0))
correct += float(predicted.eq(testLabel).sum().item())
test_loss[epoch] = running_loss
acc[epoch] = 100. * float(correct) / float(total)
if best_acc[run] < acc[epoch]:
best_acc[run] = acc[epoch]
test_loss_list.append(test_loss)
training_loss_list.append(training_loss)
acc_list.append(acc)
if (epoch + 1) % 2 == 0:
print('At epoch: %s, training_loss: %f, test_loss: %f, best accuracy: %.3f, time elasped: %.3f' % (epoch + 1, training_loss[epoch], test_loss[epoch], best_acc[run], time.time()-start_time ))
start_time = time.time()
net_list.append(model.state_dict())
# overall state
state = {
'net_list': net_list,
'best_acc': best_acc,
'num_epochs': num_epochs,
'acc_list': acc_list,
'training_loss_list': training_loss_list,
'test_loss_list': test_loss_list,
}
dateStr = date.today().strftime("%Y%m%d")
if not os.path.isdir('log_data'):
os.mkdir('log_data')
torch.save(state, './log_data/' + dateStr + model_name + '_objects_' + str(num_classes) + '_k_' + str(k) + '.t7')
print('Avg acc: %f, std: %f: ' % (torch.mean(state['best_acc']), torch.std(state['best_acc'])))