diff --git a/vaderSentiment/emoji_utf8_lexicon.txt b/vaderSentiment/emoji_utf8_lexicon.txt index 5e1a91b..4ee676c 100644 --- a/vaderSentiment/emoji_utf8_lexicon.txt +++ b/vaderSentiment/emoji_utf8_lexicon.txt @@ -1,3570 +1,3570 @@ -๐Ÿ˜€ grinning face -๐Ÿ˜ beaming face with smiling eyes -๐Ÿ˜‚ face with tears of joy -๐Ÿคฃ rolling on the floor laughing -๐Ÿ˜ƒ grinning face with big eyes -๐Ÿ˜„ grinning face with smiling eyes -๐Ÿ˜… grinning face with sweat -๐Ÿ˜† grinning squinting face -๐Ÿ˜‰ winking face -๐Ÿ˜Š smiling face with smiling eyes -๐Ÿ˜‹ face savoring food -๐Ÿ˜Ž smiling face with sunglasses -๐Ÿ˜ smiling face with heart-eyes -๐Ÿ˜˜ face blowing a kiss -๐Ÿฅฐ smiling face with 3 hearts -๐Ÿ˜— kissing face -๐Ÿ˜™ kissing face with smiling eyes -๐Ÿ˜š kissing face with closed eyes -โ˜บ๏ธ smiling face -โ˜บ smiling face -๐Ÿ™‚ slightly smiling face -๐Ÿค— hugging face -๐Ÿคฉ star-struck -๐Ÿค” thinking face -๐Ÿคจ face with raised eyebrow -๐Ÿ˜ neutral face -๐Ÿ˜‘ expressionless face -๐Ÿ˜ถ face without mouth -๐Ÿ™„ face with rolling eyes -๐Ÿ˜ smirking face -๐Ÿ˜ฃ persevering face -๐Ÿ˜ฅ sad but relieved face -๐Ÿ˜ฎ face with open mouth -๐Ÿค zipper-mouth face -๐Ÿ˜ฏ hushed face -๐Ÿ˜ช sleepy face -๐Ÿ˜ซ tired face -๐Ÿ˜ด sleeping face -๐Ÿ˜Œ relieved face -๐Ÿ˜› face with tongue -๐Ÿ˜œ winking face with tongue -๐Ÿ˜ squinting face with tongue -๐Ÿคค drooling face -๐Ÿ˜’ unamused face -๐Ÿ˜“ downcast face with sweat -๐Ÿ˜” pensive face -๐Ÿ˜• confused face -๐Ÿ™ƒ upside-down face -๐Ÿค‘ money-mouth face -๐Ÿ˜ฒ astonished face -โ˜น๏ธ frowning face -โ˜น frowning face -๐Ÿ™ slightly frowning face -๐Ÿ˜– confounded face -๐Ÿ˜ž disappointed face -๐Ÿ˜Ÿ worried face -๐Ÿ˜ค face with steam from nose -๐Ÿ˜ข crying face -๐Ÿ˜ญ loudly crying face -๐Ÿ˜ฆ frowning face with open mouth -๐Ÿ˜ง anguished face -๐Ÿ˜จ fearful face -๐Ÿ˜ฉ weary face -๐Ÿคฏ exploding head -๐Ÿ˜ฌ grimacing face -๐Ÿ˜ฐ anxious face with sweat -๐Ÿ˜ฑ face screaming in fear -๐Ÿฅต hot face -๐Ÿฅถ cold face -๐Ÿ˜ณ flushed face -๐Ÿคช zany face -๐Ÿ˜ต dizzy face -๐Ÿ˜ก pouting face -๐Ÿ˜  angry face -๐Ÿคฌ face with symbols on mouth -๐Ÿ˜ท face with medical mask -๐Ÿค’ face with thermometer -๐Ÿค• face with head-bandage -๐Ÿคข nauseated face -๐Ÿคฎ face vomiting -๐Ÿคง sneezing face -๐Ÿ˜‡ smiling face with halo -๐Ÿค  cowboy hat face -๐Ÿฅณ partying face -๐Ÿฅด woozy face -๐Ÿฅบ pleading face -๐Ÿคฅ lying face -๐Ÿคซ shushing face -๐Ÿคญ face with hand over mouth -๐Ÿง face with monocle -๐Ÿค“ nerd face -๐Ÿ˜ˆ smiling face with horns -๐Ÿ‘ฟ angry face with horns -๐Ÿคก clown face -๐Ÿ‘น ogre -๐Ÿ‘บ goblin -๐Ÿ’€ skull -โ˜ ๏ธ skull and crossbones -โ˜  skull and crossbones -๐Ÿ‘ป ghost -๐Ÿ‘ฝ alien -๐Ÿ‘พ alien monster -๐Ÿค– robot face -๐Ÿ’ฉ pile of poo -๐Ÿ˜บ grinning cat face -๐Ÿ˜ธ grinning cat face with smiling eyes -๐Ÿ˜น cat face with tears of joy -๐Ÿ˜ป smiling cat face with heart-eyes -๐Ÿ˜ผ cat face with wry smile -๐Ÿ˜ฝ kissing cat face -๐Ÿ™€ weary cat face -๐Ÿ˜ฟ crying cat face -๐Ÿ˜พ pouting cat face -๐Ÿ™ˆ see-no-evil monkey -๐Ÿ™‰ hear-no-evil monkey -๐Ÿ™Š speak-no-evil monkey -๐Ÿป light skin tone -๐Ÿผ medium-light skin tone -๐Ÿฝ medium skin tone -๐Ÿพ medium-dark skin tone -๐Ÿฟ dark skin tone -๐Ÿ‘ถ baby -๐Ÿ‘ถ๐Ÿป baby: light skin tone -๐Ÿ‘ถ๐Ÿผ baby: medium-light skin tone -๐Ÿ‘ถ๐Ÿฝ baby: medium skin tone -๐Ÿ‘ถ๐Ÿพ baby: medium-dark skin tone -๐Ÿ‘ถ๐Ÿฟ baby: dark skin tone -๐Ÿง’ child -๐Ÿง’๐Ÿป child: light skin tone -๐Ÿง’๐Ÿผ child: medium-light skin tone -๐Ÿง’๐Ÿฝ child: medium skin tone -๐Ÿง’๐Ÿพ child: medium-dark skin tone -๐Ÿง’๐Ÿฟ child: dark skin tone -๐Ÿ‘ฆ boy -๐Ÿ‘ฆ๐Ÿป boy: light skin tone -๐Ÿ‘ฆ๐Ÿผ boy: medium-light skin tone -๐Ÿ‘ฆ๐Ÿฝ boy: medium skin tone -๐Ÿ‘ฆ๐Ÿพ boy: medium-dark skin tone -๐Ÿ‘ฆ๐Ÿฟ boy: dark skin tone -๐Ÿ‘ง girl -๐Ÿ‘ง๐Ÿป girl: light skin tone -๐Ÿ‘ง๐Ÿผ girl: medium-light skin tone -๐Ÿ‘ง๐Ÿฝ girl: medium skin tone -๐Ÿ‘ง๐Ÿพ girl: medium-dark skin tone -๐Ÿ‘ง๐Ÿฟ girl: dark skin tone -๐Ÿง‘ adult -๐Ÿง‘๐Ÿป adult: light skin tone -๐Ÿง‘๐Ÿผ adult: medium-light skin tone -๐Ÿง‘๐Ÿฝ adult: medium skin tone -๐Ÿง‘๐Ÿพ adult: medium-dark skin tone -๐Ÿง‘๐Ÿฟ adult: dark skin tone -๐Ÿ‘จ man -๐Ÿ‘จ๐Ÿป man: light skin tone -๐Ÿ‘จ๐Ÿผ man: medium-light skin tone -๐Ÿ‘จ๐Ÿฝ man: medium skin tone -๐Ÿ‘จ๐Ÿพ man: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟ man: dark skin tone -๐Ÿ‘ฉ woman -๐Ÿ‘ฉ๐Ÿป woman: light skin tone -๐Ÿ‘ฉ๐Ÿผ woman: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝ woman: medium skin tone -๐Ÿ‘ฉ๐Ÿพ woman: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟ woman: dark skin tone -๐Ÿง“ older adult -๐Ÿง“๐Ÿป older adult: light skin tone -๐Ÿง“๐Ÿผ older adult: medium-light skin tone -๐Ÿง“๐Ÿฝ older adult: medium skin tone -๐Ÿง“๐Ÿพ older adult: medium-dark skin tone -๐Ÿง“๐Ÿฟ older adult: dark skin tone -๐Ÿ‘ด old man -๐Ÿ‘ด๐Ÿป old man: light skin tone -๐Ÿ‘ด๐Ÿผ old man: medium-light skin tone -๐Ÿ‘ด๐Ÿฝ old man: medium skin tone -๐Ÿ‘ด๐Ÿพ old man: medium-dark skin tone -๐Ÿ‘ด๐Ÿฟ old man: dark skin tone -๐Ÿ‘ต old woman -๐Ÿ‘ต๐Ÿป old woman: light skin tone -๐Ÿ‘ต๐Ÿผ old woman: medium-light skin tone -๐Ÿ‘ต๐Ÿฝ old woman: medium skin tone -๐Ÿ‘ต๐Ÿพ old woman: medium-dark skin tone -๐Ÿ‘ต๐Ÿฟ old woman: dark skin tone -๐Ÿ‘จโ€โš•๏ธ man health worker -๐Ÿ‘จโ€โš• man health worker -๐Ÿ‘จ๐Ÿปโ€โš•๏ธ man health worker: light skin tone -๐Ÿ‘จ๐Ÿปโ€โš• man health worker: light skin tone -๐Ÿ‘จ๐Ÿผโ€โš•๏ธ man health worker: medium-light skin tone -๐Ÿ‘จ๐Ÿผโ€โš• man health worker: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€โš•๏ธ man health worker: medium skin tone -๐Ÿ‘จ๐Ÿฝโ€โš• man health worker: medium skin tone -๐Ÿ‘จ๐Ÿพโ€โš•๏ธ man health worker: medium-dark skin tone -๐Ÿ‘จ๐Ÿพโ€โš• man health worker: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€โš•๏ธ man health worker: dark skin tone -๐Ÿ‘จ๐Ÿฟโ€โš• man health worker: dark skin tone -๐Ÿ‘ฉโ€โš•๏ธ woman health worker -๐Ÿ‘ฉโ€โš• woman health worker -๐Ÿ‘ฉ๐Ÿปโ€โš•๏ธ woman health worker: light skin tone -๐Ÿ‘ฉ๐Ÿปโ€โš• woman health worker: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€โš•๏ธ woman health worker: medium-light skin tone -๐Ÿ‘ฉ๐Ÿผโ€โš• woman health worker: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€โš•๏ธ woman health worker: medium skin tone -๐Ÿ‘ฉ๐Ÿฝโ€โš• woman health worker: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€โš•๏ธ woman health worker: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿพโ€โš• woman health worker: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€โš•๏ธ woman health worker: dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€โš• woman health worker: dark skin tone -๐Ÿ‘จโ€๐ŸŽ“ man student -๐Ÿ‘จ๐Ÿปโ€๐ŸŽ“ man student: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐ŸŽ“ man student: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐ŸŽ“ man student: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐ŸŽ“ man student: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐ŸŽ“ man student: dark skin tone -๐Ÿ‘ฉโ€๐ŸŽ“ woman student -๐Ÿ‘ฉ๐Ÿปโ€๐ŸŽ“ woman student: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐ŸŽ“ woman student: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŽ“ woman student: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐ŸŽ“ woman student: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŽ“ woman student: dark skin tone -๐Ÿ‘จโ€๐Ÿซ man teacher -๐Ÿ‘จ๐Ÿปโ€๐Ÿซ man teacher: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿซ man teacher: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿซ man teacher: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿซ man teacher: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿซ man teacher: dark skin tone -๐Ÿ‘ฉโ€๐Ÿซ woman teacher -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿซ woman teacher: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿซ woman teacher: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿซ woman teacher: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿซ woman teacher: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿซ woman teacher: dark skin tone -๐Ÿ‘จโ€โš–๏ธ man judge -๐Ÿ‘จโ€โš– man judge -๐Ÿ‘จ๐Ÿปโ€โš–๏ธ man judge: light skin tone -๐Ÿ‘จ๐Ÿปโ€โš– man judge: light skin tone -๐Ÿ‘จ๐Ÿผโ€โš–๏ธ man judge: medium-light skin tone -๐Ÿ‘จ๐Ÿผโ€โš– man judge: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€โš–๏ธ man judge: medium skin tone -๐Ÿ‘จ๐Ÿฝโ€โš– man judge: medium skin tone -๐Ÿ‘จ๐Ÿพโ€โš–๏ธ man judge: medium-dark skin tone -๐Ÿ‘จ๐Ÿพโ€โš– man judge: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€โš–๏ธ man judge: dark skin tone -๐Ÿ‘จ๐Ÿฟโ€โš– man judge: dark skin tone -๐Ÿ‘ฉโ€โš–๏ธ woman judge -๐Ÿ‘ฉโ€โš– woman judge -๐Ÿ‘ฉ๐Ÿปโ€โš–๏ธ woman judge: light skin tone -๐Ÿ‘ฉ๐Ÿปโ€โš– woman judge: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€โš–๏ธ woman judge: medium-light skin tone -๐Ÿ‘ฉ๐Ÿผโ€โš– woman judge: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€โš–๏ธ woman judge: medium skin tone -๐Ÿ‘ฉ๐Ÿฝโ€โš– woman judge: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€โš–๏ธ woman judge: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿพโ€โš– woman judge: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€โš–๏ธ woman judge: dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€โš– woman judge: dark skin tone -๐Ÿ‘จโ€๐ŸŒพ man farmer -๐Ÿ‘จ๐Ÿปโ€๐ŸŒพ man farmer: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐ŸŒพ man farmer: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐ŸŒพ man farmer: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐ŸŒพ man farmer: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐ŸŒพ man farmer: dark skin tone -๐Ÿ‘ฉโ€๐ŸŒพ woman farmer -๐Ÿ‘ฉ๐Ÿปโ€๐ŸŒพ woman farmer: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐ŸŒพ woman farmer: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŒพ woman farmer: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐ŸŒพ woman farmer: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŒพ woman farmer: dark skin tone -๐Ÿ‘จโ€๐Ÿณ man cook -๐Ÿ‘จ๐Ÿปโ€๐Ÿณ man cook: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿณ man cook: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿณ man cook: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿณ man cook: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿณ man cook: dark skin tone -๐Ÿ‘ฉโ€๐Ÿณ woman cook -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿณ woman cook: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿณ woman cook: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿณ woman cook: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿณ woman cook: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿณ woman cook: dark skin tone -๐Ÿ‘จโ€๐Ÿ”ง man mechanic -๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ง man mechanic: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿ”ง man mechanic: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿ”ง man mechanic: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿ”ง man mechanic: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿ”ง man mechanic: dark skin tone -๐Ÿ‘ฉโ€๐Ÿ”ง woman mechanic -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ”ง woman mechanic: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ”ง woman mechanic: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ”ง woman mechanic: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ”ง woman mechanic: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ”ง woman mechanic: dark skin tone -๐Ÿ‘จโ€๐Ÿญ man factory worker -๐Ÿ‘จ๐Ÿปโ€๐Ÿญ man factory worker: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿญ man factory worker: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿญ man factory worker: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿญ man factory worker: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿญ man factory worker: dark skin tone -๐Ÿ‘ฉโ€๐Ÿญ woman factory worker -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿญ woman factory worker: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿญ woman factory worker: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿญ woman factory worker: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿญ woman factory worker: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿญ woman factory worker: dark skin tone -๐Ÿ‘จโ€๐Ÿ’ผ man office worker -๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ผ man office worker: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿ’ผ man office worker: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿ’ผ man office worker: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿ’ผ man office worker: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿ’ผ man office worker: dark skin tone -๐Ÿ‘ฉโ€๐Ÿ’ผ woman office worker -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ผ woman office worker: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ’ผ woman office worker: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ’ผ woman office worker: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ’ผ woman office worker: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ’ผ woman office worker: dark skin tone -๐Ÿ‘จโ€๐Ÿ”ฌ man scientist -๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌ man scientist: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿ”ฌ man scientist: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿ”ฌ man scientist: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿ”ฌ man scientist: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿ”ฌ man scientist: dark skin tone -๐Ÿ‘ฉโ€๐Ÿ”ฌ woman scientist -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ”ฌ woman scientist: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ”ฌ woman scientist: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ”ฌ woman scientist: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ”ฌ woman scientist: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ”ฌ woman scientist: dark skin tone -๐Ÿ‘จโ€๐Ÿ’ป man technologist -๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป man technologist: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿ’ป man technologist: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿ’ป man technologist: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿ’ป man technologist: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿ’ป man technologist: dark skin tone -๐Ÿ‘ฉโ€๐Ÿ’ป woman technologist -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ป woman technologist: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ’ป woman technologist: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ’ป woman technologist: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ’ป woman technologist: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ’ป woman technologist: dark skin tone -๐Ÿ‘จโ€๐ŸŽค man singer -๐Ÿ‘จ๐Ÿปโ€๐ŸŽค man singer: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐ŸŽค man singer: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐ŸŽค man singer: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐ŸŽค man singer: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐ŸŽค man singer: dark skin tone -๐Ÿ‘ฉโ€๐ŸŽค woman singer -๐Ÿ‘ฉ๐Ÿปโ€๐ŸŽค woman singer: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐ŸŽค woman singer: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŽค woman singer: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐ŸŽค woman singer: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŽค woman singer: dark skin tone -๐Ÿ‘จโ€๐ŸŽจ man artist -๐Ÿ‘จ๐Ÿปโ€๐ŸŽจ man artist: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐ŸŽจ man artist: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐ŸŽจ man artist: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐ŸŽจ man artist: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐ŸŽจ man artist: dark skin tone -๐Ÿ‘ฉโ€๐ŸŽจ woman artist -๐Ÿ‘ฉ๐Ÿปโ€๐ŸŽจ woman artist: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐ŸŽจ woman artist: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŽจ woman artist: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐ŸŽจ woman artist: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŽจ woman artist: dark skin tone -๐Ÿ‘จโ€โœˆ๏ธ man pilot -๐Ÿ‘จโ€โœˆ man pilot -๐Ÿ‘จ๐Ÿปโ€โœˆ๏ธ man pilot: light skin tone -๐Ÿ‘จ๐Ÿปโ€โœˆ man pilot: light skin tone -๐Ÿ‘จ๐Ÿผโ€โœˆ๏ธ man pilot: medium-light skin tone -๐Ÿ‘จ๐Ÿผโ€โœˆ man pilot: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€โœˆ๏ธ man pilot: medium skin tone -๐Ÿ‘จ๐Ÿฝโ€โœˆ man pilot: medium skin tone -๐Ÿ‘จ๐Ÿพโ€โœˆ๏ธ man pilot: medium-dark skin tone -๐Ÿ‘จ๐Ÿพโ€โœˆ man pilot: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€โœˆ๏ธ man pilot: dark skin tone -๐Ÿ‘จ๐Ÿฟโ€โœˆ man pilot: dark skin tone -๐Ÿ‘ฉโ€โœˆ๏ธ woman pilot -๐Ÿ‘ฉโ€โœˆ woman pilot -๐Ÿ‘ฉ๐Ÿปโ€โœˆ๏ธ woman pilot: light skin tone -๐Ÿ‘ฉ๐Ÿปโ€โœˆ woman pilot: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€โœˆ๏ธ woman pilot: medium-light skin tone -๐Ÿ‘ฉ๐Ÿผโ€โœˆ woman pilot: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€โœˆ๏ธ woman pilot: medium skin tone -๐Ÿ‘ฉ๐Ÿฝโ€โœˆ woman pilot: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€โœˆ๏ธ woman pilot: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿพโ€โœˆ woman pilot: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€โœˆ๏ธ woman pilot: dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€โœˆ woman pilot: dark skin tone -๐Ÿ‘จโ€๐Ÿš€ man astronaut -๐Ÿ‘จ๐Ÿปโ€๐Ÿš€ man astronaut: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿš€ man astronaut: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿš€ man astronaut: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿš€ man astronaut: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿš€ man astronaut: dark skin tone -๐Ÿ‘ฉโ€๐Ÿš€ woman astronaut -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿš€ woman astronaut: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿš€ woman astronaut: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿš€ woman astronaut: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿš€ woman astronaut: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿš€ woman astronaut: dark skin tone -๐Ÿ‘จโ€๐Ÿš’ man firefighter -๐Ÿ‘จ๐Ÿปโ€๐Ÿš’ man firefighter: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿš’ man firefighter: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿš’ man firefighter: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿš’ man firefighter: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿš’ man firefighter: dark skin tone -๐Ÿ‘ฉโ€๐Ÿš’ woman firefighter -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿš’ woman firefighter: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿš’ woman firefighter: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿš’ woman firefighter: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿš’ woman firefighter: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿš’ woman firefighter: dark skin tone -๐Ÿ‘ฎ police officer -๐Ÿ‘ฎ๐Ÿป police officer: light skin tone -๐Ÿ‘ฎ๐Ÿผ police officer: medium-light skin tone -๐Ÿ‘ฎ๐Ÿฝ police officer: medium skin tone -๐Ÿ‘ฎ๐Ÿพ police officer: medium-dark skin tone -๐Ÿ‘ฎ๐Ÿฟ police officer: dark skin tone -๐Ÿ‘ฎโ€โ™‚๏ธ man police officer -๐Ÿ‘ฎโ€โ™‚ man police officer -๐Ÿ‘ฎ๐Ÿปโ€โ™‚๏ธ man police officer: light skin tone -๐Ÿ‘ฎ๐Ÿปโ€โ™‚ man police officer: light skin tone -๐Ÿ‘ฎ๐Ÿผโ€โ™‚๏ธ man police officer: medium-light skin tone -๐Ÿ‘ฎ๐Ÿผโ€โ™‚ man police officer: medium-light skin tone -๐Ÿ‘ฎ๐Ÿฝโ€โ™‚๏ธ man police officer: medium skin tone -๐Ÿ‘ฎ๐Ÿฝโ€โ™‚ man police officer: medium skin tone -๐Ÿ‘ฎ๐Ÿพโ€โ™‚๏ธ man police officer: medium-dark skin tone -๐Ÿ‘ฎ๐Ÿพโ€โ™‚ man police officer: medium-dark skin tone -๐Ÿ‘ฎ๐Ÿฟโ€โ™‚๏ธ man police officer: dark skin tone -๐Ÿ‘ฎ๐Ÿฟโ€โ™‚ man police officer: dark skin tone -๐Ÿ‘ฎโ€โ™€๏ธ woman police officer -๐Ÿ‘ฎโ€โ™€ woman police officer -๐Ÿ‘ฎ๐Ÿปโ€โ™€๏ธ woman police officer: light skin tone -๐Ÿ‘ฎ๐Ÿปโ€โ™€ woman police officer: light skin tone -๐Ÿ‘ฎ๐Ÿผโ€โ™€๏ธ woman police officer: medium-light skin tone -๐Ÿ‘ฎ๐Ÿผโ€โ™€ woman police officer: medium-light skin tone -๐Ÿ‘ฎ๐Ÿฝโ€โ™€๏ธ woman police officer: medium skin tone -๐Ÿ‘ฎ๐Ÿฝโ€โ™€ woman police officer: medium skin tone -๐Ÿ‘ฎ๐Ÿพโ€โ™€๏ธ woman police officer: medium-dark skin tone -๐Ÿ‘ฎ๐Ÿพโ€โ™€ woman police officer: medium-dark skin tone -๐Ÿ‘ฎ๐Ÿฟโ€โ™€๏ธ woman police officer: dark skin tone -๐Ÿ‘ฎ๐Ÿฟโ€โ™€ woman police officer: dark skin tone -๐Ÿ•ต๏ธ detective -๐Ÿ•ต detective -๐Ÿ•ต๐Ÿป detective: light skin tone -๐Ÿ•ต๐Ÿผ detective: medium-light skin tone -๐Ÿ•ต๐Ÿฝ detective: medium skin tone -๐Ÿ•ต๐Ÿพ detective: medium-dark skin tone -๐Ÿ•ต๐Ÿฟ detective: dark skin tone -๐Ÿ•ต๏ธโ€โ™‚๏ธ man detective -๐Ÿ•ตโ€โ™‚๏ธ man detective -๐Ÿ•ต๏ธโ€โ™‚ man detective -๐Ÿ•ตโ€โ™‚ man detective -๐Ÿ•ต๐Ÿปโ€โ™‚๏ธ man detective: light skin tone -๐Ÿ•ต๐Ÿปโ€โ™‚ man detective: light skin tone -๐Ÿ•ต๐Ÿผโ€โ™‚๏ธ man detective: medium-light skin tone -๐Ÿ•ต๐Ÿผโ€โ™‚ man detective: medium-light skin tone -๐Ÿ•ต๐Ÿฝโ€โ™‚๏ธ man detective: medium skin tone -๐Ÿ•ต๐Ÿฝโ€โ™‚ man detective: medium skin tone -๐Ÿ•ต๐Ÿพโ€โ™‚๏ธ man detective: medium-dark skin tone -๐Ÿ•ต๐Ÿพโ€โ™‚ man detective: medium-dark skin tone -๐Ÿ•ต๐Ÿฟโ€โ™‚๏ธ man detective: dark skin tone -๐Ÿ•ต๐Ÿฟโ€โ™‚ man detective: dark skin tone -๐Ÿ•ต๏ธโ€โ™€๏ธ woman detective -๐Ÿ•ตโ€โ™€๏ธ woman detective -๐Ÿ•ต๏ธโ€โ™€ woman detective -๐Ÿ•ตโ€โ™€ woman detective -๐Ÿ•ต๐Ÿปโ€โ™€๏ธ woman detective: light skin tone -๐Ÿ•ต๐Ÿปโ€โ™€ woman detective: light skin tone -๐Ÿ•ต๐Ÿผโ€โ™€๏ธ woman detective: medium-light skin tone -๐Ÿ•ต๐Ÿผโ€โ™€ woman detective: medium-light skin tone -๐Ÿ•ต๐Ÿฝโ€โ™€๏ธ woman detective: medium skin tone -๐Ÿ•ต๐Ÿฝโ€โ™€ woman detective: medium skin tone -๐Ÿ•ต๐Ÿพโ€โ™€๏ธ woman detective: medium-dark skin tone -๐Ÿ•ต๐Ÿพโ€โ™€ woman detective: medium-dark skin tone -๐Ÿ•ต๐Ÿฟโ€โ™€๏ธ woman detective: dark skin tone -๐Ÿ•ต๐Ÿฟโ€โ™€ woman detective: dark skin tone -๐Ÿ’‚ guard -๐Ÿ’‚๐Ÿป guard: light skin tone -๐Ÿ’‚๐Ÿผ guard: medium-light skin tone -๐Ÿ’‚๐Ÿฝ guard: medium skin tone -๐Ÿ’‚๐Ÿพ guard: medium-dark skin tone -๐Ÿ’‚๐Ÿฟ guard: dark skin tone -๐Ÿ’‚โ€โ™‚๏ธ man guard -๐Ÿ’‚โ€โ™‚ man guard -๐Ÿ’‚๐Ÿปโ€โ™‚๏ธ man guard: light skin tone -๐Ÿ’‚๐Ÿปโ€โ™‚ man guard: light skin tone -๐Ÿ’‚๐Ÿผโ€โ™‚๏ธ man guard: medium-light skin tone -๐Ÿ’‚๐Ÿผโ€โ™‚ man guard: medium-light skin tone -๐Ÿ’‚๐Ÿฝโ€โ™‚๏ธ man guard: medium skin tone -๐Ÿ’‚๐Ÿฝโ€โ™‚ man guard: medium skin tone -๐Ÿ’‚๐Ÿพโ€โ™‚๏ธ man guard: medium-dark skin tone -๐Ÿ’‚๐Ÿพโ€โ™‚ man guard: medium-dark skin tone -๐Ÿ’‚๐Ÿฟโ€โ™‚๏ธ man guard: dark skin tone -๐Ÿ’‚๐Ÿฟโ€โ™‚ man guard: dark skin tone -๐Ÿ’‚โ€โ™€๏ธ woman guard -๐Ÿ’‚โ€โ™€ woman guard -๐Ÿ’‚๐Ÿปโ€โ™€๏ธ woman guard: light skin tone -๐Ÿ’‚๐Ÿปโ€โ™€ woman guard: light skin tone -๐Ÿ’‚๐Ÿผโ€โ™€๏ธ woman guard: medium-light skin tone -๐Ÿ’‚๐Ÿผโ€โ™€ woman guard: medium-light skin tone -๐Ÿ’‚๐Ÿฝโ€โ™€๏ธ woman guard: medium skin tone -๐Ÿ’‚๐Ÿฝโ€โ™€ woman guard: medium skin tone -๐Ÿ’‚๐Ÿพโ€โ™€๏ธ woman guard: medium-dark skin tone -๐Ÿ’‚๐Ÿพโ€โ™€ woman guard: medium-dark skin tone -๐Ÿ’‚๐Ÿฟโ€โ™€๏ธ woman guard: dark skin tone -๐Ÿ’‚๐Ÿฟโ€โ™€ woman guard: dark skin tone -๐Ÿ‘ท construction worker -๐Ÿ‘ท๐Ÿป construction worker: light skin tone -๐Ÿ‘ท๐Ÿผ construction worker: medium-light skin tone -๐Ÿ‘ท๐Ÿฝ construction worker: medium skin tone -๐Ÿ‘ท๐Ÿพ construction worker: medium-dark skin tone -๐Ÿ‘ท๐Ÿฟ construction worker: dark skin tone -๐Ÿ‘ทโ€โ™‚๏ธ man construction worker -๐Ÿ‘ทโ€โ™‚ man construction worker -๐Ÿ‘ท๐Ÿปโ€โ™‚๏ธ man construction worker: light skin tone -๐Ÿ‘ท๐Ÿปโ€โ™‚ man construction worker: light skin tone -๐Ÿ‘ท๐Ÿผโ€โ™‚๏ธ man construction worker: medium-light skin tone -๐Ÿ‘ท๐Ÿผโ€โ™‚ man construction worker: medium-light skin tone -๐Ÿ‘ท๐Ÿฝโ€โ™‚๏ธ man construction worker: medium skin tone -๐Ÿ‘ท๐Ÿฝโ€โ™‚ man construction worker: medium skin tone -๐Ÿ‘ท๐Ÿพโ€โ™‚๏ธ man construction worker: medium-dark skin tone -๐Ÿ‘ท๐Ÿพโ€โ™‚ man construction worker: medium-dark skin tone -๐Ÿ‘ท๐Ÿฟโ€โ™‚๏ธ man construction worker: dark skin tone -๐Ÿ‘ท๐Ÿฟโ€โ™‚ man construction worker: dark skin tone -๐Ÿ‘ทโ€โ™€๏ธ woman construction worker -๐Ÿ‘ทโ€โ™€ woman construction worker -๐Ÿ‘ท๐Ÿปโ€โ™€๏ธ woman construction worker: light skin tone -๐Ÿ‘ท๐Ÿปโ€โ™€ woman construction worker: light skin tone -๐Ÿ‘ท๐Ÿผโ€โ™€๏ธ woman construction worker: medium-light skin tone -๐Ÿ‘ท๐Ÿผโ€โ™€ woman construction worker: medium-light skin tone -๐Ÿ‘ท๐Ÿฝโ€โ™€๏ธ woman construction worker: medium skin tone -๐Ÿ‘ท๐Ÿฝโ€โ™€ woman construction worker: medium skin tone -๐Ÿ‘ท๐Ÿพโ€โ™€๏ธ woman construction worker: medium-dark skin tone -๐Ÿ‘ท๐Ÿพโ€โ™€ woman construction worker: medium-dark skin tone -๐Ÿ‘ท๐Ÿฟโ€โ™€๏ธ woman construction worker: dark skin tone -๐Ÿ‘ท๐Ÿฟโ€โ™€ woman construction worker: dark skin tone -๐Ÿคด prince -๐Ÿคด๐Ÿป prince: light skin tone -๐Ÿคด๐Ÿผ prince: medium-light skin tone -๐Ÿคด๐Ÿฝ prince: medium skin tone -๐Ÿคด๐Ÿพ prince: medium-dark skin tone -๐Ÿคด๐Ÿฟ prince: dark skin tone -๐Ÿ‘ธ princess -๐Ÿ‘ธ๐Ÿป princess: light skin tone -๐Ÿ‘ธ๐Ÿผ princess: medium-light skin tone -๐Ÿ‘ธ๐Ÿฝ princess: medium skin tone -๐Ÿ‘ธ๐Ÿพ princess: medium-dark skin tone -๐Ÿ‘ธ๐Ÿฟ princess: dark skin tone -๐Ÿ‘ณ person wearing turban -๐Ÿ‘ณ๐Ÿป person wearing turban: light skin tone -๐Ÿ‘ณ๐Ÿผ person wearing turban: medium-light skin tone -๐Ÿ‘ณ๐Ÿฝ person wearing turban: medium skin tone -๐Ÿ‘ณ๐Ÿพ person wearing turban: medium-dark skin tone -๐Ÿ‘ณ๐Ÿฟ person wearing turban: dark skin tone -๐Ÿ‘ณโ€โ™‚๏ธ man wearing turban -๐Ÿ‘ณโ€โ™‚ man wearing turban -๐Ÿ‘ณ๐Ÿปโ€โ™‚๏ธ man wearing turban: light skin tone -๐Ÿ‘ณ๐Ÿปโ€โ™‚ man wearing turban: light skin tone -๐Ÿ‘ณ๐Ÿผโ€โ™‚๏ธ man wearing turban: medium-light skin tone -๐Ÿ‘ณ๐Ÿผโ€โ™‚ man wearing turban: medium-light skin tone -๐Ÿ‘ณ๐Ÿฝโ€โ™‚๏ธ man wearing turban: medium skin tone -๐Ÿ‘ณ๐Ÿฝโ€โ™‚ man wearing turban: medium skin tone -๐Ÿ‘ณ๐Ÿพโ€โ™‚๏ธ man wearing turban: medium-dark skin tone -๐Ÿ‘ณ๐Ÿพโ€โ™‚ man wearing turban: medium-dark skin tone -๐Ÿ‘ณ๐Ÿฟโ€โ™‚๏ธ man wearing turban: dark skin tone -๐Ÿ‘ณ๐Ÿฟโ€โ™‚ man wearing turban: dark skin tone -๐Ÿ‘ณโ€โ™€๏ธ woman wearing turban -๐Ÿ‘ณโ€โ™€ woman wearing turban -๐Ÿ‘ณ๐Ÿปโ€โ™€๏ธ woman wearing turban: light skin tone -๐Ÿ‘ณ๐Ÿปโ€โ™€ woman wearing turban: light skin tone -๐Ÿ‘ณ๐Ÿผโ€โ™€๏ธ woman wearing turban: medium-light skin tone -๐Ÿ‘ณ๐Ÿผโ€โ™€ woman wearing turban: medium-light skin tone -๐Ÿ‘ณ๐Ÿฝโ€โ™€๏ธ woman wearing turban: medium skin tone -๐Ÿ‘ณ๐Ÿฝโ€โ™€ woman wearing turban: medium skin tone -๐Ÿ‘ณ๐Ÿพโ€โ™€๏ธ woman wearing turban: medium-dark skin tone -๐Ÿ‘ณ๐Ÿพโ€โ™€ woman wearing turban: medium-dark skin tone -๐Ÿ‘ณ๐Ÿฟโ€โ™€๏ธ woman wearing turban: dark skin tone -๐Ÿ‘ณ๐Ÿฟโ€โ™€ woman wearing turban: dark skin tone -๐Ÿ‘ฒ man with Chinese cap -๐Ÿ‘ฒ๐Ÿป man with Chinese cap: light skin tone -๐Ÿ‘ฒ๐Ÿผ man with Chinese cap: medium-light skin tone -๐Ÿ‘ฒ๐Ÿฝ man with Chinese cap: medium skin tone -๐Ÿ‘ฒ๐Ÿพ man with Chinese cap: medium-dark skin tone -๐Ÿ‘ฒ๐Ÿฟ man with Chinese cap: dark skin tone -๐Ÿง• woman with headscarf -๐Ÿง•๐Ÿป woman with headscarf: light skin tone -๐Ÿง•๐Ÿผ woman with headscarf: medium-light skin tone -๐Ÿง•๐Ÿฝ woman with headscarf: medium skin tone -๐Ÿง•๐Ÿพ woman with headscarf: medium-dark skin tone -๐Ÿง•๐Ÿฟ woman with headscarf: dark skin tone -๐Ÿง” bearded person -๐Ÿง”๐Ÿป bearded person: light skin tone -๐Ÿง”๐Ÿผ bearded person: medium-light skin tone -๐Ÿง”๐Ÿฝ bearded person: medium skin tone -๐Ÿง”๐Ÿพ bearded person: medium-dark skin tone -๐Ÿง”๐Ÿฟ bearded person: dark skin tone -๐Ÿ‘ฑ blond-haired person -๐Ÿ‘ฑ๐Ÿป blond-haired person: light skin tone -๐Ÿ‘ฑ๐Ÿผ blond-haired person: medium-light skin tone -๐Ÿ‘ฑ๐Ÿฝ blond-haired person: medium skin tone -๐Ÿ‘ฑ๐Ÿพ blond-haired person: medium-dark skin tone -๐Ÿ‘ฑ๐Ÿฟ blond-haired person: dark skin tone -๐Ÿ‘ฑโ€โ™‚๏ธ blond-haired man -๐Ÿ‘ฑโ€โ™‚ blond-haired man -๐Ÿ‘ฑ๐Ÿปโ€โ™‚๏ธ blond-haired man: light skin tone -๐Ÿ‘ฑ๐Ÿปโ€โ™‚ blond-haired man: light skin tone -๐Ÿ‘ฑ๐Ÿผโ€โ™‚๏ธ blond-haired man: medium-light skin tone -๐Ÿ‘ฑ๐Ÿผโ€โ™‚ blond-haired man: medium-light skin tone -๐Ÿ‘ฑ๐Ÿฝโ€โ™‚๏ธ blond-haired man: medium skin tone -๐Ÿ‘ฑ๐Ÿฝโ€โ™‚ blond-haired man: medium skin tone -๐Ÿ‘ฑ๐Ÿพโ€โ™‚๏ธ blond-haired man: medium-dark skin tone -๐Ÿ‘ฑ๐Ÿพโ€โ™‚ blond-haired man: medium-dark skin tone -๐Ÿ‘ฑ๐Ÿฟโ€โ™‚๏ธ blond-haired man: dark skin tone -๐Ÿ‘ฑ๐Ÿฟโ€โ™‚ blond-haired man: dark skin tone -๐Ÿ‘ฑโ€โ™€๏ธ blond-haired woman -๐Ÿ‘ฑโ€โ™€ blond-haired woman -๐Ÿ‘ฑ๐Ÿปโ€โ™€๏ธ blond-haired woman: light skin tone -๐Ÿ‘ฑ๐Ÿปโ€โ™€ blond-haired woman: light skin tone -๐Ÿ‘ฑ๐Ÿผโ€โ™€๏ธ blond-haired woman: medium-light skin tone -๐Ÿ‘ฑ๐Ÿผโ€โ™€ blond-haired woman: medium-light skin tone -๐Ÿ‘ฑ๐Ÿฝโ€โ™€๏ธ blond-haired woman: medium skin tone -๐Ÿ‘ฑ๐Ÿฝโ€โ™€ blond-haired woman: medium skin tone -๐Ÿ‘ฑ๐Ÿพโ€โ™€๏ธ blond-haired woman: medium-dark skin tone -๐Ÿ‘ฑ๐Ÿพโ€โ™€ blond-haired woman: medium-dark skin tone -๐Ÿ‘ฑ๐Ÿฟโ€โ™€๏ธ blond-haired woman: dark skin tone -๐Ÿ‘ฑ๐Ÿฟโ€โ™€ blond-haired woman: dark skin tone -๐Ÿ‘จโ€๐Ÿฆฐ man, red haired -๐Ÿ‘จ๐Ÿปโ€๐Ÿฆฐ man, red haired: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿฆฐ man, red haired: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆฐ man, red haired: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿฆฐ man, red haired: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆฐ man, red haired: dark skin tone -๐Ÿ‘ฉโ€๐Ÿฆฐ woman, red haired -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆฐ woman, red haired: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆฐ woman, red haired: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆฐ woman, red haired: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆฐ woman, red haired: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆฐ woman, red haired: dark skin tone -๐Ÿ‘จโ€๐Ÿฆฑ man, curly haired -๐Ÿ‘จ๐Ÿปโ€๐Ÿฆฑ man, curly haired: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿฆฑ man, curly haired: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆฑ man, curly haired: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿฆฑ man, curly haired: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆฑ man, curly haired: dark skin tone -๐Ÿ‘ฉโ€๐Ÿฆฑ woman, curly haired -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆฑ woman, curly haired: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆฑ woman, curly haired: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆฑ woman, curly haired: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆฑ woman, curly haired: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆฑ woman, curly haired: dark skin tone -๐Ÿ‘จโ€๐Ÿฆฒ man, bald -๐Ÿ‘จ๐Ÿปโ€๐Ÿฆฒ man, bald: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿฆฒ man, bald: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆฒ man, bald: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿฆฒ man, bald: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆฒ man, bald: dark skin tone -๐Ÿ‘ฉโ€๐Ÿฆฒ woman, bald -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆฒ woman, bald: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆฒ woman, bald: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆฒ woman, bald: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆฒ woman, bald: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆฒ woman, bald: dark skin tone -๐Ÿ‘จโ€๐Ÿฆณ man, white haired -๐Ÿ‘จ๐Ÿปโ€๐Ÿฆณ man, white haired: light skin tone -๐Ÿ‘จ๐Ÿผโ€๐Ÿฆณ man, white haired: medium-light skin tone -๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆณ man, white haired: medium skin tone -๐Ÿ‘จ๐Ÿพโ€๐Ÿฆณ man, white haired: medium-dark skin tone -๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆณ man, white haired: dark skin tone -๐Ÿ‘ฉโ€๐Ÿฆณ woman, white haired -๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆณ woman, white haired: light skin tone -๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆณ woman, white haired: medium-light skin tone -๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆณ woman, white haired: medium skin tone -๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆณ woman, white haired: medium-dark skin tone -๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆณ woman, white haired: dark skin tone -๐Ÿคต man in tuxedo -๐Ÿคต๐Ÿป man in tuxedo: light skin tone -๐Ÿคต๐Ÿผ man in tuxedo: medium-light skin tone -๐Ÿคต๐Ÿฝ man in tuxedo: medium skin tone -๐Ÿคต๐Ÿพ man in tuxedo: medium-dark skin tone -๐Ÿคต๐Ÿฟ man in tuxedo: dark skin tone -๐Ÿ‘ฐ bride with veil -๐Ÿ‘ฐ๐Ÿป bride with veil: light skin tone -๐Ÿ‘ฐ๐Ÿผ bride with veil: medium-light skin tone -๐Ÿ‘ฐ๐Ÿฝ bride with veil: medium skin tone -๐Ÿ‘ฐ๐Ÿพ bride with veil: medium-dark skin tone -๐Ÿ‘ฐ๐Ÿฟ bride with veil: dark skin tone -๐Ÿคฐ pregnant woman -๐Ÿคฐ๐Ÿป pregnant woman: light skin tone -๐Ÿคฐ๐Ÿผ pregnant woman: medium-light skin tone -๐Ÿคฐ๐Ÿฝ pregnant woman: medium skin tone -๐Ÿคฐ๐Ÿพ pregnant woman: medium-dark skin tone -๐Ÿคฐ๐Ÿฟ pregnant woman: dark skin tone -๐Ÿคฑ breast-feeding -๐Ÿคฑ๐Ÿป breast-feeding: light skin tone -๐Ÿคฑ๐Ÿผ breast-feeding: medium-light skin tone -๐Ÿคฑ๐Ÿฝ breast-feeding: medium skin tone -๐Ÿคฑ๐Ÿพ breast-feeding: medium-dark skin tone -๐Ÿคฑ๐Ÿฟ breast-feeding: dark skin tone -๐Ÿ‘ผ baby angel -๐Ÿ‘ผ๐Ÿป baby angel: light skin tone -๐Ÿ‘ผ๐Ÿผ baby angel: medium-light skin tone -๐Ÿ‘ผ๐Ÿฝ baby angel: medium skin tone -๐Ÿ‘ผ๐Ÿพ baby angel: medium-dark skin tone -๐Ÿ‘ผ๐Ÿฟ baby angel: dark skin tone -๐ŸŽ… Santa Claus -๐ŸŽ…๐Ÿป Santa Claus: light skin tone -๐ŸŽ…๐Ÿผ Santa Claus: medium-light skin tone -๐ŸŽ…๐Ÿฝ Santa Claus: medium skin tone -๐ŸŽ…๐Ÿพ Santa Claus: medium-dark skin tone -๐ŸŽ…๐Ÿฟ Santa Claus: dark skin tone -๐Ÿคถ Mrs. Claus -๐Ÿคถ๐Ÿป Mrs. Claus: light skin tone -๐Ÿคถ๐Ÿผ Mrs. Claus: medium-light skin tone -๐Ÿคถ๐Ÿฝ Mrs. Claus: medium skin tone -๐Ÿคถ๐Ÿพ Mrs. Claus: medium-dark skin tone -๐Ÿคถ๐Ÿฟ Mrs. Claus: dark skin tone -๐Ÿฆธ superhero -๐Ÿฆธ๐Ÿป superhero: light skin tone -๐Ÿฆธ๐Ÿผ superhero: medium-light skin tone -๐Ÿฆธ๐Ÿฝ superhero: medium skin tone -๐Ÿฆธ๐Ÿพ superhero: medium-dark skin tone -๐Ÿฆธ๐Ÿฟ superhero: dark skin tone -๐Ÿฆธโ€โ™€๏ธ woman superhero -๐Ÿฆธโ€โ™€ woman superhero -๐Ÿฆธ๐Ÿปโ€โ™€๏ธ woman superhero: light skin tone -๐Ÿฆธ๐Ÿปโ€โ™€ woman superhero: light skin tone -๐Ÿฆธ๐Ÿผโ€โ™€๏ธ woman superhero: medium-light skin tone -๐Ÿฆธ๐Ÿผโ€โ™€ woman superhero: medium-light skin tone -๐Ÿฆธ๐Ÿฝโ€โ™€๏ธ woman superhero: medium skin tone -๐Ÿฆธ๐Ÿฝโ€โ™€ woman superhero: medium skin tone -๐Ÿฆธ๐Ÿพโ€โ™€๏ธ woman superhero: medium-dark skin tone -๐Ÿฆธ๐Ÿพโ€โ™€ woman superhero: medium-dark skin tone -๐Ÿฆธ๐Ÿฟโ€โ™€๏ธ woman superhero: dark skin tone -๐Ÿฆธ๐Ÿฟโ€โ™€ woman superhero: dark skin tone -๐Ÿฆธโ€โ™‚๏ธ man superhero -๐Ÿฆธโ€โ™‚ man superhero -๐Ÿฆธ๐Ÿปโ€โ™‚๏ธ man superhero: light skin tone -๐Ÿฆธ๐Ÿปโ€โ™‚ man superhero: light skin tone -๐Ÿฆธ๐Ÿผโ€โ™‚๏ธ man superhero: medium-light skin tone -๐Ÿฆธ๐Ÿผโ€โ™‚ man superhero: medium-light skin tone -๐Ÿฆธ๐Ÿฝโ€โ™‚๏ธ man superhero: medium skin tone -๐Ÿฆธ๐Ÿฝโ€โ™‚ man superhero: medium skin tone -๐Ÿฆธ๐Ÿพโ€โ™‚๏ธ man superhero: medium-dark skin tone -๐Ÿฆธ๐Ÿพโ€โ™‚ man superhero: medium-dark skin tone -๐Ÿฆธ๐Ÿฟโ€โ™‚๏ธ man superhero: dark skin tone -๐Ÿฆธ๐Ÿฟโ€โ™‚ man superhero: dark skin tone -๐Ÿฆน supervillain -๐Ÿฆน๐Ÿป supervillain: light skin tone -๐Ÿฆน๐Ÿผ supervillain: medium-light skin tone -๐Ÿฆน๐Ÿฝ supervillain: medium skin tone -๐Ÿฆน๐Ÿพ supervillain: medium-dark skin tone -๐Ÿฆน๐Ÿฟ supervillain: dark skin tone -๐Ÿฆนโ€โ™€๏ธ woman supervillain -๐Ÿฆนโ€โ™€ woman supervillain -๐Ÿฆน๐Ÿปโ€โ™€๏ธ woman supervillain: light skin tone -๐Ÿฆน๐Ÿปโ€โ™€ woman supervillain: light skin tone -๐Ÿฆน๐Ÿผโ€โ™€๏ธ woman supervillain: medium-light skin tone -๐Ÿฆน๐Ÿผโ€โ™€ woman supervillain: medium-light skin tone -๐Ÿฆน๐Ÿฝโ€โ™€๏ธ woman supervillain: medium skin tone -๐Ÿฆน๐Ÿฝโ€โ™€ woman supervillain: medium skin tone -๐Ÿฆน๐Ÿพโ€โ™€๏ธ woman supervillain: medium-dark skin tone -๐Ÿฆน๐Ÿพโ€โ™€ woman supervillain: medium-dark skin tone -๐Ÿฆน๐Ÿฟโ€โ™€๏ธ woman supervillain: dark skin tone -๐Ÿฆน๐Ÿฟโ€โ™€ woman supervillain: dark skin tone -๐Ÿฆนโ€โ™‚๏ธ man supervillain -๐Ÿฆนโ€โ™‚ man supervillain -๐Ÿฆน๐Ÿปโ€โ™‚๏ธ man supervillain: light skin tone -๐Ÿฆน๐Ÿปโ€โ™‚ man supervillain: light skin tone -๐Ÿฆน๐Ÿผโ€โ™‚๏ธ man supervillain: medium-light skin tone -๐Ÿฆน๐Ÿผโ€โ™‚ man supervillain: medium-light skin tone -๐Ÿฆน๐Ÿฝโ€โ™‚๏ธ man supervillain: medium skin tone -๐Ÿฆน๐Ÿฝโ€โ™‚ man supervillain: medium skin tone -๐Ÿฆน๐Ÿพโ€โ™‚๏ธ man supervillain: medium-dark skin tone -๐Ÿฆน๐Ÿพโ€โ™‚ man supervillain: medium-dark skin tone -๐Ÿฆน๐Ÿฟโ€โ™‚๏ธ man supervillain: dark skin tone -๐Ÿฆน๐Ÿฟโ€โ™‚ man supervillain: dark skin tone -๐Ÿง™ mage -๐Ÿง™๐Ÿป mage: light skin tone -๐Ÿง™๐Ÿผ mage: medium-light skin tone -๐Ÿง™๐Ÿฝ mage: medium skin tone -๐Ÿง™๐Ÿพ mage: medium-dark skin tone -๐Ÿง™๐Ÿฟ mage: dark skin tone -๐Ÿง™โ€โ™€๏ธ woman mage -๐Ÿง™โ€โ™€ woman mage -๐Ÿง™๐Ÿปโ€โ™€๏ธ woman mage: light skin tone -๐Ÿง™๐Ÿปโ€โ™€ woman mage: light skin tone -๐Ÿง™๐Ÿผโ€โ™€๏ธ woman mage: medium-light skin tone -๐Ÿง™๐Ÿผโ€โ™€ woman mage: medium-light skin tone -๐Ÿง™๐Ÿฝโ€โ™€๏ธ woman mage: medium skin tone -๐Ÿง™๐Ÿฝโ€โ™€ woman mage: medium skin tone -๐Ÿง™๐Ÿพโ€โ™€๏ธ woman mage: medium-dark skin tone -๐Ÿง™๐Ÿพโ€โ™€ woman mage: medium-dark skin tone -๐Ÿง™๐Ÿฟโ€โ™€๏ธ woman mage: dark skin tone -๐Ÿง™๐Ÿฟโ€โ™€ woman mage: dark skin tone -๐Ÿง™โ€โ™‚๏ธ man mage -๐Ÿง™โ€โ™‚ man mage -๐Ÿง™๐Ÿปโ€โ™‚๏ธ man mage: light skin tone -๐Ÿง™๐Ÿปโ€โ™‚ man mage: light skin tone -๐Ÿง™๐Ÿผโ€โ™‚๏ธ man mage: medium-light skin tone -๐Ÿง™๐Ÿผโ€โ™‚ man mage: medium-light skin tone -๐Ÿง™๐Ÿฝโ€โ™‚๏ธ man mage: medium skin tone -๐Ÿง™๐Ÿฝโ€โ™‚ man mage: medium skin tone -๐Ÿง™๐Ÿพโ€โ™‚๏ธ man mage: medium-dark skin tone -๐Ÿง™๐Ÿพโ€โ™‚ man mage: medium-dark skin tone -๐Ÿง™๐Ÿฟโ€โ™‚๏ธ man mage: dark skin tone -๐Ÿง™๐Ÿฟโ€โ™‚ man mage: dark skin tone -๐Ÿงš fairy -๐Ÿงš๐Ÿป fairy: light skin tone -๐Ÿงš๐Ÿผ fairy: medium-light skin tone -๐Ÿงš๐Ÿฝ fairy: medium skin tone -๐Ÿงš๐Ÿพ fairy: medium-dark skin tone -๐Ÿงš๐Ÿฟ fairy: dark skin tone -๐Ÿงšโ€โ™€๏ธ woman fairy -๐Ÿงšโ€โ™€ woman fairy -๐Ÿงš๐Ÿปโ€โ™€๏ธ woman fairy: light skin tone -๐Ÿงš๐Ÿปโ€โ™€ woman fairy: light skin tone -๐Ÿงš๐Ÿผโ€โ™€๏ธ woman fairy: medium-light skin tone -๐Ÿงš๐Ÿผโ€โ™€ woman fairy: medium-light skin tone -๐Ÿงš๐Ÿฝโ€โ™€๏ธ woman fairy: medium skin tone -๐Ÿงš๐Ÿฝโ€โ™€ woman fairy: medium skin tone -๐Ÿงš๐Ÿพโ€โ™€๏ธ woman fairy: medium-dark skin tone -๐Ÿงš๐Ÿพโ€โ™€ woman fairy: medium-dark skin tone -๐Ÿงš๐Ÿฟโ€โ™€๏ธ woman fairy: dark skin tone -๐Ÿงš๐Ÿฟโ€โ™€ woman fairy: dark skin tone -๐Ÿงšโ€โ™‚๏ธ man fairy -๐Ÿงšโ€โ™‚ man fairy -๐Ÿงš๐Ÿปโ€โ™‚๏ธ man fairy: light skin tone -๐Ÿงš๐Ÿปโ€โ™‚ man fairy: light skin tone -๐Ÿงš๐Ÿผโ€โ™‚๏ธ man fairy: medium-light skin tone -๐Ÿงš๐Ÿผโ€โ™‚ man fairy: medium-light skin tone -๐Ÿงš๐Ÿฝโ€โ™‚๏ธ man fairy: medium skin tone -๐Ÿงš๐Ÿฝโ€โ™‚ man fairy: medium skin tone -๐Ÿงš๐Ÿพโ€โ™‚๏ธ man fairy: medium-dark skin tone -๐Ÿงš๐Ÿพโ€โ™‚ man fairy: medium-dark skin tone -๐Ÿงš๐Ÿฟโ€โ™‚๏ธ man fairy: dark skin tone -๐Ÿงš๐Ÿฟโ€โ™‚ man fairy: dark skin tone -๐Ÿง› vampire -๐Ÿง›๐Ÿป vampire: light skin tone -๐Ÿง›๐Ÿผ vampire: medium-light skin tone -๐Ÿง›๐Ÿฝ vampire: medium skin tone -๐Ÿง›๐Ÿพ vampire: medium-dark skin tone -๐Ÿง›๐Ÿฟ vampire: dark skin tone -๐Ÿง›โ€โ™€๏ธ woman vampire -๐Ÿง›โ€โ™€ woman vampire -๐Ÿง›๐Ÿปโ€โ™€๏ธ woman vampire: light skin tone -๐Ÿง›๐Ÿปโ€โ™€ woman vampire: light skin tone -๐Ÿง›๐Ÿผโ€โ™€๏ธ woman vampire: medium-light skin tone -๐Ÿง›๐Ÿผโ€โ™€ woman vampire: medium-light skin tone -๐Ÿง›๐Ÿฝโ€โ™€๏ธ woman vampire: medium skin tone -๐Ÿง›๐Ÿฝโ€โ™€ woman vampire: medium skin tone -๐Ÿง›๐Ÿพโ€โ™€๏ธ woman vampire: medium-dark skin tone -๐Ÿง›๐Ÿพโ€โ™€ woman vampire: medium-dark skin tone -๐Ÿง›๐Ÿฟโ€โ™€๏ธ woman vampire: dark skin tone -๐Ÿง›๐Ÿฟโ€โ™€ woman vampire: dark skin tone -๐Ÿง›โ€โ™‚๏ธ man vampire -๐Ÿง›โ€โ™‚ man vampire -๐Ÿง›๐Ÿปโ€โ™‚๏ธ man vampire: light skin tone -๐Ÿง›๐Ÿปโ€โ™‚ man vampire: light skin tone -๐Ÿง›๐Ÿผโ€โ™‚๏ธ man vampire: medium-light skin tone -๐Ÿง›๐Ÿผโ€โ™‚ man vampire: medium-light skin tone -๐Ÿง›๐Ÿฝโ€โ™‚๏ธ man vampire: medium skin tone -๐Ÿง›๐Ÿฝโ€โ™‚ man vampire: medium skin tone -๐Ÿง›๐Ÿพโ€โ™‚๏ธ man vampire: medium-dark skin tone -๐Ÿง›๐Ÿพโ€โ™‚ man vampire: medium-dark skin tone -๐Ÿง›๐Ÿฟโ€โ™‚๏ธ man vampire: dark skin tone -๐Ÿง›๐Ÿฟโ€โ™‚ man vampire: dark skin tone -๐Ÿงœ merperson -๐Ÿงœ๐Ÿป merperson: light skin tone -๐Ÿงœ๐Ÿผ merperson: medium-light skin tone -๐Ÿงœ๐Ÿฝ merperson: medium skin tone -๐Ÿงœ๐Ÿพ merperson: medium-dark skin tone -๐Ÿงœ๐Ÿฟ merperson: dark skin tone -๐Ÿงœโ€โ™€๏ธ mermaid -๐Ÿงœโ€โ™€ mermaid -๐Ÿงœ๐Ÿปโ€โ™€๏ธ mermaid: light skin tone -๐Ÿงœ๐Ÿปโ€โ™€ mermaid: light skin tone -๐Ÿงœ๐Ÿผโ€โ™€๏ธ mermaid: medium-light skin tone -๐Ÿงœ๐Ÿผโ€โ™€ mermaid: medium-light skin tone -๐Ÿงœ๐Ÿฝโ€โ™€๏ธ mermaid: medium skin tone -๐Ÿงœ๐Ÿฝโ€โ™€ mermaid: medium skin tone -๐Ÿงœ๐Ÿพโ€โ™€๏ธ mermaid: medium-dark skin tone -๐Ÿงœ๐Ÿพโ€โ™€ mermaid: medium-dark skin tone -๐Ÿงœ๐Ÿฟโ€โ™€๏ธ mermaid: dark skin tone -๐Ÿงœ๐Ÿฟโ€โ™€ mermaid: dark skin tone -๐Ÿงœโ€โ™‚๏ธ merman -๐Ÿงœโ€โ™‚ merman -๐Ÿงœ๐Ÿปโ€โ™‚๏ธ merman: light skin tone -๐Ÿงœ๐Ÿปโ€โ™‚ merman: light skin tone -๐Ÿงœ๐Ÿผโ€โ™‚๏ธ merman: medium-light skin tone -๐Ÿงœ๐Ÿผโ€โ™‚ merman: medium-light skin tone -๐Ÿงœ๐Ÿฝโ€โ™‚๏ธ merman: medium skin tone -๐Ÿงœ๐Ÿฝโ€โ™‚ merman: medium skin tone -๐Ÿงœ๐Ÿพโ€โ™‚๏ธ merman: medium-dark skin tone -๐Ÿงœ๐Ÿพโ€โ™‚ merman: medium-dark skin tone -๐Ÿงœ๐Ÿฟโ€โ™‚๏ธ merman: dark skin tone -๐Ÿงœ๐Ÿฟโ€โ™‚ merman: dark skin tone -๐Ÿง elf -๐Ÿง๐Ÿป elf: light skin tone -๐Ÿง๐Ÿผ elf: medium-light skin tone -๐Ÿง๐Ÿฝ elf: medium skin tone -๐Ÿง๐Ÿพ elf: medium-dark skin tone -๐Ÿง๐Ÿฟ elf: dark skin tone -๐Ÿงโ€โ™€๏ธ woman elf -๐Ÿงโ€โ™€ woman elf -๐Ÿง๐Ÿปโ€โ™€๏ธ woman elf: light skin tone -๐Ÿง๐Ÿปโ€โ™€ woman elf: light skin tone -๐Ÿง๐Ÿผโ€โ™€๏ธ woman elf: medium-light skin tone -๐Ÿง๐Ÿผโ€โ™€ woman elf: medium-light skin tone -๐Ÿง๐Ÿฝโ€โ™€๏ธ woman elf: medium skin tone -๐Ÿง๐Ÿฝโ€โ™€ woman elf: medium skin tone -๐Ÿง๐Ÿพโ€โ™€๏ธ woman elf: medium-dark skin tone -๐Ÿง๐Ÿพโ€โ™€ woman elf: medium-dark skin tone -๐Ÿง๐Ÿฟโ€โ™€๏ธ woman elf: dark skin tone -๐Ÿง๐Ÿฟโ€โ™€ woman elf: dark skin tone -๐Ÿงโ€โ™‚๏ธ man elf -๐Ÿงโ€โ™‚ man elf -๐Ÿง๐Ÿปโ€โ™‚๏ธ man elf: light skin tone -๐Ÿง๐Ÿปโ€โ™‚ man elf: light skin tone -๐Ÿง๐Ÿผโ€โ™‚๏ธ man elf: medium-light skin tone -๐Ÿง๐Ÿผโ€โ™‚ man elf: medium-light skin tone -๐Ÿง๐Ÿฝโ€โ™‚๏ธ man elf: medium skin tone -๐Ÿง๐Ÿฝโ€โ™‚ man elf: medium skin tone -๐Ÿง๐Ÿพโ€โ™‚๏ธ man elf: medium-dark skin tone -๐Ÿง๐Ÿพโ€โ™‚ man elf: medium-dark skin tone -๐Ÿง๐Ÿฟโ€โ™‚๏ธ man elf: dark skin tone -๐Ÿง๐Ÿฟโ€โ™‚ man elf: dark skin tone -๐Ÿงž genie -๐Ÿงžโ€โ™€๏ธ woman genie -๐Ÿงžโ€โ™€ woman genie -๐Ÿงžโ€โ™‚๏ธ man genie -๐Ÿงžโ€โ™‚ man genie -๐ŸงŸ zombie -๐ŸงŸโ€โ™€๏ธ woman zombie -๐ŸงŸโ€โ™€ woman zombie -๐ŸงŸโ€โ™‚๏ธ man zombie -๐ŸงŸโ€โ™‚ man zombie -๐Ÿ™ person frowning -๐Ÿ™๐Ÿป person frowning: light skin tone -๐Ÿ™๐Ÿผ person frowning: medium-light skin tone -๐Ÿ™๐Ÿฝ person frowning: medium skin tone -๐Ÿ™๐Ÿพ person frowning: medium-dark skin tone -๐Ÿ™๐Ÿฟ person frowning: dark skin tone -๐Ÿ™โ€โ™‚๏ธ man frowning -๐Ÿ™โ€โ™‚ man frowning -๐Ÿ™๐Ÿปโ€โ™‚๏ธ man frowning: light skin tone -๐Ÿ™๐Ÿปโ€โ™‚ man frowning: light skin tone -๐Ÿ™๐Ÿผโ€โ™‚๏ธ man frowning: medium-light skin tone -๐Ÿ™๐Ÿผโ€โ™‚ man frowning: medium-light skin tone -๐Ÿ™๐Ÿฝโ€โ™‚๏ธ man frowning: medium skin tone -๐Ÿ™๐Ÿฝโ€โ™‚ man frowning: medium skin tone -๐Ÿ™๐Ÿพโ€โ™‚๏ธ man frowning: medium-dark skin tone -๐Ÿ™๐Ÿพโ€โ™‚ man frowning: medium-dark skin tone -๐Ÿ™๐Ÿฟโ€โ™‚๏ธ man frowning: dark skin tone -๐Ÿ™๐Ÿฟโ€โ™‚ man frowning: dark skin tone -๐Ÿ™โ€โ™€๏ธ woman frowning -๐Ÿ™โ€โ™€ woman frowning -๐Ÿ™๐Ÿปโ€โ™€๏ธ woman frowning: light skin tone -๐Ÿ™๐Ÿปโ€โ™€ woman frowning: light skin tone -๐Ÿ™๐Ÿผโ€โ™€๏ธ woman frowning: medium-light skin tone -๐Ÿ™๐Ÿผโ€โ™€ woman frowning: medium-light skin tone -๐Ÿ™๐Ÿฝโ€โ™€๏ธ woman frowning: medium skin tone -๐Ÿ™๐Ÿฝโ€โ™€ woman frowning: medium skin tone -๐Ÿ™๐Ÿพโ€โ™€๏ธ woman frowning: medium-dark skin tone -๐Ÿ™๐Ÿพโ€โ™€ woman frowning: medium-dark skin tone -๐Ÿ™๐Ÿฟโ€โ™€๏ธ woman frowning: dark skin tone -๐Ÿ™๐Ÿฟโ€โ™€ woman frowning: dark skin tone -๐Ÿ™Ž person pouting -๐Ÿ™Ž๐Ÿป person pouting: light skin tone -๐Ÿ™Ž๐Ÿผ person pouting: medium-light skin tone -๐Ÿ™Ž๐Ÿฝ person pouting: medium skin tone -๐Ÿ™Ž๐Ÿพ person pouting: medium-dark skin tone -๐Ÿ™Ž๐Ÿฟ person pouting: dark skin tone -๐Ÿ™Žโ€โ™‚๏ธ man pouting -๐Ÿ™Žโ€โ™‚ man pouting -๐Ÿ™Ž๐Ÿปโ€โ™‚๏ธ man pouting: light skin tone -๐Ÿ™Ž๐Ÿปโ€โ™‚ man pouting: light skin tone -๐Ÿ™Ž๐Ÿผโ€โ™‚๏ธ man pouting: medium-light skin tone -๐Ÿ™Ž๐Ÿผโ€โ™‚ man pouting: medium-light skin tone -๐Ÿ™Ž๐Ÿฝโ€โ™‚๏ธ man pouting: medium skin tone -๐Ÿ™Ž๐Ÿฝโ€โ™‚ man pouting: medium skin tone -๐Ÿ™Ž๐Ÿพโ€โ™‚๏ธ man pouting: medium-dark skin tone -๐Ÿ™Ž๐Ÿพโ€โ™‚ man pouting: medium-dark skin tone -๐Ÿ™Ž๐Ÿฟโ€โ™‚๏ธ man pouting: dark skin tone -๐Ÿ™Ž๐Ÿฟโ€โ™‚ man pouting: dark skin tone -๐Ÿ™Žโ€โ™€๏ธ woman pouting -๐Ÿ™Žโ€โ™€ woman pouting -๐Ÿ™Ž๐Ÿปโ€โ™€๏ธ woman pouting: light skin tone -๐Ÿ™Ž๐Ÿปโ€โ™€ woman pouting: light skin tone -๐Ÿ™Ž๐Ÿผโ€โ™€๏ธ woman pouting: medium-light skin tone -๐Ÿ™Ž๐Ÿผโ€โ™€ woman pouting: medium-light skin tone -๐Ÿ™Ž๐Ÿฝโ€โ™€๏ธ woman pouting: medium skin tone -๐Ÿ™Ž๐Ÿฝโ€โ™€ woman pouting: medium skin tone -๐Ÿ™Ž๐Ÿพโ€โ™€๏ธ woman pouting: medium-dark skin tone -๐Ÿ™Ž๐Ÿพโ€โ™€ woman pouting: medium-dark skin tone -๐Ÿ™Ž๐Ÿฟโ€โ™€๏ธ woman pouting: dark skin tone -๐Ÿ™Ž๐Ÿฟโ€โ™€ woman pouting: dark skin tone -๐Ÿ™… person gesturing NO -๐Ÿ™…๐Ÿป person gesturing NO: light skin tone -๐Ÿ™…๐Ÿผ person gesturing NO: medium-light skin tone -๐Ÿ™…๐Ÿฝ person gesturing NO: medium skin tone -๐Ÿ™…๐Ÿพ person gesturing NO: medium-dark skin tone -๐Ÿ™…๐Ÿฟ person gesturing NO: dark skin tone -๐Ÿ™…โ€โ™‚๏ธ man gesturing NO -๐Ÿ™…โ€โ™‚ man gesturing NO -๐Ÿ™…๐Ÿปโ€โ™‚๏ธ man gesturing NO: light skin tone -๐Ÿ™…๐Ÿปโ€โ™‚ man gesturing NO: light skin tone -๐Ÿ™…๐Ÿผโ€โ™‚๏ธ man gesturing NO: medium-light skin tone -๐Ÿ™…๐Ÿผโ€โ™‚ man gesturing NO: medium-light skin tone -๐Ÿ™…๐Ÿฝโ€โ™‚๏ธ man gesturing NO: medium skin tone -๐Ÿ™…๐Ÿฝโ€โ™‚ man gesturing NO: medium skin tone -๐Ÿ™…๐Ÿพโ€โ™‚๏ธ man gesturing NO: medium-dark skin tone -๐Ÿ™…๐Ÿพโ€โ™‚ man gesturing NO: medium-dark skin tone -๐Ÿ™…๐Ÿฟโ€โ™‚๏ธ man gesturing NO: dark skin tone -๐Ÿ™…๐Ÿฟโ€โ™‚ man gesturing NO: dark skin tone -๐Ÿ™…โ€โ™€๏ธ woman gesturing NO -๐Ÿ™…โ€โ™€ woman gesturing NO -๐Ÿ™…๐Ÿปโ€โ™€๏ธ woman gesturing NO: light skin tone -๐Ÿ™…๐Ÿปโ€โ™€ woman gesturing NO: light skin tone -๐Ÿ™…๐Ÿผโ€โ™€๏ธ woman gesturing NO: medium-light skin tone -๐Ÿ™…๐Ÿผโ€โ™€ woman gesturing NO: medium-light skin tone -๐Ÿ™…๐Ÿฝโ€โ™€๏ธ woman gesturing NO: medium skin tone -๐Ÿ™…๐Ÿฝโ€โ™€ woman gesturing NO: medium skin tone -๐Ÿ™…๐Ÿพโ€โ™€๏ธ woman gesturing NO: medium-dark skin tone -๐Ÿ™…๐Ÿพโ€โ™€ woman gesturing NO: medium-dark skin tone -๐Ÿ™…๐Ÿฟโ€โ™€๏ธ woman gesturing NO: dark skin tone -๐Ÿ™…๐Ÿฟโ€โ™€ woman gesturing NO: dark skin tone -๐Ÿ™† person gesturing OK -๐Ÿ™†๐Ÿป person gesturing OK: light skin tone -๐Ÿ™†๐Ÿผ person gesturing OK: medium-light skin tone -๐Ÿ™†๐Ÿฝ person gesturing OK: medium skin tone -๐Ÿ™†๐Ÿพ person gesturing OK: medium-dark skin tone -๐Ÿ™†๐Ÿฟ person gesturing OK: dark skin tone -๐Ÿ™†โ€โ™‚๏ธ man gesturing OK -๐Ÿ™†โ€โ™‚ man gesturing OK -๐Ÿ™†๐Ÿปโ€โ™‚๏ธ man gesturing OK: light skin tone -๐Ÿ™†๐Ÿปโ€โ™‚ man gesturing OK: light skin tone -๐Ÿ™†๐Ÿผโ€โ™‚๏ธ man gesturing OK: medium-light skin tone -๐Ÿ™†๐Ÿผโ€โ™‚ man gesturing OK: medium-light skin tone -๐Ÿ™†๐Ÿฝโ€โ™‚๏ธ man gesturing OK: medium skin tone -๐Ÿ™†๐Ÿฝโ€โ™‚ man gesturing OK: medium skin tone -๐Ÿ™†๐Ÿพโ€โ™‚๏ธ man gesturing OK: medium-dark skin tone -๐Ÿ™†๐Ÿพโ€โ™‚ man gesturing OK: medium-dark skin tone -๐Ÿ™†๐Ÿฟโ€โ™‚๏ธ man gesturing OK: dark skin tone -๐Ÿ™†๐Ÿฟโ€โ™‚ man gesturing OK: dark skin tone -๐Ÿ™†โ€โ™€๏ธ woman gesturing OK -๐Ÿ™†โ€โ™€ woman gesturing OK -๐Ÿ™†๐Ÿปโ€โ™€๏ธ woman gesturing OK: light skin tone -๐Ÿ™†๐Ÿปโ€โ™€ woman gesturing OK: light skin tone -๐Ÿ™†๐Ÿผโ€โ™€๏ธ woman gesturing OK: medium-light skin tone -๐Ÿ™†๐Ÿผโ€โ™€ woman gesturing OK: medium-light skin tone -๐Ÿ™†๐Ÿฝโ€โ™€๏ธ woman gesturing OK: medium skin tone -๐Ÿ™†๐Ÿฝโ€โ™€ woman gesturing OK: medium skin tone -๐Ÿ™†๐Ÿพโ€โ™€๏ธ woman gesturing OK: medium-dark skin tone -๐Ÿ™†๐Ÿพโ€โ™€ woman gesturing OK: medium-dark skin tone -๐Ÿ™†๐Ÿฟโ€โ™€๏ธ woman gesturing OK: dark skin tone -๐Ÿ™†๐Ÿฟโ€โ™€ woman gesturing OK: dark skin tone -๐Ÿ’ person tipping hand -๐Ÿ’๐Ÿป person tipping hand: light skin tone -๐Ÿ’๐Ÿผ person tipping hand: medium-light skin tone -๐Ÿ’๐Ÿฝ person tipping hand: medium skin tone -๐Ÿ’๐Ÿพ person tipping hand: medium-dark skin tone -๐Ÿ’๐Ÿฟ person tipping hand: dark skin tone -๐Ÿ’โ€โ™‚๏ธ man tipping hand -๐Ÿ’โ€โ™‚ man tipping hand -๐Ÿ’๐Ÿปโ€โ™‚๏ธ man tipping hand: light skin tone -๐Ÿ’๐Ÿปโ€โ™‚ man tipping hand: light skin tone -๐Ÿ’๐Ÿผโ€โ™‚๏ธ man tipping hand: medium-light skin tone -๐Ÿ’๐Ÿผโ€โ™‚ man tipping hand: medium-light skin tone -๐Ÿ’๐Ÿฝโ€โ™‚๏ธ man tipping hand: medium skin tone -๐Ÿ’๐Ÿฝโ€โ™‚ man tipping hand: medium skin tone -๐Ÿ’๐Ÿพโ€โ™‚๏ธ man tipping hand: medium-dark skin tone -๐Ÿ’๐Ÿพโ€โ™‚ man tipping hand: medium-dark skin tone -๐Ÿ’๐Ÿฟโ€โ™‚๏ธ man tipping hand: dark skin tone -๐Ÿ’๐Ÿฟโ€โ™‚ man tipping hand: dark skin tone -๐Ÿ’โ€โ™€๏ธ woman tipping hand -๐Ÿ’โ€โ™€ woman tipping hand -๐Ÿ’๐Ÿปโ€โ™€๏ธ woman tipping hand: light skin tone -๐Ÿ’๐Ÿปโ€โ™€ woman tipping hand: light skin tone -๐Ÿ’๐Ÿผโ€โ™€๏ธ woman tipping hand: medium-light skin tone -๐Ÿ’๐Ÿผโ€โ™€ woman tipping hand: medium-light skin tone -๐Ÿ’๐Ÿฝโ€โ™€๏ธ woman tipping hand: medium skin tone -๐Ÿ’๐Ÿฝโ€โ™€ woman tipping hand: medium skin tone -๐Ÿ’๐Ÿพโ€โ™€๏ธ woman tipping hand: medium-dark skin tone -๐Ÿ’๐Ÿพโ€โ™€ woman tipping hand: medium-dark skin tone -๐Ÿ’๐Ÿฟโ€โ™€๏ธ woman tipping hand: dark skin tone -๐Ÿ’๐Ÿฟโ€โ™€ woman tipping hand: dark skin tone -๐Ÿ™‹ person raising hand -๐Ÿ™‹๐Ÿป person raising hand: light skin tone -๐Ÿ™‹๐Ÿผ person raising hand: medium-light skin tone -๐Ÿ™‹๐Ÿฝ person raising hand: medium skin tone -๐Ÿ™‹๐Ÿพ person raising hand: medium-dark skin tone -๐Ÿ™‹๐Ÿฟ person raising hand: dark skin tone -๐Ÿ™‹โ€โ™‚๏ธ man raising hand -๐Ÿ™‹โ€โ™‚ man raising hand -๐Ÿ™‹๐Ÿปโ€โ™‚๏ธ man raising hand: light skin tone -๐Ÿ™‹๐Ÿปโ€โ™‚ man raising hand: light skin tone -๐Ÿ™‹๐Ÿผโ€โ™‚๏ธ man raising hand: medium-light skin tone -๐Ÿ™‹๐Ÿผโ€โ™‚ man raising hand: medium-light skin tone -๐Ÿ™‹๐Ÿฝโ€โ™‚๏ธ man raising hand: medium skin tone -๐Ÿ™‹๐Ÿฝโ€โ™‚ man raising hand: medium skin tone -๐Ÿ™‹๐Ÿพโ€โ™‚๏ธ man raising hand: medium-dark skin tone -๐Ÿ™‹๐Ÿพโ€โ™‚ man raising hand: medium-dark skin tone -๐Ÿ™‹๐Ÿฟโ€โ™‚๏ธ man raising hand: dark skin tone -๐Ÿ™‹๐Ÿฟโ€โ™‚ man raising hand: dark skin tone -๐Ÿ™‹โ€โ™€๏ธ woman raising hand -๐Ÿ™‹โ€โ™€ woman raising hand -๐Ÿ™‹๐Ÿปโ€โ™€๏ธ woman raising hand: light skin tone -๐Ÿ™‹๐Ÿปโ€โ™€ woman raising hand: light skin tone -๐Ÿ™‹๐Ÿผโ€โ™€๏ธ woman raising hand: medium-light skin tone -๐Ÿ™‹๐Ÿผโ€โ™€ woman raising hand: medium-light skin tone -๐Ÿ™‹๐Ÿฝโ€โ™€๏ธ woman raising hand: medium skin tone -๐Ÿ™‹๐Ÿฝโ€โ™€ woman raising hand: medium skin tone -๐Ÿ™‹๐Ÿพโ€โ™€๏ธ woman raising hand: medium-dark skin tone -๐Ÿ™‹๐Ÿพโ€โ™€ woman raising hand: medium-dark skin tone -๐Ÿ™‹๐Ÿฟโ€โ™€๏ธ woman raising hand: dark skin tone -๐Ÿ™‹๐Ÿฟโ€โ™€ woman raising hand: dark skin tone -๐Ÿ™‡ person bowing -๐Ÿ™‡๐Ÿป person bowing: light skin tone -๐Ÿ™‡๐Ÿผ person bowing: medium-light skin tone -๐Ÿ™‡๐Ÿฝ person bowing: medium skin tone -๐Ÿ™‡๐Ÿพ person bowing: medium-dark skin tone -๐Ÿ™‡๐Ÿฟ person bowing: dark skin tone -๐Ÿ™‡โ€โ™‚๏ธ man bowing -๐Ÿ™‡โ€โ™‚ man bowing -๐Ÿ™‡๐Ÿปโ€โ™‚๏ธ man bowing: light skin tone -๐Ÿ™‡๐Ÿปโ€โ™‚ man bowing: light skin tone -๐Ÿ™‡๐Ÿผโ€โ™‚๏ธ man bowing: medium-light skin tone -๐Ÿ™‡๐Ÿผโ€โ™‚ man bowing: medium-light skin tone -๐Ÿ™‡๐Ÿฝโ€โ™‚๏ธ man bowing: medium skin tone -๐Ÿ™‡๐Ÿฝโ€โ™‚ man bowing: medium skin tone -๐Ÿ™‡๐Ÿพโ€โ™‚๏ธ man bowing: medium-dark skin tone -๐Ÿ™‡๐Ÿพโ€โ™‚ man bowing: medium-dark skin tone -๐Ÿ™‡๐Ÿฟโ€โ™‚๏ธ man bowing: dark skin tone -๐Ÿ™‡๐Ÿฟโ€โ™‚ man bowing: dark skin tone -๐Ÿ™‡โ€โ™€๏ธ woman bowing -๐Ÿ™‡โ€โ™€ woman bowing -๐Ÿ™‡๐Ÿปโ€โ™€๏ธ woman bowing: light skin tone -๐Ÿ™‡๐Ÿปโ€โ™€ woman bowing: light skin tone -๐Ÿ™‡๐Ÿผโ€โ™€๏ธ woman bowing: medium-light skin tone -๐Ÿ™‡๐Ÿผโ€โ™€ woman bowing: medium-light skin tone -๐Ÿ™‡๐Ÿฝโ€โ™€๏ธ woman bowing: medium skin tone -๐Ÿ™‡๐Ÿฝโ€โ™€ woman bowing: medium skin tone -๐Ÿ™‡๐Ÿพโ€โ™€๏ธ woman bowing: medium-dark skin tone -๐Ÿ™‡๐Ÿพโ€โ™€ woman bowing: medium-dark skin tone -๐Ÿ™‡๐Ÿฟโ€โ™€๏ธ woman bowing: dark skin tone -๐Ÿ™‡๐Ÿฟโ€โ™€ woman bowing: dark skin tone -๐Ÿคฆ person facepalming -๐Ÿคฆ๐Ÿป person facepalming: light skin tone -๐Ÿคฆ๐Ÿผ person facepalming: medium-light skin tone -๐Ÿคฆ๐Ÿฝ person facepalming: medium skin tone -๐Ÿคฆ๐Ÿพ person facepalming: medium-dark skin tone -๐Ÿคฆ๐Ÿฟ person facepalming: dark skin tone -๐Ÿคฆโ€โ™‚๏ธ man facepalming -๐Ÿคฆโ€โ™‚ man facepalming -๐Ÿคฆ๐Ÿปโ€โ™‚๏ธ man facepalming: light skin tone -๐Ÿคฆ๐Ÿปโ€โ™‚ man facepalming: light skin tone -๐Ÿคฆ๐Ÿผโ€โ™‚๏ธ man facepalming: medium-light skin tone -๐Ÿคฆ๐Ÿผโ€โ™‚ man facepalming: medium-light skin tone -๐Ÿคฆ๐Ÿฝโ€โ™‚๏ธ man facepalming: medium skin tone -๐Ÿคฆ๐Ÿฝโ€โ™‚ man facepalming: medium skin tone -๐Ÿคฆ๐Ÿพโ€โ™‚๏ธ man facepalming: medium-dark skin tone -๐Ÿคฆ๐Ÿพโ€โ™‚ man facepalming: medium-dark skin tone -๐Ÿคฆ๐Ÿฟโ€โ™‚๏ธ man facepalming: dark skin tone -๐Ÿคฆ๐Ÿฟโ€โ™‚ man facepalming: dark skin tone -๐Ÿคฆโ€โ™€๏ธ woman facepalming -๐Ÿคฆโ€โ™€ woman facepalming -๐Ÿคฆ๐Ÿปโ€โ™€๏ธ woman facepalming: light skin tone -๐Ÿคฆ๐Ÿปโ€โ™€ woman facepalming: light skin tone -๐Ÿคฆ๐Ÿผโ€โ™€๏ธ woman facepalming: medium-light skin tone -๐Ÿคฆ๐Ÿผโ€โ™€ woman facepalming: medium-light skin tone -๐Ÿคฆ๐Ÿฝโ€โ™€๏ธ woman facepalming: medium skin tone -๐Ÿคฆ๐Ÿฝโ€โ™€ woman facepalming: medium skin tone -๐Ÿคฆ๐Ÿพโ€โ™€๏ธ woman facepalming: medium-dark skin tone -๐Ÿคฆ๐Ÿพโ€โ™€ woman facepalming: medium-dark skin tone -๐Ÿคฆ๐Ÿฟโ€โ™€๏ธ woman facepalming: dark skin tone -๐Ÿคฆ๐Ÿฟโ€โ™€ woman facepalming: dark skin tone -๐Ÿคท person shrugging -๐Ÿคท๐Ÿป person shrugging: light skin tone -๐Ÿคท๐Ÿผ person shrugging: medium-light skin tone -๐Ÿคท๐Ÿฝ person shrugging: medium skin tone -๐Ÿคท๐Ÿพ person shrugging: medium-dark skin tone -๐Ÿคท๐Ÿฟ person shrugging: dark skin tone -๐Ÿคทโ€โ™‚๏ธ man shrugging -๐Ÿคทโ€โ™‚ man shrugging -๐Ÿคท๐Ÿปโ€โ™‚๏ธ man shrugging: light skin tone -๐Ÿคท๐Ÿปโ€โ™‚ man shrugging: light skin tone -๐Ÿคท๐Ÿผโ€โ™‚๏ธ man shrugging: medium-light skin tone -๐Ÿคท๐Ÿผโ€โ™‚ man shrugging: medium-light skin tone -๐Ÿคท๐Ÿฝโ€โ™‚๏ธ man shrugging: medium skin tone -๐Ÿคท๐Ÿฝโ€โ™‚ man shrugging: medium skin tone -๐Ÿคท๐Ÿพโ€โ™‚๏ธ man shrugging: medium-dark skin tone -๐Ÿคท๐Ÿพโ€โ™‚ man shrugging: medium-dark skin tone -๐Ÿคท๐Ÿฟโ€โ™‚๏ธ man shrugging: dark skin tone -๐Ÿคท๐Ÿฟโ€โ™‚ man shrugging: dark skin tone -๐Ÿคทโ€โ™€๏ธ woman shrugging -๐Ÿคทโ€โ™€ woman shrugging -๐Ÿคท๐Ÿปโ€โ™€๏ธ woman shrugging: light skin tone -๐Ÿคท๐Ÿปโ€โ™€ woman shrugging: light skin tone -๐Ÿคท๐Ÿผโ€โ™€๏ธ woman shrugging: medium-light skin tone -๐Ÿคท๐Ÿผโ€โ™€ woman shrugging: medium-light skin tone -๐Ÿคท๐Ÿฝโ€โ™€๏ธ woman shrugging: medium skin tone -๐Ÿคท๐Ÿฝโ€โ™€ woman shrugging: medium skin tone -๐Ÿคท๐Ÿพโ€โ™€๏ธ woman shrugging: medium-dark skin tone -๐Ÿคท๐Ÿพโ€โ™€ woman shrugging: medium-dark skin tone -๐Ÿคท๐Ÿฟโ€โ™€๏ธ woman shrugging: dark skin tone -๐Ÿคท๐Ÿฟโ€โ™€ woman shrugging: dark skin tone -๐Ÿ’† person getting massage -๐Ÿ’†๐Ÿป person getting massage: light skin tone -๐Ÿ’†๐Ÿผ person getting massage: medium-light skin tone -๐Ÿ’†๐Ÿฝ person getting massage: medium skin tone -๐Ÿ’†๐Ÿพ person getting massage: medium-dark skin tone -๐Ÿ’†๐Ÿฟ person getting massage: dark skin tone -๐Ÿ’†โ€โ™‚๏ธ man getting massage -๐Ÿ’†โ€โ™‚ man getting massage -๐Ÿ’†๐Ÿปโ€โ™‚๏ธ man getting massage: light skin tone -๐Ÿ’†๐Ÿปโ€โ™‚ man getting massage: light skin tone -๐Ÿ’†๐Ÿผโ€โ™‚๏ธ man getting massage: medium-light skin tone -๐Ÿ’†๐Ÿผโ€โ™‚ man getting massage: medium-light skin tone -๐Ÿ’†๐Ÿฝโ€โ™‚๏ธ man getting massage: medium skin tone -๐Ÿ’†๐Ÿฝโ€โ™‚ man getting massage: medium skin tone -๐Ÿ’†๐Ÿพโ€โ™‚๏ธ man getting massage: medium-dark skin tone -๐Ÿ’†๐Ÿพโ€โ™‚ man getting massage: medium-dark skin tone -๐Ÿ’†๐Ÿฟโ€โ™‚๏ธ man getting massage: dark skin tone -๐Ÿ’†๐Ÿฟโ€โ™‚ man getting massage: dark skin tone -๐Ÿ’†โ€โ™€๏ธ woman getting massage -๐Ÿ’†โ€โ™€ woman getting massage -๐Ÿ’†๐Ÿปโ€โ™€๏ธ woman getting massage: light skin tone -๐Ÿ’†๐Ÿปโ€โ™€ woman getting massage: light skin tone -๐Ÿ’†๐Ÿผโ€โ™€๏ธ woman getting massage: medium-light skin tone -๐Ÿ’†๐Ÿผโ€โ™€ woman getting massage: medium-light skin tone -๐Ÿ’†๐Ÿฝโ€โ™€๏ธ woman getting massage: medium skin tone -๐Ÿ’†๐Ÿฝโ€โ™€ woman getting massage: medium skin tone -๐Ÿ’†๐Ÿพโ€โ™€๏ธ woman getting massage: medium-dark skin tone -๐Ÿ’†๐Ÿพโ€โ™€ woman getting massage: medium-dark skin tone -๐Ÿ’†๐Ÿฟโ€โ™€๏ธ woman getting massage: dark skin tone -๐Ÿ’†๐Ÿฟโ€โ™€ woman getting massage: dark skin tone -๐Ÿ’‡ person getting haircut -๐Ÿ’‡๐Ÿป person getting haircut: light skin tone -๐Ÿ’‡๐Ÿผ person getting haircut: medium-light skin tone -๐Ÿ’‡๐Ÿฝ person getting haircut: medium skin tone -๐Ÿ’‡๐Ÿพ person getting haircut: medium-dark skin tone -๐Ÿ’‡๐Ÿฟ person getting haircut: dark skin tone -๐Ÿ’‡โ€โ™‚๏ธ man getting haircut -๐Ÿ’‡โ€โ™‚ man getting haircut -๐Ÿ’‡๐Ÿปโ€โ™‚๏ธ man getting haircut: light skin tone -๐Ÿ’‡๐Ÿปโ€โ™‚ man getting haircut: light skin tone -๐Ÿ’‡๐Ÿผโ€โ™‚๏ธ man getting haircut: medium-light skin tone -๐Ÿ’‡๐Ÿผโ€โ™‚ man getting haircut: medium-light skin tone -๐Ÿ’‡๐Ÿฝโ€โ™‚๏ธ man getting haircut: medium skin tone -๐Ÿ’‡๐Ÿฝโ€โ™‚ man getting haircut: medium skin tone -๐Ÿ’‡๐Ÿพโ€โ™‚๏ธ man getting haircut: medium-dark skin tone -๐Ÿ’‡๐Ÿพโ€โ™‚ man getting haircut: medium-dark skin tone -๐Ÿ’‡๐Ÿฟโ€โ™‚๏ธ man getting haircut: dark skin tone -๐Ÿ’‡๐Ÿฟโ€โ™‚ man getting haircut: dark skin tone -๐Ÿ’‡โ€โ™€๏ธ woman getting haircut -๐Ÿ’‡โ€โ™€ woman getting haircut -๐Ÿ’‡๐Ÿปโ€โ™€๏ธ woman getting haircut: light skin tone -๐Ÿ’‡๐Ÿปโ€โ™€ woman getting haircut: light skin tone -๐Ÿ’‡๐Ÿผโ€โ™€๏ธ woman getting haircut: medium-light skin tone -๐Ÿ’‡๐Ÿผโ€โ™€ woman getting haircut: medium-light skin tone -๐Ÿ’‡๐Ÿฝโ€โ™€๏ธ woman getting haircut: medium skin tone -๐Ÿ’‡๐Ÿฝโ€โ™€ woman getting haircut: medium skin tone -๐Ÿ’‡๐Ÿพโ€โ™€๏ธ woman getting haircut: medium-dark skin tone -๐Ÿ’‡๐Ÿพโ€โ™€ woman getting haircut: medium-dark skin tone -๐Ÿ’‡๐Ÿฟโ€โ™€๏ธ woman getting haircut: dark skin tone -๐Ÿ’‡๐Ÿฟโ€โ™€ woman getting haircut: dark skin tone -๐Ÿšถ person walking -๐Ÿšถ๐Ÿป person walking: light skin tone -๐Ÿšถ๐Ÿผ person walking: medium-light skin tone -๐Ÿšถ๐Ÿฝ person walking: medium skin tone -๐Ÿšถ๐Ÿพ person walking: medium-dark skin tone -๐Ÿšถ๐Ÿฟ person walking: dark skin tone -๐Ÿšถโ€โ™‚๏ธ man walking -๐Ÿšถโ€โ™‚ man walking -๐Ÿšถ๐Ÿปโ€โ™‚๏ธ man walking: light skin tone -๐Ÿšถ๐Ÿปโ€โ™‚ man walking: light skin tone -๐Ÿšถ๐Ÿผโ€โ™‚๏ธ man walking: medium-light skin tone -๐Ÿšถ๐Ÿผโ€โ™‚ man walking: medium-light skin tone -๐Ÿšถ๐Ÿฝโ€โ™‚๏ธ man walking: medium skin tone -๐Ÿšถ๐Ÿฝโ€โ™‚ man walking: medium skin tone -๐Ÿšถ๐Ÿพโ€โ™‚๏ธ man walking: medium-dark skin tone -๐Ÿšถ๐Ÿพโ€โ™‚ man walking: medium-dark skin tone -๐Ÿšถ๐Ÿฟโ€โ™‚๏ธ man walking: dark skin tone -๐Ÿšถ๐Ÿฟโ€โ™‚ man walking: dark skin tone -๐Ÿšถโ€โ™€๏ธ woman walking -๐Ÿšถโ€โ™€ woman walking -๐Ÿšถ๐Ÿปโ€โ™€๏ธ woman walking: light skin tone -๐Ÿšถ๐Ÿปโ€โ™€ woman walking: light skin tone -๐Ÿšถ๐Ÿผโ€โ™€๏ธ woman walking: medium-light skin tone -๐Ÿšถ๐Ÿผโ€โ™€ woman walking: medium-light skin tone -๐Ÿšถ๐Ÿฝโ€โ™€๏ธ woman walking: medium skin tone -๐Ÿšถ๐Ÿฝโ€โ™€ woman walking: medium skin tone -๐Ÿšถ๐Ÿพโ€โ™€๏ธ woman walking: medium-dark skin tone -๐Ÿšถ๐Ÿพโ€โ™€ woman walking: medium-dark skin tone -๐Ÿšถ๐Ÿฟโ€โ™€๏ธ woman walking: dark skin tone -๐Ÿšถ๐Ÿฟโ€โ™€ woman walking: dark skin tone -๐Ÿƒ person running -๐Ÿƒ๐Ÿป person running: light skin tone -๐Ÿƒ๐Ÿผ person running: medium-light skin tone -๐Ÿƒ๐Ÿฝ person running: medium skin tone -๐Ÿƒ๐Ÿพ person running: medium-dark skin tone -๐Ÿƒ๐Ÿฟ person running: dark skin tone -๐Ÿƒโ€โ™‚๏ธ man running -๐Ÿƒโ€โ™‚ man running -๐Ÿƒ๐Ÿปโ€โ™‚๏ธ man running: light skin tone -๐Ÿƒ๐Ÿปโ€โ™‚ man running: light skin tone -๐Ÿƒ๐Ÿผโ€โ™‚๏ธ man running: medium-light skin tone -๐Ÿƒ๐Ÿผโ€โ™‚ man running: medium-light skin tone -๐Ÿƒ๐Ÿฝโ€โ™‚๏ธ man running: medium skin tone -๐Ÿƒ๐Ÿฝโ€โ™‚ man running: medium skin tone -๐Ÿƒ๐Ÿพโ€โ™‚๏ธ man running: medium-dark skin tone -๐Ÿƒ๐Ÿพโ€โ™‚ man running: medium-dark skin tone -๐Ÿƒ๐Ÿฟโ€โ™‚๏ธ man running: dark skin tone -๐Ÿƒ๐Ÿฟโ€โ™‚ man running: dark skin tone -๐Ÿƒโ€โ™€๏ธ woman running -๐Ÿƒโ€โ™€ woman running -๐Ÿƒ๐Ÿปโ€โ™€๏ธ woman running: light skin tone -๐Ÿƒ๐Ÿปโ€โ™€ woman running: light skin tone -๐Ÿƒ๐Ÿผโ€โ™€๏ธ woman running: medium-light skin tone -๐Ÿƒ๐Ÿผโ€โ™€ woman running: medium-light skin tone -๐Ÿƒ๐Ÿฝโ€โ™€๏ธ woman running: medium skin tone -๐Ÿƒ๐Ÿฝโ€โ™€ woman running: medium skin tone -๐Ÿƒ๐Ÿพโ€โ™€๏ธ woman running: medium-dark skin tone -๐Ÿƒ๐Ÿพโ€โ™€ woman running: medium-dark skin tone -๐Ÿƒ๐Ÿฟโ€โ™€๏ธ woman running: dark skin tone -๐Ÿƒ๐Ÿฟโ€โ™€ woman running: dark skin tone -๐Ÿ’ƒ woman dancing -๐Ÿ’ƒ๐Ÿป woman dancing: light skin tone -๐Ÿ’ƒ๐Ÿผ woman dancing: medium-light skin tone -๐Ÿ’ƒ๐Ÿฝ woman dancing: medium skin tone -๐Ÿ’ƒ๐Ÿพ woman dancing: medium-dark skin tone -๐Ÿ’ƒ๐Ÿฟ woman dancing: dark skin tone -๐Ÿ•บ man dancing -๐Ÿ•บ๐Ÿป man dancing: light skin tone -๐Ÿ•บ๐Ÿผ man dancing: medium-light skin tone -๐Ÿ•บ๐Ÿฝ man dancing: medium skin tone -๐Ÿ•บ๐Ÿพ man dancing: medium-dark skin tone -๐Ÿ•บ๐Ÿฟ man dancing: dark skin tone -๐Ÿ‘ฏ people with bunny ears -๐Ÿ‘ฏโ€โ™‚๏ธ men with bunny ears -๐Ÿ‘ฏโ€โ™‚ men with bunny ears -๐Ÿ‘ฏโ€โ™€๏ธ women with bunny ears -๐Ÿ‘ฏโ€โ™€ women with bunny ears -๐Ÿง– person in steamy room -๐Ÿง–๐Ÿป person in steamy room: light skin tone -๐Ÿง–๐Ÿผ person in steamy room: medium-light skin tone -๐Ÿง–๐Ÿฝ person in steamy room: medium skin tone -๐Ÿง–๐Ÿพ person in steamy room: medium-dark skin tone -๐Ÿง–๐Ÿฟ person in steamy room: dark skin tone -๐Ÿง–โ€โ™€๏ธ woman in steamy room -๐Ÿง–โ€โ™€ woman in steamy room -๐Ÿง–๐Ÿปโ€โ™€๏ธ woman in steamy room: light skin tone -๐Ÿง–๐Ÿปโ€โ™€ woman in steamy room: light skin tone -๐Ÿง–๐Ÿผโ€โ™€๏ธ woman in steamy room: medium-light skin tone -๐Ÿง–๐Ÿผโ€โ™€ woman in steamy room: medium-light skin tone -๐Ÿง–๐Ÿฝโ€โ™€๏ธ woman in steamy room: medium skin tone -๐Ÿง–๐Ÿฝโ€โ™€ woman in steamy room: medium skin tone -๐Ÿง–๐Ÿพโ€โ™€๏ธ woman in steamy room: medium-dark skin tone -๐Ÿง–๐Ÿพโ€โ™€ woman in steamy room: medium-dark skin tone -๐Ÿง–๐Ÿฟโ€โ™€๏ธ woman in steamy room: dark skin tone -๐Ÿง–๐Ÿฟโ€โ™€ woman in steamy room: dark skin tone -๐Ÿง–โ€โ™‚๏ธ man in steamy room -๐Ÿง–โ€โ™‚ man in steamy room -๐Ÿง–๐Ÿปโ€โ™‚๏ธ man in steamy room: light skin tone -๐Ÿง–๐Ÿปโ€โ™‚ man in steamy room: light skin tone -๐Ÿง–๐Ÿผโ€โ™‚๏ธ man in steamy room: medium-light skin tone -๐Ÿง–๐Ÿผโ€โ™‚ man in steamy room: medium-light skin tone -๐Ÿง–๐Ÿฝโ€โ™‚๏ธ man in steamy room: medium skin tone -๐Ÿง–๐Ÿฝโ€โ™‚ man in steamy room: medium skin tone -๐Ÿง–๐Ÿพโ€โ™‚๏ธ man in steamy room: medium-dark skin tone -๐Ÿง–๐Ÿพโ€โ™‚ man in steamy room: medium-dark skin tone -๐Ÿง–๐Ÿฟโ€โ™‚๏ธ man in steamy room: dark skin tone -๐Ÿง–๐Ÿฟโ€โ™‚ man in steamy room: dark skin tone -๐Ÿง— person climbing -๐Ÿง—๐Ÿป person climbing: light skin tone -๐Ÿง—๐Ÿผ person climbing: medium-light skin tone -๐Ÿง—๐Ÿฝ person climbing: medium skin tone -๐Ÿง—๐Ÿพ person climbing: medium-dark skin tone -๐Ÿง—๐Ÿฟ person climbing: dark skin tone -๐Ÿง—โ€โ™€๏ธ woman climbing -๐Ÿง—โ€โ™€ woman climbing -๐Ÿง—๐Ÿปโ€โ™€๏ธ woman climbing: light skin tone -๐Ÿง—๐Ÿปโ€โ™€ woman climbing: light skin tone -๐Ÿง—๐Ÿผโ€โ™€๏ธ woman climbing: medium-light skin tone -๐Ÿง—๐Ÿผโ€โ™€ woman climbing: medium-light skin tone -๐Ÿง—๐Ÿฝโ€โ™€๏ธ woman climbing: medium skin tone -๐Ÿง—๐Ÿฝโ€โ™€ woman climbing: medium skin tone -๐Ÿง—๐Ÿพโ€โ™€๏ธ woman climbing: medium-dark skin tone -๐Ÿง—๐Ÿพโ€โ™€ woman climbing: medium-dark skin tone -๐Ÿง—๐Ÿฟโ€โ™€๏ธ woman climbing: dark skin tone -๐Ÿง—๐Ÿฟโ€โ™€ woman climbing: dark skin tone -๐Ÿง—โ€โ™‚๏ธ man climbing -๐Ÿง—โ€โ™‚ man climbing -๐Ÿง—๐Ÿปโ€โ™‚๏ธ man climbing: light skin tone -๐Ÿง—๐Ÿปโ€โ™‚ man climbing: light skin tone -๐Ÿง—๐Ÿผโ€โ™‚๏ธ man climbing: medium-light skin tone -๐Ÿง—๐Ÿผโ€โ™‚ man climbing: medium-light skin tone -๐Ÿง—๐Ÿฝโ€โ™‚๏ธ man climbing: medium skin tone -๐Ÿง—๐Ÿฝโ€โ™‚ man climbing: medium skin tone -๐Ÿง—๐Ÿพโ€โ™‚๏ธ man climbing: medium-dark skin tone -๐Ÿง—๐Ÿพโ€โ™‚ man climbing: medium-dark skin tone -๐Ÿง—๐Ÿฟโ€โ™‚๏ธ man climbing: dark skin tone -๐Ÿง—๐Ÿฟโ€โ™‚ man climbing: dark skin tone -๐Ÿง˜ person in lotus position -๐Ÿง˜๐Ÿป person in lotus position: light skin tone -๐Ÿง˜๐Ÿผ person in lotus position: medium-light skin tone -๐Ÿง˜๐Ÿฝ person in lotus position: medium skin tone -๐Ÿง˜๐Ÿพ person in lotus position: medium-dark skin tone -๐Ÿง˜๐Ÿฟ person in lotus position: dark skin tone -๐Ÿง˜โ€โ™€๏ธ woman in lotus position -๐Ÿง˜โ€โ™€ woman in lotus position -๐Ÿง˜๐Ÿปโ€โ™€๏ธ woman in lotus position: light skin tone -๐Ÿง˜๐Ÿปโ€โ™€ woman in lotus position: light skin tone -๐Ÿง˜๐Ÿผโ€โ™€๏ธ woman in lotus position: medium-light skin tone -๐Ÿง˜๐Ÿผโ€โ™€ woman in lotus position: medium-light skin tone -๐Ÿง˜๐Ÿฝโ€โ™€๏ธ woman in lotus position: medium skin tone -๐Ÿง˜๐Ÿฝโ€โ™€ woman in lotus position: medium skin tone -๐Ÿง˜๐Ÿพโ€โ™€๏ธ woman in lotus position: medium-dark skin tone -๐Ÿง˜๐Ÿพโ€โ™€ woman in lotus position: medium-dark skin tone -๐Ÿง˜๐Ÿฟโ€โ™€๏ธ woman in lotus position: dark skin tone -๐Ÿง˜๐Ÿฟโ€โ™€ woman in lotus position: dark skin tone -๐Ÿง˜โ€โ™‚๏ธ man in lotus position -๐Ÿง˜โ€โ™‚ man in lotus position -๐Ÿง˜๐Ÿปโ€โ™‚๏ธ man in lotus position: light skin tone -๐Ÿง˜๐Ÿปโ€โ™‚ man in lotus position: light skin tone -๐Ÿง˜๐Ÿผโ€โ™‚๏ธ man in lotus position: medium-light skin tone -๐Ÿง˜๐Ÿผโ€โ™‚ man in lotus position: medium-light skin tone -๐Ÿง˜๐Ÿฝโ€โ™‚๏ธ man in lotus position: medium skin tone -๐Ÿง˜๐Ÿฝโ€โ™‚ man in lotus position: medium skin tone -๐Ÿง˜๐Ÿพโ€โ™‚๏ธ man in lotus position: medium-dark skin tone -๐Ÿง˜๐Ÿพโ€โ™‚ man in lotus position: medium-dark skin tone -๐Ÿง˜๐Ÿฟโ€โ™‚๏ธ man in lotus position: dark skin tone -๐Ÿง˜๐Ÿฟโ€โ™‚ man in lotus position: dark skin tone -๐Ÿ›€ person taking bath -๐Ÿ›€๐Ÿป person taking bath: light skin tone -๐Ÿ›€๐Ÿผ person taking bath: medium-light skin tone -๐Ÿ›€๐Ÿฝ person taking bath: medium skin tone -๐Ÿ›€๐Ÿพ person taking bath: medium-dark skin tone -๐Ÿ›€๐Ÿฟ person taking bath: dark skin tone -๐Ÿ›Œ person in bed -๐Ÿ›Œ๐Ÿป person in bed: light skin tone -๐Ÿ›Œ๐Ÿผ person in bed: medium-light skin tone -๐Ÿ›Œ๐Ÿฝ person in bed: medium skin tone -๐Ÿ›Œ๐Ÿพ person in bed: medium-dark skin tone -๐Ÿ›Œ๐Ÿฟ person in bed: dark skin tone -๐Ÿ•ด๏ธ man in suit levitating -๐Ÿ•ด man in suit levitating -๐Ÿ•ด๐Ÿป man in suit levitating: light skin tone -๐Ÿ•ด๐Ÿผ man in suit levitating: medium-light skin tone -๐Ÿ•ด๐Ÿฝ man in suit levitating: medium skin tone -๐Ÿ•ด๐Ÿพ man in suit levitating: medium-dark skin tone -๐Ÿ•ด๐Ÿฟ man in suit levitating: dark skin tone -๐Ÿ—ฃ๏ธ speaking head -๐Ÿ—ฃ speaking head -๐Ÿ‘ค bust in silhouette -๐Ÿ‘ฅ busts in silhouette -๐Ÿคบ person fencing -๐Ÿ‡ horse racing -๐Ÿ‡๐Ÿป horse racing: light skin tone -๐Ÿ‡๐Ÿผ horse racing: medium-light skin tone -๐Ÿ‡๐Ÿฝ horse racing: medium skin tone -๐Ÿ‡๐Ÿพ horse racing: medium-dark skin tone -๐Ÿ‡๐Ÿฟ horse racing: dark skin tone -โ›ท๏ธ skier -โ›ท skier -๐Ÿ‚ snowboarder -๐Ÿ‚๐Ÿป snowboarder: light skin tone -๐Ÿ‚๐Ÿผ snowboarder: medium-light skin tone -๐Ÿ‚๐Ÿฝ snowboarder: medium skin tone -๐Ÿ‚๐Ÿพ snowboarder: medium-dark skin tone -๐Ÿ‚๐Ÿฟ snowboarder: dark skin tone -๐ŸŒ๏ธ person golfing -๐ŸŒ person golfing -๐ŸŒ๐Ÿป person golfing: light skin tone -๐ŸŒ๐Ÿผ person golfing: medium-light skin tone -๐ŸŒ๐Ÿฝ person golfing: medium skin tone -๐ŸŒ๐Ÿพ person golfing: medium-dark skin tone -๐ŸŒ๐Ÿฟ person golfing: dark skin tone -๐ŸŒ๏ธโ€โ™‚๏ธ man golfing -๐ŸŒโ€โ™‚๏ธ man golfing -๐ŸŒ๏ธโ€โ™‚ man golfing -๐ŸŒโ€โ™‚ man golfing -๐ŸŒ๐Ÿปโ€โ™‚๏ธ man golfing: light skin tone -๐ŸŒ๐Ÿปโ€โ™‚ man golfing: light skin tone -๐ŸŒ๐Ÿผโ€โ™‚๏ธ man golfing: medium-light skin tone -๐ŸŒ๐Ÿผโ€โ™‚ man golfing: medium-light skin tone -๐ŸŒ๐Ÿฝโ€โ™‚๏ธ man golfing: medium skin tone -๐ŸŒ๐Ÿฝโ€โ™‚ man golfing: medium skin tone -๐ŸŒ๐Ÿพโ€โ™‚๏ธ man golfing: medium-dark skin tone -๐ŸŒ๐Ÿพโ€โ™‚ man golfing: medium-dark skin tone -๐ŸŒ๐Ÿฟโ€โ™‚๏ธ man golfing: dark skin tone -๐ŸŒ๐Ÿฟโ€โ™‚ man golfing: dark skin tone -๐ŸŒ๏ธโ€โ™€๏ธ woman golfing -๐ŸŒโ€โ™€๏ธ woman golfing -๐ŸŒ๏ธโ€โ™€ woman golfing -๐ŸŒโ€โ™€ woman golfing -๐ŸŒ๐Ÿปโ€โ™€๏ธ woman golfing: light skin tone -๐ŸŒ๐Ÿปโ€โ™€ woman golfing: light skin tone -๐ŸŒ๐Ÿผโ€โ™€๏ธ woman golfing: medium-light skin tone -๐ŸŒ๐Ÿผโ€โ™€ woman golfing: medium-light skin tone -๐ŸŒ๐Ÿฝโ€โ™€๏ธ woman golfing: medium skin tone -๐ŸŒ๐Ÿฝโ€โ™€ woman golfing: medium skin tone -๐ŸŒ๐Ÿพโ€โ™€๏ธ woman golfing: medium-dark skin tone -๐ŸŒ๐Ÿพโ€โ™€ woman golfing: medium-dark skin tone -๐ŸŒ๐Ÿฟโ€โ™€๏ธ woman golfing: dark skin tone -๐ŸŒ๐Ÿฟโ€โ™€ woman golfing: dark skin tone -๐Ÿ„ person surfing -๐Ÿ„๐Ÿป person surfing: light skin tone -๐Ÿ„๐Ÿผ person surfing: medium-light skin tone -๐Ÿ„๐Ÿฝ person surfing: medium skin tone -๐Ÿ„๐Ÿพ person surfing: medium-dark skin tone -๐Ÿ„๐Ÿฟ person surfing: dark skin tone -๐Ÿ„โ€โ™‚๏ธ man surfing -๐Ÿ„โ€โ™‚ man surfing -๐Ÿ„๐Ÿปโ€โ™‚๏ธ man surfing: light skin tone -๐Ÿ„๐Ÿปโ€โ™‚ man surfing: light skin tone -๐Ÿ„๐Ÿผโ€โ™‚๏ธ man surfing: medium-light skin tone -๐Ÿ„๐Ÿผโ€โ™‚ man surfing: medium-light skin tone -๐Ÿ„๐Ÿฝโ€โ™‚๏ธ man surfing: medium skin tone -๐Ÿ„๐Ÿฝโ€โ™‚ man surfing: medium skin tone -๐Ÿ„๐Ÿพโ€โ™‚๏ธ man surfing: medium-dark skin tone -๐Ÿ„๐Ÿพโ€โ™‚ man surfing: medium-dark skin tone -๐Ÿ„๐Ÿฟโ€โ™‚๏ธ man surfing: dark skin tone -๐Ÿ„๐Ÿฟโ€โ™‚ man surfing: dark skin tone -๐Ÿ„โ€โ™€๏ธ woman surfing -๐Ÿ„โ€โ™€ woman surfing -๐Ÿ„๐Ÿปโ€โ™€๏ธ woman surfing: light skin tone -๐Ÿ„๐Ÿปโ€โ™€ woman surfing: light skin tone -๐Ÿ„๐Ÿผโ€โ™€๏ธ woman surfing: medium-light skin tone -๐Ÿ„๐Ÿผโ€โ™€ woman surfing: medium-light skin tone -๐Ÿ„๐Ÿฝโ€โ™€๏ธ woman surfing: medium skin tone -๐Ÿ„๐Ÿฝโ€โ™€ woman surfing: medium skin tone -๐Ÿ„๐Ÿพโ€โ™€๏ธ woman surfing: medium-dark skin tone -๐Ÿ„๐Ÿพโ€โ™€ woman surfing: medium-dark skin tone -๐Ÿ„๐Ÿฟโ€โ™€๏ธ woman surfing: dark skin tone -๐Ÿ„๐Ÿฟโ€โ™€ woman surfing: dark skin tone -๐Ÿšฃ person rowing boat -๐Ÿšฃ๐Ÿป person rowing boat: light skin tone -๐Ÿšฃ๐Ÿผ person rowing boat: medium-light skin tone -๐Ÿšฃ๐Ÿฝ person rowing boat: medium skin tone -๐Ÿšฃ๐Ÿพ person rowing boat: medium-dark skin tone -๐Ÿšฃ๐Ÿฟ person rowing boat: dark skin tone -๐Ÿšฃโ€โ™‚๏ธ man rowing boat -๐Ÿšฃโ€โ™‚ man rowing boat -๐Ÿšฃ๐Ÿปโ€โ™‚๏ธ man rowing boat: light skin tone -๐Ÿšฃ๐Ÿปโ€โ™‚ man rowing boat: light skin tone -๐Ÿšฃ๐Ÿผโ€โ™‚๏ธ man rowing boat: medium-light skin tone -๐Ÿšฃ๐Ÿผโ€โ™‚ man rowing boat: medium-light skin tone -๐Ÿšฃ๐Ÿฝโ€โ™‚๏ธ man rowing boat: medium skin tone -๐Ÿšฃ๐Ÿฝโ€โ™‚ man rowing boat: medium skin tone -๐Ÿšฃ๐Ÿพโ€โ™‚๏ธ man rowing boat: medium-dark skin tone -๐Ÿšฃ๐Ÿพโ€โ™‚ man rowing boat: medium-dark skin tone -๐Ÿšฃ๐Ÿฟโ€โ™‚๏ธ man rowing boat: dark skin tone -๐Ÿšฃ๐Ÿฟโ€โ™‚ man rowing boat: dark skin tone -๐Ÿšฃโ€โ™€๏ธ woman rowing boat -๐Ÿšฃโ€โ™€ woman rowing boat -๐Ÿšฃ๐Ÿปโ€โ™€๏ธ woman rowing boat: light skin tone -๐Ÿšฃ๐Ÿปโ€โ™€ woman rowing boat: light skin tone -๐Ÿšฃ๐Ÿผโ€โ™€๏ธ woman rowing boat: medium-light skin tone -๐Ÿšฃ๐Ÿผโ€โ™€ woman rowing boat: medium-light skin tone -๐Ÿšฃ๐Ÿฝโ€โ™€๏ธ woman rowing boat: medium skin tone -๐Ÿšฃ๐Ÿฝโ€โ™€ woman rowing boat: medium skin tone -๐Ÿšฃ๐Ÿพโ€โ™€๏ธ woman rowing boat: medium-dark skin tone -๐Ÿšฃ๐Ÿพโ€โ™€ woman rowing boat: medium-dark skin tone -๐Ÿšฃ๐Ÿฟโ€โ™€๏ธ woman rowing boat: dark skin tone -๐Ÿšฃ๐Ÿฟโ€โ™€ woman rowing boat: dark skin tone -๐ŸŠ person swimming -๐ŸŠ๐Ÿป person swimming: light skin tone -๐ŸŠ๐Ÿผ person swimming: medium-light skin tone -๐ŸŠ๐Ÿฝ person swimming: medium skin tone -๐ŸŠ๐Ÿพ person swimming: medium-dark skin tone -๐ŸŠ๐Ÿฟ person swimming: dark skin tone -๐ŸŠโ€โ™‚๏ธ man swimming -๐ŸŠโ€โ™‚ man swimming -๐ŸŠ๐Ÿปโ€โ™‚๏ธ man swimming: light skin tone -๐ŸŠ๐Ÿปโ€โ™‚ man swimming: light skin tone -๐ŸŠ๐Ÿผโ€โ™‚๏ธ man swimming: medium-light skin tone -๐ŸŠ๐Ÿผโ€โ™‚ man swimming: medium-light skin tone -๐ŸŠ๐Ÿฝโ€โ™‚๏ธ man swimming: medium skin tone -๐ŸŠ๐Ÿฝโ€โ™‚ man swimming: medium skin tone -๐ŸŠ๐Ÿพโ€โ™‚๏ธ man swimming: medium-dark skin tone -๐ŸŠ๐Ÿพโ€โ™‚ man swimming: medium-dark skin tone -๐ŸŠ๐Ÿฟโ€โ™‚๏ธ man swimming: dark skin tone -๐ŸŠ๐Ÿฟโ€โ™‚ man swimming: dark skin tone -๐ŸŠโ€โ™€๏ธ woman swimming -๐ŸŠโ€โ™€ woman swimming -๐ŸŠ๐Ÿปโ€โ™€๏ธ woman swimming: light skin tone -๐ŸŠ๐Ÿปโ€โ™€ woman swimming: light skin tone -๐ŸŠ๐Ÿผโ€โ™€๏ธ woman swimming: medium-light skin tone -๐ŸŠ๐Ÿผโ€โ™€ woman swimming: medium-light skin tone -๐ŸŠ๐Ÿฝโ€โ™€๏ธ woman swimming: medium skin tone -๐ŸŠ๐Ÿฝโ€โ™€ woman swimming: medium skin tone -๐ŸŠ๐Ÿพโ€โ™€๏ธ woman swimming: medium-dark skin tone -๐ŸŠ๐Ÿพโ€โ™€ woman swimming: medium-dark skin tone -๐ŸŠ๐Ÿฟโ€โ™€๏ธ woman swimming: dark skin tone -๐ŸŠ๐Ÿฟโ€โ™€ woman swimming: dark skin tone -โ›น๏ธ person bouncing ball -โ›น person bouncing ball -โ›น๐Ÿป person bouncing ball: light skin tone -โ›น๐Ÿผ person bouncing ball: medium-light skin tone -โ›น๐Ÿฝ person bouncing ball: medium skin tone -โ›น๐Ÿพ person bouncing ball: medium-dark skin tone -โ›น๐Ÿฟ person bouncing ball: dark skin tone -โ›น๏ธโ€โ™‚๏ธ man bouncing ball -โ›นโ€โ™‚๏ธ man bouncing ball -โ›น๏ธโ€โ™‚ man bouncing ball -โ›นโ€โ™‚ man bouncing ball -โ›น๐Ÿปโ€โ™‚๏ธ man bouncing ball: light skin tone -โ›น๐Ÿปโ€โ™‚ man bouncing ball: light skin tone -โ›น๐Ÿผโ€โ™‚๏ธ man bouncing ball: medium-light skin tone -โ›น๐Ÿผโ€โ™‚ man bouncing ball: medium-light skin tone -โ›น๐Ÿฝโ€โ™‚๏ธ man bouncing ball: medium skin tone -โ›น๐Ÿฝโ€โ™‚ man bouncing ball: medium skin tone -โ›น๐Ÿพโ€โ™‚๏ธ man bouncing ball: medium-dark skin tone -โ›น๐Ÿพโ€โ™‚ man bouncing ball: medium-dark skin tone -โ›น๐Ÿฟโ€โ™‚๏ธ man bouncing ball: dark skin tone -โ›น๐Ÿฟโ€โ™‚ man bouncing ball: dark skin tone -โ›น๏ธโ€โ™€๏ธ woman bouncing ball -โ›นโ€โ™€๏ธ woman bouncing ball -โ›น๏ธโ€โ™€ woman bouncing ball -โ›นโ€โ™€ woman bouncing ball -โ›น๐Ÿปโ€โ™€๏ธ woman bouncing ball: light skin tone -โ›น๐Ÿปโ€โ™€ woman bouncing ball: light skin tone -โ›น๐Ÿผโ€โ™€๏ธ woman bouncing ball: medium-light skin tone -โ›น๐Ÿผโ€โ™€ woman bouncing ball: medium-light skin tone -โ›น๐Ÿฝโ€โ™€๏ธ woman bouncing ball: medium skin tone -โ›น๐Ÿฝโ€โ™€ woman bouncing ball: medium skin tone -โ›น๐Ÿพโ€โ™€๏ธ woman bouncing ball: medium-dark skin tone -โ›น๐Ÿพโ€โ™€ woman bouncing ball: medium-dark skin tone -โ›น๐Ÿฟโ€โ™€๏ธ woman bouncing ball: dark skin tone -โ›น๐Ÿฟโ€โ™€ woman bouncing ball: dark skin tone -๐Ÿ‹๏ธ person lifting weights -๐Ÿ‹ person lifting weights -๐Ÿ‹๐Ÿป person lifting weights: light skin tone -๐Ÿ‹๐Ÿผ person lifting weights: medium-light skin tone -๐Ÿ‹๐Ÿฝ person lifting weights: medium skin tone -๐Ÿ‹๐Ÿพ person lifting weights: medium-dark skin tone -๐Ÿ‹๐Ÿฟ person lifting weights: dark skin tone -๐Ÿ‹๏ธโ€โ™‚๏ธ man lifting weights -๐Ÿ‹โ€โ™‚๏ธ man lifting weights -๐Ÿ‹๏ธโ€โ™‚ man lifting weights -๐Ÿ‹โ€โ™‚ man lifting weights -๐Ÿ‹๐Ÿปโ€โ™‚๏ธ man lifting weights: light skin tone -๐Ÿ‹๐Ÿปโ€โ™‚ man lifting weights: light skin tone -๐Ÿ‹๐Ÿผโ€โ™‚๏ธ man lifting weights: medium-light skin tone -๐Ÿ‹๐Ÿผโ€โ™‚ man lifting weights: medium-light skin tone -๐Ÿ‹๐Ÿฝโ€โ™‚๏ธ man lifting weights: medium skin tone -๐Ÿ‹๐Ÿฝโ€โ™‚ man lifting weights: medium skin tone -๐Ÿ‹๐Ÿพโ€โ™‚๏ธ man lifting weights: medium-dark skin tone -๐Ÿ‹๐Ÿพโ€โ™‚ man lifting weights: medium-dark skin tone -๐Ÿ‹๐Ÿฟโ€โ™‚๏ธ man lifting weights: dark skin tone -๐Ÿ‹๐Ÿฟโ€โ™‚ man lifting weights: dark skin tone -๐Ÿ‹๏ธโ€โ™€๏ธ woman lifting weights -๐Ÿ‹โ€โ™€๏ธ woman lifting weights -๐Ÿ‹๏ธโ€โ™€ woman lifting weights -๐Ÿ‹โ€โ™€ woman lifting weights -๐Ÿ‹๐Ÿปโ€โ™€๏ธ woman lifting weights: light skin tone -๐Ÿ‹๐Ÿปโ€โ™€ woman lifting weights: light skin tone -๐Ÿ‹๐Ÿผโ€โ™€๏ธ woman lifting weights: medium-light skin tone -๐Ÿ‹๐Ÿผโ€โ™€ woman lifting weights: medium-light skin tone -๐Ÿ‹๐Ÿฝโ€โ™€๏ธ woman lifting weights: medium skin tone -๐Ÿ‹๐Ÿฝโ€โ™€ woman lifting weights: medium skin tone -๐Ÿ‹๐Ÿพโ€โ™€๏ธ woman lifting weights: medium-dark skin tone -๐Ÿ‹๐Ÿพโ€โ™€ woman lifting weights: medium-dark skin tone -๐Ÿ‹๐Ÿฟโ€โ™€๏ธ woman lifting weights: dark skin tone -๐Ÿ‹๐Ÿฟโ€โ™€ woman lifting weights: dark skin tone -๐Ÿšด person biking -๐Ÿšด๐Ÿป person biking: light skin tone -๐Ÿšด๐Ÿผ person biking: medium-light skin tone -๐Ÿšด๐Ÿฝ person biking: medium skin tone -๐Ÿšด๐Ÿพ person biking: medium-dark skin tone -๐Ÿšด๐Ÿฟ person biking: dark skin tone -๐Ÿšดโ€โ™‚๏ธ man biking -๐Ÿšดโ€โ™‚ man biking -๐Ÿšด๐Ÿปโ€โ™‚๏ธ man biking: light skin tone -๐Ÿšด๐Ÿปโ€โ™‚ man biking: light skin tone -๐Ÿšด๐Ÿผโ€โ™‚๏ธ man biking: medium-light skin tone -๐Ÿšด๐Ÿผโ€โ™‚ man biking: medium-light skin tone -๐Ÿšด๐Ÿฝโ€โ™‚๏ธ man biking: medium skin tone -๐Ÿšด๐Ÿฝโ€โ™‚ man biking: medium skin tone -๐Ÿšด๐Ÿพโ€โ™‚๏ธ man biking: medium-dark skin tone -๐Ÿšด๐Ÿพโ€โ™‚ man biking: medium-dark skin tone -๐Ÿšด๐Ÿฟโ€โ™‚๏ธ man biking: dark skin tone -๐Ÿšด๐Ÿฟโ€โ™‚ man biking: dark skin tone -๐Ÿšดโ€โ™€๏ธ woman biking -๐Ÿšดโ€โ™€ woman biking -๐Ÿšด๐Ÿปโ€โ™€๏ธ woman biking: light skin tone -๐Ÿšด๐Ÿปโ€โ™€ woman biking: light skin tone -๐Ÿšด๐Ÿผโ€โ™€๏ธ woman biking: medium-light skin tone -๐Ÿšด๐Ÿผโ€โ™€ woman biking: medium-light skin tone -๐Ÿšด๐Ÿฝโ€โ™€๏ธ woman biking: medium skin tone -๐Ÿšด๐Ÿฝโ€โ™€ woman biking: medium skin tone -๐Ÿšด๐Ÿพโ€โ™€๏ธ woman biking: medium-dark skin tone -๐Ÿšด๐Ÿพโ€โ™€ woman biking: medium-dark skin tone -๐Ÿšด๐Ÿฟโ€โ™€๏ธ woman biking: dark skin tone -๐Ÿšด๐Ÿฟโ€โ™€ woman biking: dark skin tone -๐Ÿšต person mountain biking -๐Ÿšต๐Ÿป person mountain biking: light skin tone -๐Ÿšต๐Ÿผ person mountain biking: medium-light skin tone -๐Ÿšต๐Ÿฝ person mountain biking: medium skin tone -๐Ÿšต๐Ÿพ person mountain biking: medium-dark skin tone -๐Ÿšต๐Ÿฟ person mountain biking: dark skin tone -๐Ÿšตโ€โ™‚๏ธ man mountain biking -๐Ÿšตโ€โ™‚ man mountain biking -๐Ÿšต๐Ÿปโ€โ™‚๏ธ man mountain biking: light skin tone -๐Ÿšต๐Ÿปโ€โ™‚ man mountain biking: light skin tone -๐Ÿšต๐Ÿผโ€โ™‚๏ธ man mountain biking: medium-light skin tone -๐Ÿšต๐Ÿผโ€โ™‚ man mountain biking: medium-light skin tone -๐Ÿšต๐Ÿฝโ€โ™‚๏ธ man mountain biking: medium skin tone -๐Ÿšต๐Ÿฝโ€โ™‚ man mountain biking: medium skin tone -๐Ÿšต๐Ÿพโ€โ™‚๏ธ man mountain biking: medium-dark skin tone -๐Ÿšต๐Ÿพโ€โ™‚ man mountain biking: medium-dark skin tone -๐Ÿšต๐Ÿฟโ€โ™‚๏ธ man mountain biking: dark skin tone -๐Ÿšต๐Ÿฟโ€โ™‚ man mountain biking: dark skin tone -๐Ÿšตโ€โ™€๏ธ woman mountain biking -๐Ÿšตโ€โ™€ woman mountain biking -๐Ÿšต๐Ÿปโ€โ™€๏ธ woman mountain biking: light skin tone -๐Ÿšต๐Ÿปโ€โ™€ woman mountain biking: light skin tone -๐Ÿšต๐Ÿผโ€โ™€๏ธ woman mountain biking: medium-light skin tone -๐Ÿšต๐Ÿผโ€โ™€ woman mountain biking: medium-light skin tone -๐Ÿšต๐Ÿฝโ€โ™€๏ธ woman mountain biking: medium skin tone -๐Ÿšต๐Ÿฝโ€โ™€ woman mountain biking: medium skin tone -๐Ÿšต๐Ÿพโ€โ™€๏ธ woman mountain biking: medium-dark skin tone -๐Ÿšต๐Ÿพโ€โ™€ woman mountain biking: medium-dark skin tone -๐Ÿšต๐Ÿฟโ€โ™€๏ธ woman mountain biking: dark skin tone -๐Ÿšต๐Ÿฟโ€โ™€ woman mountain biking: dark skin tone -๐ŸŽ๏ธ racing car -๐ŸŽ racing car -๐Ÿ๏ธ motorcycle -๐Ÿ motorcycle -๐Ÿคธ person cartwheeling -๐Ÿคธ๐Ÿป person cartwheeling: light skin tone -๐Ÿคธ๐Ÿผ person cartwheeling: medium-light skin tone -๐Ÿคธ๐Ÿฝ person cartwheeling: medium skin tone -๐Ÿคธ๐Ÿพ person cartwheeling: medium-dark skin tone -๐Ÿคธ๐Ÿฟ person cartwheeling: dark skin tone -๐Ÿคธโ€โ™‚๏ธ man cartwheeling -๐Ÿคธโ€โ™‚ man cartwheeling -๐Ÿคธ๐Ÿปโ€โ™‚๏ธ man cartwheeling: light skin tone -๐Ÿคธ๐Ÿปโ€โ™‚ man cartwheeling: light skin tone -๐Ÿคธ๐Ÿผโ€โ™‚๏ธ man cartwheeling: medium-light skin tone -๐Ÿคธ๐Ÿผโ€โ™‚ man cartwheeling: medium-light skin tone -๐Ÿคธ๐Ÿฝโ€โ™‚๏ธ man cartwheeling: medium skin tone -๐Ÿคธ๐Ÿฝโ€โ™‚ man cartwheeling: medium skin tone -๐Ÿคธ๐Ÿพโ€โ™‚๏ธ man cartwheeling: medium-dark skin tone -๐Ÿคธ๐Ÿพโ€โ™‚ man cartwheeling: medium-dark skin tone -๐Ÿคธ๐Ÿฟโ€โ™‚๏ธ man cartwheeling: dark skin tone -๐Ÿคธ๐Ÿฟโ€โ™‚ man cartwheeling: dark skin tone -๐Ÿคธโ€โ™€๏ธ woman cartwheeling -๐Ÿคธโ€โ™€ woman cartwheeling -๐Ÿคธ๐Ÿปโ€โ™€๏ธ woman cartwheeling: light skin tone -๐Ÿคธ๐Ÿปโ€โ™€ woman cartwheeling: light skin tone -๐Ÿคธ๐Ÿผโ€โ™€๏ธ woman cartwheeling: medium-light skin tone -๐Ÿคธ๐Ÿผโ€โ™€ woman cartwheeling: medium-light skin tone -๐Ÿคธ๐Ÿฝโ€โ™€๏ธ woman cartwheeling: medium skin tone -๐Ÿคธ๐Ÿฝโ€โ™€ woman cartwheeling: medium skin tone -๐Ÿคธ๐Ÿพโ€โ™€๏ธ woman cartwheeling: medium-dark skin tone -๐Ÿคธ๐Ÿพโ€โ™€ woman cartwheeling: medium-dark skin tone -๐Ÿคธ๐Ÿฟโ€โ™€๏ธ woman cartwheeling: dark skin tone -๐Ÿคธ๐Ÿฟโ€โ™€ woman cartwheeling: dark skin tone -๐Ÿคผ people wrestling -๐Ÿคผโ€โ™‚๏ธ men wrestling -๐Ÿคผโ€โ™‚ men wrestling -๐Ÿคผโ€โ™€๏ธ women wrestling -๐Ÿคผโ€โ™€ women wrestling -๐Ÿคฝ person playing water polo -๐Ÿคฝ๐Ÿป person playing water polo: light skin tone -๐Ÿคฝ๐Ÿผ person playing water polo: medium-light skin tone -๐Ÿคฝ๐Ÿฝ person playing water polo: medium skin tone -๐Ÿคฝ๐Ÿพ person playing water polo: medium-dark skin tone -๐Ÿคฝ๐Ÿฟ person playing water polo: dark skin tone -๐Ÿคฝโ€โ™‚๏ธ man playing water polo -๐Ÿคฝโ€โ™‚ man playing water polo -๐Ÿคฝ๐Ÿปโ€โ™‚๏ธ man playing water polo: light skin tone -๐Ÿคฝ๐Ÿปโ€โ™‚ man playing water polo: light skin tone -๐Ÿคฝ๐Ÿผโ€โ™‚๏ธ man playing water polo: medium-light skin tone -๐Ÿคฝ๐Ÿผโ€โ™‚ man playing water polo: medium-light skin tone -๐Ÿคฝ๐Ÿฝโ€โ™‚๏ธ man playing water polo: medium skin tone -๐Ÿคฝ๐Ÿฝโ€โ™‚ man playing water polo: medium skin tone -๐Ÿคฝ๐Ÿพโ€โ™‚๏ธ man playing water polo: medium-dark skin tone -๐Ÿคฝ๐Ÿพโ€โ™‚ man playing water polo: medium-dark skin tone -๐Ÿคฝ๐Ÿฟโ€โ™‚๏ธ man playing water polo: dark skin tone -๐Ÿคฝ๐Ÿฟโ€โ™‚ man playing water polo: dark skin tone -๐Ÿคฝโ€โ™€๏ธ woman playing water polo -๐Ÿคฝโ€โ™€ woman playing water polo -๐Ÿคฝ๐Ÿปโ€โ™€๏ธ woman playing water polo: light skin tone -๐Ÿคฝ๐Ÿปโ€โ™€ woman playing water polo: light skin tone -๐Ÿคฝ๐Ÿผโ€โ™€๏ธ woman playing water polo: medium-light skin tone -๐Ÿคฝ๐Ÿผโ€โ™€ woman playing water polo: medium-light skin tone -๐Ÿคฝ๐Ÿฝโ€โ™€๏ธ woman playing water polo: medium skin tone -๐Ÿคฝ๐Ÿฝโ€โ™€ woman playing water polo: medium skin tone -๐Ÿคฝ๐Ÿพโ€โ™€๏ธ woman playing water polo: medium-dark skin tone -๐Ÿคฝ๐Ÿพโ€โ™€ woman playing water polo: medium-dark skin tone -๐Ÿคฝ๐Ÿฟโ€โ™€๏ธ woman playing water polo: dark skin tone -๐Ÿคฝ๐Ÿฟโ€โ™€ woman playing water polo: dark skin tone -๐Ÿคพ person playing handball -๐Ÿคพ๐Ÿป person playing handball: light skin tone -๐Ÿคพ๐Ÿผ person playing handball: medium-light skin tone -๐Ÿคพ๐Ÿฝ person playing handball: medium skin tone -๐Ÿคพ๐Ÿพ person playing handball: medium-dark skin tone -๐Ÿคพ๐Ÿฟ person playing handball: dark skin tone -๐Ÿคพโ€โ™‚๏ธ man playing handball -๐Ÿคพโ€โ™‚ man playing handball -๐Ÿคพ๐Ÿปโ€โ™‚๏ธ man playing handball: light skin tone -๐Ÿคพ๐Ÿปโ€โ™‚ man playing handball: light skin tone -๐Ÿคพ๐Ÿผโ€โ™‚๏ธ man playing handball: medium-light skin tone -๐Ÿคพ๐Ÿผโ€โ™‚ man playing handball: medium-light skin tone -๐Ÿคพ๐Ÿฝโ€โ™‚๏ธ man playing handball: medium skin tone -๐Ÿคพ๐Ÿฝโ€โ™‚ man playing handball: medium skin tone -๐Ÿคพ๐Ÿพโ€โ™‚๏ธ man playing handball: medium-dark skin tone -๐Ÿคพ๐Ÿพโ€โ™‚ man playing handball: medium-dark skin tone -๐Ÿคพ๐Ÿฟโ€โ™‚๏ธ man playing handball: dark skin tone -๐Ÿคพ๐Ÿฟโ€โ™‚ man playing handball: dark skin tone -๐Ÿคพโ€โ™€๏ธ woman playing handball -๐Ÿคพโ€โ™€ woman playing handball -๐Ÿคพ๐Ÿปโ€โ™€๏ธ woman playing handball: light skin tone -๐Ÿคพ๐Ÿปโ€โ™€ woman playing handball: light skin tone -๐Ÿคพ๐Ÿผโ€โ™€๏ธ woman playing handball: medium-light skin tone -๐Ÿคพ๐Ÿผโ€โ™€ woman playing handball: medium-light skin tone -๐Ÿคพ๐Ÿฝโ€โ™€๏ธ woman playing handball: medium skin tone -๐Ÿคพ๐Ÿฝโ€โ™€ woman playing handball: medium skin tone -๐Ÿคพ๐Ÿพโ€โ™€๏ธ woman playing handball: medium-dark skin tone -๐Ÿคพ๐Ÿพโ€โ™€ woman playing handball: medium-dark skin tone -๐Ÿคพ๐Ÿฟโ€โ™€๏ธ woman playing handball: dark skin tone -๐Ÿคพ๐Ÿฟโ€โ™€ woman playing handball: dark skin tone -๐Ÿคน person juggling -๐Ÿคน๐Ÿป person juggling: light skin tone -๐Ÿคน๐Ÿผ person juggling: medium-light skin tone -๐Ÿคน๐Ÿฝ person juggling: medium skin tone -๐Ÿคน๐Ÿพ person juggling: medium-dark skin tone -๐Ÿคน๐Ÿฟ person juggling: dark skin tone -๐Ÿคนโ€โ™‚๏ธ man juggling -๐Ÿคนโ€โ™‚ man juggling -๐Ÿคน๐Ÿปโ€โ™‚๏ธ man juggling: light skin tone -๐Ÿคน๐Ÿปโ€โ™‚ man juggling: light skin tone -๐Ÿคน๐Ÿผโ€โ™‚๏ธ man juggling: medium-light skin tone -๐Ÿคน๐Ÿผโ€โ™‚ man juggling: medium-light skin tone -๐Ÿคน๐Ÿฝโ€โ™‚๏ธ man juggling: medium skin tone -๐Ÿคน๐Ÿฝโ€โ™‚ man juggling: medium skin tone -๐Ÿคน๐Ÿพโ€โ™‚๏ธ man juggling: medium-dark skin tone -๐Ÿคน๐Ÿพโ€โ™‚ man juggling: medium-dark skin tone -๐Ÿคน๐Ÿฟโ€โ™‚๏ธ man juggling: dark skin tone -๐Ÿคน๐Ÿฟโ€โ™‚ man juggling: dark skin tone -๐Ÿคนโ€โ™€๏ธ woman juggling -๐Ÿคนโ€โ™€ woman juggling -๐Ÿคน๐Ÿปโ€โ™€๏ธ woman juggling: light skin tone -๐Ÿคน๐Ÿปโ€โ™€ woman juggling: light skin tone -๐Ÿคน๐Ÿผโ€โ™€๏ธ woman juggling: medium-light skin tone -๐Ÿคน๐Ÿผโ€โ™€ woman juggling: medium-light skin tone -๐Ÿคน๐Ÿฝโ€โ™€๏ธ woman juggling: medium skin tone -๐Ÿคน๐Ÿฝโ€โ™€ woman juggling: medium skin tone -๐Ÿคน๐Ÿพโ€โ™€๏ธ woman juggling: medium-dark skin tone -๐Ÿคน๐Ÿพโ€โ™€ woman juggling: medium-dark skin tone -๐Ÿคน๐Ÿฟโ€โ™€๏ธ woman juggling: dark skin tone -๐Ÿคน๐Ÿฟโ€โ™€ woman juggling: dark skin tone -๐Ÿ‘ซ man and woman holding hands -๐Ÿ‘ฌ two men holding hands -๐Ÿ‘ญ two women holding hands -๐Ÿ’ kiss -๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: woman, man -๐Ÿ‘ฉโ€โคโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: woman, man -๐Ÿ‘จโ€โค๏ธโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: man, man -๐Ÿ‘จโ€โคโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: man, man -๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ’‹โ€๐Ÿ‘ฉ kiss: woman, woman -๐Ÿ‘ฉโ€โคโ€๐Ÿ’‹โ€๐Ÿ‘ฉ kiss: woman, woman -๐Ÿ’‘ couple with heart -๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ‘จ couple with heart: woman, man -๐Ÿ‘ฉโ€โคโ€๐Ÿ‘จ couple with heart: woman, man -๐Ÿ‘จโ€โค๏ธโ€๐Ÿ‘จ couple with heart: man, man -๐Ÿ‘จโ€โคโ€๐Ÿ‘จ couple with heart: man, man -๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ‘ฉ couple with heart: woman, woman -๐Ÿ‘ฉโ€โคโ€๐Ÿ‘ฉ couple with heart: woman, woman -๐Ÿ‘ช family -๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆ family: man, woman, boy -๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘ง family: man, woman, girl -๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: man, woman, girl, boy -๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: man, woman, boy, boy -๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ง family: man, woman, girl, girl -๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘ฆ family: man, man, boy -๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘ง family: man, man, girl -๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: man, man, girl, boy -๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: man, man, boy, boy -๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ง family: man, man, girl, girl -๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆ family: woman, woman, boy -๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘ง family: woman, woman, girl -๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: woman, woman, girl, boy -๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: woman, woman, boy, boy -๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ง family: woman, woman, girl, girl -๐Ÿ‘จโ€๐Ÿ‘ฆ family: man, boy -๐Ÿ‘จโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: man, boy, boy -๐Ÿ‘จโ€๐Ÿ‘ง family: man, girl -๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: man, girl, boy -๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ง family: man, girl, girl -๐Ÿ‘ฉโ€๐Ÿ‘ฆ family: woman, boy -๐Ÿ‘ฉโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: woman, boy, boy -๐Ÿ‘ฉโ€๐Ÿ‘ง family: woman, girl -๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: woman, girl, boy -๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ง family: woman, girl, girl -๐Ÿคณ selfie -๐Ÿคณ๐Ÿป selfie: light skin tone -๐Ÿคณ๐Ÿผ selfie: medium-light skin tone -๐Ÿคณ๐Ÿฝ selfie: medium skin tone -๐Ÿคณ๐Ÿพ selfie: medium-dark skin tone -๐Ÿคณ๐Ÿฟ selfie: dark skin tone -๐Ÿ’ช flexed biceps -๐Ÿ’ช๐Ÿป flexed biceps: light skin tone -๐Ÿ’ช๐Ÿผ flexed biceps: medium-light skin tone -๐Ÿ’ช๐Ÿฝ flexed biceps: medium skin tone -๐Ÿ’ช๐Ÿพ flexed biceps: medium-dark skin tone -๐Ÿ’ช๐Ÿฟ flexed biceps: dark skin tone -๐Ÿฆต leg -๐Ÿฆต๐Ÿป leg: light skin tone -๐Ÿฆต๐Ÿผ leg: medium-light skin tone -๐Ÿฆต๐Ÿฝ leg: medium skin tone -๐Ÿฆต๐Ÿพ leg: medium-dark skin tone -๐Ÿฆต๐Ÿฟ leg: dark skin tone -๐Ÿฆถ foot -๐Ÿฆถ๐Ÿป foot: light skin tone -๐Ÿฆถ๐Ÿผ foot: medium-light skin tone -๐Ÿฆถ๐Ÿฝ foot: medium skin tone -๐Ÿฆถ๐Ÿพ foot: medium-dark skin tone -๐Ÿฆถ๐Ÿฟ foot: dark skin tone -๐Ÿ‘ˆ backhand index pointing left -๐Ÿ‘ˆ๐Ÿป backhand index pointing left: light skin tone -๐Ÿ‘ˆ๐Ÿผ backhand index pointing left: medium-light skin tone -๐Ÿ‘ˆ๐Ÿฝ backhand index pointing left: medium skin tone -๐Ÿ‘ˆ๐Ÿพ backhand index pointing left: medium-dark skin tone -๐Ÿ‘ˆ๐Ÿฟ backhand index pointing left: dark skin tone -๐Ÿ‘‰ backhand index pointing right -๐Ÿ‘‰๐Ÿป backhand index pointing right: light skin tone -๐Ÿ‘‰๐Ÿผ backhand index pointing right: medium-light skin tone -๐Ÿ‘‰๐Ÿฝ backhand index pointing right: medium skin tone -๐Ÿ‘‰๐Ÿพ backhand index pointing right: medium-dark skin tone -๐Ÿ‘‰๐Ÿฟ backhand index pointing right: dark skin tone -โ˜๏ธ index pointing up -โ˜ index pointing up -โ˜๐Ÿป index pointing up: light skin tone -โ˜๐Ÿผ index pointing up: medium-light skin tone -โ˜๐Ÿฝ index pointing up: medium skin tone -โ˜๐Ÿพ index pointing up: medium-dark skin tone -โ˜๐Ÿฟ index pointing up: dark skin tone -๐Ÿ‘† backhand index pointing up -๐Ÿ‘†๐Ÿป backhand index pointing up: light skin tone -๐Ÿ‘†๐Ÿผ backhand index pointing up: medium-light skin tone -๐Ÿ‘†๐Ÿฝ backhand index pointing up: medium skin tone -๐Ÿ‘†๐Ÿพ backhand index pointing up: medium-dark skin tone -๐Ÿ‘†๐Ÿฟ backhand index pointing up: dark skin tone -๐Ÿ–• middle finger -๐Ÿ–•๐Ÿป middle finger: light skin tone -๐Ÿ–•๐Ÿผ middle finger: medium-light skin tone -๐Ÿ–•๐Ÿฝ middle finger: medium skin tone -๐Ÿ–•๐Ÿพ middle finger: medium-dark skin tone -๐Ÿ–•๐Ÿฟ middle finger: dark skin tone -๐Ÿ‘‡ backhand index pointing down -๐Ÿ‘‡๐Ÿป backhand index pointing down: light skin tone -๐Ÿ‘‡๐Ÿผ backhand index pointing down: medium-light skin tone -๐Ÿ‘‡๐Ÿฝ backhand index pointing down: medium skin tone -๐Ÿ‘‡๐Ÿพ backhand index pointing down: medium-dark skin tone -๐Ÿ‘‡๐Ÿฟ backhand index pointing down: dark skin tone -โœŒ๏ธ victory hand -โœŒ victory hand -โœŒ๐Ÿป victory hand: light skin tone -โœŒ๐Ÿผ victory hand: medium-light skin tone -โœŒ๐Ÿฝ victory hand: medium skin tone -โœŒ๐Ÿพ victory hand: medium-dark skin tone -โœŒ๐Ÿฟ victory hand: dark skin tone -๐Ÿคž crossed fingers -๐Ÿคž๐Ÿป crossed fingers: light skin tone -๐Ÿคž๐Ÿผ crossed fingers: medium-light skin tone -๐Ÿคž๐Ÿฝ crossed fingers: medium skin tone -๐Ÿคž๐Ÿพ crossed fingers: medium-dark skin tone -๐Ÿคž๐Ÿฟ crossed fingers: dark skin tone -๐Ÿ–– vulcan salute -๐Ÿ––๐Ÿป vulcan salute: light skin tone -๐Ÿ––๐Ÿผ vulcan salute: medium-light skin tone -๐Ÿ––๐Ÿฝ vulcan salute: medium skin tone -๐Ÿ––๐Ÿพ vulcan salute: medium-dark skin tone -๐Ÿ––๐Ÿฟ vulcan salute: dark skin tone -๐Ÿค˜ sign of the horns -๐Ÿค˜๐Ÿป sign of the horns: light skin tone -๐Ÿค˜๐Ÿผ sign of the horns: medium-light skin tone -๐Ÿค˜๐Ÿฝ sign of the horns: medium skin tone -๐Ÿค˜๐Ÿพ sign of the horns: medium-dark skin tone -๐Ÿค˜๐Ÿฟ sign of the horns: dark skin tone -๐Ÿค™ call me hand -๐Ÿค™๐Ÿป call me hand: light skin tone -๐Ÿค™๐Ÿผ call me hand: medium-light skin tone -๐Ÿค™๐Ÿฝ call me hand: medium skin tone -๐Ÿค™๐Ÿพ call me hand: medium-dark skin tone -๐Ÿค™๐Ÿฟ call me hand: dark skin tone -๐Ÿ–๏ธ hand with fingers splayed -๐Ÿ– hand with fingers splayed -๐Ÿ–๐Ÿป hand with fingers splayed: light skin tone -๐Ÿ–๐Ÿผ hand with fingers splayed: medium-light skin tone -๐Ÿ–๐Ÿฝ hand with fingers splayed: medium skin tone -๐Ÿ–๐Ÿพ hand with fingers splayed: medium-dark skin tone -๐Ÿ–๐Ÿฟ hand with fingers splayed: dark skin tone -โœ‹ raised hand -โœ‹๐Ÿป raised hand: light skin tone -โœ‹๐Ÿผ raised hand: medium-light skin tone -โœ‹๐Ÿฝ raised hand: medium skin tone -โœ‹๐Ÿพ raised hand: medium-dark skin tone -โœ‹๐Ÿฟ raised hand: dark skin tone -๐Ÿ‘Œ OK hand -๐Ÿ‘Œ๐Ÿป OK hand: light skin tone -๐Ÿ‘Œ๐Ÿผ OK hand: medium-light skin tone -๐Ÿ‘Œ๐Ÿฝ OK hand: medium skin tone -๐Ÿ‘Œ๐Ÿพ OK hand: medium-dark skin tone -๐Ÿ‘Œ๐Ÿฟ OK hand: dark skin tone -๐Ÿ‘ thumbs up -๐Ÿ‘๐Ÿป thumbs up: light skin tone -๐Ÿ‘๐Ÿผ thumbs up: medium-light skin tone -๐Ÿ‘๐Ÿฝ thumbs up: medium skin tone -๐Ÿ‘๐Ÿพ thumbs up: medium-dark skin tone -๐Ÿ‘๐Ÿฟ thumbs up: dark skin tone -๐Ÿ‘Ž thumbs down -๐Ÿ‘Ž๐Ÿป thumbs down: light skin tone -๐Ÿ‘Ž๐Ÿผ thumbs down: medium-light skin tone -๐Ÿ‘Ž๐Ÿฝ thumbs down: medium skin tone -๐Ÿ‘Ž๐Ÿพ thumbs down: medium-dark skin tone -๐Ÿ‘Ž๐Ÿฟ thumbs down: dark skin tone -โœŠ raised fist -โœŠ๐Ÿป raised fist: light skin tone -โœŠ๐Ÿผ raised fist: medium-light skin tone -โœŠ๐Ÿฝ raised fist: medium skin tone -โœŠ๐Ÿพ raised fist: medium-dark skin tone -โœŠ๐Ÿฟ raised fist: dark skin tone -๐Ÿ‘Š oncoming fist -๐Ÿ‘Š๐Ÿป oncoming fist: light skin tone -๐Ÿ‘Š๐Ÿผ oncoming fist: medium-light skin tone -๐Ÿ‘Š๐Ÿฝ oncoming fist: medium skin tone -๐Ÿ‘Š๐Ÿพ oncoming fist: medium-dark skin tone -๐Ÿ‘Š๐Ÿฟ oncoming fist: dark skin tone -๐Ÿค› left-facing fist -๐Ÿค›๐Ÿป left-facing fist: light skin tone -๐Ÿค›๐Ÿผ left-facing fist: medium-light skin tone -๐Ÿค›๐Ÿฝ left-facing fist: medium skin tone -๐Ÿค›๐Ÿพ left-facing fist: medium-dark skin tone -๐Ÿค›๐Ÿฟ left-facing fist: dark skin tone -๐Ÿคœ right-facing fist -๐Ÿคœ๐Ÿป right-facing fist: light skin tone -๐Ÿคœ๐Ÿผ right-facing fist: medium-light skin tone -๐Ÿคœ๐Ÿฝ right-facing fist: medium skin tone -๐Ÿคœ๐Ÿพ right-facing fist: medium-dark skin tone -๐Ÿคœ๐Ÿฟ right-facing fist: dark skin tone -๐Ÿคš raised back of hand -๐Ÿคš๐Ÿป raised back of hand: light skin tone -๐Ÿคš๐Ÿผ raised back of hand: medium-light skin tone -๐Ÿคš๐Ÿฝ raised back of hand: medium skin tone -๐Ÿคš๐Ÿพ raised back of hand: medium-dark skin tone -๐Ÿคš๐Ÿฟ raised back of hand: dark skin tone -๐Ÿ‘‹ waving hand -๐Ÿ‘‹๐Ÿป waving hand: light skin tone -๐Ÿ‘‹๐Ÿผ waving hand: medium-light skin tone -๐Ÿ‘‹๐Ÿฝ waving hand: medium skin tone -๐Ÿ‘‹๐Ÿพ waving hand: medium-dark skin tone -๐Ÿ‘‹๐Ÿฟ waving hand: dark skin tone -๐ŸคŸ love-you gesture -๐ŸคŸ๐Ÿป love-you gesture: light skin tone -๐ŸคŸ๐Ÿผ love-you gesture: medium-light skin tone -๐ŸคŸ๐Ÿฝ love-you gesture: medium skin tone -๐ŸคŸ๐Ÿพ love-you gesture: medium-dark skin tone -๐ŸคŸ๐Ÿฟ love-you gesture: dark skin tone -โœ๏ธ writing hand -โœ writing hand -โœ๐Ÿป writing hand: light skin tone -โœ๐Ÿผ writing hand: medium-light skin tone -โœ๐Ÿฝ writing hand: medium skin tone -โœ๐Ÿพ writing hand: medium-dark skin tone -โœ๐Ÿฟ writing hand: dark skin tone -๐Ÿ‘ clapping hands -๐Ÿ‘๐Ÿป clapping hands: light skin tone -๐Ÿ‘๐Ÿผ clapping hands: medium-light skin tone -๐Ÿ‘๐Ÿฝ clapping hands: medium skin tone -๐Ÿ‘๐Ÿพ clapping hands: medium-dark skin tone -๐Ÿ‘๐Ÿฟ clapping hands: dark skin tone -๐Ÿ‘ open hands -๐Ÿ‘๐Ÿป open hands: light skin tone -๐Ÿ‘๐Ÿผ open hands: medium-light skin tone -๐Ÿ‘๐Ÿฝ open hands: medium skin tone -๐Ÿ‘๐Ÿพ open hands: medium-dark skin tone -๐Ÿ‘๐Ÿฟ open hands: dark skin tone -๐Ÿ™Œ raising hands -๐Ÿ™Œ๐Ÿป raising hands: light skin tone -๐Ÿ™Œ๐Ÿผ raising hands: medium-light skin tone -๐Ÿ™Œ๐Ÿฝ raising hands: medium skin tone -๐Ÿ™Œ๐Ÿพ raising hands: medium-dark skin tone -๐Ÿ™Œ๐Ÿฟ raising hands: dark skin tone -๐Ÿคฒ palms up together -๐Ÿคฒ๐Ÿป palms up together: light skin tone -๐Ÿคฒ๐Ÿผ palms up together: medium-light skin tone -๐Ÿคฒ๐Ÿฝ palms up together: medium skin tone -๐Ÿคฒ๐Ÿพ palms up together: medium-dark skin tone -๐Ÿคฒ๐Ÿฟ palms up together: dark skin tone -๐Ÿ™ folded hands -๐Ÿ™๐Ÿป folded hands: light skin tone -๐Ÿ™๐Ÿผ folded hands: medium-light skin tone -๐Ÿ™๐Ÿฝ folded hands: medium skin tone -๐Ÿ™๐Ÿพ folded hands: medium-dark skin tone -๐Ÿ™๐Ÿฟ folded hands: dark skin tone -๐Ÿค handshake -๐Ÿ’… nail polish -๐Ÿ’…๐Ÿป nail polish: light skin tone -๐Ÿ’…๐Ÿผ nail polish: medium-light skin tone -๐Ÿ’…๐Ÿฝ nail polish: medium skin tone -๐Ÿ’…๐Ÿพ nail polish: medium-dark skin tone -๐Ÿ’…๐Ÿฟ nail polish: dark skin tone -๐Ÿ‘‚ ear -๐Ÿ‘‚๐Ÿป ear: light skin tone -๐Ÿ‘‚๐Ÿผ ear: medium-light skin tone -๐Ÿ‘‚๐Ÿฝ ear: medium skin tone -๐Ÿ‘‚๐Ÿพ ear: medium-dark skin tone -๐Ÿ‘‚๐Ÿฟ ear: dark skin tone -๐Ÿ‘ƒ nose -๐Ÿ‘ƒ๐Ÿป nose: light skin tone -๐Ÿ‘ƒ๐Ÿผ nose: medium-light skin tone -๐Ÿ‘ƒ๐Ÿฝ nose: medium skin tone -๐Ÿ‘ƒ๐Ÿพ nose: medium-dark skin tone -๐Ÿ‘ƒ๐Ÿฟ nose: dark skin tone -๐Ÿฆฐ red-haired -๐Ÿฆฑ curly-haired -๐Ÿฆฒ bald -๐Ÿฆณ white-haired -๐Ÿ‘ฃ footprints -๐Ÿ‘€ eyes -๐Ÿ‘๏ธ eye -๐Ÿ‘ eye -๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธ eye in speech bubble -๐Ÿ‘โ€๐Ÿ—จ๏ธ eye in speech bubble -๐Ÿ‘๏ธโ€๐Ÿ—จ eye in speech bubble -๐Ÿ‘โ€๐Ÿ—จ eye in speech bubble -๐Ÿง  brain -๐Ÿฆด bone -๐Ÿฆท tooth -๐Ÿ‘… tongue -๐Ÿ‘„ mouth -๐Ÿ’‹ kiss mark -๐Ÿ’˜ heart with arrow -โค๏ธ red heart -โค red heart -๐Ÿ’“ beating heart -๐Ÿ’” broken heart -๐Ÿ’• two hearts -๐Ÿ’– sparkling heart -๐Ÿ’— growing heart -๐Ÿ’™ blue heart -๐Ÿ’š green heart -๐Ÿ’› yellow heart -๐Ÿงก orange heart -๐Ÿ’œ purple heart -๐Ÿ–ค black heart -๐Ÿ’ heart with ribbon -๐Ÿ’ž revolving hearts -๐Ÿ’Ÿ heart decoration -โฃ๏ธ heavy heart exclamation -โฃ heavy heart exclamation -๐Ÿ’Œ love letter -๐Ÿ’ค zzz -๐Ÿ’ข anger symbol -๐Ÿ’ฃ bomb -๐Ÿ’ฅ collision -๐Ÿ’ฆ sweat droplets -๐Ÿ’จ dashing away -๐Ÿ’ซ dizzy -๐Ÿ’ฌ speech balloon -๐Ÿ—จ๏ธ left speech bubble -๐Ÿ—จ left speech bubble -๐Ÿ—ฏ๏ธ right anger bubble -๐Ÿ—ฏ right anger bubble -๐Ÿ’ญ thought balloon -๐Ÿ•ณ๏ธ hole -๐Ÿ•ณ hole -๐Ÿ‘“ glasses -๐Ÿ•ถ๏ธ sunglasses -๐Ÿ•ถ sunglasses -๐Ÿฅฝ goggles -๐Ÿฅผ lab coat -๐Ÿ‘” necktie -๐Ÿ‘• t-shirt -๐Ÿ‘– jeans -๐Ÿงฃ scarf -๐Ÿงค gloves -๐Ÿงฅ coat -๐Ÿงฆ socks -๐Ÿ‘— dress -๐Ÿ‘˜ kimono -๐Ÿ‘™ bikini -๐Ÿ‘š womanโ€™s clothes -๐Ÿ‘› purse -๐Ÿ‘œ handbag -๐Ÿ‘ clutch bag -๐Ÿ›๏ธ shopping bags -๐Ÿ› shopping bags -๐ŸŽ’ school backpack -๐Ÿ‘ž manโ€™s shoe -๐Ÿ‘Ÿ running shoe -๐Ÿฅพ hiking boot -๐Ÿฅฟ womanโ€™s flat shoe -๐Ÿ‘  high-heeled shoe -๐Ÿ‘ก womanโ€™s sandal -๐Ÿ‘ข womanโ€™s boot -๐Ÿ‘‘ crown -๐Ÿ‘’ womanโ€™s hat -๐ŸŽฉ top hat -๐ŸŽ“ graduation cap -๐Ÿงข billed cap -โ›‘๏ธ rescue workerโ€™s helmet -โ›‘ rescue workerโ€™s helmet -๐Ÿ“ฟ prayer beads -๐Ÿ’„ lipstick -๐Ÿ’ ring -๐Ÿ’Ž gem stone -๐Ÿต monkey face -๐Ÿ’ monkey -๐Ÿฆ gorilla -๐Ÿถ dog face -๐Ÿ• dog -๐Ÿฉ poodle -๐Ÿบ wolf face -๐ŸฆŠ fox face -๐Ÿฆ raccoon -๐Ÿฑ cat face -๐Ÿˆ cat -๐Ÿฆ lion face -๐Ÿฏ tiger face -๐Ÿ… tiger -๐Ÿ† leopard -๐Ÿด horse face -๐ŸŽ horse -๐Ÿฆ„ unicorn face -๐Ÿฆ“ zebra -๐ŸฆŒ deer -๐Ÿฎ cow face -๐Ÿ‚ ox -๐Ÿƒ water buffalo -๐Ÿ„ cow -๐Ÿท pig face -๐Ÿ– pig -๐Ÿ— boar -๐Ÿฝ pig nose -๐Ÿ ram -๐Ÿ‘ ewe -๐Ÿ goat -๐Ÿช camel -๐Ÿซ two-hump camel -๐Ÿฆ™ llama -๐Ÿฆ’ giraffe -๐Ÿ˜ elephant -๐Ÿฆ rhinoceros -๐Ÿฆ› hippopotamus -๐Ÿญ mouse face -๐Ÿ mouse -๐Ÿ€ rat -๐Ÿน hamster face -๐Ÿฐ rabbit face -๐Ÿ‡ rabbit -๐Ÿฟ๏ธ chipmunk -๐Ÿฟ chipmunk -๐Ÿฆ” hedgehog -๐Ÿฆ‡ bat -๐Ÿป bear face -๐Ÿจ koala -๐Ÿผ panda face -๐Ÿฆ˜ kangaroo -๐Ÿฆก badger -๐Ÿพ paw prints -๐Ÿฆƒ turkey -๐Ÿ” chicken -๐Ÿ“ rooster -๐Ÿฃ hatching chick -๐Ÿค baby chick -๐Ÿฅ front-facing baby chick -๐Ÿฆ bird -๐Ÿง penguin -๐Ÿ•Š๏ธ dove -๐Ÿ•Š dove -๐Ÿฆ… eagle -๐Ÿฆ† duck -๐Ÿฆข swan -๐Ÿฆ‰ owl -๐Ÿฆš peacock -๐Ÿฆœ parrot -๐Ÿธ frog face -๐ŸŠ crocodile -๐Ÿข turtle -๐ŸฆŽ lizard -๐Ÿ snake -๐Ÿฒ dragon face -๐Ÿ‰ dragon -๐Ÿฆ• sauropod -๐Ÿฆ– T-Rex -๐Ÿณ spouting whale -๐Ÿ‹ whale -๐Ÿฌ dolphin -๐ŸŸ fish -๐Ÿ  tropical fish -๐Ÿก blowfish -๐Ÿฆˆ shark -๐Ÿ™ octopus -๐Ÿš spiral shell -๐Ÿฆ€ crab -๐Ÿฆž lobster -๐Ÿฆ shrimp -๐Ÿฆ‘ squid -๐ŸŒ snail -๐Ÿฆ‹ butterfly -๐Ÿ› bug -๐Ÿœ ant -๐Ÿ honeybee -๐Ÿž lady beetle -๐Ÿฆ— cricket -๐Ÿ•ท๏ธ spider -๐Ÿ•ท spider -๐Ÿ•ธ๏ธ spider web -๐Ÿ•ธ spider web -๐Ÿฆ‚ scorpion -๐ŸฆŸ mosquito -๐Ÿฆ  microbe -๐Ÿ’ bouquet -๐ŸŒธ cherry blossom -๐Ÿ’ฎ white flower -๐Ÿต๏ธ rosette -๐Ÿต rosette -๐ŸŒน rose -๐Ÿฅ€ wilted flower -๐ŸŒบ hibiscus -๐ŸŒป sunflower -๐ŸŒผ blossom -๐ŸŒท tulip -๐ŸŒฑ seedling -๐ŸŒฒ evergreen tree -๐ŸŒณ deciduous tree -๐ŸŒด palm tree -๐ŸŒต cactus -๐ŸŒพ sheaf of rice -๐ŸŒฟ herb -โ˜˜๏ธ shamrock -โ˜˜ shamrock -๐Ÿ€ four leaf clover -๐Ÿ maple leaf -๐Ÿ‚ fallen leaf -๐Ÿƒ leaf fluttering in wind -๐Ÿ‡ grapes -๐Ÿˆ melon -๐Ÿ‰ watermelon -๐ŸŠ tangerine -๐Ÿ‹ lemon -๐ŸŒ banana -๐Ÿ pineapple -๐Ÿฅญ mango -๐ŸŽ red apple -๐Ÿ green apple -๐Ÿ pear -๐Ÿ‘ peach -๐Ÿ’ cherries -๐Ÿ“ strawberry -๐Ÿฅ kiwi fruit -๐Ÿ… tomato -๐Ÿฅฅ coconut -๐Ÿฅ‘ avocado -๐Ÿ† eggplant -๐Ÿฅ” potato -๐Ÿฅ• carrot -๐ŸŒฝ ear of corn -๐ŸŒถ๏ธ hot pepper -๐ŸŒถ hot pepper -๐Ÿฅ’ cucumber -๐Ÿฅฌ leafy green -๐Ÿฅฆ broccoli -๐Ÿ„ mushroom -๐Ÿฅœ peanuts -๐ŸŒฐ chestnut -๐Ÿž bread -๐Ÿฅ croissant -๐Ÿฅ– baguette bread -๐Ÿฅจ pretzel -๐Ÿฅฏ bagel -๐Ÿฅž pancakes -๐Ÿง€ cheese wedge -๐Ÿ– meat on bone -๐Ÿ— poultry leg -๐Ÿฅฉ cut of meat -๐Ÿฅ“ bacon -๐Ÿ” hamburger -๐ŸŸ french fries -๐Ÿ• pizza -๐ŸŒญ hot dog -๐Ÿฅช sandwich -๐ŸŒฎ taco -๐ŸŒฏ burrito -๐Ÿฅ™ stuffed flatbread -๐Ÿฅš egg -๐Ÿณ cooking -๐Ÿฅ˜ shallow pan of food -๐Ÿฒ pot of food -๐Ÿฅฃ bowl with spoon -๐Ÿฅ— green salad -๐Ÿฟ popcorn -๐Ÿง‚ salt -๐Ÿฅซ canned food -๐Ÿฑ bento box -๐Ÿ˜ rice cracker -๐Ÿ™ rice ball -๐Ÿš cooked rice -๐Ÿ› curry rice -๐Ÿœ steaming bowl -๐Ÿ spaghetti -๐Ÿ  roasted sweet potato -๐Ÿข oden -๐Ÿฃ sushi -๐Ÿค fried shrimp -๐Ÿฅ fish cake with swirl -๐Ÿฅฎ moon cake -๐Ÿก dango -๐ŸฅŸ dumpling -๐Ÿฅ  fortune cookie -๐Ÿฅก takeout box -๐Ÿฆ soft ice cream -๐Ÿง shaved ice -๐Ÿจ ice cream -๐Ÿฉ doughnut -๐Ÿช cookie -๐ŸŽ‚ birthday cake -๐Ÿฐ shortcake -๐Ÿง cupcake -๐Ÿฅง pie -๐Ÿซ chocolate bar -๐Ÿฌ candy -๐Ÿญ lollipop -๐Ÿฎ custard -๐Ÿฏ honey pot -๐Ÿผ baby bottle -๐Ÿฅ› glass of milk -โ˜• hot beverage -๐Ÿต teacup without handle -๐Ÿถ sake -๐Ÿพ bottle with popping cork -๐Ÿท wine glass -๐Ÿธ cocktail glass -๐Ÿน tropical drink -๐Ÿบ beer mug -๐Ÿป clinking beer mugs -๐Ÿฅ‚ clinking glasses -๐Ÿฅƒ tumbler glass -๐Ÿฅค cup with straw -๐Ÿฅข chopsticks -๐Ÿฝ๏ธ fork and knife with plate -๐Ÿฝ fork and knife with plate -๐Ÿด fork and knife -๐Ÿฅ„ spoon -๐Ÿ”ช kitchen knife -๐Ÿบ amphora -๐ŸŒ globe showing Europe-Africa -๐ŸŒŽ globe showing Americas -๐ŸŒ globe showing Asia-Australia -๐ŸŒ globe with meridians -๐Ÿ—บ๏ธ world map -๐Ÿ—บ world map -๐Ÿ—พ map of Japan -๐Ÿงญ compass -๐Ÿ”๏ธ snow-capped mountain -๐Ÿ” snow-capped mountain -โ›ฐ๏ธ mountain -โ›ฐ mountain -๐ŸŒ‹ volcano -๐Ÿ—ป mount fuji -๐Ÿ•๏ธ camping -๐Ÿ• camping -๐Ÿ–๏ธ beach with umbrella -๐Ÿ– beach with umbrella -๐Ÿœ๏ธ desert -๐Ÿœ desert -๐Ÿ๏ธ desert island -๐Ÿ desert island -๐Ÿž๏ธ national park -๐Ÿž national park -๐ŸŸ๏ธ stadium -๐ŸŸ stadium -๐Ÿ›๏ธ classical building -๐Ÿ› classical building -๐Ÿ—๏ธ building construction -๐Ÿ— building construction -๐Ÿงฑ bricks -๐Ÿ˜๏ธ houses -๐Ÿ˜ houses -๐Ÿš๏ธ derelict house -๐Ÿš derelict house -๐Ÿ  house -๐Ÿก house with garden -๐Ÿข office building -๐Ÿฃ Japanese post office -๐Ÿค post office -๐Ÿฅ hospital -๐Ÿฆ bank -๐Ÿจ hotel -๐Ÿฉ love hotel -๐Ÿช convenience store -๐Ÿซ school -๐Ÿฌ department store -๐Ÿญ factory -๐Ÿฏ Japanese castle -๐Ÿฐ castle -๐Ÿ’’ wedding -๐Ÿ—ผ Tokyo tower -๐Ÿ—ฝ Statue of Liberty -โ›ช church -๐Ÿ•Œ mosque -๐Ÿ• synagogue -โ›ฉ๏ธ shinto shrine -โ›ฉ shinto shrine -๐Ÿ•‹ kaaba -โ›ฒ fountain -โ›บ tent -๐ŸŒ foggy -๐ŸŒƒ night with stars -๐Ÿ™๏ธ cityscape -๐Ÿ™ cityscape -๐ŸŒ„ sunrise over mountains -๐ŸŒ… sunrise -๐ŸŒ† cityscape at dusk -๐ŸŒ‡ sunset -๐ŸŒ‰ bridge at night -โ™จ๏ธ hot springs -โ™จ hot springs -๐ŸŒŒ milky way -๐ŸŽ  carousel horse -๐ŸŽก ferris wheel -๐ŸŽข roller coaster -๐Ÿ’ˆ barber pole -๐ŸŽช circus tent -๐Ÿš‚ locomotive -๐Ÿšƒ railway car -๐Ÿš„ high-speed train -๐Ÿš… bullet train -๐Ÿš† train -๐Ÿš‡ metro -๐Ÿšˆ light rail -๐Ÿš‰ station -๐ŸšŠ tram -๐Ÿš monorail -๐Ÿšž mountain railway -๐Ÿš‹ tram car -๐ŸšŒ bus -๐Ÿš oncoming bus -๐ŸšŽ trolleybus -๐Ÿš minibus -๐Ÿš‘ ambulance -๐Ÿš’ fire engine -๐Ÿš“ police car -๐Ÿš” oncoming police car -๐Ÿš• taxi -๐Ÿš– oncoming taxi -๐Ÿš— automobile -๐Ÿš˜ oncoming automobile -๐Ÿš™ sport utility vehicle -๐Ÿšš delivery truck -๐Ÿš› articulated lorry -๐Ÿšœ tractor -๐Ÿšฒ bicycle -๐Ÿ›ด kick scooter -๐Ÿ›น skateboard -๐Ÿ›ต motor scooter -๐Ÿš bus stop -๐Ÿ›ฃ๏ธ motorway -๐Ÿ›ฃ motorway -๐Ÿ›ค๏ธ railway track -๐Ÿ›ค railway track -๐Ÿ›ข๏ธ oil drum -๐Ÿ›ข oil drum -โ›ฝ fuel pump -๐Ÿšจ police car light -๐Ÿšฅ horizontal traffic light -๐Ÿšฆ vertical traffic light -๐Ÿ›‘ stop sign -๐Ÿšง construction -โš“ anchor -โ›ต sailboat -๐Ÿ›ถ canoe -๐Ÿšค speedboat -๐Ÿ›ณ๏ธ passenger ship -๐Ÿ›ณ passenger ship -โ›ด๏ธ ferry -โ›ด ferry -๐Ÿ›ฅ๏ธ motor boat -๐Ÿ›ฅ motor boat -๐Ÿšข ship -โœˆ๏ธ airplane -โœˆ airplane -๐Ÿ›ฉ๏ธ small airplane -๐Ÿ›ฉ small airplane -๐Ÿ›ซ airplane departure -๐Ÿ›ฌ airplane arrival -๐Ÿ’บ seat -๐Ÿš helicopter -๐ŸšŸ suspension railway -๐Ÿš  mountain cableway -๐Ÿšก aerial tramway -๐Ÿ›ฐ๏ธ satellite -๐Ÿ›ฐ satellite -๐Ÿš€ rocket -๐Ÿ›ธ flying saucer -๐Ÿ›Ž๏ธ bellhop bell -๐Ÿ›Ž bellhop bell -๐Ÿงณ luggage -โŒ› hourglass done -โณ hourglass not done -โŒš watch -โฐ alarm clock -โฑ๏ธ stopwatch -โฑ stopwatch -โฒ๏ธ timer clock -โฒ timer clock -๐Ÿ•ฐ๏ธ mantelpiece clock -๐Ÿ•ฐ mantelpiece clock -๐Ÿ•› twelve oโ€™clock -๐Ÿ•ง twelve-thirty -๐Ÿ• one oโ€™clock -๐Ÿ•œ one-thirty -๐Ÿ•‘ two oโ€™clock -๐Ÿ• two-thirty -๐Ÿ•’ three oโ€™clock -๐Ÿ•ž three-thirty -๐Ÿ•“ four oโ€™clock -๐Ÿ•Ÿ four-thirty -๐Ÿ•” five oโ€™clock -๐Ÿ•  five-thirty -๐Ÿ•• six oโ€™clock -๐Ÿ•ก six-thirty -๐Ÿ•– seven oโ€™clock -๐Ÿ•ข seven-thirty -๐Ÿ•— eight oโ€™clock -๐Ÿ•ฃ eight-thirty -๐Ÿ•˜ nine oโ€™clock -๐Ÿ•ค nine-thirty -๐Ÿ•™ ten oโ€™clock -๐Ÿ•ฅ ten-thirty -๐Ÿ•š eleven oโ€™clock -๐Ÿ•ฆ eleven-thirty -๐ŸŒ‘ new moon -๐ŸŒ’ waxing crescent moon -๐ŸŒ“ first quarter moon -๐ŸŒ” waxing gibbous moon -๐ŸŒ• full moon -๐ŸŒ– waning gibbous moon -๐ŸŒ— last quarter moon -๐ŸŒ˜ waning crescent moon -๐ŸŒ™ crescent moon -๐ŸŒš new moon face -๐ŸŒ› first quarter moon face -๐ŸŒœ last quarter moon face -๐ŸŒก๏ธ thermometer -๐ŸŒก thermometer -โ˜€๏ธ sun -โ˜€ sun -๐ŸŒ full moon face -๐ŸŒž sun with face -โญ star -๐ŸŒŸ glowing star -๐ŸŒ  shooting star -โ˜๏ธ cloud -โ˜ cloud -โ›… sun behind cloud -โ›ˆ๏ธ cloud with lightning and rain -โ›ˆ cloud with lightning and rain -๐ŸŒค๏ธ sun behind small cloud -๐ŸŒค sun behind small cloud -๐ŸŒฅ๏ธ sun behind large cloud -๐ŸŒฅ sun behind large cloud -๐ŸŒฆ๏ธ sun behind rain cloud -๐ŸŒฆ sun behind rain cloud -๐ŸŒง๏ธ cloud with rain -๐ŸŒง cloud with rain -๐ŸŒจ๏ธ cloud with snow -๐ŸŒจ cloud with snow -๐ŸŒฉ๏ธ cloud with lightning -๐ŸŒฉ cloud with lightning -๐ŸŒช๏ธ tornado -๐ŸŒช tornado -๐ŸŒซ๏ธ fog -๐ŸŒซ fog -๐ŸŒฌ๏ธ wind face -๐ŸŒฌ wind face -๐ŸŒ€ cyclone -๐ŸŒˆ rainbow -๐ŸŒ‚ closed umbrella -โ˜‚๏ธ umbrella -โ˜‚ umbrella -โ˜” umbrella with rain drops -โ›ฑ๏ธ umbrella on ground -โ›ฑ umbrella on ground -โšก high voltage -โ„๏ธ snowflake -โ„ snowflake -โ˜ƒ๏ธ snowman -โ˜ƒ snowman -โ›„ snowman without snow -โ˜„๏ธ comet -โ˜„ comet -๐Ÿ”ฅ fire -๐Ÿ’ง droplet -๐ŸŒŠ water wave -๐ŸŽƒ jack-o-lantern -๐ŸŽ„ Christmas tree -๐ŸŽ† fireworks -๐ŸŽ‡ sparkler -๐Ÿงจ firecracker -โœจ sparkles -๐ŸŽˆ balloon -๐ŸŽ‰ party popper -๐ŸŽŠ confetti ball -๐ŸŽ‹ tanabata tree -๐ŸŽ pine decoration -๐ŸŽŽ Japanese dolls -๐ŸŽ carp streamer -๐ŸŽ wind chime -๐ŸŽ‘ moon viewing ceremony -๐Ÿงง red envelope -๐ŸŽ€ ribbon -๐ŸŽ wrapped gift -๐ŸŽ—๏ธ reminder ribbon -๐ŸŽ— reminder ribbon -๐ŸŽŸ๏ธ admission tickets -๐ŸŽŸ admission tickets -๐ŸŽซ ticket -๐ŸŽ–๏ธ military medal -๐ŸŽ– military medal -๐Ÿ† trophy -๐Ÿ… sports medal -๐Ÿฅ‡ 1st place medal -๐Ÿฅˆ 2nd place medal -๐Ÿฅ‰ 3rd place medal -โšฝ soccer ball -โšพ baseball -๐ŸฅŽ softball -๐Ÿ€ basketball -๐Ÿ volleyball -๐Ÿˆ american football -๐Ÿ‰ rugby football -๐ŸŽพ tennis -๐Ÿฅ flying disc -๐ŸŽณ bowling -๐Ÿ cricket game -๐Ÿ‘ field hockey -๐Ÿ’ ice hockey -๐Ÿฅ lacrosse -๐Ÿ“ ping pong -๐Ÿธ badminton -๐ŸฅŠ boxing glove -๐Ÿฅ‹ martial arts uniform -๐Ÿฅ… goal net -โ›ณ flag in hole -โ›ธ๏ธ ice skate -โ›ธ ice skate -๐ŸŽฃ fishing pole -๐ŸŽฝ running shirt -๐ŸŽฟ skis -๐Ÿ›ท sled -๐ŸฅŒ curling stone -๐ŸŽฏ direct hit -๐ŸŽฑ pool 8 ball -๐Ÿ”ฎ crystal ball -๐Ÿงฟ nazar amulet -๐ŸŽฎ video game -๐Ÿ•น๏ธ joystick -๐Ÿ•น joystick -๐ŸŽฐ slot machine -๐ŸŽฒ game die -๐Ÿงฉ jigsaw -๐Ÿงธ teddy bear -โ™ ๏ธ spade suit -โ™  spade suit -โ™ฅ๏ธ heart suit -โ™ฅ heart suit -โ™ฆ๏ธ diamond suit -โ™ฆ diamond suit -โ™ฃ๏ธ club suit -โ™ฃ club suit -โ™Ÿ๏ธ chess pawn -โ™Ÿ chess pawn -๐Ÿƒ joker -๐Ÿ€„ mahjong red dragon -๐ŸŽด flower playing cards -๐ŸŽญ performing arts -๐Ÿ–ผ๏ธ framed picture -๐Ÿ–ผ framed picture -๐ŸŽจ artist palette -๐Ÿงต thread -๐Ÿงถ yarn -๐Ÿ”‡ muted speaker -๐Ÿ”ˆ speaker low volume -๐Ÿ”‰ speaker medium volume -๐Ÿ”Š speaker high volume -๐Ÿ“ข loudspeaker -๐Ÿ“ฃ megaphone -๐Ÿ“ฏ postal horn -๐Ÿ”” bell -๐Ÿ”• bell with slash -๐ŸŽผ musical score -๐ŸŽต musical note -๐ŸŽถ musical notes -๐ŸŽ™๏ธ studio microphone -๐ŸŽ™ studio microphone -๐ŸŽš๏ธ level slider -๐ŸŽš level slider -๐ŸŽ›๏ธ control knobs -๐ŸŽ› control knobs -๐ŸŽค microphone -๐ŸŽง headphone -๐Ÿ“ป radio -๐ŸŽท saxophone -๐ŸŽธ guitar -๐ŸŽน musical keyboard -๐ŸŽบ trumpet -๐ŸŽป violin -๐Ÿฅ drum -๐Ÿ“ฑ mobile phone -๐Ÿ“ฒ mobile phone with arrow -โ˜Ž๏ธ telephone -โ˜Ž telephone -๐Ÿ“ž telephone receiver -๐Ÿ“Ÿ pager -๐Ÿ“  fax machine -๐Ÿ”‹ battery -๐Ÿ”Œ electric plug -๐Ÿ’ป laptop computer -๐Ÿ–ฅ๏ธ desktop computer -๐Ÿ–ฅ desktop computer -๐Ÿ–จ๏ธ printer -๐Ÿ–จ printer -โŒจ๏ธ keyboard -โŒจ keyboard -๐Ÿ–ฑ๏ธ computer mouse -๐Ÿ–ฑ computer mouse -๐Ÿ–ฒ๏ธ trackball -๐Ÿ–ฒ trackball -๐Ÿ’ฝ computer disk -๐Ÿ’พ floppy disk -๐Ÿ’ฟ optical disk -๐Ÿ“€ dvd -๐Ÿงฎ abacus -๐ŸŽฅ movie camera -๐ŸŽž๏ธ film frames -๐ŸŽž film frames -๐Ÿ“ฝ๏ธ film projector -๐Ÿ“ฝ film projector -๐ŸŽฌ clapper board -๐Ÿ“บ television -๐Ÿ“ท camera -๐Ÿ“ธ camera with flash -๐Ÿ“น video camera -๐Ÿ“ผ videocassette -๐Ÿ” magnifying glass tilted left -๐Ÿ”Ž magnifying glass tilted right -๐Ÿ•ฏ๏ธ candle -๐Ÿ•ฏ candle -๐Ÿ’ก light bulb -๐Ÿ”ฆ flashlight -๐Ÿฎ red paper lantern -๐Ÿ“” notebook with decorative cover -๐Ÿ“• closed book -๐Ÿ“– open book -๐Ÿ“— green book -๐Ÿ“˜ blue book -๐Ÿ“™ orange book -๐Ÿ“š books -๐Ÿ““ notebook -๐Ÿ“’ ledger -๐Ÿ“ƒ page with curl -๐Ÿ“œ scroll -๐Ÿ“„ page facing up -๐Ÿ“ฐ newspaper -๐Ÿ—ž๏ธ rolled-up newspaper -๐Ÿ—ž rolled-up newspaper -๐Ÿ“‘ bookmark tabs -๐Ÿ”– bookmark -๐Ÿท๏ธ label -๐Ÿท label -๐Ÿ’ฐ money bag -๐Ÿ’ด yen banknote -๐Ÿ’ต dollar banknote -๐Ÿ’ถ euro banknote -๐Ÿ’ท pound banknote -๐Ÿ’ธ money with wings -๐Ÿ’ณ credit card -๐Ÿงพ receipt -๐Ÿ’น chart increasing with yen -๐Ÿ’ฑ currency exchange -๐Ÿ’ฒ heavy dollar sign -โœ‰๏ธ envelope -โœ‰ envelope -๐Ÿ“ง e-mail -๐Ÿ“จ incoming envelope -๐Ÿ“ฉ envelope with arrow -๐Ÿ“ค outbox tray -๐Ÿ“ฅ inbox tray -๐Ÿ“ฆ package -๐Ÿ“ซ closed mailbox with raised flag -๐Ÿ“ช closed mailbox with lowered flag -๐Ÿ“ฌ open mailbox with raised flag -๐Ÿ“ญ open mailbox with lowered flag -๐Ÿ“ฎ postbox -๐Ÿ—ณ๏ธ ballot box with ballot -๐Ÿ—ณ ballot box with ballot -โœ๏ธ pencil -โœ pencil -โœ’๏ธ black nib -โœ’ black nib -๐Ÿ–‹๏ธ fountain pen -๐Ÿ–‹ fountain pen -๐Ÿ–Š๏ธ pen -๐Ÿ–Š pen -๐Ÿ–Œ๏ธ paintbrush -๐Ÿ–Œ paintbrush -๐Ÿ–๏ธ crayon -๐Ÿ– crayon -๐Ÿ“ memo -๐Ÿ’ผ briefcase -๐Ÿ“ file folder -๐Ÿ“‚ open file folder -๐Ÿ—‚๏ธ card index dividers -๐Ÿ—‚ card index dividers -๐Ÿ“… calendar -๐Ÿ“† tear-off calendar -๐Ÿ—’๏ธ spiral notepad -๐Ÿ—’ spiral notepad -๐Ÿ—“๏ธ spiral calendar -๐Ÿ—“ spiral calendar -๐Ÿ“‡ card index -๐Ÿ“ˆ chart increasing -๐Ÿ“‰ chart decreasing -๐Ÿ“Š bar chart -๐Ÿ“‹ clipboard -๐Ÿ“Œ pushpin -๐Ÿ“ round pushpin -๐Ÿ“Ž paperclip -๐Ÿ–‡๏ธ linked paperclips -๐Ÿ–‡ linked paperclips -๐Ÿ“ straight ruler -๐Ÿ“ triangular ruler -โœ‚๏ธ scissors -โœ‚ scissors -๐Ÿ—ƒ๏ธ card file box -๐Ÿ—ƒ card file box -๐Ÿ—„๏ธ file cabinet -๐Ÿ—„ file cabinet -๐Ÿ—‘๏ธ wastebasket -๐Ÿ—‘ wastebasket -๐Ÿ”’ locked -๐Ÿ”“ unlocked -๐Ÿ” locked with pen -๐Ÿ” locked with key -๐Ÿ”‘ key -๐Ÿ—๏ธ old key -๐Ÿ— old key -๐Ÿ”จ hammer -โ›๏ธ pick -โ› pick -โš’๏ธ hammer and pick -โš’ hammer and pick -๐Ÿ› ๏ธ hammer and wrench -๐Ÿ›  hammer and wrench -๐Ÿ—ก๏ธ dagger -๐Ÿ—ก dagger -โš”๏ธ crossed swords -โš” crossed swords -๐Ÿ”ซ pistol -๐Ÿน bow and arrow -๐Ÿ›ก๏ธ shield -๐Ÿ›ก shield -๐Ÿ”ง wrench -๐Ÿ”ฉ nut and bolt -โš™๏ธ gear -โš™ gear -๐Ÿ—œ๏ธ clamp -๐Ÿ—œ clamp -โš–๏ธ balance scale -โš– balance scale -๐Ÿ”— link -โ›“๏ธ chains -โ›“ chains -๐Ÿงฐ toolbox -๐Ÿงฒ magnet -โš—๏ธ alembic -โš— alembic -๐Ÿงช test tube -๐Ÿงซ petri dish -๐Ÿงฌ dna -๐Ÿ”ฌ microscope -๐Ÿ”ญ telescope -๐Ÿ“ก satellite antenna -๐Ÿ’‰ syringe -๐Ÿ’Š pill -๐Ÿšช door -๐Ÿ›๏ธ bed -๐Ÿ› bed -๐Ÿ›‹๏ธ couch and lamp -๐Ÿ›‹ couch and lamp -๐Ÿšฝ toilet -๐Ÿšฟ shower -๐Ÿ› bathtub -๐Ÿงด lotion bottle -๐Ÿงท safety pin -๐Ÿงน broom -๐Ÿงบ basket -๐Ÿงป roll of paper -๐Ÿงผ soap -๐Ÿงฝ sponge -๐Ÿงฏ fire extinguisher -๐Ÿ›’ shopping cart -๐Ÿšฌ cigarette -โšฐ๏ธ coffin -โšฐ coffin -โšฑ๏ธ funeral urn -โšฑ funeral urn -๐Ÿ—ฟ moai -๐Ÿง ATM sign -๐Ÿšฎ litter in bin sign -๐Ÿšฐ potable water -โ™ฟ wheelchair symbol -๐Ÿšน menโ€™s room -๐Ÿšบ womenโ€™s room -๐Ÿšป restroom -๐Ÿšผ baby symbol -๐Ÿšพ water closet -๐Ÿ›‚ passport control -๐Ÿ›ƒ customs -๐Ÿ›„ baggage claim -๐Ÿ›… left luggage -โš ๏ธ warning -โš  warning -๐Ÿšธ children crossing -โ›” no entry -๐Ÿšซ prohibited -๐Ÿšณ no bicycles -๐Ÿšญ no smoking -๐Ÿšฏ no littering -๐Ÿšฑ non-potable water -๐Ÿšท no pedestrians -๐Ÿ“ต no mobile phones -๐Ÿ”ž no one under eighteen -โ˜ข๏ธ radioactive -โ˜ข radioactive -โ˜ฃ๏ธ biohazard -โ˜ฃ biohazard -โฌ†๏ธ up arrow -โฌ† up arrow -โ†—๏ธ up-right arrow -โ†— up-right arrow -โžก๏ธ right arrow -โžก right arrow -โ†˜๏ธ down-right arrow -โ†˜ down-right arrow -โฌ‡๏ธ down arrow -โฌ‡ down arrow -โ†™๏ธ down-left arrow -โ†™ down-left arrow -โฌ…๏ธ left arrow -โฌ… left arrow -โ†–๏ธ up-left arrow -โ†– up-left arrow -โ†•๏ธ up-down arrow -โ†• up-down arrow -โ†”๏ธ left-right arrow -โ†” left-right arrow -โ†ฉ๏ธ right arrow curving left -โ†ฉ right arrow curving left -โ†ช๏ธ left arrow curving right -โ†ช left arrow curving right -โคด๏ธ right arrow curving up -โคด right arrow curving up -โคต๏ธ right arrow curving down -โคต right arrow curving down -๐Ÿ”ƒ clockwise vertical arrows -๐Ÿ”„ counterclockwise arrows button -๐Ÿ”™ BACK arrow -๐Ÿ”š END arrow -๐Ÿ”› ON! arrow -๐Ÿ”œ SOON arrow -๐Ÿ” TOP arrow -๐Ÿ› place of worship -โš›๏ธ atom symbol -โš› atom symbol -๐Ÿ•‰๏ธ om -๐Ÿ•‰ om -โœก๏ธ star of David -โœก star of David -โ˜ธ๏ธ wheel of dharma -โ˜ธ wheel of dharma -โ˜ฏ๏ธ yin yang -โ˜ฏ yin yang -โœ๏ธ latin cross -โœ latin cross -โ˜ฆ๏ธ orthodox cross -โ˜ฆ orthodox cross -โ˜ช๏ธ star and crescent -โ˜ช star and crescent -โ˜ฎ๏ธ peace symbol -โ˜ฎ peace symbol -๐Ÿ•Ž menorah -๐Ÿ”ฏ dotted six-pointed star -โ™ˆ Aries -โ™‰ Taurus -โ™Š Gemini -โ™‹ Cancer -โ™Œ Leo -โ™ Virgo -โ™Ž Libra -โ™ Scorpio -โ™ Sagittarius -โ™‘ Capricorn -โ™’ Aquarius -โ™“ Pisces -โ›Ž Ophiuchus -๐Ÿ”€ shuffle tracks button -๐Ÿ” repeat button -๐Ÿ”‚ repeat single button -โ–ถ๏ธ play button -โ–ถ play button -โฉ fast-forward button -โญ๏ธ next track button -โญ next track button -โฏ๏ธ play or pause button -โฏ play or pause button -โ—€๏ธ reverse button -โ—€ reverse button -โช fast reverse button -โฎ๏ธ last track button -โฎ last track button -๐Ÿ”ผ upwards button -โซ fast up button -๐Ÿ”ฝ downwards button -โฌ fast down button -โธ๏ธ pause button -โธ pause button -โน๏ธ stop button -โน stop button -โบ๏ธ record button -โบ record button -โ๏ธ eject button -โ eject button -๐ŸŽฆ cinema -๐Ÿ”… dim button -๐Ÿ”† bright button -๐Ÿ“ถ antenna bars -๐Ÿ“ณ vibration mode -๐Ÿ“ด mobile phone off -โ™€๏ธ female sign -โ™€ female sign -โ™‚๏ธ male sign -โ™‚ male sign -โš•๏ธ medical symbol -โš• medical symbol -โ™พ๏ธ infinity -โ™พ infinity -โ™ป๏ธ recycling symbol -โ™ป recycling symbol -โšœ๏ธ fleur-de-lis -โšœ fleur-de-lis -๐Ÿ”ฑ trident emblem -๐Ÿ“› name badge -๐Ÿ”ฐ Japanese symbol for beginner -โญ• heavy large circle -โœ… white heavy check mark -โ˜‘๏ธ ballot box with check -โ˜‘ ballot box with check -โœ”๏ธ heavy check mark -โœ” heavy check mark -โœ–๏ธ heavy multiplication x -โœ– heavy multiplication x -โŒ cross mark -โŽ cross mark button -โž• heavy plus sign -โž– heavy minus sign -โž— heavy division sign -โžฐ curly loop -โžฟ double curly loop -ใ€ฝ๏ธ part alternation mark -ใ€ฝ part alternation mark -โœณ๏ธ eight-spoked asterisk -โœณ eight-spoked asterisk -โœด๏ธ eight-pointed star -โœด eight-pointed star -โ‡๏ธ sparkle -โ‡ sparkle -โ€ผ๏ธ double exclamation mark -โ€ผ double exclamation mark -โ‰๏ธ exclamation question mark -โ‰ exclamation question mark -โ“ question mark -โ” white question mark -โ• white exclamation mark -โ— exclamation mark -ใ€ฐ๏ธ wavy dash -ใ€ฐ wavy dash -ยฉ๏ธ copyright -ยฉ copyright -ยฎ๏ธ registered -ยฎ registered -โ„ข๏ธ trade mark -โ„ข trade mark -#๏ธโƒฃ keycap: # -#โƒฃ keycap: # -*๏ธโƒฃ keycap: * -*โƒฃ keycap: * -0๏ธโƒฃ keycap: 0 -0โƒฃ keycap: 0 -1๏ธโƒฃ keycap: 1 -1โƒฃ keycap: 1 -2๏ธโƒฃ keycap: 2 -2โƒฃ keycap: 2 -3๏ธโƒฃ keycap: 3 -3โƒฃ keycap: 3 -4๏ธโƒฃ keycap: 4 -4โƒฃ keycap: 4 -5๏ธโƒฃ keycap: 5 -5โƒฃ keycap: 5 -6๏ธโƒฃ keycap: 6 -6โƒฃ keycap: 6 -7๏ธโƒฃ keycap: 7 -7โƒฃ keycap: 7 -8๏ธโƒฃ keycap: 8 -8โƒฃ keycap: 8 -9๏ธโƒฃ keycap: 9 -9โƒฃ keycap: 9 -๐Ÿ”Ÿ keycap: 10 -๐Ÿ’ฏ hundred points -๐Ÿ”  input latin uppercase -๐Ÿ”ก input latin lowercase -๐Ÿ”ข input numbers -๐Ÿ”ฃ input symbols -๐Ÿ”ค input latin letters -๐Ÿ…ฐ๏ธ A button (blood type) -๐Ÿ…ฐ A button (blood type) -๐Ÿ†Ž AB button (blood type) -๐Ÿ…ฑ๏ธ B button (blood type) -๐Ÿ…ฑ B button (blood type) -๐Ÿ†‘ CL button -๐Ÿ†’ COOL button -๐Ÿ†“ FREE button -โ„น๏ธ information -โ„น information -๐Ÿ†” ID button -โ“‚๏ธ circled M -โ“‚ circled M -๐Ÿ†• NEW button -๐Ÿ†– NG button -๐Ÿ…พ๏ธ O button (blood type) -๐Ÿ…พ O button (blood type) -๐Ÿ†— OK button -๐Ÿ…ฟ๏ธ P button -๐Ÿ…ฟ P button -๐Ÿ†˜ SOS button -๐Ÿ†™ UP! button -๐Ÿ†š VS button -๐Ÿˆ Japanese โ€œhereโ€ button -๐Ÿˆ‚๏ธ Japanese โ€œservice chargeโ€ button -๐Ÿˆ‚ Japanese โ€œservice chargeโ€ button -๐Ÿˆท๏ธ Japanese โ€œmonthly amountโ€ button -๐Ÿˆท Japanese โ€œmonthly amountโ€ button -๐Ÿˆถ Japanese โ€œnot free of chargeโ€ button -๐Ÿˆฏ Japanese โ€œreservedโ€ button -๐Ÿ‰ Japanese โ€œbargainโ€ button -๐Ÿˆน Japanese โ€œdiscountโ€ button -๐Ÿˆš Japanese โ€œfree of chargeโ€ button -๐Ÿˆฒ Japanese โ€œprohibitedโ€ button -๐Ÿ‰‘ Japanese โ€œacceptableโ€ button -๐Ÿˆธ Japanese โ€œapplicationโ€ button -๐Ÿˆด Japanese โ€œpassing gradeโ€ button -๐Ÿˆณ Japanese โ€œvacancyโ€ button -ใŠ—๏ธ Japanese โ€œcongratulationsโ€ button -ใŠ— Japanese โ€œcongratulationsโ€ button -ใŠ™๏ธ Japanese โ€œsecretโ€ button -ใŠ™ Japanese โ€œsecretโ€ button -๐Ÿˆบ Japanese โ€œopen for businessโ€ button -๐Ÿˆต Japanese โ€œno vacancyโ€ button -โ–ช๏ธ black small square -โ–ช black small square -โ–ซ๏ธ white small square -โ–ซ white small square -โ—ป๏ธ white medium square -โ—ป white medium square -โ—ผ๏ธ black medium square -โ—ผ black medium square -โ—ฝ white medium-small square -โ—พ black medium-small square -โฌ› black large square -โฌœ white large square -๐Ÿ”ถ large orange diamond -๐Ÿ”ท large blue diamond -๐Ÿ”ธ small orange diamond -๐Ÿ”น small blue diamond -๐Ÿ”บ red triangle pointed up -๐Ÿ”ป red triangle pointed down -๐Ÿ’  diamond with a dot -๐Ÿ”˜ radio button -๐Ÿ”ฒ black square button -๐Ÿ”ณ white square button -โšช white circle -โšซ black circle -๐Ÿ”ด red circle -๐Ÿ”ต blue circle -๐Ÿ chequered flag -๐Ÿšฉ triangular flag -๐ŸŽŒ crossed flags -๐Ÿด black flag -๐Ÿณ๏ธ white flag -๐Ÿณ white flag -๐Ÿณ๏ธโ€๐ŸŒˆ rainbow flag -๐Ÿณโ€๐ŸŒˆ rainbow flag -๐Ÿดโ€โ˜ ๏ธ pirate flag -๐Ÿดโ€โ˜  pirate flag -๐Ÿ‡ฆ๐Ÿ‡จ Ascension Island -๐Ÿ‡ฆ๐Ÿ‡ฉ Andorra -๐Ÿ‡ฆ๐Ÿ‡ช United Arab Emirates -๐Ÿ‡ฆ๐Ÿ‡ซ Afghanistan -๐Ÿ‡ฆ๐Ÿ‡ฌ Antigua & Barbuda -๐Ÿ‡ฆ๐Ÿ‡ฎ Anguilla -๐Ÿ‡ฆ๐Ÿ‡ฑ Albania -๐Ÿ‡ฆ๐Ÿ‡ฒ Armenia -๐Ÿ‡ฆ๐Ÿ‡ด Angola -๐Ÿ‡ฆ๐Ÿ‡ถ Antarctica -๐Ÿ‡ฆ๐Ÿ‡ท Argentina -๐Ÿ‡ฆ๐Ÿ‡ธ American Samoa -๐Ÿ‡ฆ๐Ÿ‡น Austria -๐Ÿ‡ฆ๐Ÿ‡บ Australia -๐Ÿ‡ฆ๐Ÿ‡ผ Aruba -๐Ÿ‡ฆ๐Ÿ‡ฝ ร…land Islands -๐Ÿ‡ฆ๐Ÿ‡ฟ Azerbaijan -๐Ÿ‡ง๐Ÿ‡ฆ Bosnia & Herzegovina -๐Ÿ‡ง๐Ÿ‡ง Barbados -๐Ÿ‡ง๐Ÿ‡ฉ Bangladesh -๐Ÿ‡ง๐Ÿ‡ช Belgium -๐Ÿ‡ง๐Ÿ‡ซ Burkina Faso -๐Ÿ‡ง๐Ÿ‡ฌ Bulgaria -๐Ÿ‡ง๐Ÿ‡ญ Bahrain -๐Ÿ‡ง๐Ÿ‡ฎ Burundi -๐Ÿ‡ง๐Ÿ‡ฏ Benin -๐Ÿ‡ง๐Ÿ‡ฑ St. Barthรฉlemy -๐Ÿ‡ง๐Ÿ‡ฒ Bermuda -๐Ÿ‡ง๐Ÿ‡ณ Brunei -๐Ÿ‡ง๐Ÿ‡ด Bolivia -๐Ÿ‡ง๐Ÿ‡ถ Caribbean Netherlands -๐Ÿ‡ง๐Ÿ‡ท Brazil -๐Ÿ‡ง๐Ÿ‡ธ Bahamas -๐Ÿ‡ง๐Ÿ‡น Bhutan -๐Ÿ‡ง๐Ÿ‡ป Bouvet Island -๐Ÿ‡ง๐Ÿ‡ผ Botswana -๐Ÿ‡ง๐Ÿ‡พ Belarus -๐Ÿ‡ง๐Ÿ‡ฟ Belize -๐Ÿ‡จ๐Ÿ‡ฆ Canada -๐Ÿ‡จ๐Ÿ‡จ Cocos (Keeling) Islands -๐Ÿ‡จ๐Ÿ‡ฉ Congo - Kinshasa -๐Ÿ‡จ๐Ÿ‡ซ Central African Republic -๐Ÿ‡จ๐Ÿ‡ฌ Congo - Brazzaville -๐Ÿ‡จ๐Ÿ‡ญ Switzerland -๐Ÿ‡จ๐Ÿ‡ฎ Cรดte dโ€™Ivoire -๐Ÿ‡จ๐Ÿ‡ฐ Cook Islands -๐Ÿ‡จ๐Ÿ‡ฑ Chile -๐Ÿ‡จ๐Ÿ‡ฒ Cameroon -๐Ÿ‡จ๐Ÿ‡ณ China -๐Ÿ‡จ๐Ÿ‡ด Colombia -๐Ÿ‡จ๐Ÿ‡ต Clipperton Island -๐Ÿ‡จ๐Ÿ‡ท Costa Rica -๐Ÿ‡จ๐Ÿ‡บ Cuba -๐Ÿ‡จ๐Ÿ‡ป Cape Verde -๐Ÿ‡จ๐Ÿ‡ผ Curaรงao -๐Ÿ‡จ๐Ÿ‡ฝ Christmas Island -๐Ÿ‡จ๐Ÿ‡พ Cyprus -๐Ÿ‡จ๐Ÿ‡ฟ Czechia -๐Ÿ‡ฉ๐Ÿ‡ช Germany -๐Ÿ‡ฉ๐Ÿ‡ฌ Diego Garcia -๐Ÿ‡ฉ๐Ÿ‡ฏ Djibouti -๐Ÿ‡ฉ๐Ÿ‡ฐ Denmark -๐Ÿ‡ฉ๐Ÿ‡ฒ Dominica -๐Ÿ‡ฉ๐Ÿ‡ด Dominican Republic -๐Ÿ‡ฉ๐Ÿ‡ฟ Algeria -๐Ÿ‡ช๐Ÿ‡ฆ Ceuta & Melilla -๐Ÿ‡ช๐Ÿ‡จ Ecuador -๐Ÿ‡ช๐Ÿ‡ช Estonia -๐Ÿ‡ช๐Ÿ‡ฌ Egypt -๐Ÿ‡ช๐Ÿ‡ญ Western Sahara -๐Ÿ‡ช๐Ÿ‡ท Eritrea -๐Ÿ‡ช๐Ÿ‡ธ Spain -๐Ÿ‡ช๐Ÿ‡น Ethiopia -๐Ÿ‡ช๐Ÿ‡บ European Union -๐Ÿ‡ซ๐Ÿ‡ฎ Finland -๐Ÿ‡ซ๐Ÿ‡ฏ Fiji -๐Ÿ‡ซ๐Ÿ‡ฐ Falkland Islands -๐Ÿ‡ซ๐Ÿ‡ฒ Micronesia -๐Ÿ‡ซ๐Ÿ‡ด Faroe Islands -๐Ÿ‡ซ๐Ÿ‡ท France -๐Ÿ‡ฌ๐Ÿ‡ฆ Gabon -๐Ÿ‡ฌ๐Ÿ‡ง United Kingdom -๐Ÿ‡ฌ๐Ÿ‡ฉ Grenada -๐Ÿ‡ฌ๐Ÿ‡ช Georgia -๐Ÿ‡ฌ๐Ÿ‡ซ French Guiana -๐Ÿ‡ฌ๐Ÿ‡ฌ Guernsey -๐Ÿ‡ฌ๐Ÿ‡ญ Ghana -๐Ÿ‡ฌ๐Ÿ‡ฎ Gibraltar -๐Ÿ‡ฌ๐Ÿ‡ฑ Greenland -๐Ÿ‡ฌ๐Ÿ‡ฒ Gambia -๐Ÿ‡ฌ๐Ÿ‡ณ Guinea -๐Ÿ‡ฌ๐Ÿ‡ต Guadeloupe -๐Ÿ‡ฌ๐Ÿ‡ถ Equatorial Guinea -๐Ÿ‡ฌ๐Ÿ‡ท Greece -๐Ÿ‡ฌ๐Ÿ‡ธ South Georgia & South Sandwich Islands -๐Ÿ‡ฌ๐Ÿ‡น Guatemala -๐Ÿ‡ฌ๐Ÿ‡บ Guam -๐Ÿ‡ฌ๐Ÿ‡ผ Guinea-Bissau -๐Ÿ‡ฌ๐Ÿ‡พ Guyana -๐Ÿ‡ญ๐Ÿ‡ฐ Hong Kong SAR China -๐Ÿ‡ญ๐Ÿ‡ฒ Heard & McDonald Islands -๐Ÿ‡ญ๐Ÿ‡ณ Honduras -๐Ÿ‡ญ๐Ÿ‡ท Croatia -๐Ÿ‡ญ๐Ÿ‡น Haiti -๐Ÿ‡ญ๐Ÿ‡บ Hungary -๐Ÿ‡ฎ๐Ÿ‡จ Canary Islands -๐Ÿ‡ฎ๐Ÿ‡ฉ Indonesia -๐Ÿ‡ฎ๐Ÿ‡ช Ireland -๐Ÿ‡ฎ๐Ÿ‡ฑ Israel -๐Ÿ‡ฎ๐Ÿ‡ฒ Isle of Man -๐Ÿ‡ฎ๐Ÿ‡ณ India -๐Ÿ‡ฎ๐Ÿ‡ด British Indian Ocean Territory -๐Ÿ‡ฎ๐Ÿ‡ถ Iraq -๐Ÿ‡ฎ๐Ÿ‡ท Iran -๐Ÿ‡ฎ๐Ÿ‡ธ Iceland -๐Ÿ‡ฎ๐Ÿ‡น Italy -๐Ÿ‡ฏ๐Ÿ‡ช Jersey -๐Ÿ‡ฏ๐Ÿ‡ฒ Jamaica -๐Ÿ‡ฏ๐Ÿ‡ด Jordan -๐Ÿ‡ฏ๐Ÿ‡ต Japan -๐Ÿ‡ฐ๐Ÿ‡ช Kenya -๐Ÿ‡ฐ๐Ÿ‡ฌ Kyrgyzstan -๐Ÿ‡ฐ๐Ÿ‡ญ Cambodia -๐Ÿ‡ฐ๐Ÿ‡ฎ Kiribati -๐Ÿ‡ฐ๐Ÿ‡ฒ Comoros -๐Ÿ‡ฐ๐Ÿ‡ณ St. Kitts & Nevis -๐Ÿ‡ฐ๐Ÿ‡ต North Korea -๐Ÿ‡ฐ๐Ÿ‡ท South Korea -๐Ÿ‡ฐ๐Ÿ‡ผ Kuwait -๐Ÿ‡ฐ๐Ÿ‡พ Cayman Islands -๐Ÿ‡ฐ๐Ÿ‡ฟ Kazakhstan -๐Ÿ‡ฑ๐Ÿ‡ฆ Laos -๐Ÿ‡ฑ๐Ÿ‡ง Lebanon -๐Ÿ‡ฑ๐Ÿ‡จ St. Lucia -๐Ÿ‡ฑ๐Ÿ‡ฎ Liechtenstein -๐Ÿ‡ฑ๐Ÿ‡ฐ Sri Lanka -๐Ÿ‡ฑ๐Ÿ‡ท Liberia -๐Ÿ‡ฑ๐Ÿ‡ธ Lesotho -๐Ÿ‡ฑ๐Ÿ‡น Lithuania -๐Ÿ‡ฑ๐Ÿ‡บ Luxembourg -๐Ÿ‡ฑ๐Ÿ‡ป Latvia -๐Ÿ‡ฑ๐Ÿ‡พ Libya -๐Ÿ‡ฒ๐Ÿ‡ฆ Morocco -๐Ÿ‡ฒ๐Ÿ‡จ Monaco -๐Ÿ‡ฒ๐Ÿ‡ฉ Moldova -๐Ÿ‡ฒ๐Ÿ‡ช Montenegro -๐Ÿ‡ฒ๐Ÿ‡ซ St. Martin -๐Ÿ‡ฒ๐Ÿ‡ฌ Madagascar -๐Ÿ‡ฒ๐Ÿ‡ญ Marshall Islands -๐Ÿ‡ฒ๐Ÿ‡ฐ Macedonia -๐Ÿ‡ฒ๐Ÿ‡ฑ Mali -๐Ÿ‡ฒ๐Ÿ‡ฒ Myanmar (Burma) -๐Ÿ‡ฒ๐Ÿ‡ณ Mongolia -๐Ÿ‡ฒ๐Ÿ‡ด Macau SAR China -๐Ÿ‡ฒ๐Ÿ‡ต Northern Mariana Islands -๐Ÿ‡ฒ๐Ÿ‡ถ Martinique -๐Ÿ‡ฒ๐Ÿ‡ท Mauritania -๐Ÿ‡ฒ๐Ÿ‡ธ Montserrat -๐Ÿ‡ฒ๐Ÿ‡น Malta -๐Ÿ‡ฒ๐Ÿ‡บ Mauritius -๐Ÿ‡ฒ๐Ÿ‡ป Maldives -๐Ÿ‡ฒ๐Ÿ‡ผ Malawi -๐Ÿ‡ฒ๐Ÿ‡ฝ Mexico -๐Ÿ‡ฒ๐Ÿ‡พ Malaysia -๐Ÿ‡ฒ๐Ÿ‡ฟ Mozambique -๐Ÿ‡ณ๐Ÿ‡ฆ Namibia -๐Ÿ‡ณ๐Ÿ‡จ New Caledonia -๐Ÿ‡ณ๐Ÿ‡ช Niger -๐Ÿ‡ณ๐Ÿ‡ซ Norfolk Island -๐Ÿ‡ณ๐Ÿ‡ฌ Nigeria -๐Ÿ‡ณ๐Ÿ‡ฎ Nicaragua -๐Ÿ‡ณ๐Ÿ‡ฑ Netherlands -๐Ÿ‡ณ๐Ÿ‡ด Norway -๐Ÿ‡ณ๐Ÿ‡ต Nepal -๐Ÿ‡ณ๐Ÿ‡ท Nauru -๐Ÿ‡ณ๐Ÿ‡บ Niue -๐Ÿ‡ณ๐Ÿ‡ฟ New Zealand -๐Ÿ‡ด๐Ÿ‡ฒ Oman -๐Ÿ‡ต๐Ÿ‡ฆ Panama -๐Ÿ‡ต๐Ÿ‡ช Peru -๐Ÿ‡ต๐Ÿ‡ซ French Polynesia -๐Ÿ‡ต๐Ÿ‡ฌ Papua New Guinea -๐Ÿ‡ต๐Ÿ‡ญ Philippines -๐Ÿ‡ต๐Ÿ‡ฐ Pakistan -๐Ÿ‡ต๐Ÿ‡ฑ Poland -๐Ÿ‡ต๐Ÿ‡ฒ St. Pierre & Miquelon -๐Ÿ‡ต๐Ÿ‡ณ Pitcairn Islands -๐Ÿ‡ต๐Ÿ‡ท Puerto Rico -๐Ÿ‡ต๐Ÿ‡ธ Palestinian Territories -๐Ÿ‡ต๐Ÿ‡น Portugal -๐Ÿ‡ต๐Ÿ‡ผ Palau -๐Ÿ‡ต๐Ÿ‡พ Paraguay -๐Ÿ‡ถ๐Ÿ‡ฆ Qatar -๐Ÿ‡ท๐Ÿ‡ช Rรฉunion -๐Ÿ‡ท๐Ÿ‡ด Romania -๐Ÿ‡ท๐Ÿ‡ธ Serbia -๐Ÿ‡ท๐Ÿ‡บ Russia -๐Ÿ‡ท๐Ÿ‡ผ Rwanda -๐Ÿ‡ธ๐Ÿ‡ฆ Saudi Arabia -๐Ÿ‡ธ๐Ÿ‡ง Solomon Islands -๐Ÿ‡ธ๐Ÿ‡จ Seychelles -๐Ÿ‡ธ๐Ÿ‡ฉ Sudan -๐Ÿ‡ธ๐Ÿ‡ช Sweden -๐Ÿ‡ธ๐Ÿ‡ฌ Singapore -๐Ÿ‡ธ๐Ÿ‡ญ St. Helena -๐Ÿ‡ธ๐Ÿ‡ฎ Slovenia -๐Ÿ‡ธ๐Ÿ‡ฏ Svalbard & Jan Mayen -๐Ÿ‡ธ๐Ÿ‡ฐ Slovakia -๐Ÿ‡ธ๐Ÿ‡ฑ Sierra Leone -๐Ÿ‡ธ๐Ÿ‡ฒ San Marino -๐Ÿ‡ธ๐Ÿ‡ณ Senegal -๐Ÿ‡ธ๐Ÿ‡ด Somalia -๐Ÿ‡ธ๐Ÿ‡ท Suriname -๐Ÿ‡ธ๐Ÿ‡ธ South Sudan -๐Ÿ‡ธ๐Ÿ‡น Sรฃo Tomรฉ & Prรญncipe -๐Ÿ‡ธ๐Ÿ‡ป El Salvador -๐Ÿ‡ธ๐Ÿ‡ฝ Sint Maarten -๐Ÿ‡ธ๐Ÿ‡พ Syria -๐Ÿ‡ธ๐Ÿ‡ฟ Swaziland -๐Ÿ‡น๐Ÿ‡ฆ Tristan da Cunha -๐Ÿ‡น๐Ÿ‡จ Turks & Caicos Islands -๐Ÿ‡น๐Ÿ‡ฉ Chad -๐Ÿ‡น๐Ÿ‡ซ French Southern Territories -๐Ÿ‡น๐Ÿ‡ฌ Togo -๐Ÿ‡น๐Ÿ‡ญ Thailand -๐Ÿ‡น๐Ÿ‡ฏ Tajikistan -๐Ÿ‡น๐Ÿ‡ฐ Tokelau -๐Ÿ‡น๐Ÿ‡ฑ Timor-Leste -๐Ÿ‡น๐Ÿ‡ฒ Turkmenistan -๐Ÿ‡น๐Ÿ‡ณ Tunisia -๐Ÿ‡น๐Ÿ‡ด Tonga -๐Ÿ‡น๐Ÿ‡ท Turkey -๐Ÿ‡น๐Ÿ‡น Trinidad & Tobago -๐Ÿ‡น๐Ÿ‡ป Tuvalu -๐Ÿ‡น๐Ÿ‡ผ Taiwan -๐Ÿ‡น๐Ÿ‡ฟ Tanzania -๐Ÿ‡บ๐Ÿ‡ฆ Ukraine -๐Ÿ‡บ๐Ÿ‡ฌ Uganda -๐Ÿ‡บ๐Ÿ‡ฒ U.S. Outlying Islands -๐Ÿ‡บ๐Ÿ‡ณ United Nations -๐Ÿ‡บ๐Ÿ‡ธ United States -๐Ÿ‡บ๐Ÿ‡พ Uruguay -๐Ÿ‡บ๐Ÿ‡ฟ Uzbekistan -๐Ÿ‡ป๐Ÿ‡ฆ Vatican City -๐Ÿ‡ป๐Ÿ‡จ St. Vincent & Grenadines -๐Ÿ‡ป๐Ÿ‡ช Venezuela -๐Ÿ‡ป๐Ÿ‡ฌ British Virgin Islands -๐Ÿ‡ป๐Ÿ‡ฎ U.S. Virgin Islands -๐Ÿ‡ป๐Ÿ‡ณ Vietnam -๐Ÿ‡ป๐Ÿ‡บ Vanuatu -๐Ÿ‡ผ๐Ÿ‡ซ Wallis & Futuna -๐Ÿ‡ผ๐Ÿ‡ธ Samoa -๐Ÿ‡ฝ๐Ÿ‡ฐ Kosovo -๐Ÿ‡พ๐Ÿ‡ช Yemen -๐Ÿ‡พ๐Ÿ‡น Mayotte -๐Ÿ‡ฟ๐Ÿ‡ฆ South Africa -๐Ÿ‡ฟ๐Ÿ‡ฒ Zambia -๐Ÿ‡ฟ๐Ÿ‡ผ Zimbabwe -๐Ÿด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ England -๐Ÿด๓ ง๓ ข๓ ณ๓ ฃ๓ ด๓ ฟ Scotland +๐Ÿ˜€ grinning face +๐Ÿ˜ beaming face with smiling eyes +๐Ÿ˜‚ face with tears of joy +๐Ÿคฃ rolling on the floor laughing +๐Ÿ˜ƒ grinning face with big eyes +๐Ÿ˜„ grinning face with smiling eyes +๐Ÿ˜… grinning face with sweat +๐Ÿ˜† grinning squinting face +๐Ÿ˜‰ winking face +๐Ÿ˜Š smiling face with smiling eyes +๐Ÿ˜‹ face savoring food +๐Ÿ˜Ž smiling face with sunglasses +๐Ÿ˜ smiling face with heart-eyes +๐Ÿ˜˜ face blowing a kiss +๐Ÿฅฐ smiling face with 3 hearts +๐Ÿ˜— kissing face +๐Ÿ˜™ kissing face with smiling eyes +๐Ÿ˜š kissing face with closed eyes +โ˜บ๏ธ smiling face +โ˜บ smiling face +๐Ÿ™‚ slightly smiling face +๐Ÿค— hugging face +๐Ÿคฉ star-struck +๐Ÿค” thinking face +๐Ÿคจ face with raised eyebrow +๐Ÿ˜ neutral face +๐Ÿ˜‘ expressionless face +๐Ÿ˜ถ face without mouth +๐Ÿ™„ face with rolling eyes +๐Ÿ˜ smirking face +๐Ÿ˜ฃ persevering face +๐Ÿ˜ฅ sad but relieved face +๐Ÿ˜ฎ face with open mouth +๐Ÿค zipper-mouth face +๐Ÿ˜ฏ hushed face +๐Ÿ˜ช sleepy face +๐Ÿ˜ซ tired face +๐Ÿ˜ด sleeping face +๐Ÿ˜Œ relieved face +๐Ÿ˜› face with tongue +๐Ÿ˜œ winking face with tongue +๐Ÿ˜ squinting face with tongue +๐Ÿคค drooling face +๐Ÿ˜’ unamused face +๐Ÿ˜“ downcast face with sweat +๐Ÿ˜” pensive face +๐Ÿ˜• confused face +๐Ÿ™ƒ upside-down face +๐Ÿค‘ money-mouth face +๐Ÿ˜ฒ astonished face +โ˜น๏ธ frowning face +โ˜น frowning face +๐Ÿ™ slightly frowning face +๐Ÿ˜– confounded face +๐Ÿ˜ž disappointed face +๐Ÿ˜Ÿ worried face +๐Ÿ˜ค face with steam from nose +๐Ÿ˜ข crying face +๐Ÿ˜ญ loudly crying face +๐Ÿ˜ฆ frowning face with open mouth +๐Ÿ˜ง anguished face +๐Ÿ˜จ fearful face +๐Ÿ˜ฉ weary face +๐Ÿคฏ exploding head +๐Ÿ˜ฌ grimacing face +๐Ÿ˜ฐ anxious face with sweat +๐Ÿ˜ฑ face screaming in fear +๐Ÿฅต hot face +๐Ÿฅถ cold face +๐Ÿ˜ณ flushed face +๐Ÿคช zany face +๐Ÿ˜ต dizzy face +๐Ÿ˜ก pouting face +๐Ÿ˜  angry face +๐Ÿคฌ face with symbols on mouth +๐Ÿ˜ท face with medical mask +๐Ÿค’ face with thermometer +๐Ÿค• face with head-bandage +๐Ÿคข nauseated face +๐Ÿคฎ face vomiting +๐Ÿคง sneezing face +๐Ÿ˜‡ smiling face with halo +๐Ÿค  cowboy hat face +๐Ÿฅณ partying face +๐Ÿฅด woozy face +๐Ÿฅบ pleading face +๐Ÿคฅ lying face +๐Ÿคซ shushing face +๐Ÿคญ face with hand over mouth +๐Ÿง face with monocle +๐Ÿค“ nerd face +๐Ÿ˜ˆ smiling face with horns +๐Ÿ‘ฟ angry face with horns +๐Ÿคก clown face +๐Ÿ‘น ogre +๐Ÿ‘บ goblin +๐Ÿ’€ skull +โ˜ ๏ธ skull and crossbones +โ˜  skull and crossbones +๐Ÿ‘ป ghost +๐Ÿ‘ฝ alien +๐Ÿ‘พ alien monster +๐Ÿค– robot face +๐Ÿ’ฉ pile of poo +๐Ÿ˜บ grinning cat face +๐Ÿ˜ธ grinning cat face with smiling eyes +๐Ÿ˜น cat face with tears of joy +๐Ÿ˜ป smiling cat face with heart-eyes +๐Ÿ˜ผ cat face with wry smile +๐Ÿ˜ฝ kissing cat face +๐Ÿ™€ weary cat face +๐Ÿ˜ฟ crying cat face +๐Ÿ˜พ pouting cat face +๐Ÿ™ˆ see-no-evil monkey +๐Ÿ™‰ hear-no-evil monkey +๐Ÿ™Š speak-no-evil monkey +๐Ÿป light skin tone +๐Ÿผ medium-light skin tone +๐Ÿฝ medium skin tone +๐Ÿพ medium-dark skin tone +๐Ÿฟ dark skin tone +๐Ÿ‘ถ baby +๐Ÿ‘ถ๐Ÿป baby: light skin tone +๐Ÿ‘ถ๐Ÿผ baby: medium-light skin tone +๐Ÿ‘ถ๐Ÿฝ baby: medium skin tone +๐Ÿ‘ถ๐Ÿพ baby: medium-dark skin tone +๐Ÿ‘ถ๐Ÿฟ baby: dark skin tone +๐Ÿง’ child +๐Ÿง’๐Ÿป child: light skin tone +๐Ÿง’๐Ÿผ child: medium-light skin tone +๐Ÿง’๐Ÿฝ child: medium skin tone +๐Ÿง’๐Ÿพ child: medium-dark skin tone +๐Ÿง’๐Ÿฟ child: dark skin tone +๐Ÿ‘ฆ boy +๐Ÿ‘ฆ๐Ÿป boy: light skin tone +๐Ÿ‘ฆ๐Ÿผ boy: medium-light skin tone +๐Ÿ‘ฆ๐Ÿฝ boy: medium skin tone +๐Ÿ‘ฆ๐Ÿพ boy: medium-dark skin tone +๐Ÿ‘ฆ๐Ÿฟ boy: dark skin tone +๐Ÿ‘ง girl +๐Ÿ‘ง๐Ÿป girl: light skin tone +๐Ÿ‘ง๐Ÿผ girl: medium-light skin tone +๐Ÿ‘ง๐Ÿฝ girl: medium skin tone +๐Ÿ‘ง๐Ÿพ girl: medium-dark skin tone +๐Ÿ‘ง๐Ÿฟ girl: dark skin tone +๐Ÿง‘ adult +๐Ÿง‘๐Ÿป adult: light skin tone +๐Ÿง‘๐Ÿผ adult: medium-light skin tone +๐Ÿง‘๐Ÿฝ adult: medium skin tone +๐Ÿง‘๐Ÿพ adult: medium-dark skin tone +๐Ÿง‘๐Ÿฟ adult: dark skin tone +๐Ÿ‘จ man +๐Ÿ‘จ๐Ÿป man: light skin tone +๐Ÿ‘จ๐Ÿผ man: medium-light skin tone +๐Ÿ‘จ๐Ÿฝ man: medium skin tone +๐Ÿ‘จ๐Ÿพ man: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟ man: dark skin tone +๐Ÿ‘ฉ woman +๐Ÿ‘ฉ๐Ÿป woman: light skin tone +๐Ÿ‘ฉ๐Ÿผ woman: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝ woman: medium skin tone +๐Ÿ‘ฉ๐Ÿพ woman: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟ woman: dark skin tone +๐Ÿง“ older adult +๐Ÿง“๐Ÿป older adult: light skin tone +๐Ÿง“๐Ÿผ older adult: medium-light skin tone +๐Ÿง“๐Ÿฝ older adult: medium skin tone +๐Ÿง“๐Ÿพ older adult: medium-dark skin tone +๐Ÿง“๐Ÿฟ older adult: dark skin tone +๐Ÿ‘ด old man +๐Ÿ‘ด๐Ÿป old man: light skin tone +๐Ÿ‘ด๐Ÿผ old man: medium-light skin tone +๐Ÿ‘ด๐Ÿฝ old man: medium skin tone +๐Ÿ‘ด๐Ÿพ old man: medium-dark skin tone +๐Ÿ‘ด๐Ÿฟ old man: dark skin tone +๐Ÿ‘ต old woman +๐Ÿ‘ต๐Ÿป old woman: light skin tone +๐Ÿ‘ต๐Ÿผ old woman: medium-light skin tone +๐Ÿ‘ต๐Ÿฝ old woman: medium skin tone +๐Ÿ‘ต๐Ÿพ old woman: medium-dark skin tone +๐Ÿ‘ต๐Ÿฟ old woman: dark skin tone +๐Ÿ‘จโ€โš•๏ธ man health worker +๐Ÿ‘จโ€โš• man health worker +๐Ÿ‘จ๐Ÿปโ€โš•๏ธ man health worker: light skin tone +๐Ÿ‘จ๐Ÿปโ€โš• man health worker: light skin tone +๐Ÿ‘จ๐Ÿผโ€โš•๏ธ man health worker: medium-light skin tone +๐Ÿ‘จ๐Ÿผโ€โš• man health worker: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€โš•๏ธ man health worker: medium skin tone +๐Ÿ‘จ๐Ÿฝโ€โš• man health worker: medium skin tone +๐Ÿ‘จ๐Ÿพโ€โš•๏ธ man health worker: medium-dark skin tone +๐Ÿ‘จ๐Ÿพโ€โš• man health worker: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€โš•๏ธ man health worker: dark skin tone +๐Ÿ‘จ๐Ÿฟโ€โš• man health worker: dark skin tone +๐Ÿ‘ฉโ€โš•๏ธ woman health worker +๐Ÿ‘ฉโ€โš• woman health worker +๐Ÿ‘ฉ๐Ÿปโ€โš•๏ธ woman health worker: light skin tone +๐Ÿ‘ฉ๐Ÿปโ€โš• woman health worker: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€โš•๏ธ woman health worker: medium-light skin tone +๐Ÿ‘ฉ๐Ÿผโ€โš• woman health worker: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€โš•๏ธ woman health worker: medium skin tone +๐Ÿ‘ฉ๐Ÿฝโ€โš• woman health worker: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€โš•๏ธ woman health worker: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿพโ€โš• woman health worker: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€โš•๏ธ woman health worker: dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€โš• woman health worker: dark skin tone +๐Ÿ‘จโ€๐ŸŽ“ man student +๐Ÿ‘จ๐Ÿปโ€๐ŸŽ“ man student: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐ŸŽ“ man student: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐ŸŽ“ man student: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐ŸŽ“ man student: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐ŸŽ“ man student: dark skin tone +๐Ÿ‘ฉโ€๐ŸŽ“ woman student +๐Ÿ‘ฉ๐Ÿปโ€๐ŸŽ“ woman student: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐ŸŽ“ woman student: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŽ“ woman student: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐ŸŽ“ woman student: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŽ“ woman student: dark skin tone +๐Ÿ‘จโ€๐Ÿซ man teacher +๐Ÿ‘จ๐Ÿปโ€๐Ÿซ man teacher: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿซ man teacher: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿซ man teacher: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿซ man teacher: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿซ man teacher: dark skin tone +๐Ÿ‘ฉโ€๐Ÿซ woman teacher +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿซ woman teacher: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿซ woman teacher: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿซ woman teacher: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿซ woman teacher: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿซ woman teacher: dark skin tone +๐Ÿ‘จโ€โš–๏ธ man judge +๐Ÿ‘จโ€โš– man judge +๐Ÿ‘จ๐Ÿปโ€โš–๏ธ man judge: light skin tone +๐Ÿ‘จ๐Ÿปโ€โš– man judge: light skin tone +๐Ÿ‘จ๐Ÿผโ€โš–๏ธ man judge: medium-light skin tone +๐Ÿ‘จ๐Ÿผโ€โš– man judge: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€โš–๏ธ man judge: medium skin tone +๐Ÿ‘จ๐Ÿฝโ€โš– man judge: medium skin tone +๐Ÿ‘จ๐Ÿพโ€โš–๏ธ man judge: medium-dark skin tone +๐Ÿ‘จ๐Ÿพโ€โš– man judge: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€โš–๏ธ man judge: dark skin tone +๐Ÿ‘จ๐Ÿฟโ€โš– man judge: dark skin tone +๐Ÿ‘ฉโ€โš–๏ธ woman judge +๐Ÿ‘ฉโ€โš– woman judge +๐Ÿ‘ฉ๐Ÿปโ€โš–๏ธ woman judge: light skin tone +๐Ÿ‘ฉ๐Ÿปโ€โš– woman judge: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€โš–๏ธ woman judge: medium-light skin tone +๐Ÿ‘ฉ๐Ÿผโ€โš– woman judge: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€โš–๏ธ woman judge: medium skin tone +๐Ÿ‘ฉ๐Ÿฝโ€โš– woman judge: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€โš–๏ธ woman judge: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿพโ€โš– woman judge: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€โš–๏ธ woman judge: dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€โš– woman judge: dark skin tone +๐Ÿ‘จโ€๐ŸŒพ man farmer +๐Ÿ‘จ๐Ÿปโ€๐ŸŒพ man farmer: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐ŸŒพ man farmer: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐ŸŒพ man farmer: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐ŸŒพ man farmer: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐ŸŒพ man farmer: dark skin tone +๐Ÿ‘ฉโ€๐ŸŒพ woman farmer +๐Ÿ‘ฉ๐Ÿปโ€๐ŸŒพ woman farmer: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐ŸŒพ woman farmer: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŒพ woman farmer: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐ŸŒพ woman farmer: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŒพ woman farmer: dark skin tone +๐Ÿ‘จโ€๐Ÿณ man cook +๐Ÿ‘จ๐Ÿปโ€๐Ÿณ man cook: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿณ man cook: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿณ man cook: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿณ man cook: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿณ man cook: dark skin tone +๐Ÿ‘ฉโ€๐Ÿณ woman cook +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿณ woman cook: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿณ woman cook: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿณ woman cook: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿณ woman cook: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿณ woman cook: dark skin tone +๐Ÿ‘จโ€๐Ÿ”ง man mechanic +๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ง man mechanic: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿ”ง man mechanic: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿ”ง man mechanic: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿ”ง man mechanic: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿ”ง man mechanic: dark skin tone +๐Ÿ‘ฉโ€๐Ÿ”ง woman mechanic +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ”ง woman mechanic: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ”ง woman mechanic: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ”ง woman mechanic: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ”ง woman mechanic: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ”ง woman mechanic: dark skin tone +๐Ÿ‘จโ€๐Ÿญ man factory worker +๐Ÿ‘จ๐Ÿปโ€๐Ÿญ man factory worker: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿญ man factory worker: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿญ man factory worker: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿญ man factory worker: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿญ man factory worker: dark skin tone +๐Ÿ‘ฉโ€๐Ÿญ woman factory worker +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿญ woman factory worker: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿญ woman factory worker: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿญ woman factory worker: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿญ woman factory worker: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿญ woman factory worker: dark skin tone +๐Ÿ‘จโ€๐Ÿ’ผ man office worker +๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ผ man office worker: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿ’ผ man office worker: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿ’ผ man office worker: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿ’ผ man office worker: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿ’ผ man office worker: dark skin tone +๐Ÿ‘ฉโ€๐Ÿ’ผ woman office worker +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ผ woman office worker: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ’ผ woman office worker: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ’ผ woman office worker: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ’ผ woman office worker: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ’ผ woman office worker: dark skin tone +๐Ÿ‘จโ€๐Ÿ”ฌ man scientist +๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌ man scientist: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿ”ฌ man scientist: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿ”ฌ man scientist: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿ”ฌ man scientist: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿ”ฌ man scientist: dark skin tone +๐Ÿ‘ฉโ€๐Ÿ”ฌ woman scientist +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ”ฌ woman scientist: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ”ฌ woman scientist: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ”ฌ woman scientist: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ”ฌ woman scientist: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ”ฌ woman scientist: dark skin tone +๐Ÿ‘จโ€๐Ÿ’ป man technologist +๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป man technologist: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿ’ป man technologist: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿ’ป man technologist: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿ’ป man technologist: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿ’ป man technologist: dark skin tone +๐Ÿ‘ฉโ€๐Ÿ’ป woman technologist +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ป woman technologist: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿ’ป woman technologist: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿ’ป woman technologist: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ’ป woman technologist: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿ’ป woman technologist: dark skin tone +๐Ÿ‘จโ€๐ŸŽค man singer +๐Ÿ‘จ๐Ÿปโ€๐ŸŽค man singer: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐ŸŽค man singer: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐ŸŽค man singer: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐ŸŽค man singer: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐ŸŽค man singer: dark skin tone +๐Ÿ‘ฉโ€๐ŸŽค woman singer +๐Ÿ‘ฉ๐Ÿปโ€๐ŸŽค woman singer: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐ŸŽค woman singer: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŽค woman singer: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐ŸŽค woman singer: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŽค woman singer: dark skin tone +๐Ÿ‘จโ€๐ŸŽจ man artist +๐Ÿ‘จ๐Ÿปโ€๐ŸŽจ man artist: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐ŸŽจ man artist: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐ŸŽจ man artist: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐ŸŽจ man artist: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐ŸŽจ man artist: dark skin tone +๐Ÿ‘ฉโ€๐ŸŽจ woman artist +๐Ÿ‘ฉ๐Ÿปโ€๐ŸŽจ woman artist: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐ŸŽจ woman artist: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐ŸŽจ woman artist: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐ŸŽจ woman artist: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐ŸŽจ woman artist: dark skin tone +๐Ÿ‘จโ€โœˆ๏ธ man pilot +๐Ÿ‘จโ€โœˆ man pilot +๐Ÿ‘จ๐Ÿปโ€โœˆ๏ธ man pilot: light skin tone +๐Ÿ‘จ๐Ÿปโ€โœˆ man pilot: light skin tone +๐Ÿ‘จ๐Ÿผโ€โœˆ๏ธ man pilot: medium-light skin tone +๐Ÿ‘จ๐Ÿผโ€โœˆ man pilot: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€โœˆ๏ธ man pilot: medium skin tone +๐Ÿ‘จ๐Ÿฝโ€โœˆ man pilot: medium skin tone +๐Ÿ‘จ๐Ÿพโ€โœˆ๏ธ man pilot: medium-dark skin tone +๐Ÿ‘จ๐Ÿพโ€โœˆ man pilot: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€โœˆ๏ธ man pilot: dark skin tone +๐Ÿ‘จ๐Ÿฟโ€โœˆ man pilot: dark skin tone +๐Ÿ‘ฉโ€โœˆ๏ธ woman pilot +๐Ÿ‘ฉโ€โœˆ woman pilot +๐Ÿ‘ฉ๐Ÿปโ€โœˆ๏ธ woman pilot: light skin tone +๐Ÿ‘ฉ๐Ÿปโ€โœˆ woman pilot: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€โœˆ๏ธ woman pilot: medium-light skin tone +๐Ÿ‘ฉ๐Ÿผโ€โœˆ woman pilot: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€โœˆ๏ธ woman pilot: medium skin tone +๐Ÿ‘ฉ๐Ÿฝโ€โœˆ woman pilot: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€โœˆ๏ธ woman pilot: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿพโ€โœˆ woman pilot: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€โœˆ๏ธ woman pilot: dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€โœˆ woman pilot: dark skin tone +๐Ÿ‘จโ€๐Ÿš€ man astronaut +๐Ÿ‘จ๐Ÿปโ€๐Ÿš€ man astronaut: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿš€ man astronaut: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿš€ man astronaut: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿš€ man astronaut: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿš€ man astronaut: dark skin tone +๐Ÿ‘ฉโ€๐Ÿš€ woman astronaut +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿš€ woman astronaut: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿš€ woman astronaut: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿš€ woman astronaut: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿš€ woman astronaut: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿš€ woman astronaut: dark skin tone +๐Ÿ‘จโ€๐Ÿš’ man firefighter +๐Ÿ‘จ๐Ÿปโ€๐Ÿš’ man firefighter: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿš’ man firefighter: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿš’ man firefighter: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿš’ man firefighter: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿš’ man firefighter: dark skin tone +๐Ÿ‘ฉโ€๐Ÿš’ woman firefighter +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿš’ woman firefighter: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿš’ woman firefighter: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿš’ woman firefighter: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿš’ woman firefighter: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿš’ woman firefighter: dark skin tone +๐Ÿ‘ฎ police officer +๐Ÿ‘ฎ๐Ÿป police officer: light skin tone +๐Ÿ‘ฎ๐Ÿผ police officer: medium-light skin tone +๐Ÿ‘ฎ๐Ÿฝ police officer: medium skin tone +๐Ÿ‘ฎ๐Ÿพ police officer: medium-dark skin tone +๐Ÿ‘ฎ๐Ÿฟ police officer: dark skin tone +๐Ÿ‘ฎโ€โ™‚๏ธ man police officer +๐Ÿ‘ฎโ€โ™‚ man police officer +๐Ÿ‘ฎ๐Ÿปโ€โ™‚๏ธ man police officer: light skin tone +๐Ÿ‘ฎ๐Ÿปโ€โ™‚ man police officer: light skin tone +๐Ÿ‘ฎ๐Ÿผโ€โ™‚๏ธ man police officer: medium-light skin tone +๐Ÿ‘ฎ๐Ÿผโ€โ™‚ man police officer: medium-light skin tone +๐Ÿ‘ฎ๐Ÿฝโ€โ™‚๏ธ man police officer: medium skin tone +๐Ÿ‘ฎ๐Ÿฝโ€โ™‚ man police officer: medium skin tone +๐Ÿ‘ฎ๐Ÿพโ€โ™‚๏ธ man police officer: medium-dark skin tone +๐Ÿ‘ฎ๐Ÿพโ€โ™‚ man police officer: medium-dark skin tone +๐Ÿ‘ฎ๐Ÿฟโ€โ™‚๏ธ man police officer: dark skin tone +๐Ÿ‘ฎ๐Ÿฟโ€โ™‚ man police officer: dark skin tone +๐Ÿ‘ฎโ€โ™€๏ธ woman police officer +๐Ÿ‘ฎโ€โ™€ woman police officer +๐Ÿ‘ฎ๐Ÿปโ€โ™€๏ธ woman police officer: light skin tone +๐Ÿ‘ฎ๐Ÿปโ€โ™€ woman police officer: light skin tone +๐Ÿ‘ฎ๐Ÿผโ€โ™€๏ธ woman police officer: medium-light skin tone +๐Ÿ‘ฎ๐Ÿผโ€โ™€ woman police officer: medium-light skin tone +๐Ÿ‘ฎ๐Ÿฝโ€โ™€๏ธ woman police officer: medium skin tone +๐Ÿ‘ฎ๐Ÿฝโ€โ™€ woman police officer: medium skin tone +๐Ÿ‘ฎ๐Ÿพโ€โ™€๏ธ woman police officer: medium-dark skin tone +๐Ÿ‘ฎ๐Ÿพโ€โ™€ woman police officer: medium-dark skin tone +๐Ÿ‘ฎ๐Ÿฟโ€โ™€๏ธ woman police officer: dark skin tone +๐Ÿ‘ฎ๐Ÿฟโ€โ™€ woman police officer: dark skin tone +๐Ÿ•ต๏ธ detective +๐Ÿ•ต detective +๐Ÿ•ต๐Ÿป detective: light skin tone +๐Ÿ•ต๐Ÿผ detective: medium-light skin tone +๐Ÿ•ต๐Ÿฝ detective: medium skin tone +๐Ÿ•ต๐Ÿพ detective: medium-dark skin tone +๐Ÿ•ต๐Ÿฟ detective: dark skin tone +๐Ÿ•ต๏ธโ€โ™‚๏ธ man detective +๐Ÿ•ตโ€โ™‚๏ธ man detective +๐Ÿ•ต๏ธโ€โ™‚ man detective +๐Ÿ•ตโ€โ™‚ man detective +๐Ÿ•ต๐Ÿปโ€โ™‚๏ธ man detective: light skin tone +๐Ÿ•ต๐Ÿปโ€โ™‚ man detective: light skin tone +๐Ÿ•ต๐Ÿผโ€โ™‚๏ธ man detective: medium-light skin tone +๐Ÿ•ต๐Ÿผโ€โ™‚ man detective: medium-light skin tone +๐Ÿ•ต๐Ÿฝโ€โ™‚๏ธ man detective: medium skin tone +๐Ÿ•ต๐Ÿฝโ€โ™‚ man detective: medium skin tone +๐Ÿ•ต๐Ÿพโ€โ™‚๏ธ man detective: medium-dark skin tone +๐Ÿ•ต๐Ÿพโ€โ™‚ man detective: medium-dark skin tone +๐Ÿ•ต๐Ÿฟโ€โ™‚๏ธ man detective: dark skin tone +๐Ÿ•ต๐Ÿฟโ€โ™‚ man detective: dark skin tone +๐Ÿ•ต๏ธโ€โ™€๏ธ woman detective +๐Ÿ•ตโ€โ™€๏ธ woman detective +๐Ÿ•ต๏ธโ€โ™€ woman detective +๐Ÿ•ตโ€โ™€ woman detective +๐Ÿ•ต๐Ÿปโ€โ™€๏ธ woman detective: light skin tone +๐Ÿ•ต๐Ÿปโ€โ™€ woman detective: light skin tone +๐Ÿ•ต๐Ÿผโ€โ™€๏ธ woman detective: medium-light skin tone +๐Ÿ•ต๐Ÿผโ€โ™€ woman detective: medium-light skin tone +๐Ÿ•ต๐Ÿฝโ€โ™€๏ธ woman detective: medium skin tone +๐Ÿ•ต๐Ÿฝโ€โ™€ woman detective: medium skin tone +๐Ÿ•ต๐Ÿพโ€โ™€๏ธ woman detective: medium-dark skin tone +๐Ÿ•ต๐Ÿพโ€โ™€ woman detective: medium-dark skin tone +๐Ÿ•ต๐Ÿฟโ€โ™€๏ธ woman detective: dark skin tone +๐Ÿ•ต๐Ÿฟโ€โ™€ woman detective: dark skin tone +๐Ÿ’‚ guard +๐Ÿ’‚๐Ÿป guard: light skin tone +๐Ÿ’‚๐Ÿผ guard: medium-light skin tone +๐Ÿ’‚๐Ÿฝ guard: medium skin tone +๐Ÿ’‚๐Ÿพ guard: medium-dark skin tone +๐Ÿ’‚๐Ÿฟ guard: dark skin tone +๐Ÿ’‚โ€โ™‚๏ธ man guard +๐Ÿ’‚โ€โ™‚ man guard +๐Ÿ’‚๐Ÿปโ€โ™‚๏ธ man guard: light skin tone +๐Ÿ’‚๐Ÿปโ€โ™‚ man guard: light skin tone +๐Ÿ’‚๐Ÿผโ€โ™‚๏ธ man guard: medium-light skin tone +๐Ÿ’‚๐Ÿผโ€โ™‚ man guard: medium-light skin tone +๐Ÿ’‚๐Ÿฝโ€โ™‚๏ธ man guard: medium skin tone +๐Ÿ’‚๐Ÿฝโ€โ™‚ man guard: medium skin tone +๐Ÿ’‚๐Ÿพโ€โ™‚๏ธ man guard: medium-dark skin tone +๐Ÿ’‚๐Ÿพโ€โ™‚ man guard: medium-dark skin tone +๐Ÿ’‚๐Ÿฟโ€โ™‚๏ธ man guard: dark skin tone +๐Ÿ’‚๐Ÿฟโ€โ™‚ man guard: dark skin tone +๐Ÿ’‚โ€โ™€๏ธ woman guard +๐Ÿ’‚โ€โ™€ woman guard +๐Ÿ’‚๐Ÿปโ€โ™€๏ธ woman guard: light skin tone +๐Ÿ’‚๐Ÿปโ€โ™€ woman guard: light skin tone +๐Ÿ’‚๐Ÿผโ€โ™€๏ธ woman guard: medium-light skin tone +๐Ÿ’‚๐Ÿผโ€โ™€ woman guard: medium-light skin tone +๐Ÿ’‚๐Ÿฝโ€โ™€๏ธ woman guard: medium skin tone +๐Ÿ’‚๐Ÿฝโ€โ™€ woman guard: medium skin tone +๐Ÿ’‚๐Ÿพโ€โ™€๏ธ woman guard: medium-dark skin tone +๐Ÿ’‚๐Ÿพโ€โ™€ woman guard: medium-dark skin tone +๐Ÿ’‚๐Ÿฟโ€โ™€๏ธ woman guard: dark skin tone +๐Ÿ’‚๐Ÿฟโ€โ™€ woman guard: dark skin tone +๐Ÿ‘ท construction worker +๐Ÿ‘ท๐Ÿป construction worker: light skin tone +๐Ÿ‘ท๐Ÿผ construction worker: medium-light skin tone +๐Ÿ‘ท๐Ÿฝ construction worker: medium skin tone +๐Ÿ‘ท๐Ÿพ construction worker: medium-dark skin tone +๐Ÿ‘ท๐Ÿฟ construction worker: dark skin tone +๐Ÿ‘ทโ€โ™‚๏ธ man construction worker +๐Ÿ‘ทโ€โ™‚ man construction worker +๐Ÿ‘ท๐Ÿปโ€โ™‚๏ธ man construction worker: light skin tone +๐Ÿ‘ท๐Ÿปโ€โ™‚ man construction worker: light skin tone +๐Ÿ‘ท๐Ÿผโ€โ™‚๏ธ man construction worker: medium-light skin tone +๐Ÿ‘ท๐Ÿผโ€โ™‚ man construction worker: medium-light skin tone +๐Ÿ‘ท๐Ÿฝโ€โ™‚๏ธ man construction worker: medium skin tone +๐Ÿ‘ท๐Ÿฝโ€โ™‚ man construction worker: medium skin tone +๐Ÿ‘ท๐Ÿพโ€โ™‚๏ธ man construction worker: medium-dark skin tone +๐Ÿ‘ท๐Ÿพโ€โ™‚ man construction worker: medium-dark skin tone +๐Ÿ‘ท๐Ÿฟโ€โ™‚๏ธ man construction worker: dark skin tone +๐Ÿ‘ท๐Ÿฟโ€โ™‚ man construction worker: dark skin tone +๐Ÿ‘ทโ€โ™€๏ธ woman construction worker +๐Ÿ‘ทโ€โ™€ woman construction worker +๐Ÿ‘ท๐Ÿปโ€โ™€๏ธ woman construction worker: light skin tone +๐Ÿ‘ท๐Ÿปโ€โ™€ woman construction worker: light skin tone +๐Ÿ‘ท๐Ÿผโ€โ™€๏ธ woman construction worker: medium-light skin tone +๐Ÿ‘ท๐Ÿผโ€โ™€ woman construction worker: medium-light skin tone +๐Ÿ‘ท๐Ÿฝโ€โ™€๏ธ woman construction worker: medium skin tone +๐Ÿ‘ท๐Ÿฝโ€โ™€ woman construction worker: medium skin tone +๐Ÿ‘ท๐Ÿพโ€โ™€๏ธ woman construction worker: medium-dark skin tone +๐Ÿ‘ท๐Ÿพโ€โ™€ woman construction worker: medium-dark skin tone +๐Ÿ‘ท๐Ÿฟโ€โ™€๏ธ woman construction worker: dark skin tone +๐Ÿ‘ท๐Ÿฟโ€โ™€ woman construction worker: dark skin tone +๐Ÿคด prince +๐Ÿคด๐Ÿป prince: light skin tone +๐Ÿคด๐Ÿผ prince: medium-light skin tone +๐Ÿคด๐Ÿฝ prince: medium skin tone +๐Ÿคด๐Ÿพ prince: medium-dark skin tone +๐Ÿคด๐Ÿฟ prince: dark skin tone +๐Ÿ‘ธ princess +๐Ÿ‘ธ๐Ÿป princess: light skin tone +๐Ÿ‘ธ๐Ÿผ princess: medium-light skin tone +๐Ÿ‘ธ๐Ÿฝ princess: medium skin tone +๐Ÿ‘ธ๐Ÿพ princess: medium-dark skin tone +๐Ÿ‘ธ๐Ÿฟ princess: dark skin tone +๐Ÿ‘ณ person wearing turban +๐Ÿ‘ณ๐Ÿป person wearing turban: light skin tone +๐Ÿ‘ณ๐Ÿผ person wearing turban: medium-light skin tone +๐Ÿ‘ณ๐Ÿฝ person wearing turban: medium skin tone +๐Ÿ‘ณ๐Ÿพ person wearing turban: medium-dark skin tone +๐Ÿ‘ณ๐Ÿฟ person wearing turban: dark skin tone +๐Ÿ‘ณโ€โ™‚๏ธ man wearing turban +๐Ÿ‘ณโ€โ™‚ man wearing turban +๐Ÿ‘ณ๐Ÿปโ€โ™‚๏ธ man wearing turban: light skin tone +๐Ÿ‘ณ๐Ÿปโ€โ™‚ man wearing turban: light skin tone +๐Ÿ‘ณ๐Ÿผโ€โ™‚๏ธ man wearing turban: medium-light skin tone +๐Ÿ‘ณ๐Ÿผโ€โ™‚ man wearing turban: medium-light skin tone +๐Ÿ‘ณ๐Ÿฝโ€โ™‚๏ธ man wearing turban: medium skin tone +๐Ÿ‘ณ๐Ÿฝโ€โ™‚ man wearing turban: medium skin tone +๐Ÿ‘ณ๐Ÿพโ€โ™‚๏ธ man wearing turban: medium-dark skin tone +๐Ÿ‘ณ๐Ÿพโ€โ™‚ man wearing turban: medium-dark skin tone +๐Ÿ‘ณ๐Ÿฟโ€โ™‚๏ธ man wearing turban: dark skin tone +๐Ÿ‘ณ๐Ÿฟโ€โ™‚ man wearing turban: dark skin tone +๐Ÿ‘ณโ€โ™€๏ธ woman wearing turban +๐Ÿ‘ณโ€โ™€ woman wearing turban +๐Ÿ‘ณ๐Ÿปโ€โ™€๏ธ woman wearing turban: light skin tone +๐Ÿ‘ณ๐Ÿปโ€โ™€ woman wearing turban: light skin tone +๐Ÿ‘ณ๐Ÿผโ€โ™€๏ธ woman wearing turban: medium-light skin tone +๐Ÿ‘ณ๐Ÿผโ€โ™€ woman wearing turban: medium-light skin tone +๐Ÿ‘ณ๐Ÿฝโ€โ™€๏ธ woman wearing turban: medium skin tone +๐Ÿ‘ณ๐Ÿฝโ€โ™€ woman wearing turban: medium skin tone +๐Ÿ‘ณ๐Ÿพโ€โ™€๏ธ woman wearing turban: medium-dark skin tone +๐Ÿ‘ณ๐Ÿพโ€โ™€ woman wearing turban: medium-dark skin tone +๐Ÿ‘ณ๐Ÿฟโ€โ™€๏ธ woman wearing turban: dark skin tone +๐Ÿ‘ณ๐Ÿฟโ€โ™€ woman wearing turban: dark skin tone +๐Ÿ‘ฒ man with Chinese cap +๐Ÿ‘ฒ๐Ÿป man with Chinese cap: light skin tone +๐Ÿ‘ฒ๐Ÿผ man with Chinese cap: medium-light skin tone +๐Ÿ‘ฒ๐Ÿฝ man with Chinese cap: medium skin tone +๐Ÿ‘ฒ๐Ÿพ man with Chinese cap: medium-dark skin tone +๐Ÿ‘ฒ๐Ÿฟ man with Chinese cap: dark skin tone +๐Ÿง• woman with headscarf +๐Ÿง•๐Ÿป woman with headscarf: light skin tone +๐Ÿง•๐Ÿผ woman with headscarf: medium-light skin tone +๐Ÿง•๐Ÿฝ woman with headscarf: medium skin tone +๐Ÿง•๐Ÿพ woman with headscarf: medium-dark skin tone +๐Ÿง•๐Ÿฟ woman with headscarf: dark skin tone +๐Ÿง” bearded person +๐Ÿง”๐Ÿป bearded person: light skin tone +๐Ÿง”๐Ÿผ bearded person: medium-light skin tone +๐Ÿง”๐Ÿฝ bearded person: medium skin tone +๐Ÿง”๐Ÿพ bearded person: medium-dark skin tone +๐Ÿง”๐Ÿฟ bearded person: dark skin tone +๐Ÿ‘ฑ blond-haired person +๐Ÿ‘ฑ๐Ÿป blond-haired person: light skin tone +๐Ÿ‘ฑ๐Ÿผ blond-haired person: medium-light skin tone +๐Ÿ‘ฑ๐Ÿฝ blond-haired person: medium skin tone +๐Ÿ‘ฑ๐Ÿพ blond-haired person: medium-dark skin tone +๐Ÿ‘ฑ๐Ÿฟ blond-haired person: dark skin tone +๐Ÿ‘ฑโ€โ™‚๏ธ blond-haired man +๐Ÿ‘ฑโ€โ™‚ blond-haired man +๐Ÿ‘ฑ๐Ÿปโ€โ™‚๏ธ blond-haired man: light skin tone +๐Ÿ‘ฑ๐Ÿปโ€โ™‚ blond-haired man: light skin tone +๐Ÿ‘ฑ๐Ÿผโ€โ™‚๏ธ blond-haired man: medium-light skin tone +๐Ÿ‘ฑ๐Ÿผโ€โ™‚ blond-haired man: medium-light skin tone +๐Ÿ‘ฑ๐Ÿฝโ€โ™‚๏ธ blond-haired man: medium skin tone +๐Ÿ‘ฑ๐Ÿฝโ€โ™‚ blond-haired man: medium skin tone +๐Ÿ‘ฑ๐Ÿพโ€โ™‚๏ธ blond-haired man: medium-dark skin tone +๐Ÿ‘ฑ๐Ÿพโ€โ™‚ blond-haired man: medium-dark skin tone +๐Ÿ‘ฑ๐Ÿฟโ€โ™‚๏ธ blond-haired man: dark skin tone +๐Ÿ‘ฑ๐Ÿฟโ€โ™‚ blond-haired man: dark skin tone +๐Ÿ‘ฑโ€โ™€๏ธ blond-haired woman +๐Ÿ‘ฑโ€โ™€ blond-haired woman +๐Ÿ‘ฑ๐Ÿปโ€โ™€๏ธ blond-haired woman: light skin tone +๐Ÿ‘ฑ๐Ÿปโ€โ™€ blond-haired woman: light skin tone +๐Ÿ‘ฑ๐Ÿผโ€โ™€๏ธ blond-haired woman: medium-light skin tone +๐Ÿ‘ฑ๐Ÿผโ€โ™€ blond-haired woman: medium-light skin tone +๐Ÿ‘ฑ๐Ÿฝโ€โ™€๏ธ blond-haired woman: medium skin tone +๐Ÿ‘ฑ๐Ÿฝโ€โ™€ blond-haired woman: medium skin tone +๐Ÿ‘ฑ๐Ÿพโ€โ™€๏ธ blond-haired woman: medium-dark skin tone +๐Ÿ‘ฑ๐Ÿพโ€โ™€ blond-haired woman: medium-dark skin tone +๐Ÿ‘ฑ๐Ÿฟโ€โ™€๏ธ blond-haired woman: dark skin tone +๐Ÿ‘ฑ๐Ÿฟโ€โ™€ blond-haired woman: dark skin tone +๐Ÿ‘จโ€๐Ÿฆฐ man, red haired +๐Ÿ‘จ๐Ÿปโ€๐Ÿฆฐ man, red haired: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿฆฐ man, red haired: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆฐ man, red haired: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿฆฐ man, red haired: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆฐ man, red haired: dark skin tone +๐Ÿ‘ฉโ€๐Ÿฆฐ woman, red haired +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆฐ woman, red haired: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆฐ woman, red haired: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆฐ woman, red haired: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆฐ woman, red haired: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆฐ woman, red haired: dark skin tone +๐Ÿ‘จโ€๐Ÿฆฑ man, curly haired +๐Ÿ‘จ๐Ÿปโ€๐Ÿฆฑ man, curly haired: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿฆฑ man, curly haired: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆฑ man, curly haired: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿฆฑ man, curly haired: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆฑ man, curly haired: dark skin tone +๐Ÿ‘ฉโ€๐Ÿฆฑ woman, curly haired +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆฑ woman, curly haired: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆฑ woman, curly haired: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆฑ woman, curly haired: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆฑ woman, curly haired: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆฑ woman, curly haired: dark skin tone +๐Ÿ‘จโ€๐Ÿฆฒ man, bald +๐Ÿ‘จ๐Ÿปโ€๐Ÿฆฒ man, bald: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿฆฒ man, bald: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆฒ man, bald: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿฆฒ man, bald: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆฒ man, bald: dark skin tone +๐Ÿ‘ฉโ€๐Ÿฆฒ woman, bald +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆฒ woman, bald: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆฒ woman, bald: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆฒ woman, bald: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆฒ woman, bald: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆฒ woman, bald: dark skin tone +๐Ÿ‘จโ€๐Ÿฆณ man, white haired +๐Ÿ‘จ๐Ÿปโ€๐Ÿฆณ man, white haired: light skin tone +๐Ÿ‘จ๐Ÿผโ€๐Ÿฆณ man, white haired: medium-light skin tone +๐Ÿ‘จ๐Ÿฝโ€๐Ÿฆณ man, white haired: medium skin tone +๐Ÿ‘จ๐Ÿพโ€๐Ÿฆณ man, white haired: medium-dark skin tone +๐Ÿ‘จ๐Ÿฟโ€๐Ÿฆณ man, white haired: dark skin tone +๐Ÿ‘ฉโ€๐Ÿฆณ woman, white haired +๐Ÿ‘ฉ๐Ÿปโ€๐Ÿฆณ woman, white haired: light skin tone +๐Ÿ‘ฉ๐Ÿผโ€๐Ÿฆณ woman, white haired: medium-light skin tone +๐Ÿ‘ฉ๐Ÿฝโ€๐Ÿฆณ woman, white haired: medium skin tone +๐Ÿ‘ฉ๐Ÿพโ€๐Ÿฆณ woman, white haired: medium-dark skin tone +๐Ÿ‘ฉ๐Ÿฟโ€๐Ÿฆณ woman, white haired: dark skin tone +๐Ÿคต man in tuxedo +๐Ÿคต๐Ÿป man in tuxedo: light skin tone +๐Ÿคต๐Ÿผ man in tuxedo: medium-light skin tone +๐Ÿคต๐Ÿฝ man in tuxedo: medium skin tone +๐Ÿคต๐Ÿพ man in tuxedo: medium-dark skin tone +๐Ÿคต๐Ÿฟ man in tuxedo: dark skin tone +๐Ÿ‘ฐ bride with veil +๐Ÿ‘ฐ๐Ÿป bride with veil: light skin tone +๐Ÿ‘ฐ๐Ÿผ bride with veil: medium-light skin tone +๐Ÿ‘ฐ๐Ÿฝ bride with veil: medium skin tone +๐Ÿ‘ฐ๐Ÿพ bride with veil: medium-dark skin tone +๐Ÿ‘ฐ๐Ÿฟ bride with veil: dark skin tone +๐Ÿคฐ pregnant woman +๐Ÿคฐ๐Ÿป pregnant woman: light skin tone +๐Ÿคฐ๐Ÿผ pregnant woman: medium-light skin tone +๐Ÿคฐ๐Ÿฝ pregnant woman: medium skin tone +๐Ÿคฐ๐Ÿพ pregnant woman: medium-dark skin tone +๐Ÿคฐ๐Ÿฟ pregnant woman: dark skin tone +๐Ÿคฑ breast-feeding +๐Ÿคฑ๐Ÿป breast-feeding: light skin tone +๐Ÿคฑ๐Ÿผ breast-feeding: medium-light skin tone +๐Ÿคฑ๐Ÿฝ breast-feeding: medium skin tone +๐Ÿคฑ๐Ÿพ breast-feeding: medium-dark skin tone +๐Ÿคฑ๐Ÿฟ breast-feeding: dark skin tone +๐Ÿ‘ผ baby angel +๐Ÿ‘ผ๐Ÿป baby angel: light skin tone +๐Ÿ‘ผ๐Ÿผ baby angel: medium-light skin tone +๐Ÿ‘ผ๐Ÿฝ baby angel: medium skin tone +๐Ÿ‘ผ๐Ÿพ baby angel: medium-dark skin tone +๐Ÿ‘ผ๐Ÿฟ baby angel: dark skin tone +๐ŸŽ… Santa Claus +๐ŸŽ…๐Ÿป Santa Claus: light skin tone +๐ŸŽ…๐Ÿผ Santa Claus: medium-light skin tone +๐ŸŽ…๐Ÿฝ Santa Claus: medium skin tone +๐ŸŽ…๐Ÿพ Santa Claus: medium-dark skin tone +๐ŸŽ…๐Ÿฟ Santa Claus: dark skin tone +๐Ÿคถ Mrs. Claus +๐Ÿคถ๐Ÿป Mrs. Claus: light skin tone +๐Ÿคถ๐Ÿผ Mrs. Claus: medium-light skin tone +๐Ÿคถ๐Ÿฝ Mrs. Claus: medium skin tone +๐Ÿคถ๐Ÿพ Mrs. Claus: medium-dark skin tone +๐Ÿคถ๐Ÿฟ Mrs. Claus: dark skin tone +๐Ÿฆธ superhero +๐Ÿฆธ๐Ÿป superhero: light skin tone +๐Ÿฆธ๐Ÿผ superhero: medium-light skin tone +๐Ÿฆธ๐Ÿฝ superhero: medium skin tone +๐Ÿฆธ๐Ÿพ superhero: medium-dark skin tone +๐Ÿฆธ๐Ÿฟ superhero: dark skin tone +๐Ÿฆธโ€โ™€๏ธ woman superhero +๐Ÿฆธโ€โ™€ woman superhero +๐Ÿฆธ๐Ÿปโ€โ™€๏ธ woman superhero: light skin tone +๐Ÿฆธ๐Ÿปโ€โ™€ woman superhero: light skin tone +๐Ÿฆธ๐Ÿผโ€โ™€๏ธ woman superhero: medium-light skin tone +๐Ÿฆธ๐Ÿผโ€โ™€ woman superhero: medium-light skin tone +๐Ÿฆธ๐Ÿฝโ€โ™€๏ธ woman superhero: medium skin tone +๐Ÿฆธ๐Ÿฝโ€โ™€ woman superhero: medium skin tone +๐Ÿฆธ๐Ÿพโ€โ™€๏ธ woman superhero: medium-dark skin tone +๐Ÿฆธ๐Ÿพโ€โ™€ woman superhero: medium-dark skin tone +๐Ÿฆธ๐Ÿฟโ€โ™€๏ธ woman superhero: dark skin tone +๐Ÿฆธ๐Ÿฟโ€โ™€ woman superhero: dark skin tone +๐Ÿฆธโ€โ™‚๏ธ man superhero +๐Ÿฆธโ€โ™‚ man superhero +๐Ÿฆธ๐Ÿปโ€โ™‚๏ธ man superhero: light skin tone +๐Ÿฆธ๐Ÿปโ€โ™‚ man superhero: light skin tone +๐Ÿฆธ๐Ÿผโ€โ™‚๏ธ man superhero: medium-light skin tone +๐Ÿฆธ๐Ÿผโ€โ™‚ man superhero: medium-light skin tone +๐Ÿฆธ๐Ÿฝโ€โ™‚๏ธ man superhero: medium skin tone +๐Ÿฆธ๐Ÿฝโ€โ™‚ man superhero: medium skin tone +๐Ÿฆธ๐Ÿพโ€โ™‚๏ธ man superhero: medium-dark skin tone +๐Ÿฆธ๐Ÿพโ€โ™‚ man superhero: medium-dark skin tone +๐Ÿฆธ๐Ÿฟโ€โ™‚๏ธ man superhero: dark skin tone +๐Ÿฆธ๐Ÿฟโ€โ™‚ man superhero: dark skin tone +๐Ÿฆน supervillain +๐Ÿฆน๐Ÿป supervillain: light skin tone +๐Ÿฆน๐Ÿผ supervillain: medium-light skin tone +๐Ÿฆน๐Ÿฝ supervillain: medium skin tone +๐Ÿฆน๐Ÿพ supervillain: medium-dark skin tone +๐Ÿฆน๐Ÿฟ supervillain: dark skin tone +๐Ÿฆนโ€โ™€๏ธ woman supervillain +๐Ÿฆนโ€โ™€ woman supervillain +๐Ÿฆน๐Ÿปโ€โ™€๏ธ woman supervillain: light skin tone +๐Ÿฆน๐Ÿปโ€โ™€ woman supervillain: light skin tone +๐Ÿฆน๐Ÿผโ€โ™€๏ธ woman supervillain: medium-light skin tone +๐Ÿฆน๐Ÿผโ€โ™€ woman supervillain: medium-light skin tone +๐Ÿฆน๐Ÿฝโ€โ™€๏ธ woman supervillain: medium skin tone +๐Ÿฆน๐Ÿฝโ€โ™€ woman supervillain: medium skin tone +๐Ÿฆน๐Ÿพโ€โ™€๏ธ woman supervillain: medium-dark skin tone +๐Ÿฆน๐Ÿพโ€โ™€ woman supervillain: medium-dark skin tone +๐Ÿฆน๐Ÿฟโ€โ™€๏ธ woman supervillain: dark skin tone +๐Ÿฆน๐Ÿฟโ€โ™€ woman supervillain: dark skin tone +๐Ÿฆนโ€โ™‚๏ธ man supervillain +๐Ÿฆนโ€โ™‚ man supervillain +๐Ÿฆน๐Ÿปโ€โ™‚๏ธ man supervillain: light skin tone +๐Ÿฆน๐Ÿปโ€โ™‚ man supervillain: light skin tone +๐Ÿฆน๐Ÿผโ€โ™‚๏ธ man supervillain: medium-light skin tone +๐Ÿฆน๐Ÿผโ€โ™‚ man supervillain: medium-light skin tone +๐Ÿฆน๐Ÿฝโ€โ™‚๏ธ man supervillain: medium skin tone +๐Ÿฆน๐Ÿฝโ€โ™‚ man supervillain: medium skin tone +๐Ÿฆน๐Ÿพโ€โ™‚๏ธ man supervillain: medium-dark skin tone +๐Ÿฆน๐Ÿพโ€โ™‚ man supervillain: medium-dark skin tone +๐Ÿฆน๐Ÿฟโ€โ™‚๏ธ man supervillain: dark skin tone +๐Ÿฆน๐Ÿฟโ€โ™‚ man supervillain: dark skin tone +๐Ÿง™ mage +๐Ÿง™๐Ÿป mage: light skin tone +๐Ÿง™๐Ÿผ mage: medium-light skin tone +๐Ÿง™๐Ÿฝ mage: medium skin tone +๐Ÿง™๐Ÿพ mage: medium-dark skin tone +๐Ÿง™๐Ÿฟ mage: dark skin tone +๐Ÿง™โ€โ™€๏ธ woman mage +๐Ÿง™โ€โ™€ woman mage +๐Ÿง™๐Ÿปโ€โ™€๏ธ woman mage: light skin tone +๐Ÿง™๐Ÿปโ€โ™€ woman mage: light skin tone +๐Ÿง™๐Ÿผโ€โ™€๏ธ woman mage: medium-light skin tone +๐Ÿง™๐Ÿผโ€โ™€ woman mage: medium-light skin tone +๐Ÿง™๐Ÿฝโ€โ™€๏ธ woman mage: medium skin tone +๐Ÿง™๐Ÿฝโ€โ™€ woman mage: medium skin tone +๐Ÿง™๐Ÿพโ€โ™€๏ธ woman mage: medium-dark skin tone +๐Ÿง™๐Ÿพโ€โ™€ woman mage: medium-dark skin tone +๐Ÿง™๐Ÿฟโ€โ™€๏ธ woman mage: dark skin tone +๐Ÿง™๐Ÿฟโ€โ™€ woman mage: dark skin tone +๐Ÿง™โ€โ™‚๏ธ man mage +๐Ÿง™โ€โ™‚ man mage +๐Ÿง™๐Ÿปโ€โ™‚๏ธ man mage: light skin tone +๐Ÿง™๐Ÿปโ€โ™‚ man mage: light skin tone +๐Ÿง™๐Ÿผโ€โ™‚๏ธ man mage: medium-light skin tone +๐Ÿง™๐Ÿผโ€โ™‚ man mage: medium-light skin tone +๐Ÿง™๐Ÿฝโ€โ™‚๏ธ man mage: medium skin tone +๐Ÿง™๐Ÿฝโ€โ™‚ man mage: medium skin tone +๐Ÿง™๐Ÿพโ€โ™‚๏ธ man mage: medium-dark skin tone +๐Ÿง™๐Ÿพโ€โ™‚ man mage: medium-dark skin tone +๐Ÿง™๐Ÿฟโ€โ™‚๏ธ man mage: dark skin tone +๐Ÿง™๐Ÿฟโ€โ™‚ man mage: dark skin tone +๐Ÿงš fairy +๐Ÿงš๐Ÿป fairy: light skin tone +๐Ÿงš๐Ÿผ fairy: medium-light skin tone +๐Ÿงš๐Ÿฝ fairy: medium skin tone +๐Ÿงš๐Ÿพ fairy: medium-dark skin tone +๐Ÿงš๐Ÿฟ fairy: dark skin tone +๐Ÿงšโ€โ™€๏ธ woman fairy +๐Ÿงšโ€โ™€ woman fairy +๐Ÿงš๐Ÿปโ€โ™€๏ธ woman fairy: light skin tone +๐Ÿงš๐Ÿปโ€โ™€ woman fairy: light skin tone +๐Ÿงš๐Ÿผโ€โ™€๏ธ woman fairy: medium-light skin tone +๐Ÿงš๐Ÿผโ€โ™€ woman fairy: medium-light skin tone +๐Ÿงš๐Ÿฝโ€โ™€๏ธ woman fairy: medium skin tone +๐Ÿงš๐Ÿฝโ€โ™€ woman fairy: medium skin tone +๐Ÿงš๐Ÿพโ€โ™€๏ธ woman fairy: medium-dark skin tone +๐Ÿงš๐Ÿพโ€โ™€ woman fairy: medium-dark skin tone +๐Ÿงš๐Ÿฟโ€โ™€๏ธ woman fairy: dark skin tone +๐Ÿงš๐Ÿฟโ€โ™€ woman fairy: dark skin tone +๐Ÿงšโ€โ™‚๏ธ man fairy +๐Ÿงšโ€โ™‚ man fairy +๐Ÿงš๐Ÿปโ€โ™‚๏ธ man fairy: light skin tone +๐Ÿงš๐Ÿปโ€โ™‚ man fairy: light skin tone +๐Ÿงš๐Ÿผโ€โ™‚๏ธ man fairy: medium-light skin tone +๐Ÿงš๐Ÿผโ€โ™‚ man fairy: medium-light skin tone +๐Ÿงš๐Ÿฝโ€โ™‚๏ธ man fairy: medium skin tone +๐Ÿงš๐Ÿฝโ€โ™‚ man fairy: medium skin tone +๐Ÿงš๐Ÿพโ€โ™‚๏ธ man fairy: medium-dark skin tone +๐Ÿงš๐Ÿพโ€โ™‚ man fairy: medium-dark skin tone +๐Ÿงš๐Ÿฟโ€โ™‚๏ธ man fairy: dark skin tone +๐Ÿงš๐Ÿฟโ€โ™‚ man fairy: dark skin tone +๐Ÿง› vampire +๐Ÿง›๐Ÿป vampire: light skin tone +๐Ÿง›๐Ÿผ vampire: medium-light skin tone +๐Ÿง›๐Ÿฝ vampire: medium skin tone +๐Ÿง›๐Ÿพ vampire: medium-dark skin tone +๐Ÿง›๐Ÿฟ vampire: dark skin tone +๐Ÿง›โ€โ™€๏ธ woman vampire +๐Ÿง›โ€โ™€ woman vampire +๐Ÿง›๐Ÿปโ€โ™€๏ธ woman vampire: light skin tone +๐Ÿง›๐Ÿปโ€โ™€ woman vampire: light skin tone +๐Ÿง›๐Ÿผโ€โ™€๏ธ woman vampire: medium-light skin tone +๐Ÿง›๐Ÿผโ€โ™€ woman vampire: medium-light skin tone +๐Ÿง›๐Ÿฝโ€โ™€๏ธ woman vampire: medium skin tone +๐Ÿง›๐Ÿฝโ€โ™€ woman vampire: medium skin tone +๐Ÿง›๐Ÿพโ€โ™€๏ธ woman vampire: medium-dark skin tone +๐Ÿง›๐Ÿพโ€โ™€ woman vampire: medium-dark skin tone +๐Ÿง›๐Ÿฟโ€โ™€๏ธ woman vampire: dark skin tone +๐Ÿง›๐Ÿฟโ€โ™€ woman vampire: dark skin tone +๐Ÿง›โ€โ™‚๏ธ man vampire +๐Ÿง›โ€โ™‚ man vampire +๐Ÿง›๐Ÿปโ€โ™‚๏ธ man vampire: light skin tone +๐Ÿง›๐Ÿปโ€โ™‚ man vampire: light skin tone +๐Ÿง›๐Ÿผโ€โ™‚๏ธ man vampire: medium-light skin tone +๐Ÿง›๐Ÿผโ€โ™‚ man vampire: medium-light skin tone +๐Ÿง›๐Ÿฝโ€โ™‚๏ธ man vampire: medium skin tone +๐Ÿง›๐Ÿฝโ€โ™‚ man vampire: medium skin tone +๐Ÿง›๐Ÿพโ€โ™‚๏ธ man vampire: medium-dark skin tone +๐Ÿง›๐Ÿพโ€โ™‚ man vampire: medium-dark skin tone +๐Ÿง›๐Ÿฟโ€โ™‚๏ธ man vampire: dark skin tone +๐Ÿง›๐Ÿฟโ€โ™‚ man vampire: dark skin tone +๐Ÿงœ merperson +๐Ÿงœ๐Ÿป merperson: light skin tone +๐Ÿงœ๐Ÿผ merperson: medium-light skin tone +๐Ÿงœ๐Ÿฝ merperson: medium skin tone +๐Ÿงœ๐Ÿพ merperson: medium-dark skin tone +๐Ÿงœ๐Ÿฟ merperson: dark skin tone +๐Ÿงœโ€โ™€๏ธ mermaid +๐Ÿงœโ€โ™€ mermaid +๐Ÿงœ๐Ÿปโ€โ™€๏ธ mermaid: light skin tone +๐Ÿงœ๐Ÿปโ€โ™€ mermaid: light skin tone +๐Ÿงœ๐Ÿผโ€โ™€๏ธ mermaid: medium-light skin tone +๐Ÿงœ๐Ÿผโ€โ™€ mermaid: medium-light skin tone +๐Ÿงœ๐Ÿฝโ€โ™€๏ธ mermaid: medium skin tone +๐Ÿงœ๐Ÿฝโ€โ™€ mermaid: medium skin tone +๐Ÿงœ๐Ÿพโ€โ™€๏ธ mermaid: medium-dark skin tone +๐Ÿงœ๐Ÿพโ€โ™€ mermaid: medium-dark skin tone +๐Ÿงœ๐Ÿฟโ€โ™€๏ธ mermaid: dark skin tone +๐Ÿงœ๐Ÿฟโ€โ™€ mermaid: dark skin tone +๐Ÿงœโ€โ™‚๏ธ merman +๐Ÿงœโ€โ™‚ merman +๐Ÿงœ๐Ÿปโ€โ™‚๏ธ merman: light skin tone +๐Ÿงœ๐Ÿปโ€โ™‚ merman: light skin tone +๐Ÿงœ๐Ÿผโ€โ™‚๏ธ merman: medium-light skin tone +๐Ÿงœ๐Ÿผโ€โ™‚ merman: medium-light skin tone +๐Ÿงœ๐Ÿฝโ€โ™‚๏ธ merman: medium skin tone +๐Ÿงœ๐Ÿฝโ€โ™‚ merman: medium skin tone +๐Ÿงœ๐Ÿพโ€โ™‚๏ธ merman: medium-dark skin tone +๐Ÿงœ๐Ÿพโ€โ™‚ merman: medium-dark skin tone +๐Ÿงœ๐Ÿฟโ€โ™‚๏ธ merman: dark skin tone +๐Ÿงœ๐Ÿฟโ€โ™‚ merman: dark skin tone +๐Ÿง elf +๐Ÿง๐Ÿป elf: light skin tone +๐Ÿง๐Ÿผ elf: medium-light skin tone +๐Ÿง๐Ÿฝ elf: medium skin tone +๐Ÿง๐Ÿพ elf: medium-dark skin tone +๐Ÿง๐Ÿฟ elf: dark skin tone +๐Ÿงโ€โ™€๏ธ woman elf +๐Ÿงโ€โ™€ woman elf +๐Ÿง๐Ÿปโ€โ™€๏ธ woman elf: light skin tone +๐Ÿง๐Ÿปโ€โ™€ woman elf: light skin tone +๐Ÿง๐Ÿผโ€โ™€๏ธ woman elf: medium-light skin tone +๐Ÿง๐Ÿผโ€โ™€ woman elf: medium-light skin tone +๐Ÿง๐Ÿฝโ€โ™€๏ธ woman elf: medium skin tone +๐Ÿง๐Ÿฝโ€โ™€ woman elf: medium skin tone +๐Ÿง๐Ÿพโ€โ™€๏ธ woman elf: medium-dark skin tone +๐Ÿง๐Ÿพโ€โ™€ woman elf: medium-dark skin tone +๐Ÿง๐Ÿฟโ€โ™€๏ธ woman elf: dark skin tone +๐Ÿง๐Ÿฟโ€โ™€ woman elf: dark skin tone +๐Ÿงโ€โ™‚๏ธ man elf +๐Ÿงโ€โ™‚ man elf +๐Ÿง๐Ÿปโ€โ™‚๏ธ man elf: light skin tone +๐Ÿง๐Ÿปโ€โ™‚ man elf: light skin tone +๐Ÿง๐Ÿผโ€โ™‚๏ธ man elf: medium-light skin tone +๐Ÿง๐Ÿผโ€โ™‚ man elf: medium-light skin tone +๐Ÿง๐Ÿฝโ€โ™‚๏ธ man elf: medium skin tone +๐Ÿง๐Ÿฝโ€โ™‚ man elf: medium skin tone +๐Ÿง๐Ÿพโ€โ™‚๏ธ man elf: medium-dark skin tone +๐Ÿง๐Ÿพโ€โ™‚ man elf: medium-dark skin tone +๐Ÿง๐Ÿฟโ€โ™‚๏ธ man elf: dark skin tone +๐Ÿง๐Ÿฟโ€โ™‚ man elf: dark skin tone +๐Ÿงž genie +๐Ÿงžโ€โ™€๏ธ woman genie +๐Ÿงžโ€โ™€ woman genie +๐Ÿงžโ€โ™‚๏ธ man genie +๐Ÿงžโ€โ™‚ man genie +๐ŸงŸ zombie +๐ŸงŸโ€โ™€๏ธ woman zombie +๐ŸงŸโ€โ™€ woman zombie +๐ŸงŸโ€โ™‚๏ธ man zombie +๐ŸงŸโ€โ™‚ man zombie +๐Ÿ™ person frowning +๐Ÿ™๐Ÿป person frowning: light skin tone +๐Ÿ™๐Ÿผ person frowning: medium-light skin tone +๐Ÿ™๐Ÿฝ person frowning: medium skin tone +๐Ÿ™๐Ÿพ person frowning: medium-dark skin tone +๐Ÿ™๐Ÿฟ person frowning: dark skin tone +๐Ÿ™โ€โ™‚๏ธ man frowning +๐Ÿ™โ€โ™‚ man frowning +๐Ÿ™๐Ÿปโ€โ™‚๏ธ man frowning: light skin tone +๐Ÿ™๐Ÿปโ€โ™‚ man frowning: light skin tone +๐Ÿ™๐Ÿผโ€โ™‚๏ธ man frowning: medium-light skin tone +๐Ÿ™๐Ÿผโ€โ™‚ man frowning: medium-light skin tone +๐Ÿ™๐Ÿฝโ€โ™‚๏ธ man frowning: medium skin tone +๐Ÿ™๐Ÿฝโ€โ™‚ man frowning: medium skin tone +๐Ÿ™๐Ÿพโ€โ™‚๏ธ man frowning: medium-dark skin tone +๐Ÿ™๐Ÿพโ€โ™‚ man frowning: medium-dark skin tone +๐Ÿ™๐Ÿฟโ€โ™‚๏ธ man frowning: dark skin tone +๐Ÿ™๐Ÿฟโ€โ™‚ man frowning: dark skin tone +๐Ÿ™โ€โ™€๏ธ woman frowning +๐Ÿ™โ€โ™€ woman frowning +๐Ÿ™๐Ÿปโ€โ™€๏ธ woman frowning: light skin tone +๐Ÿ™๐Ÿปโ€โ™€ woman frowning: light skin tone +๐Ÿ™๐Ÿผโ€โ™€๏ธ woman frowning: medium-light skin tone +๐Ÿ™๐Ÿผโ€โ™€ woman frowning: medium-light skin tone +๐Ÿ™๐Ÿฝโ€โ™€๏ธ woman frowning: medium skin tone +๐Ÿ™๐Ÿฝโ€โ™€ woman frowning: medium skin tone +๐Ÿ™๐Ÿพโ€โ™€๏ธ woman frowning: medium-dark skin tone +๐Ÿ™๐Ÿพโ€โ™€ woman frowning: medium-dark skin tone +๐Ÿ™๐Ÿฟโ€โ™€๏ธ woman frowning: dark skin tone +๐Ÿ™๐Ÿฟโ€โ™€ woman frowning: dark skin tone +๐Ÿ™Ž person pouting +๐Ÿ™Ž๐Ÿป person pouting: light skin tone +๐Ÿ™Ž๐Ÿผ person pouting: medium-light skin tone +๐Ÿ™Ž๐Ÿฝ person pouting: medium skin tone +๐Ÿ™Ž๐Ÿพ person pouting: medium-dark skin tone +๐Ÿ™Ž๐Ÿฟ person pouting: dark skin tone +๐Ÿ™Žโ€โ™‚๏ธ man pouting +๐Ÿ™Žโ€โ™‚ man pouting +๐Ÿ™Ž๐Ÿปโ€โ™‚๏ธ man pouting: light skin tone +๐Ÿ™Ž๐Ÿปโ€โ™‚ man pouting: light skin tone +๐Ÿ™Ž๐Ÿผโ€โ™‚๏ธ man pouting: medium-light skin tone +๐Ÿ™Ž๐Ÿผโ€โ™‚ man pouting: medium-light skin tone +๐Ÿ™Ž๐Ÿฝโ€โ™‚๏ธ man pouting: medium skin tone +๐Ÿ™Ž๐Ÿฝโ€โ™‚ man pouting: medium skin tone +๐Ÿ™Ž๐Ÿพโ€โ™‚๏ธ man pouting: medium-dark skin tone +๐Ÿ™Ž๐Ÿพโ€โ™‚ man pouting: medium-dark skin tone +๐Ÿ™Ž๐Ÿฟโ€โ™‚๏ธ man pouting: dark skin tone +๐Ÿ™Ž๐Ÿฟโ€โ™‚ man pouting: dark skin tone +๐Ÿ™Žโ€โ™€๏ธ woman pouting +๐Ÿ™Žโ€โ™€ woman pouting +๐Ÿ™Ž๐Ÿปโ€โ™€๏ธ woman pouting: light skin tone +๐Ÿ™Ž๐Ÿปโ€โ™€ woman pouting: light skin tone +๐Ÿ™Ž๐Ÿผโ€โ™€๏ธ woman pouting: medium-light skin tone +๐Ÿ™Ž๐Ÿผโ€โ™€ woman pouting: medium-light skin tone +๐Ÿ™Ž๐Ÿฝโ€โ™€๏ธ woman pouting: medium skin tone +๐Ÿ™Ž๐Ÿฝโ€โ™€ woman pouting: medium skin tone +๐Ÿ™Ž๐Ÿพโ€โ™€๏ธ woman pouting: medium-dark skin tone +๐Ÿ™Ž๐Ÿพโ€โ™€ woman pouting: medium-dark skin tone +๐Ÿ™Ž๐Ÿฟโ€โ™€๏ธ woman pouting: dark skin tone +๐Ÿ™Ž๐Ÿฟโ€โ™€ woman pouting: dark skin tone +๐Ÿ™… person gesturing NO +๐Ÿ™…๐Ÿป person gesturing NO: light skin tone +๐Ÿ™…๐Ÿผ person gesturing NO: medium-light skin tone +๐Ÿ™…๐Ÿฝ person gesturing NO: medium skin tone +๐Ÿ™…๐Ÿพ person gesturing NO: medium-dark skin tone +๐Ÿ™…๐Ÿฟ person gesturing NO: dark skin tone +๐Ÿ™…โ€โ™‚๏ธ man gesturing NO +๐Ÿ™…โ€โ™‚ man gesturing NO +๐Ÿ™…๐Ÿปโ€โ™‚๏ธ man gesturing NO: light skin tone +๐Ÿ™…๐Ÿปโ€โ™‚ man gesturing NO: light skin tone +๐Ÿ™…๐Ÿผโ€โ™‚๏ธ man gesturing NO: medium-light skin tone +๐Ÿ™…๐Ÿผโ€โ™‚ man gesturing NO: medium-light skin tone +๐Ÿ™…๐Ÿฝโ€โ™‚๏ธ man gesturing NO: medium skin tone +๐Ÿ™…๐Ÿฝโ€โ™‚ man gesturing NO: medium skin tone +๐Ÿ™…๐Ÿพโ€โ™‚๏ธ man gesturing NO: medium-dark skin tone +๐Ÿ™…๐Ÿพโ€โ™‚ man gesturing NO: medium-dark skin tone +๐Ÿ™…๐Ÿฟโ€โ™‚๏ธ man gesturing NO: dark skin tone +๐Ÿ™…๐Ÿฟโ€โ™‚ man gesturing NO: dark skin tone +๐Ÿ™…โ€โ™€๏ธ woman gesturing NO +๐Ÿ™…โ€โ™€ woman gesturing NO +๐Ÿ™…๐Ÿปโ€โ™€๏ธ woman gesturing NO: light skin tone +๐Ÿ™…๐Ÿปโ€โ™€ woman gesturing NO: light skin tone +๐Ÿ™…๐Ÿผโ€โ™€๏ธ woman gesturing NO: medium-light skin tone +๐Ÿ™…๐Ÿผโ€โ™€ woman gesturing NO: medium-light skin tone +๐Ÿ™…๐Ÿฝโ€โ™€๏ธ woman gesturing NO: medium skin tone +๐Ÿ™…๐Ÿฝโ€โ™€ woman gesturing NO: medium skin tone +๐Ÿ™…๐Ÿพโ€โ™€๏ธ woman gesturing NO: medium-dark skin tone +๐Ÿ™…๐Ÿพโ€โ™€ woman gesturing NO: medium-dark skin tone +๐Ÿ™…๐Ÿฟโ€โ™€๏ธ woman gesturing NO: dark skin tone +๐Ÿ™…๐Ÿฟโ€โ™€ woman gesturing NO: dark skin tone +๐Ÿ™† person gesturing OK +๐Ÿ™†๐Ÿป person gesturing OK: light skin tone +๐Ÿ™†๐Ÿผ person gesturing OK: medium-light skin tone +๐Ÿ™†๐Ÿฝ person gesturing OK: medium skin tone +๐Ÿ™†๐Ÿพ person gesturing OK: medium-dark skin tone +๐Ÿ™†๐Ÿฟ person gesturing OK: dark skin tone +๐Ÿ™†โ€โ™‚๏ธ man gesturing OK +๐Ÿ™†โ€โ™‚ man gesturing OK +๐Ÿ™†๐Ÿปโ€โ™‚๏ธ man gesturing OK: light skin tone +๐Ÿ™†๐Ÿปโ€โ™‚ man gesturing OK: light skin tone +๐Ÿ™†๐Ÿผโ€โ™‚๏ธ man gesturing OK: medium-light skin tone +๐Ÿ™†๐Ÿผโ€โ™‚ man gesturing OK: medium-light skin tone +๐Ÿ™†๐Ÿฝโ€โ™‚๏ธ man gesturing OK: medium skin tone +๐Ÿ™†๐Ÿฝโ€โ™‚ man gesturing OK: medium skin tone +๐Ÿ™†๐Ÿพโ€โ™‚๏ธ man gesturing OK: medium-dark skin tone +๐Ÿ™†๐Ÿพโ€โ™‚ man gesturing OK: medium-dark skin tone +๐Ÿ™†๐Ÿฟโ€โ™‚๏ธ man gesturing OK: dark skin tone +๐Ÿ™†๐Ÿฟโ€โ™‚ man gesturing OK: dark skin tone +๐Ÿ™†โ€โ™€๏ธ woman gesturing OK +๐Ÿ™†โ€โ™€ woman gesturing OK +๐Ÿ™†๐Ÿปโ€โ™€๏ธ woman gesturing OK: light skin tone +๐Ÿ™†๐Ÿปโ€โ™€ woman gesturing OK: light skin tone +๐Ÿ™†๐Ÿผโ€โ™€๏ธ woman gesturing OK: medium-light skin tone +๐Ÿ™†๐Ÿผโ€โ™€ woman gesturing OK: medium-light skin tone +๐Ÿ™†๐Ÿฝโ€โ™€๏ธ woman gesturing OK: medium skin tone +๐Ÿ™†๐Ÿฝโ€โ™€ woman gesturing OK: medium skin tone +๐Ÿ™†๐Ÿพโ€โ™€๏ธ woman gesturing OK: medium-dark skin tone +๐Ÿ™†๐Ÿพโ€โ™€ woman gesturing OK: medium-dark skin tone +๐Ÿ™†๐Ÿฟโ€โ™€๏ธ woman gesturing OK: dark skin tone +๐Ÿ™†๐Ÿฟโ€โ™€ woman gesturing OK: dark skin tone +๐Ÿ’ person tipping hand +๐Ÿ’๐Ÿป person tipping hand: light skin tone +๐Ÿ’๐Ÿผ person tipping hand: medium-light skin tone +๐Ÿ’๐Ÿฝ person tipping hand: medium skin tone +๐Ÿ’๐Ÿพ person tipping hand: medium-dark skin tone +๐Ÿ’๐Ÿฟ person tipping hand: dark skin tone +๐Ÿ’โ€โ™‚๏ธ man tipping hand +๐Ÿ’โ€โ™‚ man tipping hand +๐Ÿ’๐Ÿปโ€โ™‚๏ธ man tipping hand: light skin tone +๐Ÿ’๐Ÿปโ€โ™‚ man tipping hand: light skin tone +๐Ÿ’๐Ÿผโ€โ™‚๏ธ man tipping hand: medium-light skin tone +๐Ÿ’๐Ÿผโ€โ™‚ man tipping hand: medium-light skin tone +๐Ÿ’๐Ÿฝโ€โ™‚๏ธ man tipping hand: medium skin tone +๐Ÿ’๐Ÿฝโ€โ™‚ man tipping hand: medium skin tone +๐Ÿ’๐Ÿพโ€โ™‚๏ธ man tipping hand: medium-dark skin tone +๐Ÿ’๐Ÿพโ€โ™‚ man tipping hand: medium-dark skin tone +๐Ÿ’๐Ÿฟโ€โ™‚๏ธ man tipping hand: dark skin tone +๐Ÿ’๐Ÿฟโ€โ™‚ man tipping hand: dark skin tone +๐Ÿ’โ€โ™€๏ธ woman tipping hand +๐Ÿ’โ€โ™€ woman tipping hand +๐Ÿ’๐Ÿปโ€โ™€๏ธ woman tipping hand: light skin tone +๐Ÿ’๐Ÿปโ€โ™€ woman tipping hand: light skin tone +๐Ÿ’๐Ÿผโ€โ™€๏ธ woman tipping hand: medium-light skin tone +๐Ÿ’๐Ÿผโ€โ™€ woman tipping hand: medium-light skin tone +๐Ÿ’๐Ÿฝโ€โ™€๏ธ woman tipping hand: medium skin tone +๐Ÿ’๐Ÿฝโ€โ™€ woman tipping hand: medium skin tone +๐Ÿ’๐Ÿพโ€โ™€๏ธ woman tipping hand: medium-dark skin tone +๐Ÿ’๐Ÿพโ€โ™€ woman tipping hand: medium-dark skin tone +๐Ÿ’๐Ÿฟโ€โ™€๏ธ woman tipping hand: dark skin tone +๐Ÿ’๐Ÿฟโ€โ™€ woman tipping hand: dark skin tone +๐Ÿ™‹ person raising hand +๐Ÿ™‹๐Ÿป person raising hand: light skin tone +๐Ÿ™‹๐Ÿผ person raising hand: medium-light skin tone +๐Ÿ™‹๐Ÿฝ person raising hand: medium skin tone +๐Ÿ™‹๐Ÿพ person raising hand: medium-dark skin tone +๐Ÿ™‹๐Ÿฟ person raising hand: dark skin tone +๐Ÿ™‹โ€โ™‚๏ธ man raising hand +๐Ÿ™‹โ€โ™‚ man raising hand +๐Ÿ™‹๐Ÿปโ€โ™‚๏ธ man raising hand: light skin tone +๐Ÿ™‹๐Ÿปโ€โ™‚ man raising hand: light skin tone +๐Ÿ™‹๐Ÿผโ€โ™‚๏ธ man raising hand: medium-light skin tone +๐Ÿ™‹๐Ÿผโ€โ™‚ man raising hand: medium-light skin tone +๐Ÿ™‹๐Ÿฝโ€โ™‚๏ธ man raising hand: medium skin tone +๐Ÿ™‹๐Ÿฝโ€โ™‚ man raising hand: medium skin tone +๐Ÿ™‹๐Ÿพโ€โ™‚๏ธ man raising hand: medium-dark skin tone +๐Ÿ™‹๐Ÿพโ€โ™‚ man raising hand: medium-dark skin tone +๐Ÿ™‹๐Ÿฟโ€โ™‚๏ธ man raising hand: dark skin tone +๐Ÿ™‹๐Ÿฟโ€โ™‚ man raising hand: dark skin tone +๐Ÿ™‹โ€โ™€๏ธ woman raising hand +๐Ÿ™‹โ€โ™€ woman raising hand +๐Ÿ™‹๐Ÿปโ€โ™€๏ธ woman raising hand: light skin tone +๐Ÿ™‹๐Ÿปโ€โ™€ woman raising hand: light skin tone +๐Ÿ™‹๐Ÿผโ€โ™€๏ธ woman raising hand: medium-light skin tone +๐Ÿ™‹๐Ÿผโ€โ™€ woman raising hand: medium-light skin tone +๐Ÿ™‹๐Ÿฝโ€โ™€๏ธ woman raising hand: medium skin tone +๐Ÿ™‹๐Ÿฝโ€โ™€ woman raising hand: medium skin tone +๐Ÿ™‹๐Ÿพโ€โ™€๏ธ woman raising hand: medium-dark skin tone +๐Ÿ™‹๐Ÿพโ€โ™€ woman raising hand: medium-dark skin tone +๐Ÿ™‹๐Ÿฟโ€โ™€๏ธ woman raising hand: dark skin tone +๐Ÿ™‹๐Ÿฟโ€โ™€ woman raising hand: dark skin tone +๐Ÿ™‡ person bowing +๐Ÿ™‡๐Ÿป person bowing: light skin tone +๐Ÿ™‡๐Ÿผ person bowing: medium-light skin tone +๐Ÿ™‡๐Ÿฝ person bowing: medium skin tone +๐Ÿ™‡๐Ÿพ person bowing: medium-dark skin tone +๐Ÿ™‡๐Ÿฟ person bowing: dark skin tone +๐Ÿ™‡โ€โ™‚๏ธ man bowing +๐Ÿ™‡โ€โ™‚ man bowing +๐Ÿ™‡๐Ÿปโ€โ™‚๏ธ man bowing: light skin tone +๐Ÿ™‡๐Ÿปโ€โ™‚ man bowing: light skin tone +๐Ÿ™‡๐Ÿผโ€โ™‚๏ธ man bowing: medium-light skin tone +๐Ÿ™‡๐Ÿผโ€โ™‚ man bowing: medium-light skin tone +๐Ÿ™‡๐Ÿฝโ€โ™‚๏ธ man bowing: medium skin tone +๐Ÿ™‡๐Ÿฝโ€โ™‚ man bowing: medium skin tone +๐Ÿ™‡๐Ÿพโ€โ™‚๏ธ man bowing: medium-dark skin tone +๐Ÿ™‡๐Ÿพโ€โ™‚ man bowing: medium-dark skin tone +๐Ÿ™‡๐Ÿฟโ€โ™‚๏ธ man bowing: dark skin tone +๐Ÿ™‡๐Ÿฟโ€โ™‚ man bowing: dark skin tone +๐Ÿ™‡โ€โ™€๏ธ woman bowing +๐Ÿ™‡โ€โ™€ woman bowing +๐Ÿ™‡๐Ÿปโ€โ™€๏ธ woman bowing: light skin tone +๐Ÿ™‡๐Ÿปโ€โ™€ woman bowing: light skin tone +๐Ÿ™‡๐Ÿผโ€โ™€๏ธ woman bowing: medium-light skin tone +๐Ÿ™‡๐Ÿผโ€โ™€ woman bowing: medium-light skin tone +๐Ÿ™‡๐Ÿฝโ€โ™€๏ธ woman bowing: medium skin tone +๐Ÿ™‡๐Ÿฝโ€โ™€ woman bowing: medium skin tone +๐Ÿ™‡๐Ÿพโ€โ™€๏ธ woman bowing: medium-dark skin tone +๐Ÿ™‡๐Ÿพโ€โ™€ woman bowing: medium-dark skin tone +๐Ÿ™‡๐Ÿฟโ€โ™€๏ธ woman bowing: dark skin tone +๐Ÿ™‡๐Ÿฟโ€โ™€ woman bowing: dark skin tone +๐Ÿคฆ person facepalming +๐Ÿคฆ๐Ÿป person facepalming: light skin tone +๐Ÿคฆ๐Ÿผ person facepalming: medium-light skin tone +๐Ÿคฆ๐Ÿฝ person facepalming: medium skin tone +๐Ÿคฆ๐Ÿพ person facepalming: medium-dark skin tone +๐Ÿคฆ๐Ÿฟ person facepalming: dark skin tone +๐Ÿคฆโ€โ™‚๏ธ man facepalming +๐Ÿคฆโ€โ™‚ man facepalming +๐Ÿคฆ๐Ÿปโ€โ™‚๏ธ man facepalming: light skin tone +๐Ÿคฆ๐Ÿปโ€โ™‚ man facepalming: light skin tone +๐Ÿคฆ๐Ÿผโ€โ™‚๏ธ man facepalming: medium-light skin tone +๐Ÿคฆ๐Ÿผโ€โ™‚ man facepalming: medium-light skin tone +๐Ÿคฆ๐Ÿฝโ€โ™‚๏ธ man facepalming: medium skin tone +๐Ÿคฆ๐Ÿฝโ€โ™‚ man facepalming: medium skin tone +๐Ÿคฆ๐Ÿพโ€โ™‚๏ธ man facepalming: medium-dark skin tone +๐Ÿคฆ๐Ÿพโ€โ™‚ man facepalming: medium-dark skin tone +๐Ÿคฆ๐Ÿฟโ€โ™‚๏ธ man facepalming: dark skin tone +๐Ÿคฆ๐Ÿฟโ€โ™‚ man facepalming: dark skin tone +๐Ÿคฆโ€โ™€๏ธ woman facepalming +๐Ÿคฆโ€โ™€ woman facepalming +๐Ÿคฆ๐Ÿปโ€โ™€๏ธ woman facepalming: light skin tone +๐Ÿคฆ๐Ÿปโ€โ™€ woman facepalming: light skin tone +๐Ÿคฆ๐Ÿผโ€โ™€๏ธ woman facepalming: medium-light skin tone +๐Ÿคฆ๐Ÿผโ€โ™€ woman facepalming: medium-light skin tone +๐Ÿคฆ๐Ÿฝโ€โ™€๏ธ woman facepalming: medium skin tone +๐Ÿคฆ๐Ÿฝโ€โ™€ woman facepalming: medium skin tone +๐Ÿคฆ๐Ÿพโ€โ™€๏ธ woman facepalming: medium-dark skin tone +๐Ÿคฆ๐Ÿพโ€โ™€ woman facepalming: medium-dark skin tone +๐Ÿคฆ๐Ÿฟโ€โ™€๏ธ woman facepalming: dark skin tone +๐Ÿคฆ๐Ÿฟโ€โ™€ woman facepalming: dark skin tone +๐Ÿคท person shrugging +๐Ÿคท๐Ÿป person shrugging: light skin tone +๐Ÿคท๐Ÿผ person shrugging: medium-light skin tone +๐Ÿคท๐Ÿฝ person shrugging: medium skin tone +๐Ÿคท๐Ÿพ person shrugging: medium-dark skin tone +๐Ÿคท๐Ÿฟ person shrugging: dark skin tone +๐Ÿคทโ€โ™‚๏ธ man shrugging +๐Ÿคทโ€โ™‚ man shrugging +๐Ÿคท๐Ÿปโ€โ™‚๏ธ man shrugging: light skin tone +๐Ÿคท๐Ÿปโ€โ™‚ man shrugging: light skin tone +๐Ÿคท๐Ÿผโ€โ™‚๏ธ man shrugging: medium-light skin tone +๐Ÿคท๐Ÿผโ€โ™‚ man shrugging: medium-light skin tone +๐Ÿคท๐Ÿฝโ€โ™‚๏ธ man shrugging: medium skin tone +๐Ÿคท๐Ÿฝโ€โ™‚ man shrugging: medium skin tone +๐Ÿคท๐Ÿพโ€โ™‚๏ธ man shrugging: medium-dark skin tone +๐Ÿคท๐Ÿพโ€โ™‚ man shrugging: medium-dark skin tone +๐Ÿคท๐Ÿฟโ€โ™‚๏ธ man shrugging: dark skin tone +๐Ÿคท๐Ÿฟโ€โ™‚ man shrugging: dark skin tone +๐Ÿคทโ€โ™€๏ธ woman shrugging +๐Ÿคทโ€โ™€ woman shrugging +๐Ÿคท๐Ÿปโ€โ™€๏ธ woman shrugging: light skin tone +๐Ÿคท๐Ÿปโ€โ™€ woman shrugging: light skin tone +๐Ÿคท๐Ÿผโ€โ™€๏ธ woman shrugging: medium-light skin tone +๐Ÿคท๐Ÿผโ€โ™€ woman shrugging: medium-light skin tone +๐Ÿคท๐Ÿฝโ€โ™€๏ธ woman shrugging: medium skin tone +๐Ÿคท๐Ÿฝโ€โ™€ woman shrugging: medium skin tone +๐Ÿคท๐Ÿพโ€โ™€๏ธ woman shrugging: medium-dark skin tone +๐Ÿคท๐Ÿพโ€โ™€ woman shrugging: medium-dark skin tone +๐Ÿคท๐Ÿฟโ€โ™€๏ธ woman shrugging: dark skin tone +๐Ÿคท๐Ÿฟโ€โ™€ woman shrugging: dark skin tone +๐Ÿ’† person getting massage +๐Ÿ’†๐Ÿป person getting massage: light skin tone +๐Ÿ’†๐Ÿผ person getting massage: medium-light skin tone +๐Ÿ’†๐Ÿฝ person getting massage: medium skin tone +๐Ÿ’†๐Ÿพ person getting massage: medium-dark skin tone +๐Ÿ’†๐Ÿฟ person getting massage: dark skin tone +๐Ÿ’†โ€โ™‚๏ธ man getting massage +๐Ÿ’†โ€โ™‚ man getting massage +๐Ÿ’†๐Ÿปโ€โ™‚๏ธ man getting massage: light skin tone +๐Ÿ’†๐Ÿปโ€โ™‚ man getting massage: light skin tone +๐Ÿ’†๐Ÿผโ€โ™‚๏ธ man getting massage: medium-light skin tone +๐Ÿ’†๐Ÿผโ€โ™‚ man getting massage: medium-light skin tone +๐Ÿ’†๐Ÿฝโ€โ™‚๏ธ man getting massage: medium skin tone +๐Ÿ’†๐Ÿฝโ€โ™‚ man getting massage: medium skin tone +๐Ÿ’†๐Ÿพโ€โ™‚๏ธ man getting massage: medium-dark skin tone +๐Ÿ’†๐Ÿพโ€โ™‚ man getting massage: medium-dark skin tone +๐Ÿ’†๐Ÿฟโ€โ™‚๏ธ man getting massage: dark skin tone +๐Ÿ’†๐Ÿฟโ€โ™‚ man getting massage: dark skin tone +๐Ÿ’†โ€โ™€๏ธ woman getting massage +๐Ÿ’†โ€โ™€ woman getting massage +๐Ÿ’†๐Ÿปโ€โ™€๏ธ woman getting massage: light skin tone +๐Ÿ’†๐Ÿปโ€โ™€ woman getting massage: light skin tone +๐Ÿ’†๐Ÿผโ€โ™€๏ธ woman getting massage: medium-light skin tone +๐Ÿ’†๐Ÿผโ€โ™€ woman getting massage: medium-light skin tone +๐Ÿ’†๐Ÿฝโ€โ™€๏ธ woman getting massage: medium skin tone +๐Ÿ’†๐Ÿฝโ€โ™€ woman getting massage: medium skin tone +๐Ÿ’†๐Ÿพโ€โ™€๏ธ woman getting massage: medium-dark skin tone +๐Ÿ’†๐Ÿพโ€โ™€ woman getting massage: medium-dark skin tone +๐Ÿ’†๐Ÿฟโ€โ™€๏ธ woman getting massage: dark skin tone +๐Ÿ’†๐Ÿฟโ€โ™€ woman getting massage: dark skin tone +๐Ÿ’‡ person getting haircut +๐Ÿ’‡๐Ÿป person getting haircut: light skin tone +๐Ÿ’‡๐Ÿผ person getting haircut: medium-light skin tone +๐Ÿ’‡๐Ÿฝ person getting haircut: medium skin tone +๐Ÿ’‡๐Ÿพ person getting haircut: medium-dark skin tone +๐Ÿ’‡๐Ÿฟ person getting haircut: dark skin tone +๐Ÿ’‡โ€โ™‚๏ธ man getting haircut +๐Ÿ’‡โ€โ™‚ man getting haircut +๐Ÿ’‡๐Ÿปโ€โ™‚๏ธ man getting haircut: light skin tone +๐Ÿ’‡๐Ÿปโ€โ™‚ man getting haircut: light skin tone +๐Ÿ’‡๐Ÿผโ€โ™‚๏ธ man getting haircut: medium-light skin tone +๐Ÿ’‡๐Ÿผโ€โ™‚ man getting haircut: medium-light skin tone +๐Ÿ’‡๐Ÿฝโ€โ™‚๏ธ man getting haircut: medium skin tone +๐Ÿ’‡๐Ÿฝโ€โ™‚ man getting haircut: medium skin tone +๐Ÿ’‡๐Ÿพโ€โ™‚๏ธ man getting haircut: medium-dark skin tone +๐Ÿ’‡๐Ÿพโ€โ™‚ man getting haircut: medium-dark skin tone +๐Ÿ’‡๐Ÿฟโ€โ™‚๏ธ man getting haircut: dark skin tone +๐Ÿ’‡๐Ÿฟโ€โ™‚ man getting haircut: dark skin tone +๐Ÿ’‡โ€โ™€๏ธ woman getting haircut +๐Ÿ’‡โ€โ™€ woman getting haircut +๐Ÿ’‡๐Ÿปโ€โ™€๏ธ woman getting haircut: light skin tone +๐Ÿ’‡๐Ÿปโ€โ™€ woman getting haircut: light skin tone +๐Ÿ’‡๐Ÿผโ€โ™€๏ธ woman getting haircut: medium-light skin tone +๐Ÿ’‡๐Ÿผโ€โ™€ woman getting haircut: medium-light skin tone +๐Ÿ’‡๐Ÿฝโ€โ™€๏ธ woman getting haircut: medium skin tone +๐Ÿ’‡๐Ÿฝโ€โ™€ woman getting haircut: medium skin tone +๐Ÿ’‡๐Ÿพโ€โ™€๏ธ woman getting haircut: medium-dark skin tone +๐Ÿ’‡๐Ÿพโ€โ™€ woman getting haircut: medium-dark skin tone +๐Ÿ’‡๐Ÿฟโ€โ™€๏ธ woman getting haircut: dark skin tone +๐Ÿ’‡๐Ÿฟโ€โ™€ woman getting haircut: dark skin tone +๐Ÿšถ person walking +๐Ÿšถ๐Ÿป person walking: light skin tone +๐Ÿšถ๐Ÿผ person walking: medium-light skin tone +๐Ÿšถ๐Ÿฝ person walking: medium skin tone +๐Ÿšถ๐Ÿพ person walking: medium-dark skin tone +๐Ÿšถ๐Ÿฟ person walking: dark skin tone +๐Ÿšถโ€โ™‚๏ธ man walking +๐Ÿšถโ€โ™‚ man walking +๐Ÿšถ๐Ÿปโ€โ™‚๏ธ man walking: light skin tone +๐Ÿšถ๐Ÿปโ€โ™‚ man walking: light skin tone +๐Ÿšถ๐Ÿผโ€โ™‚๏ธ man walking: medium-light skin tone +๐Ÿšถ๐Ÿผโ€โ™‚ man walking: medium-light skin tone +๐Ÿšถ๐Ÿฝโ€โ™‚๏ธ man walking: medium skin tone +๐Ÿšถ๐Ÿฝโ€โ™‚ man walking: medium skin tone +๐Ÿšถ๐Ÿพโ€โ™‚๏ธ man walking: medium-dark skin tone +๐Ÿšถ๐Ÿพโ€โ™‚ man walking: medium-dark skin tone +๐Ÿšถ๐Ÿฟโ€โ™‚๏ธ man walking: dark skin tone +๐Ÿšถ๐Ÿฟโ€โ™‚ man walking: dark skin tone +๐Ÿšถโ€โ™€๏ธ woman walking +๐Ÿšถโ€โ™€ woman walking +๐Ÿšถ๐Ÿปโ€โ™€๏ธ woman walking: light skin tone +๐Ÿšถ๐Ÿปโ€โ™€ woman walking: light skin tone +๐Ÿšถ๐Ÿผโ€โ™€๏ธ woman walking: medium-light skin tone +๐Ÿšถ๐Ÿผโ€โ™€ woman walking: medium-light skin tone +๐Ÿšถ๐Ÿฝโ€โ™€๏ธ woman walking: medium skin tone +๐Ÿšถ๐Ÿฝโ€โ™€ woman walking: medium skin tone +๐Ÿšถ๐Ÿพโ€โ™€๏ธ woman walking: medium-dark skin tone +๐Ÿšถ๐Ÿพโ€โ™€ woman walking: medium-dark skin tone +๐Ÿšถ๐Ÿฟโ€โ™€๏ธ woman walking: dark skin tone +๐Ÿšถ๐Ÿฟโ€โ™€ woman walking: dark skin tone +๐Ÿƒ person running +๐Ÿƒ๐Ÿป person running: light skin tone +๐Ÿƒ๐Ÿผ person running: medium-light skin tone +๐Ÿƒ๐Ÿฝ person running: medium skin tone +๐Ÿƒ๐Ÿพ person running: medium-dark skin tone +๐Ÿƒ๐Ÿฟ person running: dark skin tone +๐Ÿƒโ€โ™‚๏ธ man running +๐Ÿƒโ€โ™‚ man running +๐Ÿƒ๐Ÿปโ€โ™‚๏ธ man running: light skin tone +๐Ÿƒ๐Ÿปโ€โ™‚ man running: light skin tone +๐Ÿƒ๐Ÿผโ€โ™‚๏ธ man running: medium-light skin tone +๐Ÿƒ๐Ÿผโ€โ™‚ man running: medium-light skin tone +๐Ÿƒ๐Ÿฝโ€โ™‚๏ธ man running: medium skin tone +๐Ÿƒ๐Ÿฝโ€โ™‚ man running: medium skin tone +๐Ÿƒ๐Ÿพโ€โ™‚๏ธ man running: medium-dark skin tone +๐Ÿƒ๐Ÿพโ€โ™‚ man running: medium-dark skin tone +๐Ÿƒ๐Ÿฟโ€โ™‚๏ธ man running: dark skin tone +๐Ÿƒ๐Ÿฟโ€โ™‚ man running: dark skin tone +๐Ÿƒโ€โ™€๏ธ woman running +๐Ÿƒโ€โ™€ woman running +๐Ÿƒ๐Ÿปโ€โ™€๏ธ woman running: light skin tone +๐Ÿƒ๐Ÿปโ€โ™€ woman running: light skin tone +๐Ÿƒ๐Ÿผโ€โ™€๏ธ woman running: medium-light skin tone +๐Ÿƒ๐Ÿผโ€โ™€ woman running: medium-light skin tone +๐Ÿƒ๐Ÿฝโ€โ™€๏ธ woman running: medium skin tone +๐Ÿƒ๐Ÿฝโ€โ™€ woman running: medium skin tone +๐Ÿƒ๐Ÿพโ€โ™€๏ธ woman running: medium-dark skin tone +๐Ÿƒ๐Ÿพโ€โ™€ woman running: medium-dark skin tone +๐Ÿƒ๐Ÿฟโ€โ™€๏ธ woman running: dark skin tone +๐Ÿƒ๐Ÿฟโ€โ™€ woman running: dark skin tone +๐Ÿ’ƒ woman dancing +๐Ÿ’ƒ๐Ÿป woman dancing: light skin tone +๐Ÿ’ƒ๐Ÿผ woman dancing: medium-light skin tone +๐Ÿ’ƒ๐Ÿฝ woman dancing: medium skin tone +๐Ÿ’ƒ๐Ÿพ woman dancing: medium-dark skin tone +๐Ÿ’ƒ๐Ÿฟ woman dancing: dark skin tone +๐Ÿ•บ man dancing +๐Ÿ•บ๐Ÿป man dancing: light skin tone +๐Ÿ•บ๐Ÿผ man dancing: medium-light skin tone +๐Ÿ•บ๐Ÿฝ man dancing: medium skin tone +๐Ÿ•บ๐Ÿพ man dancing: medium-dark skin tone +๐Ÿ•บ๐Ÿฟ man dancing: dark skin tone +๐Ÿ‘ฏ people with bunny ears +๐Ÿ‘ฏโ€โ™‚๏ธ men with bunny ears +๐Ÿ‘ฏโ€โ™‚ men with bunny ears +๐Ÿ‘ฏโ€โ™€๏ธ women with bunny ears +๐Ÿ‘ฏโ€โ™€ women with bunny ears +๐Ÿง– person in steamy room +๐Ÿง–๐Ÿป person in steamy room: light skin tone +๐Ÿง–๐Ÿผ person in steamy room: medium-light skin tone +๐Ÿง–๐Ÿฝ person in steamy room: medium skin tone +๐Ÿง–๐Ÿพ person in steamy room: medium-dark skin tone +๐Ÿง–๐Ÿฟ person in steamy room: dark skin tone +๐Ÿง–โ€โ™€๏ธ woman in steamy room +๐Ÿง–โ€โ™€ woman in steamy room +๐Ÿง–๐Ÿปโ€โ™€๏ธ woman in steamy room: light skin tone +๐Ÿง–๐Ÿปโ€โ™€ woman in steamy room: light skin tone +๐Ÿง–๐Ÿผโ€โ™€๏ธ woman in steamy room: medium-light skin tone +๐Ÿง–๐Ÿผโ€โ™€ woman in steamy room: medium-light skin tone +๐Ÿง–๐Ÿฝโ€โ™€๏ธ woman in steamy room: medium skin tone +๐Ÿง–๐Ÿฝโ€โ™€ woman in steamy room: medium skin tone +๐Ÿง–๐Ÿพโ€โ™€๏ธ woman in steamy room: medium-dark skin tone +๐Ÿง–๐Ÿพโ€โ™€ woman in steamy room: medium-dark skin tone +๐Ÿง–๐Ÿฟโ€โ™€๏ธ woman in steamy room: dark skin tone +๐Ÿง–๐Ÿฟโ€โ™€ woman in steamy room: dark skin tone +๐Ÿง–โ€โ™‚๏ธ man in steamy room +๐Ÿง–โ€โ™‚ man in steamy room +๐Ÿง–๐Ÿปโ€โ™‚๏ธ man in steamy room: light skin tone +๐Ÿง–๐Ÿปโ€โ™‚ man in steamy room: light skin tone +๐Ÿง–๐Ÿผโ€โ™‚๏ธ man in steamy room: medium-light skin tone +๐Ÿง–๐Ÿผโ€โ™‚ man in steamy room: medium-light skin tone +๐Ÿง–๐Ÿฝโ€โ™‚๏ธ man in steamy room: medium skin tone +๐Ÿง–๐Ÿฝโ€โ™‚ man in steamy room: medium skin tone +๐Ÿง–๐Ÿพโ€โ™‚๏ธ man in steamy room: medium-dark skin tone +๐Ÿง–๐Ÿพโ€โ™‚ man in steamy room: medium-dark skin tone +๐Ÿง–๐Ÿฟโ€โ™‚๏ธ man in steamy room: dark skin tone +๐Ÿง–๐Ÿฟโ€โ™‚ man in steamy room: dark skin tone +๐Ÿง— person climbing +๐Ÿง—๐Ÿป person climbing: light skin tone +๐Ÿง—๐Ÿผ person climbing: medium-light skin tone +๐Ÿง—๐Ÿฝ person climbing: medium skin tone +๐Ÿง—๐Ÿพ person climbing: medium-dark skin tone +๐Ÿง—๐Ÿฟ person climbing: dark skin tone +๐Ÿง—โ€โ™€๏ธ woman climbing +๐Ÿง—โ€โ™€ woman climbing +๐Ÿง—๐Ÿปโ€โ™€๏ธ woman climbing: light skin tone +๐Ÿง—๐Ÿปโ€โ™€ woman climbing: light skin tone +๐Ÿง—๐Ÿผโ€โ™€๏ธ woman climbing: medium-light skin tone +๐Ÿง—๐Ÿผโ€โ™€ woman climbing: medium-light skin tone +๐Ÿง—๐Ÿฝโ€โ™€๏ธ woman climbing: medium skin tone +๐Ÿง—๐Ÿฝโ€โ™€ woman climbing: medium skin tone +๐Ÿง—๐Ÿพโ€โ™€๏ธ woman climbing: medium-dark skin tone +๐Ÿง—๐Ÿพโ€โ™€ woman climbing: medium-dark skin tone +๐Ÿง—๐Ÿฟโ€โ™€๏ธ woman climbing: dark skin tone +๐Ÿง—๐Ÿฟโ€โ™€ woman climbing: dark skin tone +๐Ÿง—โ€โ™‚๏ธ man climbing +๐Ÿง—โ€โ™‚ man climbing +๐Ÿง—๐Ÿปโ€โ™‚๏ธ man climbing: light skin tone +๐Ÿง—๐Ÿปโ€โ™‚ man climbing: light skin tone +๐Ÿง—๐Ÿผโ€โ™‚๏ธ man climbing: medium-light skin tone +๐Ÿง—๐Ÿผโ€โ™‚ man climbing: medium-light skin tone +๐Ÿง—๐Ÿฝโ€โ™‚๏ธ man climbing: medium skin tone +๐Ÿง—๐Ÿฝโ€โ™‚ man climbing: medium skin tone +๐Ÿง—๐Ÿพโ€โ™‚๏ธ man climbing: medium-dark skin tone +๐Ÿง—๐Ÿพโ€โ™‚ man climbing: medium-dark skin tone +๐Ÿง—๐Ÿฟโ€โ™‚๏ธ man climbing: dark skin tone +๐Ÿง—๐Ÿฟโ€โ™‚ man climbing: dark skin tone +๐Ÿง˜ person in lotus position +๐Ÿง˜๐Ÿป person in lotus position: light skin tone +๐Ÿง˜๐Ÿผ person in lotus position: medium-light skin tone +๐Ÿง˜๐Ÿฝ person in lotus position: medium skin tone +๐Ÿง˜๐Ÿพ person in lotus position: medium-dark skin tone +๐Ÿง˜๐Ÿฟ person in lotus position: dark skin tone +๐Ÿง˜โ€โ™€๏ธ woman in lotus position +๐Ÿง˜โ€โ™€ woman in lotus position +๐Ÿง˜๐Ÿปโ€โ™€๏ธ woman in lotus position: light skin tone +๐Ÿง˜๐Ÿปโ€โ™€ woman in lotus position: light skin tone +๐Ÿง˜๐Ÿผโ€โ™€๏ธ woman in lotus position: medium-light skin tone +๐Ÿง˜๐Ÿผโ€โ™€ woman in lotus position: medium-light skin tone +๐Ÿง˜๐Ÿฝโ€โ™€๏ธ woman in lotus position: medium skin tone +๐Ÿง˜๐Ÿฝโ€โ™€ woman in lotus position: medium skin tone +๐Ÿง˜๐Ÿพโ€โ™€๏ธ woman in lotus position: medium-dark skin tone +๐Ÿง˜๐Ÿพโ€โ™€ woman in lotus position: medium-dark skin tone +๐Ÿง˜๐Ÿฟโ€โ™€๏ธ woman in lotus position: dark skin tone +๐Ÿง˜๐Ÿฟโ€โ™€ woman in lotus position: dark skin tone +๐Ÿง˜โ€โ™‚๏ธ man in lotus position +๐Ÿง˜โ€โ™‚ man in lotus position +๐Ÿง˜๐Ÿปโ€โ™‚๏ธ man in lotus position: light skin tone +๐Ÿง˜๐Ÿปโ€โ™‚ man in lotus position: light skin tone +๐Ÿง˜๐Ÿผโ€โ™‚๏ธ man in lotus position: medium-light skin tone +๐Ÿง˜๐Ÿผโ€โ™‚ man in lotus position: medium-light skin tone +๐Ÿง˜๐Ÿฝโ€โ™‚๏ธ man in lotus position: medium skin tone +๐Ÿง˜๐Ÿฝโ€โ™‚ man in lotus position: medium skin tone +๐Ÿง˜๐Ÿพโ€โ™‚๏ธ man in lotus position: medium-dark skin tone +๐Ÿง˜๐Ÿพโ€โ™‚ man in lotus position: medium-dark skin tone +๐Ÿง˜๐Ÿฟโ€โ™‚๏ธ man in lotus position: dark skin tone +๐Ÿง˜๐Ÿฟโ€โ™‚ man in lotus position: dark skin tone +๐Ÿ›€ person taking bath +๐Ÿ›€๐Ÿป person taking bath: light skin tone +๐Ÿ›€๐Ÿผ person taking bath: medium-light skin tone +๐Ÿ›€๐Ÿฝ person taking bath: medium skin tone +๐Ÿ›€๐Ÿพ person taking bath: medium-dark skin tone +๐Ÿ›€๐Ÿฟ person taking bath: dark skin tone +๐Ÿ›Œ person in bed +๐Ÿ›Œ๐Ÿป person in bed: light skin tone +๐Ÿ›Œ๐Ÿผ person in bed: medium-light skin tone +๐Ÿ›Œ๐Ÿฝ person in bed: medium skin tone +๐Ÿ›Œ๐Ÿพ person in bed: medium-dark skin tone +๐Ÿ›Œ๐Ÿฟ person in bed: dark skin tone +๐Ÿ•ด๏ธ man in suit levitating +๐Ÿ•ด man in suit levitating +๐Ÿ•ด๐Ÿป man in suit levitating: light skin tone +๐Ÿ•ด๐Ÿผ man in suit levitating: medium-light skin tone +๐Ÿ•ด๐Ÿฝ man in suit levitating: medium skin tone +๐Ÿ•ด๐Ÿพ man in suit levitating: medium-dark skin tone +๐Ÿ•ด๐Ÿฟ man in suit levitating: dark skin tone +๐Ÿ—ฃ๏ธ speaking head +๐Ÿ—ฃ speaking head +๐Ÿ‘ค bust in silhouette +๐Ÿ‘ฅ busts in silhouette +๐Ÿคบ person fencing +๐Ÿ‡ horse racing +๐Ÿ‡๐Ÿป horse racing: light skin tone +๐Ÿ‡๐Ÿผ horse racing: medium-light skin tone +๐Ÿ‡๐Ÿฝ horse racing: medium skin tone +๐Ÿ‡๐Ÿพ horse racing: medium-dark skin tone +๐Ÿ‡๐Ÿฟ horse racing: dark skin tone +โ›ท๏ธ skier +โ›ท skier +๐Ÿ‚ snowboarder +๐Ÿ‚๐Ÿป snowboarder: light skin tone +๐Ÿ‚๐Ÿผ snowboarder: medium-light skin tone +๐Ÿ‚๐Ÿฝ snowboarder: medium skin tone +๐Ÿ‚๐Ÿพ snowboarder: medium-dark skin tone +๐Ÿ‚๐Ÿฟ snowboarder: dark skin tone +๐ŸŒ๏ธ person golfing +๐ŸŒ person golfing +๐ŸŒ๐Ÿป person golfing: light skin tone +๐ŸŒ๐Ÿผ person golfing: medium-light skin tone +๐ŸŒ๐Ÿฝ person golfing: medium skin tone +๐ŸŒ๐Ÿพ person golfing: medium-dark skin tone +๐ŸŒ๐Ÿฟ person golfing: dark skin tone +๐ŸŒ๏ธโ€โ™‚๏ธ man golfing +๐ŸŒโ€โ™‚๏ธ man golfing +๐ŸŒ๏ธโ€โ™‚ man golfing +๐ŸŒโ€โ™‚ man golfing +๐ŸŒ๐Ÿปโ€โ™‚๏ธ man golfing: light skin tone +๐ŸŒ๐Ÿปโ€โ™‚ man golfing: light skin tone +๐ŸŒ๐Ÿผโ€โ™‚๏ธ man golfing: medium-light skin tone +๐ŸŒ๐Ÿผโ€โ™‚ man golfing: medium-light skin tone +๐ŸŒ๐Ÿฝโ€โ™‚๏ธ man golfing: medium skin tone +๐ŸŒ๐Ÿฝโ€โ™‚ man golfing: medium skin tone +๐ŸŒ๐Ÿพโ€โ™‚๏ธ man golfing: medium-dark skin tone +๐ŸŒ๐Ÿพโ€โ™‚ man golfing: medium-dark skin tone +๐ŸŒ๐Ÿฟโ€โ™‚๏ธ man golfing: dark skin tone +๐ŸŒ๐Ÿฟโ€โ™‚ man golfing: dark skin tone +๐ŸŒ๏ธโ€โ™€๏ธ woman golfing +๐ŸŒโ€โ™€๏ธ woman golfing +๐ŸŒ๏ธโ€โ™€ woman golfing +๐ŸŒโ€โ™€ woman golfing +๐ŸŒ๐Ÿปโ€โ™€๏ธ woman golfing: light skin tone +๐ŸŒ๐Ÿปโ€โ™€ woman golfing: light skin tone +๐ŸŒ๐Ÿผโ€โ™€๏ธ woman golfing: medium-light skin tone +๐ŸŒ๐Ÿผโ€โ™€ woman golfing: medium-light skin tone +๐ŸŒ๐Ÿฝโ€โ™€๏ธ woman golfing: medium skin tone +๐ŸŒ๐Ÿฝโ€โ™€ woman golfing: medium skin tone +๐ŸŒ๐Ÿพโ€โ™€๏ธ woman golfing: medium-dark skin tone +๐ŸŒ๐Ÿพโ€โ™€ woman golfing: medium-dark skin tone +๐ŸŒ๐Ÿฟโ€โ™€๏ธ woman golfing: dark skin tone +๐ŸŒ๐Ÿฟโ€โ™€ woman golfing: dark skin tone +๐Ÿ„ person surfing +๐Ÿ„๐Ÿป person surfing: light skin tone +๐Ÿ„๐Ÿผ person surfing: medium-light skin tone +๐Ÿ„๐Ÿฝ person surfing: medium skin tone +๐Ÿ„๐Ÿพ person surfing: medium-dark skin tone +๐Ÿ„๐Ÿฟ person surfing: dark skin tone +๐Ÿ„โ€โ™‚๏ธ man surfing +๐Ÿ„โ€โ™‚ man surfing +๐Ÿ„๐Ÿปโ€โ™‚๏ธ man surfing: light skin tone +๐Ÿ„๐Ÿปโ€โ™‚ man surfing: light skin tone +๐Ÿ„๐Ÿผโ€โ™‚๏ธ man surfing: medium-light skin tone +๐Ÿ„๐Ÿผโ€โ™‚ man surfing: medium-light skin tone +๐Ÿ„๐Ÿฝโ€โ™‚๏ธ man surfing: medium skin tone +๐Ÿ„๐Ÿฝโ€โ™‚ man surfing: medium skin tone +๐Ÿ„๐Ÿพโ€โ™‚๏ธ man surfing: medium-dark skin tone +๐Ÿ„๐Ÿพโ€โ™‚ man surfing: medium-dark skin tone +๐Ÿ„๐Ÿฟโ€โ™‚๏ธ man surfing: dark skin tone +๐Ÿ„๐Ÿฟโ€โ™‚ man surfing: dark skin tone +๐Ÿ„โ€โ™€๏ธ woman surfing +๐Ÿ„โ€โ™€ woman surfing +๐Ÿ„๐Ÿปโ€โ™€๏ธ woman surfing: light skin tone +๐Ÿ„๐Ÿปโ€โ™€ woman surfing: light skin tone +๐Ÿ„๐Ÿผโ€โ™€๏ธ woman surfing: medium-light skin tone +๐Ÿ„๐Ÿผโ€โ™€ woman surfing: medium-light skin tone +๐Ÿ„๐Ÿฝโ€โ™€๏ธ woman surfing: medium skin tone +๐Ÿ„๐Ÿฝโ€โ™€ woman surfing: medium skin tone +๐Ÿ„๐Ÿพโ€โ™€๏ธ woman surfing: medium-dark skin tone +๐Ÿ„๐Ÿพโ€โ™€ woman surfing: medium-dark skin tone +๐Ÿ„๐Ÿฟโ€โ™€๏ธ woman surfing: dark skin tone +๐Ÿ„๐Ÿฟโ€โ™€ woman surfing: dark skin tone +๐Ÿšฃ person rowing boat +๐Ÿšฃ๐Ÿป person rowing boat: light skin tone +๐Ÿšฃ๐Ÿผ person rowing boat: medium-light skin tone +๐Ÿšฃ๐Ÿฝ person rowing boat: medium skin tone +๐Ÿšฃ๐Ÿพ person rowing boat: medium-dark skin tone +๐Ÿšฃ๐Ÿฟ person rowing boat: dark skin tone +๐Ÿšฃโ€โ™‚๏ธ man rowing boat +๐Ÿšฃโ€โ™‚ man rowing boat +๐Ÿšฃ๐Ÿปโ€โ™‚๏ธ man rowing boat: light skin tone +๐Ÿšฃ๐Ÿปโ€โ™‚ man rowing boat: light skin tone +๐Ÿšฃ๐Ÿผโ€โ™‚๏ธ man rowing boat: medium-light skin tone +๐Ÿšฃ๐Ÿผโ€โ™‚ man rowing boat: medium-light skin tone +๐Ÿšฃ๐Ÿฝโ€โ™‚๏ธ man rowing boat: medium skin tone +๐Ÿšฃ๐Ÿฝโ€โ™‚ man rowing boat: medium skin tone +๐Ÿšฃ๐Ÿพโ€โ™‚๏ธ man rowing boat: medium-dark skin tone +๐Ÿšฃ๐Ÿพโ€โ™‚ man rowing boat: medium-dark skin tone +๐Ÿšฃ๐Ÿฟโ€โ™‚๏ธ man rowing boat: dark skin tone +๐Ÿšฃ๐Ÿฟโ€โ™‚ man rowing boat: dark skin tone +๐Ÿšฃโ€โ™€๏ธ woman rowing boat +๐Ÿšฃโ€โ™€ woman rowing boat +๐Ÿšฃ๐Ÿปโ€โ™€๏ธ woman rowing boat: light skin tone +๐Ÿšฃ๐Ÿปโ€โ™€ woman rowing boat: light skin tone +๐Ÿšฃ๐Ÿผโ€โ™€๏ธ woman rowing boat: medium-light skin tone +๐Ÿšฃ๐Ÿผโ€โ™€ woman rowing boat: medium-light skin tone +๐Ÿšฃ๐Ÿฝโ€โ™€๏ธ woman rowing boat: medium skin tone +๐Ÿšฃ๐Ÿฝโ€โ™€ woman rowing boat: medium skin tone +๐Ÿšฃ๐Ÿพโ€โ™€๏ธ woman rowing boat: medium-dark skin tone +๐Ÿšฃ๐Ÿพโ€โ™€ woman rowing boat: medium-dark skin tone +๐Ÿšฃ๐Ÿฟโ€โ™€๏ธ woman rowing boat: dark skin tone +๐Ÿšฃ๐Ÿฟโ€โ™€ woman rowing boat: dark skin tone +๐ŸŠ person swimming +๐ŸŠ๐Ÿป person swimming: light skin tone +๐ŸŠ๐Ÿผ person swimming: medium-light skin tone +๐ŸŠ๐Ÿฝ person swimming: medium skin tone +๐ŸŠ๐Ÿพ person swimming: medium-dark skin tone +๐ŸŠ๐Ÿฟ person swimming: dark skin tone +๐ŸŠโ€โ™‚๏ธ man swimming +๐ŸŠโ€โ™‚ man swimming +๐ŸŠ๐Ÿปโ€โ™‚๏ธ man swimming: light skin tone +๐ŸŠ๐Ÿปโ€โ™‚ man swimming: light skin tone +๐ŸŠ๐Ÿผโ€โ™‚๏ธ man swimming: medium-light skin tone +๐ŸŠ๐Ÿผโ€โ™‚ man swimming: medium-light skin tone +๐ŸŠ๐Ÿฝโ€โ™‚๏ธ man swimming: medium skin tone +๐ŸŠ๐Ÿฝโ€โ™‚ man swimming: medium skin tone +๐ŸŠ๐Ÿพโ€โ™‚๏ธ man swimming: medium-dark skin tone +๐ŸŠ๐Ÿพโ€โ™‚ man swimming: medium-dark skin tone +๐ŸŠ๐Ÿฟโ€โ™‚๏ธ man swimming: dark skin tone +๐ŸŠ๐Ÿฟโ€โ™‚ man swimming: dark skin tone +๐ŸŠโ€โ™€๏ธ woman swimming +๐ŸŠโ€โ™€ woman swimming +๐ŸŠ๐Ÿปโ€โ™€๏ธ woman swimming: light skin tone +๐ŸŠ๐Ÿปโ€โ™€ woman swimming: light skin tone +๐ŸŠ๐Ÿผโ€โ™€๏ธ woman swimming: medium-light skin tone +๐ŸŠ๐Ÿผโ€โ™€ woman swimming: medium-light skin tone +๐ŸŠ๐Ÿฝโ€โ™€๏ธ woman swimming: medium skin tone +๐ŸŠ๐Ÿฝโ€โ™€ woman swimming: medium skin tone +๐ŸŠ๐Ÿพโ€โ™€๏ธ woman swimming: medium-dark skin tone +๐ŸŠ๐Ÿพโ€โ™€ woman swimming: medium-dark skin tone +๐ŸŠ๐Ÿฟโ€โ™€๏ธ woman swimming: dark skin tone +๐ŸŠ๐Ÿฟโ€โ™€ woman swimming: dark skin tone +โ›น๏ธ person bouncing ball +โ›น person bouncing ball +โ›น๐Ÿป person bouncing ball: light skin tone +โ›น๐Ÿผ person bouncing ball: medium-light skin tone +โ›น๐Ÿฝ person bouncing ball: medium skin tone +โ›น๐Ÿพ person bouncing ball: medium-dark skin tone +โ›น๐Ÿฟ person bouncing ball: dark skin tone +โ›น๏ธโ€โ™‚๏ธ man bouncing ball +โ›นโ€โ™‚๏ธ man bouncing ball +โ›น๏ธโ€โ™‚ man bouncing ball +โ›นโ€โ™‚ man bouncing ball +โ›น๐Ÿปโ€โ™‚๏ธ man bouncing ball: light skin tone +โ›น๐Ÿปโ€โ™‚ man bouncing ball: light skin tone +โ›น๐Ÿผโ€โ™‚๏ธ man bouncing ball: medium-light skin tone +โ›น๐Ÿผโ€โ™‚ man bouncing ball: medium-light skin tone +โ›น๐Ÿฝโ€โ™‚๏ธ man bouncing ball: medium skin tone +โ›น๐Ÿฝโ€โ™‚ man bouncing ball: medium skin tone +โ›น๐Ÿพโ€โ™‚๏ธ man bouncing ball: medium-dark skin tone +โ›น๐Ÿพโ€โ™‚ man bouncing ball: medium-dark skin tone +โ›น๐Ÿฟโ€โ™‚๏ธ man bouncing ball: dark skin tone +โ›น๐Ÿฟโ€โ™‚ man bouncing ball: dark skin tone +โ›น๏ธโ€โ™€๏ธ woman bouncing ball +โ›นโ€โ™€๏ธ woman bouncing ball +โ›น๏ธโ€โ™€ woman bouncing ball +โ›นโ€โ™€ woman bouncing ball +โ›น๐Ÿปโ€โ™€๏ธ woman bouncing ball: light skin tone +โ›น๐Ÿปโ€โ™€ woman bouncing ball: light skin tone +โ›น๐Ÿผโ€โ™€๏ธ woman bouncing ball: medium-light skin tone +โ›น๐Ÿผโ€โ™€ woman bouncing ball: medium-light skin tone +โ›น๐Ÿฝโ€โ™€๏ธ woman bouncing ball: medium skin tone +โ›น๐Ÿฝโ€โ™€ woman bouncing ball: medium skin tone +โ›น๐Ÿพโ€โ™€๏ธ woman bouncing ball: medium-dark skin tone +โ›น๐Ÿพโ€โ™€ woman bouncing ball: medium-dark skin tone +โ›น๐Ÿฟโ€โ™€๏ธ woman bouncing ball: dark skin tone +โ›น๐Ÿฟโ€โ™€ woman bouncing ball: dark skin tone +๐Ÿ‹๏ธ person lifting weights +๐Ÿ‹ person lifting weights +๐Ÿ‹๐Ÿป person lifting weights: light skin tone +๐Ÿ‹๐Ÿผ person lifting weights: medium-light skin tone +๐Ÿ‹๐Ÿฝ person lifting weights: medium skin tone +๐Ÿ‹๐Ÿพ person lifting weights: medium-dark skin tone +๐Ÿ‹๐Ÿฟ person lifting weights: dark skin tone +๐Ÿ‹๏ธโ€โ™‚๏ธ man lifting weights +๐Ÿ‹โ€โ™‚๏ธ man lifting weights +๐Ÿ‹๏ธโ€โ™‚ man lifting weights +๐Ÿ‹โ€โ™‚ man lifting weights +๐Ÿ‹๐Ÿปโ€โ™‚๏ธ man lifting weights: light skin tone +๐Ÿ‹๐Ÿปโ€โ™‚ man lifting weights: light skin tone +๐Ÿ‹๐Ÿผโ€โ™‚๏ธ man lifting weights: medium-light skin tone +๐Ÿ‹๐Ÿผโ€โ™‚ man lifting weights: medium-light skin tone +๐Ÿ‹๐Ÿฝโ€โ™‚๏ธ man lifting weights: medium skin tone +๐Ÿ‹๐Ÿฝโ€โ™‚ man lifting weights: medium skin tone +๐Ÿ‹๐Ÿพโ€โ™‚๏ธ man lifting weights: medium-dark skin tone +๐Ÿ‹๐Ÿพโ€โ™‚ man lifting weights: medium-dark skin tone +๐Ÿ‹๐Ÿฟโ€โ™‚๏ธ man lifting weights: dark skin tone +๐Ÿ‹๐Ÿฟโ€โ™‚ man lifting weights: dark skin tone +๐Ÿ‹๏ธโ€โ™€๏ธ woman lifting weights +๐Ÿ‹โ€โ™€๏ธ woman lifting weights +๐Ÿ‹๏ธโ€โ™€ woman lifting weights +๐Ÿ‹โ€โ™€ woman lifting weights +๐Ÿ‹๐Ÿปโ€โ™€๏ธ woman lifting weights: light skin tone +๐Ÿ‹๐Ÿปโ€โ™€ woman lifting weights: light skin tone +๐Ÿ‹๐Ÿผโ€โ™€๏ธ woman lifting weights: medium-light skin tone +๐Ÿ‹๐Ÿผโ€โ™€ woman lifting weights: medium-light skin tone +๐Ÿ‹๐Ÿฝโ€โ™€๏ธ woman lifting weights: medium skin tone +๐Ÿ‹๐Ÿฝโ€โ™€ woman lifting weights: medium skin tone +๐Ÿ‹๐Ÿพโ€โ™€๏ธ woman lifting weights: medium-dark skin tone +๐Ÿ‹๐Ÿพโ€โ™€ woman lifting weights: medium-dark skin tone +๐Ÿ‹๐Ÿฟโ€โ™€๏ธ woman lifting weights: dark skin tone +๐Ÿ‹๐Ÿฟโ€โ™€ woman lifting weights: dark skin tone +๐Ÿšด person biking +๐Ÿšด๐Ÿป person biking: light skin tone +๐Ÿšด๐Ÿผ person biking: medium-light skin tone +๐Ÿšด๐Ÿฝ person biking: medium skin tone +๐Ÿšด๐Ÿพ person biking: medium-dark skin tone +๐Ÿšด๐Ÿฟ person biking: dark skin tone +๐Ÿšดโ€โ™‚๏ธ man biking +๐Ÿšดโ€โ™‚ man biking +๐Ÿšด๐Ÿปโ€โ™‚๏ธ man biking: light skin tone +๐Ÿšด๐Ÿปโ€โ™‚ man biking: light skin tone +๐Ÿšด๐Ÿผโ€โ™‚๏ธ man biking: medium-light skin tone +๐Ÿšด๐Ÿผโ€โ™‚ man biking: medium-light skin tone +๐Ÿšด๐Ÿฝโ€โ™‚๏ธ man biking: medium skin tone +๐Ÿšด๐Ÿฝโ€โ™‚ man biking: medium skin tone +๐Ÿšด๐Ÿพโ€โ™‚๏ธ man biking: medium-dark skin tone +๐Ÿšด๐Ÿพโ€โ™‚ man biking: medium-dark skin tone +๐Ÿšด๐Ÿฟโ€โ™‚๏ธ man biking: dark skin tone +๐Ÿšด๐Ÿฟโ€โ™‚ man biking: dark skin tone +๐Ÿšดโ€โ™€๏ธ woman biking +๐Ÿšดโ€โ™€ woman biking +๐Ÿšด๐Ÿปโ€โ™€๏ธ woman biking: light skin tone +๐Ÿšด๐Ÿปโ€โ™€ woman biking: light skin tone +๐Ÿšด๐Ÿผโ€โ™€๏ธ woman biking: medium-light skin tone +๐Ÿšด๐Ÿผโ€โ™€ woman biking: medium-light skin tone +๐Ÿšด๐Ÿฝโ€โ™€๏ธ woman biking: medium skin tone +๐Ÿšด๐Ÿฝโ€โ™€ woman biking: medium skin tone +๐Ÿšด๐Ÿพโ€โ™€๏ธ woman biking: medium-dark skin tone +๐Ÿšด๐Ÿพโ€โ™€ woman biking: medium-dark skin tone +๐Ÿšด๐Ÿฟโ€โ™€๏ธ woman biking: dark skin tone +๐Ÿšด๐Ÿฟโ€โ™€ woman biking: dark skin tone +๐Ÿšต person mountain biking +๐Ÿšต๐Ÿป person mountain biking: light skin tone +๐Ÿšต๐Ÿผ person mountain biking: medium-light skin tone +๐Ÿšต๐Ÿฝ person mountain biking: medium skin tone +๐Ÿšต๐Ÿพ person mountain biking: medium-dark skin tone +๐Ÿšต๐Ÿฟ person mountain biking: dark skin tone +๐Ÿšตโ€โ™‚๏ธ man mountain biking +๐Ÿšตโ€โ™‚ man mountain biking +๐Ÿšต๐Ÿปโ€โ™‚๏ธ man mountain biking: light skin tone +๐Ÿšต๐Ÿปโ€โ™‚ man mountain biking: light skin tone +๐Ÿšต๐Ÿผโ€โ™‚๏ธ man mountain biking: medium-light skin tone +๐Ÿšต๐Ÿผโ€โ™‚ man mountain biking: medium-light skin tone +๐Ÿšต๐Ÿฝโ€โ™‚๏ธ man mountain biking: medium skin tone +๐Ÿšต๐Ÿฝโ€โ™‚ man mountain biking: medium skin tone +๐Ÿšต๐Ÿพโ€โ™‚๏ธ man mountain biking: medium-dark skin tone +๐Ÿšต๐Ÿพโ€โ™‚ man mountain biking: medium-dark skin tone +๐Ÿšต๐Ÿฟโ€โ™‚๏ธ man mountain biking: dark skin tone +๐Ÿšต๐Ÿฟโ€โ™‚ man mountain biking: dark skin tone +๐Ÿšตโ€โ™€๏ธ woman mountain biking +๐Ÿšตโ€โ™€ woman mountain biking +๐Ÿšต๐Ÿปโ€โ™€๏ธ woman mountain biking: light skin tone +๐Ÿšต๐Ÿปโ€โ™€ woman mountain biking: light skin tone +๐Ÿšต๐Ÿผโ€โ™€๏ธ woman mountain biking: medium-light skin tone +๐Ÿšต๐Ÿผโ€โ™€ woman mountain biking: medium-light skin tone +๐Ÿšต๐Ÿฝโ€โ™€๏ธ woman mountain biking: medium skin tone +๐Ÿšต๐Ÿฝโ€โ™€ woman mountain biking: medium skin tone +๐Ÿšต๐Ÿพโ€โ™€๏ธ woman mountain biking: medium-dark skin tone +๐Ÿšต๐Ÿพโ€โ™€ woman mountain biking: medium-dark skin tone +๐Ÿšต๐Ÿฟโ€โ™€๏ธ woman mountain biking: dark skin tone +๐Ÿšต๐Ÿฟโ€โ™€ woman mountain biking: dark skin tone +๐ŸŽ๏ธ racing car +๐ŸŽ racing car +๐Ÿ๏ธ motorcycle +๐Ÿ motorcycle +๐Ÿคธ person cartwheeling +๐Ÿคธ๐Ÿป person cartwheeling: light skin tone +๐Ÿคธ๐Ÿผ person cartwheeling: medium-light skin tone +๐Ÿคธ๐Ÿฝ person cartwheeling: medium skin tone +๐Ÿคธ๐Ÿพ person cartwheeling: medium-dark skin tone +๐Ÿคธ๐Ÿฟ person cartwheeling: dark skin tone +๐Ÿคธโ€โ™‚๏ธ man cartwheeling +๐Ÿคธโ€โ™‚ man cartwheeling +๐Ÿคธ๐Ÿปโ€โ™‚๏ธ man cartwheeling: light skin tone +๐Ÿคธ๐Ÿปโ€โ™‚ man cartwheeling: light skin tone +๐Ÿคธ๐Ÿผโ€โ™‚๏ธ man cartwheeling: medium-light skin tone +๐Ÿคธ๐Ÿผโ€โ™‚ man cartwheeling: medium-light skin tone +๐Ÿคธ๐Ÿฝโ€โ™‚๏ธ man cartwheeling: medium skin tone +๐Ÿคธ๐Ÿฝโ€โ™‚ man cartwheeling: medium skin tone +๐Ÿคธ๐Ÿพโ€โ™‚๏ธ man cartwheeling: medium-dark skin tone +๐Ÿคธ๐Ÿพโ€โ™‚ man cartwheeling: medium-dark skin tone +๐Ÿคธ๐Ÿฟโ€โ™‚๏ธ man cartwheeling: dark skin tone +๐Ÿคธ๐Ÿฟโ€โ™‚ man cartwheeling: dark skin tone +๐Ÿคธโ€โ™€๏ธ woman cartwheeling +๐Ÿคธโ€โ™€ woman cartwheeling +๐Ÿคธ๐Ÿปโ€โ™€๏ธ woman cartwheeling: light skin tone +๐Ÿคธ๐Ÿปโ€โ™€ woman cartwheeling: light skin tone +๐Ÿคธ๐Ÿผโ€โ™€๏ธ woman cartwheeling: medium-light skin tone +๐Ÿคธ๐Ÿผโ€โ™€ woman cartwheeling: medium-light skin tone +๐Ÿคธ๐Ÿฝโ€โ™€๏ธ woman cartwheeling: medium skin tone +๐Ÿคธ๐Ÿฝโ€โ™€ woman cartwheeling: medium skin tone +๐Ÿคธ๐Ÿพโ€โ™€๏ธ woman cartwheeling: medium-dark skin tone +๐Ÿคธ๐Ÿพโ€โ™€ woman cartwheeling: medium-dark skin tone +๐Ÿคธ๐Ÿฟโ€โ™€๏ธ woman cartwheeling: dark skin tone +๐Ÿคธ๐Ÿฟโ€โ™€ woman cartwheeling: dark skin tone +๐Ÿคผ people wrestling +๐Ÿคผโ€โ™‚๏ธ men wrestling +๐Ÿคผโ€โ™‚ men wrestling +๐Ÿคผโ€โ™€๏ธ women wrestling +๐Ÿคผโ€โ™€ women wrestling +๐Ÿคฝ person playing water polo +๐Ÿคฝ๐Ÿป person playing water polo: light skin tone +๐Ÿคฝ๐Ÿผ person playing water polo: medium-light skin tone +๐Ÿคฝ๐Ÿฝ person playing water polo: medium skin tone +๐Ÿคฝ๐Ÿพ person playing water polo: medium-dark skin tone +๐Ÿคฝ๐Ÿฟ person playing water polo: dark skin tone +๐Ÿคฝโ€โ™‚๏ธ man playing water polo +๐Ÿคฝโ€โ™‚ man playing water polo +๐Ÿคฝ๐Ÿปโ€โ™‚๏ธ man playing water polo: light skin tone +๐Ÿคฝ๐Ÿปโ€โ™‚ man playing water polo: light skin tone +๐Ÿคฝ๐Ÿผโ€โ™‚๏ธ man playing water polo: medium-light skin tone +๐Ÿคฝ๐Ÿผโ€โ™‚ man playing water polo: medium-light skin tone +๐Ÿคฝ๐Ÿฝโ€โ™‚๏ธ man playing water polo: medium skin tone +๐Ÿคฝ๐Ÿฝโ€โ™‚ man playing water polo: medium skin tone +๐Ÿคฝ๐Ÿพโ€โ™‚๏ธ man playing water polo: medium-dark skin tone +๐Ÿคฝ๐Ÿพโ€โ™‚ man playing water polo: medium-dark skin tone +๐Ÿคฝ๐Ÿฟโ€โ™‚๏ธ man playing water polo: dark skin tone +๐Ÿคฝ๐Ÿฟโ€โ™‚ man playing water polo: dark skin tone +๐Ÿคฝโ€โ™€๏ธ woman playing water polo +๐Ÿคฝโ€โ™€ woman playing water polo +๐Ÿคฝ๐Ÿปโ€โ™€๏ธ woman playing water polo: light skin tone +๐Ÿคฝ๐Ÿปโ€โ™€ woman playing water polo: light skin tone +๐Ÿคฝ๐Ÿผโ€โ™€๏ธ woman playing water polo: medium-light skin tone +๐Ÿคฝ๐Ÿผโ€โ™€ woman playing water polo: medium-light skin tone +๐Ÿคฝ๐Ÿฝโ€โ™€๏ธ woman playing water polo: medium skin tone +๐Ÿคฝ๐Ÿฝโ€โ™€ woman playing water polo: medium skin tone +๐Ÿคฝ๐Ÿพโ€โ™€๏ธ woman playing water polo: medium-dark skin tone +๐Ÿคฝ๐Ÿพโ€โ™€ woman playing water polo: medium-dark skin tone +๐Ÿคฝ๐Ÿฟโ€โ™€๏ธ woman playing water polo: dark skin tone +๐Ÿคฝ๐Ÿฟโ€โ™€ woman playing water polo: dark skin tone +๐Ÿคพ person playing handball +๐Ÿคพ๐Ÿป person playing handball: light skin tone +๐Ÿคพ๐Ÿผ person playing handball: medium-light skin tone +๐Ÿคพ๐Ÿฝ person playing handball: medium skin tone +๐Ÿคพ๐Ÿพ person playing handball: medium-dark skin tone +๐Ÿคพ๐Ÿฟ person playing handball: dark skin tone +๐Ÿคพโ€โ™‚๏ธ man playing handball +๐Ÿคพโ€โ™‚ man playing handball +๐Ÿคพ๐Ÿปโ€โ™‚๏ธ man playing handball: light skin tone +๐Ÿคพ๐Ÿปโ€โ™‚ man playing handball: light skin tone +๐Ÿคพ๐Ÿผโ€โ™‚๏ธ man playing handball: medium-light skin tone +๐Ÿคพ๐Ÿผโ€โ™‚ man playing handball: medium-light skin tone +๐Ÿคพ๐Ÿฝโ€โ™‚๏ธ man playing handball: medium skin tone +๐Ÿคพ๐Ÿฝโ€โ™‚ man playing handball: medium skin tone +๐Ÿคพ๐Ÿพโ€โ™‚๏ธ man playing handball: medium-dark skin tone +๐Ÿคพ๐Ÿพโ€โ™‚ man playing handball: medium-dark skin tone +๐Ÿคพ๐Ÿฟโ€โ™‚๏ธ man playing handball: dark skin tone +๐Ÿคพ๐Ÿฟโ€โ™‚ man playing handball: dark skin tone +๐Ÿคพโ€โ™€๏ธ woman playing handball +๐Ÿคพโ€โ™€ woman playing handball +๐Ÿคพ๐Ÿปโ€โ™€๏ธ woman playing handball: light skin tone +๐Ÿคพ๐Ÿปโ€โ™€ woman playing handball: light skin tone +๐Ÿคพ๐Ÿผโ€โ™€๏ธ woman playing handball: medium-light skin tone +๐Ÿคพ๐Ÿผโ€โ™€ woman playing handball: medium-light skin tone +๐Ÿคพ๐Ÿฝโ€โ™€๏ธ woman playing handball: medium skin tone +๐Ÿคพ๐Ÿฝโ€โ™€ woman playing handball: medium skin tone +๐Ÿคพ๐Ÿพโ€โ™€๏ธ woman playing handball: medium-dark skin tone +๐Ÿคพ๐Ÿพโ€โ™€ woman playing handball: medium-dark skin tone +๐Ÿคพ๐Ÿฟโ€โ™€๏ธ woman playing handball: dark skin tone +๐Ÿคพ๐Ÿฟโ€โ™€ woman playing handball: dark skin tone +๐Ÿคน person juggling +๐Ÿคน๐Ÿป person juggling: light skin tone +๐Ÿคน๐Ÿผ person juggling: medium-light skin tone +๐Ÿคน๐Ÿฝ person juggling: medium skin tone +๐Ÿคน๐Ÿพ person juggling: medium-dark skin tone +๐Ÿคน๐Ÿฟ person juggling: dark skin tone +๐Ÿคนโ€โ™‚๏ธ man juggling +๐Ÿคนโ€โ™‚ man juggling +๐Ÿคน๐Ÿปโ€โ™‚๏ธ man juggling: light skin tone +๐Ÿคน๐Ÿปโ€โ™‚ man juggling: light skin tone +๐Ÿคน๐Ÿผโ€โ™‚๏ธ man juggling: medium-light skin tone +๐Ÿคน๐Ÿผโ€โ™‚ man juggling: medium-light skin tone +๐Ÿคน๐Ÿฝโ€โ™‚๏ธ man juggling: medium skin tone +๐Ÿคน๐Ÿฝโ€โ™‚ man juggling: medium skin tone +๐Ÿคน๐Ÿพโ€โ™‚๏ธ man juggling: medium-dark skin tone +๐Ÿคน๐Ÿพโ€โ™‚ man juggling: medium-dark skin tone +๐Ÿคน๐Ÿฟโ€โ™‚๏ธ man juggling: dark skin tone +๐Ÿคน๐Ÿฟโ€โ™‚ man juggling: dark skin tone +๐Ÿคนโ€โ™€๏ธ woman juggling +๐Ÿคนโ€โ™€ woman juggling +๐Ÿคน๐Ÿปโ€โ™€๏ธ woman juggling: light skin tone +๐Ÿคน๐Ÿปโ€โ™€ woman juggling: light skin tone +๐Ÿคน๐Ÿผโ€โ™€๏ธ woman juggling: medium-light skin tone +๐Ÿคน๐Ÿผโ€โ™€ woman juggling: medium-light skin tone +๐Ÿคน๐Ÿฝโ€โ™€๏ธ woman juggling: medium skin tone +๐Ÿคน๐Ÿฝโ€โ™€ woman juggling: medium skin tone +๐Ÿคน๐Ÿพโ€โ™€๏ธ woman juggling: medium-dark skin tone +๐Ÿคน๐Ÿพโ€โ™€ woman juggling: medium-dark skin tone +๐Ÿคน๐Ÿฟโ€โ™€๏ธ woman juggling: dark skin tone +๐Ÿคน๐Ÿฟโ€โ™€ woman juggling: dark skin tone +๐Ÿ‘ซ man and woman holding hands +๐Ÿ‘ฌ two men holding hands +๐Ÿ‘ญ two women holding hands +๐Ÿ’ kiss +๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: woman, man +๐Ÿ‘ฉโ€โคโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: woman, man +๐Ÿ‘จโ€โค๏ธโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: man, man +๐Ÿ‘จโ€โคโ€๐Ÿ’‹โ€๐Ÿ‘จ kiss: man, man +๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ’‹โ€๐Ÿ‘ฉ kiss: woman, woman +๐Ÿ‘ฉโ€โคโ€๐Ÿ’‹โ€๐Ÿ‘ฉ kiss: woman, woman +๐Ÿ’‘ couple with heart +๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ‘จ couple with heart: woman, man +๐Ÿ‘ฉโ€โคโ€๐Ÿ‘จ couple with heart: woman, man +๐Ÿ‘จโ€โค๏ธโ€๐Ÿ‘จ couple with heart: man, man +๐Ÿ‘จโ€โคโ€๐Ÿ‘จ couple with heart: man, man +๐Ÿ‘ฉโ€โค๏ธโ€๐Ÿ‘ฉ couple with heart: woman, woman +๐Ÿ‘ฉโ€โคโ€๐Ÿ‘ฉ couple with heart: woman, woman +๐Ÿ‘ช family +๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆ family: man, woman, boy +๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘ง family: man, woman, girl +๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: man, woman, girl, boy +๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: man, woman, boy, boy +๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ง family: man, woman, girl, girl +๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘ฆ family: man, man, boy +๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘ง family: man, man, girl +๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: man, man, girl, boy +๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: man, man, boy, boy +๐Ÿ‘จโ€๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ง family: man, man, girl, girl +๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆ family: woman, woman, boy +๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘ง family: woman, woman, girl +๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: woman, woman, girl, boy +๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: woman, woman, boy, boy +๐Ÿ‘ฉโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ง family: woman, woman, girl, girl +๐Ÿ‘จโ€๐Ÿ‘ฆ family: man, boy +๐Ÿ‘จโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: man, boy, boy +๐Ÿ‘จโ€๐Ÿ‘ง family: man, girl +๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: man, girl, boy +๐Ÿ‘จโ€๐Ÿ‘งโ€๐Ÿ‘ง family: man, girl, girl +๐Ÿ‘ฉโ€๐Ÿ‘ฆ family: woman, boy +๐Ÿ‘ฉโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ family: woman, boy, boy +๐Ÿ‘ฉโ€๐Ÿ‘ง family: woman, girl +๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ family: woman, girl, boy +๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ง family: woman, girl, girl +๐Ÿคณ selfie +๐Ÿคณ๐Ÿป selfie: light skin tone +๐Ÿคณ๐Ÿผ selfie: medium-light skin tone +๐Ÿคณ๐Ÿฝ selfie: medium skin tone +๐Ÿคณ๐Ÿพ selfie: medium-dark skin tone +๐Ÿคณ๐Ÿฟ selfie: dark skin tone +๐Ÿ’ช flexed biceps +๐Ÿ’ช๐Ÿป flexed biceps: light skin tone +๐Ÿ’ช๐Ÿผ flexed biceps: medium-light skin tone +๐Ÿ’ช๐Ÿฝ flexed biceps: medium skin tone +๐Ÿ’ช๐Ÿพ flexed biceps: medium-dark skin tone +๐Ÿ’ช๐Ÿฟ flexed biceps: dark skin tone +๐Ÿฆต leg +๐Ÿฆต๐Ÿป leg: light skin tone +๐Ÿฆต๐Ÿผ leg: medium-light skin tone +๐Ÿฆต๐Ÿฝ leg: medium skin tone +๐Ÿฆต๐Ÿพ leg: medium-dark skin tone +๐Ÿฆต๐Ÿฟ leg: dark skin tone +๐Ÿฆถ foot +๐Ÿฆถ๐Ÿป foot: light skin tone +๐Ÿฆถ๐Ÿผ foot: medium-light skin tone +๐Ÿฆถ๐Ÿฝ foot: medium skin tone +๐Ÿฆถ๐Ÿพ foot: medium-dark skin tone +๐Ÿฆถ๐Ÿฟ foot: dark skin tone +๐Ÿ‘ˆ backhand index pointing left +๐Ÿ‘ˆ๐Ÿป backhand index pointing left: light skin tone +๐Ÿ‘ˆ๐Ÿผ backhand index pointing left: medium-light skin tone +๐Ÿ‘ˆ๐Ÿฝ backhand index pointing left: medium skin tone +๐Ÿ‘ˆ๐Ÿพ backhand index pointing left: medium-dark skin tone +๐Ÿ‘ˆ๐Ÿฟ backhand index pointing left: dark skin tone +๐Ÿ‘‰ backhand index pointing right +๐Ÿ‘‰๐Ÿป backhand index pointing right: light skin tone +๐Ÿ‘‰๐Ÿผ backhand index pointing right: medium-light skin tone +๐Ÿ‘‰๐Ÿฝ backhand index pointing right: medium skin tone +๐Ÿ‘‰๐Ÿพ backhand index pointing right: medium-dark skin tone +๐Ÿ‘‰๐Ÿฟ backhand index pointing right: dark skin tone +โ˜๏ธ index pointing up +โ˜ index pointing up +โ˜๐Ÿป index pointing up: light skin tone +โ˜๐Ÿผ index pointing up: medium-light skin tone +โ˜๐Ÿฝ index pointing up: medium skin tone +โ˜๐Ÿพ index pointing up: medium-dark skin tone +โ˜๐Ÿฟ index pointing up: dark skin tone +๐Ÿ‘† backhand index pointing up +๐Ÿ‘†๐Ÿป backhand index pointing up: light skin tone +๐Ÿ‘†๐Ÿผ backhand index pointing up: medium-light skin tone +๐Ÿ‘†๐Ÿฝ backhand index pointing up: medium skin tone +๐Ÿ‘†๐Ÿพ backhand index pointing up: medium-dark skin tone +๐Ÿ‘†๐Ÿฟ backhand index pointing up: dark skin tone +๐Ÿ–• middle finger +๐Ÿ–•๐Ÿป middle finger: light skin tone +๐Ÿ–•๐Ÿผ middle finger: medium-light skin tone +๐Ÿ–•๐Ÿฝ middle finger: medium skin tone +๐Ÿ–•๐Ÿพ middle finger: medium-dark skin tone +๐Ÿ–•๐Ÿฟ middle finger: dark skin tone +๐Ÿ‘‡ backhand index pointing down +๐Ÿ‘‡๐Ÿป backhand index pointing down: light skin tone +๐Ÿ‘‡๐Ÿผ backhand index pointing down: medium-light skin tone +๐Ÿ‘‡๐Ÿฝ backhand index pointing down: medium skin tone +๐Ÿ‘‡๐Ÿพ backhand index pointing down: medium-dark skin tone +๐Ÿ‘‡๐Ÿฟ backhand index pointing down: dark skin tone +โœŒ๏ธ victory hand +โœŒ victory hand +โœŒ๐Ÿป victory hand: light skin tone +โœŒ๐Ÿผ victory hand: medium-light skin tone +โœŒ๐Ÿฝ victory hand: medium skin tone +โœŒ๐Ÿพ victory hand: medium-dark skin tone +โœŒ๐Ÿฟ victory hand: dark skin tone +๐Ÿคž crossed fingers +๐Ÿคž๐Ÿป crossed fingers: light skin tone +๐Ÿคž๐Ÿผ crossed fingers: medium-light skin tone +๐Ÿคž๐Ÿฝ crossed fingers: medium skin tone +๐Ÿคž๐Ÿพ crossed fingers: medium-dark skin tone +๐Ÿคž๐Ÿฟ crossed fingers: dark skin tone +๐Ÿ–– vulcan salute +๐Ÿ––๐Ÿป vulcan salute: light skin tone +๐Ÿ––๐Ÿผ vulcan salute: medium-light skin tone +๐Ÿ––๐Ÿฝ vulcan salute: medium skin tone +๐Ÿ––๐Ÿพ vulcan salute: medium-dark skin tone +๐Ÿ––๐Ÿฟ vulcan salute: dark skin tone +๐Ÿค˜ sign of the horns +๐Ÿค˜๐Ÿป sign of the horns: light skin tone +๐Ÿค˜๐Ÿผ sign of the horns: medium-light skin tone +๐Ÿค˜๐Ÿฝ sign of the horns: medium skin tone +๐Ÿค˜๐Ÿพ sign of the horns: medium-dark skin tone +๐Ÿค˜๐Ÿฟ sign of the horns: dark skin tone +๐Ÿค™ call me hand +๐Ÿค™๐Ÿป call me hand: light skin tone +๐Ÿค™๐Ÿผ call me hand: medium-light skin tone +๐Ÿค™๐Ÿฝ call me hand: medium skin tone +๐Ÿค™๐Ÿพ call me hand: medium-dark skin tone +๐Ÿค™๐Ÿฟ call me hand: dark skin tone +๐Ÿ–๏ธ hand with fingers splayed +๐Ÿ– hand with fingers splayed +๐Ÿ–๐Ÿป hand with fingers splayed: light skin tone +๐Ÿ–๐Ÿผ hand with fingers splayed: medium-light skin tone +๐Ÿ–๐Ÿฝ hand with fingers splayed: medium skin tone +๐Ÿ–๐Ÿพ hand with fingers splayed: medium-dark skin tone +๐Ÿ–๐Ÿฟ hand with fingers splayed: dark skin tone +โœ‹ raised hand +โœ‹๐Ÿป raised hand: light skin tone +โœ‹๐Ÿผ raised hand: medium-light skin tone +โœ‹๐Ÿฝ raised hand: medium skin tone +โœ‹๐Ÿพ raised hand: medium-dark skin tone +โœ‹๐Ÿฟ raised hand: dark skin tone +๐Ÿ‘Œ OK hand +๐Ÿ‘Œ๐Ÿป OK hand: light skin tone +๐Ÿ‘Œ๐Ÿผ OK hand: medium-light skin tone +๐Ÿ‘Œ๐Ÿฝ OK hand: medium skin tone +๐Ÿ‘Œ๐Ÿพ OK hand: medium-dark skin tone +๐Ÿ‘Œ๐Ÿฟ OK hand: dark skin tone +๐Ÿ‘ thumbs up +๐Ÿ‘๐Ÿป thumbs up: light skin tone +๐Ÿ‘๐Ÿผ thumbs up: medium-light skin tone +๐Ÿ‘๐Ÿฝ thumbs up: medium skin tone +๐Ÿ‘๐Ÿพ thumbs up: medium-dark skin tone +๐Ÿ‘๐Ÿฟ thumbs up: dark skin tone +๐Ÿ‘Ž thumbs down +๐Ÿ‘Ž๐Ÿป thumbs down: light skin tone +๐Ÿ‘Ž๐Ÿผ thumbs down: medium-light skin tone +๐Ÿ‘Ž๐Ÿฝ thumbs down: medium skin tone +๐Ÿ‘Ž๐Ÿพ thumbs down: medium-dark skin tone +๐Ÿ‘Ž๐Ÿฟ thumbs down: dark skin tone +โœŠ raised fist +โœŠ๐Ÿป raised fist: light skin tone +โœŠ๐Ÿผ raised fist: medium-light skin tone +โœŠ๐Ÿฝ raised fist: medium skin tone +โœŠ๐Ÿพ raised fist: medium-dark skin tone +โœŠ๐Ÿฟ raised fist: dark skin tone +๐Ÿ‘Š oncoming fist +๐Ÿ‘Š๐Ÿป oncoming fist: light skin tone +๐Ÿ‘Š๐Ÿผ oncoming fist: medium-light skin tone +๐Ÿ‘Š๐Ÿฝ oncoming fist: medium skin tone +๐Ÿ‘Š๐Ÿพ oncoming fist: medium-dark skin tone +๐Ÿ‘Š๐Ÿฟ oncoming fist: dark skin tone +๐Ÿค› left-facing fist +๐Ÿค›๐Ÿป left-facing fist: light skin tone +๐Ÿค›๐Ÿผ left-facing fist: medium-light skin tone +๐Ÿค›๐Ÿฝ left-facing fist: medium skin tone +๐Ÿค›๐Ÿพ left-facing fist: medium-dark skin tone +๐Ÿค›๐Ÿฟ left-facing fist: dark skin tone +๐Ÿคœ right-facing fist +๐Ÿคœ๐Ÿป right-facing fist: light skin tone +๐Ÿคœ๐Ÿผ right-facing fist: medium-light skin tone +๐Ÿคœ๐Ÿฝ right-facing fist: medium skin tone +๐Ÿคœ๐Ÿพ right-facing fist: medium-dark skin tone +๐Ÿคœ๐Ÿฟ right-facing fist: dark skin tone +๐Ÿคš raised back of hand +๐Ÿคš๐Ÿป raised back of hand: light skin tone +๐Ÿคš๐Ÿผ raised back of hand: medium-light skin tone +๐Ÿคš๐Ÿฝ raised back of hand: medium skin tone +๐Ÿคš๐Ÿพ raised back of hand: medium-dark skin tone +๐Ÿคš๐Ÿฟ raised back of hand: dark skin tone +๐Ÿ‘‹ waving hand +๐Ÿ‘‹๐Ÿป waving hand: light skin tone +๐Ÿ‘‹๐Ÿผ waving hand: medium-light skin tone +๐Ÿ‘‹๐Ÿฝ waving hand: medium skin tone +๐Ÿ‘‹๐Ÿพ waving hand: medium-dark skin tone +๐Ÿ‘‹๐Ÿฟ waving hand: dark skin tone +๐ŸคŸ love-you gesture +๐ŸคŸ๐Ÿป love-you gesture: light skin tone +๐ŸคŸ๐Ÿผ love-you gesture: medium-light skin tone +๐ŸคŸ๐Ÿฝ love-you gesture: medium skin tone +๐ŸคŸ๐Ÿพ love-you gesture: medium-dark skin tone +๐ŸคŸ๐Ÿฟ love-you gesture: dark skin tone +โœ๏ธ writing hand +โœ writing hand +โœ๐Ÿป writing hand: light skin tone +โœ๐Ÿผ writing hand: medium-light skin tone +โœ๐Ÿฝ writing hand: medium skin tone +โœ๐Ÿพ writing hand: medium-dark skin tone +โœ๐Ÿฟ writing hand: dark skin tone +๐Ÿ‘ clapping hands +๐Ÿ‘๐Ÿป clapping hands: light skin tone +๐Ÿ‘๐Ÿผ clapping hands: medium-light skin tone +๐Ÿ‘๐Ÿฝ clapping hands: medium skin tone +๐Ÿ‘๐Ÿพ clapping hands: medium-dark skin tone +๐Ÿ‘๐Ÿฟ clapping hands: dark skin tone +๐Ÿ‘ open hands +๐Ÿ‘๐Ÿป open hands: light skin tone +๐Ÿ‘๐Ÿผ open hands: medium-light skin tone +๐Ÿ‘๐Ÿฝ open hands: medium skin tone +๐Ÿ‘๐Ÿพ open hands: medium-dark skin tone +๐Ÿ‘๐Ÿฟ open hands: dark skin tone +๐Ÿ™Œ raising hands +๐Ÿ™Œ๐Ÿป raising hands: light skin tone +๐Ÿ™Œ๐Ÿผ raising hands: medium-light skin tone +๐Ÿ™Œ๐Ÿฝ raising hands: medium skin tone +๐Ÿ™Œ๐Ÿพ raising hands: medium-dark skin tone +๐Ÿ™Œ๐Ÿฟ raising hands: dark skin tone +๐Ÿคฒ palms up together +๐Ÿคฒ๐Ÿป palms up together: light skin tone +๐Ÿคฒ๐Ÿผ palms up together: medium-light skin tone +๐Ÿคฒ๐Ÿฝ palms up together: medium skin tone +๐Ÿคฒ๐Ÿพ palms up together: medium-dark skin tone +๐Ÿคฒ๐Ÿฟ palms up together: dark skin tone +๐Ÿ™ folded hands +๐Ÿ™๐Ÿป folded hands: light skin tone +๐Ÿ™๐Ÿผ folded hands: medium-light skin tone +๐Ÿ™๐Ÿฝ folded hands: medium skin tone +๐Ÿ™๐Ÿพ folded hands: medium-dark skin tone +๐Ÿ™๐Ÿฟ folded hands: dark skin tone +๐Ÿค handshake +๐Ÿ’… nail polish +๐Ÿ’…๐Ÿป nail polish: light skin tone +๐Ÿ’…๐Ÿผ nail polish: medium-light skin tone +๐Ÿ’…๐Ÿฝ nail polish: medium skin tone +๐Ÿ’…๐Ÿพ nail polish: medium-dark skin tone +๐Ÿ’…๐Ÿฟ nail polish: dark skin tone +๐Ÿ‘‚ ear +๐Ÿ‘‚๐Ÿป ear: light skin tone +๐Ÿ‘‚๐Ÿผ ear: medium-light skin tone +๐Ÿ‘‚๐Ÿฝ ear: medium skin tone +๐Ÿ‘‚๐Ÿพ ear: medium-dark skin tone +๐Ÿ‘‚๐Ÿฟ ear: dark skin tone +๐Ÿ‘ƒ nose +๐Ÿ‘ƒ๐Ÿป nose: light skin tone +๐Ÿ‘ƒ๐Ÿผ nose: medium-light skin tone +๐Ÿ‘ƒ๐Ÿฝ nose: medium skin tone +๐Ÿ‘ƒ๐Ÿพ nose: medium-dark skin tone +๐Ÿ‘ƒ๐Ÿฟ nose: dark skin tone +๐Ÿฆฐ red-haired +๐Ÿฆฑ curly-haired +๐Ÿฆฒ bald +๐Ÿฆณ white-haired +๐Ÿ‘ฃ footprints +๐Ÿ‘€ eyes +๐Ÿ‘๏ธ eye +๐Ÿ‘ eye +๐Ÿ‘๏ธโ€๐Ÿ—จ๏ธ eye in speech bubble +๐Ÿ‘โ€๐Ÿ—จ๏ธ eye in speech bubble +๐Ÿ‘๏ธโ€๐Ÿ—จ eye in speech bubble +๐Ÿ‘โ€๐Ÿ—จ eye in speech bubble +๐Ÿง  brain +๐Ÿฆด bone +๐Ÿฆท tooth +๐Ÿ‘… tongue +๐Ÿ‘„ mouth +๐Ÿ’‹ kiss mark +๐Ÿ’˜ heart with arrow +โค๏ธ red heart +โค red heart +๐Ÿ’“ beating heart +๐Ÿ’” broken heart +๐Ÿ’• two hearts +๐Ÿ’– sparkling heart +๐Ÿ’— growing heart +๐Ÿ’™ blue heart +๐Ÿ’š green heart +๐Ÿ’› yellow heart +๐Ÿงก orange heart +๐Ÿ’œ purple heart +๐Ÿ–ค black heart +๐Ÿ’ heart with ribbon +๐Ÿ’ž revolving hearts +๐Ÿ’Ÿ heart decoration +โฃ๏ธ heavy heart exclamation +โฃ heavy heart exclamation +๐Ÿ’Œ love letter +๐Ÿ’ค zzz +๐Ÿ’ข anger symbol +๐Ÿ’ฃ bomb +๐Ÿ’ฅ collision +๐Ÿ’ฆ sweat droplets +๐Ÿ’จ dashing away +๐Ÿ’ซ dizzy +๐Ÿ’ฌ speech balloon +๐Ÿ—จ๏ธ left speech bubble +๐Ÿ—จ left speech bubble +๐Ÿ—ฏ๏ธ right anger bubble +๐Ÿ—ฏ right anger bubble +๐Ÿ’ญ thought balloon +๐Ÿ•ณ๏ธ hole +๐Ÿ•ณ hole +๐Ÿ‘“ glasses +๐Ÿ•ถ๏ธ sunglasses +๐Ÿ•ถ sunglasses +๐Ÿฅฝ goggles +๐Ÿฅผ lab coat +๐Ÿ‘” necktie +๐Ÿ‘• t-shirt +๐Ÿ‘– jeans +๐Ÿงฃ scarf +๐Ÿงค gloves +๐Ÿงฅ coat +๐Ÿงฆ socks +๐Ÿ‘— dress +๐Ÿ‘˜ kimono +๐Ÿ‘™ bikini +๐Ÿ‘š womanโ€™s clothes +๐Ÿ‘› purse +๐Ÿ‘œ handbag +๐Ÿ‘ clutch bag +๐Ÿ›๏ธ shopping bags +๐Ÿ› shopping bags +๐ŸŽ’ school backpack +๐Ÿ‘ž manโ€™s shoe +๐Ÿ‘Ÿ running shoe +๐Ÿฅพ hiking boot +๐Ÿฅฟ womanโ€™s flat shoe +๐Ÿ‘  high-heeled shoe +๐Ÿ‘ก womanโ€™s sandal +๐Ÿ‘ข womanโ€™s boot +๐Ÿ‘‘ crown +๐Ÿ‘’ womanโ€™s hat +๐ŸŽฉ top hat +๐ŸŽ“ graduation cap +๐Ÿงข billed cap +โ›‘๏ธ rescue workerโ€™s helmet +โ›‘ rescue workerโ€™s helmet +๐Ÿ“ฟ prayer beads +๐Ÿ’„ lipstick +๐Ÿ’ ring +๐Ÿ’Ž gem stone +๐Ÿต monkey face +๐Ÿ’ monkey +๐Ÿฆ gorilla +๐Ÿถ dog face +๐Ÿ• dog +๐Ÿฉ poodle +๐Ÿบ wolf face +๐ŸฆŠ fox face +๐Ÿฆ raccoon +๐Ÿฑ cat face +๐Ÿˆ cat +๐Ÿฆ lion face +๐Ÿฏ tiger face +๐Ÿ… tiger +๐Ÿ† leopard +๐Ÿด horse face +๐ŸŽ horse +๐Ÿฆ„ unicorn face +๐Ÿฆ“ zebra +๐ŸฆŒ deer +๐Ÿฎ cow face +๐Ÿ‚ ox +๐Ÿƒ water buffalo +๐Ÿ„ cow +๐Ÿท pig face +๐Ÿ– pig +๐Ÿ— boar +๐Ÿฝ pig nose +๐Ÿ ram +๐Ÿ‘ ewe +๐Ÿ goat +๐Ÿช camel +๐Ÿซ two-hump camel +๐Ÿฆ™ llama +๐Ÿฆ’ giraffe +๐Ÿ˜ elephant +๐Ÿฆ rhinoceros +๐Ÿฆ› hippopotamus +๐Ÿญ mouse face +๐Ÿ mouse +๐Ÿ€ rat +๐Ÿน hamster face +๐Ÿฐ rabbit face +๐Ÿ‡ rabbit +๐Ÿฟ๏ธ chipmunk +๐Ÿฟ chipmunk +๐Ÿฆ” hedgehog +๐Ÿฆ‡ bat +๐Ÿป bear face +๐Ÿจ koala +๐Ÿผ panda face +๐Ÿฆ˜ kangaroo +๐Ÿฆก badger +๐Ÿพ paw prints +๐Ÿฆƒ turkey +๐Ÿ” chicken +๐Ÿ“ rooster +๐Ÿฃ hatching chick +๐Ÿค baby chick +๐Ÿฅ front-facing baby chick +๐Ÿฆ bird +๐Ÿง penguin +๐Ÿ•Š๏ธ dove +๐Ÿ•Š dove +๐Ÿฆ… eagle +๐Ÿฆ† duck +๐Ÿฆข swan +๐Ÿฆ‰ owl +๐Ÿฆš peacock +๐Ÿฆœ parrot +๐Ÿธ frog face +๐ŸŠ crocodile +๐Ÿข turtle +๐ŸฆŽ lizard +๐Ÿ snake +๐Ÿฒ dragon face +๐Ÿ‰ dragon +๐Ÿฆ• sauropod +๐Ÿฆ– T-Rex +๐Ÿณ spouting whale +๐Ÿ‹ whale +๐Ÿฌ dolphin +๐ŸŸ fish +๐Ÿ  tropical fish +๐Ÿก blowfish +๐Ÿฆˆ shark +๐Ÿ™ octopus +๐Ÿš spiral shell +๐Ÿฆ€ crab +๐Ÿฆž lobster +๐Ÿฆ shrimp +๐Ÿฆ‘ squid +๐ŸŒ snail +๐Ÿฆ‹ butterfly +๐Ÿ› bug +๐Ÿœ ant +๐Ÿ honeybee +๐Ÿž lady beetle +๐Ÿฆ— cricket +๐Ÿ•ท๏ธ spider +๐Ÿ•ท spider +๐Ÿ•ธ๏ธ spider web +๐Ÿ•ธ spider web +๐Ÿฆ‚ scorpion +๐ŸฆŸ mosquito +๐Ÿฆ  microbe +๐Ÿ’ bouquet +๐ŸŒธ cherry blossom +๐Ÿ’ฎ white flower +๐Ÿต๏ธ rosette +๐Ÿต rosette +๐ŸŒน rose +๐Ÿฅ€ wilted flower +๐ŸŒบ hibiscus +๐ŸŒป sunflower +๐ŸŒผ blossom +๐ŸŒท tulip +๐ŸŒฑ seedling +๐ŸŒฒ evergreen tree +๐ŸŒณ deciduous tree +๐ŸŒด palm tree +๐ŸŒต cactus +๐ŸŒพ sheaf of rice +๐ŸŒฟ herb +โ˜˜๏ธ shamrock +โ˜˜ shamrock +๐Ÿ€ four leaf clover +๐Ÿ maple leaf +๐Ÿ‚ fallen leaf +๐Ÿƒ leaf fluttering in wind +๐Ÿ‡ grapes +๐Ÿˆ melon +๐Ÿ‰ watermelon +๐ŸŠ tangerine +๐Ÿ‹ lemon +๐ŸŒ banana +๐Ÿ pineapple +๐Ÿฅญ mango +๐ŸŽ red apple +๐Ÿ green apple +๐Ÿ pear +๐Ÿ‘ peach +๐Ÿ’ cherries +๐Ÿ“ strawberry +๐Ÿฅ kiwi fruit +๐Ÿ… tomato +๐Ÿฅฅ coconut +๐Ÿฅ‘ avocado +๐Ÿ† eggplant +๐Ÿฅ” potato +๐Ÿฅ• carrot +๐ŸŒฝ ear of corn +๐ŸŒถ๏ธ hot pepper +๐ŸŒถ hot pepper +๐Ÿฅ’ cucumber +๐Ÿฅฌ leafy green +๐Ÿฅฆ broccoli +๐Ÿ„ mushroom +๐Ÿฅœ peanuts +๐ŸŒฐ chestnut +๐Ÿž bread +๐Ÿฅ croissant +๐Ÿฅ– baguette bread +๐Ÿฅจ pretzel +๐Ÿฅฏ bagel +๐Ÿฅž pancakes +๐Ÿง€ cheese wedge +๐Ÿ– meat on bone +๐Ÿ— poultry leg +๐Ÿฅฉ cut of meat +๐Ÿฅ“ bacon +๐Ÿ” hamburger +๐ŸŸ french fries +๐Ÿ• pizza +๐ŸŒญ hot dog +๐Ÿฅช sandwich +๐ŸŒฎ taco +๐ŸŒฏ burrito +๐Ÿฅ™ stuffed flatbread +๐Ÿฅš egg +๐Ÿณ cooking +๐Ÿฅ˜ shallow pan of food +๐Ÿฒ pot of food +๐Ÿฅฃ bowl with spoon +๐Ÿฅ— green salad +๐Ÿฟ popcorn +๐Ÿง‚ salt +๐Ÿฅซ canned food +๐Ÿฑ bento box +๐Ÿ˜ rice cracker +๐Ÿ™ rice ball +๐Ÿš cooked rice +๐Ÿ› curry rice +๐Ÿœ steaming bowl +๐Ÿ spaghetti +๐Ÿ  roasted sweet potato +๐Ÿข oden +๐Ÿฃ sushi +๐Ÿค fried shrimp +๐Ÿฅ fish cake with swirl +๐Ÿฅฎ moon cake +๐Ÿก dango +๐ŸฅŸ dumpling +๐Ÿฅ  fortune cookie +๐Ÿฅก takeout box +๐Ÿฆ soft ice cream +๐Ÿง shaved ice +๐Ÿจ ice cream +๐Ÿฉ doughnut +๐Ÿช cookie +๐ŸŽ‚ birthday cake +๐Ÿฐ shortcake +๐Ÿง cupcake +๐Ÿฅง pie +๐Ÿซ chocolate bar +๐Ÿฌ candy +๐Ÿญ lollipop +๐Ÿฎ custard +๐Ÿฏ honey pot +๐Ÿผ baby bottle +๐Ÿฅ› glass of milk +โ˜• hot beverage +๐Ÿต teacup without handle +๐Ÿถ sake +๐Ÿพ bottle with popping cork +๐Ÿท wine glass +๐Ÿธ cocktail glass +๐Ÿน tropical drink +๐Ÿบ beer mug +๐Ÿป clinking beer mugs +๐Ÿฅ‚ clinking glasses +๐Ÿฅƒ tumbler glass +๐Ÿฅค cup with straw +๐Ÿฅข chopsticks +๐Ÿฝ๏ธ fork and knife with plate +๐Ÿฝ fork and knife with plate +๐Ÿด fork and knife +๐Ÿฅ„ spoon +๐Ÿ”ช kitchen knife +๐Ÿบ amphora +๐ŸŒ globe showing Europe-Africa +๐ŸŒŽ globe showing Americas +๐ŸŒ globe showing Asia-Australia +๐ŸŒ globe with meridians +๐Ÿ—บ๏ธ world map +๐Ÿ—บ world map +๐Ÿ—พ map of Japan +๐Ÿงญ compass +๐Ÿ”๏ธ snow-capped mountain +๐Ÿ” snow-capped mountain +โ›ฐ๏ธ mountain +โ›ฐ mountain +๐ŸŒ‹ volcano +๐Ÿ—ป mount fuji +๐Ÿ•๏ธ camping +๐Ÿ• camping +๐Ÿ–๏ธ beach with umbrella +๐Ÿ– beach with umbrella +๐Ÿœ๏ธ desert +๐Ÿœ desert +๐Ÿ๏ธ desert island +๐Ÿ desert island +๐Ÿž๏ธ national park +๐Ÿž national park +๐ŸŸ๏ธ stadium +๐ŸŸ stadium +๐Ÿ›๏ธ classical building +๐Ÿ› classical building +๐Ÿ—๏ธ building construction +๐Ÿ— building construction +๐Ÿงฑ bricks +๐Ÿ˜๏ธ houses +๐Ÿ˜ houses +๐Ÿš๏ธ derelict house +๐Ÿš derelict house +๐Ÿ  house +๐Ÿก house with garden +๐Ÿข office building +๐Ÿฃ Japanese post office +๐Ÿค post office +๐Ÿฅ hospital +๐Ÿฆ bank +๐Ÿจ hotel +๐Ÿฉ love hotel +๐Ÿช convenience store +๐Ÿซ school +๐Ÿฌ department store +๐Ÿญ factory +๐Ÿฏ Japanese castle +๐Ÿฐ castle +๐Ÿ’’ wedding +๐Ÿ—ผ Tokyo tower +๐Ÿ—ฝ Statue of Liberty +โ›ช church +๐Ÿ•Œ mosque +๐Ÿ• synagogue +โ›ฉ๏ธ shinto shrine +โ›ฉ shinto shrine +๐Ÿ•‹ kaaba +โ›ฒ fountain +โ›บ tent +๐ŸŒ foggy +๐ŸŒƒ night with stars +๐Ÿ™๏ธ cityscape +๐Ÿ™ cityscape +๐ŸŒ„ sunrise over mountains +๐ŸŒ… sunrise +๐ŸŒ† cityscape at dusk +๐ŸŒ‡ sunset +๐ŸŒ‰ bridge at night +โ™จ๏ธ hot springs +โ™จ hot springs +๐ŸŒŒ milky way +๐ŸŽ  carousel horse +๐ŸŽก ferris wheel +๐ŸŽข roller coaster +๐Ÿ’ˆ barber pole +๐ŸŽช circus tent +๐Ÿš‚ locomotive +๐Ÿšƒ railway car +๐Ÿš„ high-speed train +๐Ÿš… bullet train +๐Ÿš† train +๐Ÿš‡ metro +๐Ÿšˆ light rail +๐Ÿš‰ station +๐ŸšŠ tram +๐Ÿš monorail +๐Ÿšž mountain railway +๐Ÿš‹ tram car +๐ŸšŒ bus +๐Ÿš oncoming bus +๐ŸšŽ trolleybus +๐Ÿš minibus +๐Ÿš‘ ambulance +๐Ÿš’ fire engine +๐Ÿš“ police car +๐Ÿš” oncoming police car +๐Ÿš• taxi +๐Ÿš– oncoming taxi +๐Ÿš— automobile +๐Ÿš˜ oncoming automobile +๐Ÿš™ sport utility vehicle +๐Ÿšš delivery truck +๐Ÿš› articulated lorry +๐Ÿšœ tractor +๐Ÿšฒ bicycle +๐Ÿ›ด kick scooter +๐Ÿ›น skateboard +๐Ÿ›ต motor scooter +๐Ÿš bus stop +๐Ÿ›ฃ๏ธ motorway +๐Ÿ›ฃ motorway +๐Ÿ›ค๏ธ railway track +๐Ÿ›ค railway track +๐Ÿ›ข๏ธ oil drum +๐Ÿ›ข oil drum +โ›ฝ fuel pump +๐Ÿšจ police car light +๐Ÿšฅ horizontal traffic light +๐Ÿšฆ vertical traffic light +๐Ÿ›‘ stop sign +๐Ÿšง construction +โš“ anchor +โ›ต sailboat +๐Ÿ›ถ canoe +๐Ÿšค speedboat +๐Ÿ›ณ๏ธ passenger ship +๐Ÿ›ณ passenger ship +โ›ด๏ธ ferry +โ›ด ferry +๐Ÿ›ฅ๏ธ motor boat +๐Ÿ›ฅ motor boat +๐Ÿšข ship +โœˆ๏ธ airplane +โœˆ airplane +๐Ÿ›ฉ๏ธ small airplane +๐Ÿ›ฉ small airplane +๐Ÿ›ซ airplane departure +๐Ÿ›ฌ airplane arrival +๐Ÿ’บ seat +๐Ÿš helicopter +๐ŸšŸ suspension railway +๐Ÿš  mountain cableway +๐Ÿšก aerial tramway +๐Ÿ›ฐ๏ธ satellite +๐Ÿ›ฐ satellite +๐Ÿš€ rocket +๐Ÿ›ธ flying saucer +๐Ÿ›Ž๏ธ bellhop bell +๐Ÿ›Ž bellhop bell +๐Ÿงณ luggage +โŒ› hourglass done +โณ hourglass not done +โŒš watch +โฐ alarm clock +โฑ๏ธ stopwatch +โฑ stopwatch +โฒ๏ธ timer clock +โฒ timer clock +๐Ÿ•ฐ๏ธ mantelpiece clock +๐Ÿ•ฐ mantelpiece clock +๐Ÿ•› twelve oโ€™clock +๐Ÿ•ง twelve-thirty +๐Ÿ• one oโ€™clock +๐Ÿ•œ one-thirty +๐Ÿ•‘ two oโ€™clock +๐Ÿ• two-thirty +๐Ÿ•’ three oโ€™clock +๐Ÿ•ž three-thirty +๐Ÿ•“ four oโ€™clock +๐Ÿ•Ÿ four-thirty +๐Ÿ•” five oโ€™clock +๐Ÿ•  five-thirty +๐Ÿ•• six oโ€™clock +๐Ÿ•ก six-thirty +๐Ÿ•– seven oโ€™clock +๐Ÿ•ข seven-thirty +๐Ÿ•— eight oโ€™clock +๐Ÿ•ฃ eight-thirty +๐Ÿ•˜ nine oโ€™clock +๐Ÿ•ค nine-thirty +๐Ÿ•™ ten oโ€™clock +๐Ÿ•ฅ ten-thirty +๐Ÿ•š eleven oโ€™clock +๐Ÿ•ฆ eleven-thirty +๐ŸŒ‘ new moon +๐ŸŒ’ waxing crescent moon +๐ŸŒ“ first quarter moon +๐ŸŒ” waxing gibbous moon +๐ŸŒ• full moon +๐ŸŒ– waning gibbous moon +๐ŸŒ— last quarter moon +๐ŸŒ˜ waning crescent moon +๐ŸŒ™ crescent moon +๐ŸŒš new moon face +๐ŸŒ› first quarter moon face +๐ŸŒœ last quarter moon face +๐ŸŒก๏ธ thermometer +๐ŸŒก thermometer +โ˜€๏ธ sun +โ˜€ sun +๐ŸŒ full moon face +๐ŸŒž sun with face +โญ star +๐ŸŒŸ glowing star +๐ŸŒ  shooting star +โ˜๏ธ cloud +โ˜ cloud +โ›… sun behind cloud +โ›ˆ๏ธ cloud with lightning and rain +โ›ˆ cloud with lightning and rain +๐ŸŒค๏ธ sun behind small cloud +๐ŸŒค sun behind small cloud +๐ŸŒฅ๏ธ sun behind large cloud +๐ŸŒฅ sun behind large cloud +๐ŸŒฆ๏ธ sun behind rain cloud +๐ŸŒฆ sun behind rain cloud +๐ŸŒง๏ธ cloud with rain +๐ŸŒง cloud with rain +๐ŸŒจ๏ธ cloud with snow +๐ŸŒจ cloud with snow +๐ŸŒฉ๏ธ cloud with lightning +๐ŸŒฉ cloud with lightning +๐ŸŒช๏ธ tornado +๐ŸŒช tornado +๐ŸŒซ๏ธ fog +๐ŸŒซ fog +๐ŸŒฌ๏ธ wind face +๐ŸŒฌ wind face +๐ŸŒ€ cyclone +๐ŸŒˆ rainbow +๐ŸŒ‚ closed umbrella +โ˜‚๏ธ umbrella +โ˜‚ umbrella +โ˜” umbrella with rain drops +โ›ฑ๏ธ umbrella on ground +โ›ฑ umbrella on ground +โšก high voltage +โ„๏ธ snowflake +โ„ snowflake +โ˜ƒ๏ธ snowman +โ˜ƒ snowman +โ›„ snowman without snow +โ˜„๏ธ comet +โ˜„ comet +๐Ÿ”ฅ fire +๐Ÿ’ง droplet +๐ŸŒŠ water wave +๐ŸŽƒ jack-o-lantern +๐ŸŽ„ Christmas tree +๐ŸŽ† fireworks +๐ŸŽ‡ sparkler +๐Ÿงจ firecracker +โœจ sparkles +๐ŸŽˆ balloon +๐ŸŽ‰ party popper +๐ŸŽŠ confetti ball +๐ŸŽ‹ tanabata tree +๐ŸŽ pine decoration +๐ŸŽŽ Japanese dolls +๐ŸŽ carp streamer +๐ŸŽ wind chime +๐ŸŽ‘ moon viewing ceremony +๐Ÿงง red envelope +๐ŸŽ€ ribbon +๐ŸŽ wrapped gift +๐ŸŽ—๏ธ reminder ribbon +๐ŸŽ— reminder ribbon +๐ŸŽŸ๏ธ admission tickets +๐ŸŽŸ admission tickets +๐ŸŽซ ticket +๐ŸŽ–๏ธ military medal +๐ŸŽ– military medal +๐Ÿ† trophy +๐Ÿ… sports medal +๐Ÿฅ‡ 1st place medal +๐Ÿฅˆ 2nd place medal +๐Ÿฅ‰ 3rd place medal +โšฝ soccer ball +โšพ baseball +๐ŸฅŽ softball +๐Ÿ€ basketball +๐Ÿ volleyball +๐Ÿˆ american football +๐Ÿ‰ rugby football +๐ŸŽพ tennis +๐Ÿฅ flying disc +๐ŸŽณ bowling +๐Ÿ cricket game +๐Ÿ‘ field hockey +๐Ÿ’ ice hockey +๐Ÿฅ lacrosse +๐Ÿ“ ping pong +๐Ÿธ badminton +๐ŸฅŠ boxing glove +๐Ÿฅ‹ martial arts uniform +๐Ÿฅ… goal net +โ›ณ flag in hole +โ›ธ๏ธ ice skate +โ›ธ ice skate +๐ŸŽฃ fishing pole +๐ŸŽฝ running shirt +๐ŸŽฟ skis +๐Ÿ›ท sled +๐ŸฅŒ curling stone +๐ŸŽฏ direct hit +๐ŸŽฑ pool 8 ball +๐Ÿ”ฎ crystal ball +๐Ÿงฟ nazar amulet +๐ŸŽฎ video game +๐Ÿ•น๏ธ joystick +๐Ÿ•น joystick +๐ŸŽฐ slot machine +๐ŸŽฒ game die +๐Ÿงฉ jigsaw +๐Ÿงธ teddy bear +โ™ ๏ธ spade suit +โ™  spade suit +โ™ฅ๏ธ heart suit +โ™ฅ heart suit +โ™ฆ๏ธ diamond suit +โ™ฆ diamond suit +โ™ฃ๏ธ club suit +โ™ฃ club suit +โ™Ÿ๏ธ chess pawn +โ™Ÿ chess pawn +๐Ÿƒ joker +๐Ÿ€„ mahjong red dragon +๐ŸŽด flower playing cards +๐ŸŽญ performing arts +๐Ÿ–ผ๏ธ framed picture +๐Ÿ–ผ framed picture +๐ŸŽจ artist palette +๐Ÿงต thread +๐Ÿงถ yarn +๐Ÿ”‡ muted speaker +๐Ÿ”ˆ speaker low volume +๐Ÿ”‰ speaker medium volume +๐Ÿ”Š speaker high volume +๐Ÿ“ข loudspeaker +๐Ÿ“ฃ megaphone +๐Ÿ“ฏ postal horn +๐Ÿ”” bell +๐Ÿ”• bell with slash +๐ŸŽผ musical score +๐ŸŽต musical note +๐ŸŽถ musical notes +๐ŸŽ™๏ธ studio microphone +๐ŸŽ™ studio microphone +๐ŸŽš๏ธ level slider +๐ŸŽš level slider +๐ŸŽ›๏ธ control knobs +๐ŸŽ› control knobs +๐ŸŽค microphone +๐ŸŽง headphone +๐Ÿ“ป radio +๐ŸŽท saxophone +๐ŸŽธ guitar +๐ŸŽน musical keyboard +๐ŸŽบ trumpet +๐ŸŽป violin +๐Ÿฅ drum +๐Ÿ“ฑ mobile phone +๐Ÿ“ฒ mobile phone with arrow +โ˜Ž๏ธ telephone +โ˜Ž telephone +๐Ÿ“ž telephone receiver +๐Ÿ“Ÿ pager +๐Ÿ“  fax machine +๐Ÿ”‹ battery +๐Ÿ”Œ electric plug +๐Ÿ’ป laptop computer +๐Ÿ–ฅ๏ธ desktop computer +๐Ÿ–ฅ desktop computer +๐Ÿ–จ๏ธ printer +๐Ÿ–จ printer +โŒจ๏ธ keyboard +โŒจ keyboard +๐Ÿ–ฑ๏ธ computer mouse +๐Ÿ–ฑ computer mouse +๐Ÿ–ฒ๏ธ trackball +๐Ÿ–ฒ trackball +๐Ÿ’ฝ computer disk +๐Ÿ’พ floppy disk +๐Ÿ’ฟ optical disk +๐Ÿ“€ dvd +๐Ÿงฎ abacus +๐ŸŽฅ movie camera +๐ŸŽž๏ธ film frames +๐ŸŽž film frames +๐Ÿ“ฝ๏ธ film projector +๐Ÿ“ฝ film projector +๐ŸŽฌ clapper board +๐Ÿ“บ television +๐Ÿ“ท camera +๐Ÿ“ธ camera with flash +๐Ÿ“น video camera +๐Ÿ“ผ videocassette +๐Ÿ” magnifying glass tilted left +๐Ÿ”Ž magnifying glass tilted right +๐Ÿ•ฏ๏ธ candle +๐Ÿ•ฏ candle +๐Ÿ’ก light bulb +๐Ÿ”ฆ flashlight +๐Ÿฎ red paper lantern +๐Ÿ“” notebook with decorative cover +๐Ÿ“• closed book +๐Ÿ“– open book +๐Ÿ“— green book +๐Ÿ“˜ blue book +๐Ÿ“™ orange book +๐Ÿ“š books +๐Ÿ““ notebook +๐Ÿ“’ ledger +๐Ÿ“ƒ page with curl +๐Ÿ“œ scroll +๐Ÿ“„ page facing up +๐Ÿ“ฐ newspaper +๐Ÿ—ž๏ธ rolled-up newspaper +๐Ÿ—ž rolled-up newspaper +๐Ÿ“‘ bookmark tabs +๐Ÿ”– bookmark +๐Ÿท๏ธ label +๐Ÿท label +๐Ÿ’ฐ money bag +๐Ÿ’ด yen banknote +๐Ÿ’ต dollar banknote +๐Ÿ’ถ euro banknote +๐Ÿ’ท pound banknote +๐Ÿ’ธ money with wings +๐Ÿ’ณ credit card +๐Ÿงพ receipt +๐Ÿ’น chart increasing with yen +๐Ÿ’ฑ currency exchange +๐Ÿ’ฒ heavy dollar sign +โœ‰๏ธ envelope +โœ‰ envelope +๐Ÿ“ง e-mail +๐Ÿ“จ incoming envelope +๐Ÿ“ฉ envelope with arrow +๐Ÿ“ค outbox tray +๐Ÿ“ฅ inbox tray +๐Ÿ“ฆ package +๐Ÿ“ซ closed mailbox with raised flag +๐Ÿ“ช closed mailbox with lowered flag +๐Ÿ“ฌ open mailbox with raised flag +๐Ÿ“ญ open mailbox with lowered flag +๐Ÿ“ฎ postbox +๐Ÿ—ณ๏ธ ballot box with ballot +๐Ÿ—ณ ballot box with ballot +โœ๏ธ pencil +โœ pencil +โœ’๏ธ black nib +โœ’ black nib +๐Ÿ–‹๏ธ fountain pen +๐Ÿ–‹ fountain pen +๐Ÿ–Š๏ธ pen +๐Ÿ–Š pen +๐Ÿ–Œ๏ธ paintbrush +๐Ÿ–Œ paintbrush +๐Ÿ–๏ธ crayon +๐Ÿ– crayon +๐Ÿ“ memo +๐Ÿ’ผ briefcase +๐Ÿ“ file folder +๐Ÿ“‚ open file folder +๐Ÿ—‚๏ธ card index dividers +๐Ÿ—‚ card index dividers +๐Ÿ“… calendar +๐Ÿ“† tear-off calendar +๐Ÿ—’๏ธ spiral notepad +๐Ÿ—’ spiral notepad +๐Ÿ—“๏ธ spiral calendar +๐Ÿ—“ spiral calendar +๐Ÿ“‡ card index +๐Ÿ“ˆ chart increasing +๐Ÿ“‰ chart decreasing +๐Ÿ“Š bar chart +๐Ÿ“‹ clipboard +๐Ÿ“Œ pushpin +๐Ÿ“ round pushpin +๐Ÿ“Ž paperclip +๐Ÿ–‡๏ธ linked paperclips +๐Ÿ–‡ linked paperclips +๐Ÿ“ straight ruler +๐Ÿ“ triangular ruler +โœ‚๏ธ scissors +โœ‚ scissors +๐Ÿ—ƒ๏ธ card file box +๐Ÿ—ƒ card file box +๐Ÿ—„๏ธ file cabinet +๐Ÿ—„ file cabinet +๐Ÿ—‘๏ธ wastebasket +๐Ÿ—‘ wastebasket +๐Ÿ”’ locked +๐Ÿ”“ unlocked +๐Ÿ” locked with pen +๐Ÿ” locked with key +๐Ÿ”‘ key +๐Ÿ—๏ธ old key +๐Ÿ— old key +๐Ÿ”จ hammer +โ›๏ธ pick +โ› pick +โš’๏ธ hammer and pick +โš’ hammer and pick +๐Ÿ› ๏ธ hammer and wrench +๐Ÿ›  hammer and wrench +๐Ÿ—ก๏ธ dagger +๐Ÿ—ก dagger +โš”๏ธ crossed swords +โš” crossed swords +๐Ÿ”ซ pistol +๐Ÿน bow and arrow +๐Ÿ›ก๏ธ shield +๐Ÿ›ก shield +๐Ÿ”ง wrench +๐Ÿ”ฉ nut and bolt +โš™๏ธ gear +โš™ gear +๐Ÿ—œ๏ธ clamp +๐Ÿ—œ clamp +โš–๏ธ balance scale +โš– balance scale +๐Ÿ”— link +โ›“๏ธ chains +โ›“ chains +๐Ÿงฐ toolbox +๐Ÿงฒ magnet +โš—๏ธ alembic +โš— alembic +๐Ÿงช test tube +๐Ÿงซ petri dish +๐Ÿงฌ dna +๐Ÿ”ฌ microscope +๐Ÿ”ญ telescope +๐Ÿ“ก satellite antenna +๐Ÿ’‰ syringe +๐Ÿ’Š pill +๐Ÿšช door +๐Ÿ›๏ธ bed +๐Ÿ› bed +๐Ÿ›‹๏ธ couch and lamp +๐Ÿ›‹ couch and lamp +๐Ÿšฝ toilet +๐Ÿšฟ shower +๐Ÿ› bathtub +๐Ÿงด lotion bottle +๐Ÿงท safety pin +๐Ÿงน broom +๐Ÿงบ basket +๐Ÿงป roll of paper +๐Ÿงผ soap +๐Ÿงฝ sponge +๐Ÿงฏ fire extinguisher +๐Ÿ›’ shopping cart +๐Ÿšฌ cigarette +โšฐ๏ธ coffin +โšฐ coffin +โšฑ๏ธ funeral urn +โšฑ funeral urn +๐Ÿ—ฟ moai +๐Ÿง ATM sign +๐Ÿšฎ litter in bin sign +๐Ÿšฐ potable water +โ™ฟ wheelchair symbol +๐Ÿšน menโ€™s room +๐Ÿšบ womenโ€™s room +๐Ÿšป restroom +๐Ÿšผ baby symbol +๐Ÿšพ water closet +๐Ÿ›‚ passport control +๐Ÿ›ƒ customs +๐Ÿ›„ baggage claim +๐Ÿ›… left luggage +โš ๏ธ warning +โš  warning +๐Ÿšธ children crossing +โ›” no entry +๐Ÿšซ prohibited +๐Ÿšณ no bicycles +๐Ÿšญ no smoking +๐Ÿšฏ no littering +๐Ÿšฑ non-potable water +๐Ÿšท no pedestrians +๐Ÿ“ต no mobile phones +๐Ÿ”ž no one under eighteen +โ˜ข๏ธ radioactive +โ˜ข radioactive +โ˜ฃ๏ธ biohazard +โ˜ฃ biohazard +โฌ†๏ธ up arrow +โฌ† up arrow +โ†—๏ธ up-right arrow +โ†— up-right arrow +โžก๏ธ right arrow +โžก right arrow +โ†˜๏ธ down-right arrow +โ†˜ down-right arrow +โฌ‡๏ธ down arrow +โฌ‡ down arrow +โ†™๏ธ down-left arrow +โ†™ down-left arrow +โฌ…๏ธ left arrow +โฌ… left arrow +โ†–๏ธ up-left arrow +โ†– up-left arrow +โ†•๏ธ up-down arrow +โ†• up-down arrow +โ†”๏ธ left-right arrow +โ†” left-right arrow +โ†ฉ๏ธ right arrow curving left +โ†ฉ right arrow curving left +โ†ช๏ธ left arrow curving right +โ†ช left arrow curving right +โคด๏ธ right arrow curving up +โคด right arrow curving up +โคต๏ธ right arrow curving down +โคต right arrow curving down +๐Ÿ”ƒ clockwise vertical arrows +๐Ÿ”„ counterclockwise arrows button +๐Ÿ”™ BACK arrow +๐Ÿ”š END arrow +๐Ÿ”› ON! arrow +๐Ÿ”œ SOON arrow +๐Ÿ” TOP arrow +๐Ÿ› place of worship +โš›๏ธ atom symbol +โš› atom symbol +๐Ÿ•‰๏ธ om +๐Ÿ•‰ om +โœก๏ธ star of David +โœก star of David +โ˜ธ๏ธ wheel of dharma +โ˜ธ wheel of dharma +โ˜ฏ๏ธ yin yang +โ˜ฏ yin yang +โœ๏ธ latin cross +โœ latin cross +โ˜ฆ๏ธ orthodox cross +โ˜ฆ orthodox cross +โ˜ช๏ธ star and crescent +โ˜ช star and crescent +โ˜ฎ๏ธ peace symbol +โ˜ฎ peace symbol +๐Ÿ•Ž menorah +๐Ÿ”ฏ dotted six-pointed star +โ™ˆ Aries +โ™‰ Taurus +โ™Š Gemini +โ™‹ Cancer +โ™Œ Leo +โ™ Virgo +โ™Ž Libra +โ™ Scorpio +โ™ Sagittarius +โ™‘ Capricorn +โ™’ Aquarius +โ™“ Pisces +โ›Ž Ophiuchus +๐Ÿ”€ shuffle tracks button +๐Ÿ” repeat button +๐Ÿ”‚ repeat single button +โ–ถ๏ธ play button +โ–ถ play button +โฉ fast-forward button +โญ๏ธ next track button +โญ next track button +โฏ๏ธ play or pause button +โฏ play or pause button +โ—€๏ธ reverse button +โ—€ reverse button +โช fast reverse button +โฎ๏ธ last track button +โฎ last track button +๐Ÿ”ผ upwards button +โซ fast up button +๐Ÿ”ฝ downwards button +โฌ fast down button +โธ๏ธ pause button +โธ pause button +โน๏ธ stop button +โน stop button +โบ๏ธ record button +โบ record button +โ๏ธ eject button +โ eject button +๐ŸŽฆ cinema +๐Ÿ”… dim button +๐Ÿ”† bright button +๐Ÿ“ถ antenna bars +๐Ÿ“ณ vibration mode +๐Ÿ“ด mobile phone off +โ™€๏ธ female sign +โ™€ female sign +โ™‚๏ธ male sign +โ™‚ male sign +โš•๏ธ medical symbol +โš• medical symbol +โ™พ๏ธ infinity +โ™พ infinity +โ™ป๏ธ recycling symbol +โ™ป recycling symbol +โšœ๏ธ fleur-de-lis +โšœ fleur-de-lis +๐Ÿ”ฑ trident emblem +๐Ÿ“› name badge +๐Ÿ”ฐ Japanese symbol for beginner +โญ• heavy large circle +โœ… white heavy check mark +โ˜‘๏ธ ballot box with check +โ˜‘ ballot box with check +โœ”๏ธ heavy check mark +โœ” heavy check mark +โœ–๏ธ heavy multiplication x +โœ– heavy multiplication x +โŒ cross mark +โŽ cross mark button +โž• heavy plus sign +โž– heavy minus sign +โž— heavy division sign +โžฐ curly loop +โžฟ double curly loop +ใ€ฝ๏ธ part alternation mark +ใ€ฝ part alternation mark +โœณ๏ธ eight-spoked asterisk +โœณ eight-spoked asterisk +โœด๏ธ eight-pointed star +โœด eight-pointed star +โ‡๏ธ sparkle +โ‡ sparkle +โ€ผ๏ธ double exclamation mark +โ€ผ double exclamation mark +โ‰๏ธ exclamation question mark +โ‰ exclamation question mark +โ“ question mark +โ” white question mark +โ• white exclamation mark +โ— exclamation mark +ใ€ฐ๏ธ wavy dash +ใ€ฐ wavy dash +ยฉ๏ธ copyright +ยฉ copyright +ยฎ๏ธ registered +ยฎ registered +โ„ข๏ธ trade mark +โ„ข trade mark +#๏ธโƒฃ keycap: # +#โƒฃ keycap: # +*๏ธโƒฃ keycap: * +*โƒฃ keycap: * +0๏ธโƒฃ keycap: 0 +0โƒฃ keycap: 0 +1๏ธโƒฃ keycap: 1 +1โƒฃ keycap: 1 +2๏ธโƒฃ keycap: 2 +2โƒฃ keycap: 2 +3๏ธโƒฃ keycap: 3 +3โƒฃ keycap: 3 +4๏ธโƒฃ keycap: 4 +4โƒฃ keycap: 4 +5๏ธโƒฃ keycap: 5 +5โƒฃ keycap: 5 +6๏ธโƒฃ keycap: 6 +6โƒฃ keycap: 6 +7๏ธโƒฃ keycap: 7 +7โƒฃ keycap: 7 +8๏ธโƒฃ keycap: 8 +8โƒฃ keycap: 8 +9๏ธโƒฃ keycap: 9 +9โƒฃ keycap: 9 +๐Ÿ”Ÿ keycap: 10 +๐Ÿ’ฏ hundred points +๐Ÿ”  input latin uppercase +๐Ÿ”ก input latin lowercase +๐Ÿ”ข input numbers +๐Ÿ”ฃ input symbols +๐Ÿ”ค input latin letters +๐Ÿ…ฐ๏ธ A button (blood type) +๐Ÿ…ฐ A button (blood type) +๐Ÿ†Ž AB button (blood type) +๐Ÿ…ฑ๏ธ B button (blood type) +๐Ÿ…ฑ B button (blood type) +๐Ÿ†‘ CL button +๐Ÿ†’ COOL button +๐Ÿ†“ FREE button +โ„น๏ธ information +โ„น information +๐Ÿ†” ID button +โ“‚๏ธ circled M +โ“‚ circled M +๐Ÿ†• NEW button +๐Ÿ†– NG button +๐Ÿ…พ๏ธ O button (blood type) +๐Ÿ…พ O button (blood type) +๐Ÿ†— OK button +๐Ÿ…ฟ๏ธ P button +๐Ÿ…ฟ P button +๐Ÿ†˜ SOS button +๐Ÿ†™ UP! button +๐Ÿ†š VS button +๐Ÿˆ Japanese โ€œhereโ€ button +๐Ÿˆ‚๏ธ Japanese โ€œservice chargeโ€ button +๐Ÿˆ‚ Japanese โ€œservice chargeโ€ button +๐Ÿˆท๏ธ Japanese โ€œmonthly amountโ€ button +๐Ÿˆท Japanese โ€œmonthly amountโ€ button +๐Ÿˆถ Japanese โ€œnot free of chargeโ€ button +๐Ÿˆฏ Japanese โ€œreservedโ€ button +๐Ÿ‰ Japanese โ€œbargainโ€ button +๐Ÿˆน Japanese โ€œdiscountโ€ button +๐Ÿˆš Japanese โ€œfree of chargeโ€ button +๐Ÿˆฒ Japanese โ€œprohibitedโ€ button +๐Ÿ‰‘ Japanese โ€œacceptableโ€ button +๐Ÿˆธ Japanese โ€œapplicationโ€ button +๐Ÿˆด Japanese โ€œpassing gradeโ€ button +๐Ÿˆณ Japanese โ€œvacancyโ€ button +ใŠ—๏ธ Japanese โ€œcongratulationsโ€ button +ใŠ— Japanese โ€œcongratulationsโ€ button +ใŠ™๏ธ Japanese โ€œsecretโ€ button +ใŠ™ Japanese โ€œsecretโ€ button +๐Ÿˆบ Japanese โ€œopen for businessโ€ button +๐Ÿˆต Japanese โ€œno vacancyโ€ button +โ–ช๏ธ black small square +โ–ช black small square +โ–ซ๏ธ white small square +โ–ซ white small square +โ—ป๏ธ white medium square +โ—ป white medium square +โ—ผ๏ธ black medium square +โ—ผ black medium square +โ—ฝ white medium-small square +โ—พ black medium-small square +โฌ› black large square +โฌœ white large square +๐Ÿ”ถ large orange diamond +๐Ÿ”ท large blue diamond +๐Ÿ”ธ small orange diamond +๐Ÿ”น small blue diamond +๐Ÿ”บ red triangle pointed up +๐Ÿ”ป red triangle pointed down +๐Ÿ’  diamond with a dot +๐Ÿ”˜ radio button +๐Ÿ”ฒ black square button +๐Ÿ”ณ white square button +โšช white circle +โšซ black circle +๐Ÿ”ด red circle +๐Ÿ”ต blue circle +๐Ÿ chequered flag +๐Ÿšฉ triangular flag +๐ŸŽŒ crossed flags +๐Ÿด black flag +๐Ÿณ๏ธ white flag +๐Ÿณ white flag +๐Ÿณ๏ธโ€๐ŸŒˆ rainbow flag +๐Ÿณโ€๐ŸŒˆ rainbow flag +๐Ÿดโ€โ˜ ๏ธ pirate flag +๐Ÿดโ€โ˜  pirate flag +๐Ÿ‡ฆ๐Ÿ‡จ Ascension Island +๐Ÿ‡ฆ๐Ÿ‡ฉ Andorra +๐Ÿ‡ฆ๐Ÿ‡ช United Arab Emirates +๐Ÿ‡ฆ๐Ÿ‡ซ Afghanistan +๐Ÿ‡ฆ๐Ÿ‡ฌ Antigua & Barbuda +๐Ÿ‡ฆ๐Ÿ‡ฎ Anguilla +๐Ÿ‡ฆ๐Ÿ‡ฑ Albania +๐Ÿ‡ฆ๐Ÿ‡ฒ Armenia +๐Ÿ‡ฆ๐Ÿ‡ด Angola +๐Ÿ‡ฆ๐Ÿ‡ถ Antarctica +๐Ÿ‡ฆ๐Ÿ‡ท Argentina +๐Ÿ‡ฆ๐Ÿ‡ธ American Samoa +๐Ÿ‡ฆ๐Ÿ‡น Austria +๐Ÿ‡ฆ๐Ÿ‡บ Australia +๐Ÿ‡ฆ๐Ÿ‡ผ Aruba +๐Ÿ‡ฆ๐Ÿ‡ฝ ร…land Islands +๐Ÿ‡ฆ๐Ÿ‡ฟ Azerbaijan +๐Ÿ‡ง๐Ÿ‡ฆ Bosnia & Herzegovina +๐Ÿ‡ง๐Ÿ‡ง Barbados +๐Ÿ‡ง๐Ÿ‡ฉ Bangladesh +๐Ÿ‡ง๐Ÿ‡ช Belgium +๐Ÿ‡ง๐Ÿ‡ซ Burkina Faso +๐Ÿ‡ง๐Ÿ‡ฌ Bulgaria +๐Ÿ‡ง๐Ÿ‡ญ Bahrain +๐Ÿ‡ง๐Ÿ‡ฎ Burundi +๐Ÿ‡ง๐Ÿ‡ฏ Benin +๐Ÿ‡ง๐Ÿ‡ฑ St. Barthรฉlemy +๐Ÿ‡ง๐Ÿ‡ฒ Bermuda +๐Ÿ‡ง๐Ÿ‡ณ Brunei +๐Ÿ‡ง๐Ÿ‡ด Bolivia +๐Ÿ‡ง๐Ÿ‡ถ Caribbean Netherlands +๐Ÿ‡ง๐Ÿ‡ท Brazil +๐Ÿ‡ง๐Ÿ‡ธ Bahamas +๐Ÿ‡ง๐Ÿ‡น Bhutan +๐Ÿ‡ง๐Ÿ‡ป Bouvet Island +๐Ÿ‡ง๐Ÿ‡ผ Botswana +๐Ÿ‡ง๐Ÿ‡พ Belarus +๐Ÿ‡ง๐Ÿ‡ฟ Belize +๐Ÿ‡จ๐Ÿ‡ฆ Canada +๐Ÿ‡จ๐Ÿ‡จ Cocos (Keeling) Islands +๐Ÿ‡จ๐Ÿ‡ฉ Congo - Kinshasa +๐Ÿ‡จ๐Ÿ‡ซ Central African Republic +๐Ÿ‡จ๐Ÿ‡ฌ Congo - Brazzaville +๐Ÿ‡จ๐Ÿ‡ญ Switzerland +๐Ÿ‡จ๐Ÿ‡ฎ Cรดte dโ€™Ivoire +๐Ÿ‡จ๐Ÿ‡ฐ Cook Islands +๐Ÿ‡จ๐Ÿ‡ฑ Chile +๐Ÿ‡จ๐Ÿ‡ฒ Cameroon +๐Ÿ‡จ๐Ÿ‡ณ China +๐Ÿ‡จ๐Ÿ‡ด Colombia +๐Ÿ‡จ๐Ÿ‡ต Clipperton Island +๐Ÿ‡จ๐Ÿ‡ท Costa Rica +๐Ÿ‡จ๐Ÿ‡บ Cuba +๐Ÿ‡จ๐Ÿ‡ป Cape Verde +๐Ÿ‡จ๐Ÿ‡ผ Curaรงao +๐Ÿ‡จ๐Ÿ‡ฝ Christmas Island +๐Ÿ‡จ๐Ÿ‡พ Cyprus +๐Ÿ‡จ๐Ÿ‡ฟ Czechia +๐Ÿ‡ฉ๐Ÿ‡ช Germany +๐Ÿ‡ฉ๐Ÿ‡ฌ Diego Garcia +๐Ÿ‡ฉ๐Ÿ‡ฏ Djibouti +๐Ÿ‡ฉ๐Ÿ‡ฐ Denmark +๐Ÿ‡ฉ๐Ÿ‡ฒ Dominica +๐Ÿ‡ฉ๐Ÿ‡ด Dominican Republic +๐Ÿ‡ฉ๐Ÿ‡ฟ Algeria +๐Ÿ‡ช๐Ÿ‡ฆ Ceuta & Melilla +๐Ÿ‡ช๐Ÿ‡จ Ecuador +๐Ÿ‡ช๐Ÿ‡ช Estonia +๐Ÿ‡ช๐Ÿ‡ฌ Egypt +๐Ÿ‡ช๐Ÿ‡ญ Western Sahara +๐Ÿ‡ช๐Ÿ‡ท Eritrea +๐Ÿ‡ช๐Ÿ‡ธ Spain +๐Ÿ‡ช๐Ÿ‡น Ethiopia +๐Ÿ‡ช๐Ÿ‡บ European Union +๐Ÿ‡ซ๐Ÿ‡ฎ Finland +๐Ÿ‡ซ๐Ÿ‡ฏ Fiji +๐Ÿ‡ซ๐Ÿ‡ฐ Falkland Islands +๐Ÿ‡ซ๐Ÿ‡ฒ Micronesia +๐Ÿ‡ซ๐Ÿ‡ด Faroe Islands +๐Ÿ‡ซ๐Ÿ‡ท France +๐Ÿ‡ฌ๐Ÿ‡ฆ Gabon +๐Ÿ‡ฌ๐Ÿ‡ง United Kingdom +๐Ÿ‡ฌ๐Ÿ‡ฉ Grenada +๐Ÿ‡ฌ๐Ÿ‡ช Georgia +๐Ÿ‡ฌ๐Ÿ‡ซ French Guiana +๐Ÿ‡ฌ๐Ÿ‡ฌ Guernsey +๐Ÿ‡ฌ๐Ÿ‡ญ Ghana +๐Ÿ‡ฌ๐Ÿ‡ฎ Gibraltar +๐Ÿ‡ฌ๐Ÿ‡ฑ Greenland +๐Ÿ‡ฌ๐Ÿ‡ฒ Gambia +๐Ÿ‡ฌ๐Ÿ‡ณ Guinea +๐Ÿ‡ฌ๐Ÿ‡ต Guadeloupe +๐Ÿ‡ฌ๐Ÿ‡ถ Equatorial Guinea +๐Ÿ‡ฌ๐Ÿ‡ท Greece +๐Ÿ‡ฌ๐Ÿ‡ธ South Georgia & South Sandwich Islands +๐Ÿ‡ฌ๐Ÿ‡น Guatemala +๐Ÿ‡ฌ๐Ÿ‡บ Guam +๐Ÿ‡ฌ๐Ÿ‡ผ Guinea-Bissau +๐Ÿ‡ฌ๐Ÿ‡พ Guyana +๐Ÿ‡ญ๐Ÿ‡ฐ Hong Kong SAR China +๐Ÿ‡ญ๐Ÿ‡ฒ Heard & McDonald Islands +๐Ÿ‡ญ๐Ÿ‡ณ Honduras +๐Ÿ‡ญ๐Ÿ‡ท Croatia +๐Ÿ‡ญ๐Ÿ‡น Haiti +๐Ÿ‡ญ๐Ÿ‡บ Hungary +๐Ÿ‡ฎ๐Ÿ‡จ Canary Islands +๐Ÿ‡ฎ๐Ÿ‡ฉ Indonesia +๐Ÿ‡ฎ๐Ÿ‡ช Ireland +๐Ÿ‡ฎ๐Ÿ‡ฑ Israel +๐Ÿ‡ฎ๐Ÿ‡ฒ Isle of Man +๐Ÿ‡ฎ๐Ÿ‡ณ India +๐Ÿ‡ฎ๐Ÿ‡ด British Indian Ocean Territory +๐Ÿ‡ฎ๐Ÿ‡ถ Iraq +๐Ÿ‡ฎ๐Ÿ‡ท Iran +๐Ÿ‡ฎ๐Ÿ‡ธ Iceland +๐Ÿ‡ฎ๐Ÿ‡น Italy +๐Ÿ‡ฏ๐Ÿ‡ช Jersey +๐Ÿ‡ฏ๐Ÿ‡ฒ Jamaica +๐Ÿ‡ฏ๐Ÿ‡ด Jordan +๐Ÿ‡ฏ๐Ÿ‡ต Japan +๐Ÿ‡ฐ๐Ÿ‡ช Kenya +๐Ÿ‡ฐ๐Ÿ‡ฌ Kyrgyzstan +๐Ÿ‡ฐ๐Ÿ‡ญ Cambodia +๐Ÿ‡ฐ๐Ÿ‡ฎ Kiribati +๐Ÿ‡ฐ๐Ÿ‡ฒ Comoros +๐Ÿ‡ฐ๐Ÿ‡ณ St. Kitts & Nevis +๐Ÿ‡ฐ๐Ÿ‡ต North Korea +๐Ÿ‡ฐ๐Ÿ‡ท South Korea +๐Ÿ‡ฐ๐Ÿ‡ผ Kuwait +๐Ÿ‡ฐ๐Ÿ‡พ Cayman Islands +๐Ÿ‡ฐ๐Ÿ‡ฟ Kazakhstan +๐Ÿ‡ฑ๐Ÿ‡ฆ Laos +๐Ÿ‡ฑ๐Ÿ‡ง Lebanon +๐Ÿ‡ฑ๐Ÿ‡จ St. Lucia +๐Ÿ‡ฑ๐Ÿ‡ฎ Liechtenstein +๐Ÿ‡ฑ๐Ÿ‡ฐ Sri Lanka +๐Ÿ‡ฑ๐Ÿ‡ท Liberia +๐Ÿ‡ฑ๐Ÿ‡ธ Lesotho +๐Ÿ‡ฑ๐Ÿ‡น Lithuania +๐Ÿ‡ฑ๐Ÿ‡บ Luxembourg +๐Ÿ‡ฑ๐Ÿ‡ป Latvia +๐Ÿ‡ฑ๐Ÿ‡พ Libya +๐Ÿ‡ฒ๐Ÿ‡ฆ Morocco +๐Ÿ‡ฒ๐Ÿ‡จ Monaco +๐Ÿ‡ฒ๐Ÿ‡ฉ Moldova +๐Ÿ‡ฒ๐Ÿ‡ช Montenegro +๐Ÿ‡ฒ๐Ÿ‡ซ St. Martin +๐Ÿ‡ฒ๐Ÿ‡ฌ Madagascar +๐Ÿ‡ฒ๐Ÿ‡ญ Marshall Islands +๐Ÿ‡ฒ๐Ÿ‡ฐ Macedonia +๐Ÿ‡ฒ๐Ÿ‡ฑ Mali +๐Ÿ‡ฒ๐Ÿ‡ฒ Myanmar (Burma) +๐Ÿ‡ฒ๐Ÿ‡ณ Mongolia +๐Ÿ‡ฒ๐Ÿ‡ด Macau SAR China +๐Ÿ‡ฒ๐Ÿ‡ต Northern Mariana Islands +๐Ÿ‡ฒ๐Ÿ‡ถ Martinique +๐Ÿ‡ฒ๐Ÿ‡ท Mauritania +๐Ÿ‡ฒ๐Ÿ‡ธ Montserrat +๐Ÿ‡ฒ๐Ÿ‡น Malta +๐Ÿ‡ฒ๐Ÿ‡บ Mauritius +๐Ÿ‡ฒ๐Ÿ‡ป Maldives +๐Ÿ‡ฒ๐Ÿ‡ผ Malawi +๐Ÿ‡ฒ๐Ÿ‡ฝ Mexico +๐Ÿ‡ฒ๐Ÿ‡พ Malaysia +๐Ÿ‡ฒ๐Ÿ‡ฟ Mozambique +๐Ÿ‡ณ๐Ÿ‡ฆ Namibia +๐Ÿ‡ณ๐Ÿ‡จ New Caledonia +๐Ÿ‡ณ๐Ÿ‡ช Niger +๐Ÿ‡ณ๐Ÿ‡ซ Norfolk Island +๐Ÿ‡ณ๐Ÿ‡ฌ Nigeria +๐Ÿ‡ณ๐Ÿ‡ฎ Nicaragua +๐Ÿ‡ณ๐Ÿ‡ฑ Netherlands +๐Ÿ‡ณ๐Ÿ‡ด Norway +๐Ÿ‡ณ๐Ÿ‡ต Nepal +๐Ÿ‡ณ๐Ÿ‡ท Nauru +๐Ÿ‡ณ๐Ÿ‡บ Niue +๐Ÿ‡ณ๐Ÿ‡ฟ New Zealand +๐Ÿ‡ด๐Ÿ‡ฒ Oman +๐Ÿ‡ต๐Ÿ‡ฆ Panama +๐Ÿ‡ต๐Ÿ‡ช Peru +๐Ÿ‡ต๐Ÿ‡ซ French Polynesia +๐Ÿ‡ต๐Ÿ‡ฌ Papua New Guinea +๐Ÿ‡ต๐Ÿ‡ญ Philippines +๐Ÿ‡ต๐Ÿ‡ฐ Pakistan +๐Ÿ‡ต๐Ÿ‡ฑ Poland +๐Ÿ‡ต๐Ÿ‡ฒ St. Pierre & Miquelon +๐Ÿ‡ต๐Ÿ‡ณ Pitcairn Islands +๐Ÿ‡ต๐Ÿ‡ท Puerto Rico +๐Ÿ‡ต๐Ÿ‡ธ Palestinian Territories +๐Ÿ‡ต๐Ÿ‡น Portugal +๐Ÿ‡ต๐Ÿ‡ผ Palau +๐Ÿ‡ต๐Ÿ‡พ Paraguay +๐Ÿ‡ถ๐Ÿ‡ฆ Qatar +๐Ÿ‡ท๐Ÿ‡ช Rรฉunion +๐Ÿ‡ท๐Ÿ‡ด Romania +๐Ÿ‡ท๐Ÿ‡ธ Serbia +๐Ÿ‡ท๐Ÿ‡บ Russia +๐Ÿ‡ท๐Ÿ‡ผ Rwanda +๐Ÿ‡ธ๐Ÿ‡ฆ Saudi Arabia +๐Ÿ‡ธ๐Ÿ‡ง Solomon Islands +๐Ÿ‡ธ๐Ÿ‡จ Seychelles +๐Ÿ‡ธ๐Ÿ‡ฉ Sudan +๐Ÿ‡ธ๐Ÿ‡ช Sweden +๐Ÿ‡ธ๐Ÿ‡ฌ Singapore +๐Ÿ‡ธ๐Ÿ‡ญ St. Helena +๐Ÿ‡ธ๐Ÿ‡ฎ Slovenia +๐Ÿ‡ธ๐Ÿ‡ฏ Svalbard & Jan Mayen +๐Ÿ‡ธ๐Ÿ‡ฐ Slovakia +๐Ÿ‡ธ๐Ÿ‡ฑ Sierra Leone +๐Ÿ‡ธ๐Ÿ‡ฒ San Marino +๐Ÿ‡ธ๐Ÿ‡ณ Senegal +๐Ÿ‡ธ๐Ÿ‡ด Somalia +๐Ÿ‡ธ๐Ÿ‡ท Suriname +๐Ÿ‡ธ๐Ÿ‡ธ South Sudan +๐Ÿ‡ธ๐Ÿ‡น Sรฃo Tomรฉ & Prรญncipe +๐Ÿ‡ธ๐Ÿ‡ป El Salvador +๐Ÿ‡ธ๐Ÿ‡ฝ Sint Maarten +๐Ÿ‡ธ๐Ÿ‡พ Syria +๐Ÿ‡ธ๐Ÿ‡ฟ Swaziland +๐Ÿ‡น๐Ÿ‡ฆ Tristan da Cunha +๐Ÿ‡น๐Ÿ‡จ Turks & Caicos Islands +๐Ÿ‡น๐Ÿ‡ฉ Chad +๐Ÿ‡น๐Ÿ‡ซ French Southern Territories +๐Ÿ‡น๐Ÿ‡ฌ Togo +๐Ÿ‡น๐Ÿ‡ญ Thailand +๐Ÿ‡น๐Ÿ‡ฏ Tajikistan +๐Ÿ‡น๐Ÿ‡ฐ Tokelau +๐Ÿ‡น๐Ÿ‡ฑ Timor-Leste +๐Ÿ‡น๐Ÿ‡ฒ Turkmenistan +๐Ÿ‡น๐Ÿ‡ณ Tunisia +๐Ÿ‡น๐Ÿ‡ด Tonga +๐Ÿ‡น๐Ÿ‡ท Turkey +๐Ÿ‡น๐Ÿ‡น Trinidad & Tobago +๐Ÿ‡น๐Ÿ‡ป Tuvalu +๐Ÿ‡น๐Ÿ‡ผ Taiwan +๐Ÿ‡น๐Ÿ‡ฟ Tanzania +๐Ÿ‡บ๐Ÿ‡ฆ Ukraine +๐Ÿ‡บ๐Ÿ‡ฌ Uganda +๐Ÿ‡บ๐Ÿ‡ฒ U.S. Outlying Islands +๐Ÿ‡บ๐Ÿ‡ณ United Nations +๐Ÿ‡บ๐Ÿ‡ธ United States +๐Ÿ‡บ๐Ÿ‡พ Uruguay +๐Ÿ‡บ๐Ÿ‡ฟ Uzbekistan +๐Ÿ‡ป๐Ÿ‡ฆ Vatican City +๐Ÿ‡ป๐Ÿ‡จ St. Vincent & Grenadines +๐Ÿ‡ป๐Ÿ‡ช Venezuela +๐Ÿ‡ป๐Ÿ‡ฌ British Virgin Islands +๐Ÿ‡ป๐Ÿ‡ฎ U.S. Virgin Islands +๐Ÿ‡ป๐Ÿ‡ณ Vietnam +๐Ÿ‡ป๐Ÿ‡บ Vanuatu +๐Ÿ‡ผ๐Ÿ‡ซ Wallis & Futuna +๐Ÿ‡ผ๐Ÿ‡ธ Samoa +๐Ÿ‡ฝ๐Ÿ‡ฐ Kosovo +๐Ÿ‡พ๐Ÿ‡ช Yemen +๐Ÿ‡พ๐Ÿ‡น Mayotte +๐Ÿ‡ฟ๐Ÿ‡ฆ South Africa +๐Ÿ‡ฟ๐Ÿ‡ฒ Zambia +๐Ÿ‡ฟ๐Ÿ‡ผ Zimbabwe +๐Ÿด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ England +๐Ÿด๓ ง๓ ข๓ ณ๓ ฃ๓ ด๓ ฟ Scotland ๐Ÿด๓ ง๓ ข๓ ท๓ ฌ๓ ณ๓ ฟ Wales \ No newline at end of file diff --git a/vaderSentiment/vaderSentiment.py b/vaderSentiment/vaderSentiment.py index 49cba44..e8587de 100644 --- a/vaderSentiment/vaderSentiment.py +++ b/vaderSentiment/vaderSentiment.py @@ -1,682 +1,684 @@ -# coding: utf-8 -# Author: C.J. Hutto -# Thanks to George Berry for reducing the time complexity from something like O(N^4) to O(N). -# Thanks to Ewan Klein and Pierpaolo Pantone for bringing VADER into NLTK. Those modifications were awesome. -# For license information, see LICENSE.TXT - -""" -If you use the VADER sentiment analysis tools, please cite: -Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for -Sentiment Analysis of Social Media Text. Eighth International Conference on -Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. -""" -import os -import re -import math -import string -import requests -import json -from itertools import product -from inspect import getsourcefile -from io import open - -# ##Constants## - -# (empirically derived mean sentiment intensity rating increase for booster words) -B_INCR = 0.293 -B_DECR = -0.293 - -# (empirically derived mean sentiment intensity rating increase for using ALLCAPs to emphasize a word) -C_INCR = 0.733 -N_SCALAR = -0.74 - -# for removing punctuation -REGEX_REMOVE_PUNCTUATION = re.compile('[%s]' % re.escape(string.punctuation)) - -PUNC_LIST = [".", "!", "?", ",", ";", ":", "-", "'", "\"", - "!!", "!!!", "??", "???", "?!?", "!?!", "?!?!", "!?!?"] -NEGATE = \ - ["aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt", - "ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't", - "dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither", - "don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't", - "neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere", - "oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent", - "oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't", - "without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite"] - -# booster/dampener 'intensifiers' or 'degree adverbs' -# http://en.wiktionary.org/wiki/Category:English_degree_adverbs - -BOOSTER_DICT = \ - {"absolutely": B_INCR, "amazingly": B_INCR, "awfully": B_INCR, "completely": B_INCR, "considerably": B_INCR, - "decidedly": B_INCR, "deeply": B_INCR, "effing": B_INCR, "enormously": B_INCR, - "entirely": B_INCR, "especially": B_INCR, "exceptionally": B_INCR, "extremely": B_INCR, - "fabulously": B_INCR, "flipping": B_INCR, "flippin": B_INCR, - "fricking": B_INCR, "frickin": B_INCR, "frigging": B_INCR, "friggin": B_INCR, "fully": B_INCR, "fucking": B_INCR, - "greatly": B_INCR, "hella": B_INCR, "highly": B_INCR, "hugely": B_INCR, "incredibly": B_INCR, - "intensely": B_INCR, "majorly": B_INCR, "more": B_INCR, "most": B_INCR, "particularly": B_INCR, - "purely": B_INCR, "quite": B_INCR, "really": B_INCR, "remarkably": B_INCR, - "so": B_INCR, "substantially": B_INCR, - "thoroughly": B_INCR, "totally": B_INCR, "tremendously": B_INCR, - "uber": B_INCR, "unbelievably": B_INCR, "unusually": B_INCR, "utterly": B_INCR, - "very": B_INCR, - "almost": B_DECR, "barely": B_DECR, "hardly": B_DECR, "just enough": B_DECR, - "kind of": B_DECR, "kinda": B_DECR, "kindof": B_DECR, "kind-of": B_DECR, - "less": B_DECR, "little": B_DECR, "marginally": B_DECR, "occasionally": B_DECR, "partly": B_DECR, - "scarcely": B_DECR, "slightly": B_DECR, "somewhat": B_DECR, - "sort of": B_DECR, "sorta": B_DECR, "sortof": B_DECR, "sort-of": B_DECR} - -# check for sentiment laden idioms that do not contain lexicon words (future work, not yet implemented) -SENTIMENT_LADEN_IDIOMS = {"cut the mustard": 2, "hand to mouth": -2, - "back handed": -2, "blow smoke": -2, "blowing smoke": -2, - "upper hand": 1, "break a leg": 2, - "cooking with gas": 2, "in the black": 2, "in the red": -2, - "on the ball": 2, "under the weather": -2} - -# check for special case idioms containing lexicon words -SPECIAL_CASE_IDIOMS = {"the shit": 3, "the bomb": 3, "bad ass": 1.5, "yeah right": -2, - "kiss of death": -1.5} - - -# #Static methods# # - -def negated(input_words, include_nt=True): - """ - Determine if input contains negation words - """ - input_words = [str(w).lower() for w in input_words] - neg_words = [] - neg_words.extend(NEGATE) - for word in neg_words: - if word in input_words: - return True - if include_nt: - for word in input_words: - if "n't" in word: - return True - if "least" in input_words: - i = input_words.index("least") - if i > 0 and input_words[i - 1] != "at": - return True - return False - - -def normalize(score, alpha=15): - """ - Normalize the score to be between -1 and 1 using an alpha that - approximates the max expected value - """ - norm_score = score / math.sqrt((score * score) + alpha) - if norm_score < -1.0: - return -1.0 - elif norm_score > 1.0: - return 1.0 - else: - return norm_score - - -def allcap_differential(words): - """ - Check whether just some words in the input are ALL CAPS - :param list words: The words to inspect - :returns: `True` if some but not all items in `words` are ALL CAPS - """ - is_different = False - allcap_words = 0 - for word in words: - if word.isupper(): - allcap_words += 1 - cap_differential = len(words) - allcap_words - if 0 < cap_differential < len(words): - is_different = True - return is_different - - -def scalar_inc_dec(word, valence, is_cap_diff): - """ - Check if the preceding words increase, decrease, or negate/nullify the - valence - """ - scalar = 0.0 - word_lower = word.lower() - if word_lower in BOOSTER_DICT: - scalar = BOOSTER_DICT[word_lower] - if valence < 0: - scalar *= -1 - # check if booster/dampener word is in ALLCAPS (while others aren't) - if word.isupper() and is_cap_diff: - if valence > 0: - scalar += C_INCR - else: - scalar -= C_INCR - return scalar - - -class SentiText(object): - """ - Identify sentiment-relevant string-level properties of input text. - """ - - def __init__(self, text): - if not isinstance(text, str): - text = str(text).encode('utf-8') - self.text = text - self.words_and_emoticons = self._words_and_emoticons() - # doesn't separate words from\ - # adjacent punctuation (keeps emoticons & contractions) - self.is_cap_diff = allcap_differential(self.words_and_emoticons) - - def _words_plus_punc(self): - """ - Returns mapping of form: - { - 'cat,': 'cat', - ',cat': 'cat', - } - """ - no_punc_text = REGEX_REMOVE_PUNCTUATION.sub('', self.text) - # removes punctuation (but loses emoticons & contractions) - words_only = no_punc_text.split() - # remove singletons - words_only = set(w for w in words_only if len(w) > 1) - # the product gives ('cat', ',') and (',', 'cat') - punc_before = {''.join(p): p[1] for p in product(PUNC_LIST, words_only)} - punc_after = {''.join(p): p[0] for p in product(words_only, PUNC_LIST)} - words_punc_dict = punc_before - words_punc_dict.update(punc_after) - return words_punc_dict - - def _words_and_emoticons(self): - """ - Removes leading and trailing puncutation - Leaves contractions and most emoticons - Does not preserve punc-plus-letter emoticons (e.g. :D) - """ - wes = self.text.split() - words_punc_dict = self._words_plus_punc() - wes = [we for we in wes if len(we) > 1] - for i, we in enumerate(wes): - if we in words_punc_dict: - wes[i] = words_punc_dict[we] - return wes - - -class SentimentIntensityAnalyzer(object): - """ - Give a sentiment intensity score to sentences. - """ - - def __init__(self, lexicon_file="vader_lexicon.txt", emoji_lexicon="emoji_utf8_lexicon.txt"): - _this_module_file_path_ = os.path.abspath(getsourcefile(lambda: 0)) - lexicon_full_filepath = os.path.join(os.path.dirname(_this_module_file_path_), lexicon_file) - with open(lexicon_full_filepath, encoding='utf-8') as f: - self.lexicon_full_filepath = f.read() - self.lexicon = self.make_lex_dict() - - emoji_full_filepath = os.path.join(os.path.dirname(_this_module_file_path_), emoji_lexicon) - with open(emoji_full_filepath, encoding='utf-8') as f: - self.emoji_full_filepath = f.read() - self.emojis = self.make_emoji_dict() - - def make_lex_dict(self): - """ - Convert lexicon file to a dictionary - """ - lex_dict = {} - for line in self.lexicon_full_filepath.split('\n'): - (word, measure) = line.strip().split('\t')[0:2] - lex_dict[word] = float(measure) - return lex_dict - - def make_emoji_dict(self): - """ - Convert emoji lexicon file to a dictionary - """ - emoji_dict = {} - for line in self.emoji_full_filepath.split('\n'): - (emoji, description) = line.strip().split('\t')[0:2] - emoji_dict[emoji] = description - return emoji_dict - - def polarity_scores(self, text): - """ - Return a float for sentiment strength based on the input text. - Positive values are positive valence, negative value are negative - valence. - """ - # convert emojis to their textual descriptions - text_token_list = text.split() - text_no_emoji_lst = [] - for token in text_token_list: - if token in self.emojis: - # get the textual description - description = self.emojis[token] - text_no_emoji_lst.append(description) - else: - text_no_emoji_lst.append(token) - text = " ".join(x for x in text_no_emoji_lst) - - sentitext = SentiText(text) - - sentiments = [] - words_and_emoticons = sentitext.words_and_emoticons - for item in words_and_emoticons: - valence = 0 - i = words_and_emoticons.index(item) - # check for vader_lexicon words that may be used as modifiers or negations - if item.lower() in BOOSTER_DICT: - sentiments.append(valence) - continue - if (i < len(words_and_emoticons) - 1 and item.lower() == "kind" and - words_and_emoticons[i + 1].lower() == "of"): - sentiments.append(valence) - continue - - sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments) - - sentiments = self._but_check(words_and_emoticons, sentiments) - - valence_dict = self.score_valence(sentiments, text) - - return valence_dict - - def sentiment_valence(self, valence, sentitext, item, i, sentiments): - is_cap_diff = sentitext.is_cap_diff - words_and_emoticons = sentitext.words_and_emoticons - item_lowercase = item.lower() - if item_lowercase in self.lexicon: - # get the sentiment valence - valence = self.lexicon[item_lowercase] - # check if sentiment laden word is in ALL CAPS (while others aren't) - if item.isupper() and is_cap_diff: - if valence > 0: - valence += C_INCR - else: - valence -= C_INCR - - for start_i in range(0, 3): - # dampen the scalar modifier of preceding words and emoticons - # (excluding the ones that immediately preceed the item) based - # on their distance from the current item. - if i > start_i and words_and_emoticons[i - (start_i + 1)].lower() not in self.lexicon: - s = scalar_inc_dec(words_and_emoticons[i - (start_i + 1)], valence, is_cap_diff) - if start_i == 1 and s != 0: - s = s * 0.95 - if start_i == 2 and s != 0: - s = s * 0.9 - valence = valence + s - valence = self._negation_check(valence, words_and_emoticons, start_i, i) - if start_i == 2: - valence = self._special_idioms_check(valence, words_and_emoticons, i) - - valence = self._least_check(valence, words_and_emoticons, i) - sentiments.append(valence) - return sentiments - - def _least_check(self, valence, words_and_emoticons, i): - # check for negation case using "least" - if i > 1 and words_and_emoticons[i - 1].lower() not in self.lexicon \ - and words_and_emoticons[i - 1].lower() == "least": - if words_and_emoticons[i - 2].lower() != "at" and words_and_emoticons[i - 2].lower() != "very": - valence = valence * N_SCALAR - elif i > 0 and words_and_emoticons[i - 1].lower() not in self.lexicon \ - and words_and_emoticons[i - 1].lower() == "least": - valence = valence * N_SCALAR - return valence - - @staticmethod - def _but_check(words_and_emoticons, sentiments): - # check for modification in sentiment due to contrastive conjunction 'but' - words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons] - if 'but' in words_and_emoticons_lower: - bi = words_and_emoticons_lower.index('but') - for sentiment in sentiments: - si = sentiments.index(sentiment) - if si < bi: - sentiments.pop(si) - sentiments.insert(si, sentiment * 0.5) - elif si > bi: - sentiments.pop(si) - sentiments.insert(si, sentiment * 1.5) - return sentiments - - @staticmethod - def _special_idioms_check(valence, words_and_emoticons, i): - words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons] - onezero = "{0} {1}".format(words_and_emoticons_lower[i - 1], words_and_emoticons_lower[i]) - - twoonezero = "{0} {1} {2}".format(words_and_emoticons_lower[i - 2], - words_and_emoticons_lower[i - 1], words_and_emoticons_lower[i]) - - twoone = "{0} {1}".format(words_and_emoticons_lower[i - 2], words_and_emoticons_lower[i - 1]) - - threetwoone = "{0} {1} {2}".format(words_and_emoticons_lower[i - 3], - words_and_emoticons_lower[i - 2], words_and_emoticons_lower[i - 1]) - - threetwo = "{0} {1}".format(words_and_emoticons_lower[i - 3], words_and_emoticons_lower[i - 2]) - - sequences = [onezero, twoonezero, twoone, threetwoone, threetwo] - - for seq in sequences: - if seq in SPECIAL_CASE_IDIOMS: - valence = SPECIAL_CASE_IDIOMS[seq] - break - - if len(words_and_emoticons_lower) - 1 > i: - zeroone = "{0} {1}".format(words_and_emoticons_lower[i], words_and_emoticons_lower[i + 1]) - if zeroone in SPECIAL_CASE_IDIOMS: - valence = SPECIAL_CASE_IDIOMS[zeroone] - if len(words_and_emoticons_lower) - 1 > i + 1: - zeroonetwo = "{0} {1} {2}".format(words_and_emoticons_lower[i], words_and_emoticons_lower[i + 1], - words_and_emoticons_lower[i + 2]) - if zeroonetwo in SPECIAL_CASE_IDIOMS: - valence = SPECIAL_CASE_IDIOMS[zeroonetwo] - - # check for booster/dampener bi-grams such as 'sort of' or 'kind of' - n_grams = [threetwoone, threetwo, twoone] - for n_gram in n_grams: - if n_gram in BOOSTER_DICT: - valence = valence + BOOSTER_DICT[n_gram] - return valence - - @staticmethod - def _sentiment_laden_idioms_check(valence, senti_text_lower): - # Future Work - # check for sentiment laden idioms that don't contain a lexicon word - idioms_valences = [] - for idiom in SENTIMENT_LADEN_IDIOMS: - if idiom in senti_text_lower: - print(idiom, senti_text_lower) - valence = SENTIMENT_LADEN_IDIOMS[idiom] - idioms_valences.append(valence) - if len(idioms_valences) > 0: - valence = sum(idioms_valences) / float(len(idioms_valences)) - return valence - - @staticmethod - def _negation_check(valence, words_and_emoticons, start_i, i): - words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons] - if start_i == 0: - if negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 1 word preceding lexicon word (w/o stopwords) - valence = valence * N_SCALAR - if start_i == 1: - if words_and_emoticons_lower[i - 2] == "never" and \ - (words_and_emoticons_lower[i - 1] == "so" or - words_and_emoticons_lower[i - 1] == "this"): - valence = valence * 1.25 - elif words_and_emoticons_lower[i - 2] == "without" and \ - words_and_emoticons_lower[i - 1] == "doubt": - valence = valence - elif negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 2 words preceding the lexicon word position - valence = valence * N_SCALAR - if start_i == 2: - if words_and_emoticons_lower[i - 3] == "never" and \ - (words_and_emoticons_lower[i - 2] == "so" or words_and_emoticons_lower[i - 2] == "this") or \ - (words_and_emoticons_lower[i - 1] == "so" or words_and_emoticons_lower[i - 1] == "this"): - valence = valence * 1.25 - elif words_and_emoticons_lower[i - 3] == "without" and \ - (words_and_emoticons_lower[i - 2] == "doubt" or words_and_emoticons_lower[i - 1] == "doubt"): - valence = valence - elif negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 3 words preceding the lexicon word position - valence = valence * N_SCALAR - return valence - - def _punctuation_emphasis(self, text): - # add emphasis from exclamation points and question marks - ep_amplifier = self._amplify_ep(text) - qm_amplifier = self._amplify_qm(text) - punct_emph_amplifier = ep_amplifier + qm_amplifier - return punct_emph_amplifier - - @staticmethod - def _amplify_ep(text): - # check for added emphasis resulting from exclamation points (up to 4 of them) - ep_count = text.count("!") - if ep_count > 4: - ep_count = 4 - # (empirically derived mean sentiment intensity rating increase for - # exclamation points) - ep_amplifier = ep_count * 0.292 - return ep_amplifier - - @staticmethod - def _amplify_qm(text): - # check for added emphasis resulting from question marks (2 or 3+) - qm_count = text.count("?") - qm_amplifier = 0 - if qm_count > 1: - if qm_count <= 3: - # (empirically derived mean sentiment intensity rating increase for - # question marks) - qm_amplifier = qm_count * 0.18 - else: - qm_amplifier = 0.96 - return qm_amplifier - - @staticmethod - def _sift_sentiment_scores(sentiments): - # want separate positive versus negative sentiment scores - pos_sum = 0.0 - neg_sum = 0.0 - neu_count = 0 - for sentiment_score in sentiments: - if sentiment_score > 0: - pos_sum += (float(sentiment_score) + 1) # compensates for neutral words that are counted as 1 - if sentiment_score < 0: - neg_sum += (float(sentiment_score) - 1) # when used with math.fabs(), compensates for neutrals - if sentiment_score == 0: - neu_count += 1 - return pos_sum, neg_sum, neu_count - - def score_valence(self, sentiments, text): - if sentiments: - sum_s = float(sum(sentiments)) - # compute and add emphasis from punctuation in text - punct_emph_amplifier = self._punctuation_emphasis(text) - if sum_s > 0: - sum_s += punct_emph_amplifier - elif sum_s < 0: - sum_s -= punct_emph_amplifier - - compound = normalize(sum_s) - # discriminate between positive, negative and neutral sentiment scores - pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments) - - if pos_sum > math.fabs(neg_sum): - pos_sum += punct_emph_amplifier - elif pos_sum < math.fabs(neg_sum): - neg_sum -= punct_emph_amplifier - - total = pos_sum + math.fabs(neg_sum) + neu_count - pos = math.fabs(pos_sum / total) - neg = math.fabs(neg_sum / total) - neu = math.fabs(neu_count / total) - - else: - compound = 0.0 - pos = 0.0 - neg = 0.0 - neu = 0.0 - - sentiment_dict = \ - {"neg": round(neg, 3), - "neu": round(neu, 3), - "pos": round(pos, 3), - "compound": round(compound, 4)} - - return sentiment_dict - - -if __name__ == '__main__': - # --- examples ------- - sentences = ["VADER is smart, handsome, and funny.", # positive sentence example - "VADER is smart, handsome, and funny!", - # punctuation emphasis handled correctly (sentiment intensity adjusted) - "VADER is very smart, handsome, and funny.", - # booster words handled correctly (sentiment intensity adjusted) - "VADER is VERY SMART, handsome, and FUNNY.", # emphasis for ALLCAPS handled - "VADER is VERY SMART, handsome, and FUNNY!!!", - # combination of signals - VADER appropriately adjusts intensity - "VADER is VERY SMART, uber handsome, and FRIGGIN FUNNY!!!", - # booster words & punctuation make this close to ceiling for score - "VADER is not smart, handsome, nor funny.", # negation sentence example - "The book was good.", # positive sentence - "At least it isn't a horrible book.", # negated negative sentence with contraction - "The book was only kind of good.", - # qualified positive sentence is handled correctly (intensity adjusted) - "The plot was good, but the characters are uncompelling and the dialog is not great.", - # mixed negation sentence - "Today SUX!", # negative slang with capitalization emphasis - "Today only kinda sux! But I'll get by, lol", - # mixed sentiment example with slang and constrastive conjunction "but" - "Make sure you :) or :D today!", # emoticons handled - "Catch utf-8 emoji such as ๐Ÿ’˜ and ๐Ÿ’‹ and ๐Ÿ˜", # emojis handled - "Not bad at all" # Capitalized negation - ] - - analyzer = SentimentIntensityAnalyzer() - - print("----------------------------------------------------") - print(" - Analyze typical example cases, including handling of:") - print(" -- negations") - print(" -- punctuation emphasis & punctuation flooding") - print(" -- word-shape as emphasis (capitalization difference)") - print(" -- degree modifiers (intensifiers such as 'very' and dampeners such as 'kind of')") - print(" -- slang words as modifiers such as 'uber' or 'friggin' or 'kinda'") - print(" -- contrastive conjunction 'but' indicating a shift in sentiment; sentiment of later text is dominant") - print(" -- use of contractions as negations") - print(" -- sentiment laden emoticons such as :) and :D") - print(" -- utf-8 encoded emojis such as ๐Ÿ’˜ and ๐Ÿ’‹ and ๐Ÿ˜") - print(" -- sentiment laden slang words (e.g., 'sux')") - print(" -- sentiment laden initialisms and acronyms (for example: 'lol') \n") - for sentence in sentences: - vs = analyzer.polarity_scores(sentence) - print("{:-<65} {}".format(sentence, str(vs))) - print("----------------------------------------------------") - print(" - About the scoring: ") - print(""" -- The 'compound' score is computed by summing the valence scores of each word in the lexicon, adjusted - according to the rules, and then normalized to be between -1 (most extreme negative) and +1 (most extreme positive). - This is the most useful metric if you want a single unidimensional measure of sentiment for a given sentence. - Calling it a 'normalized, weighted composite score' is accurate.""") - print(""" -- The 'pos', 'neu', and 'neg' scores are ratios for proportions of text that fall in each category (so these - should all add up to be 1... or close to it with float operation). These are the most useful metrics if - you want multidimensional measures of sentiment for a given sentence.""") - print("----------------------------------------------------") - - # input("\nPress Enter to continue the demo...\n") # for DEMO purposes... - - tricky_sentences = ["Sentiment analysis has never been good.", - "Sentiment analysis has never been this good!", - "Most automated sentiment analysis tools are shit.", - "With VADER, sentiment analysis is the shit!", - "Other sentiment analysis tools can be quite bad.", - "On the other hand, VADER is quite bad ass", - "VADER is such a badass!", # slang with punctuation emphasis - "Without a doubt, excellent idea.", - "Roger Dodger is one of the most compelling variations on this theme.", - "Roger Dodger is at least compelling as a variation on the theme.", - "Roger Dodger is one of the least compelling variations on this theme.", - "Not such a badass after all.", # Capitalized negation with slang - "Without a doubt, an excellent idea." # "without {any} doubt" as negation - ] - print("----------------------------------------------------") - print(" - Analyze examples of tricky sentences that cause trouble to other sentiment analysis tools.") - print(" -- special case idioms - e.g., 'never good' vs 'never this good', or 'bad' vs 'bad ass'.") - print(" -- special uses of 'least' as negation versus comparison \n") - for sentence in tricky_sentences: - vs = analyzer.polarity_scores(sentence) - print("{:-<69} {}".format(sentence, str(vs))) - print("----------------------------------------------------") - - # input("\nPress Enter to continue the demo...\n") # for DEMO purposes... - - print("----------------------------------------------------") - print( - " - VADER works best when analysis is done at the sentence level (but it can work on single words or entire novels).") - paragraph = "It was one of the worst movies I've seen, despite good reviews. Unbelievably bad acting!! Poor direction. VERY poor production. The movie was bad. Very bad movie. VERY BAD movie!" - print(" -- For example, given the following paragraph text from a hypothetical movie review:\n\t'{}'".format( - paragraph)) - print( - " -- You could use NLTK to break the paragraph into sentence tokens for VADER, then average the results for the paragraph like this: \n") - # simple example to tokenize paragraph into sentences for VADER - from nltk import tokenize - - sentence_list = tokenize.sent_tokenize(paragraph) - paragraphSentiments = 0.0 - for sentence in sentence_list: - vs = analyzer.polarity_scores(sentence) - print("{:-<69} {}".format(sentence, str(vs["compound"]))) - paragraphSentiments += vs["compound"] - print("AVERAGE SENTIMENT FOR PARAGRAPH: \t" + str(round(paragraphSentiments / len(sentence_list), 4))) - print("----------------------------------------------------") - - # input("\nPress Enter to continue the demo...\n") # for DEMO purposes... - - print("----------------------------------------------------") - print(" - Analyze sentiment of IMAGES/VIDEO data based on annotation 'tags' or image labels. \n") - conceptList = ["balloons", "cake", "candles", "happy birthday", "friends", "laughing", "smiling", "party"] - conceptSentiments = 0.0 - for concept in conceptList: - vs = analyzer.polarity_scores(concept) - print("{:-<15} {}".format(concept, str(vs['compound']))) - conceptSentiments += vs["compound"] - print("AVERAGE SENTIMENT OF TAGS/LABELS: \t" + str(round(conceptSentiments / len(conceptList), 4))) - print("\t") - conceptList = ["riot", "fire", "fight", "blood", "mob", "war", "police", "tear gas"] - conceptSentiments = 0.0 - for concept in conceptList: - vs = analyzer.polarity_scores(concept) - print("{:-<15} {}".format(concept, str(vs['compound']))) - conceptSentiments += vs["compound"] - print("AVERAGE SENTIMENT OF TAGS/LABELS: \t" + str(round(conceptSentiments / len(conceptList), 4))) - print("----------------------------------------------------") - - # input("\nPress Enter to continue the demo...") # for DEMO purposes... - - do_translate = input( - "\nWould you like to run VADER demo examples with NON-ENGLISH text? (Note: requires Internet access) \n Type 'y' or 'n', then press Enter: ") - if do_translate.lower().lstrip().__contains__("y"): - print("\n----------------------------------------------------") - print(" - Analyze sentiment of NON ENGLISH text...for example:") - print(" -- French, German, Spanish, Italian, Russian, Japanese, Arabic, Chinese") - print(" -- many other languages supported. \n") - languages = ["English", "French", "German", "Spanish", "Italian", "Russian", "Japanese", "Arabic", "Chinese"] - language_codes = ["en", "fr", "de", "es", "it", "ru", "ja", "ar", "zh"] - nonEnglish_sentences = ["I'm surprised to see just how amazingly helpful VADER is!", - "Je suis surpris de voir juste comment incroyablement utile VADER est!", - "Ich bin รผberrascht zu sehen, nur wie erstaunlich nรผtzlich VADER!", - "Me sorprende ver sรณlo cรณmo increรญblemente รบtil VADER!", - "Sono sorpreso di vedere solo come incredibilmente utile VADER รจ!", - "ะฏ ัƒะดะธะฒะปะตะฝ ัƒะฒะธะดะตั‚ัŒ, ะบะฐะบ ั€ะฐะท ะบะฐะบ ัƒะดะธะฒะธั‚ะตะปัŒะฝะพ ะฟะพะปะตะทะฝะพ ะ’ะ•ะ™ะ”ะ•ะ ะ!", - "็งใฏใกใ‚‡ใ†ใฉใฉใฎใ‚ˆใ†ใซ้ฉšใใปใฉๅฝนใซ็ซ‹ใคใƒ™ใ‚คใƒ€ใƒผใ‚’่ฆ‹ใฆ้ฉšใ„ใฆใ„ใพใ™!", - "ุฃู†ุง ู…ู†ุฏู‡ุด ู„ุฑุคูŠุฉ ูู‚ุท ูƒูŠู ู…ุซูŠุฑ ู„ู„ุฏู‡ุดุฉ ููŠุฏุฑ ูุงุฆุฏุฉ!", - "ๆƒŠ่ฎถๅœฐ็œ‹ๅˆฐๆœ‰็”จ็ปดๅพทๆ˜ฏ็š„ๅชๆ˜ฏๅฆ‚ไฝ•ไปคไบบๆƒŠ่ฎถไบ† ๏ผ" - ] - for sentence in nonEnglish_sentences: - to_lang = "en" - from_lang = language_codes[nonEnglish_sentences.index(sentence)] - if (from_lang == "en") or (from_lang == "en-US"): - translation = sentence - translator_name = "No translation needed" - else: # please note usage limits for My Memory Translation Service: http://mymemory.translated.net/doc/usagelimits.php - # using MY MEMORY NET http://mymemory.translated.net - api_url = "http://mymemory.translated.net/api/get?q={}&langpair={}|{}".format(sentence, from_lang, - to_lang) - hdrs = { - 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', - 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', - 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', - 'Accept-Encoding': 'none', - 'Accept-Language': 'en-US,en;q=0.8', - 'Connection': 'keep-alive'} - response = requests.get(api_url, headers=hdrs) - response_json = json.loads(response.text) - translation = response_json["responseData"]["translatedText"] - translator_name = "MemoryNet Translation Service" - vs = analyzer.polarity_scores(translation) - print("- {: <8}: {: <69}\t {} ({})".format(languages[nonEnglish_sentences.index(sentence)], sentence, - str(vs['compound']), translator_name)) - print("----------------------------------------------------") - - print("\n\n Demo Done!") +# coding: utf-8 +# Author: C.J. Hutto +# Thanks to George Berry for reducing the time complexity from something like O(N^4) to O(N). +# Thanks to Ewan Klein and Pierpaolo Pantone for bringing VADER into NLTK. Those modifications were awesome. +# For license information, see LICENSE.TXT + +""" +If you use the VADER sentiment analysis tools, please cite: +Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for +Sentiment Analysis of Social Media Text. Eighth International Conference on +Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. +""" +import os +import re +import math +import string +import requests +import json +from itertools import product +from inspect import getsourcefile + +# ##Constants## + +# (empirically derived mean sentiment intensity rating increase for booster words) +B_INCR = 0.293 +B_DECR = -0.293 + +# (empirically derived mean sentiment intensity rating increase for using ALLCAPs to emphasize a word) +C_INCR = 0.733 +N_SCALAR = -0.74 + +# for removing punctuation +REGEX_REMOVE_PUNCTUATION = re.compile('[%s]' % re.escape(string.punctuation)) + +PUNC_LIST = [".", "!", "?", ",", ";", ":", "-", "'", "\"", + "!!", "!!!", "??", "???", "?!?", "!?!", "?!?!", "!?!?"] +NEGATE = \ + ["aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt", + "ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't", + "dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither", + "don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't", + "neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere", + "oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent", + "oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't", + "without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite"] + +# booster/dampener 'intensifiers' or 'degree adverbs' +# http://en.wiktionary.org/wiki/Category:English_degree_adverbs + +BOOSTER_DICT = \ + {"absolutely": B_INCR, "amazingly": B_INCR, "awfully": B_INCR, "completely": B_INCR, "considerably": B_INCR, + "decidedly": B_INCR, "deeply": B_INCR, "effing": B_INCR, "enormously": B_INCR, + "entirely": B_INCR, "especially": B_INCR, "exceptionally": B_INCR, "extremely": B_INCR, + "fabulously": B_INCR, "flipping": B_INCR, "flippin": B_INCR, + "fricking": B_INCR, "frickin": B_INCR, "frigging": B_INCR, "friggin": B_INCR, "fully": B_INCR, "fucking": B_INCR, + "greatly": B_INCR, "hella": B_INCR, "highly": B_INCR, "hugely": B_INCR, "incredibly": B_INCR, + "intensely": B_INCR, "majorly": B_INCR, "more": B_INCR, "most": B_INCR, "particularly": B_INCR, + "purely": B_INCR, "quite": B_INCR, "really": B_INCR, "remarkably": B_INCR, + "so": B_INCR, "substantially": B_INCR, + "thoroughly": B_INCR, "totally": B_INCR, "tremendously": B_INCR, + "uber": B_INCR, "unbelievably": B_INCR, "unusually": B_INCR, "utterly": B_INCR, + "very": B_INCR, + "almost": B_DECR, "barely": B_DECR, "hardly": B_DECR, "just enough": B_DECR, + "kind of": B_DECR, "kinda": B_DECR, "kindof": B_DECR, "kind-of": B_DECR, + "less": B_DECR, "little": B_DECR, "marginally": B_DECR, "occasionally": B_DECR, "partly": B_DECR, + "scarcely": B_DECR, "slightly": B_DECR, "somewhat": B_DECR, + "sort of": B_DECR, "sorta": B_DECR, "sortof": B_DECR, "sort-of": B_DECR} + +# check for sentiment laden idioms that do not contain lexicon words (future work, not yet implemented) +SENTIMENT_LADEN_IDIOMS = {"cut the mustard": 2, "hand to mouth": -2, + "back handed": -2, "blow smoke": -2, "blowing smoke": -2, + "upper hand": 1, "break a leg": 2, + "cooking with gas": 2, "in the black": 2, "in the red": -2, + "on the ball": 2, "under the weather": -2, "Bull Market": 2.3, + "All time high": 2.3, "Trading analysis": 1, "Short squeeze": 0.6, + "Closing a long": 1.6, "Closing a short": -0.1, "Opening a long": 1.3, + "Opening a short": 0.9, "flip a coin": 0.6} + +# check for special case idioms containing lexicon words +SPECIAL_CASE_IDIOMS = {"the shit": 3, "the bomb": 3, "bad ass": 1.5, "yeah right": -2, + "kiss of death": -1.5} + + +# #Static methods# # + +def negated(input_words, include_nt=True): + """ + Determine if input contains negation words + """ + input_words = [str(w).lower() for w in input_words] + neg_words = [] + neg_words.extend(NEGATE) + for word in neg_words: + if word in input_words: + return True + if include_nt: + for word in input_words: + if "n't" in word: + return True + if "least" in input_words: + i = input_words.index("least") + if i > 0 and input_words[i - 1] != "at": + return True + return False + + +def normalize(score, alpha=15): + """ + Normalize the score to be between -1 and 1 using an alpha that + approximates the max expected value + """ + norm_score = score / math.sqrt((score * score) + alpha) + if norm_score < -1.0: + return -1.0 + elif norm_score > 1.0: + return 1.0 + else: + return norm_score + + +def allcap_differential(words): + """ + Check whether just some words in the input are ALL CAPS + :param list words: The words to inspect + :returns: `True` if some but not all items in `words` are ALL CAPS + """ + is_different = False + allcap_words = 0 + for word in words: + if word.isupper(): + allcap_words += 1 + cap_differential = len(words) - allcap_words + if 0 < cap_differential < len(words): + is_different = True + return is_different + + +def scalar_inc_dec(word, valence, is_cap_diff): + """ + Check if the preceding words increase, decrease, or negate/nullify the + valence + """ + scalar = 0.0 + word_lower = word.lower() + if word_lower in BOOSTER_DICT: + scalar = BOOSTER_DICT[word_lower] + if valence < 0: + scalar *= -1 + # check if booster/dampener word is in ALLCAPS (while others aren't) + if word.isupper() and is_cap_diff: + if valence > 0: + scalar += C_INCR + else: + scalar -= C_INCR + return scalar + + +class SentiText(object): + """ + Identify sentiment-relevant string-level properties of input text. + """ + + def __init__(self, text): + if not isinstance(text, str): + text = str(text).encode('utf-8') + self.text = text + self.words_and_emoticons = self._words_and_emoticons() + # doesn't separate words from\ + # adjacent punctuation (keeps emoticons & contractions) + self.is_cap_diff = allcap_differential(self.words_and_emoticons) + + def _words_plus_punc(self): + """ + Returns mapping of form: + { + 'cat,': 'cat', + ',cat': 'cat', + } + """ + no_punc_text = REGEX_REMOVE_PUNCTUATION.sub('', self.text) + # removes punctuation (but loses emoticons & contractions) + words_only = no_punc_text.split() + # remove singletons + words_only = set(w for w in words_only if len(w) > 1) + # the product gives ('cat', ',') and (',', 'cat') + punc_before = {''.join(p): p[1] for p in product(PUNC_LIST, words_only)} + punc_after = {''.join(p): p[0] for p in product(words_only, PUNC_LIST)} + words_punc_dict = punc_before + words_punc_dict.update(punc_after) + return words_punc_dict + + def _words_and_emoticons(self): + """ + Removes leading and trailing puncutation + Leaves contractions and most emoticons + Does not preserve punc-plus-letter emoticons (e.g. :D) + """ + wes = self.text.split() + words_punc_dict = self._words_plus_punc() + wes = [we for we in wes if len(we) > 1] + for i, we in enumerate(wes): + if we in words_punc_dict: + wes[i] = words_punc_dict[we] + return wes + + +class SentimentIntensityAnalyzer(object): + """ + Give a sentiment intensity score to sentences. + """ + + def __init__(self, lexicon_file="vader_lexicon.txt", emoji_lexicon="emoji_utf8_lexicon.txt"): + _this_module_file_path_ = os.path.abspath(getsourcefile(lambda: 0)) + lexicon_full_filepath = os.path.join(os.path.dirname(_this_module_file_path_), lexicon_file) + with open(lexicon_full_filepath, encoding='utf-8') as f: + self.lexicon_full_filepath = f.read() + self.lexicon = self.make_lex_dict() + + emoji_full_filepath = os.path.join(os.path.dirname(_this_module_file_path_), emoji_lexicon) + with open(emoji_full_filepath, encoding='utf-8') as f: + self.emoji_full_filepath = f.read() + self.emojis = self.make_emoji_dict() + + def make_lex_dict(self): + """ + Convert lexicon file to a dictionary + """ + lex_dict = {} + for line in self.lexicon_full_filepath.split('\n'): + (word, measure) = line.strip().split('\t')[0:2] + lex_dict[word] = float(measure) + return lex_dict + + def make_emoji_dict(self): + """ + Convert emoji lexicon file to a dictionary + """ + emoji_dict = {} + for line in self.emoji_full_filepath.split('\n'): + (emoji, description) = line.strip().split('\t')[0:2] + emoji_dict[emoji] = description + return emoji_dict + + def polarity_scores(self, text): + """ + Return a float for sentiment strength based on the input text. + Positive values are positive valence, negative value are negative + valence. + """ + # convert emojis to their textual descriptions + text_token_list = text.split() + text_no_emoji_lst = [] + for token in text_token_list: + if token in self.emojis: + # get the textual description + description = self.emojis[token] + text_no_emoji_lst.append(description) + else: + text_no_emoji_lst.append(token) + text = " ".join(x for x in text_no_emoji_lst) + + sentitext = SentiText(text) + + sentiments = [] + words_and_emoticons = sentitext.words_and_emoticons + for item in words_and_emoticons: + valence = 0 + i = words_and_emoticons.index(item) + # check for vader_lexicon words that may be used as modifiers or negations + if item.lower() in BOOSTER_DICT: + sentiments.append(valence) + continue + if (i < len(words_and_emoticons) - 1 and item.lower() == "kind" and + words_and_emoticons[i + 1].lower() == "of"): + sentiments.append(valence) + continue + + sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments) + + sentiments = self._but_check(words_and_emoticons, sentiments) + + valence_dict = self.score_valence(sentiments, text) + + return valence_dict + + def sentiment_valence(self, valence, sentitext, item, i, sentiments): + is_cap_diff = sentitext.is_cap_diff + words_and_emoticons = sentitext.words_and_emoticons + item_lowercase = item.lower() + if item_lowercase in self.lexicon: + # get the sentiment valence + valence = self.lexicon[item_lowercase] + # check if sentiment laden word is in ALL CAPS (while others aren't) + if item.isupper() and is_cap_diff: + if valence > 0: + valence += C_INCR + else: + valence -= C_INCR + + for start_i in range(0, 3): + # dampen the scalar modifier of preceding words and emoticons + # (excluding the ones that immediately preceed the item) based + # on their distance from the current item. + if i > start_i and words_and_emoticons[i - (start_i + 1)].lower() not in self.lexicon: + s = scalar_inc_dec(words_and_emoticons[i - (start_i + 1)], valence, is_cap_diff) + if start_i == 1 and s != 0: + s = s * 0.95 + if start_i == 2 and s != 0: + s = s * 0.9 + valence = valence + s + valence = self._negation_check(valence, words_and_emoticons, start_i, i) + if start_i == 2: + valence = self._special_idioms_check(valence, words_and_emoticons, i) + + valence = self._least_check(valence, words_and_emoticons, i) + sentiments.append(valence) + return sentiments + + def _least_check(self, valence, words_and_emoticons, i): + # check for negation case using "least" + if i > 1 and words_and_emoticons[i - 1].lower() not in self.lexicon \ + and words_and_emoticons[i - 1].lower() == "least": + if words_and_emoticons[i - 2].lower() != "at" and words_and_emoticons[i - 2].lower() != "very": + valence = valence * N_SCALAR + elif i > 0 and words_and_emoticons[i - 1].lower() not in self.lexicon \ + and words_and_emoticons[i - 1].lower() == "least": + valence = valence * N_SCALAR + return valence + + @staticmethod + def _but_check(words_and_emoticons, sentiments): + # check for modification in sentiment due to contrastive conjunction 'but' + words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons] + if 'but' in words_and_emoticons_lower: + bi = words_and_emoticons_lower.index('but') + for sentiment in sentiments: + si = sentiments.index(sentiment) + if si < bi: + sentiments.pop(si) + sentiments.insert(si, sentiment * 0.5) + elif si > bi: + sentiments.pop(si) + sentiments.insert(si, sentiment * 1.5) + return sentiments + + @staticmethod + def _special_idioms_check(valence, words_and_emoticons, i): + words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons] + onezero = "{0} {1}".format(words_and_emoticons_lower[i - 1], words_and_emoticons_lower[i]) + + twoonezero = "{0} {1} {2}".format(words_and_emoticons_lower[i - 2], + words_and_emoticons_lower[i - 1], words_and_emoticons_lower[i]) + + twoone = "{0} {1}".format(words_and_emoticons_lower[i - 2], words_and_emoticons_lower[i - 1]) + + threetwoone = "{0} {1} {2}".format(words_and_emoticons_lower[i - 3], + words_and_emoticons_lower[i - 2], words_and_emoticons_lower[i - 1]) + + threetwo = "{0} {1}".format(words_and_emoticons_lower[i - 3], words_and_emoticons_lower[i - 2]) + + sequences = [onezero, twoonezero, twoone, threetwoone, threetwo] + + for seq in sequences: + if seq in SPECIAL_CASE_IDIOMS: + valence = SPECIAL_CASE_IDIOMS[seq] + break + + if len(words_and_emoticons_lower) - 1 > i: + zeroone = "{0} {1}".format(words_and_emoticons_lower[i], words_and_emoticons_lower[i + 1]) + if zeroone in SPECIAL_CASE_IDIOMS: + valence = SPECIAL_CASE_IDIOMS[zeroone] + if len(words_and_emoticons_lower) - 1 > i + 1: + zeroonetwo = "{0} {1} {2}".format(words_and_emoticons_lower[i], words_and_emoticons_lower[i + 1], + words_and_emoticons_lower[i + 2]) + if zeroonetwo in SPECIAL_CASE_IDIOMS: + valence = SPECIAL_CASE_IDIOMS[zeroonetwo] + + # check for booster/dampener bi-grams such as 'sort of' or 'kind of' + n_grams = [threetwoone, threetwo, twoone] + for n_gram in n_grams: + if n_gram in BOOSTER_DICT: + valence = valence + BOOSTER_DICT[n_gram] + return valence + + @staticmethod + def _sentiment_laden_idioms_check(valence, senti_text_lower): + # Future Work + # check for sentiment laden idioms that don't contain a lexicon word + idioms_valences = [] + for idiom in SENTIMENT_LADEN_IDIOMS: + if idiom in senti_text_lower: + print(idiom, senti_text_lower) + valence = SENTIMENT_LADEN_IDIOMS[idiom] + idioms_valences.append(valence) + if len(idioms_valences) > 0: + valence = sum(idioms_valences) / float(len(idioms_valences)) + return valence + + @staticmethod + def _negation_check(valence, words_and_emoticons, start_i, i): + words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons] + if start_i == 0: + if negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 1 word preceding lexicon word (w/o stopwords) + valence = valence * N_SCALAR + if start_i == 1: + if words_and_emoticons_lower[i - 2] == "never" and \ + (words_and_emoticons_lower[i - 1] == "so" or + words_and_emoticons_lower[i - 1] == "this"): + valence = valence * 1.25 + elif words_and_emoticons_lower[i - 2] == "without" and \ + words_and_emoticons_lower[i - 1] == "doubt": + valence = valence + elif negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 2 words preceding the lexicon word position + valence = valence * N_SCALAR + if start_i == 2: + if words_and_emoticons_lower[i - 3] == "never" and \ + (words_and_emoticons_lower[i - 2] == "so" or words_and_emoticons_lower[i - 2] == "this") or \ + (words_and_emoticons_lower[i - 1] == "so" or words_and_emoticons_lower[i - 1] == "this"): + valence = valence * 1.25 + elif words_and_emoticons_lower[i - 3] == "without" and \ + (words_and_emoticons_lower[i - 2] == "doubt" or words_and_emoticons_lower[i - 1] == "doubt"): + valence = valence + elif negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 3 words preceding the lexicon word position + valence = valence * N_SCALAR + return valence + + def _punctuation_emphasis(self, text): + # add emphasis from exclamation points and question marks + ep_amplifier = self._amplify_ep(text) + qm_amplifier = self._amplify_qm(text) + punct_emph_amplifier = ep_amplifier + qm_amplifier + return punct_emph_amplifier + + @staticmethod + def _amplify_ep(text): + # check for added emphasis resulting from exclamation points (up to 4 of them) + ep_count = text.count("!") + if ep_count > 4: + ep_count = 4 + # (empirically derived mean sentiment intensity rating increase for + # exclamation points) + ep_amplifier = ep_count * 0.292 + return ep_amplifier + + @staticmethod + def _amplify_qm(text): + # check for added emphasis resulting from question marks (2 or 3+) + qm_count = text.count("?") + qm_amplifier = 0 + if qm_count > 1: + if qm_count <= 3: + # (empirically derived mean sentiment intensity rating increase for + # question marks) + qm_amplifier = qm_count * 0.18 + else: + qm_amplifier = 0.96 + return qm_amplifier + + @staticmethod + def _sift_sentiment_scores(sentiments): + # want separate positive versus negative sentiment scores + pos_sum = 0.0 + neg_sum = 0.0 + neu_count = 0 + for sentiment_score in sentiments: + if sentiment_score > 0: + pos_sum += (float(sentiment_score) + 1) # compensates for neutral words that are counted as 1 + if sentiment_score < 0: + neg_sum += (float(sentiment_score) - 1) # when used with math.fabs(), compensates for neutrals + if sentiment_score == 0: + neu_count += 1 + return pos_sum, neg_sum, neu_count + + def score_valence(self, sentiments, text): + if sentiments: + sum_s = float(sum(sentiments)) + # compute and add emphasis from punctuation in text + punct_emph_amplifier = self._punctuation_emphasis(text) + if sum_s > 0: + sum_s += punct_emph_amplifier + elif sum_s < 0: + sum_s -= punct_emph_amplifier + + compound = normalize(sum_s) + # discriminate between positive, negative and neutral sentiment scores + pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments) + + if pos_sum > math.fabs(neg_sum): + pos_sum += punct_emph_amplifier + elif pos_sum < math.fabs(neg_sum): + neg_sum -= punct_emph_amplifier + + total = pos_sum + math.fabs(neg_sum) + neu_count + pos = math.fabs(pos_sum / total) + neg = math.fabs(neg_sum / total) + neu = math.fabs(neu_count / total) + + else: + compound = 0.0 + pos = 0.0 + neg = 0.0 + neu = 0.0 + + sentiment_dict = \ + {"neg": round(neg, 3), + "neu": round(neu, 3), + "pos": round(pos, 3), + "compound": round(compound, 4)} + + return sentiment_dict + + +if __name__ == '__main__': + # --- examples ------- + sentences = ["VADER is smart, handsome, and funny.", # positive sentence example + "VADER is smart, handsome, and funny!", + # punctuation emphasis handled correctly (sentiment intensity adjusted) + "VADER is very smart, handsome, and funny.", + # booster words handled correctly (sentiment intensity adjusted) + "VADER is VERY SMART, handsome, and FUNNY.", # emphasis for ALLCAPS handled + "VADER is VERY SMART, handsome, and FUNNY!!!", + # combination of signals - VADER appropriately adjusts intensity + "VADER is VERY SMART, uber handsome, and FRIGGIN FUNNY!!!", + # booster words & punctuation make this close to ceiling for score + "VADER is not smart, handsome, nor funny.", # negation sentence example + "The book was good.", # positive sentence + "At least it isn't a horrible book.", # negated negative sentence with contraction + "The book was only kind of good.", + # qualified positive sentence is handled correctly (intensity adjusted) + "The plot was good, but the characters are uncompelling and the dialog is not great.", + # mixed negation sentence + "Today SUX!", # negative slang with capitalization emphasis + "Today only kinda sux! But I'll get by, lol", + # mixed sentiment example with slang and constrastive conjunction "but" + "Make sure you :) or :D today!", # emoticons handled + "Catch utf-8 emoji such as ๐Ÿ’˜ and ๐Ÿ’‹ and ๐Ÿ˜", # emojis handled + "Not bad at all" # Capitalized negation + ] + + analyzer = SentimentIntensityAnalyzer() + + print("----------------------------------------------------") + print(" - Analyze typical example cases, including handling of:") + print(" -- negations") + print(" -- punctuation emphasis & punctuation flooding") + print(" -- word-shape as emphasis (capitalization difference)") + print(" -- degree modifiers (intensifiers such as 'very' and dampeners such as 'kind of')") + print(" -- slang words as modifiers such as 'uber' or 'friggin' or 'kinda'") + print(" -- contrastive conjunction 'but' indicating a shift in sentiment; sentiment of later text is dominant") + print(" -- use of contractions as negations") + print(" -- sentiment laden emoticons such as :) and :D") + print(" -- utf-8 encoded emojis such as ๐Ÿ’˜ and ๐Ÿ’‹ and ๐Ÿ˜") + print(" -- sentiment laden slang words (e.g., 'sux')") + print(" -- sentiment laden initialisms and acronyms (for example: 'lol') \n") + for sentence in sentences: + vs = analyzer.polarity_scores(sentence) + print("{:-<65} {}".format(sentence, str(vs))) + print("----------------------------------------------------") + print(" - About the scoring: ") + print(""" -- The 'compound' score is computed by summing the valence scores of each word in the lexicon, adjusted + according to the rules, and then normalized to be between -1 (most extreme negative) and +1 (most extreme positive). + This is the most useful metric if you want a single unidimensional measure of sentiment for a given sentence. + Calling it a 'normalized, weighted composite score' is accurate.""") + print(""" -- The 'pos', 'neu', and 'neg' scores are ratios for proportions of text that fall in each category (so these + should all add up to be 1... or close to it with float operation). These are the most useful metrics if + you want multidimensional measures of sentiment for a given sentence.""") + print("----------------------------------------------------") + + # input("\nPress Enter to continue the demo...\n") # for DEMO purposes... + + tricky_sentences = ["Sentiment analysis has never been good.", + "Sentiment analysis has never been this good!", + "Most automated sentiment analysis tools are shit.", + "With VADER, sentiment analysis is the shit!", + "Other sentiment analysis tools can be quite bad.", + "On the other hand, VADER is quite bad ass", + "VADER is such a badass!", # slang with punctuation emphasis + "Without a doubt, excellent idea.", + "Roger Dodger is one of the most compelling variations on this theme.", + "Roger Dodger is at least compelling as a variation on the theme.", + "Roger Dodger is one of the least compelling variations on this theme.", + "Not such a badass after all.", # Capitalized negation with slang + "Without a doubt, an excellent idea." # "without {any} doubt" as negation + ] + print("----------------------------------------------------") + print(" - Analyze examples of tricky sentences that cause trouble to other sentiment analysis tools.") + print(" -- special case idioms - e.g., 'never good' vs 'never this good', or 'bad' vs 'bad ass'.") + print(" -- special uses of 'least' as negation versus comparison \n") + for sentence in tricky_sentences: + vs = analyzer.polarity_scores(sentence) + print("{:-<69} {}".format(sentence, str(vs))) + print("----------------------------------------------------") + + # input("\nPress Enter to continue the demo...\n") # for DEMO purposes... + + print("----------------------------------------------------") + print( + " - VADER works best when analysis is done at the sentence level (but it can work on single words or entire novels).") + paragraph = "It was one of the worst movies I've seen, despite good reviews. Unbelievably bad acting!! Poor direction. VERY poor production. The movie was bad. Very bad movie. VERY BAD movie!" + print(" -- For example, given the following paragraph text from a hypothetical movie review:\n\t'{}'".format( + paragraph)) + print( + " -- You could use NLTK to break the paragraph into sentence tokens for VADER, then average the results for the paragraph like this: \n") + # simple example to tokenize paragraph into sentences for VADER + from nltk import tokenize + + sentence_list = tokenize.sent_tokenize(paragraph) + paragraphSentiments = 0.0 + for sentence in sentence_list: + vs = analyzer.polarity_scores(sentence) + print("{:-<69} {}".format(sentence, str(vs["compound"]))) + paragraphSentiments += vs["compound"] + print("AVERAGE SENTIMENT FOR PARAGRAPH: \t" + str(round(paragraphSentiments / len(sentence_list), 4))) + print("----------------------------------------------------") + + # input("\nPress Enter to continue the demo...\n") # for DEMO purposes... + + print("----------------------------------------------------") + print(" - Analyze sentiment of IMAGES/VIDEO data based on annotation 'tags' or image labels. \n") + conceptList = ["balloons", "cake", "candles", "happy birthday", "friends", "laughing", "smiling", "party"] + conceptSentiments = 0.0 + for concept in conceptList: + vs = analyzer.polarity_scores(concept) + print("{:-<15} {}".format(concept, str(vs['compound']))) + conceptSentiments += vs["compound"] + print("AVERAGE SENTIMENT OF TAGS/LABELS: \t" + str(round(conceptSentiments / len(conceptList), 4))) + print("\t") + conceptList = ["riot", "fire", "fight", "blood", "mob", "war", "police", "tear gas"] + conceptSentiments = 0.0 + for concept in conceptList: + vs = analyzer.polarity_scores(concept) + print("{:-<15} {}".format(concept, str(vs['compound']))) + conceptSentiments += vs["compound"] + print("AVERAGE SENTIMENT OF TAGS/LABELS: \t" + str(round(conceptSentiments / len(conceptList), 4))) + print("----------------------------------------------------") + + # input("\nPress Enter to continue the demo...") # for DEMO purposes... + + do_translate = input( + "\nWould you like to run VADER demo examples with NON-ENGLISH text? (Note: requires Internet access) \n Type 'y' or 'n', then press Enter: ") + if do_translate.lower().lstrip().__contains__("y"): + print("\n----------------------------------------------------") + print(" - Analyze sentiment of NON ENGLISH text...for example:") + print(" -- French, German, Spanish, Italian, Russian, Japanese, Arabic, Chinese") + print(" -- many other languages supported. \n") + languages = ["English", "French", "German", "Spanish", "Italian", "Russian", "Japanese", "Arabic", "Chinese"] + language_codes = ["en", "fr", "de", "es", "it", "ru", "ja", "ar", "zh"] + nonEnglish_sentences = ["I'm surprised to see just how amazingly helpful VADER is!", + "Je suis surpris de voir juste comment incroyablement utile VADER est!", + "Ich bin รผberrascht zu sehen, nur wie erstaunlich nรผtzlich VADER!", + "Me sorprende ver sรณlo cรณmo increรญblemente รบtil VADER!", + "Sono sorpreso di vedere solo come incredibilmente utile VADER รจ!", + "ะฏ ัƒะดะธะฒะปะตะฝ ัƒะฒะธะดะตั‚ัŒ, ะบะฐะบ ั€ะฐะท ะบะฐะบ ัƒะดะธะฒะธั‚ะตะปัŒะฝะพ ะฟะพะปะตะทะฝะพ ะ’ะ•ะ™ะ”ะ•ะ ะ!", + "็งใฏใกใ‚‡ใ†ใฉใฉใฎใ‚ˆใ†ใซ้ฉšใใปใฉๅฝนใซ็ซ‹ใคใƒ™ใ‚คใƒ€ใƒผใ‚’่ฆ‹ใฆ้ฉšใ„ใฆใ„ใพใ™!", + "ุฃู†ุง ู…ู†ุฏู‡ุด ู„ุฑุคูŠุฉ ูู‚ุท ูƒูŠู ู…ุซูŠุฑ ู„ู„ุฏู‡ุดุฉ ููŠุฏุฑ ูุงุฆุฏุฉ!", + "ๆƒŠ่ฎถๅœฐ็œ‹ๅˆฐๆœ‰็”จ็ปดๅพทๆ˜ฏ็š„ๅชๆ˜ฏๅฆ‚ไฝ•ไปคไบบๆƒŠ่ฎถไบ† ๏ผ" + ] + for sentence in nonEnglish_sentences: + to_lang = "en" + from_lang = language_codes[nonEnglish_sentences.index(sentence)] + if (from_lang == "en") or (from_lang == "en-US"): + translation = sentence + translator_name = "No translation needed" + else: # please note usage limits for My Memory Translation Service: http://mymemory.translated.net/doc/usagelimits.php + # using MY MEMORY NET http://mymemory.translated.net + api_url = "http://mymemory.translated.net/api/get?q={}&langpair={}|{}".format(sentence, from_lang, + to_lang) + hdrs = { + 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', + 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', + 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', + 'Accept-Encoding': 'none', + 'Accept-Language': 'en-US,en;q=0.8', + 'Connection': 'keep-alive'} + response = requests.get(api_url, headers=hdrs) + response_json = json.loads(response.text) + translation = response_json["responseData"]["translatedText"] + translator_name = "MemoryNet Translation Service" + vs = analyzer.polarity_scores(translation) + print("- {: <8}: {: <69}\t {} ({})".format(languages[nonEnglish_sentences.index(sentence)], sentence, + str(vs['compound']), translator_name)) + print("----------------------------------------------------") + + print("\n\n Demo Done!") diff --git a/vaderSentiment/vader_lexicon.txt b/vaderSentiment/vader_lexicon.txt index 3412a74..25bb4bf 100644 --- a/vaderSentiment/vader_lexicon.txt +++ b/vaderSentiment/vader_lexicon.txt @@ -1,7517 +1,7539 @@ -$: -1.5 0.80623 [-1, -1, -1, -1, -3, -1, -3, -1, -2, -1] -%) -0.4 1.0198 [-1, 0, -1, 0, 0, -2, -1, 2, -1, 0] -%-) -1.5 1.43178 [-2, 0, -2, -2, -1, 2, -2, -3, -2, -3] -&-: -0.4 1.42829 [-3, -1, 0, 0, -1, -1, -1, 2, -1, 2] -&: -0.7 0.64031 [0, -1, -1, -1, 1, -1, -1, -1, -1, -1] -( '}{' ) 1.6 0.66332 [1, 2, 2, 1, 1, 2, 2, 1, 3, 1] -(% -0.9 0.9434 [0, 0, 1, -1, -1, -1, -2, -2, -1, -2] -('-: 2.2 1.16619 [4, 1, 4, 3, 1, 2, 3, 1, 2, 1] -(': 2.3 0.9 [1, 3, 3, 2, 2, 4, 2, 3, 1, 2] -((-: 2.1 0.53852 [2, 2, 2, 1, 2, 3, 2, 2, 3, 2] -(* 1.1 1.13578 [2, 1, 1, -1, 1, 2, 2, -1, 2, 2] -(-% -0.7 1.26886 [-1, 2, 0, -1, -1, -2, 0, 0, -3, -1] -(-* 1.3 1.26886 [4, 1, 2, 0, 2, -1, 1, 2, 1, 1] -(-: 1.6 0.8 [2, 2, 1, 3, 1, 1, 1, 3, 1, 1] -(-:0 2.8 0.87178 [3, 2, 3, 4, 3, 2, 3, 1, 4, 3] -(-:< -0.4 2.15407 [-3, 3, -1, -1, 2, -1, -2, 3, -3, -1] -(-:o 1.5 0.67082 [3, 1, 1, 2, 2, 2, 1, 1, 1, 1] -(-:O 1.5 0.67082 [3, 1, 1, 2, 2, 2, 1, 1, 1, 1] -(-:{ -0.1 1.57797 [-2, -3, 1, -2, 1, 1, 0, 0, 2, 1] -(-:|>* 1.9 0.83066 [3, 2, 2, 1, 0, 2, 3, 2, 2, 2] -(-; 1.3 1.18743 [3, 2, 3, 0, 1, -1, 1, 2, 1, 1] -(-;| 2.1 1.13578 [3, 2, 2, 4, 1, 1, 1, 4, 2, 1] -(8 2.6 1.0198 [4, 2, 1, 3, 3, 3, 3, 1, 2, 4] -(: 2.2 1.16619 [3, 1, 1, 2, 1, 2, 4, 3, 4, 1] -(:0 2.4 1.11355 [0, 2, 3, 4, 3, 2, 3, 3, 1, 3] -(:< -0.2 2.03961 [-2, -3, 1, 1, 2, -1, 2, 1, -4, 1] -(:o 2.5 0.92195 [3, 3, 1, 3, 3, 1, 2, 2, 4, 3] -(:O 2.5 0.92195 [3, 3, 1, 3, 3, 1, 2, 2, 4, 3] -(; 1.1 1.22066 [3, 1, 1, -1, 1, 2, 2, -1, 1, 2] -(;< 0.3 1.00499 [1, 2, -1, -1, 0, 0, 1, -1, 1, 1] -(= 2.2 1.16619 [3, 1, 2, 2, 1, 1, 4, 3, 4, 1] -(?: 2.1 0.83066 [2, 2, 1, 3, 2, 2, 4, 1, 2, 2] -(^: 1.5 0.67082 [1, 2, 2, 1, 3, 2, 1, 1, 1, 1] -(^; 1.5 0.5 [1, 2, 2, 1, 2, 1, 2, 1, 1, 2] -(^;0 2.0 0.7746 [2, 2, 1, 2, 1, 4, 2, 2, 2, 2] -(^;o 1.9 0.83066 [2, 2, 1, 2, 1, 4, 2, 1, 2, 2] -(o: 1.6 0.8 [2, 1, 3, 1, 1, 1, 2, 3, 1, 1] -)': -2.0 0.44721 [-2, -2, -2, -2, -1, -3, -2, -2, -2, -2] -)-': -2.1 0.53852 [-2, -2, -3, -2, -1, -2, -3, -2, -2, -2] -)-: -2.1 0.9434 [-3, -2, -4, -1, -3, -2, -2, -2, -1, -1] -)-:< -2.2 0.4 [-2, -2, -2, -2, -2, -2, -3, -3, -2, -2] -)-:{ -2.1 0.9434 [-1, -3, -2, -1, -2, -2, -3, -4, -1, -2] -): -1.8 0.87178 [-1, -3, -1, -2, -1, -3, -1, -3, -1, -2] -):< -1.9 0.53852 [-1, -3, -2, -2, -2, -1, -2, -2, -2, -2] -):{ -2.3 0.78102 [-1, -2, -3, -3, -2, -2, -4, -2, -2, -2] -);< -2.6 0.8 [-2, -2, -2, -3, -2, -3, -2, -2, -4, -4] -*) 0.6 1.42829 [1, -1, 1, -3, 1, 1, 2, 1, 1, 2] -*-) 0.3 1.61555 [1, -3, -2, 2, 1, 1, -1, 2, 1, 1] -*-: 2.1 1.51327 [2, 2, 4, 4, 2, 1, -1, 4, 1, 2] -*-; 2.4 1.62481 [2, 3, 4, 4, 2, 1, -1, 4, 1, 4] -*: 1.9 1.04403 [2, 1, 1, 3, 1, 2, 4, 3, 1, 1] -*<|:-) 1.6 1.28062 [0, 1, 3, 1, 1, 2, 3, 0, 4, 1] -*\0/* 2.3 1.00499 [2, 0, 3, 1, 3, 3, 2, 3, 3, 3] -*^: 1.6 1.42829 [2, 2, 1, 3, 2, 2, 3, 3, -1, -1] -,-: 1.2 0.4 [1, 1, 2, 1, 1, 1, 1, 1, 2, 1] ----'-;-{@ 2.3 1.18743 [0, 1, 3, 4, 2, 3, 2, 2, 2, 4] ---<--<@ 2.2 1.249 [0, 1, 2, 4, 2, 1, 3, 2, 3, 4] -.-: -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -2, -1] -..###-: -1.7 0.78102 [-2, -3, -3, -2, -1, -1, -1, -1, -1, -2] -..###: -1.9 1.04403 [-4, -1, -3, -1, -2, -2, -1, -3, -1, -1] -/-: -1.3 0.64031 [-1, -1, -1, -1, -1, -1, -1, -2, -3, -1] -/: -1.3 0.45826 [-2, -1, -1, -1, -2, -1, -1, -2, -1, -1] -/:< -1.4 0.4899 [-1, -2, -2, -1, -1, -1, -1, -1, -2, -2] -/= -0.9 0.53852 [-1, -1, -1, 0, -1, -2, -1, -1, -1, 0] -/^: -1.0 0.7746 [-2, -1, -2, 1, -1, -1, -1, -1, -1, -1] -/o: -1.4 0.66332 [0, -2, -1, -1, -2, -2, -1, -2, -1, -2] -0-8 0.1 1.44568 [2, -1, -2, 0, 2, 0, 2, 0, -2, 0] -0-| -1.2 0.4 [-2, -1, -1, -1, -1, -1, -1, -1, -2, -1] -0:) 1.9 1.04403 [2, 2, 2, 1, 0, 2, 4, 1, 3, 2] -0:-) 1.4 0.91652 [2, 1, 0, 1, 2, 3, 2, 1, 2, 0] -0:-3 1.5 0.92195 [2, 1, 0, 2, 2, 3, 2, 1, 2, 0] -0:03 1.9 1.22066 [2, 3, 2, 0, 0, 1, 4, 2, 3, 2] -0;^) 1.6 0.91652 [0, 1, 3, 1, 2, 1, 2, 1, 2, 3] -0_o -0.3 0.78102 [0, -2, 0, 1, 0, 0, -1, 0, -1, 0] -10q 2.1 1.22066 [1, 3, 1, 2, 1, 4, 3, 4, 1, 1] -1337 2.1 1.13578 [3, 1, 4, 0, 2, 3, 1, 2, 2, 3] -143 3.2 0.74833 [4, 4, 2, 3, 2, 3, 4, 3, 4, 3] -1432 2.6 0.8 [4, 3, 3, 2, 2, 4, 2, 2, 2, 2] -14aa41 2.4 0.91652 [3, 2, 2, 4, 2, 2, 1, 2, 4, 2] -182 -2.9 1.3 [-4, 0, -3, -3, -1, -3, -4, -4, -4, -3] -187 -3.1 1.22066 [-4, 0, -4, -3, -2, -4, -3, -3, -4, -4] -2g2b4g 2.8 0.6 [4, 2, 3, 2, 3, 3, 3, 3, 2, 3] -2g2bt -0.1 1.57797 [-1, 2, -1, 1, 0, 2, 0, -3, -2, 1] -2qt 2.1 0.83066 [3, 3, 3, 3, 2, 1, 2, 1, 2, 1] -3:( -2.2 0.87178 [-4, -3, -2, -3, -2, -1, -1, -2, -2, -2] -3:) 0.5 1.28452 [-2, 1, -2, 1, 1, 1, 1, 2, 1, 1] -3:-( -2.3 0.78102 [-2, -3, -2, -2, -2, -2, -4, -1, -3, -2] -3:-) -1.4 1.35647 [-1, -2, 1, 1, -2, -2, -3, -1, -3, -2] -4col -2.2 1.16619 [-2, -3, -1, -3, -4, -1, -2, -1, -4, -1] -4q -3.1 1.51327 [-3, -3, -4, -2, -4, -4, -4, 1, -4, -4] -5fs 1.5 1.11803 [1, 2, 1, 1, 2, 3, 2, 3, -1, 1] -8) 1.9 0.7 [2, 2, 2, 1, 1, 2, 2, 3, 3, 1] -8-d 1.7 0.64031 [1, 2, 0, 2, 2, 2, 2, 2, 2, 2] -8-o -0.3 0.78102 [1, -1, 0, 0, 0, -1, 0, -2, 0, 0] -86 -1.6 1.0198 [-1, -1, -1, -1, -1, -4, -1, -2, -1, -3] -8d 2.9 0.53852 [3, 3, 4, 2, 3, 3, 3, 3, 2, 3] -:###.. -2.4 0.91652 [-3, -2, -4, -3, -1, -2, -2, -3, -1, -3] -:$ -0.2 1.83303 [-2, -1, 0, 0, -1, 1, 4, -3, 1, -1] -:& -0.6 1.0198 [-2, -1, 0, 0, -1, -1, 1, -2, 1, -1] -:'( -2.2 0.74833 [-2, -1, -2, -2, -2, -2, -4, -3, -2, -2] -:') 2.3 0.78102 [3, 1, 3, 2, 2, 2, 2, 4, 2, 2] -:'-( -2.4 0.66332 [-2, -1, -2, -3, -2, -3, -3, -3, -2, -3] -:'-) 2.7 0.64031 [2, 1, 3, 3, 3, 3, 3, 3, 3, 3] -:( -1.9 1.13578 [-2, -3, -2, 0, -1, -1, -2, -3, -1, -4] -:) 2.0 1.18322 [2, 2, 1, 1, 1, 1, 4, 3, 4, 1] -:* 2.5 1.0247 [3, 2, 1, 1, 2, 3, 4, 3, 4, 2] -:-###.. -2.5 0.92195 [-3, -2, -3, -2, -4, -3, -1, -3, -1, -3] -:-& -0.5 0.92195 [-1, -1, 0, -1, -1, -1, -1, 0, 2, -1] -:-( -1.5 0.5 [-2, -1, -1, -1, -2, -2, -2, -1, -2, -1] -:-) 1.3 0.45826 [1, 1, 1, 1, 2, 1, 2, 1, 2, 1] -:-)) 2.8 1.07703 [3, 4, 4, 1, 2, 2, 4, 2, 4, 2] -:-* 1.7 0.64031 [1, 2, 1, 1, 1, 3, 2, 2, 2, 2] -:-, 1.1 0.53852 [1, 1, 1, 0, 1, 1, 1, 1, 2, 2] -:-. -0.9 0.53852 [-1, -1, 0, -1, 0, -1, -1, -1, -2, -1] -:-/ -1.2 0.6 [0, -1, -1, -1, -1, -2, -2, -1, -1, -2] -:-< -1.5 0.5 [-2, -1, -1, -2, -1, -2, -2, -1, -2, -1] -:-d 2.3 0.45826 [2, 2, 3, 3, 2, 3, 2, 2, 2, 2] -:-D 2.3 0.45826 [2, 2, 3, 3, 2, 3, 2, 2, 2, 2] -:-o 0.1 1.3 [2, -1, -2, 0, 1, 1, 2, 0, -1, -1] -:-p 1.2 0.4 [1, 2, 1, 1, 1, 1, 2, 1, 1, 1] -:-[ -1.6 0.4899 [-1, -2, -1, -2, -2, -1, -2, -1, -2, -2] -:-\ -0.9 0.3 [-1, -1, -1, -1, -1, -1, -1, 0, -1, -1] -:-c -1.3 0.45826 [-1, -1, -1, -2, -2, -1, -2, -1, -1, -1] -:-p 1.5 0.5 [1, 1, 1, 1, 1, 2, 2, 2, 2, 2] -:-| -0.7 0.64031 [-1, -1, 0, 0, 0, -1, -1, -2, 0, -1] -:-|| -2.5 0.67082 [-2, -2, -2, -3, -2, -3, -3, -2, -2, -4] -:-รž 0.9 1.04403 [1, -1, 1, 2, 1, -1, 1, 2, 2, 1] -:/ -1.4 0.66332 [-1, -1, -1, -1, -1, -1, -3, -2, -2, -1] -:3 2.3 1.26886 [4, 1, 1, 1, 2, 2, 4, 3, 4, 1] -:< -2.1 0.7 [-3, -1, -2, -2, -2, -2, -3, -3, -2, -1] -:> 2.1 1.22066 [3, 1, 1, 1, 1, 2, 4, 3, 4, 1] -:?) 1.3 0.64031 [3, 1, 1, 1, 1, 2, 1, 1, 1, 1] -:?c -1.6 0.4899 [-1, -2, -1, -1, -2, -2, -1, -2, -2, -2] -:@ -2.5 0.80623 [-1, -3, -3, -2, -1, -3, -3, -3, -3, -3] -:d 2.3 1.1 [4, 2, 2, 1, 2, 1, 4, 3, 3, 1] -:D 2.3 1.1 [4, 2, 2, 1, 2, 1, 4, 3, 3, 1] -:l -1.7 0.9 [-1, -3, -1, -1, -1, -3, -2, -3, -1, -1] -:o -0.4 1.35647 [2, -1, -2, 0, 1, 0, -3, 0, -1, 0] -:p 1.0 0.7746 [-1, 1, 1, 1, 1, 1, 2, 1, 2, 1] -:s -1.2 0.9798 [-2, -2, -1, -1, -1, 1, -3, -1, -1, -1] -:[ -2.0 0.63246 [-2, -2, -1, -2, -2, -3, -3, -2, -1, -2] -:\ -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -1, -1, -2] -:] 2.2 1.16619 [3, 1, 1, 1, 3, 1, 4, 2, 2, 4] -:^) 2.1 1.13578 [3, 2, 4, 1, 1, 1, 1, 2, 4, 2] -:^* 2.6 0.91652 [2, 1, 2, 3, 4, 4, 3, 2, 3, 2] -:^/ -1.2 0.6 [-2, -1, -2, 0, -1, -1, -1, -1, -2, -1] -:^\ -1.0 0.44721 [-1, -1, -1, -1, -1, -2, 0, -1, -1, -1] -:^| -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] -:c -2.1 0.83066 [-3, -2, -1, -2, -2, -1, -3, -3, -3, -1] -:c) 2.0 1.18322 [2, 1, 1, 1, 1, 2, 3, 4, 4, 1] -:o) 2.1 0.9434 [1, 3, 3, 1, 1, 3, 2, 3, 1, 3] -:o/ -1.4 0.4899 [-1, -1, -1, -2, -1, -1, -2, -2, -1, -2] -:o\ -1.1 0.3 [-1, -1, -1, -2, -1, -1, -1, -1, -1, -1] -:o| -0.6 1.0198 [0, 0, 0, 0, -1, 0, 0, -3, 0, -2] -:P 1.4 0.8 [3, 1, 0, 2, 1, 1, 2, 2, 1, 1] -:{ -1.9 0.83066 [-2, -1, -1, -2, -2, -1, -3, -3, -3, -1] -:| -0.4 1.11355 [-1, -1, 0, -1, -1, -1, 1, -2, 2, 0] -:} 2.1 1.22066 [3, 1, 1, 1, 2, 1, 4, 3, 4, 1] -:รž 1.1 0.53852 [1, 1, 1, 1, 0, 1, 1, 2, 2, 1] -;) 0.9 1.04403 [2, -1, 1, 1, 1, 1, -1, 2, 2, 1] -;-) 1.0 1.73205 [1, -2, 1, -2, 1, 4, 2, 1, 2, 2] -;-* 2.2 0.74833 [2, 2, 1, 3, 4, 2, 2, 2, 2, 2] -;-] 0.7 1.67631 [1, -2, 1, -3, 1, 2, 2, 1, 2, 2] -;d 0.8 1.249 [2, -1, 2, 1, 1, 1, -2, 2, 1, 1] -;D 0.8 1.249 [2, -1, 2, 1, 1, 1, -2, 2, 1, 1] -;] 0.6 1.11355 [1, -1, 1, 1, 1, 1, -2, 2, 1, 1] -;^) 1.4 0.91652 [2, 2, 1, 2, 1, 2, -1, 1, 2, 2] --: -2.0 0.89443 [-2, -3, -2, -4, -1, -1, -1, -2, -2, -2] ->.< -1.3 0.45826 [-1, -2, -1, -2, -2, -1, -1, -1, -1, -1] ->: -2.1 1.13578 [-4, -1, -1, -4, -2, -3, -1, -1, -2, -2] ->:( -2.7 0.64031 [-2, -3, -2, -3, -3, -2, -4, -2, -3, -3] ->:) 0.4 1.42829 [1, 1, 2, 1, -1, -2, 1, 2, -2, 1] ->:-( -2.7 0.78102 [-3, -2, -3, -2, -4, -2, -3, -2, -2, -4] ->:-) -0.4 1.68523 [1, 2, 1, -2, -2, -1, -1, -3, -1, 2] ->:/ -1.6 0.8 [-1, -2, -1, -3, -1, -1, -1, -1, -2, -3] ->:o -1.2 1.16619 [-3, -1, -2, 0, -2, -2, 0, -1, 1, -2] ->:p 1.0 0.7746 [-1, 1, 1, 2, 1, 2, 1, 1, 1, 1] ->:[ -2.1 0.53852 [-2, -2, -2, -2, -3, -3, -2, -1, -2, -2] ->:\ -1.7 0.64031 [-1, -2, -1, -2, -2, -3, -1, -1, -2, -2] ->;( -2.9 0.7 [-3, -4, -3, -2, -2, -3, -3, -3, -2, -4] ->;) 0.1 1.04403 [-1, 1, 0, -1, 2, 0, -1, 1, 1, -1] ->_>^ 2.1 0.9434 [2, 2, 1, 4, 3, 2, 1, 3, 1, 2] -@: -2.1 0.9434 [-3, -2, -3, -1, -2, -4, -1, -2, -1, -2] -@>-->-- 2.1 1.22066 [1, 1, 0, 2, 4, 2, 4, 2, 3, 2] -@}-;-'--- 2.2 1.32665 [0, 1, 3, 2, 1, 4, 4, 1, 3, 3] -aas 2.5 0.80623 [2, 3, 3, 4, 1, 2, 3, 2, 2, 3] -aayf 2.7 0.78102 [2, 3, 2, 4, 3, 2, 2, 3, 4, 2] -afu -2.9 0.83066 [-3, -3, -3, -3, -3, -1, -4, -4, -2, -3] -alol 2.8 0.74833 [2, 2, 2, 3, 3, 2, 3, 4, 4, 3] -ambw 2.9 0.7 [2, 3, 4, 2, 3, 2, 3, 3, 4, 3] -aml 3.4 0.66332 [4, 3, 2, 4, 3, 3, 4, 4, 3, 4] -atab -1.9 1.22066 [-2, 0, -1, -2, -1, -1, -2, -4, -4, -2] -awol -1.3 0.78102 [0, -1, -1, -1, -1, -1, -2, -2, -3, -1] -ayc 0.2 0.9798 [0, 1, -1, 1, 0, 1, 0, -1, 2, -1] -ayor -1.2 0.6 [-1, -1, -2, -2, -1, -1, -1, 0, -2, -1] -aug-00 0.3 1.18743 [2, 0, -2, 0, 0, 1, -1, 2, 1, 0] -bfd -2.7 0.78102 [-3, -2, -4, -2, -3, -2, -3, -2, -4, -2] -bfe -2.6 1.35647 [-3, -3, -4, -2, -3, -2, 1, -3, -4, -3] -bff 2.9 0.83066 [3, 3, 4, 2, 4, 2, 2, 3, 4, 2] -bffn 1.0 0.89443 [2, 1, -1, 1, 0, 1, 2, 1, 2, 1] -bl 2.3 1.1 [2, 1, 4, 1, 2, 2, 4, 3, 1, 3] -bsod -2.2 1.07703 [-1, -4, -3, -3, 0, -2, -3, -2, -2, -2] -btd -2.1 0.83066 [-1, -2, -3, -3, -3, -1, -3, -2, -1, -2] -btdt -0.1 1.22066 [0, -1, 0, -1, 0, 3, 1, -1, -1, -1] -bz 0.4 1.35647 [-1, 0, 0, 0, 4, 1, -1, 1, 0, 0] -b^d 2.6 0.8 [3, 2, 2, 4, 3, 1, 3, 3, 3, 2] -cwot -2.3 0.45826 [-3, -2, -2, -2, -2, -3, -2, -3, -2, -2] -d-': -2.5 0.67082 [-3, -3, -2, -2, -2, -4, -2, -3, -2, -2] -d8 -3.2 0.6 [-3, -3, -3, -3, -4, -4, -2, -3, -3, -4] -d: -2.9 0.83066 [-3, -3, -3, -3, -2, -4, -1, -3, -3, -4] -d:< -3.2 0.9798 [-4, -4, -4, -1, -3, -3, -4, -2, -3, -4] -d; -2.9 0.83066 [-1, -3, -3, -3, -3, -4, -2, -3, -3, -4] -d= -3.0 0.89443 [-4, -3, -3, -3, -2, -4, -1, -3, -3, -4] -doa -2.3 1.00499 [-2, -3, -3, -2, -2, -2, -4, 0, -2, -3] -dx -3.0 0.63246 [-3, -2, -3, -3, -4, -3, -4, -2, -3, -3] -ez 1.5 0.67082 [3, 2, 2, 1, 1, 1, 2, 1, 1, 1] -fav 2.4 0.91652 [3, 1, 3, 2, 2, 3, 1, 2, 3, 4] -fcol -1.8 0.74833 [-2, -2, -1, -2, -1, -2, -1, -3, -3, -1] -ff 1.8 1.249 [4, 2, 1, 2, 1, 3, 3, 0, 2, 0] -ffs -2.8 0.9798 [-2, -2, -3, -3, -2, -4, -4, -4, -1, -3] -fkm -2.4 1.35647 [-4, -1, -4, -2, -2, -3, -1, 0, -3, -4] -foaf 1.8 1.249 [2, 1, 2, 0, 4, 1, 1, 1, 2, 4] -ftw 2.0 0.7746 [2, 1, 1, 2, 2, 2, 3, 3, 1, 3] -fu -3.7 0.45826 [-3, -4, -4, -3, -3, -4, -4, -4, -4, -4] -fubar -3.0 1.09545 [-4, -3, -3, -4, -3, -3, -3, -4, 0, -3] -fwb 2.5 1.43178 [2, 3, 4, 0, 1, 2, 4, 1, 4, 4] -fyi 0.8 1.66132 [0, 1, 0, -1, 0, 0, 4, 4, 0, 0] -fysa 0.4 0.91652 [0, 0, 0, 1, 0, 3, 0, 0, 0, 0] -g1 1.4 0.4899 [2, 1, 1, 1, 2, 1, 2, 1, 1, 2] -gg 1.2 0.74833 [0, 2, 2, 1, 0, 1, 2, 2, 1, 1] -gga 1.7 0.45826 [2, 2, 1, 2, 2, 1, 2, 2, 1, 2] -gigo -0.6 1.11355 [-2, -1, 1, 0, 0, 0, -1, -2, -2, 1] -gj 2.0 1.0 [2, 1, 2, 1, 1, 3, 4, 2, 3, 1] -gl 1.3 0.64031 [1, 1, 1, 1, 3, 1, 1, 2, 1, 1] -gla 2.5 0.92195 [1, 2, 2, 4, 2, 4, 2, 3, 3, 2] -gn 1.2 0.74833 [1, 1, 1, 1, 3, 1, 1, 2, 1, 0] -gr8 2.7 0.78102 [1, 3, 3, 4, 3, 2, 3, 2, 3, 3] -grrr -0.4 1.42829 [-2, -1, 0, 1, -2, -1, -1, 3, 0, -1] -gt 1.1 0.53852 [1, 1, 1, 1, 1, 1, 2, 1, 0, 2] -h&k 2.3 0.78102 [2, 2, 2, 3, 4, 2, 3, 2, 1, 2] -hagd 2.2 0.87178 [2, 2, 3, 2, 1, 3, 4, 1, 2, 2] -hagn 2.2 0.87178 [2, 2, 3, 2, 1, 3, 4, 1, 2, 2] -hago 1.2 0.4 [1, 2, 1, 1, 1, 2, 1, 1, 1, 1] -hak 1.9 0.7 [3, 1, 2, 2, 1, 2, 3, 2, 1, 2] -hand 2.2 0.87178 [2, 2, 1, 3, 2, 3, 4, 1, 2, 2] -hho1/2k 1.4 1.11355 [1, -1, 2, 3, 1, 1, 1, 2, 3, 1] -hhoj 2.0 1.09545 [4, 2, 1, 1, 2, 1, 1, 4, 2, 2] -hhok 0.9 0.9434 [1, 2, 1, 0, -1, 0, 2, 1, 1, 2] -hugz 2.0 0.7746 [2, 3, 1, 3, 1, 3, 1, 2, 2, 2] -hi5 1.9 0.53852 [2, 2, 2, 1, 3, 2, 1, 2, 2, 2] -idk -0.4 0.66332 [0, 0, 0, 0, -1, -2, 0, 0, 0, -1] -ijs 0.7 1.84662 [0, -1, 0, -1, 0, 4, 0, 4, -1, 2] -ilu 3.4 0.66332 [3, 4, 3, 4, 2, 3, 4, 3, 4, 4] -iluaaf 2.7 1.1 [3, 3, 3, 2, 3, 0, 4, 3, 2, 4] -ily 3.4 0.66332 [3, 4, 3, 4, 2, 3, 4, 3, 4, 4] -ily2 2.6 0.66332 [3, 2, 3, 2, 3, 2, 3, 4, 2, 2] -iou 0.7 1.34536 [0, 0, -1, 2, 0, 0, 0, 4, 1, 1] -iyq 2.3 1.18743 [3, 3, 1, 1, 2, 1, 4, 4, 3, 1] -j/j 2.0 1.34164 [4, 1, 1, 1, 1, 4, 4, 1, 2, 1] -j/k 1.6 1.2 [1, 2, 1, 3, 0, 0, 2, 2, 1, 4] -j/p 1.4 0.66332 [1, 1, 0, 2, 1, 2, 2, 2, 1, 2] -j/t -0.2 1.46969 [1, -1, -1, -2, 1, 1, 2, -2, 1, -2] -j/w 1.0 1.0 [1, 1, 1, 3, 0, 0, 0, 2, 0, 2] -j4f 1.4 0.8 [2, 1, 1, 0, 3, 1, 1, 1, 2, 2] -j4g 1.7 1.18743 [1, 4, 1, 1, 3, 1, 3, 0, 2, 1] -jho 0.8 0.4 [1, 1, 1, 1, 0, 1, 1, 1, 0, 1] -jhomf 1.0 0.63246 [1, 1, 1, 0, 1, 0, 2, 2, 1, 1] -jj 1.0 0.63246 [1, 1, 1, 1, 2, 0, 2, 1, 1, 0] -jk 0.9 1.22066 [1, 0, 0, 1, 0, 0, 2, 1, 4, 0] -jp 0.8 0.74833 [1, 1, 1, 0, 2, 0, 2, 0, 1, 0] -jt 0.9 0.83066 [1, 1, 0, 2, 2, 0, 2, 0, 1, 0] -jw 1.6 1.68523 [3, 0, 0, 0, 0, 0, 3, 4, 2, 4] -jealz -1.2 0.9798 [-1, -1, -1, 1, -2, -2, -1, -3, -1, -1] -k4y 2.3 1.00499 [2, 1, 1, 2, 4, 2, 3, 4, 2, 2] -kfy 2.3 0.64031 [2, 2, 2, 1, 3, 2, 3, 3, 2, 3] -kia -3.2 0.6 [-3, -3, -3, -4, -3, -2, -3, -3, -4, -4] -kk 1.5 1.0247 [2, 1, 0, 0, 1, 2, 3, 3, 2, 1] -kmuf 2.2 1.4 [2, 2, 2, 3, 4, 3, -1, 1, 4, 2] -l 2.0 0.7746 [2, 1, 2, 3, 2, 3, 1, 3, 2, 1] -l&r 2.2 0.74833 [3, 2, 2, 3, 1, 3, 1, 3, 2, 2] -laoj 1.3 1.73494 [1, -2, -1, 3, 3, 2, 4, 1, 1, 1] -lmao 2.0 1.18322 [3, 0, 3, 0, 3, 1, 3, 2, 3, 2] -lmbao 1.8 1.77764 [3, 2, 2, 2, 1, 3, -3, 2, 4, 2] -lmfao 2.5 1.28452 [3, 2, 3, 3, 3, -1, 4, 2, 3, 2] -lmso 2.7 0.78102 [3, 3, 4, 3, 3, 1, 3, 3, 2, 2] -lol 2.9 0.83066 [4, 2, 2, 2, 4, 2, 3, 3, 4, 3] -lolz 2.7 0.78102 [2, 3, 3, 2, 2, 4, 4, 3, 2, 2] -lts 1.6 0.66332 [1, 1, 2, 2, 1, 3, 1, 1, 2, 2] -ly 2.6 0.91652 [2, 2, 1, 3, 4, 4, 3, 2, 2, 3] -ly4e 2.7 0.78102 [3, 3, 3, 2, 1, 3, 3, 4, 2, 3] -lya 3.3 0.78102 [3, 4, 4, 4, 2, 2, 3, 4, 3, 4] -lyb 3.0 0.63246 [3, 3, 4, 3, 2, 3, 2, 4, 3, 3] -lyl 3.1 0.7 [4, 3, 4, 3, 2, 3, 3, 2, 4, 3] -lylab 2.7 0.78102 [3, 3, 3, 1, 3, 4, 2, 2, 3, 3] -lylas 2.6 0.8 [3, 3, 3, 1, 3, 4, 2, 2, 2, 3] -lylb 1.6 1.56205 [2, 2, 3, -2, 4, 1, 3, 1, 1, 1] -m8 1.4 1.0198 [3, 0, 1, 0, 1, 3, 2, 2, 1, 1] -mia -1.2 0.4 [-2, -1, -1, -2, -1, -1, -1, -1, -1, -1] -mml 2.0 1.0 [1, 1, 2, 3, 3, 2, 1, 2, 4, 1] -mofo -2.4 2.2 [-4, -4, -4, 0, -3, -2, -2, -4, 3, -4] -muah 2.8 1.07703 [1, 2, 4, 4, 4, 2, 4, 2, 2, 3] -mubar -1.0 2.36643 [-4, -2, -3, -2, -2, -2, 1, 4, 2, -2] -musm 0.9 2.07123 [-1, 1, 1, 1, 4, 3, 1, -4, 1, 2] -mwah 2.5 0.80623 [2, 2, 2, 4, 2, 3, 2, 2, 4, 2] -n1 1.9 1.04403 [1, 1, 3, 2, 2, 3, 4, 1, 1, 1] -nbd 1.3 1.34536 [2, 1, 0, 0, 0, 4, 2, 0, 3, 1] -nbif -0.5 0.67082 [-1, -2, 0, 0, 0, 0, -1, -1, 0, 0] -nfc -2.7 0.9 [-3, -2, -2, -3, -1, -2, -4, -3, -4, -3] -nfw -2.4 1.0198 [-2, -2, -1, -3, -1, -2, -4, -3, -4, -2] -nh 2.2 0.6 [2, 2, 2, 2, 1, 3, 3, 3, 2, 2] -nimby -0.8 0.6 [0, 0, -1, 0, -1, -2, -1, -1, -1, -1] -nimjd -0.7 0.78102 [0, -2, -1, -2, 0, -1, 0, 0, 0, -1] -nimq -0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, -2, 0] -nimy -1.4 1.68523 [-1, -2, -3, -2, -1, 2, -3, 0, 0, -4] -nitl -1.5 0.92195 [-1, -1, -2, -3, -1, -3, -1, -2, 0, -1] -nme -2.1 1.13578 [-1, -2, -2, -1, -4, -2, -3, -3, 0, -3] -noyb -0.7 1.67631 [-1, -2, 0, -1, -1, -2, -2, -1, 4, -1] -np 1.4 1.0198 [0, 1, 1, 1, 1, 2, 2, 4, 1, 1] -ntmu 1.4 0.66332 [1, 1, 0, 1, 2, 2, 2, 2, 2, 1] -o-8 -0.5 1.5 [2, -1, 0, 0, -2, -2, 0, -2, 2, -2] -o-: -0.3 1.18743 [2, -1, 0, 0, -1, -2, 0, -2, 1, 0] -o-| -1.1 0.53852 [-1, -1, -1, 0, -1, -1, -1, -2, -2, -1] -o.o -0.6 0.8 [-1, -1, -2, 0, 1, 0, -1, 0, -1, -1] -O.o -0.6 0.8 [-1, -1, -2, 0, 1, 0, -1, 0, -1, -1] -o.O -0.6 0.8 [-1, -1, -2, 0, 1, 0, -1, 0, -1, -1] -o: -0.2 0.87178 [-1, 0, -1, -2, 0, 1, 0, 1, 0, 0] -o:) 1.5 0.67082 [3, 1, 1, 2, 2, 2, 1, 1, 1, 1] -o:-) 2.0 1.18322 [1, 4, 1, 2, 4, 1, 1, 2, 3, 1] -o:-3 2.2 0.9798 [1, 4, 2, 3, 3, 2, 1, 2, 3, 1] -o:3 2.3 0.78102 [3, 3, 2, 2, 1, 2, 4, 2, 2, 2] -o:< -0.3 1.1 [-1, -1, -2, 0, -1, 0, 1, 2, 0, -1] -o;^) 1.6 0.8 [1, 2, 1, 2, 1, 2, 2, 0, 3, 2] -ok 1.6 1.42829 [0, 0, 1, 1, 1, 4, 3, 4, 1, 1] -o_o -0.5 0.92195 [0, -1, 0, -2, -2, 0, -1, 1, 0, 0] -O_o -0.5 0.92195 [0, -1, 0, -2, -2, 0, -1, 1, 0, 0] -o_O -0.5 0.92195 [0, -1, 0, -2, -2, 0, -1, 1, 0, 0] -pita -2.4 1.2 [-2, -1, -1, -4, -4, -2, -4, -2, -3, -1] -pls 0.3 0.45826 [0, 1, 1, 1, 0, 0, 0, 0, 0, 0] -plz 0.3 0.45826 [0, 1, 1, 1, 0, 0, 0, 0, 0, 0] -pmbi 0.8 1.32665 [3, 0, 0, 1, 1, -2, 2, 2, 0, 1] -pmfji 0.3 0.78102 [0, 0, 1, 0, 2, -1, 0, 1, 0, 0] -pmji 0.7 1.00499 [1, 2, 0, -1, 0, 0, 2, 2, 1, 0] -po -2.6 0.91652 [-2, -3, -4, -3, -3, -3, -1, -3, -1, -3] -ptl 2.6 1.11355 [3, 4, 2, 4, 1, 2, 3, 1, 4, 2] -pu -1.1 1.3 [-3, -1, -3, -2, -1, -1, -1, -1, 1, 1] -qq -2.2 0.6 [-2, -2, -1, -3, -3, -2, -2, -3, -2, -2] -qt 1.8 0.6 [2, 2, 1, 2, 1, 3, 2, 1, 2, 2] -r&r 2.4 1.0198 [2, 4, 2, 3, 1, 4, 2, 2, 1, 3] -rofl 2.7 0.78102 [3, 2, 2, 2, 4, 4, 2, 3, 3, 2] -roflmao 2.5 1.11803 [4, 2, 2, 4, 1, 1, 2, 4, 3, 2] -rotfl 2.6 0.66332 [3, 2, 3, 3, 1, 3, 3, 3, 2, 3] -rotflmao 2.8 1.07703 [4, 3, 2, 4, 1, 1, 4, 3, 3, 3] -rotflmfao 2.5 1.11803 [3, 4, 1, 3, 3, 3, 0, 3, 2, 3] -rotflol 3.0 1.09545 [1, 4, 4, 4, 2, 2, 2, 3, 4, 4] -rotgl 2.9 0.7 [4, 3, 2, 2, 3, 3, 3, 2, 4, 3] -rotglmao 1.8 2.4 [3, 3, 4, 3, -1, 1, 4, -4, 2, 3] -s: -1.1 0.83066 [-1, -1, -2, -2, -1, -1, -2, -1, 1, -1] -sapfu -1.1 1.57797 [-2, 0, -3, -1, -1, 1, -2, 2, -2, -3] -sete 2.8 0.87178 [3, 3, 3, 2, 3, 3, 4, 4, 1, 2] -sfete 2.7 0.78102 [4, 3, 3, 3, 2, 4, 2, 2, 2, 2] -sgtm 2.4 1.0198 [2, 1, 1, 2, 3, 3, 2, 2, 4, 4] -slap 0.6 2.15407 [2, -1, 1, -1, 0, 4, -3, 4, 1, -1] -slaw 2.1 1.04403 [3, 2, 0, 2, 2, 2, 3, 1, 4, 2] -smh -1.3 0.64031 [-2, -1, 0, -1, -1, -2, -2, -1, -2, -1] -snafu -2.5 1.11803 [-3, -4, -3, -3, -1, 0, -2, -3, -3, -3] -sob -2.8 0.9798 [-3, -4, -3, -2, -2, -1, -2, -4, -4, -3] -swak 2.3 1.00499 [2, 2, 2, 1, 4, 2, 3, 2, 1, 4] -tgif 2.3 1.34536 [1, 3, 3, 3, -1, 2, 4, 2, 3, 3] -thks 1.4 0.4899 [1, 2, 1, 2, 1, 2, 1, 1, 2, 1] -thx 1.5 0.92195 [0, 1, 3, 2, 1, 2, 1, 1, 3, 1] -tia 2.3 0.9 [3, 1, 2, 1, 4, 3, 2, 3, 2, 2] -tmi -0.3 1.61555 [-1, -1, 2, -1, 1, -2, -2, -1, 3, -1] -tnx 1.1 0.53852 [2, 1, 1, 0, 1, 1, 2, 1, 1, 1] -true 1.8 1.32665 [2, 1, 1, 0, 1, 4, 3, 1, 4, 1] -tx 1.5 0.92195 [3, 2, 1, 0, 2, 1, 3, 1, 1, 1] -txs 1.1 0.7 [1, 2, 0, 1, 2, 0, 1, 2, 1, 1] -ty 1.6 0.66332 [1, 2, 3, 1, 2, 2, 1, 2, 1, 1] -tyvm 2.5 1.11803 [2, 2, 1, 3, 1, 4, 2, 4, 2, 4] -urw 1.9 1.13578 [1, 2, 1, 2, 4, 2, 4, 1, 1, 1] -vbg 2.1 1.75784 [2, 3, 3, 3, 3, -3, 3, 2, 2, 3] -vbs 3.1 0.53852 [2, 3, 3, 3, 4, 4, 3, 3, 3, 3] -vip 2.3 1.00499 [2, 1, 1, 3, 4, 2, 2, 4, 2, 2] -vwd 2.6 0.91652 [4, 2, 4, 2, 1, 3, 3, 2, 3, 2] -vwp 2.1 0.7 [3, 1, 2, 2, 3, 2, 2, 3, 1, 2] -wag -0.2 0.74833 [-1, 0, 0, 0, 0, 0, -2, 1, 0, 0] -wd 2.7 1.1 [3, 1, 4, 3, 4, 2, 1, 3, 2, 4] -wilco 0.9 0.9434 [1, 3, 1, 0, 1, 0, 2, 1, 0, 0] -wp 1.0 0.0 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] -wtf -2.8 0.74833 [-4, -3, -2, -3, -2, -2, -2, -4, -3, -3] -wtg 2.1 0.7 [1, 3, 2, 3, 2, 2, 2, 1, 2, 3] -wth -2.4 0.4899 [-2, -3, -2, -3, -2, -2, -2, -3, -3, -2] -x-d 2.7 0.78102 [1, 3, 4, 2, 3, 3, 3, 2, 3, 3] -x-p 1.8 0.87178 [2, 1, 3, 1, 3, 1, 3, 1, 2, 1] -xd 2.7 0.9 [1, 4, 4, 3, 2, 2, 3, 3, 2, 3] -xlnt 3.0 0.89443 [4, 3, 3, 1, 4, 4, 3, 3, 3, 2] -xoxo 3.0 0.7746 [2, 2, 4, 2, 3, 3, 4, 3, 3, 4] -xoxozzz 2.3 0.78102 [3, 1, 2, 2, 2, 2, 3, 2, 4, 2] -xp 1.2 0.4 [1, 1, 1, 1, 2, 1, 2, 1, 1, 1] -xqzt 1.6 1.42829 [0, 2, 1, 2, 4, -1, 3, 1, 1, 3] -xtc 0.8 1.93907 [2, 0, -3, 3, 3, -1, 3, 1, -1, 1] -yolo 1.1 0.83066 [0, 1, 1, 2, 1, 1, 1, 3, 0, 1] -yoyo 0.4 1.85472 [-1, 0, -1, -1, 4, 2, -2, 2, 2, -1] -yvw 1.6 0.4899 [1, 2, 1, 1, 2, 2, 2, 1, 2, 2] -yw 1.8 1.32665 [1, 1, 1, 4, 1, 1, 4, 0, 3, 2] -ywia 2.5 1.11803 [3, 2, 3, 4, 1, 1, 1, 3, 3, 4] -zzz -1.2 0.87178 [0, -1, 0, -1, -3, -1, -1, -2, -2, -1] -[-; 0.5 1.28452 [1, -1, -1, 1, 1, 1, 2, -2, 2, 1] -[: 1.3 0.45826 [1, 1, 2, 1, 2, 2, 1, 1, 1, 1] -[; 1.0 1.34164 [2, 1, 2, 2, 1, 2, 2, -2, -1, 1] -[= 1.7 0.64031 [2, 2, 1, 1, 1, 2, 2, 3, 2, 1] -\-: -1.0 1.18322 [-3, -1, -1, -1, -1, -1, 2, -2, -1, -1] -\: -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] -\:< -1.7 1.18743 [-1, -3, -2, -2, -3, -3, -2, -1, 1, -1] -\= -1.1 0.3 [-1, -1, -1, -1, -1, -1, -1, -2, -1, -1] -\^: -1.3 0.45826 [-1, -1, -1, -2, -1, -1, -1, -2, -2, -1] -\o/ 2.2 0.9798 [2, 1, 1, 2, 4, 2, 2, 4, 2, 2] -\o: -1.2 0.4 [-1, -1, -1, -1, -2, -1, -1, -2, -1, -1] -]-: -2.1 0.53852 [-2, -3, -3, -2, -2, -2, -1, -2, -2, -2] -]: -1.6 0.66332 [-1, -2, -1, -2, -3, -2, -1, -1, -1, -2] -]:< -2.5 0.80623 [-2, -2, -2, -3, -4, -2, -2, -2, -2, -4] -^<_< 1.4 1.11355 [3, 1, 3, 2, 1, 1, 1, -1, 2, 1] -^urs -2.8 0.6 [-2, -3, -3, -2, -3, -3, -2, -3, -4, -3] -abandon -1.9 0.53852 [-1, -2, -2, -2, -2, -3, -2, -2, -1, -2] -abandoned -2.0 1.09545 [-1, -1, -3, -2, -1, -4, -1, -3, -3, -1] -abandoner -1.9 0.83066 [-1, -1, -3, -2, -1, -3, -1, -2, -3, -2] -abandoners -1.9 0.83066 [-2, -3, -2, -3, -2, -1, -2, -2, 0, -2] -abandoning -1.6 0.8 [-3, -2, -3, -2, -1, -1, -1, -1, -1, -1] -abandonment -2.4 1.0198 [-4, -2, -1, -4, -2, -1, -2, -3, -3, -2] -abandonments -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] -abandons -1.3 0.9 [-2, -1, -1, -2, -1, -2, -1, -2, 1, -2] -abducted -2.3 1.18743 [-3, -1, 0, -3, -1, -3, -4, -2, -3, -3] -abduction -2.8 0.87178 [-4, -3, -3, -4, -1, -3, -2, -2, -3, -3] -abductions -2.0 1.41421 [-3, -4, -1, -3, -1, -3, 1, -2, -1, -3] -abhor -2.0 1.09545 [-3, -3, -1, -1, -2, -1, -3, -3, 0, -3] -abhorred -2.4 1.49666 [-4, -4, 0, -3, -2, -1, -4, -3, -3, 0] -abhorrent -3.1 1.3 [-4, -4, -4, -2, 0, -4, -2, -3, -4, -4] -abhors -2.9 1.51327 [0, -4, -3, -3, -4, -4, 0, -4, -3, -4] -abilities 1.0 0.63246 [1, 2, 0, 1, 0, 1, 1, 1, 1, 2] -ability 1.3 0.64031 [1, 1, 1, 0, 1, 2, 2, 2, 2, 1] -aboard 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] -absentee -1.1 0.53852 [-1, -1, 0, -2, -1, -1, -2, -1, -1, -1] -absentees -0.8 0.6 [-1, 0, 0, -1, -1, 0, -2, -1, -1, -1] -absolve 1.2 1.46969 [2, -3, 2, 2, 1, 1, 2, 1, 2, 2] -absolved 1.5 0.92195 [3, 1, 2, 1, 0, 2, 3, 1, 1, 1] -absolves 1.3 1.00499 [3, 1, 1, 0, 0, 2, 3, 1, 1, 1] -absolving 1.6 0.8 [3, 1, 2, 1, 1, 2, 3, 1, 1, 1] -abuse -3.2 0.6 [-4, -2, -3, -4, -3, -4, -3, -3, -3, -3] -abused -2.3 0.64031 [-2, -2, -3, -2, -2, -4, -2, -2, -2, -2] -abuser -2.6 0.4899 [-3, -2, -3, -3, -2, -3, -2, -2, -3, -3] -abusers -2.6 1.0198 [-2, -3, -3, -3, -3, -2, -3, -4, -3, 0] -abuses -2.6 0.66332 [-3, -2, -3, -3, -3, -3, -1, -2, -3, -3] -abusing -2.0 1.41421 [-1, -2, -2, -4, -4, -2, -3, -1, 1, -2] -abusive -3.2 0.74833 [-4, -3, -3, -4, -4, -3, -4, -2, -3, -2] -abusively -2.8 0.6 [-3, -4, -3, -2, -3, -2, -2, -3, -3, -3] -abusiveness -2.5 0.92195 [-2, -4, -2, -3, -2, -3, -4, -2, -1, -2] -abusivenesses -3.0 0.63246 [-3, -3, -4, -3, -4, -2, -2, -3, -3, -3] -accept 1.6 0.91652 [2, 1, 2, 1, 1, 2, 4, 1, 1, 1] -acceptabilities 1.6 0.66332 [0, 2, 2, 2, 1, 2, 2, 2, 1, 2] -acceptability 1.1 0.53852 [1, 0, 1, 2, 1, 2, 1, 1, 1, 1] -acceptable 1.3 0.45826 [1, 2, 1, 1, 1, 2, 1, 1, 2, 1] -acceptableness 1.3 0.9 [1, 0, 2, 1, 2, 1, 1, 0, 2, 3] -acceptably 1.5 0.67082 [3, 2, 1, 1, 1, 2, 1, 1, 2, 1] -acceptance 2.0 0.63246 [3, 1, 3, 2, 1, 2, 2, 2, 2, 2] -acceptances 1.7 0.78102 [3, 1, 1, 1, 2, 2, 1, 2, 3, 1] -acceptant 1.6 0.8 [0, 1, 2, 2, 2, 1, 2, 1, 3, 2] -acceptation 1.3 0.78102 [0, 1, 2, 1, 1, 1, 1, 3, 2, 1] -acceptations 0.9 0.83066 [1, 2, 0, 2, 0, 1, 0, 2, 1, 0] -accepted 1.1 0.3 [1, 1, 1, 1, 1, 2, 1, 1, 1, 1] -accepting 1.6 0.66332 [2, 2, 2, 1, 1, 2, 1, 3, 1, 1] -accepts 1.3 0.45826 [1, 2, 1, 1, 1, 2, 2, 1, 1, 1] -accident -2.1 0.83066 [-2, -2, -1, -3, -4, -2, -2, -1, -2, -2] -accidental -0.3 0.45826 [-1, -1, 0, 0, 0, 0, 0, 0, -1, 0] -accidentally -1.4 0.91652 [-2, 0, -2, 0, -3, -1, -1, -1, -2, -2] -accidents -1.3 0.78102 [-1, -1, -1, -1, -2, 0, -3, -1, -2, -1] -accomplish 1.8 0.6 [1, 2, 3, 2, 2, 2, 1, 1, 2, 2] -accomplished 1.9 0.53852 [2, 2, 2, 1, 2, 2, 3, 1, 2, 2] -accomplishes 1.7 0.9 [2, 2, 1, 0, 2, 3, 3, 1, 1, 2] -accusation -1.0 1.09545 [-1, -1, -2, -2, -2, -1, -1, -1, 2, -1] -accusations -1.3 1.26886 [-2, -2, -1, -3, -2, -1, -1, 2, -2, -1] -accuse -0.8 1.53623 [-3, -1, -1, -2, 1, -2, 1, -2, 2, -1] -accused -1.2 1.46969 [-2, -1, -2, 2, -2, -3, -2, -2, -1, 1] -accuses -1.4 1.0198 [-2, -1, -2, 1, -2, -3, -1, -2, -1, -1] -accusing -0.7 1.34536 [-2, -1, -1, 1, -3, -1, -1, 2, -1, 0] -ache -1.6 1.2 [-1, -2, -2, -2, -1, -4, -1, 1, -2, -2] -ached -1.6 0.8 [-2, -2, -1, -2, -1, -2, -3, 0, -1, -2] -aches -1.0 0.7746 [-1, -2, -1, -1, -1, 1, -2, -1, -1, -1] -achievable 1.3 0.45826 [2, 1, 1, 1, 1, 1, 1, 2, 2, 1] -aching -2.2 0.74833 [-2, -3, -2, -1, -3, -3, -2, -3, -1, -2] -acquit 0.8 1.72047 [-3, 3, -1, 3, 2, 1, 1, 1, 0, 1] -acquits 0.1 1.37477 [1, -3, -1, 0, 2, 0, -1, 1, 1, 1] -acquitted 1.0 0.89443 [2, 2, 1, 1, 2, 0, 1, 1, -1, 1] -acquitting 1.3 0.78102 [3, 2, 0, 1, 1, 1, 2, 1, 1, 1] -acrimonious -1.7 1.73494 [-1, -3, -2, -3, 3, -3, -1, -2, -2, -3] -active 1.7 1.26886 [1, 2, 1, 1, 1, 4, 2, 4, 0, 1] -actively 1.3 0.78102 [0, 1, 0, 2, 2, 1, 1, 2, 2, 2] -activeness 0.6 0.8 [0, 2, 0, 0, 1, 0, 1, 0, 2, 0] -activenesses 0.8 0.74833 [2, 0, 1, 0, 0, 0, 1, 2, 1, 1] -actives 1.1 0.7 [2, 1, 0, 1, 1, 0, 1, 1, 2, 2] -adequate 0.9 0.7 [0, 0, 1, 1, 0, 2, 1, 1, 2, 1] -admirability 2.4 0.4899 [2, 3, 3, 3, 3, 2, 2, 2, 2, 2] -admirable 2.6 0.66332 [2, 3, 3, 3, 4, 3, 2, 2, 2, 2] -admirableness 2.2 0.87178 [2, 2, 3, 3, 3, 1, 3, 1, 3, 1] -admirably 2.5 0.67082 [2, 3, 3, 3, 4, 2, 2, 2, 2, 2] -admiral 1.3 1.18743 [0, 0, 1, 3, 3, 2, 2, 0, 2, 0] -admirals 1.5 0.80623 [2, 2, 0, 2, 2, 0, 1, 2, 2, 2] -admiralties 1.6 0.66332 [2, 2, 2, 1, 0, 2, 2, 2, 1, 2] -admiralty 1.2 1.53623 [0, 4, 0, 0, 0, 2, 2, 3, 2, -1] -admiration 2.5 0.80623 [3, 1, 1, 3, 3, 2, 3, 3, 3, 3] -admirations 1.6 0.66332 [2, 2, 1, 1, 2, 2, 2, 2, 2, 0] -admire 2.1 0.83066 [3, 3, 1, 3, 3, 2, 1, 2, 1, 2] -admired 2.3 0.78102 [4, 2, 2, 2, 2, 2, 3, 3, 1, 2] -admirer 1.8 0.74833 [2, 1, 1, 2, 3, 2, 3, 1, 1, 2] -admirers 1.7 1.00499 [2, 3, 2, 2, 2, 1, -1, 2, 2, 2] -admires 1.5 0.67082 [3, 1, 1, 2, 1, 2, 2, 1, 1, 1] -admiring 1.6 0.8 [1, 2, 1, 1, 3, 3, 2, 1, 1, 1] -admiringly 2.3 0.64031 [1, 3, 3, 2, 2, 2, 2, 3, 3, 2] -admit 0.8 1.07703 [0, 0, 0, 0, 0, 1, 3, 2, 2, 0] -admits 1.2 0.87178 [1, 2, 2, 2, 0, 0, 1, 2, 0, 2] -admitted 0.4 0.66332 [0, 1, 0, 1, 0, 0, 2, 0, 0, 0] -admonished -1.9 0.9434 [-2, -2, -2, -1, -2, -3, -1, -1, -1, -4] -adopt 0.7 0.64031 [0, 0, 1, 1, 1, 0, 1, 0, 1, 2] -adopts 0.7 0.64031 [0, 0, 1, 2, 1, 0, 1, 1, 0, 1] -adorability 2.2 0.74833 [2, 2, 2, 2, 1, 2, 3, 2, 4, 2] -adorable 2.2 0.6 [3, 2, 2, 3, 2, 2, 1, 3, 2, 2] -adorableness 2.5 0.67082 [2, 3, 3, 2, 3, 2, 1, 3, 3, 3] -adorably 2.1 0.7 [3, 1, 2, 3, 2, 2, 1, 3, 2, 2] -adoration 2.9 0.7 [3, 3, 3, 2, 3, 3, 4, 2, 4, 2] -adorations 2.2 0.87178 [2, 2, 3, 1, 3, 1, 3, 3, 1, 3] -adore 2.6 0.91652 [3, 3, 1, 2, 3, 3, 3, 4, 1, 3] -adored 1.8 0.87178 [2, 3, 3, 2, 2, 1, 1, 0, 2, 2] -adorer 1.7 1.1 [2, 4, 3, 1, 2, 1, 1, 0, 2, 1] -adorers 2.1 0.7 [3, 2, 1, 2, 2, 2, 3, 2, 3, 1] -adores 1.6 0.66332 [2, 1, 3, 2, 2, 1, 1, 1, 2, 1] -adoring 2.6 0.66332 [2, 3, 3, 3, 1, 3, 3, 2, 3, 3] -adoringly 2.4 0.8 [2, 3, 2, 3, 3, 3, 3, 1, 1, 3] -adorn 0.9 0.53852 [1, 1, 1, 0, 2, 1, 1, 0, 1, 1] -adorned 0.8 1.249 [1, 1, 0, 2, -1, 3, -1, 2, 1, 0] -adorner 1.3 0.78102 [1, 1, 1, 2, 1, 3, 1, 2, 1, 0] -adorners 0.9 0.9434 [2, 2, 0, 1, -1, 2, 1, 1, 0, 1] -adorning 1.0 0.7746 [0, 0, 1, 1, 1, 2, 2, 1, 0, 2] -adornment 1.3 0.78102 [1, 3, 1, 0, 2, 2, 1, 1, 1, 1] -adornments 0.8 1.16619 [2, -1, 0, 0, 2, 1, 2, -1, 1, 2] -adorns 0.5 1.56525 [3, -1, 1, 0, 2, -1, 3, -1, 0, -1] -advanced 1.0 0.63246 [1, 0, 1, 1, 1, 0, 1, 2, 1, 2] -advantage 1.0 0.63246 [1, 2, 1, 1, 2, 0, 1, 0, 1, 1] -advantaged 1.4 0.91652 [1, 0, 3, 0, 1, 1, 2, 2, 2, 2] -advantageous 1.5 0.67082 [2, 0, 2, 2, 2, 1, 1, 1, 2, 2] -advantageously 1.9 0.53852 [2, 2, 2, 3, 2, 2, 2, 1, 1, 2] -advantageousness 1.6 1.28062 [-2, 2, 3, 1, 2, 2, 2, 2, 2, 2] -advantages 1.5 0.80623 [1, 0, 3, 1, 1, 1, 2, 2, 2, 2] -advantaging 1.6 0.66332 [3, 1, 1, 2, 1, 1, 2, 2, 2, 1] -adventure 1.3 0.45826 [1, 2, 1, 1, 2, 1, 1, 1, 1, 2] -adventured 1.3 0.45826 [1, 2, 1, 2, 1, 2, 1, 1, 1, 1] -adventurer 1.2 0.6 [1, 2, 0, 2, 1, 2, 1, 1, 1, 1] -adventurers 0.9 0.9434 [0, 1, 0, 1, 0, 1, 0, 1, 3, 2] -adventures 1.4 1.2 [2, 2, 1, 2, -2, 2, 2, 1, 2, 2] -adventuresome 1.7 1.1 [0, 3, 0, 1, 2, 2, 3, 1, 2, 3] -adventuresomeness 1.3 1.00499 [1, 0, 0, 2, 3, 2, 2, 0, 1, 2] -adventuress 0.8 1.72047 [3, -1, 2, 2, 0, 0, 1, 2, -3, 2] -adventuresses 1.4 1.11355 [1, 0, 0, 3, 2, 2, 3, 0, 1, 2] -adventuring 2.3 0.78102 [2, 3, 2, 3, 1, 3, 3, 1, 2, 3] -adventurism 1.5 0.67082 [1, 0, 2, 2, 2, 2, 1, 1, 2, 2] -adventurist 1.4 0.4899 [1, 1, 2, 1, 2, 2, 2, 1, 1, 1] -adventuristic 1.7 0.64031 [2, 1, 1, 2, 2, 1, 3, 2, 2, 1] -adventurists 1.2 0.9798 [3, 1, 0, 0, 1, 2, 1, 0, 2, 2] -adventurous 1.4 1.11355 [0, 1, 2, 1, 2, 0, 3, 2, 3, 0] -adventurously 1.3 0.9 [0, 1, 2, 2, 1, 2, 1, 1, 0, 3] -adventurousness 1.8 0.87178 [0, 1, 3, 2, 1, 3, 2, 2, 2, 2] -adversarial -1.5 0.92195 [-2, 0, -1, -3, -2, -2, 0, -1, -2, -2] -adversaries -1.0 0.63246 [-1, -1, -1, -1, 0, -2, -2, -1, -1, 0] -adversary -0.8 1.72047 [-3, -1, -2, -2, -2, 2, 1, -1, 2, -2] -adversative -1.2 0.74833 [-1, -1, -2, -1, -1, -1, -3, -1, 0, -1] -adversatively -0.1 1.37477 [0, -2, -1, 0, -1, -1, 1, 1, 3, -1] -adversatives -1.0 0.7746 [-1, -1, -2, -1, -2, 1, -1, -1, -1, -1] -adverse -1.5 0.80623 [-2, -2, -2, -1, -1, 0, -1, -3, -1, -2] -adversely -0.8 1.6 [-2, -2, 0, -2, -2, 2, -2, 2, -2, 0] -adverseness -0.6 1.35647 [-1, -2, -1, 2, -1, -2, -1, 2, -1, -1] -adversities -1.5 0.67082 [-2, -2, -1, -1, -2, 0, -2, -1, -2, -2] -adversity -1.8 0.6 [-3, -2, -1, -2, -2, -2, -1, -1, -2, -2] -affected -0.6 1.35647 [-1, -2, 0, -2, 0, 0, 2, -2, 1, -2] -affection 2.4 0.8 [3, 2, 2, 3, 4, 1, 3, 2, 2, 2] -affectional 1.9 1.04403 [3, 3, 2, 0, 2, 2, 2, 3, 2, 0] -affectionally 1.5 0.92195 [1, 1, 3, 1, 1, 0, 2, 2, 3, 1] -affectionate 1.9 1.13578 [1, 0, 3, 1, 3, 2, 2, 1, 2, 4] -affectionately 2.2 0.87178 [4, 1, 1, 2, 2, 2, 3, 3, 2, 2] -affectioned 1.8 0.4 [2, 2, 1, 2, 2, 1, 2, 2, 2, 2] -affectionless -2.0 0.44721 [-2, -1, -2, -2, -2, -2, -2, -2, -2, -3] -affections 1.5 1.11803 [-1, 3, 2, 2, 1, 1, 2, 1, 3, 1] -afflicted -1.5 1.0247 [-1, -2, -3, -2, 1, -1, -1, -2, -2, -2] -affronted 0.2 2.03961 [1, -2, 2, -2, -2, 4, 0, 2, 1, -2] -aggravate -2.5 0.80623 [-3, -3, -2, -3, -2, -4, -3, -2, -2, -1] -aggravated -1.9 1.04403 [-4, -3, -3, -1, -1, -1, -1, -2, -2, -1] -aggravates -1.9 0.83066 [-3, -2, -2, -2, -3, -1, -2, -2, 0, -2] -aggravating -1.2 0.9798 [-2, -2, -1, -2, -2, -1, 0, 1, -1, -2] -aggress -1.3 1.55242 [-2, -2, 2, -2, -1, -3, -3, -1, 1, -2] -aggressed -1.4 0.4899 [-1, -1, -1, -1, -2, -1, -2, -2, -2, -1] -aggresses -0.5 1.43178 [-1, -2, -1, -1, -3, 0, -1, 1, 2, 1] -aggressing -0.6 1.28062 [-1, -2, -1, 0, -1, -2, 2, -2, 1, 0] -aggression -1.2 1.77764 [-2, -2, 1, 1, -4, 2, -2, -2, -2, -2] -aggressions -1.3 1.48661 [-1, -2, -2, -2, -2, -3, 1, -2, 2, -2] -aggressive -0.6 1.28062 [-2, 1, -2, -2, 0, -2, -1, 1, 1, 0] -aggressively -1.3 1.55242 [-1, -2, 3, -2, -3, -2, -1, -1, -2, -2] -aggressiveness -1.8 0.74833 [-1, -2, -1, -2, -2, -1, -3, -1, -3, -2] -aggressivities -1.4 1.28062 [-1, -1, -1, -2, 2, -2, -2, -2, -3, -2] -aggressivity -0.6 1.35647 [-3, -1, 1, 0, 0, 0, -3, -1, 1, 0] -aggressor -0.8 1.32665 [-2, 0, -1, 2, -2, -2, -1, -1, -2, 1] -aggressors -0.9 1.13578 [-2, -2, -1, -1, -1, 1, 1, 0, -2, -2] -aghast -1.9 1.04403 [-2, -3, -1, 0, -2, -1, -4, -2, -2, -2] -agitate -1.7 0.64031 [-2, -2, -3, -1, -1, -1, -2, -1, -2, -2] -agitated -2.0 0.63246 [-2, -2, -2, -2, -1, -3, -3, -2, -2, -1] -agitatedly -1.6 0.8 [-1, -2, -1, -3, -1, -3, -1, -1, -2, -1] -agitates -1.4 0.8 [-2, 0, -1, -2, -1, -1, -3, -1, -2, -1] -agitating -1.8 0.87178 [-2, -1, -1, -1, -2, -3, -1, -3, -3, -1] -agitation -1.0 1.09545 [-2, -1, 1, -1, -2, -1, -2, -1, 1, -2] -agitational -1.2 1.66132 [-3, -3, -2, 1, -1, -2, 0, 2, -1, -3] -agitations -1.3 1.18743 [-1, -2, -1, -3, -2, -3, 0, -1, 1, -1] -agitative -1.3 1.26886 [-2, -2, -1, -2, -1, -3, 1, -2, 1, -2] -agitato -0.1 1.13578 [1, 2, 0, 0, 0, 0, -2, 0, -2, 0] -agitator -1.4 0.8 [-1, -1, -1, -2, -1, -1, -2, -3, -2, 0] -agitators -2.1 0.9434 [-2, -3, -3, -2, -2, -1, -3, -2, 0, -3] -agog 1.9 0.7 [2, 1, 3, 3, 2, 1, 2, 2, 1, 2] -agonise -2.1 0.9434 [-3, -3, -2, -3, -1, -3, -1, -3, -1, -1] -agonised -2.3 0.64031 [-2, -3, -3, -2, -2, -2, -2, -3, -1, -3] -agonises -2.4 0.91652 [-1, -4, -3, -3, -2, -2, -2, -3, -1, -3] -agonising -1.5 1.43178 [-3, -2, -3, -3, -1, 1, 0, 0, -1, -3] -agonize -2.3 0.9 [-2, -3, -1, -2, -2, -2, -4, -1, -3, -3] -agonized -2.2 1.249 [-2, -3, -3, -3, -3, -2, -1, -3, 1, -3] -agonizes -2.3 1.18743 [-1, -3, -4, -3, -3, -2, -1, -3, 0, -3] -agonizing -2.7 0.78102 [-3, -2, -2, -2, -4, -3, -3, -2, -4, -2] -agonizingly -2.3 1.48661 [-3, -1, -3, -4, -4, -2, -3, 1, -1, -3] -agony -1.8 1.16619 [-3, -1, -2, -4, -2, -1, 0, -3, -1, -1] -agree 1.5 1.11803 [1, 0, 3, 1, 2, 1, 4, 1, 1, 1] -agreeability 1.9 1.04403 [1, 1, 1, 3, 3, 2, 1, 2, 4, 1] -agreeable 1.8 0.4 [2, 1, 2, 1, 2, 2, 2, 2, 2, 2] -agreeableness 1.8 0.9798 [2, 3, 2, 1, 1, 1, 4, 1, 2, 1] -agreeablenesses 1.3 0.45826 [2, 1, 1, 2, 1, 2, 1, 1, 1, 1] -agreeably 1.6 0.4899 [1, 1, 2, 1, 1, 2, 2, 2, 2, 2] -agreed 1.1 0.53852 [1, 1, 2, 1, 1, 2, 1, 0, 1, 1] -agreeing 1.4 0.4899 [1, 1, 1, 1, 2, 1, 1, 2, 2, 2] -agreement 2.2 0.74833 [2, 1, 1, 3, 3, 3, 2, 2, 2, 3] -agreements 1.1 1.13578 [0, 1, 0, 1, 1, 2, 1, 0, 4, 1] -agrees 0.8 1.4 [1, 1, 1, 1, 3, 1, -3, 1, 1, 1] -alarm -1.4 0.91652 [-1, -1, -2, -2, -2, -2, -1, 1, -2, -2] -alarmed -1.4 0.4899 [-2, -1, -2, -2, -1, -1, -1, -2, -1, -1] -alarming -0.5 1.62788 [-1, 1, -1, 1, -3, 1, -2, -3, 1, 1] -alarmingly -2.6 0.91652 [-3, -3, -4, -3, -2, -1, -3, -3, -1, -3] -alarmism -0.3 1.26886 [-2, 0, -2, -1, 0, 1, 1, -1, 2, -1] -alarmists -1.1 1.3 [-1, -2, -3, -2, -1, -2, 1, 1, 0, -2] -alarms -1.1 1.04403 [-2, 0, -2, -1, 0, 0, 0, -1, -2, -3] -alas -1.1 1.22066 [-1, -2, -1, 0, -1, 0, 1, -3, -1, -3] -alert 1.2 0.87178 [1, 2, 0, 1, 0, 2, 2, 0, 2, 2] -alienation -1.1 1.51327 [-3, -2, -3, -1, -2, -1, 2, -1, 1, -1] -alive 1.6 0.8 [1, 1, 2, 3, 3, 2, 1, 1, 1, 1] -allergic -1.2 0.4 [-1, -2, -1, -2, -1, -1, -1, -1, -1, -1] -allow 0.9 0.83066 [0, 0, 0, 1, 2, 2, 1, 1, 2, 0] -alone -1.0 0.63246 [-2, -1, -1, -1, -2, -1, 0, -1, -1, 0] -alright 1.0 0.7746 [0, 1, 0, 3, 1, 1, 1, 1, 1, 1] -amaze 2.5 1.0247 [3, 2, 3, 4, 2, 3, 1, 4, 2, 1] -amazed 2.2 1.07703 [1, 0, 3, 2, 2, 4, 3, 3, 2, 2] -amazedly 2.1 0.53852 [2, 2, 2, 2, 3, 2, 2, 3, 1, 2] -amazement 2.5 0.80623 [3, 3, 2, 4, 1, 2, 2, 3, 2, 3] -amazements 2.2 0.87178 [3, 1, 1, 3, 3, 2, 1, 2, 3, 3] -amazes 2.2 0.9798 [1, 0, 3, 2, 2, 3, 3, 3, 2, 3] -amazing 2.8 0.87178 [1, 4, 3, 2, 4, 2, 3, 3, 3, 3] -amazon 0.7 0.64031 [0, 1, 1, 0, 1, 0, 1, 0, 1, 2] -amazonite 0.2 0.6 [0, 0, 2, 0, 0, 0, 0, 0, 0, 0] -amazons -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, -1, 0] -amazonstone 1.0 1.61245 [0, 0, 0, 0, 4, 4, 2, 0, 0, 0] -amazonstones 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] -ambitious 2.1 0.53852 [2, 3, 2, 2, 2, 2, 2, 2, 3, 1] -ambivalent 0.5 0.92195 [0, 0, -1, 2, 1, 1, 1, -1, 1, 1] -amor 3.0 0.63246 [3, 3, 2, 4, 3, 2, 4, 3, 3, 3] -amoral -1.6 0.66332 [-1, -2, 0, -2, -2, -2, -2, -2, -1, -2] -amoralism -0.7 1.34536 [-2, -1, -2, 0, 0, -3, 2, 0, -1, 0] -amoralisms -0.7 1.00499 [-2, 0, 1, -1, -2, -1, -1, 1, -1, -1] -amoralities -1.2 1.6 [-3, 0, 0, -2, 1, -1, 0, -4, -3, 0] -amorality -1.5 0.92195 [0, -1, -1, -2, -1, -3, -1, -3, -2, -1] -amorally -1.0 1.61245 [-2, 0, 1, -4, -1, 1, 1, -2, -2, -2] -amoretti 0.2 0.4 [0, 0, 0, 1, 0, 0, 0, 0, 0, 1] -amoretto 0.6 0.8 [0, 1, 0, 1, 0, 0, 2, 0, 0, 2] -amorettos 0.3 0.64031 [0, 1, 0, 1, 0, 0, 0, 1, 1, -1] -amorino 1.2 0.87178 [2, 1, 1, 0, 3, 1, 1, 0, 1, 2] -amorist 1.6 1.0198 [3, 0, 0, 2, 2, 1, 3, 1, 2, 2] -amoristic 1.0 1.67332 [1, 0, 2, 3, -1, 3, 1, 3, 0, -2] -amorists 0.1 0.9434 [0, 2, 0, 0, 1, 0, -2, 0, 0, 0] -amoroso 2.3 0.78102 [3, 1, 1, 2, 3, 3, 3, 3, 2, 2] -amorous 1.8 0.9798 [3, 1, 2, 2, 1, 1, 3, 0, 2, 3] -amorously 2.3 0.78102 [1, 1, 3, 2, 3, 3, 2, 3, 2, 3] -amorousness 2.0 0.89443 [2, 3, 1, 2, 0, 2, 2, 3, 3, 2] -amorphous -0.2 0.4 [0, 0, 0, 0, 0, 0, -1, 0, 0, -1] -amorphously 0.1 0.7 [-1, 0, 0, 0, 0, 0, 2, 0, 0, 0] -amorphousness 0.3 0.45826 [0, 0, 0, 0, 0, 1, 1, 1, 0, 0] -amort -2.1 0.83066 [-3, -1, -2, -2, -2, -2, -2, -4, -1, -2] -amortise 0.5 1.43178 [0, 1, 1, 0, -3, 2, 0, 0, 2, 2] -amortised -0.2 1.16619 [-1, -3, 0, 0, 0, 2, 0, 0, 0, 0] -amortises 0.1 0.83066 [-1, -1, 0, 0, 0, 2, 1, 0, 0, 0] -amortizable 0.5 1.0247 [2, 0, 1, 0, 1, 1, -2, 1, 0, 1] -amortization 0.6 1.0198 [0, 0, 0, 0, 1, 0, 0, 0, 3, 2] -amortizations 0.2 1.07703 [-1, 1, 0, 0, 1, 0, 2, 1, -2, 0] -amortize -0.1 1.04403 [0, 0, 0, 0, 2, -2, -1, 1, -1, 0] -amortized 0.8 0.74833 [0, 2, 0, 0, 1, 1, 1, 0, 1, 2] -amortizes 0.6 0.8 [0, 2, 0, 0, 1, 1, 0, 0, 0, 2] -amortizing 0.8 1.249 [0, 3, 0, 0, 0, 0, 0, 0, 3, 2] -amusable 0.7 1.18743 [2, 1, 1, 1, 1, 1, 2, -2, -1, 1] -amuse 1.7 0.78102 [1, 2, 1, 1, 2, 1, 1, 3, 3, 2] -amused 1.8 0.6 [1, 2, 2, 2, 2, 2, 1, 2, 3, 1] -amusedly 2.2 0.74833 [3, 3, 2, 2, 3, 2, 2, 3, 1, 1] -amusement 1.5 1.11803 [3, 2, 3, 1, 2, 2, -1, 1, 1, 1] -amusements 1.5 1.0247 [2, 1, 2, 1, 2, 2, 3, -1, 2, 1] -amuser 1.1 1.7 [2, 1, -3, 2, 2, 3, -1, 1, 2, 2] -amusers 1.3 0.45826 [1, 1, 2, 1, 2, 1, 2, 1, 1, 1] -amuses 1.7 0.64031 [1, 2, 1, 2, 2, 2, 1, 2, 3, 1] -amusia 0.3 1.48661 [0, -1, 1, -1, 2, 2, -1, -1, -1, 3] -amusias -0.4 0.66332 [-1, 0, 0, 1, 0, 0, -1, -1, -1, -1] -amusing 1.6 0.91652 [2, 2, 2, -1, 2, 2, 1, 2, 2, 2] -amusingly 0.8 1.249 [1, 2, 1, 1, 1, 2, 2, -2, -1, 1] -amusingness 1.8 0.6 [1, 2, 3, 2, 1, 2, 2, 1, 2, 2] -amusive 1.7 1.1 [3, 1, 3, 1, 2, 2, 2, 2, -1, 2] -anger -2.7 1.18743 [-1, -2, -3, -2, -4, -4, -2, -1, -4, -4] -angered -2.3 0.78102 [-2, -3, -2, -4, -2, -2, -3, -2, -2, -1] -angering -2.2 0.6 [-3, -2, -1, -3, -2, -2, -3, -2, -2, -2] -angerly -1.9 0.53852 [-2, -2, -1, -1, -3, -2, -2, -2, -2, -2] -angers -2.3 0.9 [-3, -1, -2, -3, -2, -2, -4, -1, -3, -2] -angrier -2.3 0.64031 [-2, -3, -2, -3, -1, -3, -2, -3, -2, -2] -angriest -3.1 0.83066 [-4, -3, -2, -2, -2, -4, -3, -4, -4, -3] -angrily -1.8 0.4 [-2, -1, -2, -2, -2, -1, -2, -2, -2, -2] -angriness -1.7 0.64031 [-2, 0, -2, -2, -1, -2, -2, -2, -2, -2] -angry -2.3 0.9 [-2, -2, -1, -3, -1, -2, -4, -2, -3, -3] -anguish -2.9 0.83066 [-3, -3, -2, -3, -4, -1, -3, -3, -4, -3] -anguished -1.8 1.4 [-3, -4, -1, -3, -2, -1, -1, 1, -1, -3] -anguishes -2.1 1.44568 [-4, -4, -2, -3, 1, -2, -1, -1, -2, -3] -anguishing -2.7 0.9 [-2, -2, -1, -3, -2, -4, -4, -3, -3, -3] -animosity -1.9 1.75784 [-2, -3, -3, -3, -2, 2, 1, -3, -3, -3] -annoy -1.9 0.53852 [-2, -2, -1, -2, -2, -1, -2, -2, -2, -3] -annoyance -1.3 1.55242 [-2, -3, -2, -2, -1, 1, -3, -2, 2, -1] -annoyances -1.8 0.6 [-2, -2, -2, -1, -1, -2, -3, -1, -2, -2] -annoyed -1.6 1.11355 [-3, -1, 1, -3, -1, -1, -2, -2, -2, -2] -annoyer -2.2 0.87178 [-3, -2, -1, -3, -2, -4, -2, -1, -2, -2] -annoyers -1.5 1.0247 [-2, -1, -2, -3, -2, -1, -1, -2, 1, -2] -annoying -1.7 0.64031 [-1, -2, -1, -2, -1, -1, -2, -2, -3, -2] -annoys -1.8 0.6 [-1, -2, -3, -2, -2, -2, -1, -2, -1, -2] -antagonism -1.9 1.04403 [-1, -1, -3, -2, -4, -2, -2, 0, -2, -2] -antagonisms -1.2 1.53623 [0, -2, -2, -2, -2, -2, 3, -2, -1, -2] -antagonist -1.9 0.7 [-3, -1, -2, -3, -2, -2, -1, -2, -2, -1] -antagonistic -1.7 0.9 [-2, -2, -2, 1, -2, -2, -2, -2, -2, -2] -antagonistically -2.2 0.87178 [-2, -3, -4, -2, -2, -3, -2, -2, -1, -1] -antagonists -1.7 0.64031 [-2, -1, -1, -2, -1, -2, -2, -3, -1, -2] -antagonize -2.0 0.44721 [-2, -2, -2, -3, -2, -1, -2, -2, -2, -2] -antagonized -1.4 0.66332 [-2, -1, -2, -2, -1, 0, -2, -1, -1, -2] -antagonizes -0.5 1.9105 [-2, 4, -2, -2, 1, 0, -2, 1, -1, -2] -antagonizing -2.7 0.64031 [-4, -2, -2, -3, -2, -3, -3, -2, -3, -3] -anti -1.3 0.78102 [0, -2, -3, -1, -1, -2, -1, -1, -1, -1] -anticipation 0.4 1.28062 [1, 1, -1, 0, -1, 1, 1, 2, -2, 2] -anxieties -0.6 1.85472 [-2, -3, -3, -2, -1, 2, -1, 1, 1, 2] -anxiety -0.7 2.1 [-2, -2, -2, -3, 3, -1, -3, 2, 2, -1] -anxious -1.0 0.44721 [-1, -2, -1, -1, 0, -1, -1, -1, -1, -1] -anxiously -0.9 0.83066 [-1, -1, -2, -1, -1, -1, -1, 0, 1, -2] -anxiousness -1.0 1.48324 [-2, -1, -1, -1, -1, -2, 3, -3, -1, -1] -aok 2.0 0.89443 [2, 3, 2, 1, 2, 1, 1, 4, 2, 2] -apathetic -1.2 0.87178 [-1, -1, 0, -2, -2, -1, -1, 0, -3, -1] -apathetically -0.4 1.28062 [-1, -1, 0, -1, -2, 2, -1, -1, 2, -1] -apathies -0.6 1.0198 [-1, -1, -1, -2, 0, 1, -1, -2, 1, 0] -apathy -1.2 1.32665 [-2, -2, -1, 1, -1, -3, -1, 1, -1, -3] -apeshit -0.9 2.21133 [-4, -3, 2, -3, -2, -3, 1, 0, 2, 1] -apocalyptic -3.4 0.66332 [-4, -2, -3, -4, -3, -4, -4, -3, -3, -4] -apologise 1.6 0.66332 [2, 3, 2, 2, 1, 1, 2, 1, 1, 1] -apologised 0.4 0.91652 [-1, 0, 2, 0, 0, 1, 0, 2, 0, 0] -apologises 0.8 1.07703 [2, 0, 2, 0, 0, 1, 0, 3, 0, 0] -apologising 0.2 1.6 [0, -1, -1, 2, 2, 1, -2, -1, 3, -1] -apologize 0.4 0.8 [1, -1, 0, 1, 1, 1, -1, 1, 0, 1] -apologized 1.3 0.64031 [1, 1, 1, 2, 0, 2, 1, 2, 2, 1] -apologizes 1.5 0.80623 [2, 1, 1, 2, 0, 2, 1, 2, 3, 1] -apologizing -0.3 1.34536 [1, 2, -1, 1, -1, 0, -3, 0, -1, -1] -apology 0.2 1.249 [1, 1, 1, 1, -1, 1, -1, -1, -2, 2] -appall -2.4 0.66332 [-3, -2, -2, -3, -2, -3, -1, -3, -2, -3] -appalled -2.0 0.63246 [-3, -2, -3, -2, -2, -1, -1, -2, -2, -2] -appalling -1.5 1.5 [-2, -4, 1, -1, 1, -1, -2, -3, -2, -2] -appallingly -2.0 1.67332 [-3, -2, 0, -2, 2, -3, -4, -3, -2, -3] -appalls -1.9 1.37477 [0, -3, -2, -3, -3, -2, -1, -3, 1, -3] -appease 1.1 0.9434 [1, 1, 1, -1, 2, 0, 1, 2, 2, 2] -appeased 0.9 0.53852 [0, 1, 1, 1, 1, 1, 0, 1, 2, 1] -appeases 0.9 0.53852 [0, 1, 1, 1, 1, 1, 0, 1, 2, 1] -appeasing 1.0 1.09545 [1, 2, -1, 1, 2, 1, 2, 2, 1, -1] -applaud 2.0 0.63246 [3, 2, 2, 2, 1, 2, 3, 1, 2, 2] -applauded 1.5 0.5 [2, 2, 1, 2, 2, 2, 1, 1, 1, 1] -applauding 2.1 0.83066 [2, 2, 4, 1, 2, 2, 2, 1, 2, 3] -applauds 1.4 0.66332 [1, 1, 2, 1, 3, 1, 1, 1, 2, 1] -applause 1.8 0.6 [2, 1, 1, 2, 3, 2, 1, 2, 2, 2] -appreciate 1.7 0.78102 [2, 1, 2, 1, 1, 3, 1, 2, 3, 1] -appreciated 2.3 0.78102 [2, 1, 3, 2, 3, 4, 2, 2, 2, 2] -appreciates 2.3 0.9 [3, 1, 3, 1, 2, 4, 2, 3, 2, 2] -appreciating 1.9 0.7 [1, 1, 2, 2, 2, 2, 1, 3, 2, 3] -appreciation 2.3 0.9 [3, 3, 2, 1, 1, 3, 3, 1, 3, 3] -appreciations 1.7 0.78102 [3, 2, 1, 2, 2, 1, 3, 1, 1, 1] -appreciative 2.6 0.8 [3, 3, 3, 2, 1, 3, 4, 2, 2, 3] -appreciatively 1.8 0.6 [2, 2, 2, 2, 2, 1, 3, 2, 1, 1] -appreciativeness 1.6 0.8 [2, 1, 1, 2, 1, 1, 3, 3, 1, 1] -appreciator 2.6 0.8 [2, 3, 2, 3, 3, 2, 1, 3, 4, 3] -appreciators 1.5 0.80623 [1, 3, 1, 3, 1, 1, 2, 1, 1, 1] -appreciatory 1.7 0.78102 [1, 2, 1, 3, 1, 3, 2, 2, 1, 1] -apprehensible 1.1 1.04403 [2, 0, -1, 3, 1, 2, 1, 1, 1, 1] -apprehensibly -0.2 1.16619 [0, 0, -1, 2, -1, 2, -1, -1, -1, -1] -apprehension -2.1 0.83066 [-1, -2, -2, -1, -2, -3, -3, -3, -1, -3] -apprehensions -0.9 1.04403 [-1, -1, -1, -1, -2, -2, -1, -1, -1, 2] -apprehensively -0.3 1.18743 [-1, -1, -1, 0, 1, -2, -1, 1, -1, 2] -apprehensiveness -0.7 0.9 [-1, 1, -1, -1, 1, -1, -2, -1, -1, -1] -approval 2.1 0.53852 [2, 2, 2, 2, 2, 1, 3, 3, 2, 2] -approved 1.8 0.6 [1, 1, 1, 2, 3, 2, 2, 2, 2, 2] -approves 1.7 0.64031 [1, 1, 1, 2, 3, 2, 2, 2, 2, 1] -ardent 2.1 0.7 [3, 3, 2, 2, 3, 1, 2, 2, 1, 2] -arguable -1.0 0.63246 [-1, -1, -2, -1, -1, -2, 0, 0, -1, -1] -arguably -1.0 1.09545 [0, -2, 0, -2, 0, 1, -1, -2, -2, -2] -argue -1.4 0.66332 [-1, -2, -1, -3, -2, -1, -1, -1, -1, -1] -argued -1.5 0.5 [-2, -2, -1, -1, -1, -1, -2, -2, -2, -1] -arguer -1.6 0.4899 [-2, -2, -1, -2, -1, -1, -2, -2, -2, -1] -arguers -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -2, -2, -1, -1] -argues -1.6 0.4899 [-2, -2, -1, -2, -1, -1, -2, -2, -2, -1] -arguing -2.0 0.63246 [-3, -3, -1, -1, -2, -2, -2, -2, -2, -2] -argument -1.5 0.80623 [-3, -1, -1, -1, -1, -2, 0, -2, -2, -2] -argumentative -1.5 0.67082 [-3, -2, -1, -1, -1, -1, -1, -2, -2, -1] -argumentatively -1.8 0.9798 [-4, -2, -1, -1, -3, -1, -2, -2, -1, -1] -argumentive -1.5 0.80623 [-3, -2, -2, -1, 0, -1, -1, -1, -2, -2] -arguments -1.7 0.64031 [-1, -1, -2, -2, -2, -3, -2, -1, -1, -2] -arrest -1.4 1.42829 [-1, 0, -1, 0, -2, -3, 0, -4, -3, 0] -arrested -2.1 1.04403 [-2, -2, -2, -1, -1, -4, -1, -4, -2, -2] -arrests -1.9 0.83066 [-4, -2, -1, -1, -1, -2, -2, -2, -2, -2] -arrogance -2.4 0.66332 [-3, -2, -2, -3, -1, -2, -3, -3, -2, -3] -arrogances -1.9 0.53852 [-1, -2, -3, -2, -2, -2, -2, -1, -2, -2] -arrogant -2.2 0.6 [-2, -2, -2, -3, -2, -3, -3, -2, -1, -2] -arrogantly -1.8 1.4 [-3, -2, 2, -3, -1, -3, -2, -2, -2, -2] -ashamed -2.1 1.3 [-3, -3, -3, -2, -2, 1, -2, -4, -1, -2] -ashamedly -1.7 0.64031 [-2, -2, -2, -1, -2, -3, -1, -2, -1, -1] -ass -2.5 1.43178 [-4, -1, -2, -1, -3, 0, -2, -4, -4, -4] -assassination -2.9 0.9434 [-2, -4, -4, -3, -3, -4, -2, -3, -3, -1] -assassinations -2.7 1.34536 [-4, -2, -3, -2, -3, -1, -4, -4, 0, -4] -assault -2.8 0.9798 [-3, -4, -2, -2, -4, -3, -1, -3, -2, -4] -assaulted -2.4 1.28062 [-3, -3, 1, -3, -3, -3, -1, -3, -3, -3] -assaulting -2.3 1.1 [-4, -3, -2, -1, -2, -1, -1, -4, -3, -2] -assaultive -2.8 0.87178 [-3, -4, -2, -4, -3, -2, -3, -1, -3, -3] -assaults -2.5 0.92195 [-1, -3, -3, -3, -4, -3, -1, -2, -2, -3] -asset 1.5 0.80623 [2, 1, 1, 3, 2, 0, 2, 2, 1, 1] -assets 0.7 1.00499 [0, 0, 1, 3, 0, 1, 0, 0, 2, 0] -assfucking -2.5 1.43178 [-3, -3, 0, -3, 0, -2, -4, -4, -4, -2] -assholes -2.8 0.74833 [-3, -3, -3, -3, -4, -3, -2, -3, -1, -3] -assurance 1.4 0.4899 [1, 1, 2, 2, 1, 1, 1, 2, 2, 1] -assurances 1.4 0.4899 [2, 2, 1, 1, 1, 2, 2, 1, 1, 1] -assure 1.4 0.4899 [1, 1, 1, 1, 2, 1, 1, 2, 2, 2] -assured 1.5 0.67082 [1, 1, 2, 1, 1, 3, 2, 1, 2, 1] -assuredly 1.6 0.66332 [1, 1, 1, 3, 2, 2, 2, 1, 2, 1] -assuredness 1.4 0.8 [2, 2, 2, 1, 1, 0, 2, 0, 2, 2] -assurer 0.9 1.13578 [2, 1, 0, 1, -2, 2, 2, 1, 1, 1] -assurers 1.1 0.9434 [2, 0, 0, 1, 3, 2, 0, 1, 1, 1] -assures 1.3 0.45826 [2, 1, 1, 1, 2, 1, 2, 1, 1, 1] -assurgent 1.3 0.9 [2, 1, 0, 0, 1, 2, 1, 2, 3, 1] -assuring 1.6 0.66332 [1, 2, 2, 3, 1, 1, 1, 1, 2, 2] -assuror 0.5 0.67082 [0, 1, 0, 1, 2, 0, 0, 1, 0, 0] -assurors 0.7 1.34536 [2, -1, 0, 2, 0, -2, 2, 1, 1, 2] -astonished 1.6 0.8 [3, 1, 0, 2, 2, 1, 2, 2, 1, 2] -astound 1.7 1.26886 [2, 2, 2, 2, 0, 3, 4, 0, 0, 2] -astounded 1.8 0.9798 [1, 3, 0, 1, 2, 2, 3, 2, 1, 3] -astounding 1.8 1.4 [3, 4, 2, 0, 1, 2, -1, 3, 2, 2] -astoundingly 2.1 1.44568 [3, 0, 4, 1, 4, 3, 1, 3, 0, 2] -astounds 2.1 1.22066 [3, 3, 1, 0, 3, 2, 3, 3, 0, 3] -attachment 1.2 0.9798 [2, 0, 1, 2, 3, 1, 1, 2, 0, 0] -attachments 1.1 0.7 [1, 1, 2, 0, 2, 1, 2, 0, 1, 1] -attack -2.1 0.83066 [-1, -3, -2, -3, -3, -1, -2, -1, -2, -3] -attacked -2.0 1.78885 [-2, 3, -2, -2, -3, -3, -3, -4, -2, -2] -attacker -2.7 0.9 [-2, -3, -2, -1, -3, -3, -4, -4, -2, -3] -attackers -2.7 0.64031 [-3, -3, -3, -2, -3, -3, -4, -2, -2, -2] -attacking -2.0 0.89443 [-3, -1, -1, -3, -3, -1, -3, -1, -2, -2] -attacks -1.9 0.9434 [-2, -2, 0, -2, -2, -2, -1, -4, -2, -2] -attract 1.5 0.92195 [1, 3, 1, 1, 3, 1, 1, 2, 0, 2] -attractancy 0.9 0.7 [1, 0, 2, 1, 0, 2, 1, 1, 0, 1] -attractant 1.3 0.9 [0, 1, 0, 1, 1, 2, 3, 2, 1, 2] -attractants 1.4 0.8 [1, 1, 0, 2, 2, 2, 3, 1, 1, 1] -attracted 1.8 0.6 [1, 3, 1, 2, 2, 2, 2, 2, 2, 1] -attracting 2.1 0.83066 [3, 1, 2, 2, 3, 1, 1, 3, 2, 3] -attraction 2.0 0.7746 [2, 2, 1, 1, 2, 3, 3, 2, 3, 1] -attractions 1.8 0.87178 [1, 3, 0, 2, 2, 2, 2, 3, 1, 2] -attractive 1.9 0.53852 [2, 2, 2, 1, 3, 2, 1, 2, 2, 2] -attractively 2.2 0.6 [3, 2, 2, 3, 2, 2, 2, 3, 1, 2] -attractiveness 1.8 1.16619 [3, 2, 2, 1, 4, 2, 0, 0, 2, 2] -attractivenesses 2.1 0.7 [2, 1, 2, 3, 2, 3, 3, 1, 2, 2] -attractor 1.2 1.16619 [1, 1, 2, 2, 2, -2, 2, 1, 2, 1] -attractors 1.2 0.87178 [1, 1, 2, 2, 0, 1, 3, 1, 0, 1] -attracts 1.7 1.00499 [2, 1, 2, 0, 2, 4, 2, 1, 1, 2] -audacious 0.9 2.02237 [3, -1, -2, 2, 1, 2, -3, 2, 2, 3] -authority 0.3 0.64031 [0, 0, 0, 1, 0, 0, 2, 0, 0, 0] -aversion -1.9 1.04403 [-3, -3, -1, -2, 0, -3, -1, -2, -1, -3] -aversions -1.1 1.13578 [-2, -1, -2, -2, -2, 1, -1, -2, 1, -1] -aversive -1.6 0.66332 [-2, -1, -1, -1, -2, -2, -1, -2, -3, -1] -aversively -0.8 1.53623 [-3, -1, -2, -1, 1, -2, 2, -2, 1, -1] -avert -0.7 0.78102 [-1, 0, -2, -1, -1, 1, -1, 0, -1, -1] -averted -0.3 1.00499 [-1, 1, 0, 0, 1, 0, -2, 0, 0, -2] -averts -0.4 1.0198 [-2, -2, -1, -1, 0, 0, 1, 0, 1, 0] -avid 1.2 0.87178 [-1, 2, 2, 1, 1, 1, 2, 2, 1, 1] -avoid -1.2 0.6 [-1, -1, -1, -1, -2, -2, -1, -2, 0, -1] -avoidance -1.7 0.45826 [-2, -2, -1, -1, -1, -2, -2, -2, -2, -2] -avoidances -1.1 0.53852 [-1, -1, -1, -1, -2, 0, -1, -2, -1, -1] -avoided -1.4 0.4899 [-2, -1, -2, -1, -1, -1, -2, -1, -2, -1] -avoider -1.8 0.6 [-2, -1, -3, -1, -2, -2, -2, -1, -2, -2] -avoiders -1.4 0.66332 [-2, -2, -1, -2, -1, -1, 0, -1, -2, -2] -avoiding -1.4 0.91652 [-2, 1, -2, -2, -1, -2, -1, -1, -2, -2] -avoids -0.7 0.45826 [-1, -1, -1, -1, -1, -1, 0, 0, 0, -1] -await 0.4 0.4899 [0, 0, 0, 1, 0, 1, 0, 1, 1, 0] -awaited -0.1 0.83066 [1, 0, 0, 0, 1, -1, 0, 0, -2, 0] -awaits 0.3 0.78102 [0, 0, 0, 1, 2, 1, 0, 0, -1, 0] -award 2.5 0.92195 [2, 1, 1, 3, 3, 2, 4, 3, 3, 3] -awardable 2.4 0.8 [3, 3, 3, 1, 3, 1, 2, 3, 2, 3] -awarded 1.7 0.78102 [2, 0, 1, 3, 2, 2, 2, 1, 2, 2] -awardee 1.8 0.6 [2, 2, 1, 3, 2, 2, 1, 1, 2, 2] -awardees 1.2 0.74833 [1, 1, 1, 1, 0, 1, 1, 1, 3, 2] -awarder 0.9 1.04403 [2, 0, 1, 3, 0, 2, 1, 0, 0, 0] -awarders 1.3 1.18743 [2, 1, 0, 2, 2, 0, 0, 4, 1, 1] -awarding 1.9 0.7 [3, 2, 1, 2, 1, 2, 3, 1, 2, 2] -awards 2.0 0.44721 [2, 2, 2, 2, 1, 2, 2, 3, 2, 2] -awesome 3.1 0.83066 [3, 4, 2, 3, 2, 2, 4, 4, 4, 3] -awful -2.0 2.04939 [-2, -2, -3, -3, -2, -3, 4, -3, -3, -3] -awkward -0.6 1.56205 [-2, -1, -1, -1, -1, -1, -1, -1, 4, -1] -awkwardly -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -1, -2, -2, -1] -awkwardness -0.7 1.41774 [-1, -2, -2, -1, -2, 2, -1, -1, 2, -1] -axe -0.4 0.8 [-2, 0, 0, 0, 0, 0, -1, -1, -1, 1] -axed -1.3 0.78102 [-1, -2, 0, -3, -1, -2, -1, -1, -1, -1] -backed 0.1 0.3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] -backing 0.1 0.83066 [1, 1, -1, 0, 0, 0, -1, 1, -1, 1] -backs -0.2 0.4 [0, 0, -1, 0, 0, 0, 0, -1, 0, 0] -bad -2.5 0.67082 [-3, -2, -4, -3, -2, -2, -3, -2, -2, -2] -badass 1.4 1.26491 [1, 3, 2, 0, -1, 1, 3, 2, 1, 2] -badly -2.1 0.7 [-2, -3, -2, -1, -3, -2, -3, -2, -1, -2] -bailout -0.4 1.35647 [-1, 0, 0, 2, -2, -1, -2, 2, -1, -1] -bamboozle -1.5 1.0247 [-3, -2, -2, -1, -2, -2, 1, -1, -1, -2] -bamboozled -1.5 1.11803 [-1, 0, -2, -4, -2, -1, -2, -1, 0, -2] -bamboozles -1.5 1.0247 [-1, 0, -2, -4, -2, -1, -2, -1, -1, -1] -ban -2.6 1.0198 [-4, -3, -4, -3, -2, -1, -3, -2, -1, -3] -banish -1.9 0.9434 [-2, -2, -2, -2, -1, -3, -1, -1, -1, -4] -bankrupt -2.6 1.0198 [-4, -4, -2, -2, -4, -3, -2, -2, -1, -2] -bankster -2.1 0.53852 [-3, -1, -2, -2, -2, -2, -2, -3, -2, -2] -banned -2.0 1.0 [-2, -1, -1, -1, -2, -2, -4, -3, -3, -1] -bargain 0.8 1.16619 [1, 1, 1, 1, 0, 1, 2, 3, -1, -1] -barrier -0.5 0.92195 [-2, 0, 0, -2, -1, -1, 1, 0, 0, 0] -bashful -0.1 1.13578 [-1, 2, -1, 0, -1, 2, 0, 0, -1, -1] -bashfully 0.2 0.9798 [0, 0, 0, -1, 1, 1, 1, 1, -2, 1] -bashfulness -0.8 0.9798 [-2, -1, 1, 1, -1, -2, -1, -1, -1, -1] -bastard -2.5 0.67082 [-2, -4, -2, -3, -2, -2, -3, -3, -2, -2] -bastardies -1.8 0.87178 [-2, -1, -3, -2, -2, -2, -1, 0, -2, -3] -bastardise -2.1 0.83066 [-2, -1, -4, -2, -2, -3, -2, -2, -2, -1] -bastardised -2.3 0.9 [-3, -2, -3, -1, -2, -3, -4, -1, -2, -2] -bastardises -2.3 1.18743 [-1, -4, -2, -3, -3, 0, -2, -4, -2, -2] -bastardising -2.6 0.8 [-3, -2, -3, -2, -2, -1, -3, -4, -3, -3] -bastardization -2.4 1.28062 [-1, -3, -4, -4, -2, -2, -2, 0, -2, -4] -bastardizations -2.1 0.7 [-2, -1, -3, -3, -2, -2, -3, -1, -2, -2] -bastardize -2.4 0.66332 [-2, -2, -3, -2, -2, -3, -4, -2, -2, -2] -bastardized -2.0 0.7746 [-2, -1, -1, -2, -3, -2, -3, -2, -1, -3] -bastardizes -1.8 0.87178 [-2, -1, -1, -2, -2, -2, -3, -3, 0, -2] -bastardizing -2.3 0.9 [-2, -2, -1, -4, -3, -2, -1, -2, -3, -3] -bastardly -2.7 0.64031 [-3, -3, -2, -2, -3, -2, -2, -4, -3, -3] -bastards -3.0 0.63246 [-4, -2, -3, -3, -4, -3, -3, -3, -3, -2] -bastardy -2.7 1.1 [-4, -3, -2, -2, -4, -3, -3, -3, -3, 0] -battle -1.6 1.28062 [-1, -3, 0, -3, -2, -3, -2, -2, 1, -1] -battled -1.2 0.87178 [0, 0, -2, 0, -2, -1, -2, -1, -2, -2] -battlefield -1.6 0.8 [-2, -2, 0, -1, -2, -1, -3, -2, -1, -2] -battlefields -0.9 1.22066 [-1, -1, 0, 0, -4, -1, 0, 0, 0, -2] -battlefront -1.2 0.87178 [-1, 0, -2, -1, 0, -3, -1, -2, -1, -1] -battlefronts -0.8 1.16619 [0, 0, -2, -1, 0, -3, -1, 1, -2, 0] -battleground -1.7 0.78102 [-2, 0, -2, -2, -1, -2, -2, -3, -1, -2] -battlegrounds -0.6 1.35647 [2, -2, 0, -1, 0, -2, -2, -2, 0, 1] -battlement -0.4 0.8 [0, -1, 0, -1, 0, -2, 0, 1, 0, -1] -battlements -0.4 0.66332 [0, 0, 0, 0, 0, -1, -2, 0, -1, 0] -battler -0.8 1.4 [2, 0, -2, 0, -2, 1, -2, -1, -2, -2] -battlers -0.2 0.9798 [-1, 0, 2, -2, 0, 0, 0, -1, 0, 0] -battles -1.6 0.4899 [-1, -1, -2, -1, -2, -2, -2, -1, -2, -2] -battleship -0.1 1.3 [2, -3, -1, -1, 0, 0, 1, 1, 0, 0] -battleships -0.5 0.80623 [-2, 0, 0, 0, 0, -1, -2, 0, 0, 0] -battlewagon -0.3 0.64031 [0, 0, -1, -2, 0, 0, 0, 0, 0, 0] -battlewagons -0.5 0.67082 [0, 0, 0, -1, -2, -1, 0, -1, 0, 0] -battling -1.1 1.04403 [0, -1, -2, -2, -1, 1, -2, 0, -2, -2] -beaten -1.8 0.6 [-1, -2, -2, -2, -3, -2, -2, -2, -1, -1] -beatific 1.8 1.6 [3, 0, 2, 4, -2, 2, 2, 2, 2, 3] -beating -2.0 0.63246 [-2, -3, -2, -2, -1, -1, -2, -3, -2, -2] -beaut 1.6 1.2 [2, 2, 2, 0, 1, -1, 2, 3, 3, 2] -beauteous 2.5 1.0247 [2, 1, 4, 3, 3, 2, 1, 4, 2, 3] -beauteously 2.6 0.8 [2, 3, 3, 3, 2, 1, 3, 4, 2, 3] -beauteousness 2.7 1.00499 [1, 3, 4, 3, 4, 1, 2, 3, 3, 3] -beautician 1.2 0.9798 [0, 0, 3, 2, 2, 0, 1, 1, 1, 2] -beauticians 0.4 0.66332 [0, 1, 0, 0, 0, 0, 1, 0, 2, 0] -beauties 2.4 0.8 [2, 3, 3, 3, 3, 1, 2, 1, 3, 3] -beautification 1.9 0.7 [2, 2, 2, 1, 2, 1, 3, 1, 2, 3] -beautifications 2.4 0.8 [3, 2, 3, 3, 1, 3, 2, 3, 1, 3] -beautified 2.1 0.7 [2, 2, 3, 1, 2, 2, 3, 1, 2, 3] -beautifier 1.7 0.64031 [2, 1, 2, 1, 2, 1, 3, 1, 2, 2] -beautifiers 1.7 0.78102 [3, 3, 1, 2, 1, 2, 2, 1, 1, 1] -beautifies 1.8 0.74833 [2, 1, 2, 1, 2, 1, 3, 1, 2, 3] -beautiful 2.9 0.7 [2, 3, 2, 3, 2, 3, 4, 4, 3, 3] -beautifuler 2.1 0.83066 [2, 0, 2, 2, 3, 2, 2, 2, 3, 3] -beautifulest 2.6 0.8 [3, 3, 3, 3, 2, 2, 4, 2, 1, 3] -beautifully 2.7 0.64031 [3, 3, 2, 2, 3, 3, 2, 2, 4, 3] -beautifulness 2.6 0.8 [3, 3, 3, 2, 3, 4, 3, 2, 2, 1] -beautify 2.3 0.45826 [2, 3, 3, 2, 2, 3, 2, 2, 2, 2] -beautifying 2.3 0.78102 [1, 2, 1, 3, 2, 2, 3, 3, 3, 3] -beauts 1.7 0.78102 [1, 2, 0, 3, 1, 2, 2, 2, 2, 2] -beauty 2.8 0.74833 [3, 3, 2, 3, 4, 4, 2, 2, 3, 2] -belittle -1.9 0.53852 [-2, -2, -2, -1, -2, -2, -1, -2, -3, -2] -belittled -2.0 1.0 [-3, -2, -3, -3, -2, -3, -1, -1, -2, 0] -beloved 2.3 0.45826 [2, 2, 3, 2, 2, 2, 2, 3, 3, 2] -benefic 1.4 0.4899 [2, 2, 1, 1, 1, 2, 2, 1, 1, 1] -benefice 0.4 0.66332 [0, 2, 0, 1, 0, 0, 1, 0, 0, 0] -beneficed 1.1 0.7 [1, 1, 1, 0, 2, 0, 1, 1, 2, 2] -beneficence 2.8 0.87178 [1, 4, 3, 4, 2, 2, 3, 3, 3, 3] -beneficences 1.5 0.67082 [1, 1, 2, 2, 1, 1, 1, 3, 2, 1] -beneficent 2.3 0.45826 [3, 2, 3, 2, 2, 2, 2, 3, 2, 2] -beneficently 2.2 0.6 [3, 2, 3, 3, 2, 2, 1, 2, 2, 2] -benefices 1.1 0.83066 [1, 1, 1, 0, 1, 0, 1, 1, 2, 3] -beneficial 1.9 0.53852 [2, 2, 1, 2, 2, 1, 3, 2, 2, 2] -beneficially 2.4 0.8 [3, 3, 2, 2, 2, 1, 3, 4, 2, 2] -beneficialness 1.7 0.64031 [2, 1, 2, 2, 1, 1, 2, 2, 1, 3] -beneficiaries 1.8 1.16619 [0, 1, 2, 1, 3, 4, 3, 1, 2, 1] -beneficiary 2.1 0.83066 [1, 3, 2, 2, 2, 1, 3, 3, 1, 3] -beneficiate 1.0 1.18322 [0, 0, 1, 3, 1, 0, 2, 0, 3, 0] -beneficiation 0.4 1.0198 [2, 2, 0, -1, 1, 0, -1, 0, 0, 1] -benefit 2.0 0.63246 [2, 3, 1, 2, 2, 3, 2, 1, 2, 2] -benefits 1.6 0.4899 [2, 2, 2, 1, 2, 1, 2, 2, 1, 1] -benefitted 1.7 0.64031 [2, 2, 1, 2, 2, 2, 2, 2, 0, 2] -benefitting 1.9 0.7 [1, 2, 2, 3, 1, 1, 2, 3, 2, 2] -benevolence 1.7 1.1 [2, 1, 3, 2, 2, 1, 2, 2, -1, 3] -benevolences 1.9 1.64012 [3, 2, -1, -1, 3, 1, 3, 4, 2, 3] -benevolent 2.7 0.78102 [2, 2, 3, 2, 4, 2, 3, 2, 4, 3] -benevolently 1.4 1.11355 [2, 1, 2, 2, 1, -1, 2, 3, 0, 2] -benevolentness 1.2 1.249 [2, 2, 1, -1, 2, 2, 3, -1, 1, 1] -benign 1.3 0.9 [1, 3, 2, 2, 1, 1, 2, 0, 0, 1] -benignancy 0.6 1.2 [2, -1, -2, 1, 0, 1, 1, 2, 1, 1] -benignant 2.2 0.9798 [2, 2, 2, 2, 2, 2, 4, 0, 3, 3] -benignantly 1.1 1.3 [3, 2, 3, 0, 1, 1, -1, 2, 0, 0] -benignities 0.9 0.9434 [-1, 2, 1, 0, 1, 1, 2, 2, 1, 0] -benignity 1.3 1.18743 [2, -2, 2, 2, 2, 1, 2, 1, 1, 2] -benignly 0.2 1.07703 [0, -1, 1, 1, 1, 0, 2, 0, -2, 0] -bereave -2.1 1.13578 [0, -2, -2, -3, -3, -4, -3, -2, -1, -1] -bereaved -2.1 0.9434 [-2, -2, -2, -1, -2, -1, -4, -1, -3, -3] -bereaves -1.9 1.22066 [0, -3, 0, -1, -3, -2, -3, -1, -3, -3] -bereaving -1.3 1.84662 [-3, -4, -3, 1, -2, 0, -3, -1, 1, 1] -best 3.2 0.6 [2, 4, 4, 3, 4, 3, 3, 3, 3, 3] -betray -3.2 0.6 [-3, -4, -4, -3, -2, -3, -4, -3, -3, -3] -betrayal -2.8 0.74833 [-3, -4, -4, -2, -3, -2, -3, -3, -2, -2] -betrayed -3.0 0.63246 [-2, -3, -3, -3, -4, -4, -3, -3, -2, -3] -betraying -2.5 0.67082 [-2, -2, -3, -2, -3, -2, -4, -2, -2, -3] -betrays -2.5 0.67082 [-2, -3, -3, -2, -2, -2, -4, -2, -3, -2] -better 1.9 0.7 [2, 1, 2, 1, 1, 3, 2, 2, 3, 2] -bias -0.4 1.11355 [-1, -2, 0, -2, -1, 1, -1, 1, 0, 1] -biased -1.1 0.83066 [-2, -2, -1, -1, -1, -1, -1, 1, -2, -1] -bitch -2.8 0.87178 [-1, -4, -2, -4, -3, -2, -3, -3, -3, -3] -bitched -2.6 1.0198 [-1, -3, -2, -3, -2, -1, -4, -3, -3, -4] -bitcheries -2.3 0.78102 [-2, -2, -2, -4, -2, -2, -3, -1, -3, -2] -bitchery -2.7 1.18743 [-2, -2, -4, -2, -4, -4, -1, -1, -3, -4] -bitches -2.9 0.9434 [-2, -1, -3, -3, -2, -4, -4, -3, -3, -4] -bitchier -2.0 0.63246 [-2, -3, -1, -2, -3, -1, -2, -2, -2, -2] -bitchiest -3.0 0.7746 [-2, -4, -2, -3, -4, -3, -3, -4, -2, -3] -bitchily -2.6 1.11355 [-4, -4, -2, -2, -1, -4, -1, -2, -3, -3] -bitchiness -2.6 0.66332 [-3, -3, -2, -2, -3, -3, -1, -3, -3, -3] -bitching -1.1 1.64012 [-2, 2, -2, -1, 2, -1, -2, -2, -3, -2] -bitchy -2.3 1.00499 [-4, -1, -2, -3, -3, -2, -1, -1, -3, -3] -bitter -1.8 0.4 [-2, -2, -2, -1, -2, -2, -1, -2, -2, -2] -bitterbrush -0.2 0.74833 [0, 0, 0, 0, -2, 1, 0, 0, -1, 0] -bitterbrushes -0.6 0.8 [-1, 0, -2, -1, -2, 0, 0, 0, 0, 0] -bittered -1.8 1.07703 [-1, -1, -3, -1, -2, -4, -2, 0, -2, -2] -bitterer -1.9 1.04403 [-1, -2, -3, -1, -1, -4, -3, -1, -2, -1] -bitterest -2.3 1.41774 [-4, -4, -2, -1, 1, -2, -3, -3, -2, -3] -bittering -1.2 0.87178 [0, 0, -1, -2, 0, -2, -1, -2, -2, -2] -bitterish -1.6 0.8 [0, -2, -1, -1, -2, -2, -2, -1, -3, -2] -bitterly -2.0 0.63246 [-2, -2, -1, -1, -2, -2, -3, -2, -2, -3] -bittern -0.2 0.6 [0, 0, -2, 0, 0, 0, 0, 0, 0, 0] -bitterness -1.7 0.45826 [-2, -2, -1, -2, -1, -2, -1, -2, -2, -2] -bitterns -0.4 1.11355 [0, 0, 0, -3, 0, 0, 0, 1, 0, -2] -bitterroots -0.2 0.4 [0, 0, 0, -1, -1, 0, 0, 0, 0, 0] -bitters -0.4 0.4899 [-1, -1, -1, 0, 0, 0, 0, -1, 0, 0] -bittersweet -0.3 0.64031 [0, -1, 0, 0, 0, 0, 0, 0, -2, 0] -bittersweetness -0.6 0.91652 [0, 0, 0, -2, 0, -2, 0, 0, -2, 0] -bittersweets -0.2 0.9798 [-2, 1, 0, 0, 0, -2, 0, 0, 0, 1] -bitterweeds -0.5 0.67082 [0, -2, 0, -1, -1, 0, 0, -1, 0, 0] -bizarre -1.3 1.00499 [-2, 0, 0, -2, 0, -1, -3, -2, -1, -2] -blah -0.4 1.49666 [-2, -1, -1, -1, -1, -1, -1, 3, 2, -1] -blam -0.2 1.16619 [-1, 0, 0, -1, -1, -2, -1, 1, 2, 1] -blamable -1.8 0.4 [-2, -2, -2, -2, -1, -1, -2, -2, -2, -2] -blamably -1.8 0.4 [-2, -2, -2, -2, -1, -1, -2, -2, -2, -2] -blame -1.4 1.42829 [-4, -2, -2, -1, -1, -1, -2, 2, -2, -1] -blamed -2.1 0.53852 [-2, -2, -2, -2, -3, -2, -2, -2, -3, -1] -blameful -1.7 0.45826 [-2, -2, -2, -2, -2, -2, -1, -1, -2, -1] -blamefully -1.6 0.66332 [-1, -2, -1, -1, -2, -1, -1, -2, -2, -3] -blameless 0.7 1.73494 [3, 1, 2, 3, -2, 1, -1, 1, 1, -2] -blamelessly 0.9 1.37477 [2, 0, 2, 0, 1, -1, 1, 4, 0, 0] -blamelessness 0.6 1.35647 [0, 2, 1, 2, 1, 0, 1, -3, 1, 1] -blamer -2.1 0.83066 [-2, -2, -1, -2, -3, -3, -3, -1, -1, -3] -blamers -2.0 0.63246 [-3, -2, -2, -3, -1, -2, -2, -1, -2, -2] -blames -1.7 0.45826 [-2, -2, -1, -2, -2, -2, -2, -1, -1, -2] -blameworthiness -1.6 0.66332 [-2, -2, -1, -2, -2, -1, -3, -1, -1, -1] -blameworthy -2.3 0.78102 [-3, -3, -2, -2, -2, -1, -1, -3, -3, -3] -blaming -2.2 0.6 [-2, -3, -1, -3, -2, -2, -3, -2, -2, -2] -bless 1.8 0.6 [3, 2, 2, 1, 2, 2, 1, 2, 2, 1] -blessed 2.9 0.3 [2, 3, 3, 3, 3, 3, 3, 3, 3, 3] -blesseder 2.0 0.63246 [3, 3, 2, 2, 1, 1, 2, 2, 2, 2] -blessedest 2.8 0.87178 [2, 4, 1, 4, 3, 3, 2, 3, 3, 3] -blessedly 1.7 1.1 [2, 2, 1, -1, 3, 2, 3, 1, 2, 2] -blessedness 1.6 1.35647 [2, 2, 2, 2, 2, 3, 3, -1, -1, 2] -blesser 2.6 0.66332 [1, 3, 2, 3, 3, 3, 2, 3, 3, 3] -blessers 1.9 0.7 [2, 2, 1, 2, 2, 2, 3, 1, 3, 1] -blesses 2.6 0.66332 [1, 3, 3, 3, 3, 3, 2, 3, 2, 3] -blessing 2.2 1.07703 [3, 1, 0, 3, 1, 3, 2, 3, 3, 3] -blessings 2.5 0.92195 [3, 3, 3, 2, 1, 3, 2, 3, 4, 1] -blind -1.7 1.00499 [-4, -1, -1, -2, -1, -1, -3, -2, -1, -1] -bliss 2.7 0.78102 [3, 3, 3, 2, 1, 2, 4, 3, 3, 3] -blissful 2.9 0.83066 [4, 4, 2, 3, 3, 3, 1, 3, 3, 3] -blithe 1.2 1.16619 [2, 2, -1, 1, 1, 2, 2, 2, -1, 2] -block -1.9 1.13578 [-3, -2, -1, -2, 0, 0, -3, -2, -3, -3] -blockbuster 2.9 0.9434 [3, 4, 3, 2, 3, 4, 3, 2, 1, 4] -blocked -1.1 1.13578 [-1, 0, 0, -1, -2, -1, -1, -4, -1, 0] -blocking -1.6 0.91652 [-1, -1, -1, -1, -2, -2, -4, -1, -2, -1] -blocks -0.9 1.13578 [-1, 0, -1, -2, -2, -2, -1, -1, 2, -1] -bloody -1.9 0.7 [-2, -2, -2, 0, -2, -2, -3, -2, -2, -2] -blurry -0.4 1.28062 [-1, -1, -1, -1, 2, -2, -1, 2, 0, -1] -bold 1.6 0.66332 [2, 2, 2, 2, 1, 2, 0, 2, 1, 2] -bolder 1.2 0.6 [2, 1, 1, 1, 1, 2, 1, 2, 0, 1] -boldest 1.6 1.11355 [1, 3, 2, 3, 0, 0, 2, 3, 1, 1] -boldface 0.3 0.64031 [1, 0, 0, 0, 0, 0, 0, 2, 0, 0] -boldfaced -0.1 1.22066 [0, 0, 0, 2, -1, -2, 2, -1, -1, 0] -boldfaces 0.1 1.3 [0, 0, 0, 2, -2, -2, 2, 1, 0, 0] -boldfacing 0.1 0.7 [0, 0, -1, 2, 0, 0, 0, 0, 0, 0] -boldly 1.5 1.62788 [3, -2, -1, 1, 2, 3, 2, 3, 2, 2] -boldness 1.5 1.0247 [0, 1, 3, 1, 2, 0, 3, 1, 2, 2] -boldnesses 0.9 0.83066 [0, 0, 1, 0, 2, 1, 1, 2, 0, 2] -bolds 1.3 0.78102 [2, 2, 1, 1, 0, 2, 0, 2, 1, 2] -bomb -2.2 0.87178 [-2, -2, -1, -3, -4, -3, -2, -1, -2, -2] -bonus 2.5 0.67082 [2, 2, 2, 3, 4, 3, 2, 2, 3, 2] -bonuses 2.6 0.91652 [2, 2, 3, 4, 3, 4, 3, 1, 2, 2] -boost 1.7 0.64031 [1, 1, 2, 2, 2, 3, 1, 1, 2, 2] -boosted 1.5 1.5 [-1, 1, 0, 2, 1, 2, 3, 3, 4, 0] -boosting 1.4 0.91652 [1, 1, 3, 0, 2, 2, 0, 2, 1, 2] -boosts 1.3 0.9 [1, 1, 1, 1, 3, 0, 1, 1, 3, 1] -bore -1.0 0.44721 [-1, -2, 0, -1, -1, -1, -1, -1, -1, -1] -boreal -0.3 0.9 [0, 0, 0, 0, 1, -2, 0, 0, -2, 0] -borecole -0.2 0.74833 [1, 0, 0, 0, -1, -2, 0, 0, 0, 0] -borecoles -0.3 0.45826 [-1, 0, 0, 0, 0, 0, -1, 0, -1, 0] -bored -1.1 0.9434 [-2, -1, -2, -1, 0, 0, -3, 0, -1, -1] -boredom -1.3 0.45826 [-1, -1, -1, -1, -2, -1, -1, -2, -2, -1] -boredoms -1.1 0.83066 [-1, -1, -1, -2, 1, -1, -2, -1, -1, -2] -boreen 0.1 0.3 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] -boreens 0.2 0.6 [0, 0, 0, 2, 0, 0, 0, 0, 0, 0] -boreholes -0.2 0.74833 [0, 0, 0, 0, 0, 1, -1, 0, -2, 0] -borer -0.4 0.4899 [0, -1, 0, 0, -1, -1, 0, 0, 0, -1] -borers -1.2 0.9798 [-1, 0, -2, -1, -1, -3, -2, 0, -2, 0] -bores -1.3 0.78102 [-2, -1, -2, -1, -1, -1, -3, 0, -1, -1] -borescopes -0.1 0.83066 [-1, 0, -1, 2, 0, 0, 0, 0, -1, 0] -boresome -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -1, -2, -1] -boring -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -1, -1, -2, -2] -bother -1.4 0.91652 [-1, -1, -1, -2, -3, -3, -1, -1, -1, 0] -botheration -1.7 0.64031 [-1, -1, -1, -2, -2, -1, -2, -2, -2, -3] -botherations -1.3 0.64031 [-2, -2, -2, -1, -2, 0, -1, -1, -1, -1] -bothered -1.3 0.45826 [-1, -1, -2, -1, -2, -1, -1, -1, -1, -2] -bothering -1.6 0.4899 [-2, -1, -2, -2, -1, -1, -1, -2, -2, -2] -bothers -0.8 0.9798 [-1, -2, -1, -1, 2, -1, -1, -1, -1, -1] -bothersome -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -2, -1, -1] -boycott -1.3 0.45826 [-2, -1, -1, -1, -1, -2, -1, -1, -2, -1] -boycotted -1.7 0.64031 [-1, -2, -2, -3, -1, -1, -2, -2, -2, -1] -boycotting -1.7 0.64031 [-2, -2, -2, 0, -2, -1, -2, -2, -2, -2] -boycotts -1.4 0.91652 [-2, -2, -2, -2, -1, -2, -1, 1, -1, -2] -brainwashing -1.5 1.28452 [-2, -2, -2, -3, -1, -2, 2, -1, -2, -2] -brave 2.4 0.8 [2, 3, 4, 3, 1, 3, 2, 2, 2, 2] -braved 1.9 0.83066 [3, 1, 3, 1, 1, 2, 3, 2, 2, 1] -bravely 2.3 0.78102 [1, 3, 2, 2, 2, 4, 2, 2, 2, 3] -braver 2.4 0.8 [3, 2, 2, 1, 4, 2, 3, 3, 2, 2] -braveries 2.0 1.0 [2, 4, 2, 3, 1, 1, 2, 3, 1, 1] -bravery 2.2 0.74833 [1, 2, 2, 2, 3, 2, 3, 3, 1, 3] -braves 1.9 0.83066 [3, 1, 3, 1, 2, 2, 3, 2, 1, 1] -bravest 2.3 0.64031 [1, 3, 3, 2, 3, 2, 3, 2, 2, 2] -breathtaking 2.0 1.26491 [3, 1, 3, 2, -1, 1, 2, 3, 3, 3] -bribe -0.8 1.98997 [-3, 0, -1, -2, -1, -2, -4, 1, 3, 1] -bright 1.9 0.7 [2, 2, 1, 2, 1, 2, 1, 3, 3, 2] -brighten 1.9 0.7 [2, 1, 1, 2, 3, 2, 1, 2, 2, 3] -brightened 2.1 0.83066 [2, 3, 1, 1, 2, 2, 3, 1, 3, 3] -brightener 1.0 1.18322 [0, 0, 0, 1, 0, 1, 2, 0, 3, 3] -brighteners 1.0 0.89443 [0, 1, 0, 1, 1, 3, 0, 1, 2, 1] -brightening 2.5 0.92195 [2, 3, 2, 1, 2, 3, 4, 4, 2, 2] -brightens 1.5 0.5 [2, 1, 1, 2, 2, 1, 2, 2, 1, 1] -brighter 1.6 0.66332 [1, 1, 1, 2, 2, 2, 1, 2, 1, 3] -brightest 3.0 0.63246 [3, 3, 2, 3, 4, 3, 2, 3, 4, 3] -brightly 1.5 0.67082 [2, 3, 1, 2, 1, 1, 2, 1, 1, 1] -brightness 1.6 0.91652 [2, 2, 1, 1, 1, 3, 3, 0, 2, 1] -brightnesses 1.4 0.91652 [2, 3, 1, 2, 1, 1, 0, 0, 2, 2] -brights 0.4 0.66332 [0, 0, 2, 0, 0, 1, 0, 0, 1, 0] -brightwork 1.1 0.83066 [1, 0, 1, 2, 1, 0, 3, 1, 1, 1] -brilliance 2.9 0.83066 [4, 3, 2, 4, 4, 3, 2, 3, 2, 2] -brilliances 2.9 0.83066 [3, 4, 3, 4, 4, 2, 3, 2, 2, 2] -brilliancies 2.3 1.18743 [1, 4, 1, 3, 3, 2, 1, 3, 4, 1] -brilliancy 2.6 1.0198 [4, 3, 2, 4, 2, 3, 1, 3, 1, 3] -brilliant 2.8 0.6 [2, 3, 3, 2, 3, 3, 4, 2, 3, 3] -brilliantine 0.8 1.16619 [-1, 3, 1, 0, 1, 0, 2, 0, 2, 0] -brilliantines 2.0 1.34164 [0, 1, 4, 2, 3, 1, 3, 0, 3, 3] -brilliantly 3.0 0.44721 [3, 2, 3, 3, 3, 3, 3, 3, 4, 3] -brilliants 1.9 0.83066 [3, 1, 2, 1, 2, 1, 3, 2, 1, 3] -brisk 0.6 0.8 [0, 0, 0, 0, 1, 1, 0, 2, 0, 2] -broke -1.8 0.4 [-2, -2, -2, -2, -1, -2, -2, -1, -2, -2] -broken -2.1 0.53852 [-2, -2, -2, -2, -3, -2, -1, -3, -2, -2] -brooding 0.1 1.3 [3, 0, -1, -1, -1, 1, 1, -1, 1, -1] -brutal -3.1 0.7 [-3, -3, -4, -2, -3, -4, -3, -4, -3, -2] -brutalise -2.7 1.1 [-4, -3, -3, -4, -3, -2, -2, -3, 0, -3] -brutalised -2.9 0.83066 [-3, -3, -2, -3, -3, -4, -4, -1, -3, -3] -brutalises -3.2 0.4 [-3, -3, -3, -3, -3, -4, -4, -3, -3, -3] -brutalising -2.8 0.74833 [-3, -3, -4, -3, -2, -3, -3, -3, -1, -3] -brutalities -2.6 1.0198 [-4, -2, -2, -4, -2, -4, -2, -3, -1, -2] -brutality -3.0 0.63246 [-2, -3, -4, -2, -3, -3, -3, -4, -3, -3] -brutalization -2.1 2.16564 [-3, -2, -4, -2, -4, -4, 2, -3, 2, -3] -brutalizations -2.3 0.64031 [-2, -2, -3, -2, -1, -3, -3, -2, -2, -3] -brutalize -2.9 0.7 [-3, -4, -3, -3, -2, -2, -3, -4, -2, -3] -brutalized -2.4 0.4899 [-3, -2, -2, -3, -2, -2, -3, -3, -2, -2] -brutalizes -3.2 0.6 [-4, -4, -3, -2, -3, -4, -3, -3, -3, -3] -brutalizing -3.4 0.66332 [-4, -3, -4, -3, -4, -4, -3, -4, -2, -3] -brutally -3.0 0.44721 [-3, -3, -3, -3, -3, -3, -3, -2, -3, -4] -bullied -3.1 0.9434 [-4, -4, -4, -2, -2, -4, -4, -3, -2, -2] -bullshit -2.8 0.6 [-3, -3, -3, -3, -3, -4, -2, -3, -2, -2] -bully -2.2 1.6 [-2, -3, -3, -4, -2, -1, 2, -3, -3, -3] -bullying -2.9 0.7 [-3, -2, -3, -2, -4, -2, -3, -3, -4, -3] -bummer -1.6 0.8 [-3, -1, -1, -1, -3, -1, -1, -2, -2, -1] -buoyant 0.9 0.83066 [0, 1, 1, 2, 1, 0, 0, 2, 0, 2] -burden -1.9 0.53852 [-2, -2, -1, -2, -3, -2, -1, -2, -2, -2] -burdened -1.7 0.45826 [-2, -2, -2, -2, -1, -2, -1, -2, -2, -1] -burdener -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -2, -1, -2, -1] -burdeners -1.7 1.00499 [-2, -2, -2, -1, -3, -2, 0, 0, -2, -3] -burdening -1.4 0.66332 [-2, -1, -2, -2, -1, -1, -1, 0, -2, -2] -burdens -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -1, -2, -2] -burdensome -1.8 0.9798 [-1, -1, -3, -2, -1, -2, -2, -1, -4, -1] -bwahaha 0.4 1.0198 [0, 1, 0, 1, 0, 2, -1, -1, 2, 0] -bwahahah 2.5 0.92195 [3, 4, 2, 2, 2, 3, 1, 2, 2, 4] -calm 1.3 0.78102 [1, 1, 0, 1, 2, 3, 2, 1, 1, 1] -calmative 1.1 0.9434 [3, 2, -1, 1, 1, 1, 1, 1, 1, 1] -calmatives 0.5 0.80623 [-1, 1, 0, 1, 0, 0, 1, 2, 0, 1] -calmed 1.6 0.4899 [2, 2, 2, 1, 1, 1, 2, 1, 2, 2] -calmer 1.5 0.67082 [1, 2, 3, 1, 1, 1, 2, 1, 2, 1] -calmest 1.6 0.8 [3, 2, 2, 2, 1, 1, 0, 2, 1, 2] -calming 1.7 0.78102 [2, 1, 3, 2, 2, 1, 3, 1, 1, 1] -calmly 1.3 0.9 [0, 0, 1, 3, 2, 2, 1, 1, 2, 1] -calmness 1.7 0.9 [1, 1, 1, 2, 2, 2, 1, 4, 1, 2] -calmnesses 1.6 0.4899 [1, 2, 1, 2, 1, 2, 2, 2, 1, 2] -calmodulin 0.2 0.4 [0, 0, 0, 0, 0, 0, 1, 0, 0, 1] -calms 1.3 0.64031 [2, 1, 1, 2, 0, 1, 1, 2, 2, 1] -can't stand -2.0 0.63246 [-2, -2, -2, -1, -1, -2, -3, -2, -2, -3] -cancel -1.0 0.63246 [-2, -1, -1, -1, -1, 0, -1, 0, -2, -1] -cancelled -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -1, -2, -1, -1] -cancelling -0.8 0.74833 [0, 0, -1, 0, -1, -1, 0, -2, -1, -2] -cancels -0.9 0.53852 [0, -1, 0, -1, -1, -1, -1, -1, -2, -1] -cancer -3.4 0.8 [-2, -4, -3, -4, -4, -2, -3, -4, -4, -4] -capable 1.6 0.4899 [1, 2, 2, 2, 1, 1, 2, 2, 1, 2] -captivated 1.6 0.4899 [2, 1, 2, 2, 2, 2, 1, 2, 1, 1] -care 2.2 0.74833 [2, 1, 2, 1, 2, 2, 3, 3, 3, 3] -cared 1.8 0.74833 [1, 2, 1, 3, 1, 2, 2, 2, 3, 1] -carefree 1.7 0.64031 [1, 1, 2, 2, 2, 2, 1, 1, 2, 3] -careful 0.6 1.11355 [3, 0, 0, 0, 1, 0, -1, 2, 1, 0] -carefully 0.5 0.67082 [1, 0, 1, 1, 0, 1, 0, 1, 1, -1] -carefulness 2.0 0.44721 [3, 2, 2, 1, 2, 2, 2, 2, 2, 2] -careless -1.5 0.5 [-2, -1, -1, -2, -2, -1, -2, -2, -1, -1] -carelessly -1.0 0.44721 [-1, -1, -1, -2, -1, 0, -1, -1, -1, -1] -carelessness -1.4 0.4899 [-2, -1, -1, -2, -1, -2, -1, -1, -2, -1] -carelessnesses -1.6 1.11355 [-4, -2, -2, -3, -1, 0, -1, -1, -1, -1] -cares 2.0 0.7746 [2, 3, 1, 3, 1, 2, 2, 2, 3, 1] -caring 2.2 0.4 [2, 3, 2, 2, 2, 2, 2, 3, 2, 2] -casual 0.8 0.74833 [1, 1, 0, 1, 0, 2, 0, 1, 2, 0] -casually 0.7 1.00499 [1, 0, 0, 0, 1, 0, 0, 3, 2, 0] -casualty -2.4 0.91652 [-4, -3, -3, -2, -1, -2, -3, -1, -2, -3] -catastrophe -3.4 0.4899 [-3, -3, -3, -4, -4, -3, -3, -3, -4, -4] -catastrophic -2.2 2.22711 [-3, -2, -4, -4, -4, -3, -2, -4, 2, 2] -cautious -0.4 0.66332 [0, 1, -1, 0, 0, 0, -1, -1, -1, -1] -celebrate 2.7 1.00499 [4, 4, 3, 2, 4, 2, 2, 2, 3, 1] -celebrated 2.7 0.78102 [2, 3, 3, 2, 3, 4, 3, 3, 1, 3] -celebrates 2.7 0.64031 [2, 3, 3, 2, 2, 3, 3, 3, 4, 2] -celebrating 2.7 0.64031 [3, 3, 4, 2, 2, 2, 3, 3, 2, 3] -censor -2.0 1.34164 [0, -3, -2, -3, -3, 0, -4, -1, -1, -3] -censored -0.6 1.68523 [-1, -1, -1, 2, -3, -2, -1, -1, -1, 3] -censors -1.2 1.07703 [-1, 0, -3, 0, -1, 0, -1, -2, -1, -3] -certain 1.1 0.7 [1, 0, 2, 0, 2, 2, 1, 1, 1, 1] -certainly 1.4 1.0198 [3, 2, 0, 1, 3, 1, 0, 1, 1, 2] -certainties 0.9 1.44568 [0, -2, 4, 0, 1, 1, 1, 1, 2, 1] -certainty 1.0 0.89443 [2, 1, 0, 1, 0, 0, 2, 2, 2, 0] -chagrin -1.9 0.53852 [-1, -2, -3, -2, -1, -2, -2, -2, -2, -2] -chagrined -1.4 1.2 [-1, -2, 2, -1, -2, -2, -2, -2, -2, -2] -challenge 0.3 1.00499 [1, 0, -1, 1, 1, -1, 1, 0, 2, -1] -challenged -0.4 1.62481 [0, -2, 1, -1, -3, -1, 3, -1, 1, -1] -challenger 0.5 1.43178 [0, 0, 2, -1, -2, 1, 3, 0, 2, 0] -challengers 0.4 1.56205 [0, -2, -1, 1, 1, 2, 3, 2, -1, -1] -challenges 0.3 1.48661 [0, -1, 2, -1, -2, 0, 3, 0, 2, 0] -challenging 0.6 0.91652 [0, 0, 0, 1, 1, -1, 0, 2, 2, 1] -challengingly -0.6 1.68523 [0, -1, -2, 1, -3, 2, -2, -1, 2, -2] -champ 2.1 0.83066 [2, 2, 2, 3, 2, 3, 2, 0, 3, 2] -champac -0.2 0.6 [0, 0, -2, 0, 0, 0, 0, 0, 0, 0] -champagne 1.2 1.07703 [1, 2, 2, 3, 0, 2, 0, 0, 2, 0] -champagnes 0.5 0.92195 [0, 0, 0, 0, 0, 1, 1, 3, 0, 0] -champaign 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] -champaigns 0.5 0.67082 [1, 0, 0, 0, 0, 0, 0, 1, 2, 1] -champaks -0.2 0.6 [0, 0, 0, 0, 0, 0, -2, 0, 0, 0] -champed 1.0 0.63246 [1, 1, 2, 1, 1, 2, 1, 0, 0, 1] -champer -0.1 0.53852 [0, -1, 1, 0, 0, 0, 0, -1, 0, 0] -champers 0.5 0.67082 [1, 0, 0, 0, 0, 0, 0, 1, 1, 2] -champerties -0.1 0.83066 [0, -1, 1, 1, 0, 0, 0, 0, -2, 0] -champertous 0.3 0.78102 [0, 0, 0, 1, -1, 2, 1, 0, 0, 0] -champerty -0.2 1.32665 [-2, -1, 0, -1, 0, 0, 0, -2, 2, 2] -champignon 0.4 0.8 [0, 0, 0, 0, 0, 2, 0, 2, 0, 0] -champignons 0.2 0.6 [0, 2, 0, 0, 0, 0, 0, 0, 0, 0] -champing 0.7 1.34536 [0, 2, 0, 3, 1, 1, 2, 0, -2, 0] -champion 2.9 0.83066 [3, 2, 3, 4, 4, 3, 2, 2, 4, 2] -championed 1.2 1.53623 [2, 1, 3, 1, 1, -3, 2, 2, 1, 2] -championing 1.8 0.9798 [1, 3, 2, 0, 3, 1, 2, 2, 1, 3] -champions 2.4 1.42829 [4, 0, 0, 3, 1, 3, 4, 3, 3, 3] -championship 1.9 1.04403 [3, 1, 1, 3, 2, 1, 3, 3, 0, 2] -championships 2.2 0.74833 [2, 2, 1, 2, 3, 2, 4, 2, 2, 2] -champs 1.8 0.4 [2, 2, 2, 2, 1, 2, 1, 2, 2, 2] -champy 1.0 1.0 [3, 0, 0, 0, 0, 2, 1, 2, 1, 1] -chance 1.0 0.7746 [1, 1, 0, 0, 0, 2, 1, 2, 1, 2] -chances 0.8 0.4 [0, 1, 1, 0, 1, 1, 1, 1, 1, 1] -chaos -2.7 0.9 [-2, -2, -3, -1, -4, -3, -3, -2, -3, -4] -chaotic -2.2 1.4 [-3, -2, -1, -2, -3, 1, -2, -2, -4, -4] -charged -0.8 0.87178 [-1, -2, -2, -1, -1, 0, -1, 1, 0, -1] -charges -1.1 0.7 [-2, -2, -2, -1, -1, 0, -1, -1, 0, -1] -charitable 1.7 0.64031 [1, 2, 1, 2, 2, 1, 2, 1, 3, 2] -charitableness 1.9 0.9434 [3, 1, 1, 3, 1, 3, 3, 2, 1, 1] -charitablenesses 1.6 1.74356 [2, 2, 3, 4, 1, -1, -2, 3, 2, 2] -charitably 1.4 0.66332 [1, 2, 1, 2, 2, 1, 0, 1, 2, 2] -charities 2.2 0.6 [3, 3, 2, 2, 1, 2, 2, 3, 2, 2] -charity 1.8 0.87178 [1, 3, 2, 2, 2, 1, 2, 0, 2, 3] -charm 1.7 0.78102 [3, 1, 1, 3, 2, 2, 1, 1, 1, 2] -charmed 2.0 0.63246 [3, 1, 2, 2, 2, 3, 1, 2, 2, 2] -charmer 1.9 0.53852 [3, 2, 2, 2, 2, 2, 1, 1, 2, 2] -charmers 2.1 0.83066 [2, 1, 2, 2, 4, 3, 2, 1, 2, 2] -charmeuse 0.3 0.78102 [0, 0, 0, 1, 0, 2, 1, 0, -1, 0] -charmeuses 0.4 0.66332 [0, 0, 1, 0, 1, 0, 0, 0, 0, 2] -charming 2.8 0.4 [3, 3, 3, 3, 3, 3, 2, 3, 2, 3] -charminger 1.5 0.67082 [2, 3, 1, 2, 1, 1, 2, 1, 1, 1] -charmingest 2.4 0.66332 [2, 3, 3, 1, 3, 2, 3, 3, 2, 2] -charmingly 2.2 0.87178 [2, 2, 2, 1, 2, 2, 3, 3, 4, 1] -charmless -1.8 0.87178 [-3, -1, -3, -1, -1, -1, -2, -1, -3, -2] -charms 1.9 0.7 [1, 2, 3, 2, 1, 2, 3, 1, 2, 2] -chastise -2.5 0.92195 [-4, -3, -2, -1, -4, -3, -2, -2, -2, -2] -chastised -2.2 1.16619 [-2, -3, -2, -4, -1, -1, -3, 0, -3, -3] -chastises -1.7 1.61555 [-3, -3, -3, -1, 1, -2, 1, -1, -2, -4] -chastising -1.7 0.78102 [-2, -3, -2, -2, -2, 0, -1, -1, -2, -2] -cheat -2.0 0.7746 [-2, -3, -3, -2, -2, -1, -1, -1, -2, -3] -cheated -2.3 0.64031 [-2, -4, -2, -2, -2, -2, -3, -2, -2, -2] -cheater -2.5 0.67082 [-2, -4, -2, -3, -2, -2, -3, -2, -3, -2] -cheaters -1.9 0.83066 [-2, -2, -2, -1, -1, -4, -2, -1, -2, -2] -cheating -2.6 0.91652 [-2, -3, -3, -2, -4, -4, -3, -2, -1, -2] -cheats -1.8 0.6 [-3, -1, -2, -1, -2, -1, -2, -2, -2, -2] -cheer 2.3 0.64031 [2, 1, 2, 2, 2, 3, 3, 3, 2, 3] -cheered 2.3 0.78102 [2, 3, 3, 4, 2, 1, 2, 2, 2, 2] -cheerer 1.7 0.45826 [1, 2, 2, 2, 1, 1, 2, 2, 2, 2] -cheerers 1.8 0.87178 [2, 2, 3, 2, 1, 2, 0, 1, 3, 2] -cheerful 2.5 0.67082 [3, 2, 3, 2, 2, 2, 4, 2, 3, 2] -cheerfuller 1.9 0.83066 [3, 3, 2, 3, 2, 1, 1, 2, 1, 1] -cheerfullest 3.2 0.87178 [4, 4, 4, 4, 3, 2, 2, 3, 2, 4] -cheerfully 2.1 0.83066 [3, 2, 2, 2, 1, 3, 1, 3, 1, 3] -cheerfulness 2.1 0.9434 [3, 2, 1, 2, 3, 4, 1, 2, 1, 2] -cheerier 2.6 0.4899 [2, 2, 3, 3, 2, 3, 3, 2, 3, 3] -cheeriest 2.2 0.6 [3, 2, 3, 1, 2, 2, 3, 2, 2, 2] -cheerily 2.5 0.67082 [3, 3, 2, 3, 2, 4, 2, 2, 2, 2] -cheeriness 2.5 0.67082 [3, 2, 4, 2, 3, 2, 3, 2, 2, 2] -cheering 2.3 0.64031 [3, 3, 2, 1, 3, 2, 2, 2, 3, 2] -cheerio 1.2 0.6 [2, 1, 1, 1, 2, 1, 1, 1, 2, 0] -cheerlead 1.7 0.78102 [1, 2, 0, 2, 2, 2, 2, 3, 1, 2] -cheerleader 0.9 0.9434 [1, 1, 0, 2, 1, 0, 0, 1, 0, 3] -cheerleaders 1.2 1.07703 [2, 0, 0, 1, 1, 0, 3, 3, 1, 1] -cheerleading 1.2 1.07703 [2, 2, 0, 0, 1, 0, 3, 2, 0, 2] -cheerleads 1.2 1.07703 [2, 3, 0, 3, 1, 0, 0, 1, 1, 1] -cheerled 1.5 1.11803 [0, 2, 1, 4, 2, 2, 2, 1, 1, 0] -cheerless -1.7 1.1 [-2, -3, -2, -2, -3, -2, -1, -1, 1, -2] -cheerlessly -0.8 1.98997 [-2, 4, -1, -2, -1, -2, -2, -2, 2, -2] -cheerlessness -1.7 1.48661 [-2, -1, -2, -3, -2, -4, -1, 2, -2, -2] -cheerly 2.4 0.66332 [2, 2, 3, 2, 2, 3, 4, 2, 2, 2] -cheers 2.1 1.3 [2, 2, 1, 3, 2, 3, 3, 4, -1, 2] -cheery 2.6 0.66332 [3, 2, 2, 3, 2, 3, 4, 2, 3, 2] -cherish 1.6 1.49666 [0, 3, 3, 3, 2, 2, 2, 1, -2, 2] -cherishable 2.0 1.41421 [-2, 2, 2, 2, 3, 2, 3, 3, 2, 3] -cherished 2.3 0.64031 [3, 2, 2, 3, 2, 2, 1, 3, 2, 3] -cherisher 2.2 0.4 [2, 2, 3, 2, 2, 2, 2, 3, 2, 2] -cherishers 1.9 0.7 [3, 3, 2, 2, 1, 1, 2, 2, 2, 1] -cherishes 2.2 0.74833 [2, 2, 3, 2, 2, 2, 2, 4, 2, 1] -cherishing 2.0 0.7746 [3, 3, 2, 2, 1, 2, 1, 3, 2, 1] -chic 1.1 1.3 [1, 2, 2, -2, 2, 0, 1, 1, 3, 1] -childish -1.2 0.74833 [-1, -1, -2, -3, -1, 0, -1, -1, -1, -1] -chilling -0.1 1.92094 [3, -2, 0, 1, -2, -2, -1, -2, 1, 3] -choke -2.5 0.92195 [-1, -2, -3, -3, -2, -4, -2, -4, -2, -2] -choked -2.1 1.3 [-4, -3, 0, -2, -1, -3, -3, -2, 0, -3] -chokes -2.0 0.89443 [-4, -3, -1, -2, -1, -2, -2, -2, -1, -2] -choking -2.0 1.26491 [-4, -2, -2, -3, -2, -2, -3, -1, 1, -2] -chuckle 1.7 0.45826 [2, 1, 2, 2, 2, 2, 1, 1, 2, 2] -chuckled 1.2 0.9798 [2, 2, 1, 1, 2, 0, 1, 2, -1, 2] -chucklehead -1.9 0.53852 [-2, -2, -1, -3, -2, -2, -2, -2, -1, -2] -chuckleheaded -1.3 1.84662 [-3, -4, -2, 0, 3, -1, -2, 0, -2, -2] -chuckleheads -1.1 0.9434 [-1, -2, 0, -1, -1, -3, 0, 0, -2, -1] -chuckler 0.8 1.07703 [2, 1, -1, 0, 2, 1, 1, 2, -1, 1] -chucklers 1.2 0.87178 [1, 1, 2, 3, 1, 0, 1, 0, 2, 1] -chuckles 1.1 1.13578 [2, 2, -1, 1, 2, 1, 1, 2, -1, 2] -chucklesome 1.1 0.53852 [1, 1, 2, 1, 1, 1, 0, 2, 1, 1] -chuckling 1.4 0.4899 [1, 2, 1, 2, 1, 1, 2, 2, 1, 1] -chucklingly 1.2 0.4 [1, 1, 1, 1, 2, 1, 1, 1, 2, 1] -clarifies 0.9 1.13578 [-2, 1, 0, 2, 1, 2, 2, 1, 1, 1] -clarity 1.7 0.78102 [2, 1, 2, 3, 3, 1, 1, 2, 1, 1] -classy 1.9 0.53852 [1, 2, 2, 1, 3, 2, 2, 2, 2, 2] -clean 1.7 0.78102 [3, 1, 2, 1, 2, 1, 3, 2, 1, 1] -cleaner 0.7 0.78102 [1, 0, 1, 0, 0, 0, 2, 1, 2, 0] -clear 1.6 1.2 [2, 1, 1, 0, 3, 1, 2, 4, 2, 0] -cleared 0.4 0.4899 [0, 0, 1, 1, 0, 0, 0, 0, 1, 1] -clearly 1.7 0.78102 [2, 2, 2, 2, 1, 2, 0, 2, 1, 3] -clears 0.3 0.78102 [0, 1, 0, 0, 0, -1, 1, 2, 0, 0] -clever 2.0 0.7746 [2, 1, 2, 2, 2, 1, 3, 1, 3, 3] -cleverer 2.0 0.44721 [2, 2, 2, 3, 2, 2, 1, 2, 2, 2] -cleverest 2.6 0.91652 [4, 3, 2, 2, 4, 3, 2, 1, 2, 3] -cleverish 1.0 1.18322 [1, 1, 1, 1, 1, 1, 2, 1, -2, 3] -cleverly 2.3 0.45826 [2, 3, 2, 2, 2, 3, 2, 2, 3, 2] -cleverness 2.3 0.9 [2, 4, 2, 2, 1, 3, 3, 3, 1, 2] -clevernesses 1.4 0.66332 [1, 1, 1, 2, 2, 2, 2, 0, 2, 1] -clouded -0.2 0.9798 [-2, 0, 2, 0, 0, -1, 0, -1, 0, 0] -clueless -1.5 0.5 [-1, -2, -1, -2, -2, -1, -1, -1, -2, -2] -cock -0.6 1.49666 [0, 0, -4, 0, 0, 1, 0, -3, 0, 0] -cocksucker -3.1 0.83066 [-3, -4, -2, -2, -4, -4, -4, -2, -3, -3] -cocksuckers -2.6 1.42829 [-4, -3, -4, -3, -3, 1, -3, -1, -3, -3] -cocky -0.5 1.0247 [2, 0, -1, 0, -1, -2, 0, -1, -1, -1] -coerced -1.5 0.67082 [-1, -2, -2, -2, -1, 0, -1, -2, -2, -2] -collapse -2.2 0.87178 [-3, -1, -2, -4, -3, -2, -2, -2, -1, -2] -collapsed -1.1 1.64012 [-1, -2, -2, -1, -2, -2, 2, 2, -3, -2] -collapses -1.2 0.87178 [-2, -1, -2, 0, -2, 0, 0, -2, -1, -2] -collapsing -1.2 0.6 [-1, -1, -2, -2, -2, -1, 0, -1, -1, -1] -collide -0.3 1.61555 [-3, 0, -1, 3, 0, -1, -1, 2, -1, -1] -collides -1.1 1.22066 [-2, -2, -1, -1, 0, -2, 2, -2, -1, -2] -colliding -0.5 1.36015 [-2, 2, -1, -1, 0, -1, -2, 2, -1, -1] -collision -1.5 0.67082 [-1, -1, -2, -1, -2, -1, -1, -3, -2, -1] -collisions -1.1 0.7 [0, -2, -1, 0, -1, -1, -2, -2, -1, -1] -colluding -1.2 1.32665 [-1, -1, -2, -2, 0, -3, 2, -2, -1, -2] -combat -1.4 1.0198 [0, -2, 0, -2, -2, -2, -1, -3, 0, -2] -combats -0.8 1.16619 [0, -2, -3, -1, 0, 0, 0, -1, 1, -2] -comedian 1.6 1.0198 [1, 0, 2, 3, 2, 0, 3, 1, 2, 2] -comedians 1.2 1.16619 [0, 0, 0, 2, 3, 1, 3, 2, 0, 1] -comedic 1.7 0.64031 [2, 1, 1, 3, 1, 2, 2, 2, 1, 2] -comedically 2.1 0.7 [3, 2, 2, 1, 2, 3, 3, 2, 1, 2] -comedienne 0.6 0.66332 [0, 2, 1, 0, 1, 1, 0, 1, 0, 0] -comediennes 1.6 1.11355 [2, 1, 3, 0, 0, 3, 1, 1, 2, 3] -comedies 1.7 1.00499 [0, 2, 1, 3, 3, 3, 1, 1, 2, 1] -comedo 0.3 0.9 [0, 0, 0, 0, -1, 0, 2, 0, 2, 0] -comedones -0.8 0.9798 [0, 0, 0, -1, 0, -3, 0, -1, -1, -2] -comedown -0.8 1.07703 [-1, -1, -1, 0, -2, -1, 2, -1, -2, -1] -comedowns -0.9 0.53852 [-1, -1, -1, -1, 0, -2, 0, -1, -1, -1] -comedy 1.5 0.67082 [1, 1, 2, 1, 3, 2, 1, 1, 2, 1] -comfort 1.5 0.67082 [1, 3, 1, 2, 1, 1, 2, 1, 1, 2] -comfortable 2.3 0.64031 [1, 2, 3, 2, 2, 3, 3, 3, 2, 2] -comfortableness 1.3 1.48661 [4, 2, 2, 3, 1, 1, 1, -1, -1, 1] -comfortably 1.8 0.74833 [1, 2, 2, 1, 3, 3, 1, 2, 1, 2] -comforted 1.8 0.6 [2, 2, 2, 0, 2, 2, 2, 2, 2, 2] -comforter 1.9 0.53852 [2, 3, 2, 2, 2, 1, 2, 2, 2, 1] -comforters 1.2 0.6 [2, 1, 0, 2, 1, 1, 2, 1, 1, 1] -comforting 1.7 0.64031 [1, 2, 1, 1, 2, 2, 2, 3, 2, 1] -comfortingly 1.7 0.45826 [1, 2, 1, 2, 2, 1, 2, 2, 2, 2] -comfortless -1.8 0.6 [-3, -2, -1, -2, -1, -2, -1, -2, -2, -2] -comforts 2.1 0.7 [3, 1, 3, 1, 2, 2, 3, 2, 2, 2] -commend 1.9 0.7 [1, 2, 2, 1, 2, 1, 2, 3, 2, 3] -commended 1.9 0.9434 [1, 3, 2, 3, 2, 2, 0, 1, 3, 2] -commit 1.2 0.87178 [1, 0, 2, 2, 0, 0, 2, 2, 1, 2] -commitment 1.6 0.91652 [3, 1, 2, 0, 3, 1, 2, 1, 2, 1] -commitments 0.5 0.92195 [1, 3, 0, 0, 0, 0, 0, 0, 0, 1] -commits 0.1 1.13578 [0, -1, 0, 2, 1, -1, 1, 1, -2, 0] -committed 1.1 0.7 [0, 1, 1, 2, 0, 2, 1, 1, 2, 1] -committing 0.3 1.18743 [0, 1, 0, 3, 0, -2, 1, 0, 0, 0] -compassion 2.0 0.7746 [3, 2, 1, 1, 2, 1, 3, 2, 2, 3] -compassionate 2.2 0.87178 [0, 3, 3, 2, 2, 3, 3, 2, 2, 2] -compassionated 1.6 0.66332 [3, 1, 2, 2, 1, 2, 2, 1, 1, 1] -compassionately 1.7 1.41774 [1, 3, 3, 2, 1, 2, 3, 2, -2, 2] -compassionateness 0.9 1.37477 [-3, 2, 2, 1, 1, 1, 2, 1, 1, 1] -compassionates 1.6 0.4899 [2, 1, 2, 2, 1, 2, 2, 1, 1, 2] -compassionating 1.6 0.91652 [3, 0, 2, 1, 3, 1, 2, 1, 2, 1] -compassionless -2.6 0.8 [-3, -2, -2, -3, -4, -3, -1, -2, -3, -3] -compelled 0.2 1.07703 [-1, 0, 0, 0, 1, 2, -1, -1, 2, 0] -compelling 0.9 0.94339 [1, 1, 1, 0, 1, 2, 2, -1, 2, 0] -competent 1.3 0.78102 [1, 3, 1, 1, 2, 1, 1, 0, 2, 1] -competitive 0.7 0.9 [0, 2, 0, 2, 0, 1, 0, 0, 0, 2] -complacent -0.3 1.1 [2, -1, -1, 1, -1, -1, -1, 1, -1, -1] -complain -1.5 0.67082 [-1, -1, -1, -2, -1, -2, -3, -2, -1, -1] -complainant -0.7 0.78102 [0, 0, -1, 0, 0, -2, 0, -1, -2, -1] -complainants -1.1 1.3 [-2, -1, 0, -2, -3, -2, -1, 1, -2, 1] -complained -1.7 0.64031 [-1, -3, -2, -2, -1, -1, -2, -2, -1, -2] -complainer -1.8 0.4 [-2, -2, -2, -2, -1, -2, -2, -2, -1, -2] -complainers -1.3 1.00499 [-2, -1, -1, -2, -3, 1, -1, -1, -2, -1] -complaining -0.8 1.249 [-2, -1, -1, -1, -2, -1, -1, 2, 1, -2] -complainingly -1.7 0.64031 [-1, -2, -1, -2, -1, -2, -1, -2, -3, -2] -complains -1.6 0.66332 [-1, -2, -1, -2, -2, -3, -1, -1, -1, -2] -complaint -1.2 1.249 [-1, -1, -2, -2, -1, -3, -1, -1, 2, -2] -complaints -1.7 0.45826 [-2, -2, -2, -1, -2, -2, -2, -1, -1, -2] -compliment 2.1 0.7 [2, 2, 3, 1, 2, 3, 3, 1, 2, 2] -complimentarily 1.7 0.45826 [2, 2, 2, 2, 1, 1, 2, 1, 2, 2] -complimentary 1.9 0.7 [1, 2, 2, 1, 2, 1, 2, 3, 3, 2] -complimented 1.8 1.4 [3, 2, 2, 2, 3, 2, -2, 3, 1, 2] -complimenting 2.3 0.64031 [2, 2, 1, 3, 3, 2, 2, 3, 3, 2] -compliments 1.7 0.45826 [2, 1, 2, 2, 1, 2, 2, 1, 2, 2] -comprehensive 1.0 0.63246 [1, 1, 1, 0, 2, 2, 1, 0, 1, 1] -conciliate 1.0 1.18322 [2, 1, 1, 0, 2, 2, -2, 2, 1, 1] -conciliated 1.1 0.9434 [1, 3, 0, 0, 2, 0, 2, 1, 1, 1] -conciliates 1.1 0.9434 [1, 3, 0, 0, 2, 0, 2, 1, 1, 1] -conciliating 1.3 0.78102 [2, 2, 1, 1, 2, 0, 2, 1, 2, 0] -condemn -1.6 1.0198 [-2, -2, -1, -2, -2, 1, -2, -3, -1, -2] -condemnation -2.8 0.9798 [-3, -4, -2, -4, -2, -4, -2, -1, -3, -3] -condemned -1.9 1.81384 [2, -2, -2, -3, -2, -3, -3, -4, 1, -3] -condemns -2.3 0.64031 [-2, -2, -3, -3, -3, -2, -2, -3, -1, -2] -confidence 2.3 0.64031 [3, 3, 3, 3, 1, 2, 2, 2, 2, 2] -confident 2.2 0.87178 [1, 3, 3, 2, 3, 1, 3, 2, 1, 3] -confidently 2.1 0.53852 [2, 2, 3, 1, 2, 2, 2, 2, 3, 2] -conflict -1.3 0.45826 [-2, -2, -1, -2, -1, -1, -1, -1, -1, -1] -conflicting -1.7 0.64031 [-1, -2, -3, -1, -2, -1, -2, -1, -2, -2] -conflictive -1.8 0.6 [-2, -2, -2, -2, -1, -1, -3, -2, -1, -2] -conflicts -1.6 0.8 [-1, -1, -1, -2, -1, -1, -3, -2, -1, -3] -confront -0.7 0.78102 [0, -1, -1, 0, 1, -1, -1, -2, -1, -1] -confrontation -1.3 1.55242 [-3, -2, -3, -2, -1, -2, 1, 2, -1, -2] -confrontational -1.6 0.66332 [-1, -2, -1, -2, -1, -2, -1, -2, -3, -1] -confrontationist -1.0 1.34164 [-1, -2, -2, 2, 1, -1, -2, -1, -2, -2] -confrontationists -1.2 1.46969 [-2, -3, -1, -2, 2, 1, -1, -2, -2, -2] -confrontations -1.5 1.0247 [-1, -3, -2, -1, -3, 0, -2, -2, 0, -1] -confronted -0.8 0.74833 [-1, -2, -1, -1, -1, -1, -1, -1, 1, 0] -confronter -0.3 1.1 [0, -2, 1, -2, 0, -1, -1, 0, 1, 1] -confronters -1.3 1.26886 [-3, -2, -2, -2, -1, -2, 1, 1, -1, -2] -confronting -0.6 1.11355 [-2, -1, -1, 0, -2, 2, -1, 0, 0, -1] -confronts -0.9 0.53852 [-1, -1, -1, -1, 0, -1, 0, -1, -2, -1] -confuse -0.9 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, 0, -1] -confused -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -1, -2, -2] -confusedly -0.6 1.42829 [-3, -1, -1, 1, -1, -1, -2, 2, 1, -1] -confusedness -1.5 0.67082 [-3, -1, -1, -2, -1, -2, -2, -1, -1, -1] -confuses -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -1, -2, -2] -confusing -0.9 0.7 [-1, -1, -1, -2, -1, -1, 1, -1, -1, -1] -confusingly -1.4 0.66332 [-1, -1, -1, -1, -3, -1, -2, -1, -1, -2] -confusion -1.2 0.6 [-1, -1, -1, -1, -1, -2, 0, -1, -2, -2] -confusional -1.2 0.6 [-2, -2, 0, -1, -2, -1, -1, -1, -1, -1] -confusions -0.9 1.04403 [-1, -2, -1, -1, -1, 2, -2, -1, -1, -1] -congrats 2.4 0.91652 [1, 3, 3, 3, 2, 2, 4, 1, 2, 3] -congratulate 2.2 1.249 [3, 3, 2, 3, -1, 2, 1, 3, 3, 3] -congratulation 2.9 0.9434 [3, 3, 3, 2, 4, 2, 4, 3, 4, 1] -congratulations 2.9 0.53852 [2, 3, 3, 3, 3, 3, 3, 3, 4, 2] -consent 0.9 0.7 [0, 0, 1, 1, 1, 2, 1, 2, 0, 1] -consents 1.0 0.63246 [0, 2, 1, 0, 1, 1, 1, 2, 1, 1] -considerate 1.9 1.22066 [2, -1, 3, 2, 2, 2, 4, 1, 2, 2] -consolable 1.1 0.53852 [1, 1, 2, 1, 0, 1, 1, 1, 2, 1] -conspiracy -2.4 0.66332 [-2, -2, -3, -3, -2, -2, -4, -2, -2, -2] -constrained -0.4 1.0198 [-1, 0, -1, -1, -1, -1, 2, -1, 1, -1] -contagion -2.0 1.18322 [-1, 0, -2, -1, -2, -4, -2, -4, -2, -2] -contagions -1.5 0.92195 [-2, -2, -2, -2, 1, -2, -1, -1, -2, -2] -contagious -1.4 0.91652 [-2, -2, -2, 0, -1, -1, -2, 0, -1, -3] -contempt -2.8 0.6 [-3, -3, -4, -2, -3, -2, -3, -3, -2, -3] -contemptibilities -2.0 1.09545 [-2, 1, -2, -2, -3, -3, -3, -2, -2, -2] -contemptibility -0.9 1.51327 [-2, -1, -3, -1, 0, -3, -1, 1, 2, -1] -contemptible -1.6 1.68523 [-2, -2, -3, -3, -2, -3, -1, -3, 1, 2] -contemptibleness -1.9 0.7 [-2, -2, -1, -2, -2, -1, -1, -2, -3, -3] -contemptibly -1.4 1.49666 [-3, 0, -2, -3, -2, -2, -1, -3, 1, 1] -contempts -1.0 1.48324 [-2, -2, -1, 0, 1, -1, -2, -3, 2, -2] -contemptuous -2.2 1.83303 [-2, -3, -4, -2, -3, -3, 3, -2, -3, -3] -contemptuously -2.4 0.8 [-1, -3, -2, -3, -3, -2, -1, -3, -3, -3] -contemptuousness -1.1 1.57797 [-3, -1, -2, 3, -2, 0, -1, -1, -2, -2] -contend 0.2 1.07703 [0, 0, 1, 1, -2, 1, -1, 0, 2, 0] -contender 0.5 1.0247 [1, 3, -1, 0, 0, 1, 0, 1, 0, 0] -contented 1.4 1.56205 [1, 1, 3, 2, 2, 2, -3, 2, 2, 2] -contentedly 1.9 0.9434 [3, 1, 2, 3, 2, 3, 0, 2, 1, 2] -contentedness 1.4 0.4899 [1, 2, 1, 1, 2, 2, 2, 1, 1, 1] -contentious -1.2 1.4 [-2, -2, -2, -2, -2, -2, -1, 2, 1, -2] -contentment 1.5 1.74642 [2, 1, 3, 2, 2, 1, 2, 4, 1, -3] -contestable 0.6 1.0198 [2, -1, 1, 0, 1, -1, 1, 1, 2, 0] -contradict -1.3 0.78102 [-2, -1, -1, 0, -2, 0, -1, -2, -2, -2] -contradictable -1.0 0.63246 [-1, -1, -2, 0, -1, -1, 0, -1, -1, -2] -contradicted -1.3 0.45826 [-1, -1, -1, -1, -2, -1, -2, -1, -1, -2] -contradicting -1.3 0.9 [-2, -2, -2, -1, -2, -1, 1, -1, -1, -2] -contradiction -1.0 0.89443 [-1, 0, 0, -1, 0, -3, -2, -1, -1, -1] -contradictions -1.3 0.78102 [0, -2, -1, -2, -1, -2, -1, 0, -2, -2] -contradictious -1.9 1.04403 [-2, -3, 0, -3, -3, -1, -2, -1, -1, -3] -contradictor -1.0 0.63246 [-1, -1, -1, -2, -1, -2, 0, 0, -1, -1] -contradictories -0.5 1.11803 [-1, 0, -1, -2, 2, 1, -1, -1, -1, -1] -contradictorily -0.9 1.3 [0, -1, -1, -1, -3, -1, 1, 1, -3, -1] -contradictoriness -1.4 0.4899 [-2, -1, -1, -1, -2, -1, -1, -2, -2, -1] -contradictors -1.6 0.66332 [-1, -2, -1, -2, -1, -1, -3, -1, -2, -2] -contradictory -1.4 0.4899 [-1, -2, -1, -2, -1, -1, -1, -1, -2, -2] -contradicts -1.4 0.66332 [-1, -2, -1, -2, -2, -2, 0, -1, -1, -2] -controversial -0.8 0.87178 [0, 0, -1, 1, -2, -1, -1, -1, -1, -2] -controversially -1.1 1.04403 [0, -1, -1, -2, -1, -2, -1, 1, -3, -1] -convince 1.0 0.89443 [-1, 2, 2, 1, 1, 0, 1, 1, 2, 1] -convinced 1.7 0.64031 [2, 1, 1, 2, 1, 2, 2, 2, 1, 3] -convincer 0.6 0.66332 [2, 0, 1, 0, 1, 1, 0, 0, 0, 1] -convincers 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 0, 0, 2] -convinces 0.7 0.78102 [1, 0, 2, 0, 1, 0, 0, 0, 1, 2] -convincing 1.7 0.9 [2, 2, 0, 3, 3, 1, 1, 2, 2, 1] -convincingly 1.6 0.66332 [3, 2, 1, 1, 1, 2, 2, 1, 2, 1] -convincingness 0.7 1.34536 [0, 0, 0, 1, -2, 2, 0, 3, 1, 2] -convivial 1.2 1.16619 [1, 2, -2, 2, 1, 2, 2, 1, 2, 1] -cool 1.3 0.64031 [1, 1, 2, 1, 1, 1, 2, 2, 2, 0] -cornered -1.1 0.83066 [-1, -1, -3, -1, 0, -1, 0, -1, -2, -1] -corpse -2.7 1.18743 [-3, -4, 0, -4, -3, -3, -3, -1, -3, -3] -costly -0.4 1.0198 [-1, 0, -1, -1, 2, -1, -1, 1, -1, -1] -courage 2.2 0.74833 [2, 3, 1, 2, 3, 2, 3, 3, 1, 2] -courageous 2.4 0.4899 [2, 3, 3, 3, 3, 2, 2, 2, 2, 2] -courageously 2.3 0.78102 [3, 3, 3, 1, 3, 3, 2, 2, 2, 1] -courageousness 2.1 0.7 [3, 3, 1, 2, 1, 2, 2, 2, 3, 2] -courteous 2.3 0.45826 [2, 2, 2, 3, 3, 2, 3, 2, 2, 2] -courtesy 1.5 0.67082 [1, 1, 2, 3, 1, 2, 1, 1, 2, 1] -cover-up -1.2 1.16619 [-1, -1, -4, -1, 0, 0, -2, 0, -1, -2] -coward -2.0 0.63246 [-3, -3, -1, -2, -2, -1, -2, -2, -2, -2] -cowardly -1.6 0.8 [-1, -1, -1, -3, -1, -2, -3, -2, -1, -1] -coziness 1.5 1.11803 [2, 3, 1, 3, 1, 2, 2, -1, 1, 1] -cramp -0.8 1.66132 [0, -1, -1, -3, -3, 1, -2, 1, -2, 2] -crap -1.6 0.66332 [-1, -1, -2, -2, -1, -2, -3, -1, -1, -2] -crappy -2.6 0.8 [-1, -3, -3, -2, -3, -4, -2, -2, -3, -3] -crash -1.7 1.18743 [-2, -3, -2, -1, -2, 0, 0, -1, -4, -2] -craze -0.6 1.49666 [0, -3, -1, -1, -2, 0, 0, -1, 3, -1] -crazed -0.5 2.24722 [-2, -1, 3, -3, -3, 1, 1, -1, 3, -3] -crazes 0.2 1.6 [-2, -1, 3, -1, -1, 1, 2, 0, 2, -1] -crazier -0.1 1.7 [2, -2, -2, 0, -1, 1, 3, 1, -1, -2] -craziest -0.2 2.13542 [2, -2, -3, 3, -2, 0, 2, 2, -2, -2] -crazily -1.5 0.67082 [-2, -1, -1, -2, -1, -3, -2, -1, -1, -1] -craziness -1.6 0.66332 [-2, 0, -2, -1, -2, -1, -2, -2, -2, -2] -crazinesses -1.0 1.48324 [1, -2, -2, 2, -1, 0, -2, -1, -3, -2] -crazing -0.5 0.80623 [0, 0, 0, 0, -2, -1, -2, 0, 0, 0] -crazy -1.4 1.35647 [-2, -1, -1, -2, -3, -2, -3, -1, 2, -1] -crazyweed 0.8 0.9798 [2, 0, 0, 0, 0, 2, 2, 0, 2, 0] -create 1.1 1.13578 [1, 1, 1, 2, 3, 0, 0, 0, 3, 0] -created 1.0 0.7746 [2, 0, 0, 1, 1, 2, 0, 1, 1, 2] -creates 1.1 0.83066 [2, 0, 0, 1, 1, 2, 0, 1, 2, 2] -creatin 0.1 0.53852 [0, 0, 0, 1, 0, 0, 0, 1, -1, 0] -creatine 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 2] -creating 1.2 1.249 [0, 0, 0, 0, 4, 1, 1, 2, 2, 2] -creatinine 0.4 1.2 [0, 0, 0, 4, 0, 0, 0, 0, 0, 0] -creation 1.1 0.83066 [2, 1, 1, 2, 0, 0, 0, 1, 2, 2] -creationism 0.7 0.9 [2, 0, 0, 0, 0, 0, 2, 0, 2, 1] -creationisms 1.1 1.37477 [2, 4, 0, 3, 0, 0, 1, 1, 0, 0] -creationist 0.8 0.9798 [2, 0, 0, 0, 0, 0, 2, 0, 2, 2] -creationists 0.5 0.67082 [0, 0, 0, 1, 1, 0, 2, 0, 1, 0] -creations 1.6 0.91652 [3, 2, 1, 1, 1, 3, 1, 2, 2, 0] -creative 1.9 0.53852 [2, 1, 2, 2, 2, 1, 3, 2, 2, 2] -creatively 1.5 0.80623 [2, 2, 1, 0, 2, 2, 2, 0, 2, 2] -creativeness 1.8 1.07703 [3, 2, 1, 0, 2, 2, 2, 0, 3, 3] -creativities 1.7 1.00499 [2, 2, 1, 0, 3, 2, 2, 0, 2, 3] -creativity 1.6 0.8 [2, 1, 2, 2, 3, 2, 0, 2, 1, 1] -credit 1.6 0.91652 [1, 1, 0, 2, 3, 3, 2, 2, 1, 1] -creditabilities 1.4 1.28062 [0, 3, -1, 2, 2, 2, 1, 2, 0, 3] -creditability 1.9 1.3 [3, 0, 4, 0, 1, 1, 3, 2, 2, 3] -creditable 1.8 0.6 [2, 1, 1, 1, 2, 2, 3, 2, 2, 2] -creditableness 1.2 0.74833 [1, 1, 1, 3, 2, 1, 0, 1, 1, 1] -creditably 1.7 0.78102 [3, 1, 1, 0, 2, 2, 2, 2, 2, 2] -credited 1.5 1.11803 [1, 1, 1, 0, 3, 2, 0, 3, 1, 3] -crediting 0.6 0.4899 [1, 0, 0, 0, 1, 1, 1, 0, 1, 1] -creditor -0.1 1.44568 [-2, -1, 1, -2, -1, 1, 2, -1, 2, 0] -credits 1.5 1.0247 [2, -1, 2, 0, 2, 2, 2, 2, 2, 2] -creditworthiness 1.9 1.3 [4, 0, 3, 1, 2, 1, 4, 2, 1, 1] -creditworthy 2.4 0.66332 [3, 3, 3, 1, 2, 3, 3, 2, 2, 2] -crestfallen -2.5 0.67082 [-2, -3, -3, -2, -3, -2, -4, -2, -2, -2] -cried -1.6 0.8 [-1, -3, -1, -2, -2, -2, 0, -2, -1, -2] -cries -1.7 0.64031 [-1, -3, -1, -2, -2, -2, -1, -2, -1, -2] -crime -2.5 0.80623 [-3, -3, -4, -2, -2, -1, -2, -2, -3, -3] -criminal -2.4 0.91652 [-3, -2, -4, -3, -1, -2, -3, -2, -1, -3] -criminals -2.7 0.9 [-2, -2, -1, -3, -3, -4, -4, -3, -2, -3] -crisis -3.1 0.7 [-3, -2, -4, -3, -3, -2, -4, -4, -3, -3] -critic -1.1 0.53852 [-1, 0, -2, -1, -1, -1, -1, -1, -2, -1] -critical -1.3 0.78102 [-2, 0, -1, -1, -1, -2, -1, -3, -1, -1] -criticise -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -3, -1, -2, -2] -criticised -1.8 0.4 [-2, -2, -1, -2, -2, -2, -1, -2, -2, -2] -criticises -1.3 1.26886 [-2, -1, -1, -1, 2, -1, -3, -2, -2, -2] -criticising -1.7 0.78102 [-1, -1, -1, -3, -1, -2, -2, -2, -1, -3] -criticism -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -3, -1, -2, -2] -criticisms -0.9 1.37477 [-1, -1, 1, -1, -2, -2, -1, -3, 2, -1] -criticizable -1.0 0.63246 [-1, -2, 0, -1, -2, -1, 0, -1, -1, -1] -criticize -1.6 1.0198 [-2, -1, 0, -2, -1, -3, 0, -3, -2, -2] -criticized -1.5 0.92195 [-1, -2, -3, -1, -1, -1, -3, -1, -2, 0] -criticizer -1.5 0.67082 [-1, -2, -2, -1, -1, -1, -3, -1, -2, -1] -criticizers -1.6 0.4899 [-1, -1, -1, -2, -2, -2, -1, -2, -2, -2] -criticizes -1.4 0.66332 [-1, -1, -2, -1, -1, -1, -3, -1, -2, -1] -criticizing -1.5 0.67082 [-1, -1, -1, -2, -2, -1, -2, -1, -3, -1] -critics -1.2 0.6 [-2, 0, -1, -1, -1, -1, -2, -1, -2, -1] -crude -2.7 0.64031 [-2, -2, -3, -4, -2, -3, -3, -2, -3, -3] -crudely -1.2 0.4 [-1, -2, -2, -1, -1, -1, -1, -1, -1, -1] -crudeness -2.0 0.7746 [-3, -1, -1, -1, -3, -2, -3, -2, -2, -2] -crudenesses -2.0 1.0 [-3, -1, -1, -2, -4, -1, -1, -2, -2, -3] -cruder -2.0 0.89443 [-3, -2, -2, -1, -1, -2, -2, -1, -4, -2] -crudes -1.1 0.83066 [-2, -1, -1, -1, 0, 0, -1, -1, -3, -1] -crudest -2.4 1.0198 [-2, -1, -3, -3, -2, -1, -4, -4, -2, -2] -cruel -2.8 1.16619 [-2, -4, -1, -4, -1, -4, -2, -3, -3, -4] -crueler -2.3 0.45826 [-2, -3, -2, -2, -2, -3, -2, -2, -3, -2] -cruelest -2.6 0.8 [-4, -3, -2, -4, -2, -2, -2, -2, -2, -3] -crueller -2.4 0.4899 [-2, -3, -3, -3, -2, -2, -3, -2, -2, -2] -cruellest -2.9 1.04403 [-2, -3, -4, -4, -4, -3, -1, -2, -2, -4] -cruelly -2.8 0.4 [-3, -3, -3, -3, -3, -3, -2, -2, -3, -3] -cruelness -2.9 0.3 [-3, -3, -3, -3, -3, -3, -3, -3, -2, -3] -cruelties -2.3 1.00499 [-4, -3, -2, -1, -2, -2, -1, -4, -2, -2] -cruelty -2.9 0.83066 [-3, -3, -3, -3, -4, -3, -1, -3, -4, -2] -crush -0.6 1.11355 [0, 0, 0, -1, 1, 0, -2, -3, -1, 0] -crushed -1.8 0.6 [-2, -2, -2, -1, -2, -1, -1, -3, -2, -2] -crushes -1.9 0.53852 [-2, -2, -2, -2, -2, -1, -1, -3, -2, -2] -crushing -1.5 1.85742 [-2, -3, -1, -3, 2, -2, -2, -3, 2, -3] -cry -2.1 0.53852 [-2, -2, -2, -1, -2, -2, -3, -3, -2, -2] -crying -2.1 0.7 [-3, -1, -2, -2, -3, -2, -3, -2, -1, -2] -cunt -2.2 2.08806 [-4, -1, -4, -2, 2, -4, -4, -3, 1, -3] -cunts -2.9 1.44568 [-3, -4, -3, -4, -4, -4, -3, 1, -3, -2] -curious 1.3 0.78102 [0, 1, 0, 2, 2, 2, 1, 1, 2, 2] -curse -2.5 0.67082 [-3, -3, -4, -2, -2, -3, -2, -2, -2, -2] -cut -1.1 0.53852 [-2, -1, -1, -1, 0, -1, -1, -1, -2, -1] -cute 2.0 0.63246 [1, 3, 1, 2, 2, 2, 2, 3, 2, 2] -cutely 1.3 1.00499 [3, 1, 1, 2, 2, 1, 1, 2, -1, 1] -cuteness 2.3 0.45826 [2, 2, 2, 3, 2, 3, 3, 2, 2, 2] -cutenesses 1.9 0.53852 [1, 2, 2, 1, 3, 2, 2, 2, 2, 2] -cuter 2.3 0.9 [1, 2, 3, 4, 1, 2, 2, 3, 3, 2] -cutes 1.8 0.87178 [1, 2, 3, 0, 1, 2, 2, 2, 3, 2] -cutesie 1.0 1.18322 [2, 2, 1, 1, 0, 2, 2, -1, 2, -1] -cutesier 1.5 1.20416 [3, -1, 2, 1, 1, 2, 2, 3, 0, 2] -cutesiest 2.2 1.4 [3, 3, 4, 2, 2, 4, 2, -1, 2, 1] -cutest 2.8 0.87178 [2, 3, 3, 4, 4, 3, 1, 3, 2, 3] -cutesy 2.1 0.83066 [2, 1, 2, 2, 4, 3, 1, 2, 2, 2] -cutey 2.1 1.04403 [1, 2, 3, 4, 1, 1, 3, 2, 3, 1] -cuteys 1.5 1.0247 [3, 2, 2, 0, 1, 2, 1, 1, 3, 0] -cutie 1.5 0.80623 [3, 1, 1, 2, 1, 1, 1, 3, 1, 1] -cutiepie 2.0 1.09545 [3, 1, 2, 4, 0, 2, 1, 3, 2, 2] -cuties 2.2 0.6 [3, 2, 2, 2, 3, 1, 2, 2, 3, 2] -cuts -1.2 0.6 [-1, -2, -1, 0, -1, -1, -2, -2, -1, -1] -cutting -0.5 0.67082 [0, -1, 0, 0, 0, -1, -1, -2, 0, 0] -cynic -1.4 0.8 [-1, -2, -1, 0, -2, -3, -1, -1, -1, -2] -cynical -1.6 0.66332 [-1, -1, -2, -2, -1, -1, -2, -2, -1, -3] -cynically -1.3 1.00499 [-2, -1, -1, -1, -3, -2, -1, -2, 1, -1] -cynicism -1.7 0.64031 [-2, -3, -1, -1, -2, -1, -2, -1, -2, -2] -cynicisms -1.7 0.78102 [-1, -1, -3, -1, -2, -3, -1, -2, -2, -1] -cynics -0.3 1.1 [-1, 0, -2, 0, 0, -1, 1, -1, 2, -1] -d-: 1.6 0.66332 [1, 1, 1, 2, 2, 3, 1, 1, 2, 2] -d: 1.2 0.87178 [1, 1, 1, 2, 1, 1, 2, 2, -1, 2] -d= 1.5 0.67082 [1, 1, 1, 2, 3, 2, 1, 1, 1, 2] -damage -2.2 0.4 [-2, -3, -2, -2, -3, -2, -2, -2, -2, -2] -damaged -1.9 0.53852 [-2, -2, -2, -1, -2, -1, -2, -2, -3, -2] -damager -1.9 0.53852 [-2, -2, -2, -2, -2, -1, -2, -2, -3, -1] -damagers -2.0 0.63246 [-2, -3, -1, -2, -2, -1, -3, -2, -2, -2] -damages -1.9 1.04403 [-1, 0, -2, -2, -2, -4, -2, -1, -3, -2] -damaging -2.3 0.9 [-4, -1, -2, -4, -2, -2, -2, -2, -2, -2] -damagingly -2.0 0.7746 [-2, -2, -2, -2, -1, -3, -3, -1, -3, -1] -damn -1.7 0.64031 [-2, -1, -2, -1, -1, -3, -1, -2, -2, -2] -damnable -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] -damnableness -1.8 0.74833 [-2, -2, -2, -2, -1, -2, -2, 0, -3, -2] -damnably -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] -damnation -2.6 1.0198 [-3, -2, -3, -4, -4, -3, -1, -2, -1, -3] -damnations -1.4 1.11355 [-2, -1, -2, -3, -2, 0, -1, 1, -2, -2] -damnatory -2.6 1.42829 [-4, -1, -4, -2, -1, -3, -3, 0, -4, -4] -damned -1.6 0.66332 [-1, -1, -3, -1, -2, -2, -1, -2, -1, -2] -damnedest -0.5 1.5 [1, 0, 0, 0, -1, -1, 0, 2, -3, -3] -damnified -2.8 0.9798 [-1, -3, -3, -2, -2, -3, -4, -4, -2, -4] -damnifies -1.8 0.87178 [-2, -2, -1, -2, -3, -2, -2, 0, -1, -3] -damnify -2.2 0.74833 [-2, -2, -4, -2, -3, -2, -1, -2, -2, -2] -damnifying -2.4 0.66332 [-3, -1, -2, -2, -2, -2, -3, -3, -3, -3] -damning -1.4 0.8 [-1, -3, -1, -1, -1, -1, -3, -1, -1, -1] -damningly -2.0 1.61245 [-3, -2, -1, -4, -3, -3, -3, -2, 2, -1] -damnit -2.4 1.0198 [-3, -3, -2, -2, -3, -2, -4, -2, 0, -3] -damns -2.2 0.74833 [-2, -3, -2, -1, -3, -2, -1, -2, -3, -3] -danger -2.4 0.91652 [-3, -1, -2, -3, -3, -3, -2, -1, -2, -4] -dangered -2.4 0.66332 [-3, -3, -2, -3, -3, -2, -1, -2, -3, -2] -dangering -2.5 0.80623 [-1, -2, -2, -3, -4, -3, -3, -2, -2, -3] -dangerous -2.1 0.3 [-2, -3, -2, -2, -2, -2, -2, -2, -2, -2] -dangerously -2.0 0.44721 [-2, -2, -2, -1, -2, -3, -2, -2, -2, -2] -dangerousness -2.0 0.44721 [-2, -3, -2, -1, -2, -2, -2, -2, -2, -2] -dangers -2.2 0.87178 [-1, -1, -2, -4, -2, -3, -3, -2, -2, -2] -daredevil 0.5 0.92195 [0, 1, -1, 2, 0, 0, 1, 0, 0, 2] -daring 1.5 1.5 [3, 0, 1, 1, 2, -2, 3, 2, 2, 3] -daringly 2.1 0.7 [3, 1, 2, 1, 3, 2, 2, 3, 2, 2] -daringness 1.4 0.8 [0, 2, 1, 3, 1, 2, 2, 1, 1, 1] -darings 0.4 0.91652 [0, 1, 1, 1, 0, 1, 0, 1, -2, 1] -darkest -2.2 0.6 [-3, -3, -2, -2, -3, -2, -1, -2, -2, -2] -darkness -1.0 0.44721 [-2, -1, -1, -1, -1, 0, -1, -1, -1, -1] -darling 2.8 0.6 [3, 3, 2, 2, 3, 3, 4, 2, 3, 3] -darlingly 1.6 0.66332 [1, 1, 2, 3, 1, 1, 2, 2, 2, 1] -darlingness 2.3 0.45826 [3, 3, 2, 2, 2, 2, 2, 2, 3, 2] -darlings 2.2 0.4 [3, 2, 2, 2, 2, 2, 2, 2, 3, 2] -dauntless 2.3 0.78102 [3, 3, 2, 1, 3, 3, 2, 1, 2, 3] -daze -0.7 0.78102 [-1, 0, -1, -1, 1, -1, -1, 0, -1, -2] -dazed -0.7 0.64031 [0, -1, -1, 0, -1, -1, 0, -1, 0, -2] -dazedly -0.4 1.0198 [-1, -1, -1, -1, -1, 2, -1, 1, 0, -1] -dazedness -0.5 1.11803 [-1, 2, 0, -1, -1, -1, 1, -2, -1, -1] -dazes -0.3 0.78102 [0, -1, 0, 0, 0, -1, 0, 1, 0, -2] -dead -3.3 1.00499 [-4, -4, -1, -4, -4, -3, -4, -2, -3, -4] -deadlock -1.4 0.8 [-2, -2, -1, -3, -1, 0, -2, -1, -1, -1] -deafening -1.2 1.6 [-4, -2, 0, -3, 1, -2, 1, -2, -1, 0] -dear 1.6 1.35647 [3, 3, 2, 2, 2, 2, 1, -2, 1, 2] -dearer 1.9 0.7 [2, 2, 1, 2, 1, 1, 2, 3, 2, 3] -dearest 2.6 0.8 [1, 2, 3, 3, 2, 2, 3, 3, 4, 3] -dearie 2.2 0.6 [2, 2, 2, 3, 2, 1, 3, 2, 3, 2] -dearies 1.0 1.0 [0, 1, 2, -1, 1, 1, 1, 1, 1, 3] -dearly 1.8 1.07703 [3, 4, 2, 1, 1, 0, 1, 2, 2, 2] -dearness 2.0 0.7746 [1, 1, 2, 3, 2, 2, 2, 3, 1, 3] -dears 1.9 0.83066 [3, 2, 2, 2, 1, 2, 2, 2, 0, 3] -dearth -2.3 1.00499 [-2, -2, -1, -4, -2, -1, -2, -4, -3, -2] -dearths -0.9 0.7 [0, -1, 0, -1, -2, -1, -2, 0, -1, -1] -deary 1.9 0.83066 [3, 2, 2, 1, 2, 2, 3, 2, 0, 2] -death -2.9 1.04403 [-3, -4, -4, -3, -3, -1, -1, -4, -3, -3] -debonair 0.8 1.72047 [1, -1, -1, -3, 2, 2, 2, 2, 2, 2] -debt -1.5 1.0247 [-2, -1, -2, -3, 1, -2, -2, -1, -1, -2] -decay -1.7 0.45826 [-2, -2, -2, -1, -2, -1, -1, -2, -2, -2] -decayed -1.6 0.91652 [-2, -2, -2, -2, -2, 1, -1, -2, -2, -2] -decayer -1.6 0.4899 [-2, -2, -2, -1, -2, -1, -1, -1, -2, -2] -decayers -1.6 0.4899 [-2, -1, -1, -2, -1, -2, -2, -2, -1, -2] -decaying -1.7 0.64031 [-1, -1, -2, -2, -1, -2, -3, -2, -2, -1] -decays -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] -deceit -2.0 1.34164 [-3, -2, -2, -3, -3, 0, 1, -2, -3, -3] -deceitful -1.9 1.22066 [-3, -2, -2, -3, -1, -3, -1, -3, -2, 1] -deceive -1.7 0.64031 [-1, -2, -2, -1, -2, -1, -1, -3, -2, -2] -deceived -1.9 1.3 [1, -3, -3, -1, -1, -2, -2, -2, -4, -2] -deceives -1.6 1.56205 [-1, 2, -2, -2, -3, -2, 0, -2, -4, -2] -deceiving -1.4 1.68523 [-3, -2, -2, -2, -1, -1, 1, -4, 2, -2] -deception -1.9 1.04403 [-1, -2, -2, -4, -2, 0, -2, -1, -3, -2] -decisive 0.9 0.83066 [2, 2, 0, 1, -1, 1, 1, 1, 1, 1] -dedicated 2.0 0.44721 [2, 2, 2, 2, 2, 2, 2, 1, 3, 2] -defeat -2.0 1.67332 [0, -4, -3, -4, -2, -1, -2, -1, 1, -4] -defeated -2.1 0.83066 [-1, -2, -1, -2, -3, -2, -2, -2, -2, -4] -defeater -1.4 0.8 [-2, -1, -1, -3, -2, -1, -2, -1, 0, -1] -defeaters -0.9 0.9434 [-2, 0, -1, -2, -2, -1, 0, -1, 1, -1] -defeating -1.6 0.66332 [-2, -2, -1, -1, -1, -1, -2, -2, -3, -1] -defeatism -1.3 1.00499 [-1, -2, -2, -1, -1, -3, 1, -2, -1, -1] -defeatist -1.7 0.9 [0, -1, -2, -3, -1, -2, -1, -3, -2, -2] -defeatists -2.1 0.9434 [-3, -2, -1, -2, -2, -1, -3, -4, -1, -2] -defeats -1.3 1.1 [-1, 0, -1, -2, -1, -2, -3, 1, -2, -2] -defeature -1.9 1.22066 [1, -2, -2, -2, -2, -1, -2, -3, -4, -2] -defeatures -1.5 1.20416 [-3, -2, -3, 0, -1, -1, -2, 0, -3, 0] -defect -1.4 0.8 [-2, -1, -2, -1, 0, -2, -3, -1, -1, -1] -defected -1.7 0.64031 [-3, -2, -2, -2, -1, -1, -1, -2, -1, -2] -defecting -1.8 0.6 [-2, -1, -2, -2, -2, -1, -3, -1, -2, -2] -defection -1.4 0.66332 [-1, -2, -1, -2, 0, -1, -2, -2, -2, -1] -defections -1.5 0.67082 [-2, -2, -2, -1, 0, -1, -2, -2, -1, -2] -defective -1.9 0.53852 [-2, -1, -2, -3, -2, -2, -2, -2, -1, -2] -defectively -2.1 0.83066 [-1, -3, -2, -1, -3, -2, -1, -3, -2, -3] -defectiveness -1.8 0.74833 [-1, -1, -2, -2, -2, -3, -1, -1, -2, -3] -defectives -1.8 0.74833 [-3, -3, -1, -2, -2, -1, -2, -1, -1, -2] -defector -1.9 0.53852 [-2, -3, -2, -2, -1, -2, -1, -2, -2, -2] -defectors -1.3 1.26886 [-2, -1, -2, 0, -1, -1, -2, -4, 1, -1] -defects -1.7 0.9 [-1, -2, -1, 0, -2, -3, -2, -2, -1, -3] -defence 0.4 0.91652 [0, 0, 0, 1, 0, 0, 0, 2, 2, -1] -defenceman 0.4 1.11355 [3, 0, 0, 0, 0, -1, 2, 0, 0, 0] -defencemen 0.6 0.91652 [0, 0, 0, 2, 0, 2, 0, 2, 0, 0] -defences -0.2 1.16619 [0, 0, 0, 1, -2, -1, 0, -2, 0, 2] -defender 0.4 1.0198 [0, 0, 2, 1, -1, 2, 0, 1, -1, 0] -defenders 0.3 0.78102 [0, 1, 1, 0, 0, 0, 0, -1, 2, 0] -defense 0.5 0.67082 [0, 1, 0, 1, 2, 1, 0, 0, 0, 0] -defenseless -1.4 0.8 [0, -1, -1, -2, -1, -1, -3, -1, -2, -2] -defenselessly -1.1 0.9434 [-2, -2, -2, -1, 0, -1, 1, -1, -1, -2] -defenselessness -1.3 1.18743 [-3, -1, -3, 0, -2, -1, -1, -2, 1, -1] -defenseman 0.1 1.13578 [2, 0, 0, 0, 0, 0, -1, 0, 2, -2] -defensemen -0.4 0.66332 [0, 0, -2, 0, -1, -1, 0, 0, 0, 0] -defenses 0.7 1.41774 [3, 0, 2, 0, -1, 1, -2, 1, 1, 2] -defensibility 0.4 1.56205 [1, -2, 1, 0, 4, 0, -1, 1, -1, 1] -defensible 0.8 0.87178 [0, 2, 0, 0, 1, 0, 2, 0, 2, 1] -defensibly 0.1 1.13578 [0, -1, 0, 0, -1, 0, 3, 0, -1, 1] -defensive 0.1 1.13578 [2, -1, 0, -1, 2, 0, -1, 1, 0, -1] -defensively -0.6 0.91652 [1, 1, -1, -1, -1, -1, -2, -1, 0, -1] -defensiveness -0.4 1.11355 [2, -1, -1, -1, -1, 0, 0, 1, -2, -1] -defensives -0.3 1.00499 [-1, 0, 0, -1, 0, -1, 0, -2, 2, 0] -defer -1.2 0.6 [-1, -2, -1, 0, -1, -2, -2, -1, -1, -1] -deferring -0.7 0.64031 [0, 0, -2, -1, -1, -1, -1, 0, -1, 0] -defiant -0.9 1.44568 [-1, -2, -1, 2, 1, -2, 0, -1, -3, -2] -deficit -1.7 0.78102 [-3, -3, -2, -1, -2, -2, -1, -1, -1, -1] -definite 1.1 0.7 [2, 1, 0, 1, 0, 1, 1, 2, 2, 1] -definitely 1.7 0.64031 [2, 2, 2, 2, 2, 1, 2, 2, 0, 2] -degradable -1.0 1.26491 [-1, -2, 0, -2, 0, -1, -2, -2, 2, -2] -degradation -2.4 1.0198 [-4, -3, -3, -3, -3, -2, -2, -2, 0, -2] -degradations -1.5 0.67082 [-2, -1, -3, -1, -2, -2, -1, -1, -1, -1] -degradative -2.0 0.63246 [-2, -1, -3, -2, -2, -2, -1, -2, -3, -2] -degrade -1.9 0.7 [-3, -2, -1, -3, -1, -2, -2, -2, -1, -2] -degraded -1.8 0.87178 [-2, -3, -1, 0, -2, -1, -2, -2, -3, -2] -degrader -2.0 0.63246 [-2, -3, -1, -1, -2, -2, -3, -2, -2, -2] -degraders -2.0 0.63246 [-2, -3, -1, -2, -2, -2, -3, -2, -1, -2] -degrades -2.1 0.83066 [-3, -1, -3, -3, -2, -3, -1, -1, -2, -2] -degrading -2.8 0.87178 [-3, -3, -2, -3, -4, -2, -3, -4, -3, -1] -degradingly -2.7 0.64031 [-3, -2, -3, -4, -2, -3, -3, -2, -3, -2] -dehumanize -1.8 2.18174 [-2, -4, -1, -3, 2, -4, -3, 2, -1, -4] -dehumanized -1.9 0.7 [-2, -2, -2, -2, -1, -3, -2, -1, -3, -1] -dehumanizes -1.5 0.67082 [-1, -1, -1, -2, -1, -3, -2, -1, -2, -1] -dehumanizing -2.4 0.91652 [-2, -3, -4, -2, -3, -2, -3, -1, -1, -3] -deject -2.2 0.6 [-2, -3, -2, -3, -2, -2, -3, -2, -1, -2] -dejected -2.2 0.74833 [-2, -1, -2, -3, -2, -2, -2, -2, -2, -4] -dejecting -2.3 0.64031 [-2, -2, -3, -2, -3, -2, -1, -2, -3, -3] -dejects -2.0 0.63246 [-2, -2, -3, -1, -2, -1, -3, -2, -2, -2] -delay -1.3 0.45826 [-1, -1, -1, -2, -1, -1, -2, -1, -2, -1] -delayed -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] -delectable 2.9 0.83066 [3, 4, 3, 2, 3, 4, 3, 1, 3, 3] -delectables 1.4 1.35647 [1, 2, 0, 4, 2, 1, 3, -1, 1, 1] -delectably 2.8 0.74833 [3, 4, 3, 2, 3, 3, 3, 1, 3, 3] -delicate 0.2 0.74833 [2, 0, 0, 0, 0, 0, 1, 0, -1, 0] -delicately 1.0 1.26491 [1, 1, 2, 0, 1, 3, -1, 2, -1, 2] -delicates 0.6 1.35647 [3, 0, 2, 1, -1, -1, 2, 0, 1, -1] -delicatessen 0.4 0.8 [0, 0, 0, 0, 0, 0, 0, 2, 2, 0] -delicatessens 0.4 0.8 [0, 0, 2, 0, 0, 2, 0, 0, 0, 0] -delicious 2.7 0.64031 [3, 2, 3, 4, 2, 3, 3, 3, 2, 2] -deliciously 1.9 0.83066 [2, 2, 1, 3, 1, 3, 2, 3, 1, 1] -deliciousness 1.8 0.87178 [1, 2, 3, 3, 2, 2, 1, 2, 2, 0] -delight 2.9 0.7 [2, 3, 4, 4, 3, 2, 3, 3, 2, 3] -delighted 2.3 0.64031 [3, 3, 2, 3, 2, 1, 3, 2, 2, 2] -delightedly 2.4 0.4899 [2, 3, 3, 3, 2, 2, 3, 2, 2, 2] -delightedness 2.1 0.53852 [2, 2, 2, 2, 3, 2, 3, 2, 1, 2] -delighter 2.0 0.63246 [3, 2, 2, 3, 1, 2, 2, 1, 2, 2] -delighters 2.6 0.66332 [3, 2, 2, 2, 3, 2, 3, 2, 4, 3] -delightful 2.8 0.6 [4, 3, 2, 3, 3, 3, 2, 2, 3, 3] -delightfully 2.7 0.45826 [3, 2, 2, 2, 3, 3, 3, 3, 3, 3] -delightfulness 2.1 0.7 [3, 2, 3, 1, 2, 3, 2, 2, 2, 1] -delighting 1.6 1.90788 [3, 3, 3, 2, 3, 2, 3, -2, -2, 1] -delights 2.0 1.54919 [2, 3, 1, -2, 2, 4, 2, 3, 3, 2] -delightsome 2.3 0.45826 [3, 3, 2, 2, 2, 3, 2, 2, 2, 2] -demand -0.5 0.67082 [0, 0, 0, 0, 0, -1, -1, -1, 0, -2] -demanded -0.9 0.7 [-2, 0, 0, 0, -2, -1, -1, -1, -1, -1] -demanding -0.9 0.53852 [-1, -2, 0, -1, -1, -1, -1, -1, 0, -1] -demonstration 0.4 0.91652 [0, 0, 0, 0, 0, 0, 3, 1, 0, 0] -demoralized -1.6 1.62481 [-2, -2, -2, -2, -3, 2, -2, -3, 1, -3] -denied -1.9 0.53852 [-2, -3, -1, -2, -2, -1, -2, -2, -2, -2] -denier -1.5 0.67082 [-1, -1, -1, -1, -2, -3, -2, -2, -1, -1] -deniers -1.1 1.13578 [-2, 0, -2, -1, -3, 1, 0, -1, -2, -1] -denies -1.8 0.6 [-1, -2, -1, -1, -2, -3, -2, -2, -2, -2] -denounce -1.4 0.91652 [-2, -1, -2, -1, 1, -2, -2, -1, -2, -2] -denounces -1.9 0.7 [-1, -3, -2, -3, -2, -1, -2, -2, -2, -1] -deny -1.4 0.4899 [-1, -1, -1, -1, -2, -1, -2, -2, -1, -2] -denying -1.4 0.4899 [-1, -1, -1, -2, -2, -2, -1, -2, -1, -1] -depress -2.2 0.74833 [-2, -1, -3, -3, -2, -2, -3, -3, -1, -2] -depressant -1.6 1.11355 [-3, -1, 0, -1, 0, -2, -3, -1, -3, -2] -depressants -1.6 0.91652 [-1, -1, -3, -3, -2, 0, -1, -2, -2, -1] -depressed -2.3 0.45826 [-2, -2, -2, -2, -2, -3, -3, -3, -2, -2] -depresses -2.2 0.6 [-2, -2, -2, -2, -3, -3, -1, -2, -3, -2] -depressible -1.7 0.78102 [-2, -1, 0, -3, -2, -2, -2, -1, -2, -2] -depressing -1.6 1.28062 [-2, -2, -2, 2, -3, -1, -2, -2, -2, -2] -depressingly -2.3 0.45826 [-2, -3, -2, -2, -2, -3, -3, -2, -2, -2] -depression -2.7 0.64031 [-3, -2, -2, -2, -2, -3, -4, -3, -3, -3] -depressions -2.2 0.6 [-2, -3, -3, -2, -2, -2, -3, -2, -2, -1] -depressive -1.6 1.11355 [-2, -1, -1, -2, -1, -2, -3, 1, -3, -2] -depressively -2.1 0.53852 [-3, -2, -3, -2, -2, -2, -2, -1, -2, -2] -depressives -1.5 0.5 [-2, -1, -1, -2, -1, -1, -1, -2, -2, -2] -depressor -1.8 1.16619 [-2, -4, -3, 0, 0, -2, -2, -2, -1, -2] -depressors -1.7 0.9 [-1, -1, -1, -2, -1, -2, -4, -2, -2, -1] -depressurization -0.3 0.78102 [1, 0, 0, -1, -1, 0, -2, 0, 0, 0] -depressurizations -0.4 0.91652 [0, 0, 0, 0, 1, -2, -1, 0, -2, 0] -depressurize -0.5 0.80623 [0, 0, -2, 0, -2, 0, 0, 0, 0, -1] -depressurized -0.3 0.64031 [0, 0, 0, 0, 0, 0, -1, 0, -2, 0] -depressurizes -0.3 0.64031 [0, 0, 0, 0, 0, 0, -1, 0, -2, 0] -depressurizing -0.7 1.34536 [2, 0, -1, -1, -2, -2, 1, -2, 0, -2] -deprival -2.1 0.7 [-1, -2, -2, -2, -1, -3, -3, -3, -2, -2] -deprivals -1.2 0.87178 [0, -1, -2, -1, 0, -2, -1, -1, -3, -1] -deprivation -1.8 1.4 [-3, -2, -3, -2, -1, -2, -2, 2, -2, -3] -deprivations -1.8 0.74833 [-1, -2, -3, -1, -2, -1, -2, -2, -3, -1] -deprive -2.1 0.7 [-3, -2, -1, -3, -1, -2, -2, -3, -2, -2] -deprived -2.1 0.7 [-2, -2, -2, -2, -2, -4, -2, -2, -1, -2] -depriver -1.6 0.91652 [-1, -2, -1, -2, -1, -4, -2, -1, -1, -1] -deprivers -1.4 0.66332 [-2, -1, -1, -3, -1, -1, -1, -1, -2, -1] -deprives -1.7 0.64031 [-2, -2, -1, -2, -1, -3, -2, -1, -1, -2] -depriving -2.0 0.0 [-2, -2, -2, -2, -2, -2, -2, -2, -2, -2] -derail -1.2 1.07703 [-1, 1, -1, -2, -1, -2, -1, -3, -2, 0] -derailed -1.4 0.66332 [-1, -2, -2, 0, -1, -1, -2, -1, -2, -2] -derails -1.3 0.78102 [-2, -3, -1, -2, -1, -1, 0, -1, -1, -1] -deride -1.1 1.22066 [-3, -2, -2, -1, -1, -1, 1, -2, -1, 1] -derided -0.8 0.87178 [-2, -1, -2, 0, 0, -1, -1, -1, 1, -1] -derides -1.0 1.0 [-1, -2, -2, 0, 0, 1, -1, -2, -1, -2] -deriding -1.5 0.80623 [-2, -2, 0, 0, -2, -1, -2, -2, -2, -2] -derision -1.2 1.249 [-1, -2, -2, -2, -1, -1, 1, 1, -3, -2] -desirable 1.3 0.45826 [2, 1, 1, 1, 1, 1, 1, 2, 2, 1] -desire 1.7 0.78102 [1, 1, 2, 1, 3, 3, 1, 2, 2, 1] -desired 1.1 1.04403 [1, 1, 0, 3, 1, 0, 1, 1, 3, 0] -desirous 1.3 0.64031 [1, 2, 1, 2, 2, 1, 2, 1, 0, 1] -despair -1.3 1.9 [2, -1, -3, -1, -3, 1, -3, 1, -3, -3] -despaired -2.7 0.45826 [-2, -2, -3, -3, -3, -3, -3, -2, -3, -3] -despairer -1.3 1.1 [-2, -2, -1, -3, -2, 1, -1, -1, 0, -2] -despairers -1.3 1.00499 [-2, -1, -1, 1, -2, -1, -2, -1, -1, -3] -despairing -2.3 0.64031 [-2, -1, -3, -2, -3, -2, -2, -2, -3, -3] -despairingly -2.2 0.74833 [-2, -2, -2, -2, -4, -2, -3, -1, -2, -2] -despairs -2.7 1.00499 [-3, -4, -1, -3, -4, -2, -1, -3, -3, -3] -desperate -1.3 1.34536 [-2, -1, -2, 1, -1, -2, -3, -3, -1, 1] -desperately -1.6 1.11355 [-3, -3, -2, -1, -2, -1, -2, -2, -1, 1] -desperateness -1.5 1.36015 [-1, -2, -2, -2, -3, -3, 1, -2, 1, -2] -desperation -2.0 1.0 [-2, -1, -1, -2, -3, -3, -1, -4, -1, -2] -desperations -2.2 1.66132 [-1, -4, -2, -4, -4, -1, -1, -2, 1, -4] -despise -1.4 1.35647 [-2, -3, -1, -2, -1, 1, -3, 1, -2, -2] -despised -1.7 1.48661 [-2, -1, -3, -2, -3, 1, -3, 1, -2, -3] -despisement -2.4 0.91652 [-3, -3, -2, -1, -3, -1, -4, -2, -2, -3] -despisements -2.5 1.0247 [-2, -2, -3, -2, 0, -3, -4, -3, -3, -3] -despiser -1.8 1.07703 [-2, -1, -3, 1, -2, -2, -3, -2, -2, -2] -despisers -1.6 1.35647 [-3, -3, -1, -3, -2, -1, -1, 1, 0, -3] -despises -2.0 1.26491 [-3, -1, -3, 1, -2, -1, -3, -2, -3, -3] -despising -2.7 0.9 [-4, -3, -3, -4, -1, -2, -3, -2, -2, -3] -despondent -2.1 0.53852 [-2, -2, -2, -3, -2, -2, -1, -3, -2, -2] -destroy -2.5 0.67082 [-2, -3, -3, -1, -3, -3, -3, -2, -2, -3] -destroyed -2.2 0.87178 [-1, -3, -3, -2, -1, -2, -1, -3, -3, -3] -destroyer -2.0 0.89443 [-2, -3, -3, -3, -1, -2, -2, -2, 0, -2] -destroyers -2.3 0.78102 [-1, -3, -3, -3, -2, -2, -3, -3, -1, -2] -destroying -2.6 0.91652 [-2, -4, -4, -2, -1, -3, -2, -3, -2, -3] -destroys -2.6 0.4899 [-3, -3, -3, -2, -2, -2, -3, -3, -2, -3] -destruct -2.4 0.4899 [-3, -3, -3, -2, -2, -2, -3, -2, -2, -2] -destructed -1.9 1.04403 [-4, -1, -2, -2, -2, -1, -3, -2, 0, -2] -destructibility -1.8 1.07703 [-1, -2, -1, -1, -2, -3, -2, 0, -4, -2] -destructible -1.5 1.11803 [-2, -2, -2, -1, 1, -1, -3, -1, -3, -1] -destructing -2.5 0.67082 [-2, -3, -2, -3, -2, -2, -2, -3, -2, -4] -destruction -2.7 0.9 [-4, -3, -4, -3, -2, -2, -3, -1, -2, -3] -destructionist -2.6 0.8 [-3, -4, -2, -2, -2, -3, -3, -1, -3, -3] -destructionists -2.1 0.53852 [-3, -1, -2, -2, -3, -2, -2, -2, -2, -2] -destructions -2.3 0.78102 [-3, -2, -2, -2, -1, -3, -4, -2, -2, -2] -destructive -3.0 0.63246 [-3, -4, -3, -2, -3, -3, -3, -2, -4, -3] -destructively -2.4 0.91652 [-2, -3, -1, -4, -2, -3, -3, -3, -1, -2] -destructiveness -2.4 0.91652 [-3, -3, -2, -4, -1, -2, -3, -2, -1, -3] -destructivity -2.2 1.53623 [2, -3, -3, -4, -3, -2, -2, -2, -2, -3] -destructs -2.4 0.91652 [-2, -1, -2, -4, -4, -2, -3, -2, -2, -2] -detached -0.5 1.20416 [-1, 2, -1, -1, -2, 0, 1, -2, -1, 0] -detain -1.8 0.9798 [-3, -1, -2, -2, -4, -2, -1, -1, -1, -1] -detained -1.7 0.9 [-1, -1, -1, -1, -1, -2, -2, -2, -2, -4] -detention -1.5 0.67082 [-1, -2, -1, -2, -1, -1, -3, -2, -1, -1] -determinable 0.9 0.7 [2, 1, 1, 1, 0, 1, 2, 0, 0, 1] -determinableness 0.2 1.07703 [0, 0, 0, 1, 0, 1, -1, 2, -2, 1] -determinably 0.9 0.83066 [2, 0, 1, 1, 0, 1, 2, 2, 0, 0] -determinacy 1.0 1.0 [0, 0, 0, 3, 1, 1, 2, 1, 0, 2] -determinant 0.2 0.6 [0, 1, -1, 0, 1, 1, 0, 0, 0, 0] -determinantal -0.3 1.41774 [0, 0, 0, -4, 0, -1, 0, 0, 2, 0] -determinate 0.8 0.87178 [2, 1, 0, 0, 0, 2, 2, 0, 1, 0] -determinately 1.2 0.6 [1, 2, 0, 1, 1, 1, 2, 1, 2, 1] -determinateness 1.1 0.9434 [1, 1, 1, 0, 0, 2, 3, 1, 0, 2] -determination 1.7 0.78102 [2, 3, 1, 1, 1, 2, 1, 1, 2, 3] -determinations 0.8 1.16619 [0, 3, 1, 0, 1, 3, 0, 0, 0, 0] -determinative 1.1 1.04403 [2, 0, 3, 2, 1, 1, 0, 0, 2, 0] -determinatives 0.9 1.3 [2, 0, -2, 1, 2, 2, 2, 0, 0, 2] -determinator 1.1 1.04403 [3, 0, 1, 0, 1, 0, 2, 2, 0, 2] -determined 1.4 1.35647 [-2, 1, 3, 2, 2, 2, 3, 1, 1, 1] -devastate -3.1 0.9434 [-4, -4, -1, -4, -4, -3, -3, -3, -2, -3] -devastated -3.0 0.89443 [-4, -3, -3, -4, -3, -1, -3, -4, -3, -2] -devastates -2.8 0.9798 [-4, -3, -2, -4, -2, -1, -3, -4, -3, -2] -devastating -3.3 0.9 [-4, -3, -4, -4, -1, -4, -3, -3, -3, -4] -devastatingly -2.4 1.28062 [-3, -4, -3, 0, -3, 0, -2, -3, -3, -3] -devastation -1.8 2.13542 [-1, -1, -3, -3, -4, -3, -4, 2, 2, -3] -devastations -1.9 1.92094 [-3, -3, -2, -2, 1, -1, 2, -4, -4, -3] -devastative -3.2 1.16619 [-4, -3, 0, -4, -4, -3, -3, -4, -3, -4] -devastator -2.8 0.74833 [-3, -3, -2, -2, -3, -2, -3, -4, -2, -4] -devastators -2.9 1.22066 [-3, -2, -3, -4, -4, -4, 0, -3, -2, -4] -devil -3.4 0.8 [-4, -3, -4, -4, -4, -4, -2, -3, -2, -4] -deviled -1.6 1.0198 [-1, -2, 0, -4, -1, -2, -2, -2, -1, -1] -devilfish -0.8 1.07703 [-2, -3, -1, 0, 0, 0, 0, -2, 0, 0] -devilfishes -0.6 1.0198 [-3, 0, -2, 0, 0, 0, 0, -1, 0, 0] -deviling -2.2 0.87178 [-1, -3, -1, -2, -3, -2, -2, -4, -2, -2] -devilish -2.1 1.04403 [-1, -2, -4, -1, -1, -2, -2, -4, -2, -2] -devilishly -1.6 0.8 [-2, -2, -3, -1, -2, -2, 0, -2, -1, -1] -devilishness -2.3 0.9 [-4, -1, -4, -2, -2, -2, -2, -2, -2, -2] -devilkin -2.4 0.91652 [-3, -1, -2, -3, -2, -4, -2, -3, -3, -1] -devilled -2.3 1.1 [-3, -1, -2, -3, 0, -4, -2, -3, -2, -3] -devilling -1.8 1.249 [-3, -1, -1, -2, -2, -3, -4, -2, 0, 0] -devilment -1.9 0.9434 [-2, -1, -2, -1, -3, -2, -2, -1, -1, -4] -devilments -1.1 0.7 [-2, -1, -2, -2, -1, 0, 0, -1, -1, -1] -devilries -1.6 1.35647 [-1, -1, -2, -4, -3, 0, -2, 0, 0, -3] -devilry -2.8 1.249 [-4, -3, 0, -2, -2, -2, -3, -4, -4, -4] -devils -2.7 0.9 [-3, -1, -3, -2, -2, -3, -4, -3, -2, -4] -deviltries -1.5 1.11803 [-1, -2, 1, -2, 0, -2, -2, -3, -2, -2] -deviltry -2.8 1.32665 [-4, -4, -3, -3, -3, -3, 1, -3, -3, -3] -devilwood -0.8 1.07703 [0, -1, -2, 0, 0, 0, 0, -3, -2, 0] -devilwoods -1.0 0.7746 [-2, 0, -2, -1, -1, 0, -1, -2, 0, -1] -devote 1.4 1.28062 [3, 0, 2, -1, 0, 3, 2, 2, 1, 2] -devoted 1.7 1.34536 [2, -1, 3, 2, 1, 0, 1, 3, 3, 3] -devotedly 1.6 1.35647 [1, 1, 2, 2, 3, 2, 2, -2, 2, 3] -devotedness 2.0 1.0 [0, 3, 2, 1, 3, 2, 2, 3, 1, 3] -devotee 1.6 1.11355 [1, 3, 0, 2, 1, 2, 1, 1, 4, 1] -devotees 0.5 1.0247 [0, 0, 3, 0, 0, 0, 2, 0, 0, 0] -devotement 1.5 1.36015 [2, -1, 3, 2, -1, 1, 2, 3, 2, 2] -devotements 1.1 1.04403 [0, 1, 0, 0, 0, 2, 2, 2, 3, 1] -devotes 1.6 0.91652 [2, 3, 0, 2, 2, 3, 1, 1, 1, 1] -devoting 2.1 0.7 [2, 2, 3, 1, 2, 3, 2, 3, 1, 2] -devotion 2.0 1.0 [2, 0, 1, 2, 4, 3, 2, 2, 2, 2] -devotional 1.2 1.16619 [0, 1, 0, 2, 2, 1, 0, 0, 3, 3] -devotionally 2.2 0.4 [2, 2, 2, 3, 2, 3, 2, 2, 2, 2] -devotionals 1.2 1.07703 [3, 1, 1, 0, -1, 2, 2, 2, 1, 1] -devotions 1.8 0.74833 [2, 3, 1, 2, 1, 3, 1, 2, 1, 2] -diamond 1.4 1.42829 [0, 0, 2, 0, 1, 3, 1, 3, 0, 4] -dick -2.3 1.18743 [-2, -3, -4, -2, 0, -4, -2, -1, -3, -2] -dickhead -3.1 0.53852 [-4, -3, -3, -3, -4, -2, -3, -3, -3, -3] -die -2.9 0.9434 [-4, -3, -1, -2, -4, -3, -3, -3, -2, -4] -died -2.6 1.28062 [-3, -1, -3, -4, -2, -4, -3, -4, -2, 0] -difficult -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -2, -1, -2] -difficulties -1.2 0.4 [-1, -2, -1, -1, -1, -2, -1, -1, -1, -1] -difficultly -1.7 0.45826 [-1, -2, -1, -2, -2, -1, -2, -2, -2, -2] -difficulty -1.4 0.66332 [-2, -2, -2, -2, 0, -1, -1, -2, -1, -1] -diffident -1.0 0.44721 [-1, -1, -1, -1, -1, 0, -2, -1, -1, -1] -dignified 2.2 0.6 [1, 2, 2, 2, 3, 3, 3, 2, 2, 2] -dignifies 2.0 0.7746 [1, 3, 2, 2, 3, 3, 2, 2, 1, 1] -dignify 1.8 0.74833 [1, 2, 2, 1, 3, 3, 1, 2, 2, 1] -dignifying 2.1 1.04403 [1, 1, 1, 3, 1, 4, 2, 3, 2, 3] -dignitaries 0.6 0.91652 [0, 0, 1, 0, 0, 0, 3, 0, 1, 1] -dignitary 1.9 1.3 [0, 3, 4, 2, 3, 1, 1, 3, 0, 2] -dignities 1.4 0.66332 [1, 2, 1, 1, 3, 2, 1, 1, 1, 1] -dignity 1.7 0.9 [0, 3, 2, 1, 2, 1, 2, 3, 1, 2] -dilemma -0.7 1.48661 [2, -1, -2, -2, -1, -1, 2, 0, -2, -2] -dipshit -2.1 0.7 [-1, -2, -2, -3, -2, -3, -3, -2, -2, -1] -dire -2.0 1.26491 [-2, -3, -3, -2, -3, -1, -1, 1, -3, -3] -direful -3.1 0.83066 [-3, -3, -3, -3, -4, -1, -4, -3, -4, -3] -dirt -1.4 0.91652 [-1, -1, -1, 0, -3, -1, -1, -2, -3, -1] -dirtier -1.4 0.4899 [-2, -1, -1, -2, -1, -2, -1, -1, -2, -1] -dirtiest -2.4 1.0198 [-4, -3, -2, -1, -2, -3, -1, -2, -4, -2] -dirty -1.9 0.83066 [-2, -1, -1, -1, -2, -2, -1, -3, -3, -3] -disabling -2.1 0.53852 [-2, -1, -3, -3, -2, -2, -2, -2, -2, -2] -disadvantage -1.8 0.4 [-2, -2, -1, -2, -2, -1, -2, -2, -2, -2] -disadvantaged -1.7 0.64031 [-2, -2, -3, -1, -2, -2, -2, -1, -1, -1] -disadvantageous -1.8 0.74833 [-1, -2, -2, -1, -3, -1, -1, -2, -3, -2] -disadvantageously -2.1 0.83066 [-2, -4, -1, -2, -1, -2, -2, -2, -3, -2] -disadvantageousness -1.6 0.66332 [-1, -1, -3, -2, -1, -1, -2, -1, -2, -2] -disadvantages -1.7 0.64031 [-2, -2, -3, -1, -2, -2, -2, -1, -1, -1] -disagree -1.6 0.4899 [-1, -2, -1, -1, -2, -2, -2, -2, -1, -2] -disagreeable -1.7 0.64031 [-1, -2, -1, -1, -1, -2, -2, -2, -3, -2] -disagreeableness -1.7 0.64031 [-1, -1, -2, -2, -1, -2, -3, -1, -2, -2] -disagreeablenesses -1.9 0.9434 [-2, 0, -3, -1, -2, -3, -2, -1, -3, -2] -disagreeably -1.5 0.67082 [-3, -2, -1, -1, -1, -2, -1, -2, -1, -1] -disagreed -1.3 0.64031 [-1, -2, -1, -1, -2, 0, -1, -2, -1, -2] -disagreeing -1.4 0.8 [-1, 0, -1, -2, -2, -1, -3, -1, -1, -2] -disagreement -1.5 0.67082 [-2, -1, -1, -1, -1, -1, -1, -3, -2, -2] -disagreements -1.8 0.6 [-2, -3, -1, -2, -2, -1, -2, -2, -1, -2] -disagrees -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -2, -1, -2] -disappear -0.9 0.7 [-2, -1, 0, 0, -2, -1, -1, -1, 0, -1] -disappeared -0.9 0.7 [-2, 0, -1, -1, 0, 0, -2, -1, -1, -1] -disappears -1.4 0.8 [-2, -2, 0, 0, -2, -1, -2, -1, -2, -2] -disappoint -1.7 0.64031 [-1, -1, -1, -3, -2, -2, -2, -1, -2, -2] -disappointed -2.1 0.83066 [-1, -3, -2, -2, -3, -1, -1, -2, -3, -3] -disappointedly -1.7 0.78102 [-3, -1, -3, -1, -2, -1, -1, -2, -2, -1] -disappointing -2.2 0.6 [-1, -2, -2, -3, -3, -2, -2, -2, -3, -2] -disappointingly -1.9 0.7 [-2, -1, -1, -3, -2, -3, -2, -2, -1, -2] -disappointment -2.3 1.00499 [-3, -1, -4, -1, -3, -1, -3, -2, -2, -3] -disappointments -2.0 1.09545 [-1, -2, -4, -3, -2, -2, -3, 0, -2, -1] -disappoints -1.6 0.4899 [-2, -1, -1, -1, -2, -1, -2, -2, -2, -2] -disaster -3.1 0.83066 [-2, -4, -4, -3, -3, -2, -4, -3, -2, -4] -disasters -2.6 0.8 [-2, -2, -3, -1, -3, -3, -2, -4, -3, -3] -disastrous -2.9 0.53852 [-2, -2, -3, -3, -3, -3, -4, -3, -3, -3] -disbelieve -1.2 0.87178 [-1, -2, -1, -2, -1, 0, 0, -1, -3, -1] -discard -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -1, -1, -2, -1] -discarded -1.4 0.91652 [-1, -1, -1, -1, 0, -1, -2, -3, -3, -1] -discarding -0.7 0.45826 [-1, 0, -1, -1, -1, 0, -1, 0, -1, -1] -discards -1.0 0.63246 [0, -1, -1, -1, -2, 0, -2, -1, -1, -1] -discomfort -1.8 0.6 [-2, -2, -2, -1, -1, -3, -2, -2, -1, -2] -discomfortable -1.6 0.8 [-1, -1, -1, -2, -3, -1, -2, -1, -3, -1] -discomforted -1.6 0.8 [-1, -1, -1, -2, -3, -3, -1, -1, -1, -2] -discomforting -1.6 1.11355 [-1, -2, -1, -1, -2, 1, -3, -2, -3, -2] -discomforts -1.3 0.9 [-2, -1, -2, -1, -1, -2, -2, -1, 1, -2] -disconsolate -2.3 0.78102 [-1, -2, -2, -3, -2, -2, -2, -4, -3, -2] -disconsolation -1.7 0.45826 [-2, -2, -1, -2, -1, -1, -2, -2, -2, -2] -discontented -1.8 0.9798 [-1, -3, -1, -2, -4, -2, -1, -2, -1, -1] -discord -1.7 0.64031 [-3, -2, -2, -2, -2, -1, -1, -1, -1, -2] -discounted 0.2 1.249 [-1, 0, 3, -1, 0, 1, 1, 1, -1, -1] -discourage -1.8 0.6 [-2, -2, -1, -2, -1, -1, -2, -2, -3, -2] -discourageable -1.2 0.9798 [-1, -2, -1, 1, -1, -1, -1, -2, -3, -1] -discouraged -1.7 0.45826 [-2, -1, -2, -2, -2, -2, -1, -1, -2, -2] -discouragement -2.0 0.89443 [-4, -1, -2, -2, -1, -1, -3, -2, -2, -2] -discouragements -1.8 0.6 [-2, -2, -2, -1, -1, -3, -2, -1, -2, -2] -discourager -1.7 0.78102 [-2, -1, -3, -2, -1, -3, -1, -2, -1, -1] -discouragers -1.9 0.53852 [-2, -2, -2, -2, -1, -1, -3, -2, -2, -2] -discourages -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -1, -3, -2, -2] -discouraging -1.9 0.7 [-2, -2, -2, -3, -1, -1, -2, -1, -2, -3] -discouragingly -1.8 0.87178 [-2, -1, -3, -1, -1, -3, -2, -1, -3, -1] -discredited -1.9 0.53852 [-2, -2, -2, -2, -1, -3, -1, -2, -2, -2] -disdain -2.1 0.3 [-3, -2, -2, -2, -2, -2, -2, -2, -2, -2] -disgrace -2.2 0.74833 [-2, -4, -1, -2, -2, -2, -2, -3, -2, -2] -disgraced -2.0 0.44721 [-3, -2, -2, -2, -1, -2, -2, -2, -2, -2] -disguise -1.0 1.09545 [-2, -1, 0, 0, 0, 0, -3, -2, -2, 0] -disguised -1.1 1.04403 [-3, 0, 0, -1, -1, 0, -3, -1, -1, -1] -disguises -1.0 0.63246 [-2, 0, 0, -1, -1, -1, -2, -1, -1, -1] -disguising -1.3 0.78102 [0, -2, -1, -1, -1, -2, -1, -1, -3, -1] -disgust -2.9 0.7 [-3, -3, -4, -2, -3, -3, -4, -2, -3, -2] -disgusted -2.4 0.91652 [-4, -3, -3, -1, -3, -1, -2, -2, -2, -3] -disgustedly -3.0 0.89443 [-2, -3, -4, -4, -2, -4, -4, -2, -3, -2] -disgustful -2.6 0.4899 [-3, -3, -2, -2, -2, -2, -3, -3, -3, -3] -disgusting -2.4 1.11355 [-3, -2, -3, -4, -1, -3, -1, -4, -1, -2] -disgustingly -2.9 0.7 [-3, -3, -4, -3, -3, -2, -2, -4, -2, -3] -disgusts -2.1 0.53852 [-2, -2, -3, -2, -2, -2, -2, -3, -1, -2] -dishearten -2.0 0.63246 [-3, -1, -2, -3, -2, -2, -1, -2, -2, -2] -disheartened -2.2 0.74833 [-2, -2, -2, -1, -2, -2, -4, -3, -2, -2] -disheartening -1.8 1.32665 [-2, -2, -2, -3, -2, 2, -2, -2, -3, -2] -dishearteningly -2.0 0.63246 [-2, -3, -2, -1, -2, -2, -2, -3, -2, -1] -disheartenment -2.3 0.45826 [-3, -2, -3, -2, -2, -2, -2, -3, -2, -2] -disheartenments -2.2 0.87178 [-2, -3, -3, -3, -3, -1, -1, -1, -2, -3] -disheartens -2.2 0.4 [-3, -2, -2, -2, -3, -2, -2, -2, -2, -2] -dishonest -2.7 0.9 [-3, -2, -1, -4, -3, -2, -4, -3, -3, -2] -disillusion -1.0 1.18322 [-2, 0, -2, -1, -2, 1, -2, -1, 1, -2] -disillusioned -1.9 0.7 [-2, -2, -3, -2, -3, -1, -1, -1, -2, -2] -disillusioning -1.3 1.00499 [-2, -2, 1, -2, 0, -2, -2, -1, -1, -2] -disillusionment -1.7 0.78102 [-1, -3, -2, -3, -1, -2, -2, -1, -1, -1] -disillusionments -1.5 1.0247 [-2, 1, -3, -2, -1, -1, -2, -1, -2, -2] -disillusions -1.6 0.4899 [-2, -2, -2, -1, -1, -1, -2, -2, -1, -2] -disinclined -1.1 0.53852 [0, -1, -1, -1, -1, -1, -1, -2, -2, -1] -disjointed -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -2, -1, -1] -dislike -1.6 0.4899 [-2, -1, -1, -2, -2, -1, -2, -1, -2, -2] -disliked -1.7 0.64031 [-2, -3, -2, -1, -1, -1, -2, -2, -1, -2] -dislikes -1.7 0.78102 [-2, -2, -1, -1, -2, -1, -3, -3, -1, -1] -disliking -1.3 0.45826 [-1, -1, -2, -2, -2, -1, -1, -1, -1, -1] -dismal -3.0 1.0 [-2, -1, -4, -4, -3, -2, -3, -4, -4, -3] -dismay -1.8 0.87178 [-3, -1, -1, -3, -1, -1, -3, -1, -2, -2] -dismayed -1.9 0.9434 [-1, -2, -1, -3, -4, -1, -2, -2, -1, -2] -dismaying -2.2 0.9798 [-2, -3, -2, -3, -3, 0, -2, -1, -3, -3] -dismayingly -1.9 0.83066 [-2, -3, -2, -3, -2, -1, -2, -2, 0, -2] -dismays -1.8 1.07703 [-1, -1, -4, -3, -2, -1, -2, 0, -2, -2] -disorder -1.7 0.64031 [-2, -1, -1, -2, -2, -1, -3, -1, -2, -2] -disorganized -1.2 0.4 [-1, -1, -1, -1, -1, -2, -1, -2, -1, -1] -disoriented -1.5 0.67082 [-2, -2, -1, 0, -1, -2, -2, -1, -2, -2] -disparage -2.0 0.44721 [-2, -2, -2, -1, -2, -2, -2, -3, -2, -2] -disparaged -1.4 0.8 [-1, -2, -2, -3, -1, -1, -1, -2, 0, -1] -disparages -1.6 0.8 [-1, -2, -3, -2, -1, -1, -2, -2, 0, -2] -disparaging -2.2 0.6 [-3, -1, -2, -2, -2, -3, -3, -2, -2, -2] -displeased -1.9 0.7 [-3, -2, -1, -1, -3, -2, -2, -1, -2, -2] -dispute -1.7 0.78102 [-1, -3, -1, -1, -2, -1, -2, -2, -3, -1] -disputed -1.4 0.66332 [-2, -2, -2, -2, 0, -1, -1, -1, -1, -2] -disputes -1.1 1.64012 [-2, -2, -2, 2, -3, -1, -2, 2, -1, -2] -disputing -1.7 0.64031 [-2, -2, -2, -2, -1, -1, -3, -1, -1, -2] -disqualified -1.8 0.6 [-1, -2, -1, -2, -1, -2, -2, -3, -2, -2] -disquiet -1.3 0.9 [-1, -2, -2, -1, -1, -1, 1, -2, -2, -2] -disregard -1.1 0.53852 [-1, -1, -2, -1, -1, -2, -1, -1, 0, -1] -disregarded -1.6 0.4899 [-1, -1, -2, -2, -2, -2, -1, -2, -1, -2] -disregarding -0.9 0.53852 [-1, 0, -1, 0, -2, -1, -1, -1, -1, -1] -disregards -1.4 0.4899 [-1, -1, -2, -1, -2, -2, -2, -1, -1, -1] -disrespect -1.8 0.6 [-2, -2, -2, -1, -2, -2, -1, -3, -1, -2] -disrespected -2.0 0.63246 [-2, -2, -2, -2, -2, -3, -3, -1, -1, -2] -disruption -1.5 0.67082 [-1, -1, -1, -2, -1, -3, -2, -2, -1, -1] -disruptions -1.4 0.4899 [-1, -2, -1, -1, -1, -2, -2, -2, -1, -1] -disruptive -1.3 1.00499 [-4, 0, -1, -1, -1, -1, -1, -1, -2, -1] -dissatisfaction -2.2 0.74833 [-4, -2, -2, -2, -1, -3, -2, -2, -2, -2] -dissatisfactions -1.9 0.83066 [-1, -3, -3, -1, -2, -1, -2, -2, -1, -3] -dissatisfactory -2.0 0.63246 [-2, -2, -3, -1, -2, -3, -2, -2, -1, -2] -dissatisfied -1.6 0.66332 [-2, -3, -1, -2, -1, -1, -2, -2, -1, -1] -dissatisfies -1.8 0.74833 [-3, -3, -1, -1, -2, -1, -2, -2, -2, -1] -dissatisfy -2.2 0.6 [-2, -3, -2, -2, -2, -2, -3, -3, -1, -2] -dissatisfying -2.4 0.91652 [-3, -1, -4, -3, -2, -1, -2, -2, -3, -3] -distort -1.3 0.45826 [-2, -1, -1, -1, -2, -1, -1, -1, -1, -2] -distorted -1.7 0.78102 [-3, -1, -3, -1, -2, -1, -2, -2, -1, -1] -distorting -1.1 0.53852 [0, -1, -1, -1, -2, -1, -1, -1, -2, -1] -distorts -1.4 0.4899 [-2, -1, -1, -1, -2, -2, -2, -1, -1, -1] -distract -1.2 0.6 [-1, -1, 0, -2, -1, -1, -1, -2, -1, -2] -distractable -1.3 1.00499 [-2, 0, 1, -2, -2, -1, -1, -2, -2, -2] -distracted -1.4 0.66332 [-1, -3, -1, -2, -2, -1, -1, -1, -1, -1] -distractedly -0.9 0.7 [-1, -1, 0, -2, -1, 0, -1, 0, -1, -2] -distractibility -1.3 1.1 [-1, -1, -3, -1, 0, -3, -2, 0, -2, 0] -distractible -1.5 0.92195 [-1, -2, -1, -1, -4, -1, -1, -1, -2, -1] -distracting -1.2 0.4 [-2, -1, -1, -1, -1, -1, -2, -1, -1, -1] -distractingly -1.4 1.0198 [-4, 0, -1, -1, -1, -2, -1, -1, -2, -1] -distraction -1.6 0.66332 [-1, -2, -2, -1, -1, -3, -1, -1, -2, -2] -distractions -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] -distractive -1.6 0.4899 [-2, -2, -1, -1, -1, -1, -2, -2, -2, -2] -distracts -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -2, -1, -1] -distraught -2.6 0.8 [-2, -3, -2, -3, -4, -2, -3, -3, -1, -3] -distress -2.4 0.8 [-1, -2, -2, -3, -3, -4, -3, -2, -2, -2] -distressed -1.8 0.6 [-2, -2, -2, -3, -2, -2, -1, -1, -2, -1] -distresses -1.6 0.66332 [-2, -1, -1, -2, -2, -2, -1, -1, -3, -1] -distressful -2.2 0.6 [-1, -3, -3, -2, -2, -3, -2, -2, -2, -2] -distressfully -1.7 1.1 [-1, -3, -2, 1, -3, -1, -2, -2, -2, -2] -distressfulness -2.4 0.66332 [-2, -3, -2, -3, -3, -3, -2, -1, -3, -2] -distressing -1.7 1.18743 [-3, -3, -1, -1, -2, -2, -3, -2, 1, -1] -distressingly -2.2 0.74833 [-3, -1, -2, -3, -3, -3, -2, -2, -2, -1] -distrust -1.8 0.87178 [-1, -2, -2, -2, -1, -1, -2, -4, -1, -2] -distrusted -2.4 0.66332 [-1, -3, -3, -3, -2, -2, -3, -2, -2, -3] -distrustful -2.1 0.83066 [-1, -3, -2, -2, -3, -1, -1, -3, -2, -3] -distrustfully -1.8 0.6 [-2, -1, -1, -2, -1, -2, -3, -2, -2, -2] -distrustfulness -1.6 0.66332 [-2, -1, -2, -1, -2, -1, -1, -3, -1, -2] -distrusting -2.1 0.83066 [-1, -2, -2, -2, -3, -3, -1, -3, -1, -3] -distrusts -1.3 0.45826 [-1, -1, -2, -1, -2, -1, -2, -1, -1, -1] -disturb -1.7 0.45826 [-2, -1, -1, -2, -2, -2, -1, -2, -2, -2] -disturbance -1.6 0.8 [-1, -2, -1, -2, -2, -3, -1, -2, 0, -2] -disturbances -1.4 0.66332 [-1, -1, -1, -2, -1, -1, -1, -1, -3, -2] -disturbed -1.6 0.4899 [-2, -2, -1, -1, -2, -2, -1, -2, -1, -2] -disturber -1.4 0.4899 [-2, -1, -1, -2, -2, -1, -1, -2, -1, -1] -disturbers -2.1 0.53852 [-2, -2, -2, -2, -2, -3, -3, -2, -1, -2] -disturbing -2.3 0.45826 [-2, -2, -3, -3, -2, -2, -3, -2, -2, -2] -disturbingly -2.3 0.78102 [-2, -2, -1, -3, -4, -3, -2, -2, -2, -2] -disturbs -1.9 0.53852 [-2, -2, -1, -2, -3, -2, -1, -2, -2, -2] -dithering -0.5 0.92195 [0, 0, 0, 0, 1, -1, -2, -2, -1, 0] -divination 1.7 1.1 [2, 3, 0, 1, 2, 1, 3, 3, 2, 0] -divinations 1.1 1.04403 [1, 0, 1, 2, 2, 0, 3, 2, 0, 0] -divinatory 1.6 1.42829 [4, 1, 0, 0, 1, 3, 3, 0, 1, 3] -divine 2.6 0.8 [3, 3, 3, 2, 1, 2, 3, 4, 2, 3] -divined 0.8 1.16619 [1, 0, 3, 0, 0, 1, 0, 3, 0, 0] -divinely 2.9 0.7 [3, 2, 3, 3, 2, 4, 3, 2, 4, 3] -diviner 0.3 0.9 [0, 0, 3, 0, 0, 0, 0, 0, 0, 0] -diviners 1.2 1.16619 [0, 1, 0, 2, 2, 0, 3, 1, 3, 0] -divines 0.8 1.249 [0, 0, 3, 0, 0, 0, 3, 2, 0, 0] -divinest 2.7 0.78102 [3, 4, 2, 4, 2, 2, 2, 3, 2, 3] -diving 0.3 0.45826 [1, 0, 0, 0, 0, 1, 0, 1, 0, 0] -divining 0.9 1.37477 [0, -1, 2, 0, 1, 0, 2, 4, 1, 0] -divinise 0.5 1.36015 [0, 2, 0, 0, 0, 0, 0, -2, 2, 3] -divinities 1.8 1.46969 [1, 3, 3, 4, 0, 0, 1, 0, 3, 3] -divinity 2.7 1.00499 [4, 4, 2, 3, 3, 1, 2, 4, 2, 2] -divinize 2.3 1.00499 [4, 2, 2, 3, 4, 1, 1, 2, 2, 2] -dizzy -0.9 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, 0, -1] -dodging -0.4 0.8 [-1, -1, 0, 1, 0, -1, 0, 0, -2, 0] -dodgy -0.9 0.9434 [-1, -1, -1, -3, -1, 1, -1, -1, -1, 0] -dolorous -2.2 0.6 [-2, -2, -2, -3, -3, -3, -2, -2, -1, -2] -dominance 0.8 0.87178 [2, 0, 0, 2, 1, 0, 0, 1, 2, 0] -dominances -0.1 0.9434 [-1, 0, 1, 1, 0, -1, 0, 1, 0, -2] -dominantly 0.2 1.16619 [-2, 0, 0, -1, 2, 1, 2, 0, 0, 0] -dominants 0.2 1.16619 [0, 2, -1, 0, -1, -1, -1, 1, 1, 2] -dominate -0.5 0.92195 [0, -1, 1, -1, 1, -1, -2, 0, -1, -1] -dominates 0.2 1.249 [1, 0, -2, -1, 1, -1, 2, 0, 0, 2] -dominating -1.2 1.98997 [-4, -1, -4, -1, -3, -1, -1, 2, 2, -1] -domination -0.2 0.9798 [0, 1, 0, -1, -1, -1, 0, 2, -1, -1] -dominations -0.3 0.45826 [0, 0, 0, 0, 0, -1, 0, -1, -1, 0] -dominative -0.7 1.18743 [-1, -1, -2, -2, -1, -1, -1, 2, 1, -1] -dominators -0.4 1.8 [-1, -2, -2, -2, 0, 2, 2, -3, 2, 0] -dominatrices -0.2 1.6 [-3, 0, 2, 0, -2, -2, 0, 1, 2, 0] -dominatrix -0.5 0.92195 [0, 0, -1, 0, 0, 1, 0, -1, -2, -2] -dominatrixes 0.6 1.35647 [0, 4, 0, -1, 0, 2, 1, 0, 0, 0] -doom -1.7 1.26886 [-2, -1, -1, -4, -2, -2, 1, -3, -1, -2] -doomed -3.2 0.74833 [-3, -3, -4, -4, -4, -2, -4, -3, -3, -2] -doomful -2.1 0.7 [-3, -2, -3, -1, -2, -3, -2, -1, -2, -2] -dooming -2.8 0.4 [-2, -3, -2, -3, -3, -3, -3, -3, -3, -3] -dooms -1.1 1.57797 [1, -3, -1, -3, -2, -1, -3, 1, 1, -1] -doomsayer -0.7 1.41774 [2, -1, -2, -1, 1, -2, -2, -1, 1, -2] -doomsayers -1.7 0.78102 [-1, -2, -3, 0, -2, -2, -2, -1, -2, -2] -doomsaying -1.5 1.28452 [-3, -2, -2, 0, 1, 0, -3, -2, -2, -2] -doomsayings -1.5 0.92195 [-2, -1, -1, -2, -2, 0, 0, -2, -3, -2] -doomsday -2.8 1.249 [-3, -1, -3, -4, -3, -4, 0, -4, -3, -3] -doomsdayer -2.2 1.249 [-3, -1, -4, -3, -4, -3, -1, -1, -1, -1] -doomsdays -2.4 1.85472 [-3, -2, -4, 1, -4, -3, -2, -4, 1, -4] -doomster -2.2 0.87178 [-2, -1, -2, -3, -1, -3, -1, -3, -3, -3] -doomsters -1.6 0.8 [-3, -1, -2, -2, 0, -2, -2, -1, -1, -2] -doomy -1.1 1.37477 [2, -2, -1, -2, -2, -2, -2, 1, -1, -2] -dork -1.4 0.66332 [-1, -2, -2, -1, -1, -1, -3, -1, -1, -1] -dorkier -1.1 0.53852 [-1, -1, -1, -1, -2, 0, -1, -2, -1, -1] -dorkiest -1.2 0.74833 [-1, -2, -1, -3, -1, 0, -1, -1, -1, -1] -dorks -0.5 0.67082 [-1, 1, -1, -1, -1, -1, 0, 0, -1, 0] -dorky -1.1 1.04403 [-1, 0, -1, 1, -1, -1, -3, -2, -2, -1] -doubt -1.5 0.5 [-1, -1, -2, -2, -1, -1, -2, -1, -2, -2] -doubtable -1.5 0.5 [-1, -1, -2, -1, -2, -1, -2, -2, -1, -2] -doubted -1.1 1.22066 [-1, -2, -2, 2, -1, -1, -2, -2, -2, 0] -doubter -1.6 0.91652 [-1, -3, -2, -1, -1, -1, -2, -2, -3, 0] -doubters -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -1, -2, -2, -1] -doubtful -1.4 0.4899 [-1, -1, -2, -1, -2, -2, -1, -1, -2, -1] -doubtfully -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -2] -doubtfulness -1.2 0.4 [-2, -1, -1, -1, -1, -1, -1, -1, -1, -2] -doubting -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -1, -1, -2, -2] -doubtingly -1.4 0.4899 [-2, -2, -1, -1, -1, -1, -1, -2, -2, -1] -doubtless 0.9 1.51327 [2, 2, 1, 2, -2, 2, -2, 1, 1, 2] -doubtlessly 1.2 0.9798 [2, 1, 1, 2, 0, -1, 2, 1, 2, 2] -doubtlessness 0.8 0.9798 [2, 1, 2, 0, 0, 0, 2, -1, 1, 1] -doubts -1.2 0.6 [-2, -1, -1, -1, -2, -2, -1, 0, -1, -1] -douche -1.5 1.68819 [-3, -2, -3, 1, 1, -2, -3, -2, 1, -3] -douchebag -3.0 0.44721 [-3, -3, -3, -3, -3, -3, -2, -3, -4, -3] -downcast -1.8 0.74833 [-1, -1, -1, -2, -2, -2, -1, -3, -3, -2] -downhearted -2.3 0.78102 [-1, -2, -2, -4, -2, -2, -2, -3, -3, -2] -downside -1.0 0.7746 [-1, -1, -1, -1, -1, -1, -2, 1, -2, -1] -drag -0.9 0.83066 [-1, -2, -1, -1, -2, -1, -1, 1, 0, -1] -dragged -0.2 1.07703 [-2, -1, 0, 0, -1, 0, 0, 1, 2, -1] -drags -0.7 0.64031 [0, -1, 0, -1, -1, -2, -1, 0, 0, -1] -drained -1.5 0.5 [-1, -1, -2, -2, -1, -2, -1, -2, -1, -2] -dread -2.0 0.63246 [-2, -3, -2, -2, -2, -2, -3, -1, -1, -2] -dreaded -2.7 0.64031 [-2, -3, -3, -3, -4, -3, -2, -2, -2, -3] -dreadful -1.9 1.86815 [-4, -2, -2, 2, -1, -4, -1, 0, -3, -4] -dreadfully -2.7 1.26886 [-4, -4, -3, -4, -3, -1, -2, -1, -1, -4] -dreadfulness -3.2 0.87178 [-3, -4, -2, -3, -4, -4, -2, -2, -4, -4] -dreadfuls -2.4 1.2 [-4, -3, -3, -2, -3, -2, -4, 0, -1, -2] -dreading -2.4 0.8 [-3, -2, -2, -2, -2, -2, -3, -4, -3, -1] -dreadlock -0.4 0.66332 [0, 0, 0, 0, 0, -1, -2, 0, -1, 0] -dreadlocks -0.2 0.9798 [0, 0, 0, 0, 0, -1, -2, 2, 0, -1] -dreadnought -0.6 1.35647 [-2, 0, 0, 0, -3, 0, -1, -2, 0, 2] -dreadnoughts -0.4 0.66332 [0, -1, -1, 0, 0, 0, 0, 0, -2, 0] -dreads -1.4 1.42829 [0, -1, 0, 0, -3, -3, 0, -4, -2, -1] -dream 1.0 1.18322 [0, 1, 2, 0, 0, 3, 0, 3, 1, 0] -dreams 1.7 1.1 [2, 2, 3, 0, 1, 1, 1, 4, 1, 2] -dreary -1.4 0.4899 [-1, -1, -2, -1, -1, -2, -2, -1, -2, -1] -droopy -0.8 0.74833 [-1, -1, 0, -1, -2, 0, 0, -1, 0, -2] -drop -1.1 0.53852 [0, -1, -1, -1, -2, -1, -2, -1, -1, -1] -drown -2.7 1.00499 [-4, -2, -2, -4, -4, -2, -3, -1, -3, -2] -drowned -2.9 0.7 [-2, -3, -3, -3, -2, -4, -4, -2, -3, -3] -drowns -2.2 1.6 [-3, -3, -3, -4, -2, -3, -1, -2, 2, -3] -drunk -1.4 0.91652 [-3, -1, 0, -2, 0, -1, -1, -2, -2, -2] -dubious -1.5 0.5 [-1, -2, -2, -1, -1, -2, -1, -1, -2, -2] -dud -1.0 0.89443 [-1, -1, -1, 0, -3, 0, -1, 0, -1, -2] -dull -1.7 0.45826 [-2, -2, -2, -1, -2, -2, -2, -1, -1, -2] -dullard -1.6 0.66332 [-2, -1, -1, -2, -2, -1, -1, -2, -1, -3] -dullards -1.8 0.87178 [-1, -3, -1, -1, -3, -1, -1, -2, -3, -2] -dulled -1.5 0.5 [-2, -1, -2, -1, -1, -1, -2, -2, -1, -2] -duller -1.7 0.64031 [-3, -1, -2, -2, -2, -1, -2, -1, -1, -2] -dullest -1.7 1.00499 [-1, -4, -1, -1, -2, -3, -2, -1, -1, -1] -dulling -1.1 0.7 [-1, -2, 0, -1, -2, -2, 0, -1, -1, -1] -dullish -1.1 0.53852 [-2, -1, -1, -1, -1, -1, -1, -1, 0, -2] -dullness -1.4 0.8 [-1, -1, -1, -1, -1, -1, -3, -1, -3, -1] -dullnesses -1.9 1.04403 [-3, -2, -1, -1, -3, -1, -4, -1, -2, -1] -dulls -1.0 0.44721 [-1, -1, -1, -1, -1, -1, 0, -1, -1, -2] -dullsville -2.4 0.8 [-2, -2, -4, -3, -2, -2, -3, -2, -3, -1] -dully -1.1 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -2] -dumb -2.3 0.9 [-4, -2, -2, -2, -2, -2, -4, -2, -2, -1] -dumbass -2.6 1.0198 [-3, -3, -4, -4, -1, -2, -3, -3, -1, -2] -dumbbell -0.8 0.9798 [0, -1, -3, -2, 0, -1, 0, 0, -1, 0] -dumbbells -0.2 0.4 [0, -1, 0, 0, 0, 0, 0, -1, 0, 0] -dumbcane -0.3 0.45826 [0, 0, 0, 0, 0, -1, -1, 0, -1, 0] -dumbcanes -0.6 1.2 [0, 0, -1, -1, -1, 2, 0, -1, -3, -1] -dumbed -1.4 0.4899 [-2, -1, -2, -2, -2, -1, -1, -1, -1, -1] -dumber -1.5 0.5 [-2, -1, -2, -1, -2, -1, -1, -2, -2, -1] -dumbest -2.3 1.00499 [-3, -1, -3, -4, -2, -1, -2, -3, -1, -3] -dumbfound -0.1 1.92094 [3, -2, -1, -1, 1, 1, -3, 3, -1, -1] -dumbfounded -1.6 1.11355 [-2, 0, -2, 0, -2, -1, -4, -1, -2, -2] -dumbfounder -1.0 0.89443 [-2, 0, 0, 0, -2, -1, -2, 0, -2, -1] -dumbfounders -1.0 0.89443 [-1, -3, -1, 0, -2, 0, -1, 0, -1, -1] -dumbfounding -0.8 0.74833 [-1, -2, 0, -1, -1, 0, 0, -1, 0, -2] -dumbfounds -0.3 1.26886 [0, -1, -1, 0, 0, -1, -1, -2, 0, 3] -dumbhead -2.6 0.66332 [-3, -4, -3, -2, -2, -3, -3, -2, -2, -2] -dumbheads -1.9 0.83066 [-2, -2, -2, -1, -2, -1, -2, -4, -1, -2] -dumbing -0.5 1.0247 [-1, 2, -1, 0, -1, -2, -1, 0, 0, -1] -dumbly -1.3 1.00499 [-2, -1, -2, -3, 1, -2, -1, -1, -1, -1] -dumbness -1.9 0.53852 [-2, -2, -2, -2, -2, -3, -2, -2, -1, -1] -dumbs -1.5 0.67082 [-1, -1, -1, -3, -2, -1, -2, -1, -2, -1] -dumbstruck -1.0 1.34164 [-1, -2, 0, 0, -2, 1, -3, 1, -2, -2] -dumbwaiter 0.2 1.07703 [0, 0, 0, 0, 2, 0, 2, 0, -2, 0] -dumbwaiters -0.1 0.3 [0, 0, 0, 0, 0, 0, -1, 0, 0, 0] -dump -1.6 0.91652 [-3, -2, -1, -2, -1, -3, -2, -1, -1, 0] -dumpcart -0.6 0.8 [0, -2, -1, 0, 0, 0, -1, 0, -2, 0] -dumped -1.7 0.78102 [-2, -3, -2, -1, -1, -1, -3, -2, -1, -1] -dumper -1.2 0.87178 [-2, -3, -1, -1, -1, -2, 0, -1, 0, -1] -dumpers -0.8 0.6 [0, 0, -2, -1, -1, 0, -1, -1, -1, -1] -dumpier -1.4 0.66332 [-2, -1, -2, -1, -1, -2, 0, -2, -1, -2] -dumpiest -1.6 1.35647 [-1, -2, -2, -3, -2, -4, 1, 0, -1, -2] -dumpiness -1.2 0.6 [-2, -1, 0, -1, -1, -2, -1, -2, -1, -1] -dumping -1.3 1.1 [-3, -2, -2, 0, -2, -1, -1, 1, -1, -2] -dumpings -1.1 0.83066 [-2, 0, -1, -1, 0, -1, -2, -2, 0, -2] -dumpish -1.8 0.6 [-2, -1, -2, -3, -2, -2, -1, -2, -2, -1] -dumpling 0.4 0.91652 [0, 0, 1, 0, -1, 2, 2, 0, 0, 0] -dumplings -0.3 1.26886 [0, 0, 0, 0, 2, 0, 0, 0, -2, -3] -dumps -1.7 0.9 [-3, -2, -3, -1, -1, -3, -1, -1, -1, -1] -dumpster -0.6 0.91652 [0, -2, 0, -2, 0, 0, 0, -2, 0, 0] -dumpsters -1.0 0.89443 [0, -1, 0, -2, -2, -2, 0, 0, -1, -2] -dumpy -1.7 0.78102 [-3, -2, -3, -1, -1, -2, -2, -1, -1, -1] -dupe -1.5 0.5 [-2, -2, -1, -1, -2, -1, -2, -1, -2, -1] -duped -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -1, -2, -2] -dwell 0.5 0.92195 [2, 1, -1, 0, -1, 1, 1, 1, 1, 0] -dwelled 0.4 0.66332 [2, 0, 0, 0, 0, 1, 1, 0, 0, 0] -dweller 0.3 0.64031 [2, 0, 0, 0, 0, 0, 1, 0, 0, 0] -dwellers -0.3 0.9 [-3, 0, 0, 0, 0, 0, 0, 0, 0, 0] -dwelling 0.1 0.53852 [0, 1, 0, 1, 0, 0, 0, -1, 0, 0] -dwells -0.1 0.53852 [0, 0, 0, 0, -1, 1, -1, 0, 0, 0] -dynamic 1.6 0.8 [1, 1, 1, 3, 1, 1, 2, 3, 2, 1] -dynamical 1.2 0.87178 [1, 2, 0, 1, 0, 2, 2, 2, 2, 0] -dynamically 1.5 1.0247 [2, 0, 3, 2, 0, 0, 2, 2, 2, 2] -dynamics 1.1 1.13578 [2, 3, 0, 0, 0, 2, 2, 0, 2, 0] -dynamism 1.6 1.11355 [0, 2, 0, 2, 0, 2, 3, 3, 2, 2] -dynamisms 1.2 0.9798 [2, 0, 2, 0, 0, 2, 2, 2, 0, 2] -dynamist 1.4 1.0198 [0, 2, 0, 2, 0, 1, 3, 2, 2, 2] -dynamistic 1.5 1.0247 [3, 1, 1, 2, 1, 3, 2, 0, 2, 0] -dynamists 0.9 0.83066 [1, 0, 0, 0, 0, 2, 2, 1, 2, 1] -dynamite 0.7 2.2383 [-3, 2, 3, 1, 2, 0, 2, 2, 2, -4] -dynamited -0.9 1.04403 [0, 0, 0, -1, -1, 0, -2, 0, -2, -3] -dynamiter -1.2 0.87178 [-1, 0, -1, -1, -2, 0, -1, -1, -2, -3] -dynamiters 0.4 1.42829 [0, 0, 0, -3, 1, 0, 2, 2, 2, 0] -dynamites -0.3 1.73494 [0, 0, 4, -1, -1, 0, 0, 0, -2, -3] -dynamitic 0.9 1.3 [2, 0, 1, -2, 2, 1, 1, 3, 0, 1] -dynamiting 0.2 1.32665 [-2, 0, 0, 2, -1, -1, 0, 2, 2, 0] -dynamometer 0.3 0.64031 [0, 0, 0, 0, 1, 0, 0, 2, 0, 0] -dynamometers 0.3 0.45826 [0, 0, 0, 0, 0, 1, 0, 1, 1, 0] -dynamometric 0.3 0.9 [0, 0, 0, 0, 0, 2, 0, 0, 2, -1] -dynamometry 0.6 1.28062 [-2, 0, 0, 0, 0, 2, 2, 2, 0, 2] -dynamos 0.3 0.64031 [1, 0, 0, 0, 0, 0, 0, 0, 2, 0] -dynamotor 0.6 0.91652 [0, 2, 0, 0, 0, 0, 2, 0, 2, 0] -dysfunction -1.8 0.6 [-2, -3, -2, -1, -2, -1, -2, -1, -2, -2] -eager 1.5 0.67082 [1, 3, 1, 2, 2, 2, 1, 1, 1, 1] -eagerly 1.6 0.66332 [0, 1, 2, 2, 2, 2, 2, 1, 2, 2] -eagerness 1.7 0.45826 [2, 2, 2, 2, 1, 1, 2, 2, 2, 1] -eagers 1.6 0.66332 [2, 2, 3, 1, 2, 1, 1, 1, 2, 1] -earnest 2.3 0.64031 [3, 2, 3, 1, 2, 2, 2, 3, 3, 2] -ease 1.5 0.92195 [1, 1, 1, 0, 2, 1, 2, 3, 3, 1] -eased 1.2 0.74833 [2, 0, 1, 0, 2, 2, 1, 1, 1, 2] -easeful 1.5 1.0247 [2, 1, 1, 2, 1, 0, 3, 2, 0, 3] -easefully 1.4 0.4899 [2, 2, 1, 1, 1, 1, 2, 2, 1, 1] -easel 0.3 0.45826 [0, 0, 0, 0, 1, 1, 0, 0, 0, 1] -easement 1.6 0.91652 [0, 1, 2, 3, 2, 1, 2, 1, 3, 1] -easements 0.4 1.11355 [0, 0, 0, 1, 2, -2, 1, 0, 2, 0] -eases 1.3 0.78102 [2, 0, 1, 0, 2, 2, 2, 1, 1, 2] -easier 1.8 0.9798 [1, 1, 2, 2, 4, 3, 2, 1, 1, 1] -easiest 1.8 1.07703 [2, 4, 1, 3, 2, 0, 2, 2, 1, 1] -easily 1.4 0.4899 [2, 1, 1, 2, 1, 2, 1, 2, 1, 1] -easiness 1.6 0.66332 [2, 1, 1, 2, 3, 2, 1, 1, 2, 1] -easing 1.0 0.63246 [0, 0, 2, 1, 1, 2, 1, 1, 1, 1] -easy 1.9 1.04403 [1, 4, 2, 1, 1, 3, 1, 3, 2, 1] -easygoing 1.3 0.45826 [1, 1, 1, 1, 1, 1, 2, 2, 2, 1] -easygoingness 1.5 0.67082 [1, 2, 1, 2, 1, 3, 1, 2, 1, 1] -ecstacy 3.3 1.18743 [4, 4, 3, 4, 4, 0, 3, 3, 4, 4] -ecstasies 2.3 1.34536 [3, 3, 2, 4, 3, 1, 3, -1, 2, 3] -ecstasy 2.9 1.75784 [4, 3, 3, 4, 4, 2, -2, 3, 4, 4] -ecstatic 2.3 1.34536 [3, 4, 3, 4, 1, 1, 1, 4, 1, 1] -ecstatically 2.8 1.93907 [3, 4, -1, 4, 4, 4, -1, 3, 4, 4] -ecstatics 2.9 0.83066 [1, 3, 4, 4, 3, 3, 3, 2, 3, 3] -eerie -1.5 0.67082 [-1, -1, -2, -2, -1, -1, -2, -1, -3, -1] -eery -0.9 1.04403 [-3, -1, -2, -1, -2, 0, 0, 0, 0, 0] -effective 2.1 0.83066 [2, 2, 2, 1, 3, 4, 2, 1, 2, 2] -effectively 1.9 0.7 [1, 2, 1, 2, 2, 1, 3, 3, 2, 2] -efficiencies 1.6 0.4899 [2, 1, 1, 2, 2, 2, 1, 2, 2, 1] -efficiency 1.5 0.5 [2, 1, 2, 2, 1, 2, 1, 1, 2, 1] -efficient 1.8 0.9798 [1, 2, 1, 1, 2, 3, 3, 0, 2, 3] -efficiently 1.7 0.78102 [1, 3, 2, 1, 3, 1, 1, 2, 2, 1] -effin -2.3 1.18743 [0, -3, -3, -3, -2, -1, -4, -1, -3, -3] -egotism -1.4 0.91652 [-2, -3, -1, -2, -2, 0, 0, -1, -2, -1] -egotisms -1.0 0.7746 [-1, -1, -1, -1, -1, 0, 0, -1, -3, -1] -egotist -2.3 0.9 [-2, -1, -2, -3, -4, -2, -3, -3, -1, -2] -egotistic -1.4 1.0198 [-2, -1, -1, -1, -2, 1, -3, -2, -1, -2] -egotistical -0.9 1.57797 [-1, -2, -2, -1, -2, 1, -3, 2, 1, -2] -egotistically -1.8 0.87178 [-2, -1, -1, -2, -1, -3, -3, -1, -1, -3] -egotists -1.7 0.78102 [-1, -2, 0, -2, -2, -2, -3, -1, -2, -2] -elated 3.2 0.74833 [2, 4, 4, 3, 4, 3, 3, 2, 3, 4] -elation 1.5 1.43178 [1, 2, -2, 2, 2, 3, 0, 3, 2, 2] -elegance 2.1 0.53852 [3, 2, 2, 1, 2, 2, 3, 2, 2, 2] -elegances 1.8 0.6 [2, 2, 1, 1, 2, 2, 2, 3, 2, 1] -elegancies 1.6 1.0198 [2, 1, 2, 1, 1, 0, 4, 1, 2, 2] -elegancy 2.1 0.53852 [3, 2, 2, 1, 2, 2, 3, 2, 2, 2] -elegant 2.1 0.83066 [2, 2, 2, 1, 4, 1, 2, 3, 2, 2] -elegantly 1.9 0.83066 [2, 1, 1, 3, 2, 2, 1, 3, 3, 1] -embarrass -1.2 1.66132 [-2, -2, -3, -1, -2, -2, 2, 2, -2, -2] -embarrassable -1.6 0.8 [-3, -2, -1, -3, -1, -1, -1, -2, -1, -1] -embarrassed -1.5 0.67082 [-2, -2, -1, -2, -1, -3, -1, -1, -1, -1] -embarrassedly -1.1 1.44568 [-2, -1, -2, -3, 1, -1, -1, -2, -2, 2] -embarrasses -1.7 0.78102 [-2, -3, -1, -2, -1, -3, -2, -1, -1, -1] -embarrassing -1.6 0.8 [-3, -1, -1, -1, -1, -2, -1, -2, -3, -1] -embarrassingly -1.7 0.64031 [-2, -1, -1, -2, -1, -2, -1, -3, -2, -2] -embarrassment -1.9 0.53852 [-2, -2, -1, -2, -2, -2, -2, -1, -3, -2] -embarrassments -1.7 0.64031 [-2, -1, -2, -1, -1, -2, -2, -1, -2, -3] -embittered -0.4 1.35647 [1, -2, -1, 1, -2, 2, 0, -1, 0, -2] -embrace 1.3 1.34536 [3, 2, 1, 3, 2, -1, 2, 1, -1, 1] -emergency -1.6 2.05913 [-3, -3, -3, -3, -4, 2, 1, -1, 1, -3] -emotional 0.6 1.0198 [1, -1, 0, 0, 0, 2, 0, 2, 2, 0] -empathetic 1.7 1.1 [-1, 3, 2, 2, 2, 1, 3, 1, 2, 2] -emptied -0.7 0.64031 [-1, 0, 0, 0, -1, -1, -1, -2, 0, -1] -emptier -0.7 0.64031 [-1, 0, 0, 0, -1, -1, -1, -2, 0, -1] -emptiers -0.7 0.78102 [0, 0, -1, 0, -1, -1, -2, 0, -2, 0] -empties -0.7 0.64031 [-1, 0, 0, 0, -1, -1, -1, -2, 0, -1] -emptiest -1.8 1.07703 [-1, -2, -2, -1, -1, -2, -3, 0, -4, -2] -emptily -1.0 1.41421 [-2, 2, -1, -1, -1, 0, -4, -1, -1, -1] -emptiness -1.9 0.7 [-2, -2, -3, -2, -2, -1, -1, -3, -1, -2] -emptinesses -1.5 1.11803 [-1, -1, -3, -1, -1, -1, -2, 0, -4, -1] -emptins -0.3 0.45826 [0, 0, 0, -1, 0, 0, 0, -1, -1, 0] -empty -0.8 0.74833 [-1, -1, -1, -1, -1, -1, -2, 0, -1, 1] -emptying -0.6 1.0198 [2, -1, -1, 0, -1, 0, -1, -1, -2, -1] -enchanted 1.6 0.8 [1, 3, 1, 2, 1, 3, 1, 2, 1, 1] -encourage 2.3 0.78102 [2, 1, 3, 2, 3, 4, 2, 2, 2, 2] -encouraged 1.5 0.5 [1, 2, 2, 2, 2, 2, 1, 1, 1, 1] -encouragement 1.8 0.9798 [2, 1, 2, 1, 1, 3, 1, 2, 4, 1] -encouragements 2.1 0.7 [3, 2, 3, 2, 1, 2, 3, 2, 2, 1] -encourager 1.5 0.5 [2, 1, 2, 1, 1, 2, 1, 1, 2, 2] -encouragers 1.5 0.5 [2, 2, 1, 1, 2, 2, 1, 1, 2, 1] -encourages 1.9 0.53852 [2, 2, 1, 2, 2, 1, 2, 2, 2, 3] -encouraging 2.4 0.66332 [2, 3, 2, 3, 3, 2, 3, 2, 1, 3] -encouragingly 2.0 0.7746 [1, 1, 1, 3, 2, 2, 2, 3, 2, 3] -endorse 1.3 0.9 [0, 1, 0, 1, 3, 2, 2, 2, 1, 1] -endorsed 1.0 0.89443 [1, 2, 0, 1, 1, 0, 1, 0, 3, 1] -endorsement 1.3 0.9 [0, 1, 2, 2, 1, 2, 0, 1, 3, 1] -endorses 1.4 0.4899 [1, 2, 1, 2, 1, 1, 1, 2, 2, 1] -enemies -2.2 0.6 [-2, -3, -1, -2, -2, -3, -2, -3, -2, -2] -enemy -2.5 0.92195 [-3, -2, -3, -3, -3, -4, -1, -3, -1, -2] -energetic 1.9 0.53852 [2, 1, 3, 2, 2, 2, 1, 2, 2, 2] -energetically 1.8 0.6 [2, 2, 1, 1, 2, 2, 3, 1, 2, 2] -energetics 0.3 0.64031 [1, 0, 0, 0, 0, 0, 2, 0, 0, 0] -energies 0.9 1.04403 [1, 0, 0, 2, 0, 1, 3, 2, 0, 0] -energise 2.2 0.4 [2, 2, 2, 2, 2, 2, 3, 2, 3, 2] -energised 2.1 0.53852 [2, 3, 1, 2, 2, 2, 3, 2, 2, 2] -energises 2.2 0.6 [3, 3, 2, 2, 1, 3, 2, 2, 2, 2] -energising 1.9 0.7 [2, 3, 1, 2, 2, 3, 2, 1, 1, 2] -energization 1.6 0.66332 [1, 2, 1, 3, 1, 1, 2, 2, 2, 1] -energizations 1.5 1.11803 [1, 0, 3, 1, 3, 0, 1, 1, 2, 3] -energize 2.1 0.7 [2, 2, 2, 1, 3, 2, 3, 2, 3, 1] -energized 2.3 0.64031 [3, 2, 3, 3, 3, 2, 2, 2, 1, 2] -energizer 2.1 0.53852 [3, 2, 2, 2, 2, 2, 2, 3, 1, 2] -energizers 1.7 0.9 [2, 0, 2, 3, 3, 1, 1, 2, 2, 1] -energizes 2.1 0.53852 [3, 2, 3, 2, 2, 2, 2, 2, 1, 2] -energizing 2.0 0.63246 [3, 3, 2, 1, 2, 2, 1, 2, 2, 2] -energy 1.1 0.83066 [0, 2, 0, 2, 1, 1, 2, 1, 2, 0] -engage 1.4 0.8 [1, 2, 3, 2, 1, 1, 0, 1, 2, 1] -engaged 1.7 1.1 [1, 1, 2, 2, 1, 0, 2, 3, 4, 1] -engagement 2.0 1.34164 [0, 0, 3, 4, 4, 2, 1, 2, 2, 2] -engagements 0.6 0.8 [1, 0, 0, 2, 0, 2, 0, 0, 1, 0] -engager 1.1 0.7 [1, 1, 0, 2, 1, 0, 2, 1, 2, 1] -engagers 1.0 0.7746 [1, 1, 1, 0, 2, 1, 0, 2, 2, 0] -engages 1.0 0.7746 [1, 1, 0, 2, 1, 0, 1, 2, 2, 0] -engaging 1.4 0.4899 [2, 2, 1, 1, 2, 1, 1, 1, 1, 2] -engagingly 1.5 0.67082 [1, 2, 3, 1, 1, 1, 1, 1, 2, 2] -engrossed 0.6 1.49666 [0, 2, 0, 2, -2, 2, 3, -1, 0, 0] -enjoy 2.2 0.6 [3, 2, 2, 2, 3, 2, 2, 3, 2, 1] -enjoyable 1.9 0.53852 [3, 2, 2, 1, 2, 1, 2, 2, 2, 2] -enjoyableness 1.9 1.13578 [2, 2, 2, 2, 1, 3, 3, 3, -1, 2] -enjoyably 1.8 0.4 [2, 2, 2, 1, 2, 1, 2, 2, 2, 2] -enjoyed 2.3 0.64031 [2, 2, 1, 3, 3, 3, 2, 2, 2, 3] -enjoyer 2.2 0.6 [2, 2, 1, 3, 3, 2, 2, 2, 2, 3] -enjoyers 2.2 0.74833 [2, 4, 2, 2, 2, 2, 2, 3, 2, 1] -enjoying 2.4 0.66332 [2, 2, 2, 3, 3, 3, 1, 3, 2, 3] -enjoyment 2.6 0.4899 [2, 3, 2, 3, 2, 3, 2, 3, 3, 3] -enjoyments 2.0 0.7746 [3, 1, 1, 3, 2, 1, 2, 2, 2, 3] -enjoys 2.3 0.45826 [2, 3, 2, 2, 2, 3, 2, 3, 2, 2] -enlighten 2.3 1.1 [2, 2, 1, 3, 2, 1, 1, 4, 3, 4] -enlightened 2.2 0.87178 [4, 2, 3, 1, 2, 2, 1, 3, 2, 2] -enlightening 2.3 0.64031 [3, 2, 2, 2, 2, 2, 2, 4, 2, 2] -enlightens 1.7 1.00499 [2, 1, 1, 1, 1, 2, 4, 1, 3, 1] -ennui -1.2 0.6 [-1, -1, -1, -2, -1, -1, -2, -1, 0, -2] -enrage -2.6 0.91652 [-3, -3, -3, -4, -1, -1, -3, -2, -3, -3] -enraged -1.7 1.79165 [-3, -3, -3, -3, 2, -1, -3, -1, 1, -3] -enrages -1.8 1.6 [-3, -3, -3, -3, 1, -1, -3, -1, 1, -3] -enraging -2.8 0.74833 [-4, -2, -3, -2, -2, -3, -3, -2, -4, -3] -enrapture 3.0 0.63246 [2, 4, 3, 3, 4, 3, 3, 2, 3, 3] -enslave -3.1 0.9434 [-3, -4, -2, -4, -4, -2, -4, -2, -4, -2] -enslaved -1.7 2.41039 [3, -3, -3, -3, -4, -4, -4, 1, -1, 1] -enslaves -1.6 2.15407 [2, -2, -3, -2, -4, -4, -4, 1, -1, 1] -ensure 1.6 0.91652 [2, 1, 3, 1, 1, 2, 3, 2, 0, 1] -ensuring 1.1 0.9434 [0, 1, 3, 1, 1, 2, 1, 0, 2, 0] -enterprising 2.3 0.78102 [3, 2, 1, 3, 3, 2, 1, 2, 3, 3] -entertain 1.3 0.64031 [1, 2, 1, 1, 2, 1, 2, 0, 1, 2] -entertained 1.7 0.64031 [1, 2, 2, 1, 2, 1, 1, 3, 2, 2] -entertainer 1.6 1.2 [1, 4, 2, 2, 0, 0, 1, 3, 1, 2] -entertainers 1.0 0.7746 [0, 1, 2, 2, 0, 0, 1, 1, 2, 1] -entertaining 1.9 0.83066 [1, 2, 1, 1, 3, 2, 3, 2, 3, 1] -entertainingly 1.9 0.53852 [2, 1, 2, 3, 2, 2, 1, 2, 2, 2] -entertainment 1.8 0.9798 [2, 0, 4, 2, 2, 1, 2, 2, 1, 2] -entertainments 2.3 1.18743 [3, 3, 3, 2, 1, 0, 3, 4, 1, 3] -entertains 2.4 0.66332 [2, 2, 2, 2, 2, 3, 4, 3, 2, 2] -enthral 0.4 1.42829 [2, 2, 0, 2, 0, -1, -2, 2, 0, -1] -enthuse 1.6 0.66332 [1, 2, 1, 1, 3, 1, 2, 2, 2, 1] -enthused 2.0 0.63246 [3, 3, 1, 2, 2, 2, 2, 1, 2, 2] -enthuses 1.7 0.78102 [2, 3, 1, 2, 1, 3, 1, 1, 1, 2] -enthusiasm 1.9 0.9434 [3, 3, 3, 2, 1, 0, 2, 1, 2, 2] -enthusiasms 2.0 0.89443 [1, 3, 2, 2, 3, 2, 0, 2, 3, 2] -enthusiast 1.5 0.67082 [1, 2, 2, 2, 0, 1, 1, 2, 2, 2] -enthusiastic 2.2 0.9798 [1, 2, 3, 4, 2, 3, 2, 1, 1, 3] -enthusiastically 2.6 0.66332 [3, 3, 3, 2, 3, 3, 3, 3, 2, 1] -enthusiasts 1.4 0.91652 [1, 1, 0, 3, 3, 2, 1, 1, 1, 1] -enthusing 1.9 0.7 [2, 1, 2, 1, 2, 3, 2, 1, 2, 3] -entitled 1.1 0.83066 [2, 2, 1, 1, 2, 1, 1, -1, 1, 1] -entrusted 0.8 1.46969 [3, 0, 2, 2, 1, 1, -1, 0, -2, 2] -envied -1.1 0.83066 [-1, -2, -2, 1, -2, -1, -1, -1, -1, -1] -envier -1.0 0.7746 [-1, -2, -2, -1, -1, 1, -1, -1, -1, -1] -enviers -1.1 1.13578 [-3, -1, 0, -3, -1, -1, -1, -1, 1, -1] -envies -0.8 0.9798 [-1, -2, -2, 1, -1, 1, -1, -1, -1, -1] -envious -1.1 0.83066 [-2, -1, -1, -1, -2, -1, -1, 1, -2, -1] -envy -1.1 0.83066 [-2, -1, -1, -2, -1, -1, -1, 1, -1, -2] -envying -0.8 1.32665 [-1, -1, -1, -1, -3, 2, -2, -1, 1, -1] -envyingly -1.3 1.55242 [-2, 3, -2, -2, -1, -3, -1, -1, -2, -2] -erroneous -1.8 0.6 [-2, -3, -2, -2, -2, -2, -1, -1, -1, -2] -error -1.7 0.64031 [-2, -1, -2, -1, -2, -1, -1, -2, -3, -2] -errors -1.4 0.66332 [-2, -1, -2, 0, -2, -2, -1, -1, -1, -2] -escape 0.7 1.00499 [2, 0, 0, 1, 0, 1, 0, 3, 0, 0] -escapes 0.5 1.36015 [4, 1, 1, 0, -1, 0, -1, 0, 1, 0] -escaping 0.2 1.46969 [-2, 2, -1, 0, 1, 0, 2, 2, -2, 0] -esteemed 1.9 0.83066 [3, 2, 1, 2, 3, 1, 1, 2, 3, 1] -ethical 2.3 0.78102 [3, 3, 3, 3, 2, 2, 1, 3, 2, 1] -euphoria 3.3 0.9 [4, 4, 3, 3, 3, 4, 4, 4, 1, 3] -euphoric 3.2 0.87178 [3, 4, 3, 3, 3, 4, 4, 4, 1, 3] -eviction -2.0 0.63246 [-2, -2, -3, -2, -3, -2, -1, -2, -1, -2] -evil -3.4 0.91652 [-4, -4, -4, -3, -3, -4, -1, -4, -3, -4] -evildoer -3.1 0.7 [-2, -3, -3, -3, -4, -4, -3, -2, -3, -4] -evildoers -2.4 0.4899 [-3, -3, -2, -2, -2, -2, -2, -2, -3, -3] -evildoing -3.1 0.7 [-4, -4, -3, -3, -3, -4, -2, -3, -2, -3] -evildoings -2.5 1.0247 [-3, -1, -1, -3, -4, -2, -4, -2, -2, -3] -eviler -2.1 1.13578 [-2, -1, -3, -2, -4, -3, -1, -2, 0, -3] -evilest -2.5 1.0247 [-3, -4, -1, -3, -2, -3, -1, -4, -2, -2] -eviller -2.9 0.83066 [-3, -3, -4, -2, -2, -3, -2, -4, -2, -4] -evillest -3.3 0.78102 [-3, -4, -2, -3, -4, -2, -4, -4, -3, -4] -evilly -3.4 0.8 [-2, -4, -4, -4, -3, -4, -4, -4, -3, -2] -evilness -3.1 1.04403 [-3, -4, -4, -4, -4, -2, -3, -2, -1, -4] -evils -2.7 0.78102 [-3, -2, -2, -4, -4, -2, -3, -2, -3, -2] -exaggerate -0.6 0.66332 [-1, -1, -1, 0, -1, 0, 1, -1, -1, -1] -exaggerated -0.4 1.2 [-1, -1, -1, -1, -1, 2, 1, 1, -2, -1] -exaggerates -0.6 1.28062 [-1, -1, -1, -1, -1, 1, 0, 2, -3, -1] -exaggerating -0.7 0.9 [-1, -2, 0, -1, 0, 0, -2, -1, 1, -1] -exasperated -1.8 1.53623 [-4, -3, -3, -1, -1, -1, 1, -1, -4, -1] -excel 2.0 1.0 [3, 0, 2, 3, 1, 1, 3, 3, 2, 2] -excelled 2.2 0.87178 [1, 2, 2, 2, 3, 2, 4, 3, 2, 1] -excellence 3.1 0.9434 [4, 3, 4, 3, 2, 3, 1, 4, 3, 4] -excellences 2.5 0.92195 [4, 2, 2, 2, 4, 3, 2, 2, 3, 1] -excellencies 2.4 0.4899 [3, 2, 3, 3, 2, 2, 2, 2, 3, 2] -excellency 2.5 0.80623 [4, 2, 3, 3, 2, 3, 1, 3, 2, 2] -excellent 2.7 0.64031 [2, 3, 3, 3, 3, 2, 3, 2, 2, 4] -excellently 3.1 0.7 [4, 3, 3, 3, 2, 3, 3, 4, 4, 2] -excelling 2.5 0.67082 [2, 2, 3, 3, 3, 2, 2, 4, 2, 2] -excels 2.5 0.92195 [4, 2, 4, 2, 2, 1, 2, 3, 3, 2] -excelsior 0.7 0.64031 [1, 0, 0, 2, 0, 1, 1, 1, 1, 0] -excitabilities 1.5 1.0247 [2, 0, 1, 1, 3, 1, 2, 3, 2, 0] -excitability 1.2 0.87178 [0, 1, 1, 0, 1, 2, 3, 1, 2, 1] -excitable 1.5 0.92195 [2, 3, 1, 0, 1, 2, 2, 0, 2, 2] -excitableness 1.0 1.09545 [0, 0, 2, 0, 2, 0, 2, 0, 1, 3] -excitant 1.8 1.16619 [1, 0, 1, 3, 2, 0, 3, 3, 2, 3] -excitants 1.2 0.9798 [1, 0, 1, 2, 2, 2, 1, -1, 2, 2] -excitation 1.8 0.87178 [2, 0, 3, 1, 3, 2, 2, 2, 1, 2] -excitations 1.8 1.16619 [3, 3, -1, 2, 2, 2, 1, 1, 3, 2] -excitative 0.3 0.78102 [0, 1, 1, 0, 0, 0, 2, 0, -1, 0] -excitatory 1.1 1.7 [-1, 2, 2, 1, 2, 2, 2, 3, -3, 1] -excite 2.1 1.22066 [1, 2, 2, 1, 2, 0, 4, 4, 3, 2] -excited 1.4 0.4899 [1, 1, 2, 1, 2, 1, 2, 1, 1, 2] -excitedly 2.3 0.9 [3, 3, 2, 3, 1, 3, 1, 3, 1, 3] -excitement 2.2 0.4 [2, 2, 2, 3, 3, 2, 2, 2, 2, 2] -excitements 1.9 0.53852 [2, 1, 2, 3, 2, 2, 2, 2, 2, 1] -exciter 1.9 0.9434 [3, 2, 3, 1, 0, 1, 2, 3, 2, 2] -exciters 1.4 1.42829 [1, 2, 0, 1, 2, 4, 0, -1, 3, 2] -excites 2.1 0.83066 [2, 3, 3, 2, 0, 2, 2, 3, 2, 2] -exciting 2.2 0.87178 [3, 2, 1, 1, 1, 3, 3, 3, 2, 3] -excitingly 1.9 0.9434 [3, 2, 3, 0, 1, 2, 1, 2, 2, 3] -exciton 0.3 0.64031 [2, 0, 0, 0, 0, 0, 1, 0, 0, 0] -excitonic 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] -excitons 0.8 0.6 [1, 2, 0, 1, 1, 0, 0, 1, 1, 1] -excitor 0.5 0.67082 [2, 0, 0, 0, 1, 1, 1, 0, 0, 0] -exclude -0.9 1.13578 [-1, -2, -1, -3, -1, 1, -1, -1, 1, -1] -excluded -1.4 1.62481 [-2, -1, -3, -3, -2, -3, -2, 1, -1, 2] -exclusion -1.2 1.249 [-2, -2, -3, -1, -2, -1, -1, -1, 2, -1] -exclusive 0.5 0.92195 [0, 0, 0, -1, 2, 0, 1, 2, 1, 0] -excruciate -2.7 0.64031 [-2, -3, -2, -3, -3, -2, -4, -3, -2, -3] -excruciated -1.3 1.9 [-4, -1, -4, 0, 2, -2, -1, -1, -3, 1] -excruciates -1.0 2.19089 [-4, 1, -4, 0, 1, -3, -1, 1, -3, 2] -excruciating -3.3 0.9 [-3, -4, -4, -4, -4, -4, -4, -2, -2, -2] -excruciatingly -2.9 1.04403 [-2, -4, -3, -2, -4, -1, -2, -3, -4, -4] -excruciation -3.4 0.66332 [-4, -3, -2, -4, -4, -3, -4, -3, -3, -4] -excruciations -1.9 1.51327 [-3, -3, -2, -4, -1, -1, 1, -4, -1, -1] -excuse 0.3 1.73494 [0, 0, 3, -1, 0, -1, -2, 0, 4, 0] -exempt 0.4 0.91652 [1, 0, 0, 0, 2, -1, 0, 0, 2, 0] -exhaust -1.2 0.87178 [0, -1, 0, -1, -1, -3, -2, -2, -1, -1] -exhausted -1.5 1.28452 [-2, -1, 2, -2, -3, -2, -2, -1, -2, -2] -exhauster -1.3 0.64031 [-1, -1, 0, -1, -2, -1, -1, -2, -2, -2] -exhausters -1.3 0.45826 [-2, -1, -2, -1, -1, -2, -1, -1, -1, -1] -exhaustibility -0.8 1.07703 [0, -2, -3, 0, 1, -1, -1, -1, 0, -1] -exhaustible -1.0 0.63246 [-1, -1, 0, -1, -2, -2, -1, 0, -1, -1] -exhausting -1.5 0.5 [-1, -2, -1, -1, -2, -1, -2, -2, -1, -2] -exhaustion -1.5 0.92195 [-2, -1, 1, -2, -2, -2, -2, -1, -2, -2] -exhaustions -1.1 0.9434 [-1, -3, -2, -1, -1, -1, -1, 1, -1, -1] -exhaustive -0.5 0.67082 [-1, -1, 0, -1, -2, 0, 0, 0, 0, 0] -exhaustively -0.7 0.78102 [-2, 0, -1, -1, -1, -2, 0, 0, 0, 0] -exhaustiveness -1.1 1.3 [-2, -2, 0, -1, -1, 1, -4, -1, 0, -1] -exhaustless 0.2 1.8868 [1, 1, 0, 2, 3, 0, -2, 2, -2, -3] -exhaustlessness 0.9 1.75784 [2, 2, 1, 1, -4, 2, 1, 2, 0, 2] -exhausts -1.1 0.53852 [-2, -1, 0, -1, -1, -2, -1, -1, -1, -1] -exhilarated 3.0 0.63246 [3, 3, 3, 3, 2, 2, 4, 4, 3, 3] -exhilarates 2.8 1.07703 [4, 3, 3, 3, 0, 2, 3, 4, 3, 3] -exhilarating 1.7 1.61555 [3, 4, 3, 2, -1, 1, 1, 3, -1, 2] -exonerate 1.8 0.74833 [2, 2, 2, 2, 3, 2, 1, 0, 2, 2] -exonerated 1.8 1.83303 [3, -2, 2, 3, 2, 4, 3, 1, -1, 3] -exonerates 1.6 1.90788 [3, -2, 1, 2, 3, 4, 0, 3, -1, 3] -exonerating 1.0 1.41421 [2, -2, 3, 0, 0, 2, 0, 2, 2, 1] -expand 1.3 0.64031 [0, 2, 2, 1, 1, 1, 2, 1, 2, 1] -expands 0.4 0.66332 [0, 1, 0, 0, 0, 0, 0, 0, 2, 1] -expel -1.9 1.44568 [0, -4, -3, -1, -3, -1, 0, -2, -4, -1] -expelled -1.0 1.94936 [-1, -2, 2, -2, -4, -3, -2, 1, 2, -1] -expelling -1.6 1.49666 [-2, -2, -2, -2, -2, -3, -4, -1, 1, 1] -expels -1.6 1.11355 [-4, -2, 0, -3, -1, -1, -1, -2, -1, -1] -exploit -0.4 1.62481 [-2, -1, -1, 2, -2, -2, 2, -1, 2, -1] -exploited -2.0 1.0 [-3, -3, -1, -1, -1, -4, -2, -2, -1, -2] -exploiting -1.9 1.22066 [0, -3, -3, 0, -2, -3, -1, -1, -3, -3] -exploits -1.4 0.8 [-2, -2, -2, -1, -1, 0, -2, 0, -2, -2] -exploration 0.9 0.7 [2, 2, 0, 1, 1, 0, 1, 0, 1, 1] -explorations 0.3 1.1 [1, 1, 0, 0, 1, 2, 1, -2, -1, 0] -expose -0.6 0.8 [-1, -1, 0, 0, -2, 1, -1, 0, -1, -1] -exposed -0.3 1.18743 [-2, -1, 0, 2, 0, 0, -1, 1, -2, 0] -exposes -0.5 0.92195 [-1, -1, 0, 2, -1, 0, -1, -1, -1, -1] -exposing -1.1 0.7 [-2, -2, -1, -1, 0, -2, -1, -1, 0, -1] -extend 0.7 0.78102 [2, 0, 0, 0, 1, 2, 1, 1, 0, 0] -extends 0.5 0.80623 [2, 0, 2, 0, 0, 0, 1, 0, 0, 0] -exuberant 2.8 0.6 [2, 3, 2, 3, 2, 4, 3, 3, 3, 3] -exultant 3.0 1.18322 [4, 4, 3, 0, 3, 4, 3, 3, 2, 4] -exultantly 1.4 1.49666 [3, 2, 4, 1, 1, 2, -2, 1, 1, 1] -fab 2.0 1.0 [2, 1, 1, 3, 1, 2, 2, 4, 3, 1] -fabulous 2.4 0.8 [2, 2, 3, 4, 3, 3, 1, 2, 2, 2] -fabulousness 2.8 1.07703 [4, 1, 4, 3, 1, 3, 3, 2, 4, 3] -fad 0.9 0.83066 [2, 0, 1, 1, 1, 0, 0, 2, 2, 0] -fag -2.1 0.83066 [-3, -1, -2, -4, -2, -2, -2, -1, -2, -2] -faggot -3.4 0.8 [-2, -4, -4, -3, -2, -4, -4, -4, -3, -4] -faggots -3.2 0.9798 [-2, -4, -4, -4, -3, -4, -4, -3, -1, -3] -fail -2.5 0.67082 [-2, -3, -3, -3, -4, -2, -2, -2, -2, -2] -failed -2.3 0.9 [-2, -3, -1, -2, -2, -1, -3, -3, -4, -2] -failing -2.3 1.1 [-2, -3, -3, -3, -4, -1, -2, -2, 0, -3] -failingly -1.4 0.8 [-1, -3, -2, -1, 0, -1, -2, -1, -2, -1] -failings -2.2 1.07703 [-2, -2, -3, -4, -1, -2, -1, -1, -4, -2] -faille 0.1 0.3 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] -fails -1.8 0.74833 [-2, -3, -2, -3, -2, -2, -1, -1, -1, -1] -failure -2.3 1.00499 [-3, -1, -3, -2, -1, -2, -3, -1, -4, -3] -failures -2.0 0.63246 [-1, -2, -1, -2, -3, -2, -2, -3, -2, -2] -fainthearted -0.3 1.34536 [3, -1, -1, -1, -2, -1, 0, 1, -1, 0] -fair 1.3 1.00499 [0, 1, 1, 2, 4, 1, 1, 1, 1, 1] -faith 1.8 0.6 [1, 3, 2, 2, 1, 2, 2, 2, 1, 2] -faithed 1.3 1.00499 [3, 2, 1, 2, 1, 2, -1, 1, 1, 1] -faithful 1.9 0.83066 [1, 3, 2, 2, 1, 1, 3, 3, 2, 1] -faithfully 1.8 1.07703 [3, 1, 2, 2, 4, 1, 0, 1, 2, 2] -faithfulness 1.9 0.53852 [1, 2, 2, 3, 2, 2, 2, 1, 2, 2] -faithless -1.0 0.89443 [-1, -1, -1, -2, -2, -1, -1, 0, 1, -2] -faithlessly -0.9 1.51327 [-1, -2, -1, -3, -2, -1, 3, 0, -1, -1] -faithlessness -1.8 1.249 [-3, -2, 1, -2, -2, -1, -2, -1, -4, -2] -faiths 1.8 0.9798 [2, 3, 1, 1, 3, 3, 0, 2, 2, 1] -fake -2.1 0.9434 [-2, -2, -1, -1, -1, -3, -3, -4, -2, -2] -fakes -1.8 1.07703 [-2, -3, -2, -2, -3, 1, -2, -2, -1, -2] -faking -1.8 0.87178 [-3, -1, -2, -1, -2, -2, -3, -2, 0, -2] -fallen -1.5 0.80623 [-1, -1, -2, -2, -1, -3, 0, -1, -2, -2] -falling -0.6 1.8 [-2, -2, -1, 0, -1, 3, -3, 2, 0, -2] -falsified -1.6 0.91652 [-4, -1, -1, -2, -1, -1, -2, -2, -1, -1] -falsify -2.0 0.7746 [-2, -1, -3, -3, -1, -2, -2, -2, -1, -3] -fame 1.9 1.13578 [0, 2, 1, 2, 2, 4, 1, 3, 3, 1] -fan 1.3 0.78102 [2, 0, 1, 1, 2, 1, 1, 3, 1, 1] -fantastic 2.6 0.91652 [1, 3, 3, 3, 2, 4, 4, 2, 2, 2] -fantastical 2.0 1.18322 [-1, 3, 2, 2, 2, 2, 3, 1, 3, 3] -fantasticalities 2.1 1.04403 [2, 4, 2, 2, 1, 1, 2, 4, 1, 2] -fantasticality 1.7 1.26886 [4, 1, 0, 2, 2, 1, 4, 1, 1, 1] -fantasticalness 1.3 1.9 [2, 3, -3, 0, 3, 2, 2, 3, -1, 2] -fantasticate 1.5 1.96214 [1, 2, -3, 1, 4, 1, 3, 4, 0, 2] -fantastico 0.4 1.49666 [0, 0, 2, 0, 2, -2, 1, -1, -1, 3] -farce -1.7 0.45826 [-2, -2, -1, -2, -2, -1, -1, -2, -2, -2] -fascinate 2.4 1.0198 [4, 2, 2, 3, 1, 2, 3, 4, 1, 2] -fascinated 2.1 0.83066 [2, 2, 2, 3, 1, 2, 4, 2, 1, 2] -fascinates 2.0 0.44721 [2, 3, 1, 2, 2, 2, 2, 2, 2, 2] -fascination 2.2 0.74833 [2, 1, 3, 3, 2, 3, 2, 2, 1, 3] -fascinating 2.5 0.92195 [3, 3, 3, 4, 2, 3, 2, 3, 1, 1] -fascist -2.6 0.8 [-3, -3, -2, -2, -2, -3, -1, -3, -4, -3] -fascists -0.8 1.6 [-2, -3, -1, 1, -1, 2, -3, 1, -1, -1] -fatal -2.5 1.62788 [-2, -3, -3, -4, -3, -3, 2, -4, -2, -3] -fatalism -0.6 1.8 [0, 0, -3, -4, -1, 1, 0, 2, -2, 1] -fatalisms -1.7 0.9 [-2, -4, -2, -2, -2, -1, -1, -1, -1, -1] -fatalist -0.5 1.56525 [0, 0, -1, -4, -1, 2, 0, 1, -2, 0] -fatalistic -1.0 1.34164 [-3, -1, -3, -1, 1, 0, 1, -2, -1, -1] -fatalists -1.2 0.87178 [0, -2, -1, -2, -1, 0, -1, -1, -3, -1] -fatalities -2.9 0.7 [-2, -3, -3, -4, -2, -2, -3, -4, -3, -3] -fatality -3.5 0.67082 [-2, -4, -4, -4, -3, -4, -4, -4, -3, -3] -fatally -3.2 0.74833 [-3, -2, -4, -2, -3, -4, -4, -3, -3, -4] -fatigue -1.0 0.7746 [-2, -1, -1, -1, 1, -1, -2, -1, -1, -1] -fatigued -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -2, -2, -1, -1] -fatigues -1.3 1.00499 [-2, -1, -1, -2, -1, 1, -3, -2, -1, -1] -fatiguing -1.2 0.6 [-1, -2, -2, -1, 0, -2, -1, -1, -1, -1] -fatiguingly -1.5 0.80623 [-1, 0, -3, -2, -1, -1, -2, -1, -2, -2] -fault -1.7 0.64031 [-1, -2, -2, -2, -1, -1, -2, -2, -1, -3] -faulted -1.4 0.4899 [-2, -2, -1, -2, -1, -1, -1, -1, -2, -1] -faultfinder -0.8 1.32665 [-3, -2, -2, -1, 1, 1, 1, -1, -1, -1] -faultfinders -1.5 0.80623 [-2, -2, -1, -3, -2, -1, 0, -1, -1, -2] -faultfinding -2.1 0.83066 [-3, -2, -1, -2, -1, -3, -1, -3, -2, -3] -faultier -2.1 0.7 [-3, -3, -3, -1, -2, -2, -2, -1, -2, -2] -faultiest -2.1 0.53852 [-3, -1, -2, -2, -2, -2, -2, -2, -3, -2] -faultily -2.0 0.89443 [-2, -2, -2, -3, -2, -1, 0, -3, -2, -3] -faultiness -1.5 0.92195 [-1, -1, -3, -1, 0, -2, -3, -1, -2, -1] -faulting -1.4 0.4899 [-1, -2, -1, -1, -2, -1, -1, -2, -1, -2] -faultless 2.0 1.41421 [3, 2, 0, 1, 3, 1, 4, 0, 2, 4] -faultlessly 2.0 1.09545 [3, 3, 2, 2, 0, 3, 2, 3, 2, 0] -faultlessness 1.1 2.02237 [3, 2, 4, 2, 1, -1, -2, 1, -2, 3] -faults -2.1 0.3 [-2, -2, -2, -2, -2, -2, -3, -2, -2, -2] -faulty -1.3 0.45826 [-1, -1, -1, -1, -2, -2, -2, -1, -1, -1] -fav 2.0 0.63246 [2, 1, 2, 2, 2, 1, 3, 2, 3, 2] -fave 1.9 1.51327 [1, 3, -2, 3, 2, 3, 1, 3, 2, 3] -favor 1.7 0.64031 [2, 2, 2, 2, 2, 2, 0, 1, 2, 2] -favorable 2.1 0.7 [2, 1, 2, 3, 1, 2, 2, 3, 3, 2] -favorableness 2.2 0.87178 [1, 2, 1, 3, 2, 2, 2, 4, 2, 3] -favorably 1.6 0.66332 [2, 1, 1, 1, 1, 2, 2, 2, 3, 1] -favored 1.8 0.6 [2, 2, 1, 1, 3, 1, 2, 2, 2, 2] -favorer 1.3 1.18743 [2, 2, 1, 1, -2, 1, 2, 2, 2, 2] -favorers 1.4 0.4899 [2, 2, 1, 2, 1, 2, 1, 1, 1, 1] -favoring 1.8 0.6 [2, 1, 1, 3, 2, 2, 1, 2, 2, 2] -favorite 2.0 0.63246 [2, 1, 3, 1, 2, 2, 2, 3, 2, 2] -favorited 1.7 0.45826 [1, 2, 2, 1, 2, 2, 2, 1, 2, 2] -favorites 1.8 0.6 [1, 2, 1, 3, 2, 2, 1, 2, 2, 2] -favoritism 0.7 1.79165 [-1, 3, -1, -1, 2, -2, 2, 2, 3, 0] -favoritisms 0.7 0.9 [0, 2, -1, 1, 0, 0, 1, 1, 2, 1] -favors 1.0 0.7746 [2, 1, 1, 1, 2, 1, -1, 1, 1, 1] -favour 1.9 0.53852 [2, 1, 2, 3, 2, 2, 2, 1, 2, 2] -favoured 1.8 0.4 [1, 2, 2, 2, 1, 2, 2, 2, 2, 2] -favourer 1.6 0.4899 [1, 2, 2, 1, 1, 2, 2, 2, 1, 2] -favourers 1.6 0.66332 [2, 2, 1, 0, 2, 2, 1, 2, 2, 2] -favouring 1.3 0.45826 [1, 2, 1, 1, 2, 1, 1, 1, 1, 2] -favours 1.8 0.6 [3, 2, 1, 2, 1, 2, 2, 1, 2, 2] -fear -2.2 0.6 [-2, -3, -2, -3, -2, -1, -2, -3, -2, -2] -feared -2.2 0.6 [-2, -3, -2, -1, -3, -2, -3, -2, -2, -2] -fearful -2.2 0.87178 [-2, -2, -3, -1, -2, -3, -2, -2, -4, -1] -fearfuller -2.2 0.87178 [-1, -4, -2, -2, -1, -2, -3, -2, -3, -2] -fearfullest -2.5 1.0247 [-3, -3, -4, -4, -3, -2, -1, -2, -2, -1] -fearfully -2.2 0.87178 [-2, -2, -2, -1, -1, -3, -4, -2, -3, -2] -fearfulness -1.8 0.87178 [-1, -1, -1, -2, -2, -1, -4, -2, -2, -2] -fearing -2.7 0.9 [-3, -3, -3, -2, -4, -2, -1, -3, -2, -4] -fearless 1.9 0.83066 [3, 3, 3, 2, 2, 2, 1, 1, 1, 1] -fearlessly 1.1 1.22066 [2, -2, 1, 1, 2, 1, 3, 1, 1, 1] -fearlessness 1.1 1.13578 [3, 2, -1, 2, 0, 2, 1, 1, 1, 0] -fears -1.8 0.6 [-2, -2, -3, -2, -2, -1, -1, -2, -1, -2] -fearsome -1.7 0.64031 [-3, -1, -1, -2, -1, -2, -2, -2, -1, -2] -fed up -1.8 1.249 [-2, -2, -3, -4, -2, -2, -1, -2, -1, 1] -feeble -1.2 1.249 [-2, -2, -3, -1, -1, -2, -1, -1, 2, -1] -feeling 0.5 1.0247 [0, 0, 0, 3, 0, 2, 0, 0, 0, 0] -felonies -2.5 0.5 [-3, -3, -3, -2, -2, -2, -2, -3, -2, -3] -felony -2.5 1.36015 [-4, -3, -4, -2, -3, -3, -2, -3, -2, 1] -ferocious -0.4 1.56205 [1, 1, -2, -3, -1, 2, 1, -2, -1, 0] -ferociously -1.1 1.86815 [-3, -4, 2, -2, 0, -2, -1, -1, 2, -2] -ferociousness -1.0 1.89737 [2, -4, -2, 0, -2, -3, -1, 0, 2, -2] -ferocities -1.0 1.54919 [1, 0, -2, 0, 0, -3, 0, 0, -2, -4] -ferocity -0.7 1.67631 [-2, -1, -4, 0, 0, -3, 1, 1, 0, 1] -fervent 1.1 1.44568 [3, 0, 0, 1, -2, 2, 2, 3, 1, 1] -fervid 0.5 2.20227 [4, -2, 1, -2, 4, 0, -1, 2, 1, -2] -festival 2.2 0.6 [2, 2, 3, 2, 3, 2, 2, 2, 3, 1] -festivalgoer 1.3 1.1 [1, 3, 2, 3, 0, 0, 1, 2, 0, 1] -festivalgoers 1.2 0.9798 [2, 2, 0, 0, 0, 2, 2, 0, 2, 2] -festivals 1.5 1.11803 [2, 0, 2, 3, 0, 3, 2, 1, 2, 0] -festive 2.0 0.63246 [2, 3, 2, 3, 1, 2, 2, 2, 1, 2] -festively 2.2 0.6 [2, 2, 3, 1, 3, 2, 3, 2, 2, 2] -festiveness 2.4 0.8 [1, 3, 2, 1, 3, 3, 3, 3, 2, 3] -festivities 2.1 0.7 [1, 2, 1, 2, 3, 2, 3, 3, 2, 2] -festivity 2.2 1.07703 [3, 3, 3, 0, 2, 1, 3, 3, 1, 3] -feud -1.4 0.66332 [-3, -2, -1, -2, -1, -1, -1, -1, -1, -1] -feudal -0.8 0.87178 [-1, -2, -2, 0, 0, 0, -2, -1, 0, 0] -feudalism -0.9 1.37477 [-2, -3, -2, -3, 0, 0, 1, 0, 0, 0] -feudalisms -0.2 0.74833 [0, 0, 0, 0, 0, 0, -1, 0, -2, 1] -feudalist -0.9 1.13578 [-2, -2, -2, -2, 0, 0, 1, 0, 0, -2] -feudalistic -1.1 0.7 [0, -1, -1, 0, -2, -1, -2, -1, -2, -1] -feudalities -0.4 1.0198 [-1, 0, -1, -2, -1, 0, -1, 0, 0, 2] -feudality -0.5 1.28452 [1, -1, 0, -1, 1, 0, -3, -2, 1, -1] -feudalization -0.3 1.18743 [-2, -2, 0, 0, 2, 0, -1, -1, 1, 0] -feudalize -0.5 0.92195 [-1, 0, -1, 0, -2, 0, 1, 0, 0, -2] -feudalized -0.8 1.07703 [-1, -1, -3, 0, 0, 0, 1, -1, -2, -1] -feudalizes -0.1 0.53852 [0, 0, -1, 0, -1, 0, 0, 0, 1, 0] -feudalizing -0.7 1.34536 [2, -2, -1, 0, 0, -2, -1, -2, 1, -2] -feudally -0.6 0.66332 [0, 0, -1, -1, 0, -1, 0, -1, -2, 0] -feudaries -0.3 0.9 [0, 0, 0, -2, -2, 0, 0, 0, 0, 1] -feudary -0.8 0.74833 [0, 0, -1, -1, -2, 0, -1, 0, -2, -1] -feudatories -0.5 0.92195 [-3, 0, -1, 0, 0, 0, 0, -1, 0, 0] -feudatory -0.1 0.83066 [-2, 0, 0, 0, 1, 0, 1, -1, 0, 0] -feuded -2.2 0.6 [-2, -2, -2, -1, -3, -3, -2, -3, -2, -2] -feuding -1.6 0.66332 [-2, -1, -2, -2, -1, -1, -3, -1, -2, -1] -feudist -1.1 0.83066 [-2, 0, -3, -1, -1, -1, 0, -1, -1, -1] -feudists -0.7 0.9 [0, 0, -1, 0, 0, -2, -2, 0, -2, 0] -feuds -1.4 1.0198 [-2, -2, -2, -1, -1, -1, -3, -2, 1, -1] -fiasco -2.3 0.64031 [-2, -2, -3, -3, -2, -3, -1, -3, -2, -2] -fidgety -1.4 0.66332 [-1, -2, -2, 0, -1, -1, -2, -1, -2, -2] -fiery -1.4 0.91652 [0, -1, -1, -2, -2, 0, -3, -1, -2, -2] -fiesta 2.1 0.7 [3, 2, 1, 2, 2, 1, 3, 3, 2, 2] -fiestas 1.5 1.0247 [3, 0, 3, 1, 0, 2, 2, 1, 2, 1] -fight -1.6 1.56205 [-1, -2, -3, -3, -1, 2, -4, -1, -2, -1] -fighter 0.6 1.11355 [3, 0, 0, -1, 1, 0, 1, 0, 2, 0] -fighters -0.2 1.46969 [-1, 2, -2, 0, 2, 0, -2, -2, 0, 1] -fighting -1.5 1.11803 [-1, -2, -3, -2, -2, -2, 0, -3, 0, 0] -fightings -1.9 0.53852 [-2, -3, -1, -2, -2, -2, -2, -1, -2, -2] -fights -1.7 0.64031 [-2, -2, -1, -2, -2, -1, -3, -1, -1, -2] -fine 0.8 0.6 [1, 0, 1, 2, 1, 1, 1, 1, 0, 0] -fire -1.4 1.49666 [-2, 0, -4, 0, -2, -1, -1, 0, -4, 0] -fired -2.6 0.91652 [-2, -3, -4, -3, -3, -1, -3, -3, -1, -3] -firing -1.4 0.8 [0, -1, -1, -1, -1, -2, -2, -3, -2, -1] -fit 1.5 1.0247 [2, 1, 2, 0, 4, 2, 1, 1, 1, 1] -fitness 1.1 0.9434 [0, 2, 1, 0, 1, 3, 2, 1, 0, 1] -flagship 0.4 0.91652 [0, 0, 0, 0, 0, 0, 0, 1, 3, 0] -flatter 0.4 1.42829 [-2, -2, 1, 2, 1, -1, 1, 2, 1, 1] -flattered 1.6 2.00998 [2, 3, 3, 1, 2, 3, 3, 1, 2, -4] -flatterer -0.3 1.9 [-4, 2, -1, 1, 2, 2, -2, -1, -1, -1] -flatterers 0.3 1.84662 [2, 1, -2, 1, 0, -4, 2, 1, 2, 0] -flatteries 1.2 1.16619 [2, 2, 3, 1, -1, 0, 0, 1, 2, 2] -flattering 1.3 2.19317 [3, 2, 2, 3, -4, 4, -1, 2, 1, 1] -flatteringly 1.0 1.61245 [2, 2, 1, 2, 1, -3, -1, 2, 2, 2] -flatters 0.6 2.10713 [1, 1, 2, 2, 3, -1, -2, 2, -4, 2] -flattery 0.4 1.49666 [1, -1, -2, 1, 3, -2, 1, 1, 1, 1] -flawless 2.3 2.14709 [4, 3, 4, 4, 1, 2, 4, 4, -2, -1] -flawlessly 0.8 1.83303 [-2, 2, 3, 1, 0, -2, 2, 2, -1, 3] -flees -0.7 1.18743 [-3, 0, -2, 0, -1, -1, -1, 1, -1, 1] -flexibilities 1.0 1.09545 [1, 3, 1, 0, 1, -1, 2, 0, 2, 1] -flexibility 1.4 0.8 [2, 2, 0, 2, 1, 2, 1, 0, 2, 2] -flexible 0.9 0.83066 [2, 1, 0, 0, 1, 2, 0, 1, 2, 0] -flexibly 1.3 0.78102 [2, 1, 0, 0, 1, 2, 2, 1, 2, 2] -flirtation 1.7 0.64031 [3, 1, 1, 2, 2, 1, 2, 1, 2, 2] -flirtations -0.1 1.64012 [0, -4, 1, 0, 0, -2, 1, 1, 2, 0] -flirtatious 0.5 2.5 [-4, 1, 2, 1, 2, -3, 3, 4, -2, 1] -flirtatiously -0.1 1.86815 [2, -1, 1, 2, 1, 1, -3, -3, -2, 1] -flirtatiousness 0.6 1.85472 [1, 0, 2, 1, 1, 2, 1, -4, -1, 3] -flirted -0.2 1.98997 [1, 2, -1, 1, 1, 1, -3, -3, -3, 2] -flirter -0.4 1.85472 [1, 2, -1, 0, 1, 1, -3, -3, -3, 1] -flirters 0.6 2.10713 [1, 4, 0, 1, 2, 1, -4, 2, 1, -2] -flirtier -0.1 1.37477 [-2, 1, 1, 1, 1, -2, 1, -1, -2, 1] -flirtiest 0.4 1.74356 [3, 1, 2, 1, 1, -1, -3, -2, 1, 1] -flirting 0.8 1.83303 [1, 2, 2, 2, 2, -1, 1, 2, -4, 1] -flirts 0.7 1.18743 [2, -1, 2, 1, 1, -2, 1, 1, 1, 1] -flirty 0.6 1.35647 [2, -2, 2, 1, 1, -2, 1, 1, 1, 1] -flop -1.4 0.4899 [-1, -1, -2, -1, -2, -1, -2, -1, -2, -1] -flops -1.4 0.8 [-2, -2, -2, 0, -2, -1, -2, -1, 0, -2] -flu -1.6 0.8 [0, -2, -1, -2, -1, -2, -3, -1, -2, -2] -flunk -1.3 0.78102 [-2, -1, -1, -3, -1, -1, 0, -2, -1, -1] -flunked -2.1 0.9434 [-4, -1, -3, -2, -1, -1, -3, -2, -2, -2] -flunker -1.9 1.04403 [-4, -1, -3, -2, -1, -1, -3, -2, -1, -1] -flunkers -1.6 0.8 [-2, -1, -3, -2, 0, -1, -1, -2, -2, -2] -flunkey -1.8 0.9798 [-4, -1, -3, -2, -1, -1, -2, -2, -1, -1] -flunkeys -0.6 1.2 [-2, -1, -1, 2, -1, 0, -1, -2, 1, -1] -flunkies -1.4 1.11355 [-2, -2, 0, -3, 1, -2, -1, -2, -1, -2] -flunking -1.5 0.92195 [-2, -1, -1, -3, -1, -1, 0, -2, -3, -1] -flunks -1.8 1.32665 [0, -2, -3, -3, -2, -3, -2, -1, 1, -3] -flunky -1.8 1.4 [-2, -3, -3, -3, -2, -1, -2, -2, 2, -2] -flustered -1.0 1.18322 [-1, -1, -1, -1, -3, -2, 2, -1, -1, -1] -focused 1.6 0.91652 [2, 2, 1, 3, 0, 1, 1, 2, 3, 1] -foe -1.9 1.22066 [-1, -3, -2, -2, -2, -2, -4, 1, -2, -2] -foehns 0.2 0.4 [1, 0, 0, 0, 0, 0, 0, 0, 1, 0] -foeman -1.8 0.6 [-2, -3, -1, -2, -2, -2, -2, -1, -1, -2] -foemen -0.3 1.18743 [0, 0, -1, 0, 0, -2, -2, -1, 2, 1] -foes -2.0 0.89443 [-2, -1, -2, -2, -4, -3, -2, -1, -1, -2] -foetal -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] -foetid -2.3 1.41774 [-1, -3, 0, -2, -3, 0, -3, -3, -4, -4] -foetor -3.0 0.89443 [-3, -4, -2, -3, -3, -1, -4, -4, -3, -3] -foetors -2.1 1.04403 [-2, -3, -1, -3, -2, -2, 0, -4, -2, -2] -foetus 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] -foetuses 0.2 0.6 [2, 0, 0, 0, 0, 0, 0, 0, 0, 0] -fond 1.9 0.83066 [2, 3, 2, 3, 1, 1, 3, 2, 1, 1] -fondly 1.9 0.7 [1, 2, 3, 2, 2, 3, 2, 1, 1, 2] -fondness 2.5 0.67082 [3, 2, 2, 2, 2, 3, 4, 3, 2, 2] -fool -1.9 0.53852 [-2, -2, -2, -2, -1, -2, -2, -3, -1, -2] -fooled -1.6 0.4899 [-2, -1, -1, -2, -2, -1, -2, -1, -2, -2] -fooleries -1.8 1.07703 [-1, -2, 0, -2, -1, -2, -4, -2, -3, -1] -foolery -1.8 0.87178 [-2, -2, -3, 0, -3, -1, -2, -2, -2, -1] -foolfish -0.8 0.87178 [-1, 0, -1, -2, 0, 0, 0, -2, 0, -2] -foolfishes -0.4 0.4899 [-1, -1, -1, 0, 0, 0, 0, 0, 0, -1] -foolhardier -1.5 0.67082 [-2, -1, -2, -1, -2, -1, -2, -2, 0, -2] -foolhardiest -1.3 0.64031 [0, -2, -1, -1, -1, -1, -2, -1, -2, -2] -foolhardily -1.0 1.41421 [-1, -1, -2, -2, -2, -2, -1, -1, 3, -1] -foolhardiness -1.6 0.66332 [-3, -1, -1, -1, -2, -1, -2, -2, -2, -1] -foolhardy -1.4 0.4899 [-2, -2, -1, -1, -1, -2, -1, -1, -2, -1] -fooling -1.7 0.64031 [-2, -2, -1, -2, -2, -2, -1, -3, -1, -1] -foolish -1.1 0.83066 [-1, -1, -1, -2, -2, -1, -1, -2, 1, -1] -foolisher -1.7 0.64031 [-2, -1, -2, -1, -2, -1, -2, -3, -2, -1] -foolishest -1.4 1.28062 [-2, 1, -2, -3, -2, -2, -1, 1, -2, -2] -foolishly -1.8 0.6 [-2, -1, -2, -2, -3, -1, -1, -2, -2, -2] -foolishness -1.8 0.6 [-1, -1, -2, -2, -2, -1, -3, -2, -2, -2] -foolishnesses -2.0 0.89443 [-1, -1, -1, -2, -3, -1, -3, -3, -2, -3] -foolproof 1.6 0.91652 [2, 1, 3, 1, 1, 0, 1, 2, 2, 3] -fools -2.2 0.74833 [-2, -4, -2, -2, -1, -2, -2, -2, -2, -3] -foolscaps -0.8 0.6 [0, -1, -1, -1, 0, -1, -2, 0, -1, -1] -forbid -1.3 0.78102 [-2, -2, -1, -1, -1, -1, 0, -1, -1, -3] -forbiddance -1.4 1.35647 [-3, -1, -2, -3, -1, 2, -1, -2, -2, -1] -forbiddances -1.0 2.0 [-2, 3, 1, -2, -4, -2, -3, -1, -1, 1] -forbidden -1.8 0.74833 [-1, -2, -2, -2, -1, -1, -3, -3, -2, -1] -forbidder -1.6 0.66332 [-1, -2, -2, -2, -2, 0, -2, -2, -2, -1] -forbidders -1.5 0.80623 [-1, -2, -1, -3, -2, -2, 0, -2, -1, -1] -forbidding -1.9 0.7 [-3, -1, -1, -2, -2, -1, -3, -2, -2, -2] -forbiddingly -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -3, -2, -1, -2] -forbids -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -2, -1, -1] -forced -2.0 0.63246 [-1, -2, -3, -3, -1, -2, -2, -2, -2, -2] -foreclosure -0.5 1.43178 [-1, -2, -3, 2, -1, 1, -1, 0, 1, -1] -foreclosures -2.4 0.66332 [-3, -2, -3, -2, -3, -3, -1, -2, -2, -3] -forgave 1.4 0.91652 [2, 2, 1, 2, 1, -1, 1, 2, 2, 2] -forget -0.9 0.53852 [-1, -1, -1, -1, 0, -1, -1, 0, -2, -1] -forgetful -1.1 1.3 [-3, -1, -2, 1, 0, -2, 1, -1, -2, -2] -forgivable 1.7 0.64031 [2, 1, 2, 1, 2, 2, 1, 2, 3, 1] -forgivably 1.6 0.66332 [1, 1, 2, 1, 2, 2, 1, 2, 3, 1] -forgive 1.1 1.22066 [2, 1, 1, 3, 1, 1, 1, 2, -2, 1] -forgiven 1.6 0.66332 [2, 1, 1, 3, 2, 2, 1, 2, 1, 1] -forgiveness 1.1 1.22066 [2, 1, 1, 1, 3, 2, -2, 1, 1, 1] -forgiver 1.7 0.78102 [3, 1, 1, 3, 1, 2, 1, 2, 2, 1] -forgivers 1.2 0.6 [2, 1, 2, 1, 0, 1, 1, 2, 1, 1] -forgives 1.7 0.78102 [2, 1, 3, 1, 1, 3, 2, 1, 1, 2] -forgiving 1.9 0.7 [2, 3, 2, 1, 2, 3, 1, 1, 2, 2] -forgivingly 1.4 0.4899 [2, 1, 2, 1, 1, 1, 2, 1, 2, 1] -forgivingness 1.8 0.6 [3, 1, 2, 1, 2, 2, 2, 2, 2, 1] -forgotten -0.9 0.53852 [-1, 0, -1, 0, -1, -1, -1, -1, -2, -1] -fortunate 1.9 0.53852 [2, 2, 1, 1, 2, 2, 2, 3, 2, 2] -fought -1.3 0.78102 [-2, -1, -2, -1, 0, -1, -1, -1, -1, -3] -foughten -1.9 1.3 [-1, -3, 0, -2, -4, -3, -2, 0, -1, -3] -frantic -1.9 0.7 [-3, -2, -2, -1, -2, -1, -2, -3, -1, -2] -frantically -1.4 0.4899 [-2, -1, -2, -1, -1, -1, -1, -1, -2, -2] -franticness -0.7 1.18743 [-1, -2, 2, -1, -1, -1, 1, -2, -1, -1] -fraud -2.8 0.6 [-3, -3, -2, -3, -2, -3, -3, -2, -4, -3] -frauds -2.3 0.45826 [-2, -2, -2, -3, -3, -2, -3, -2, -2, -2] -fraudster -2.5 0.92195 [-4, -1, -2, -2, -4, -2, -3, -2, -3, -2] -fraudsters -2.4 0.91652 [-4, -3, -3, -3, -1, -2, -2, -2, -1, -3] -fraudulence -2.3 0.78102 [-3, -2, -2, -3, -2, -1, -2, -4, -2, -2] -fraudulent -2.2 0.6 [-2, -3, -2, -2, -2, -1, -3, -3, -2, -2] -freak -1.9 0.9434 [-3, -2, -1, -2, -4, -1, -2, -1, -2, -1] -freaked -1.2 1.32665 [-2, -2, 1, 0, -1, -2, -3, 1, -2, -2] -freakier -1.3 1.1 [-3, -2, -2, 1, -2, -2, -1, 0, -1, -1] -freakiest -1.6 1.0198 [-2, -3, -3, -3, -1, -1, -1, 0, -1, -1] -freakiness -1.4 0.8 [-1, -1, -1, -2, -3, 0, -2, -1, -2, -1] -freaking -1.8 1.16619 [0, -4, -3, -2, -3, -1, -1, -1, -2, -1] -freakish -2.1 1.37477 [-1, -3, -2, -1, -2, -3, -4, -3, 1, -3] -freakishly -0.8 1.249 [-2, -2, 1, -2, -1, 1, -1, 1, -1, -2] -freakishness -1.4 1.68523 [-2, -4, -1, 0, -1, -2, 1, 1, -4, -2] -freakout -1.8 1.6 [-3, 1, -3, -2, -3, -1, -4, 1, -2, -2] -freakouts -1.5 0.92195 [-2, -2, -1, -1, -2, -2, -2, 1, -2, -2] -freaks -0.4 1.35647 [2, 0, -2, -1, 0, 1, -2, 1, -1, -2] -freaky -1.5 1.20416 [-2, -2, -2, -2, -1, -2, 2, -2, -2, -2] -free 2.3 0.9 [2, 4, 3, 3, 2, 1, 2, 3, 1, 2] -freebase -0.1 1.44568 [2, 0, -2, 1, -3, 0, -1, 0, 1, 1] -freebased 0.8 1.16619 [2, 0, -1, 0, 3, 0, 1, 2, 1, 0] -freebases 0.8 1.249 [2, 0, -1, 0, 2, 0, 0, 3, 2, 0] -freebasing -0.4 1.56205 [-4, -2, 0, 0, 1, 2, 0, -1, 0, 0] -freebee 1.3 0.78102 [1, 2, 1, 1, 1, 0, 3, 2, 1, 1] -freebees 1.3 1.26886 [2, 2, -2, 2, 2, 2, 0, 2, 1, 2] -freebie 1.8 0.9798 [2, 1, 3, 2, 2, 4, 1, 1, 1, 1] -freebies 1.8 0.9798 [2, 3, 1, 1, 2, 4, 1, 1, 2, 1] -freeboard 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 0, 0, 2] -freeboards 0.7 0.9 [0, 0, 0, 1, 0, 0, 2, 2, 2, 0] -freeboot -0.7 1.67631 [1, -2, -3, -2, -1, -2, -1, 2, -1, 2] -freebooter -1.7 1.00499 [-2, -2, -3, -3, -2, -2, 0, -1, 0, -2] -freebooters -0.2 1.32665 [-1, -3, 1, 0, -2, 1, 0, 1, 0, 1] -freebooting -0.8 1.249 [-2, -2, -1, 2, -1, -1, -1, 1, -2, -1] -freeborn 1.2 0.74833 [1, 0, 3, 1, 1, 1, 1, 1, 2, 1] -freed 1.7 1.34536 [-2, 2, 3, 2, 2, 2, 3, 1, 2, 2] -freedman 1.1 0.9434 [1, 2, 0, 1, 2, 1, 3, 0, 0, 1] -freedmen 0.7 0.78102 [1, 2, 1, 2, 0, 1, 0, 0, 0, 0] -freedom 3.2 0.9798 [4, 4, 1, 3, 2, 4, 4, 3, 3, 4] -freedoms 1.2 1.07703 [2, 1, 1, 3, 2, 1, 2, 1, -1, 0] -freedwoman 1.6 1.74356 [3, 2, 0, 4, 4, 3, 1, -1, 0, 0] -freedwomen 1.3 0.78102 [2, 0, 2, 0, 2, 1, 1, 1, 2, 2] -freeform 0.9 0.83066 [0, 0, 0, 2, 1, 2, 1, 1, 2, 0] -freehand 0.5 0.80623 [0, 0, 0, 1, 0, 2, 0, 2, 0, 0] -freehanded 1.4 0.91652 [3, 0, 0, 2, 1, 2, 2, 1, 2, 1] -freehearted 1.5 0.67082 [2, 0, 1, 2, 2, 2, 2, 1, 1, 2] -freehold 0.7 0.78102 [1, 1, 0, 0, 2, 0, 2, 0, 1, 0] -freeholder 0.5 0.5 [1, 1, 0, 0, 0, 1, 1, 0, 1, 0] -freeholders 0.1 0.83066 [0, 0, 1, 0, 0, 1, 0, -2, 0, 1] -freeholds 1.0 0.63246 [1, 0, 2, 0, 1, 2, 1, 1, 1, 1] -freeing 2.1 1.04403 [2, 1, 1, 1, 4, 2, 2, 4, 2, 2] -freelance 1.2 1.66132 [3, 0, 0, 0, 0, 1, 4, 0, 4, 0] -freelanced 0.7 1.00499 [3, 0, 0, 0, 0, 2, 1, 0, 1, 0] -freelancer 1.1 1.04403 [2, 0, 3, 2, 1, 0, 0, 0, 2, 1] -freelancers 0.4 0.66332 [0, 0, 0, 2, 0, 0, 0, 1, 1, 0] -freelances 0.7 0.9 [1, 0, 0, 0, 0, 2, 2, 0, 2, 0] -freelancing 0.4 0.66332 [2, 0, 0, 0, 1, 0, 0, 0, 1, 0] -freeload -1.9 1.04403 [-2, -3, -1, -2, -1, 0, -1, -3, -3, -3] -freeloaded -1.6 0.8 [-2, 0, -3, -1, -1, -2, -2, -2, -2, -1] -freeloader -0.7 1.00499 [-2, 0, -1, -2, -1, 1, -1, 1, -1, -1] -freeloaders -0.1 1.57797 [-2, -2, -1, 0, 0, 2, -2, 0, 2, 2] -freeloading -1.3 2.0025 [1, -2, -4, -2, -3, -3, 1, 2, 0, -3] -freeloads -1.3 0.9 [-1, -1, -2, -2, -2, 0, 0, -1, -1, -3] -freely 1.9 0.53852 [2, 1, 2, 2, 2, 3, 2, 2, 1, 2] -freeman 1.7 0.78102 [2, 2, 2, 1, 2, 0, 3, 1, 2, 2] -freemartin -0.5 0.92195 [0, 0, 0, -1, 0, -1, 0, 0, -3, 0] -freemasonries 0.7 0.78102 [0, 1, 0, 0, 0, 1, 1, 0, 2, 2] -freemasonry 0.3 0.64031 [1, 0, 2, 0, 0, 0, 0, 0, 0, 0] -freemen 1.5 0.67082 [1, 1, 0, 2, 2, 2, 2, 2, 1, 2] -freeness 1.6 0.66332 [1, 2, 3, 2, 2, 1, 1, 1, 2, 1] -freenesses 1.7 0.78102 [1, 2, 1, 2, 2, 2, 3, 2, 2, 0] -freer 1.1 0.7 [2, 2, 0, 2, 1, 1, 1, 0, 1, 1] -freers 1.0 0.89443 [0, 1, 1, 2, 3, 1, 0, 1, 0, 1] -frees 1.2 0.6 [1, 2, 0, 1, 1, 1, 2, 1, 1, 2] -freesia 0.4 0.91652 [0, 0, 3, 0, 1, 0, 0, 0, 0, 0] -freesias 0.4 0.66332 [0, 0, 0, 1, 1, 2, 0, 0, 0, 0] -freest 1.6 1.28062 [3, 4, 0, 3, 0, 1, 1, 2, 1, 1] -freestanding 1.1 0.83066 [2, 1, 1, 2, 0, 0, 0, 2, 1, 2] -freestyle 0.7 0.9 [2, 0, 1, 0, 2, 0, 0, 2, 0, 0] -freestyler 0.4 0.91652 [0, 0, 0, 0, 1, 0, 0, 0, 0, 3] -freestylers 0.8 0.87178 [2, 1, 0, 0, 0, 1, 0, 2, 2, 0] -freestyles 0.3 0.64031 [0, 0, 0, 0, 1, 0, 0, 0, 0, 2] -freethinker 1.0 0.63246 [1, 2, 1, 1, 2, 1, 0, 0, 1, 1] -freethinkers 1.0 0.7746 [1, 0, 0, 1, 2, 2, 1, 2, 0, 1] -freethinking 1.1 0.7 [1, 0, 1, 1, 2, 2, 0, 2, 1, 1] -freeware 0.7 1.48661 [1, 0, 0, 2, 4, 0, 1, -2, 1, 0] -freeway 0.2 0.6 [0, 0, 0, 0, 0, 0, 2, 0, 0, 0] -freewheel 0.5 1.11803 [2, 0, 1, 2, 0, -2, 0, 0, 1, 1] -freewheeled 0.3 0.78102 [1, 0, 0, 0, 0, 1, 2, -1, 0, 0] -freewheeler 0.2 0.87178 [-2, 1, 0, 0, 0, 1, 1, 1, 0, 0] -freewheelers -0.3 1.00499 [-2, 0, 0, 0, 2, -1, -1, 0, -1, 0] -freewheeling 0.5 1.11803 [-1, 2, 0, -1, 1, 2, 2, 0, 0, 0] -freewheelingly 0.8 0.87178 [1, 2, 0, 0, 1, 2, 1, -1, 1, 1] -freewheels 0.6 0.91652 [0, 3, 1, 1, 1, 0, 0, 0, 0, 0] -freewill 1.0 0.7746 [1, 1, 1, -1, 1, 1, 1, 2, 2, 1] -freewriting 0.8 1.07703 [0, 2, 0, 0, 1, 0, 3, 0, 2, 0] -freeze 0.2 0.9798 [-1, 0, 1, 1, -1, 0, 0, -1, 2, 1] -freezers -0.1 0.3 [0, 0, 0, -1, 0, 0, 0, 0, 0, 0] -freezes -0.1 1.13578 [0, -2, -2, 1, 0, 0, 0, 0, 2, 0] -freezing -0.4 1.28062 [-2, -1, -2, -2, 0, 0, 0, 1, 2, 0] -freezingly -1.6 0.4899 [-1, -2, -2, -1, -2, -2, -2, -2, -1, -1] -frenzy -1.3 1.48661 [-1, -1, -2, -2, 2, -4, -1, -2, 0, -2] -fresh 1.3 0.45826 [2, 2, 1, 1, 1, 1, 2, 1, 1, 1] -friend 2.2 0.6 [2, 2, 3, 2, 3, 3, 1, 2, 2, 2] -friended 1.7 0.78102 [2, 2, 1, 3, 1, 1, 2, 3, 1, 1] -friending 1.8 1.07703 [1, 4, 2, 0, 1, 3, 2, 2, 1, 2] -friendless -1.5 0.67082 [-1, -2, -2, -1, 0, -2, -1, -2, -2, -2] -friendlessness -0.3 2.05183 [-2, -2, 2, 1, -4, -1, 2, 1, -2, 2] -friendlier 2.0 0.63246 [3, 2, 2, 1, 2, 2, 2, 1, 3, 2] -friendlies 2.2 0.74833 [3, 2, 2, 3, 2, 2, 1, 3, 1, 3] -friendliest 2.6 0.91652 [3, 3, 1, 3, 2, 1, 3, 3, 4, 3] -friendlily 1.8 0.74833 [1, 2, 2, 1, 3, 1, 1, 2, 3, 2] -friendliness 2.0 0.7746 [3, 1, 3, 2, 2, 3, 2, 1, 2, 1] -friendly 2.2 0.6 [2, 1, 3, 3, 2, 2, 3, 2, 2, 2] -friends 2.1 0.53852 [3, 3, 2, 2, 2, 1, 2, 2, 2, 2] -friendship 1.9 0.53852 [1, 2, 2, 1, 3, 2, 2, 2, 2, 2] -friendships 1.6 0.91652 [2, 1, 1, 0, 3, 2, 2, 3, 1, 1] -fright -1.6 1.35647 [-2, -1, 0, -3, -2, -4, 1, -1, -2, -2] -frighted -1.4 0.91652 [0, -1, -1, -1, -2, -1, -3, -1, -1, -3] -frighten -1.4 0.8 [0, -1, -1, -1, -2, -1, -3, -2, -1, -2] -frightened -1.9 0.7 [-2, -3, -1, -1, -2, -2, -3, -1, -2, -2] -frightening -2.2 0.9798 [-1, -1, -4, -3, -3, -3, -2, -2, -1, -2] -frighteningly -2.1 0.7 [-2, -2, -2, -2, -4, -2, -1, -2, -2, -2] -frightens -1.7 0.78102 [-2, -1, -2, -1, -1, -1, -2, -3, -3, -1] -frightful -2.3 0.78102 [-2, -2, -2, -2, -3, -2, -3, -1, -4, -2] -frightfully -1.7 0.78102 [-1, -1, -1, -2, -2, -1, -2, -3, -1, -3] -frightfulness -1.9 0.7 [-1, -1, -2, -3, -3, -2, -1, -2, -2, -2] -frighting -1.5 0.67082 [-1, -2, -2, -3, -1, -1, -1, -1, -2, -1] -frights -1.1 0.83066 [-2, 0, -2, 0, -2, -1, 0, -1, -1, -2] -frisky 1.0 1.48324 [1, -2, 1, 1, 1, 3, 3, 2, -1, 1] -frowning -1.4 1.42829 [-1, -1, -1, -3, -3, 1, -2, -3, 1, -2] -frustrate -2.0 0.63246 [-2, -3, -2, -1, -3, -2, -2, -1, -2, -2] -frustrated -2.4 0.66332 [-2, -1, -3, -3, -2, -2, -3, -2, -3, -3] -frustrates -1.9 0.7 [-1, -1, -3, -2, -1, -2, -2, -2, -3, -2] -frustrating -1.9 0.83066 [-2, -2, -1, -1, -1, -2, -2, -2, -4, -2] -frustratingly -2.0 0.63246 [-1, -3, -2, -2, -2, -2, -2, -3, -2, -1] -frustration -2.1 0.7 [-3, -2, -3, -2, -1, -2, -3, -2, -1, -2] -frustrations -2.0 0.7746 [-2, -1, -1, -3, -2, -2, -3, -3, -2, -1] -fuck -2.5 1.20416 [0, -3, -4, -3, -2, -3, -4, -1, -2, -3] -fucked -3.4 0.66332 [-2, -3, -4, -3, -4, -4, -3, -4, -3, -4] -fucker -3.3 0.78102 [-3, -4, -4, -2, -3, -4, -4, -2, -4, -3] -fuckers -2.9 0.9434 [-3, -3, -4, -3, -4, -4, -2, -1, -2, -3] -fuckface -3.2 1.07703 [-4, -2, -4, -1, -4, -4, -2, -4, -3, -4] -fuckhead -3.1 1.04403 [-1, -4, -2, -4, -3, -3, -2, -4, -4, -4] -fucks -2.1 1.13578 [-3, -2, -1, -1, -1, -2, -4, -2, -4, -1] -fucktard -3.1 0.9434 [-4, -4, -4, -3, -4, -2, -4, -2, -2, -2] -fud -1.1 1.37477 [-1, -3, -1, -1, -3, -2, 2, 0, -1, -1] -fuked -2.5 0.92195 [-2, -3, -3, -3, -3, -3, 0, -3, -3, -2] -fuking -3.2 0.9798 [-4, -1, -3, -4, -3, -2, -4, -3, -4, -4] -fulfill 1.9 1.04403 [1, 1, 2, 4, 1, 1, 2, 1, 3, 3] -fulfilled 1.8 0.87178 [1, 2, 1, 0, 2, 2, 3, 2, 2, 3] -fulfills 1.0 1.09545 [2, 1, 1, 1, 1, -2, 2, 2, 1, 1] -fume -1.2 1.16619 [0, 0, 0, -2, -3, -2, -1, -3, -1, 0] -fumed -1.8 0.87178 [-3, -2, -3, -2, -2, 0, -2, -1, -1, -2] -fumeless 0.3 0.64031 [0, 0, 0, 1, 0, 0, 0, 2, 0, 0] -fumelike -0.7 1.18743 [0, 0, -3, 0, 0, -2, -1, -2, 1, 0] -fumer 0.7 0.9 [2, 1, 0, 1, 0, 2, 0, -1, 1, 1] -fumers -0.8 0.6 [0, -1, -1, -2, -1, 0, 0, -1, -1, -1] -fumes -0.1 1.13578 [0, -2, 0, 0, -1, 1, -1, -1, 1, 2] -fumet 0.4 1.0198 [2, 0, 0, -1, 0, 1, -1, 0, 2, 1] -fumets -0.4 0.66332 [0, -1, 0, -1, 0, 0, -2, 0, 0, 0] -fumette -0.6 1.11355 [-2, -2, 0, -1, -1, 2, 0, 0, -1, -1] -fuming -2.7 0.64031 [-2, -3, -3, -2, -3, -4, -3, -2, -2, -3] -fun 2.3 0.45826 [2, 3, 2, 3, 2, 2, 3, 2, 2, 2] -funeral -1.5 1.74642 [-2, -3, -2, -1, -3, -1, -4, 1, 2, -2] -funerals -1.6 2.2891 [-3, -4, -1, -4, 2, -3, -3, 2, 1, -3] -funky -0.4 1.62481 [0, -1, 2, -1, 2, 0, -4, -1, 0, -1] -funned 2.3 0.9 [2, 3, 3, 4, 1, 2, 2, 2, 3, 1] -funnel 0.1 0.53852 [1, 0, 0, 0, 0, -1, 0, 0, 1, 0] -funneled 0.1 0.3 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] -funnelform 0.5 0.80623 [0, 0, 1, 0, 0, 0, 0, 2, 2, 0] -funneling -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] -funnelled -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] -funnelling 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] -funnels 0.4 0.66332 [0, 0, 0, 1, 0, 0, 0, 0, 2, 1] -funner 2.2 0.74833 [2, 2, 3, 4, 1, 2, 2, 2, 2, 2] -funnest 2.9 0.7 [4, 3, 4, 3, 2, 3, 2, 3, 2, 3] -funnier 1.7 1.00499 [2, 2, -1, 2, 2, 2, 3, 1, 2, 2] -funnies 1.3 1.00499 [2, 1, -1, 2, 1, 2, 3, 1, 1, 1] -funniest 2.6 0.8 [3, 3, 3, 3, 2, 2, 1, 2, 4, 3] -funnily 1.9 0.53852 [2, 3, 1, 2, 2, 2, 2, 1, 2, 2] -funniness 1.8 0.9798 [3, 2, 3, 2, 2, 1, 3, 0, 1, 1] -funninesses 1.6 0.91652 [1, 3, 0, 3, 1, 2, 1, 2, 2, 1] -funning 1.8 0.9798 [2, 2, 1, 2, 1, 4, 0, 2, 2, 2] -funny 1.9 0.53852 [3, 2, 2, 1, 2, 2, 1, 2, 2, 2] -funnyman 1.4 0.4899 [2, 2, 1, 2, 1, 1, 1, 1, 2, 1] -funnymen 1.3 1.1 [2, 1, 1, 0, 0, 3, 3, 1, 2, 0] -furious -2.7 1.41774 [-3, -3, -3, -4, -4, -4, 1, -2, -3, -2] -furiously -1.9 1.04403 [-2, -2, -4, -2, -1, -2, -1, -3, 0, -2] -fury -2.7 0.78102 [-4, -3, -2, -2, -2, -3, -4, -2, -3, -2] -futile -1.9 0.83066 [0, -3, -2, -2, -2, -2, -3, -1, -2, -2] -gag -1.4 1.0198 [-2, -2, -1, -2, 0, -2, -3, 0, 0, -2] -gagged -1.3 1.55242 [-2, -2, -1, -2, 2, -3, -1, -3, 1, -2] -gain 2.4 0.4899 [2, 3, 2, 2, 3, 2, 3, 2, 3, 2] -gained 1.6 0.66332 [2, 1, 2, 1, 1, 3, 2, 1, 2, 1] -gaining 1.8 0.4 [1, 2, 2, 2, 1, 2, 2, 2, 2, 2] -gains 1.4 0.4899 [1, 2, 1, 2, 2, 2, 1, 1, 1, 1] -gallant 1.7 1.1 [4, 0, 3, 1, 1, 2, 2, 2, 1, 1] -gallantly 1.9 0.53852 [2, 2, 3, 2, 2, 2, 2, 1, 2, 1] -gallantry 2.6 0.8 [3, 3, 1, 2, 2, 3, 4, 2, 3, 3] -geek -0.8 0.9798 [0, 0, 0, -2, -3, -1, -1, 0, 0, -1] -geekier 0.2 1.4 [0, 3, -1, -1, -1, 1, 2, 1, -1, -1] -geekiest -0.1 0.9434 [1, -1, -1, -1, -1, 1, 1, 1, 0, -1] -geeks -0.4 0.91652 [0, 0, -1, 0, 0, 0, 0, 0, -3, 0] -geeky -0.6 0.91652 [0, 0, -1, 0, -1, 0, -1, 0, -3, 0] -generosities 2.6 0.4899 [3, 3, 2, 3, 2, 3, 2, 3, 2, 3] -generosity 2.3 0.64031 [3, 1, 2, 2, 3, 2, 3, 3, 2, 2] -generous 2.3 0.78102 [3, 2, 4, 2, 2, 1, 2, 3, 2, 2] -generously 1.8 0.74833 [3, 3, 2, 1, 2, 1, 1, 2, 1, 2] -generousness 2.4 0.91652 [3, 2, 3, 1, 3, 4, 3, 2, 2, 1] -genial 1.8 0.6 [3, 1, 2, 1, 2, 2, 1, 2, 2, 2] -gentle 1.9 0.53852 [2, 2, 2, 1, 2, 3, 2, 2, 1, 2] -gentler 1.4 0.4899 [2, 1, 1, 1, 1, 2, 2, 1, 2, 1] -gentlest 1.8 0.4 [2, 1, 2, 2, 2, 1, 2, 2, 2, 2] -gently 2.0 0.7746 [2, 2, 2, 1, 1, 3, 3, 2, 1, 3] -ghost -1.3 1.34536 [-2, 0, 0, 0, 0, -3, -2, -3, 0, -3] -giddy -0.6 1.62481 [-2, -2, 3, -1, -1, -1, -1, -2, 2, -1] -gift 1.9 0.53852 [2, 1, 2, 2, 2, 1, 2, 3, 2, 2] -giggle 1.8 0.9798 [2, 2, 2, 2, 2, 3, 2, -1, 2, 2] -giggled 1.5 1.20416 [1, 3, 1, 3, 3, 1, 1, -1, 2, 1] -giggler 0.6 0.8 [1, 1, 1, 1, -1, 1, 1, 1, -1, 1] -gigglers 1.4 0.4899 [1, 2, 2, 1, 2, 1, 1, 1, 1, 2] -giggles 0.8 1.249 [1, 2, 2, 1, -1, 1, 1, 2, -2, 1] -gigglier 1.0 1.09545 [2, 1, 1, 2, 2, 1, -1, 2, 1, -1] -giggliest 1.7 1.26886 [4, 2, 1, 2, 1, 3, 2, 2, -1, 1] -giggling 1.5 0.5 [2, 2, 1, 2, 2, 1, 1, 1, 1, 2] -gigglingly 1.1 1.37477 [1, 2, 1, 1, -1, 2, 1, -1, 4, 1] -giggly 1.0 1.41421 [1, 2, -2, 1, 2, 3, 1, -1, 2, 1] -giver 1.4 0.66332 [1, 2, 2, 0, 1, 2, 1, 2, 1, 2] -givers 1.7 1.34536 [2, -1, 3, 3, 3, 1, 1, 2, 0, 3] -giving 1.4 1.0198 [1, 1, 3, 1, 1, 2, 3, 0, 2, 0] -glad 2.0 0.63246 [3, 2, 1, 2, 2, 2, 1, 3, 2, 2] -gladly 1.4 0.4899 [2, 2, 1, 2, 1, 1, 2, 1, 1, 1] -glamor 2.1 0.9434 [1, 2, 2, 2, 1, 3, 2, 4, 3, 1] -glamorise 1.3 1.1 [0, 1, 4, 1, 0, 2, 1, 2, 1, 1] -glamorised 1.8 0.74833 [1, 2, 2, 2, 2, 2, 0, 2, 3, 2] -glamorises 2.1 1.04403 [1, 3, 2, 4, 2, 2, 0, 2, 3, 2] -glamorising 1.2 1.16619 [3, 2, 0, 3, 1, 2, 0, 1, 0, 0] -glamorization 1.6 0.91652 [2, 2, 3, 0, 3, 1, 2, 1, 1, 1] -glamorize 1.7 1.1 [1, 2, 1, 4, 2, 0, 3, 1, 2, 1] -glamorized 2.1 1.04403 [3, 2, 1, 2, 4, 2, 2, 0, 3, 2] -glamorizer 2.4 1.0198 [3, 2, 2, 3, 4, 3, 2, 0, 3, 2] -glamorizers 1.6 1.11355 [4, 1, 1, 1, 1, 2, 0, 2, 3, 1] -glamorizes 2.4 1.2 [3, 2, 2, 4, 4, 1, 2, 0, 3, 3] -glamorizing 1.8 1.16619 [3, 0, 1, 2, 3, 2, 1, 0, 3, 3] -glamorous 2.3 0.78102 [3, 2, 4, 2, 2, 2, 3, 2, 2, 1] -glamorously 2.1 1.04403 [1, 3, 2, 1, 2, 1, 4, 1, 3, 3] -glamors 1.4 0.66332 [1, 1, 2, 2, 2, 1, 2, 2, 0, 1] -glamour 2.4 0.91652 [2, 4, 2, 1, 3, 2, 2, 2, 2, 4] -glamourize 0.8 1.32665 [2, 1, 0, 1, 0, 4, 0, 0, -1, 1] -glamourless -1.6 1.49666 [-4, -1, -1, -2, -2, -3, -2, -1, 2, -2] -glamourous 2.0 0.7746 [1, 3, 3, 2, 1, 2, 2, 2, 3, 1] -glamours 1.9 0.83066 [1, 3, 2, 2, 3, 2, 1, 1, 3, 1] -glee 3.2 0.4 [3, 4, 3, 3, 4, 3, 3, 3, 3, 3] -gleeful 2.9 0.53852 [3, 3, 3, 3, 3, 4, 2, 2, 3, 3] -gloom -2.6 0.66332 [-4, -2, -3, -3, -2, -3, -2, -2, -2, -3] -gloomed -1.9 0.7 [-1, -2, -3, -1, -2, -2, -1, -2, -3, -2] -gloomful -2.1 0.9434 [-3, -1, -4, -2, -1, -1, -2, -3, -2, -2] -gloomier -1.5 1.20416 [-3, -2, -2, -3, -1, -2, 0, 1, -1, -2] -gloomiest -1.8 2.03961 [-2, -2, 2, -4, -2, -3, -4, -3, 2, -2] -gloominess -1.8 0.6 [-2, -1, -2, -3, -2, -1, -2, -2, -2, -1] -gloominesses -1.0 1.09545 [-1, -2, -2, -1, -1, -2, 2, -1, -1, -1] -glooming -1.8 0.74833 [-1, -2, -2, -1, -2, -1, -3, -1, -3, -2] -glooms -0.9 1.57797 [3, -2, -1, -2, -2, -2, 1, -2, -1, -1] -gloomy -0.6 1.56205 [2, -1, -2, -2, -2, -1, 1, -2, 2, -1] -gloried 2.4 1.0198 [2, 3, 3, 4, 4, 1, 1, 2, 2, 2] -glories 2.1 1.3 [4, 1, 4, 1, 1, 4, 2, 2, 1, 1] -glorification 2.0 0.89443 [3, 1, 3, 2, 3, 1, 1, 3, 2, 1] -glorified 2.3 0.9 [1, 4, 2, 2, 4, 2, 2, 2, 2, 2] -glorifier 2.3 1.00499 [1, 4, 1, 2, 4, 2, 3, 2, 2, 2] -glorifiers 1.6 1.0198 [2, 1, 2, -1, 2, 2, 2, 1, 2, 3] -glorifies 2.2 0.9798 [1, 4, 2, 2, 4, 2, 1, 2, 2, 2] -glorify 2.7 0.78102 [3, 3, 4, 3, 1, 3, 2, 3, 2, 3] -glorifying 2.4 1.28062 [3, 4, 2, 2, 4, 4, 0, 1, 2, 2] -gloriole 1.5 1.36015 [2, 4, 1, 2, 0, -1, 1, 3, 2, 1] -glorioles 1.2 0.87178 [0, 2, 0, 2, 0, 1, 2, 2, 1, 2] -glorious 3.2 0.6 [4, 3, 3, 2, 3, 3, 3, 4, 3, 4] -gloriously 2.9 0.83066 [3, 4, 3, 2, 4, 2, 2, 2, 4, 3] -gloriousness 2.6 1.0198 [3, 2, 3, 4, 3, 2, 1, 4, 3, 1] -glory 2.5 0.80623 [1, 3, 3, 1, 3, 3, 3, 2, 3, 3] -glum -2.1 0.7 [-2, -1, -3, -3, -1, -2, -2, -3, -2, -2] -gn8 0.6 0.66332 [1, 1, 0, 0, 0, 0, 2, 1, 0, 1] -god 1.1 1.51327 [0, 0, 0, 1, 0, 3, 0, 3, 0, 4] -goddam -2.5 1.28452 [0, -3, -3, -4, -3, -1, -4, -1, -3, -3] -goddammed -2.4 0.91652 [-2, -3, -1, -1, -2, -2, -4, -3, -3, -3] -goddamn -2.1 1.75784 [-3, -3, -2, -4, -4, -3, -3, -1, 1, 1] -goddamned -1.8 2.03961 [-3, -3, -3, -4, -1, 2, -2, -3, 2, -3] -goddamns -2.1 1.51327 [-3, -2, -4, 2, -2, -3, -3, -2, -2, -2] -goddams -1.9 1.92094 [-3, -3, -2, -4, -4, -2, -3, -1, 2, 1] -godsend 2.8 0.87178 [2, 3, 3, 2, 4, 3, 3, 1, 4, 3] -good 1.9 0.9434 [2, 1, 1, 3, 2, 4, 2, 2, 1, 1] -goodness 2.0 1.54919 [2, 2, 2, 3, 1, 2, -2, 4, 3, 3] -gorgeous 3.0 0.63246 [3, 3, 2, 3, 3, 3, 4, 4, 3, 2] -gorgeously 2.3 0.78102 [2, 2, 2, 3, 1, 2, 4, 3, 2, 2] -gorgeousness 2.9 0.9434 [3, 4, 3, 1, 4, 4, 2, 2, 3, 3] -gorgeousnesses 2.1 0.7 [3, 2, 1, 3, 2, 2, 1, 2, 3, 2] -gossip -0.7 0.45826 [-1, -1, -1, 0, 0, -1, -1, 0, -1, -1] -gossiped -1.1 0.53852 [-1, -1, -1, -1, -1, -1, 0, -1, -2, -2] -gossiper -1.1 0.7 [-1, -1, -1, 0, -2, -1, -1, -2, 0, -2] -gossipers -1.1 0.53852 [-1, 0, -1, -1, -1, -1, -1, -1, -2, -2] -gossiping -1.6 0.4899 [-1, -2, -1, -2, -1, -2, -2, -1, -2, -2] -gossipmonger -1.0 1.41421 [-1, -2, 1, -3, -2, 1, -1, -2, -2, 1] -gossipmongers -1.4 0.66332 [-2, -1, -1, -1, -2, -2, -1, 0, -2, -2] -gossipped -1.3 0.9 [-2, -2, -1, -2, -1, -1, -2, -1, 1, -2] -gossipping -1.8 0.6 [-2, -1, -2, -2, -1, -2, -2, -1, -3, -2] -gossipries -0.8 0.6 [-1, -1, -1, 0, -1, 0, -1, 0, -2, -1] -gossipry -1.2 1.16619 [1, 0, -1, -2, -1, -1, -1, -3, -3, -1] -gossips -1.3 0.64031 [-1, -2, -1, -1, -2, -1, 0, -1, -2, -2] -gossipy -1.3 0.78102 [-1, -2, -2, -1, -2, -1, 0, 0, -2, -2] -grace 1.8 0.4 [2, 1, 2, 2, 1, 2, 2, 2, 2, 2] -graced 0.9 1.04403 [1, 1, 2, -2, 1, 1, 1, 2, 1, 1] -graceful 2.0 0.63246 [2, 1, 2, 2, 2, 3, 3, 2, 2, 1] -gracefuller 2.2 0.74833 [2, 3, 2, 2, 1, 2, 3, 1, 3, 3] -gracefullest 2.8 0.74833 [3, 3, 3, 3, 1, 3, 3, 3, 4, 2] -gracefully 2.4 0.66332 [3, 3, 2, 1, 3, 2, 2, 2, 3, 3] -gracefulness 2.2 0.6 [3, 2, 1, 2, 2, 2, 3, 2, 2, 3] -graces 1.6 0.4899 [2, 2, 2, 1, 1, 2, 1, 2, 1, 2] -gracile 1.7 0.78102 [1, 3, 2, 1, 2, 3, 2, 1, 1, 1] -graciles 0.6 0.8 [0, 0, 0, 0, 0, 0, 2, 1, 2, 1] -gracilis 0.4 0.66332 [0, 0, 0, 0, 0, 1, 0, 1, 0, 2] -gracility 1.2 0.87178 [1, 1, 0, 1, 1, 3, 2, 2, 0, 1] -gracing 1.3 0.9 [1, 0, 3, 2, 1, 2, 0, 1, 2, 1] -gracioso 1.0 0.63246 [2, 2, 1, 1, 1, 1, 0, 1, 0, 1] -gracious 2.6 0.8 [2, 2, 3, 3, 3, 3, 2, 4, 1, 3] -graciously 2.3 0.9 [2, 4, 1, 3, 3, 2, 1, 2, 3, 2] -graciousness 2.4 0.66332 [2, 2, 2, 2, 2, 3, 4, 3, 2, 2] -grand 2.0 0.63246 [2, 2, 3, 1, 2, 2, 2, 2, 3, 1] -grandee 1.1 0.83066 [0, 1, 1, 0, 1, 1, 2, 1, 3, 1] -grandees 1.2 0.87178 [0, 2, 2, 1, 0, 1, 0, 2, 2, 2] -grander 1.7 0.9 [3, 1, 1, 2, 2, 2, 0, 2, 3, 1] -grandest 2.4 1.2 [3, 3, 1, 2, 2, 0, 4, 2, 4, 3] -grandeur 2.4 1.11355 [3, 2, 3, 2, 4, 1, 1, 4, 1, 3] -grandeurs 2.1 1.3 [2, 2, 1, 0, 0, 4, 3, 3, 3, 3] -grant 1.5 0.80623 [2, 2, 1, 0, 3, 1, 1, 1, 2, 2] -granted 1.0 1.09545 [3, 0, 0, 0, 0, 1, 2, 2, 2, 0] -granting 1.3 0.45826 [2, 1, 1, 2, 1, 2, 1, 1, 1, 1] -grants 0.9 0.7 [2, 1, 2, 1, 0, 1, 0, 0, 1, 1] -grateful 2.0 0.63246 [2, 3, 1, 2, 2, 2, 3, 1, 2, 2] -gratefuller 1.8 0.87178 [2, 3, 0, 3, 2, 1, 1, 2, 2, 2] -gratefully 2.1 0.53852 [2, 3, 2, 2, 2, 2, 2, 3, 1, 2] -gratefulness 2.2 0.6 [2, 3, 2, 1, 2, 2, 3, 2, 3, 2] -graticule 0.1 0.3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] -graticules 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] -gratification 1.6 0.8 [1, 2, 3, 2, 2, 1, 2, 0, 2, 1] -gratifications 1.8 0.4 [2, 2, 1, 2, 2, 1, 2, 2, 2, 2] -gratified 1.6 0.91652 [3, 1, 1, 1, 3, 1, 1, 1, 1, 3] -gratifies 1.5 0.80623 [3, 1, 1, 1, 2, 1, 1, 1, 1, 3] -gratify 1.3 1.00499 [2, -1, 1, 3, 1, 1, 1, 1, 2, 2] -gratifying 2.3 0.45826 [2, 3, 2, 2, 2, 2, 3, 2, 2, 3] -gratifyingly 2.0 0.63246 [2, 2, 2, 1, 3, 2, 1, 3, 2, 2] -gratin 0.4 0.91652 [0, 1, 0, 0, 0, 0, 2, 0, -1, 2] -grating -0.4 0.4899 [-1, -1, -1, 0, 0, -1, 0, 0, 0, 0] -gratingly -0.2 1.6 [1, -3, -2, -2, 0, 2, 1, -1, 1, 1] -gratings -0.8 0.9798 [0, -2, -1, -1, 0, 0, -3, 0, 0, -1] -gratins 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] -gratis 0.2 0.9798 [-2, 1, 1, 0, 0, 0, -1, 1, 1, 1] -gratitude 2.3 0.64031 [2, 2, 3, 1, 2, 3, 2, 3, 3, 2] -gratz 2.0 0.89443 [2, 3, 2, 1, 1, 1, 2, 2, 4, 2] -grave -1.6 1.62481 [-2, -2, 0, -2, -3, 2, -3, -1, -1, -4] -graved -0.9 1.13578 [0, 0, -1, 0, -1, -1, -1, -1, -4, 0] -gravel -0.5 0.5 [0, -1, 0, -1, -1, -1, -1, 0, 0, 0] -graveled -0.5 0.80623 [0, 0, 0, 0, -1, -2, 0, 0, -2, 0] -graveless -1.3 1.34536 [-2, -2, 0, -1, 0, -2, -4, 1, -1, -2] -graveling -0.4 1.28062 [-3, 0, -2, 0, 2, -1, 0, 0, 0, 0] -gravelled -0.9 0.53852 [0, -1, -1, -2, 0, -1, -1, -1, -1, -1] -gravelling -0.4 1.11355 [0, -1, -2, -2, 0, -1, 0, 0, 2, 0] -gravelly -0.9 0.7 [0, -2, -1, -1, 0, -1, -1, 0, -1, -2] -gravels -0.5 0.80623 [0, -1, 0, 0, 0, -2, 0, 0, 0, -2] -gravely -1.5 1.0247 [0, -3, -1, 0, -3, -2, -1, -1, -2, -2] -graven -0.9 1.22066 [0, 0, -1, 0, -2, -1, -1, 0, -4, 0] -graveness -1.5 0.67082 [-1, -2, -2, -3, -2, -1, -1, -1, -1, -1] -graver -1.1 1.22066 [0, -2, -1, 0, 0, -2, -1, 0, -4, -1] -gravers -1.2 1.6 [-4, 0, -2, 0, -2, -2, -2, 0, 2, -2] -graves -1.2 1.07703 [0, 0, -1, -1, -2, -1, -1, -1, -4, -1] -graveside -0.8 0.6 [-1, -1, -1, 0, 0, 0, -1, -2, -1, -1] -gravesides -1.6 1.2 [-2, -1, 0, -3, -1, 0, -1, -2, -2, -4] -gravest -1.3 1.9 [-3, -1, -2, -2, 1, 1, -2, 2, -3, -4] -gravestone -0.7 0.78102 [0, -1, 0, -1, -1, -2, 0, 0, -2, 0] -gravestones -0.5 0.5 [-1, -1, 0, -1, -1, -1, 0, 0, 0, 0] -graveyard -1.2 0.87178 [0, 0, -1, -2, -1, -1, -2, -1, -3, -1] -graveyards -1.2 0.87178 [0, -1, -3, -1, -1, -2, 0, -1, -2, -1] -great 3.1 0.7 [2, 4, 4, 4, 3, 3, 3, 3, 2, 3] -greater 1.5 0.67082 [2, 1, 2, 1, 2, 2, 2, 1, 0, 2] -greatest 3.2 0.74833 [3, 4, 3, 3, 3, 4, 4, 2, 2, 4] -greed -1.7 1.61555 [-2, -1, -2, -1, -2, -4, -1, 2, -4, -2] -greedier -2.0 0.63246 [-2, -2, -2, -2, -2, -3, -2, -1, -1, -3] -greediest -2.8 0.87178 [-3, -4, -3, -2, -2, -4, -4, -2, -2, -2] -greedily -1.9 1.22066 [-2, -1, -3, -3, -3, -2, -1, -2, 1, -3] -greediness -1.7 1.00499 [-2, -1, -2, -1, -2, -4, -1, 0, -2, -2] -greeds -1.0 1.18322 [-1, -2, -2, -2, -2, -2, 1, 0, -1, 1] -greedy -1.3 1.48661 [-2, -2, -2, -2, -3, -2, 2, -1, -2, 1] -greenwash -1.8 1.4 [-1, 0, -2, -2, -3, -4, 0, 0, -3, -3] -greenwashing -0.4 0.91652 [-1, 0, 0, 1, 1, -2, -1, -1, 0, -1] -greet 1.3 0.64031 [1, 1, 1, 1, 0, 2, 2, 2, 2, 1] -greeted 1.1 0.9434 [2, 0, 0, 1, 1, 1, 0, 2, 1, 3] -greeting 1.6 0.4899 [2, 1, 2, 2, 1, 2, 2, 1, 1, 2] -greetings 1.8 1.07703 [1, 2, 3, 3, 1, 1, 1, 4, 1, 1] -greets 0.6 0.66332 [0, 0, 2, 0, 1, 1, 0, 1, 1, 0] -grey 0.2 0.4 [0, 0, 1, 0, 0, 0, 1, 0, 0, 0] -grief -2.2 0.6 [-2, -1, -3, -2, -3, -3, -2, -2, -2, -2] -grievance -2.1 0.53852 [-2, -2, -3, -2, -2, -3, -2, -1, -2, -2] -grievances -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -2, -2, -1] -grievant -0.8 1.249 [-2, 1, -1, -2, -1, 2, -2, -1, -1, -1] -grievants -1.1 0.83066 [-1, -1, -1, -1, -1, -1, 0, -2, 0, -3] -grieve -1.6 1.49666 [-2, -3, -1, -3, 1, -3, -1, -2, 1, -3] -grieved -2.0 0.89443 [-3, -3, -3, -2, -2, -3, -1, -1, -1, -1] -griever -1.9 0.83066 [-2, -2, -3, -2, -3, -3, -1, -1, -1, -1] -grievers -0.3 1.55242 [-1, 2, -2, -1, 1, -2, 2, -2, 1, -1] -grieves -2.1 0.9434 [-3, -3, -3, -2, -3, -3, -1, -1, -1, -1] -grieving -2.3 1.1 [-2, -4, -2, -3, -3, 0, -3, -2, -1, -3] -grievous -2.0 1.84391 [-3, -4, -2, -3, -1, 3, -2, -3, -2, -3] -grievously -1.7 1.55242 [-3, -1, -4, -2, -2, 1, -3, 1, -2, -2] -grievousness -2.7 0.78102 [-3, -3, -3, -2, -3, -4, -2, -1, -3, -3] -grim -2.7 0.64031 [-2, -4, -3, -3, -2, -2, -3, -3, -2, -3] -grimace -1.0 2.14476 [-4, -3, -2, -2, 2, -1, -1, -3, 2, 2] -grimaced -2.0 0.63246 [-2, -3, -2, -2, -2, -2, -1, -3, -1, -2] -grimaces -1.8 0.74833 [-1, -2, -1, -2, -2, -1, -3, -3, -1, -2] -grimacing -1.4 1.56205 [-3, -2, -3, -3, -1, -1, 1, 0, 1, -3] -grimalkin -0.9 1.04403 [-1, -2, -1, 1, -2, -2, -1, -1, 1, -1] -grimalkins -0.9 0.9434 [0, 0, 0, -2, -1, -1, -1, 0, -3, -1] -grime -1.5 0.92195 [-1, -2, -1, -1, -1, -3, 0, -2, -1, -3] -grimed -1.2 0.74833 [-2, -2, 0, -2, -1, -1, -1, -2, -1, 0] -grimes -1.0 0.7746 [-2, -2, 0, 0, -1, -1, -1, -2, -1, 0] -grimier -1.6 1.0198 [-1, -2, -2, -2, -1, 0, -4, -1, -1, -2] -grimiest -0.7 2.05183 [-2, -3, 1, -3, 2, -2, -2, -2, 2, 2] -grimily -0.7 1.61555 [-2, -1, -1, -2, -2, 2, -2, 2, 1, -2] -griminess -1.6 0.4899 [-1, -2, -2, -2, -1, -2, -2, -1, -1, -2] -griming -0.7 1.55242 [-3, -1, -1, -2, 0, 2, -1, -2, -1, 2] -grimly -1.3 1.55242 [-2, -1, 2, -2, -2, -1, -3, -3, 1, -2] -grimmer -1.5 1.36015 [1, -2, -3, 1, -2, -1, -2, -2, -3, -2] -grimmest -0.8 1.72047 [-2, -1, -3, 0, -2, -1, 0, 2, 2, -3] -grimness -0.8 1.98997 [2, -2, -3, -2, -3, 2, -1, 1, 1, -3] -grimy -1.8 0.87178 [-2, -2, -2, -1, -1, -3, 0, -2, -2, -3] -grin 2.1 0.83066 [2, 4, 2, 2, 2, 1, 2, 3, 1, 2] -grinned 1.1 0.9434 [1, 1, 2, 1, 3, 1, -1, 1, 1, 1] -grinner 1.1 0.83066 [1, 1, 2, 2, 2, 1, -1, 1, 1, 1] -grinners 1.6 0.8 [2, 2, 2, 3, 1, 0, 2, 2, 1, 1] -grinning 1.5 1.0247 [3, 2, 2, 1, 1, -1, 1, 2, 2, 2] -grins 0.9 1.92094 [1, 4, -3, 1, 2, 1, 2, -2, 2, 1] -gross -2.1 1.51327 [-1, -3, -2, -3, -3, -3, -3, 2, -2, -3] -grossed -0.4 1.11355 [-1, -2, -1, -2, 0, 0, 1, 1, 1, -1] -grosser -0.3 1.41774 [1, -2, -1, -2, 0, -1, 1, 2, 1, -2] -grosses -0.8 1.77764 [-2, -2, 3, -2, -3, -1, 1, -1, 1, -2] -grossest -2.1 0.83066 [-2, -1, -2, -3, -3, -1, -3, -3, -1, -2] -grossing -0.3 1.79165 [-1, -3, -1, 1, 0, -1, -3, 1, 1, 3] -grossly -0.9 1.44568 [1, -2, 0, -3, -1, -2, 1, 1, -2, -2] -grossness -1.8 0.6 [-2, -2, -1, -1, -1, -3, -2, -2, -2, -2] -grossular -0.3 1.34536 [0, -2, 0, -1, -2, -1, 0, 0, 0, 3] -grossularite -0.1 1.13578 [2, 0, 0, 0, 0, -3, 0, 0, 0, 0] -grossularites -0.7 1.26886 [0, -4, -1, -2, 0, 0, 0, 0, 0, 0] -grossulars -0.3 0.45826 [0, 0, 0, 0, -1, -1, 0, 0, 0, -1] -grouch -2.2 0.87178 [-2, -3, -3, -3, -2, -1, -3, -1, -1, -3] -grouched -0.8 0.9798 [-2, -1, -2, -2, 1, -1, 0, 0, 0, -1] -grouches -0.9 1.13578 [-2, -1, -2, -1, -1, -1, -1, 2, 0, -2] -grouchier -2.0 0.63246 [-2, -3, -3, -2, -2, -2, -2, -1, -2, -1] -grouchiest -2.3 0.78102 [-3, -3, -2, -2, -1, -3, -1, -3, -3, -2] -grouchily -1.4 1.56205 [-2, -1, -2, -3, -3, 2, -2, -2, 1, -2] -grouchiness -2.0 0.7746 [-2, -2, -3, -2, -3, -2, -2, 0, -2, -2] -grouching -1.7 1.1 [-1, -3, -2, 1, -2, -3, -2, -1, -2, -2] -grouchy -1.9 0.7 [-1, -3, -2, -2, -1, -3, -1, -2, -2, -2] -growing 0.7 0.64031 [0, 1, 1, 2, 1, 0, 0, 1, 1, 0] -growth 1.6 1.0198 [2, 0, 3, 0, 2, 3, 1, 1, 2, 2] -guarantee 1.0 1.0 [2, 3, 1, 0, 2, 0, 1, 0, 0, 1] -guilt -1.1 1.22066 [-1, -3, 2, -1, -1, -2, -1, -2, -1, -1] -guiltier -2.0 0.63246 [-2, -1, -3, -1, -3, -2, -2, -2, -2, -2] -guiltiest -1.7 1.79165 [-3, -2, -2, -4, -1, -2, 3, -1, -3, -2] -guiltily -1.1 1.57797 [-3, -1, -1, -2, 0, -2, 3, -2, -1, -2] -guiltiness -1.8 0.6 [-2, -2, -1, -2, -1, -1, -2, -2, -3, -2] -guiltless 0.8 1.53623 [3, 2, 1, 2, -2, 1, 1, -2, 1, 1] -guiltlessly 0.7 1.18743 [-1, 1, -2, 2, 1, 1, 1, 1, 2, 1] -guiltlessness 0.6 1.42829 [1, 1, -1, -1, -1, 1, 2, 3, -1, 2] -guilts -1.4 0.66332 [-1, -2, -1, -1, -3, -1, -1, -2, -1, -1] -guilty -1.8 0.6 [-1, -2, -2, -3, -2, -2, -1, -2, -2, -1] -gullibility -1.6 0.66332 [-1, -1, -2, -2, -1, -2, -1, -2, -1, -3] -gullible -1.5 0.67082 [-1, -2, -2, -1, -1, -3, -2, -1, -1, -1] -gun -1.4 1.49666 [0, -4, 0, -3, 0, -3, -2, 0, -2, 0] -h8 -2.7 1.00499 [-4, -3, -4, -1, -1, -3, -3, -3, -2, -3] -ha 1.4 0.8 [1, 0, 1, 1, 3, 2, 2, 1, 2, 1] -hacked -1.7 1.00499 [-2, -1, -2, -4, 0, -2, -2, -1, -1, -2] -haha 2.0 0.89443 [1, 1, 2, 3, 2, 1, 4, 2, 2, 2] -hahaha 2.6 1.0198 [2, 4, 2, 4, 1, 2, 3, 4, 2, 2] -hahas 1.8 0.9798 [1, 2, 2, 4, 3, 2, 1, 1, 1, 1] -hail 0.3 0.9 [0, 0, 0, 2, 0, 0, 2, 0, -1, 0] -hailed 0.9 0.83066 [1, 2, 1, 1, 0, 0, 0, 2, 2, 0] -hallelujah 3.0 0.7746 [3, 4, 3, 1, 3, 3, 3, 3, 3, 4] -handsome 2.2 0.74833 [2, 2, 2, 2, 2, 3, 4, 1, 2, 2] -handsomely 1.9 0.7 [1, 3, 1, 1, 2, 2, 2, 2, 2, 3] -handsomeness 2.4 1.28062 [2, 4, 1, 4, 0, 2, 4, 3, 2, 2] -handsomer 2.0 0.63246 [2, 3, 2, 2, 2, 2, 1, 3, 1, 2] -handsomest 2.6 0.91652 [3, 2, 1, 2, 3, 4, 4, 3, 2, 2] -hapless -1.4 1.11355 [-3, -1, -1, -1, -2, -1, 1, -2, -3, -1] -haplessness -1.4 1.0198 [-1, -2, 0, -1, -1, -1, -1, -2, -1, -4] -happier 2.4 0.66332 [3, 1, 2, 3, 2, 2, 3, 3, 3, 2] -happiest 3.2 0.74833 [4, 3, 2, 4, 4, 3, 3, 3, 2, 4] -happily 2.6 0.91652 [4, 1, 2, 4, 2, 3, 2, 2, 3, 3] -happiness 2.6 0.4899 [2, 3, 3, 3, 3, 2, 2, 3, 2, 3] -happing 1.1 0.83066 [1, 1, 1, 0, 2, 2, 0, 2, 0, 2] -happy 2.7 0.9 [2, 2, 2, 4, 2, 4, 3, 4, 2, 2] -harass -2.2 0.6 [-2, -3, -2, -2, -2, -3, -2, -3, -1, -2] -harassed -2.5 0.80623 [-4, -2, -3, -3, -2, -2, -3, -2, -3, -1] -harasser -2.4 0.8 [-3, -2, -2, -3, -2, -2, -4, -2, -3, -1] -harassers -2.8 0.6 [-3, -3, -2, -2, -3, -3, -3, -4, -2, -3] -harasses -2.5 0.80623 [-3, -3, -2, -3, -2, -2, -4, -2, -3, -1] -harassing -2.5 1.62788 [-2, -4, -3, -4, -3, -3, 2, -2, -3, -3] -harassment -2.5 0.67082 [-2, -3, -2, -2, -3, -2, -4, -3, -2, -2] -harassments -2.6 0.4899 [-3, -3, -2, -3, -2, -3, -3, -2, -2, -3] -hard -0.4 1.2 [0, -1, 0, -1, 0, 1, -2, -1, -2, 2] -hardier -0.6 1.68523 [-3, -2, -2, 1, 1, 2, 1, 0, -2, -2] -hardship -1.3 1.84662 [-2, 2, -4, -1, -2, -3, -1, -2, 2, -2] -hardy 1.7 1.00499 [1, 2, 1, 0, 2, 2, 4, 1, 2, 2] -harm -2.5 0.80623 [-2, -2, -2, -3, -2, -1, -3, -3, -3, -4] -harmed -2.1 0.83066 [-1, -4, -2, -2, -2, -2, -1, -2, -3, -2] -harmfully -2.6 0.91652 [-3, -4, -3, -1, -3, -3, -3, -3, -1, -2] -harmfulness -2.6 0.8 [-3, -1, -3, -3, -3, -2, -4, -2, -2, -3] -harming -2.6 0.66332 [-3, -3, -2, -2, -3, -3, -2, -2, -2, -4] -harmless 1.0 0.7746 [2, 1, 1, 1, 1, 0, 0, 2, 0, 2] -harmlessly 1.4 1.2 [4, 0, 1, 0, 1, 1, 1, 2, 3, 1] -harmlessness 0.8 1.16619 [1, 2, 0, 1, 0, 1, 2, 1, 2, -2] -harmonic 1.8 0.87178 [2, 1, 2, 3, 0, 1, 3, 2, 2, 2] -harmonica 0.6 0.8 [0, 1, 0, 0, 0, 2, 1, 0, 2, 0] -harmonically 2.1 1.13578 [3, 3, 4, 1, 0, 1, 2, 2, 2, 3] -harmonicas 0.1 0.3 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] -harmonicist 0.5 0.92195 [0, 0, 0, 0, 1, 0, 0, 0, 1, 3] -harmonicists 0.9 1.3 [2, 1, 0, 0, 2, 0, 0, 0, 4, 0] -harmonics 1.5 1.0247 [2, 2, 2, 0, 0, 2, 3, 2, 0, 2] -harmonies 1.3 0.9 [2, 0, 2, 1, 2, 2, 0, 2, 0, 2] -harmonious 2.0 1.09545 [3, 4, 2, 2, 2, 0, 2, 3, 1, 1] -harmoniously 1.9 0.9434 [4, 2, 2, 1, 2, 1, 1, 3, 2, 1] -harmoniousness 1.8 0.6 [1, 2, 2, 2, 2, 1, 2, 3, 2, 1] -harmonise 1.8 0.74833 [1, 1, 2, 3, 2, 1, 1, 3, 2, 2] -harmonised 1.3 0.9 [2, 3, 2, 0, 2, 1, 1, 1, 1, 0] -harmonising 1.4 0.66332 [1, 2, 1, 1, 2, 1, 1, 1, 1, 3] -harmonium 0.9 1.22066 [0, 3, 0, 2, 3, 0, 0, 0, 0, 1] -harmoniums 0.8 0.9798 [0, 0, 0, 2, 0, 2, 0, 2, 2, 0] -harmonization 1.9 0.83066 [3, 1, 2, 2, 2, 2, 3, 0, 2, 2] -harmonizations 0.9 0.9434 [0, 0, 2, 0, 2, 2, 0, 2, 1, 0] -harmonize 1.7 0.78102 [3, 2, 2, 1, 2, 2, 0, 1, 2, 2] -harmonized 1.6 0.91652 [1, 2, 1, 1, 2, 2, 3, 3, 0, 1] -harmonizer 1.6 0.8 [1, 2, 1, 1, 2, 2, 2, 3, 0, 2] -harmonizers 1.6 1.11355 [2, 2, 2, 1, 2, 0, 4, 0, 2, 1] -harmonizes 1.5 0.92195 [0, 2, 2, 2, 0, 1, 1, 2, 3, 2] -harmonizing 1.4 0.66332 [0, 1, 1, 2, 2, 1, 2, 2, 1, 2] -harmony 1.7 0.45826 [2, 2, 2, 2, 1, 2, 2, 2, 1, 1] -harms -2.2 1.6 [2, -3, -2, -2, -3, -2, -4, -4, -2, -2] -harried -1.4 0.4899 [-1, -1, -2, -1, -2, -2, -1, -1, -1, -2] -harsh -1.9 0.7 [-1, -1, -2, -2, -1, -3, -3, -2, -2, -2] -harsher -2.2 0.6 [-2, -3, -2, -3, -2, -2, -1, -3, -2, -2] -harshest -2.9 0.83066 [-4, -2, -2, -2, -2, -3, -3, -4, -4, -3] -hate -2.7 1.00499 [-4, -3, -4, -4, -2, -2, -2, -2, -1, -3] -hated -3.2 0.6 [-3, -3, -4, -3, -2, -3, -3, -4, -4, -3] -hateful -2.2 1.249 [-3, 1, -3, -3, -1, -2, -2, -3, -3, -3] -hatefully -2.3 0.78102 [-1, -3, -3, -3, -1, -2, -2, -2, -3, -3] -hatefulness -3.6 0.4899 [-4, -4, -3, -3, -3, -4, -4, -4, -4, -3] -hater -1.8 0.6 [-2, -1, -2, -2, -2, -1, -1, -2, -2, -3] -haters -2.2 0.6 [-2, -1, -3, -2, -3, -2, -3, -2, -2, -2] -hates -1.9 0.7 [-2, -1, -2, -2, -3, -1, -1, -2, -2, -3] -hating -2.3 1.1 [-4, -3, -4, -1, -2, -2, -1, -2, -1, -3] -hatred -3.2 0.9798 [-1, -3, -2, -4, -3, -3, -4, -4, -4, -4] -haunt -1.7 1.00499 [-1, -1, -3, -1, -2, -2, -1, -4, -1, -1] -haunted -2.1 0.7 [-2, -2, -1, -3, -3, -2, -2, -3, -1, -2] -haunting -1.1 0.83066 [-3, 0, -2, -1, 0, -1, -1, -1, -1, -1] -haunts -1.0 1.41421 [0, -2, -2, -2, -2, -1, 2, -2, 1, -2] -havoc -2.9 0.7 [-2, -4, -4, -3, -2, -3, -3, -3, -2, -3] -healthy 1.7 0.9 [1, 3, 1, 1, 3, 3, 1, 2, 1, 1] -heartbreak -2.7 0.78102 [-1, -3, -3, -3, -2, -4, -2, -3, -3, -3] -heartbreaker -2.2 1.07703 [-2, -3, 0, -3, -2, -1, -4, -3, -2, -2] -heartbreakers -2.1 0.9434 [-3, -2, -3, -2, -1, -1, -4, -1, -2, -2] -heartbreaking -2.0 1.73205 [-3, -1, -3, -3, -4, 2, -3, -2, 0, -3] -heartbreakingly -1.8 2.08806 [-3, 3, 1, -3, -3, -2, -3, -3, -4, -1] -heartbreaks -1.8 1.77764 [-2, 1, -3, -2, -3, -2, -3, 2, -4, -2] -heartbroken -3.3 0.45826 [-4, -3, -3, -4, -3, -3, -4, -3, -3, -3] -heartfelt 2.5 0.5 [3, 3, 2, 3, 2, 2, 3, 2, 2, 3] -heartless -2.2 0.74833 [-2, -2, -2, -4, -2, -1, -2, -3, -2, -2] -heartlessly -2.8 0.6 [-3, -2, -3, -3, -2, -3, -4, -2, -3, -3] -heartlessness -2.8 0.87178 [-3, -3, -2, -3, -4, -4, -1, -3, -2, -3] -heartwarming 2.1 1.22066 [3, 2, 3, 3, 2, 2, 3, 3, -1, 1] -heaven 2.3 1.18743 [1, 1, 2, 4, 3, 3, 3, 4, 1, 1] -heavenlier 3.0 0.63246 [3, 2, 3, 3, 4, 3, 3, 4, 2, 3] -heavenliest 2.7 1.1 [3, 2, 3, 4, 2, 4, 3, 0, 3, 3] -heavenliness 2.7 0.9 [3, 2, 1, 4, 3, 2, 3, 4, 3, 2] -heavenlinesses 2.3 2.2383 [4, 4, 4, 3, -2, 3, 3, 4, -2, 2] -heavenly 3.0 0.63246 [3, 3, 3, 3, 2, 3, 3, 4, 2, 4] -heavens 1.7 1.18743 [4, 0, 1, 2, 0, 3, 2, 2, 2, 1] -heavenward 1.4 1.35647 [0, 3, 0, 4, 1, 2, 2, 0, 2, 0] -heavenwards 1.2 1.32665 [1, 4, 0, 0, 2, 1, 1, 0, 3, 0] -heavyhearted -2.1 0.83066 [-2, -3, -3, -2, -3, -1, -1, -1, -2, -3] -heh -0.6 1.28062 [0, 1, -1, 1, -1, -2, -1, -3, 1, -1] -hell -3.6 0.66332 [-4, -4, -4, -4, -4, -2, -3, -4, -3, -4] -hellish -3.2 0.74833 [-3, -3, -2, -2, -4, -3, -4, -4, -3, -4] -help 1.7 0.78102 [3, 2, 1, 2, 1, 2, 3, 1, 1, 1] -helper 1.4 0.8 [1, 1, 0, 1, 1, 2, 1, 2, 3, 2] -helpers 1.1 0.83066 [1, 1, 0, 2, 1, 1, 1, 1, 3, 0] -helpful 1.8 0.87178 [2, 1, 3, 1, 1, 3, 1, 2, 3, 1] -helpfully 2.3 0.9 [1, 2, 2, 3, 2, 3, 3, 2, 4, 1] -helpfulness 1.9 1.13578 [1, 4, 1, 2, 2, 1, 1, 2, 4, 1] -helping 1.2 0.6 [2, 1, 1, 2, 0, 1, 1, 1, 2, 1] -helpless -2.0 0.63246 [-2, -3, -2, -2, -2, -3, -1, -2, -1, -2] -helplessly -1.4 0.4899 [-1, -1, -2, -2, -1, -1, -1, -2, -2, -1] -helplessness -2.1 0.9434 [-2, -4, -1, -2, -1, -3, -3, -2, -1, -2] -helplessnesses -1.7 0.64031 [-2, -1, -2, -1, -2, -1, -3, -2, -1, -2] -helps 1.6 0.4899 [1, 1, 1, 2, 2, 2, 1, 2, 2, 2] -hero 2.6 0.8 [2, 3, 2, 2, 4, 4, 2, 3, 2, 2] -heroes 2.3 0.9 [3, 4, 3, 1, 3, 2, 1, 2, 2, 2] -heroic 2.6 0.8 [3, 3, 1, 4, 2, 3, 2, 3, 2, 3] -heroical 2.9 1.04403 [4, 4, 2, 4, 2, 3, 1, 4, 2, 3] -heroically 2.4 0.8 [2, 2, 2, 3, 3, 3, 4, 1, 2, 2] -heroicomic 1.0 1.0 [1, 0, 1, 0, 2, 0, 3, 1, 2, 0] -heroicomical 1.1 0.83066 [2, 0, 0, 2, 1, 2, 1, 2, 1, 0] -heroics 2.4 0.8 [2, 1, 2, 2, 2, 3, 3, 3, 4, 2] -heroin -2.2 1.83303 [0, -2, -4, 2, -4, -2, -2, -3, -3, -4] -heroine 2.7 1.1 [0, 2, 4, 4, 3, 3, 3, 3, 2, 3] -heroines 1.8 1.32665 [2, 1, 1, 4, 3, 1, 0, 3, 3, 0] -heroinism -2.0 2.0 [-3, -4, 2, -2, -4, -3, -2, -1, 1, -4] -heroism 2.8 0.6 [3, 3, 4, 3, 2, 2, 3, 3, 2, 3] -heroisms 2.2 0.87178 [3, 1, 2, 4, 3, 2, 2, 2, 1, 2] -heroize 2.1 0.7 [3, 2, 3, 1, 2, 2, 2, 3, 1, 2] -heroized 2.0 1.18322 [1, 0, 3, 3, 2, 0, 3, 3, 2, 3] -heroizes 2.2 0.9798 [1, 3, 2, 3, 4, 3, 2, 1, 2, 1] -heroizing 1.9 1.64012 [2, 3, -2, 2, 4, 3, 2, 2, 3, 0] -heron 0.1 0.3 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] -heronries 0.7 1.1 [2, 0, 0, 0, 2, 0, 3, 0, 0, 0] -heronry 0.1 0.9434 [0, 0, 0, 0, 0, 2, 0, 1, -2, 0] -herons 0.5 1.0247 [0, 0, 0, 3, 0, 2, 0, 0, 0, 0] -heros 1.3 1.18743 [3, 0, 0, 2, 0, 2, 2, 3, 1, 0] -hesitance -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] -hesitancies -1.0 0.63246 [-1, -1, -1, -2, -1, -1, -2, 0, 0, -1] -hesitancy -0.9 0.53852 [0, -1, 0, -2, -1, -1, -1, -1, -1, -1] -hesitant -1.0 0.7746 [0, -1, 0, -1, -2, 0, -1, -2, -1, -2] -hesitantly -1.2 0.4 [-1, -1, -2, -1, -1, -1, -1, -2, -1, -1] -hesitate -1.1 0.53852 [-2, -1, -1, -1, -2, -1, -1, 0, -1, -1] -hesitated -1.3 0.9 [-1, -2, -1, -2, -2, -2, -1, 1, -1, -2] -hesitater -1.4 0.66332 [-1, -1, -1, -1, -1, -2, -1, -3, -2, -1] -hesitaters -1.4 0.4899 [-1, -2, -1, -1, -1, -1, -2, -2, -2, -1] -hesitates -1.4 0.4899 [-1, -1, -1, -2, -1, -2, -1, -2, -2, -1] -hesitating -1.4 0.66332 [-1, -1, -2, -1, -1, -3, -2, -1, -1, -1] -hesitatingly -1.5 0.80623 [-1, -1, -1, -1, -3, -2, -3, -1, -1, -1] -hesitation -1.1 0.53852 [-2, 0, -1, -1, -1, -1, -1, -2, -1, -1] -hesitations -1.1 0.53852 [-1, -1, -1, 0, -2, -1, -1, -2, -1, -1] -hid -0.4 0.4899 [0, -1, 0, 0, -1, -1, -1, 0, 0, 0] -hide -0.7 0.64031 [0, -1, -1, -1, -1, 0, 0, -2, -1, 0] -hides -0.7 0.9 [-1, -2, -1, 0, -1, 0, 0, -2, 1, -1] -hiding -1.2 0.4 [-1, -1, -2, -1, -1, -1, -1, -1, -2, -1] -highlight 1.4 0.91652 [3, 0, 1, 1, 2, 1, 0, 2, 2, 2] -hilarious 1.7 1.41774 [2, 2, 2, 3, 3, 1, -2, 2, 3, 1] -hindrance -1.7 0.78102 [-2, -3, -2, -1, -1, -1, -3, -1, -2, -1] -hoax -1.1 1.04403 [-3, -1, -2, -1, 1, -2, -1, -1, -1, 0] -holiday 1.7 1.18743 [1, 3, 2, 2, 0, 0, 1, 2, 4, 2] -holidays 1.6 1.0198 [2, 0, 1, 2, 3, 0, 1, 2, 3, 2] -homesick -0.7 1.67631 [-2, -1, -1, -2, -1, -2, 2, -1, 3, -2] -homesickness -1.8 1.249 [-3, -2, -1, -1, -3, -2, -1, 1, -3, -3] -homesicknesses -1.8 0.6 [-1, -2, -2, -2, -1, -2, -1, -2, -3, -2] -honest 2.3 0.9 [3, 2, 1, 2, 3, 1, 2, 3, 2, 4] -honester 1.9 0.7 [2, 3, 2, 2, 1, 3, 1, 1, 2, 2] -honestest 3.0 0.7746 [1, 3, 3, 3, 3, 3, 4, 4, 3, 3] -honesties 1.8 1.07703 [4, 3, 1, 1, 1, 1, 3, 2, 1, 1] -honestly 2.0 0.63246 [2, 3, 2, 2, 1, 2, 2, 1, 3, 2] -honesty 2.2 0.6 [2, 3, 2, 2, 1, 2, 3, 2, 3, 2] -honor 2.2 1.16619 [3, 2, 1, 2, 0, 4, 3, 1, 3, 3] -honorability 2.2 0.4 [3, 3, 2, 2, 2, 2, 2, 2, 2, 2] -honorable 2.5 0.67082 [2, 2, 3, 2, 4, 3, 2, 2, 2, 3] -honorableness 2.2 0.87178 [2, 4, 1, 3, 3, 2, 1, 2, 2, 2] -honorably 2.4 0.66332 [2, 2, 3, 2, 3, 3, 3, 1, 2, 3] -honoraria 0.6 0.8 [1, 0, 1, 0, 0, 0, 2, 0, 2, 0] -honoraries 1.5 1.5 [2, 2, 1, 3, 3, 1, -2, 2, 3, 0] -honorarily 1.9 0.7 [2, 2, 3, 1, 2, 1, 2, 1, 3, 2] -honorarium 0.7 1.48661 [3, 2, -1, 2, 1, -2, 1, 1, -1, 1] -honorariums 1.0 1.0 [0, 0, 0, 0, 1, 2, 1, 3, 2, 1] -honorary 1.4 0.91652 [2, 2, 2, 3, 1, 1, 0, 1, 2, 0] -honored 2.8 0.87178 [3, 4, 4, 3, 1, 2, 2, 3, 3, 3] -honoree 2.1 0.7 [3, 2, 3, 3, 1, 2, 1, 2, 2, 2] -honorees 2.3 0.78102 [1, 3, 3, 4, 2, 2, 2, 2, 2, 2] -honorer 1.7 0.78102 [2, 1, 3, 3, 1, 2, 1, 2, 1, 1] -honorers 1.3 0.45826 [1, 1, 2, 2, 1, 1, 2, 1, 1, 1] -honorific 1.4 1.2 [2, 2, 2, 2, 2, 1, 2, 1, 2, -2] -honorifically 2.2 0.74833 [3, 4, 1, 2, 2, 2, 2, 2, 2, 2] -honorifics 1.7 0.78102 [1, 2, 0, 1, 2, 2, 2, 3, 2, 2] -honoring 2.3 0.64031 [3, 3, 1, 2, 2, 3, 3, 2, 2, 2] -honors 2.3 0.64031 [3, 2, 2, 2, 1, 3, 3, 2, 3, 2] -honour 2.7 0.78102 [2, 3, 2, 2, 2, 3, 4, 4, 3, 2] -honourable 2.1 0.53852 [2, 3, 2, 2, 2, 1, 3, 2, 2, 2] -honoured 2.2 1.249 [3, 3, 4, 3, -1, 2, 2, 2, 2, 2] -honourer 1.8 0.87178 [2, 3, 2, 1, 2, 3, 1, 0, 2, 2] -honourers 1.6 1.0198 [0, 2, 2, 1, 2, 2, 1, 3, 0, 3] -honouring 2.1 0.3 [2, 2, 2, 3, 2, 2, 2, 2, 2, 2] -honours 2.2 0.87178 [4, 3, 2, 2, 3, 2, 2, 1, 2, 1] -hooligan -1.5 0.5 [-1, -2, -1, -2, -2, -2, -1, -1, -2, -1] -hooliganism -2.1 0.83066 [-3, -2, -3, -3, -2, -2, -2, -2, 0, -2] -hooligans -1.1 1.22066 [-2, -1, -1, 2, -1, -1, -1, -3, -2, -1] -hooray 2.3 0.9 [3, 2, 3, 2, 1, 3, 1, 2, 2, 4] -hope 1.9 0.53852 [3, 2, 2, 1, 2, 2, 1, 2, 2, 2] -hoped 1.6 0.4899 [1, 2, 1, 1, 2, 2, 1, 2, 2, 2] -hopeful 2.3 0.78102 [2, 1, 1, 3, 3, 3, 2, 3, 2, 3] -hopefully 1.7 0.78102 [1, 3, 1, 3, 1, 2, 1, 1, 2, 2] -hopefulness 1.6 1.35647 [2, 1, -2, 2, 3, 2, 1, 3, 2, 2] -hopeless -2.0 1.78885 [-3, -3, -3, -3, 3, -1, -3, -3, -2, -2] -hopelessly -2.2 0.74833 [-3, -4, -2, -2, -1, -2, -2, -2, -2, -2] -hopelessness -3.1 0.7 [-3, -4, -4, -3, -3, -3, -4, -3, -2, -2] -hopes 1.8 0.6 [1, 3, 1, 2, 2, 2, 1, 2, 2, 2] -hoping 1.8 0.4 [2, 2, 2, 1, 2, 2, 2, 2, 2, 1] -horrendous -2.8 0.87178 [-3, -3, -4, -4, -3, -3, -2, -2, -1, -3] -horrendously -1.9 1.92094 [-3, -2, -4, -4, 2, -1, -3, -2, 1, -3] -horrent -0.9 1.04403 [0, -1, -2, 0, 0, -3, -1, 0, -2, 0] -horrible -2.5 0.67082 [-2, -2, -3, -2, -2, -4, -3, -3, -2, -2] -horribleness -2.4 0.4899 [-3, -3, -2, -2, -3, -2, -2, -3, -2, -2] -horribles -2.1 0.7 [-2, -4, -2, -2, -1, -2, -2, -2, -2, -2] -horribly -2.4 0.66332 [-2, -2, -2, -2, -2, -4, -3, -3, -2, -2] -horrid -2.5 1.0247 [-2, -3, -3, -4, -4, -1, -2, -2, -3, -1] -horridly -1.4 1.49666 [-2, 0, -3, -2, 0, -3, 2, -2, -2, -2] -horridness -2.3 1.26886 [-3, -3, -2, 1, -3, -3, -3, -3, -1, -3] -horridnesses -3.0 1.09545 [-2, -3, -4, -4, -4, -4, -2, -2, -1, -4] -horrific -3.4 0.91652 [-2, -4, -4, -4, -2, -4, -2, -4, -4, -4] -horrifically -2.9 0.7 [-2, -3, -2, -4, -2, -4, -3, -3, -3, -3] -horrified -2.5 0.92195 [-2, -3, -2, -2, -1, -4, -2, -2, -3, -4] -horrifies -2.9 1.22066 [-1, -3, -2, -1, -4, -4, -4, -4, -2, -4] -horrify -2.5 0.67082 [-2, -2, -3, -2, -2, -2, -4, -2, -3, -3] -horrifying -2.7 0.9 [-3, -4, -3, -2, -3, -3, -4, -2, -2, -1] -horrifyingly -3.3 0.9 [-3, -3, -4, -4, -1, -4, -3, -3, -4, -4] -horror -2.7 1.1 [-3, -1, -4, -4, -4, -3, -1, -2, -3, -2] -horrors -2.7 0.64031 [-3, -3, -4, -3, -2, -2, -2, -3, -2, -3] -hostile -1.6 1.74356 [-4, -3, -3, -1, 1, -2, 2, -2, -2, -2] -hostilely -2.2 0.6 [-1, -3, -3, -2, -2, -2, -2, -2, -2, -3] -hostiles -1.3 1.9 [-3, -3, -3, -3, -1, 2, -3, -1, 1, 1] -hostilities -2.1 0.53852 [-2, -3, -2, -2, -2, -2, -1, -2, -3, -2] -hostility -2.5 0.80623 [-2, -2, -3, -3, -3, -2, -4, -2, -3, -1] -huckster -0.9 0.7 [-1, 0, -1, 0, -1, -2, -2, 0, -1, -1] -hug 2.1 1.04403 [1, 3, 2, 1, 1, 2, 3, 3, 1, 4] -huge 1.3 0.9 [0, 2, 2, 0, 0, 2, 2, 2, 1, 2] -huggable 1.6 0.66332 [2, 2, 1, 1, 1, 3, 1, 2, 2, 1] -hugged 1.7 0.78102 [2, 2, 2, 2, 3, 1, 1, 2, 0, 2] -hugger 1.6 0.91652 [3, 2, 2, 2, 3, 1, 1, 1, 0, 1] -huggers 1.8 0.6 [1, 3, 1, 2, 1, 2, 2, 2, 2, 2] -hugging 1.8 0.74833 [2, 1, 1, 3, 3, 2, 2, 1, 2, 1] -hugs 2.2 0.74833 [3, 2, 1, 2, 2, 2, 3, 1, 3, 3] -humerous 1.4 1.11355 [-1, 2, 2, 3, 1, 1, 2, 0, 2, 2] -humiliate -2.5 1.28452 [-3, -3, -3, -3, -2, -2, -4, -3, 1, -3] -humiliated -1.4 2.498 [3, -3, -4, -3, -3, -4, -3, 0, 1, 2] -humiliates -1.0 2.09762 [1, -2, -3, -3, -3, -2, -3, 1, 2, 2] -humiliating -1.2 1.8868 [-4, -1, -3, -1, 2, -1, 2, -3, -2, -1] -humiliatingly -2.6 0.4899 [-3, -3, -2, -2, -3, -3, -3, -3, -2, -2] -humiliation -2.7 0.78102 [-2, -3, -4, -2, -2, -2, -3, -2, -4, -3] -humiliations -2.4 0.66332 [-3, -2, -2, -2, -2, -2, -2, -3, -2, -4] -humor 1.1 0.53852 [1, 0, 2, 2, 1, 1, 1, 1, 1, 1] -humoral 0.6 1.0198 [2, 0, 0, 0, 0, 0, 3, 1, 0, 0] -humored 1.2 0.87178 [1, 1, 2, 2, 1, 1, 2, 1, 2, -1] -humoresque 1.2 0.6 [1, 1, 1, 2, 1, 2, 2, 1, 1, 0] -humoresques 0.9 1.04403 [1, 0, 2, 0, 0, 1, 2, 0, 3, 0] -humoring 2.1 0.7 [3, 2, 2, 2, 1, 2, 2, 1, 3, 3] -humorist 1.2 0.74833 [1, 2, 1, 1, 2, 1, 2, 0, 0, 2] -humoristic 1.5 0.80623 [3, 0, 2, 1, 2, 1, 2, 2, 1, 1] -humorists 1.3 0.78102 [2, 1, 1, 1, 0, 1, 2, 3, 1, 1] -humorless -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -2] -humorlessness -1.4 1.11355 [1, -3, -3, -1, -1, -2, -1, -1, -2, -1] -humorous 1.6 0.4899 [1, 2, 1, 2, 2, 1, 2, 2, 1, 2] -humorously 2.3 0.78102 [3, 3, 2, 2, 1, 3, 3, 1, 2, 3] -humorousness 2.4 0.66332 [1, 2, 3, 2, 3, 2, 3, 3, 2, 3] -humors 1.6 0.4899 [2, 1, 2, 2, 2, 2, 1, 2, 1, 1] -humour 2.1 0.9434 [1, 2, 2, 4, 2, 1, 1, 3, 3, 2] -humoured 1.1 0.53852 [1, 0, 1, 2, 2, 1, 1, 1, 1, 1] -humouring 1.7 0.78102 [2, 3, 1, 2, 1, 0, 2, 2, 2, 2] -humourous 2.0 0.7746 [1, 2, 3, 2, 2, 3, 3, 2, 1, 1] -hunger -1.0 1.67332 [-4, 0, 2, -2, -1, -2, 1, -2, 0, -2] -hurrah 2.6 0.8 [3, 2, 3, 3, 1, 3, 4, 2, 2, 3] -hurrahed 1.9 0.53852 [2, 2, 1, 1, 2, 2, 3, 2, 2, 2] -hurrahing 2.4 0.4899 [3, 2, 2, 2, 3, 2, 3, 3, 2, 2] -hurrahs 2.1 1.44568 [2, 3, 0, 3, 2, 3, -1, 2, 3, 4] -hurray 2.7 0.78102 [3, 2, 3, 3, 1, 3, 4, 2, 3, 3] -hurrayed 1.8 1.32665 [3, 3, 2, 3, 3, 3, 0, 0, 1, 0] -hurraying 1.2 1.66132 [2, -3, 2, 3, 0, 2, 2, 2, 0, 2] -hurrays 2.4 1.11355 [2, 3, 2, 4, 0, 3, 2, 2, 2, 4] -hurt -2.4 0.8 [-3, -3, -2, -2, -4, -3, -2, -1, -2, -2] -hurter -2.3 0.78102 [-2, -4, -1, -2, -3, -3, -2, -2, -2, -2] -hurters -1.9 1.04403 [-2, -3, -1, -2, -1, 0, -3, -3, -3, -1] -hurtful -2.4 1.0198 [-2, -4, -2, -2, -1, -3, -2, -3, -1, -4] -hurtfully -2.6 0.66332 [-3, -2, -3, -2, -2, -3, -4, -3, -2, -2] -hurtfulness -1.9 1.51327 [2, -2, -2, -2, -3, -1, -2, -3, -4, -2] -hurting -1.7 0.78102 [-3, -1, -1, -2, -1, -1, -3, -2, -2, -1] -hurtle -0.3 1.1 [-2, 1, 0, -1, -1, -1, 0, 2, 0, -1] -hurtled -0.6 0.8 [0, -2, 0, 0, 0, 0, -1, -1, -2, 0] -hurtles -1.0 0.63246 [-1, -2, 0, 0, -1, -1, -1, -1, -2, -1] -hurtless 0.3 1.55242 [-1, -3, 2, 1, 2, 1, 0, 0, -1, 2] -hurtling -1.4 0.8 [-3, -2, -1, -1, -1, -1, -1, -2, 0, -2] -hurts -2.1 0.83066 [-4, -2, -2, -2, -3, -1, -2, -2, -2, -1] -hypocritical -2.0 0.89443 [-4, -2, -1, -3, -2, -1, -2, -1, -2, -2] -hysteria -1.9 0.7 [-1, -3, -1, -2, -2, -2, -2, -2, -1, -3] -hysterical -0.1 1.97231 [2, 0, 0, 3, -2, -2, 3, -1, -2, -2] -hysterics -1.8 1.77764 [-3, -3, -3, -1, -3, -1, -2, 3, -3, -2] -ideal 2.4 1.2 [4, 3, 4, 4, 2, 2, 1, 2, 1, 1] -idealess -1.9 1.3 [-4, -2, -3, -2, -1, 0, -4, -1, -1, -1] -idealise 1.4 0.91652 [2, 2, 1, 0, 1, 3, 2, 0, 1, 2] -idealised 2.1 0.83066 [1, 4, 1, 3, 2, 2, 2, 2, 2, 2] -idealises 2.0 0.89443 [1, 4, 1, 2, 2, 2, 2, 3, 1, 2] -idealising 0.6 0.4899 [0, 1, 1, 1, 1, 1, 1, 0, 0, 0] -idealism 1.7 1.1 [1, 2, 0, 3, 3, 2, 1, 2, 3, 0] -idealisms 0.8 0.9798 [0, 2, 3, 1, 0, 0, 1, 0, 0, 1] -idealist 1.6 1.56205 [2, 3, -2, 1, 3, 3, 1, 0, 2, 3] -idealistic 1.8 0.9798 [2, 1, 0, 2, 4, 2, 2, 2, 1, 2] -idealistically 1.7 1.1 [0, 3, 3, 1, 2, 3, 0, 2, 1, 2] -idealists 0.7 1.1 [0, -2, 1, 2, 1, 1, 2, 0, 1, 1] -idealities 1.5 0.67082 [2, 1, 1, 2, 1, 0, 2, 2, 2, 2] -ideality 1.9 0.9434 [0, 1, 2, 3, 2, 1, 2, 3, 3, 2] -idealization 1.8 0.9798 [2, 2, 2, 1, 4, 2, 2, 0, 1, 2] -idealizations 1.4 0.66332 [2, 1, 1, 2, 1, 2, 1, 0, 2, 2] -idealize 1.2 0.9798 [1, 2, 2, 0, 0, 1, 3, 0, 2, 1] -idealized 1.8 0.74833 [2, 3, 1, 1, 2, 1, 3, 1, 2, 2] -idealizer 1.3 0.9 [1, 1, 1, 1, 1, 3, 0, 1, 3, 1] -idealizers 1.9 1.37477 [1, 4, 1, 2, 0, 2, 3, 2, 4, 0] -idealizes 2.0 1.0 [3, 2, 2, 1, 4, 2, 2, 0, 2, 2] -idealizing 1.4 1.0198 [1, 1, 2, 3, 0, 1, 3, 0, 2, 1] -idealless -1.7 1.00499 [-2, -2, -2, -2, -4, -1, 0, -1, -2, -1] -ideally 1.8 1.16619 [1, 0, 2, 2, 3, 2, 4, 0, 2, 2] -idealogues 0.5 0.92195 [1, 0, -1, 2, 0, 0, 2, 0, 1, 0] -idealogy 0.8 1.16619 [0, 3, 1, 0, 2, 0, 0, 1, 2, -1] -ideals 0.8 0.6 [0, 1, 0, 2, 1, 1, 1, 0, 1, 1] -idiot -2.3 0.64031 [-2, -3, -1, -3, -2, -3, -3, -2, -2, -2] -idiotic -2.6 0.91652 [-3, -4, -2, -3, -2, -2, -4, -1, -3, -2] -ignorable -1.0 0.63246 [-1, -1, -1, -2, 0, -1, 0, -1, -2, -1] -ignorami -1.9 0.83066 [-2, -2, -3, -2, 0, -1, -2, -2, -3, -2] -ignoramus -1.9 0.83066 [-1, -2, -1, -3, -1, -3, -1, -3, -2, -2] -ignoramuses -2.3 1.1 [-2, -2, -3, -4, 0, -1, -3, -2, -3, -3] -ignorance -1.5 1.20416 [-2, -2, -3, -2, 0, -2, -1, -3, -1, 1] -ignorances -1.2 0.9798 [0, -1, -2, -1, -2, -2, -1, 1, -2, -2] -ignorant -1.1 0.83066 [-1, -1, -1, -2, 1, -2, -1, -2, -1, -1] -ignorantly -1.6 0.91652 [-1, -2, -2, -2, -2, -2, -2, 1, -2, -2] -ignorantness -1.1 1.44568 [3, -1, -2, -1, -1, -2, -2, -2, -1, -2] -ignore -1.5 0.67082 [-1, -2, -1, -1, -1, -1, -2, -3, -2, -1] -ignored -1.3 0.45826 [-2, -1, -2, -1, -1, -2, -1, -1, -1, -1] -ignorer -1.3 0.45826 [-1, -1, -2, -1, -2, -1, -1, -1, -2, -1] -ignorers -0.7 1.00499 [-1, -2, -1, -1, -1, 1, 0, -2, 1, -1] -ignores -1.1 0.3 [-1, -1, -2, -1, -1, -1, -1, -1, -1, -1] -ignoring -1.7 0.64031 [-1, -1, -1, -2, -2, -3, -2, -1, -2, -2] -ill -1.8 0.9798 [-2, 0, -2, -1, -4, -2, -2, -2, -1, -2] -illegal -2.6 0.8 [-3, -4, -3, -2, -1, -2, -3, -3, -2, -3] -illiteracy -1.9 0.7 [-2, -1, -2, -2, -3, -2, -1, -2, -1, -3] -illness -1.7 0.64031 [-2, -1, -2, -2, -3, -2, -1, -2, -1, -1] -illnesses -2.2 0.74833 [-2, -2, -2, -4, -2, -3, -2, -1, -2, -2] -imbecile -2.2 0.9798 [-3, -2, -3, -3, -3, -1, -3, 0, -2, -2] -immobilized -1.2 0.87178 [-1, -3, 0, -1, -1, 0, -2, -1, -2, -1] -immoral -2.0 1.09545 [-4, -1, -1, -3, -2, -3, -3, -1, -1, -1] -immoralism -1.6 0.91652 [-2, -2, -2, -2, 1, -2, -2, -2, -1, -2] -immoralist -2.1 0.3 [-2, -2, -3, -2, -2, -2, -2, -2, -2, -2] -immoralists -1.7 0.78102 [-2, -2, -2, -3, -1, -1, -1, -1, -3, -1] -immoralities -1.1 1.51327 [-2, -1, -4, -3, 1, 1, -1, 0, -1, -1] -immorality -0.6 2.2891 [3, -3, 1, 2, 2, -2, -4, -1, -2, -2] -immorally -2.1 0.7 [-1, -1, -2, -2, -3, -2, -3, -2, -2, -3] -immortal 1.0 1.73205 [3, 3, 2, 2, -2, -2, 2, 1, 1, 0] -immune 1.2 0.74833 [2, 2, 0, 1, 2, 1, 2, 1, 1, 0] -impatience -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -1, -2, -2] -impatiens -0.2 0.6 [0, 0, -1, 0, 0, 0, 1, -1, -1, 0] -impatient -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -2] -impatiently -1.7 0.64031 [-1, -1, -2, -3, -1, -2, -1, -2, -2, -2] -imperfect -1.3 0.64031 [-1, -1, -1, -1, -1, -2, -3, -1, -1, -1] -impersonal -1.3 0.45826 [-2, -2, -1, -1, -2, -1, -1, -1, -1, -1] -impolite -1.6 0.66332 [-2, -1, -3, -1, -1, -1, -1, -2, -2, -2] -impolitely -1.8 0.6 [-2, -2, -1, -1, -2, -1, -2, -2, -3, -2] -impoliteness -1.8 0.87178 [-1, -3, -2, -3, -2, -3, -1, -1, -1, -1] -impolitenesses -2.3 0.78102 [-3, -2, -2, -1, -1, -3, -3, -2, -3, -3] -importance 1.5 0.80623 [2, 1, 2, 3, 1, 2, 1, 0, 2, 1] -importancies 0.4 1.42829 [0, 0, 1, 2, 0, 0, 2, 2, 0, -3] -importancy 1.4 0.66332 [2, 1, 2, 2, 1, 2, 1, 0, 2, 1] -important 0.8 1.07703 [0, 0, 0, 2, 1, 0, 0, 3, 2, 0] -importantly 1.3 0.78102 [2, 1, 2, 1, 2, 2, 0, 0, 1, 2] -impose -1.2 0.4 [-1, -1, -1, -1, -2, -1, -2, -1, -1, -1] -imposed -0.3 1.41774 [2, -1, -1, -1, 1, 0, -2, 2, -2, -1] -imposes -0.4 1.42829 [-2, -1, 1, -2, -1, -1, -2, 1, 2, 1] -imposing -0.4 1.0198 [1, -1, -2, -1, 1, 1, 0, -1, -1, -1] -impotent -1.1 0.3 [-1, -1, -1, -2, -1, -1, -1, -1, -1, -1] -impress 1.9 0.53852 [2, 2, 1, 2, 2, 2, 2, 1, 2, 3] -impressed 2.1 0.3 [2, 2, 2, 2, 2, 2, 3, 2, 2, 2] -impresses 2.1 0.3 [2, 2, 2, 2, 2, 2, 3, 2, 2, 2] -impressibility 1.2 1.249 [-1, 2, 0, 2, 0, 2, 2, 3, 2, 0] -impressible 0.8 1.16619 [2, -1, 1, 0, -1, 2, 1, 0, 2, 2] -impressing 2.5 0.92195 [3, 4, 1, 2, 3, 2, 3, 1, 3, 3] -impression 0.9 0.9434 [0, 1, 0, 0, 2, 2, 0, 2, 0, 2] -impressionable 0.2 1.07703 [0, 0, -1, 1, -1, -1, 0, 2, 0, 2] -impressionism 0.8 1.07703 [0, 2, 3, 0, 0, 2, 0, 0, 1, 0] -impressionisms 0.5 0.80623 [0, 0, 0, 0, 0, 2, 0, 1, 0, 2] -impressionist 1.0 1.09545 [0, 2, 3, 0, 0, 2, 2, 0, 1, 0] -impressionistic 1.5 1.20416 [2, 2, 0, 0, 1, 0, 2, 2, 4, 2] -impressionistically 1.6 0.8 [2, 0, 1, 1, 2, 2, 3, 2, 2, 1] -impressionists 0.5 1.43178 [2, 0, 0, 1, 1, 2, -2, 2, 1, -2] -impressions 0.9 1.13578 [2, 0, 0, 3, 0, 2, 0, 2, 0, 0] -impressive 2.3 0.78102 [1, 2, 3, 2, 3, 2, 3, 3, 3, 1] -impressively 2.0 0.89443 [3, 1, 1, 2, 2, 2, 2, 4, 2, 1] -impressiveness 1.7 0.64031 [2, 1, 2, 3, 1, 2, 2, 2, 1, 1] -impressment -0.4 1.85472 [-2, 1, 3, -2, -1, -3, 0, 0, 2, -2] -impressments 0.5 1.20416 [2, 0, 0, 1, 2, 2, 0, -2, 0, 0] -impressure 0.6 1.0198 [-1, 0, 0, 0, 0, 2, 0, 2, 1, 2] -imprisoned -2.0 1.0 [-4, -2, -3, -1, -3, -2, -1, -2, -1, -1] -improve 1.9 0.7 [2, 3, 3, 2, 1, 1, 2, 2, 1, 2] -improved 2.1 0.7 [3, 1, 2, 3, 2, 3, 1, 2, 2, 2] -improvement 2.0 0.63246 [2, 3, 3, 2, 1, 1, 2, 2, 2, 2] -improvements 1.3 0.64031 [0, 2, 2, 1, 2, 2, 1, 1, 1, 1] -improver 1.8 0.6 [2, 1, 2, 1, 2, 3, 1, 2, 2, 2] -improvers 1.3 0.78102 [1, 2, 2, 1, 2, 2, 0, 0, 1, 2] -improves 1.8 1.07703 [3, -1, 2, 2, 2, 3, 1, 2, 2, 2] -improving 1.8 0.4 [2, 2, 1, 1, 2, 2, 2, 2, 2, 2] -inability -1.7 0.9 [-2, -2, -3, 0, -2, -3, -2, -1, -1, -1] -inaction -1.0 0.63246 [-2, -1, 0, -1, -1, 0, -1, -2, -1, -1] -inadequacies -1.7 0.64031 [-1, -3, -2, -1, -2, -1, -2, -2, -1, -2] -inadequacy -1.7 0.78102 [-1, -3, -1, -1, -3, -2, -2, -1, -2, -1] -inadequate -1.7 0.64031 [-2, -1, -1, -3, -1, -1, -2, -2, -2, -2] -inadequately -1.0 1.26491 [-3, -1, -1, -2, 2, -1, -2, -1, 0, -1] -inadequateness -1.7 0.45826 [-2, -2, -1, -1, -1, -2, -2, -2, -2, -2] -inadequatenesses -1.6 0.91652 [-1, -1, -2, -1, -2, -4, -2, -1, -1, -1] -incapable -1.6 0.4899 [-1, -2, -1, -1, -2, -1, -2, -2, -2, -2] -incapacitated -1.9 0.9434 [-2, -2, -1, -1, -2, -4, -1, -1, -2, -3] -incensed -2.0 1.0 [-2, -1, -4, 0, -2, -2, -2, -3, -2, -2] -incentive 1.5 1.0247 [1, 2, 1, 2, 1, 0, 4, 2, 1, 1] -incentives 1.3 1.34536 [2, 2, 1, 1, 3, 1, -2, 3, 1, 1] -incompetence -2.3 0.45826 [-3, -2, -2, -3, -2, -3, -2, -2, -2, -2] -incompetent -2.1 0.83066 [-1, -1, -2, -2, -3, -3, -2, -3, -1, -3] -inconsiderate -1.9 0.7 [-2, -1, -1, -1, -2, -2, -2, -3, -3, -2] -inconvenience -1.5 0.5 [-1, -2, -1, -1, -1, -2, -2, -1, -2, -2] -inconvenient -1.4 0.4899 [-2, -2, -1, -2, -1, -2, -1, -1, -1, -1] -increase 1.3 0.64031 [1, 2, 2, 1, 2, 0, 1, 1, 2, 1] -increased 1.1 1.04403 [2, 0, 3, 2, 2, 1, 0, 1, 0, 0] -indecision -0.8 0.6 [-1, 0, -1, 0, -1, -1, -2, 0, -1, -1] -indecisions -1.1 0.53852 [-1, -1, -1, -1, -2, -1, -2, -1, 0, -1] -indecisive -1.0 0.44721 [0, -1, -1, -1, -1, -2, -1, -1, -1, -1] -indecisively -0.7 1.18743 [-2, -1, -1, -1, -1, -1, -2, 2, 1, -1] -indecisiveness -1.3 0.64031 [-1, -3, -1, -2, -1, -1, -1, -1, -1, -1] -indecisivenesses -0.9 0.53852 [-1, -1, 0, -1, -1, 0, -1, -2, -1, -1] -indestructible 0.6 1.85472 [3, 4, -1, -2, 1, 1, 2, 0, -1, -1] -indifference -0.2 0.74833 [0, -1, 0, 0, 0, 1, -2, 0, 0, 0] -indifferent -0.8 0.6 [-1, 0, 0, -1, -2, -1, -1, 0, -1, -1] -indignant -1.8 0.74833 [-1, -3, -2, -2, -2, -1, -1, -1, -3, -2] -indignation -2.4 0.8 [-2, -1, -2, -3, -3, -3, -1, -3, -3, -3] -indoctrinate -1.4 0.91652 [-1, -3, -1, 0, -2, -1, -2, -2, 0, -2] -indoctrinated -0.4 1.35647 [1, -2, -3, 1, -1, 1, 1, -1, -1, 0] -indoctrinates -0.6 1.2 [1, -1, -3, 1, -1, 1, -1, -1, -1, -1] -indoctrinating -0.7 1.41774 [-1, 0, -3, -1, -2, -1, 2, -2, 0, 1] -ineffective -0.5 1.74642 [-2, -1, -1, -1, -2, 2, -2, 1, 3, -2] -ineffectively -1.3 0.9 [-2, -2, -2, 1, -1, -1, -1, -2, -1, -2] -ineffectiveness -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -1, -2, -1] -ineffectual -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] -ineffectuality -1.6 0.66332 [-2, -1, -1, -1, -2, -1, -3, -2, -2, -1] -ineffectually -1.1 0.9434 [-1, -2, -2, -1, 0, -1, -2, -1, 1, -2] -ineffectualness -1.3 0.45826 [-2, -1, -1, -1, -1, -2, -1, -1, -2, -1] -infatuated 0.2 1.72047 [3, 2, 0, 3, -1, -1, -2, 0, -1, -1] -infatuation 0.6 1.74356 [1, -1, -1, 2, -1, 1, 4, 2, 1, -2] -infected -2.2 0.6 [-3, -2, -2, -2, -2, -2, -3, -1, -2, -3] -inferior -1.7 0.78102 [-1, -2, -2, -1, -1, -3, -2, -1, -1, -3] -inferiorities -1.9 0.7 [-2, -3, -1, -2, -2, -3, -1, -1, -2, -2] -inferiority -1.1 1.7 [-2, -3, -2, -2, -2, -3, 2, 1, -1, 1] -inferiorly -2.0 0.63246 [-3, -2, -2, -2, -2, -3, -1, -2, -1, -2] -inferiors -0.5 1.43178 [-1, -1, -1, -2, -1, 0, 3, -1, 1, -2] -inflamed -1.4 1.28062 [-2, -2, -1, -2, -2, -1, 2, -3, -2, -1] -influential 1.9 1.04403 [3, 1, 2, 3, 4, 1, 1, 2, 1, 1] -infringement -2.1 0.83066 [-3, -1, -2, -1, -2, -1, -3, -3, -2, -3] -infuriate -2.2 0.87178 [-2, -1, -3, -3, -2, -3, -3, -1, -1, -3] -infuriated -3.0 0.7746 [-1, -4, -3, -3, -3, -3, -3, -3, -3, -4] -infuriates -2.6 0.8 [-4, -2, -1, -3, -3, -3, -2, -3, -3, -2] -infuriating -2.4 1.42829 [-1, -3, -3, -3, -3, -4, 0, 0, -4, -3] -inhibin -0.2 0.4 [-1, 0, 0, 0, 0, 0, 0, 0, -1, 0] -inhibit -1.6 0.4899 [-1, -2, -1, -2, -1, -2, -2, -2, -1, -2] -inhibited -0.4 0.4899 [0, 0, -1, 0, -1, -1, 0, -1, 0, 0] -inhibiting -0.4 1.42829 [1, -1, -1, -1, -2, -1, 2, -2, 2, -1] -inhibition -1.5 0.67082 [-1, -1, -1, -1, -2, -1, -1, -2, -2, -3] -inhibitions -0.8 0.74833 [-2, -1, -2, 0, 0, 0, 0, -1, -1, -1] -inhibitive -1.4 0.4899 [-2, -2, -1, -1, -2, -1, -2, -1, -1, -1] -inhibitor -0.3 1.00499 [-2, 1, 1, -1, 1, 0, -1, -1, 0, -1] -inhibitors -1.0 0.7746 [-1, 0, -2, -1, -2, -2, 0, 0, -1, -1] -inhibitory -1.0 0.7746 [0, -1, -2, -2, -1, -2, 0, 0, -1, -1] -inhibits -0.9 0.53852 [-1, -1, -2, -1, -1, 0, -1, -1, -1, 0] -injured -1.7 0.64031 [-2, -1, -1, -1, -2, -1, -2, -2, -3, -2] -injury -1.8 0.6 [-2, -2, -1, -2, -1, -1, -2, -3, -2, -2] -injustice -2.7 0.64031 [-3, -2, -3, -4, -3, -3, -2, -2, -3, -2] -innocence 1.6 0.91652 [3, 1, 1, 1, 2, 2, 0, 3, 2, 1] -innocency 1.9 0.83066 [3, 1, 2, 0, 2, 2, 2, 3, 2, 2] -innocent 1.4 1.2 [1, -1, 2, 2, 2, 0, 1, 3, 3, 1] -innocenter 0.9 1.37477 [1, 1, 1, 2, 2, 1, 1, -3, 1, 2] -innocently 1.4 0.8 [0, 2, 1, 1, 1, 1, 3, 2, 2, 1] -innocents 1.1 1.04403 [0, 0, 2, 2, 2, -1, 1, 1, 2, 2] -innovate 2.2 0.74833 [2, 4, 3, 2, 2, 1, 2, 2, 2, 2] -innovates 2.0 0.89443 [2, 2, 2, 0, 1, 3, 3, 2, 3, 2] -innovation 1.6 0.91652 [1, 0, 3, 2, 1, 2, 3, 2, 1, 1] -innovative 1.9 0.83066 [1, 1, 2, 1, 2, 4, 2, 2, 2, 2] -inquisition -1.2 1.249 [-2, 1, -1, 0, 0, -3, -1, -3, -2, -1] -inquisitive 0.7 1.18743 [2, 1, 1, 2, -2, -1, 1, 1, 1, 1] -insane -1.7 0.78102 [-2, 0, -2, -1, -2, -3, -2, -2, -1, -2] -insanity -2.7 1.00499 [-2, -4, -1, -1, -3, -4, -3, -3, -3, -3] -insecure -1.8 0.74833 [-1, -2, -2, -1, -3, -2, -3, -2, -1, -1] -insecurely -1.4 0.66332 [-3, -1, -1, -1, -2, -1, -2, -1, -1, -1] -insecureness -1.8 0.87178 [-1, -1, -1, -3, -3, -3, -2, -2, -1, -1] -insecurities -1.8 0.6 [-3, -2, -2, -2, -1, -2, -1, -1, -2, -2] -insecurity -1.8 0.74833 [-2, -2, -2, -1, -3, -3, -2, -1, -1, -1] -insensitive -0.9 1.81384 [2, -3, -2, -1, 2, -3, -2, 1, -1, -2] -insensitivity -1.8 0.6 [-2, -2, -1, -3, -2, -2, -1, -2, -1, -2] -insignificant -1.4 0.8 [-3, -2, -1, -2, -1, -2, 0, -1, -1, -1] -insincere -1.8 0.6 [-2, -1, -2, -1, -2, -2, -2, -2, -1, -3] -insincerely -1.9 0.7 [-2, -1, -2, -2, -1, -3, -2, -3, -1, -2] -insincerity -1.4 1.35647 [-1, -1, -3, -2, -1, 2, -2, -1, -2, -3] -insipid -2.0 0.7746 [-1, -2, -2, -1, -3, -3, -3, -2, -2, -1] -inspiration 2.4 0.8 [3, 3, 3, 3, 1, 3, 1, 3, 2, 2] -inspirational 2.3 0.64031 [2, 3, 2, 3, 2, 3, 2, 3, 1, 2] -inspirationally 2.3 0.64031 [3, 2, 2, 3, 3, 1, 2, 2, 3, 2] -inspirations 2.1 0.53852 [2, 2, 2, 2, 1, 2, 2, 3, 3, 2] -inspirator 1.9 1.22066 [2, 2, 3, 0, 3, 4, 0, 2, 1, 2] -inspirators 1.2 0.74833 [3, 1, 1, 2, 1, 1, 1, 1, 0, 1] -inspiratory 1.5 0.67082 [2, 2, 3, 1, 1, 1, 1, 1, 2, 1] -inspire 2.7 0.78102 [2, 3, 3, 3, 3, 3, 3, 1, 4, 2] -inspired 2.2 0.87178 [3, 2, 1, 3, 1, 1, 3, 2, 3, 3] -inspirer 2.2 1.07703 [3, 2, 2, 4, 0, 2, 3, 1, 3, 2] -inspirers 2.0 0.63246 [2, 2, 3, 2, 3, 2, 1, 2, 1, 2] -inspires 1.9 1.04403 [2, 2, 2, 4, 0, 2, 3, 1, 1, 2] -inspiring 1.8 1.07703 [2, 2, 2, -1, 2, 3, 2, 2, 1, 3] -inspiringly 2.6 0.4899 [2, 3, 3, 2, 3, 3, 2, 3, 2, 3] -inspirit 1.9 0.7 [1, 3, 2, 1, 2, 1, 3, 2, 2, 2] -inspirited 1.3 1.18743 [2, 2, 0, 0, 3, 0, 2, 0, 3, 1] -inspiriting 1.8 0.4 [1, 2, 1, 2, 2, 2, 2, 2, 2, 2] -inspiritingly 2.1 1.44568 [3, 2, 2, 2, 4, 1, -1, 3, 4, 1] -inspirits 0.8 1.46969 [3, 0, 3, -2, 0, 1, 1, 0, 2, 0] -insult -2.3 1.00499 [-2, -1, -2, -3, -4, -1, -3, -1, -3, -3] -insulted -2.3 0.45826 [-2, -2, -2, -2, -3, -2, -2, -2, -3, -3] -insulter -2.0 0.63246 [-2, -1, -2, -2, -1, -3, -3, -2, -2, -2] -insulters -2.0 0.44721 [-2, -3, -2, -2, -2, -2, -2, -1, -2, -2] -insulting -2.2 0.74833 [-3, -2, -3, -3, -2, -3, -1, -2, -2, -1] -insultingly -2.3 0.78102 [-3, -3, -1, -2, -2, -3, -2, -1, -3, -3] -insults -1.8 0.6 [-2, -3, -2, -2, -1, -1, -1, -2, -2, -2] -intact 0.8 0.6 [1, 1, 0, 0, 1, 1, 0, 1, 1, 2] -integrity 1.6 0.66332 [2, 1, 1, 1, 2, 1, 3, 1, 2, 2] -intellect 2.0 1.09545 [2, 1, 4, 2, 1, 3, 2, 3, 0, 2] -intellection 0.6 1.0198 [0, 0, 0, 1, 0, 0, 0, 0, 2, 3] -intellections 0.8 0.87178 [1, 0, 1, 0, 1, 1, 1, 0, 0, 3] -intellective 1.7 0.78102 [3, 2, 1, 2, 2, 1, 0, 2, 2, 2] -intellectively 0.8 0.9798 [0, 0, 1, 1, 0, 3, 0, 1, 2, 0] -intellects 1.8 0.87178 [1, 0, 2, 1, 3, 2, 2, 2, 3, 2] -intellectual 2.3 0.9 [3, 3, 1, 2, 3, 4, 2, 2, 1, 2] -intellectualism 2.2 1.07703 [4, 0, 3, 1, 3, 2, 2, 3, 2, 2] -intellectualist 2.0 1.0 [4, 0, 2, 1, 3, 2, 2, 2, 2, 2] -intellectualistic 1.3 1.73494 [1, 4, 0, 3, -2, 0, 2, 3, 0, 2] -intellectualists 0.8 0.74833 [0, 1, 1, 1, 0, 2, 0, 1, 2, 0] -intellectualities 1.7 1.34536 [3, 3, 0, 2, 1, 0, 0, 4, 2, 2] -intellectuality 1.7 1.1 [3, 2, 2, 1, 2, 1, 0, 3, 0, 3] -intellectualization 1.5 1.11803 [2, 1, 2, 1, 4, 2, 0, 0, 2, 1] -intellectualize 1.5 0.92195 [1, 2, 1, 1, 3, 2, 3, 0, 1, 1] -intellectualized 1.2 0.74833 [1, 0, 1, 1, 2, 0, 1, 2, 2, 2] -intellectualizes 1.8 0.87178 [2, 3, 2, 0, 2, 3, 2, 2, 1, 1] -intellectualizing 0.8 1.77764 [0, 1, 2, 1, 0, 2, 2, -4, 2, 2] -intellectually 1.4 0.8 [2, 0, 0, 1, 2, 2, 2, 2, 2, 1] -intellectualness 1.5 0.80623 [2, 2, 2, 2, 0, 0, 1, 2, 2, 2] -intellectuals 1.6 0.8 [0, 1, 2, 1, 3, 2, 1, 2, 2, 2] -intelligence 2.1 0.9434 [3, 2, 2, 1, 3, 3, 3, 2, 2, 0] -intelligencer 1.5 0.80623 [2, 0, 0, 2, 2, 2, 2, 1, 2, 2] -intelligencers 1.6 0.91652 [2, 2, 0, 2, 2, 0, 3, 2, 2, 1] -intelligences 1.6 0.91652 [3, 0, 0, 2, 2, 2, 2, 1, 2, 2] -intelligent 2.0 0.7746 [1, 2, 2, 1, 4, 2, 2, 2, 2, 2] -intelligential 1.9 0.9434 [3, 2, 2, 1, 3, 2, 2, 3, 0, 1] -intelligently 2.0 0.63246 [2, 3, 2, 3, 1, 2, 2, 1, 2, 2] -intelligentsia 1.5 1.20416 [0, 1, 2, 0, 4, 3, 2, 1, 1, 1] -intelligibility 1.5 0.80623 [2, 2, 0, 2, 2, 1, 2, 0, 2, 2] -intelligible 1.4 0.8 [1, 2, 2, 1, 0, 2, 1, 1, 3, 1] -intelligibleness 1.5 1.20416 [2, 1, 3, -1, 2, 2, 2, 0, 1, 3] -intelligibly 1.2 0.87178 [1, 2, 1, 2, 1, -1, 2, 2, 1, 1] -intense 0.3 0.45826 [0, 1, 1, 0, 0, 0, 0, 0, 1, 0] -interest 2.0 1.18322 [2, 3, 3, 1, 1, 3, 4, 1, 2, 0] -interested 1.7 0.45826 [2, 1, 2, 2, 1, 2, 2, 2, 1, 2] -interestedly 1.5 0.67082 [2, 2, 2, 1, 2, 1, 2, 1, 0, 2] -interesting 1.7 0.78102 [1, 2, 1, 3, 1, 1, 1, 3, 2, 2] -interestingly 1.7 0.45826 [2, 2, 2, 1, 2, 1, 1, 2, 2, 2] -interestingness 1.8 0.87178 [2, 3, 1, 3, 1, 3, 2, 1, 1, 1] -interests 1.0 0.89443 [1, 0, 1, 2, 0, 0, 1, 1, 1, 3] -interrogated -1.6 1.0198 [-3, -1, -1, -1, -2, -1, -3, -1, -3, 0] -interrupt -1.4 0.4899 [-2, -1, -1, -1, -2, -2, -1, -1, -2, -1] -interrupted -1.2 0.6 [-1, -2, -1, 0, -1, -1, -2, -1, -2, -1] -interrupter -1.1 0.53852 [-1, -2, -1, 0, -1, -1, -1, -1, -2, -1] -interrupters -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -2, -1, -2, -1] -interruptible -1.3 1.00499 [-2, -1, 0, -2, 0, -3, -2, -1, 0, -2] -interrupting -1.2 0.4 [-2, -1, -1, -1, -1, -2, -1, -1, -1, -1] -interruption -1.5 0.67082 [-1, -1, -2, -3, -2, -1, -1, -1, -2, -1] -interruptions -1.7 0.45826 [-2, -2, -2, -2, -2, -1, -1, -1, -2, -2] -interruptive -1.4 0.66332 [-2, -2, -1, -2, -2, 0, -1, -1, -1, -2] -interruptor -1.3 0.64031 [-2, -1, -1, -1, 0, -2, -2, -2, -1, -1] -interrupts -1.3 0.64031 [-1, -1, -2, -1, -1, -1, -1, -1, -3, -1] -intimidate -0.8 1.46969 [-1, -2, -2, -2, -2, -1, 2, 1, 1, -2] -intimidated -1.9 0.7 [-2, -1, -3, -3, -1, -2, -2, -1, -2, -2] -intimidates -1.3 0.78102 [-2, -1, -1, -1, -3, -2, -1, -1, -1, 0] -intimidating -1.9 1.04403 [0, -2, -1, -3, -2, -1, -1, -3, -3, -3] -intimidatingly -1.1 1.64012 [2, -2, -3, -1, -2, -2, 2, -2, -1, -2] -intimidation -1.8 1.249 [1, -2, -3, -1, -2, -3, -1, -3, -1, -3] -intimidations -1.4 1.49666 [1, -2, -2, -2, -1, -1, -1, -4, 1, -3] -intimidator -1.6 0.4899 [-1, -1, -2, -2, -1, -2, -2, -1, -2, -2] -intimidators -1.6 0.8 [-1, -1, -3, -2, -1, -1, -3, -1, -2, -1] -intimidatory -1.1 1.22066 [-1, -2, -3, -1, -1, -1, -2, 2, -1, -1] -intricate 0.6 0.66332 [1, 0, 2, 1, 0, 1, 1, 0, 0, 0] -intrigues 0.9 0.9434 [2, -1, 2, 1, 2, 0, 1, 1, 0, 1] -invigorate 1.9 0.83066 [2, 2, 2, 0, 2, 3, 3, 2, 1, 2] -invigorated 0.8 1.8868 [-2, 3, 2, 2, -2, -2, 2, 2, 1, 2] -invigorates 2.1 0.53852 [3, 2, 3, 2, 1, 2, 2, 2, 2, 2] -invigorating 2.1 0.7 [2, 1, 1, 3, 3, 3, 2, 2, 2, 2] -invigoratingly 2.0 0.63246 [2, 2, 1, 2, 1, 3, 2, 2, 2, 3] -invigoration 1.5 1.36015 [2, 2, 1, -2, 1, 3, 3, 2, 1, 2] -invigorations 1.2 0.87178 [1, -1, 2, 2, 1, 1, 2, 1, 2, 1] -invigorator 1.1 1.3 [3, 1, 0, 2, 2, -2, 1, 1, 2, 1] -invigorators 1.2 0.87178 [1, 1, 1, 1, 3, 2, 0, 0, 1, 2] -invincible 2.2 1.77764 [4, 1, 3, 2, 4, 1, 4, -1, 0, 4] -invite 0.6 0.66332 [2, 1, 1, 0, 0, 0, 0, 1, 1, 0] -inviting 1.3 0.45826 [1, 1, 1, 2, 1, 2, 2, 1, 1, 1] -invulnerable 1.3 1.73494 [2, 3, 4, 2, 0, 3, 0, 1, -2, 0] -irate -2.9 0.53852 [-3, -3, -3, -2, -3, -4, -3, -3, -2, -3] -ironic -0.5 1.28452 [1, 0, 0, 0, 0, 0, -4, -1, -1, 0] -irony -0.2 1.07703 [-1, 0, -3, 0, 0, 0, 1, 0, 1, 0] -irrational -1.4 0.4899 [-1, -1, -1, -2, -2, -2, -1, -1, -2, -1] -irrationalism -1.5 0.5 [-1, -2, -1, -1, -2, -1, -2, -2, -1, -2] -irrationalist -2.1 0.9434 [-1, -4, -2, -2, -3, -3, -2, -1, -1, -2] -irrationalists -1.5 0.92195 [-2, -2, -1, -2, -2, 1, -1, -2, -2, -2] -irrationalities -1.5 0.80623 [-2, -2, 0, -1, -1, -1, -2, -3, -1, -2] -irrationality -1.7 0.9 [-3, -3, -1, -2, -1, -1, -1, -1, -3, -1] -irrationally -1.6 0.4899 [-1, -2, -1, -2, -1, -2, -2, -2, -1, -2] -irrationals -1.1 0.83066 [-2, 0, -1, 0, -1, -1, -3, -1, -1, -1] -irresistible 1.4 2.2 [2, 3, 2, 3, 4, 4, 1, -1, -2, -2] -irresolute -1.4 0.66332 [-2, -2, -1, -2, -1, -1, -1, -2, -2, 0] -irresponsible -1.9 0.3 [-2, -2, -2, -2, -2, -2, -1, -2, -2, -2] -irreversible -0.8 0.87178 [-2, -2, 0, -1, 0, 0, 0, -1, -2, 0] -irritabilities -1.7 0.64031 [-2, -2, -2, -1, -1, -1, -1, -2, -3, -2] -irritability -1.4 1.28062 [-2, -1, -2, -1, 2, -2, -2, -2, -1, -3] -irritable -2.1 0.7 [-2, -2, -3, -1, -2, -1, -3, -2, -3, -2] -irritableness -1.7 0.64031 [-2, -2, -2, -1, -2, -1, -1, -3, -1, -2] -irritably -1.8 0.6 [-2, -2, -1, -1, -3, -2, -1, -2, -2, -2] -irritant -2.3 0.78102 [-3, -3, -3, -3, -3, -1, -2, -2, -2, -1] -irritants -2.1 0.83066 [-2, -3, -1, -4, -2, -1, -2, -2, -2, -2] -irritate -1.8 0.6 [-3, -2, -2, -2, -1, -2, -1, -2, -1, -2] -irritated -2.0 0.63246 [-1, -2, -2, -2, -3, -2, -2, -3, -1, -2] -irritates -1.7 0.78102 [-1, -2, -1, -1, -3, -2, -2, -3, -1, -1] -irritating -2.0 0.63246 [-2, -2, -2, -1, -1, -3, -2, -2, -3, -2] -irritatingly -2.0 0.44721 [-2, -2, -2, -3, -1, -2, -2, -2, -2, -2] -irritation -2.3 0.78102 [-3, -2, -2, -2, -1, -3, -3, -1, -3, -3] -irritations -1.5 0.67082 [-2, -2, -1, -1, -1, -1, -1, -2, -3, -1] -irritative -2.0 0.63246 [-3, -2, -3, -2, -1, -2, -2, -2, -1, -2] -isolatable 0.2 1.249 [1, 0, -2, 0, -1, -1, 2, 0, 2, 1] -isolate -0.8 0.74833 [-1, -1, -1, 0, 0, 0, 0, -2, -1, -2] -isolated -1.3 0.64031 [-1, -1, -1, -1, -1, -1, -2, -1, -3, -1] -isolates -1.3 0.64031 [-1, -1, -1, -1, -2, -1, -3, -1, -1, -1] -isolation -1.7 0.78102 [-1, -3, -1, -2, -2, -1, -3, -1, -2, -1] -isolationism 0.4 1.62481 [2, 0, -1, -2, -1, 3, 0, 2, -1, 2] -isolationist 0.7 1.55242 [2, 0, 0, -1, -1, 3, 0, 2, -1, 3] -isolations -0.5 1.11803 [-1, -2, -2, -1, 1, 1, -1, 0, 1, -1] -isolator -0.4 0.66332 [0, 0, -1, 0, -1, 0, -2, 0, 0, 0] -isolators -0.4 1.42829 [-2, -1, -1, -2, 2, 2, -1, 1, -1, -1] -itchy -1.1 0.53852 [-1, -1, -1, -1, -2, 0, -1, -1, -2, -1] -jackass -1.8 1.07703 [-1, 0, -3, -2, -2, -3, 0, -2, -2, -3] -jackasses -2.8 0.9798 [-2, -2, -4, -3, -4, -4, -3, -1, -2, -3] -jaded -1.6 0.66332 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -3] -jailed -2.2 0.87178 [-4, -3, -2, -2, -1, -2, -2, -3, -1, -2] -jaunty 1.2 0.6 [2, 1, 0, 2, 1, 1, 1, 2, 1, 1] -jealous -2.0 0.63246 [-2, -2, -3, -2, -3, -2, -1, -1, -2, -2] -jealousies -2.0 0.63246 [-2, -3, -2, -1, -2, -3, -2, -1, -2, -2] -jealously -2.0 0.89443 [-1, -3, -1, -4, -2, -2, -1, -2, -2, -2] -jealousness -1.7 0.45826 [-1, -2, -2, -2, -2, -1, -1, -2, -2, -2] -jealousy -1.3 1.73494 [-2, -3, -2, -2, -2, 2, -3, -1, 2, -2] -jeopardy -2.1 0.9434 [-3, -3, -3, -1, -1, -3, -2, -1, -1, -3] -jerk -1.4 0.8 [-1, -1, -1, -2, -3, 0, -2, -1, -1, -2] -jerked -0.8 0.74833 [0, -1, -1, 0, -2, -1, 0, -1, 0, -2] -jerks -1.1 1.51327 [-2, -2, -1, -2, -1, 0, -2, 3, -2, -2] -jewel 1.5 1.20416 [1, 3, 2, 0, 2, 1, 3, 0, 3, 0] -jewels 2.0 1.34164 [3, 1, 0, 0, 4, 3, 3, 2, 3, 1] -jocular 1.2 1.249 [0, 1, 2, -2, 1, 2, 2, 2, 2, 2] -join 1.2 0.74833 [2, 2, 1, 2, 1, 0, 1, 2, 0, 1] -joke 1.2 0.74833 [1, 1, 1, 1, 1, 1, 0, 2, 1, 3] -joked 1.3 0.64031 [1, 1, 2, 2, 0, 2, 1, 1, 2, 1] -joker 0.5 0.92195 [1, 1, -1, 1, 2, -1, 1, 1, 0, 0] -jokes 1.0 0.7746 [1, 1, -1, 1, 1, 2, 1, 1, 2, 1] -jokester 1.5 0.67082 [2, 2, 2, 2, 1, 1, 0, 1, 2, 2] -jokesters 0.9 0.83066 [0, 0, 2, 1, 1, 2, 2, 0, 1, 0] -jokey 1.1 0.3 [1, 1, 2, 1, 1, 1, 1, 1, 1, 1] -joking 0.9 0.53852 [1, 2, 1, 1, 1, 0, 1, 1, 0, 1] -jollied 2.4 0.66332 [3, 3, 2, 2, 3, 3, 2, 2, 1, 3] -jollier 2.4 0.4899 [2, 2, 3, 3, 2, 2, 2, 3, 2, 3] -jollies 2.0 0.63246 [1, 2, 3, 2, 2, 2, 1, 2, 2, 3] -jolliest 2.9 0.7 [3, 3, 2, 4, 3, 2, 3, 4, 2, 3] -jollification 2.2 0.74833 [2, 3, 3, 1, 2, 1, 3, 2, 3, 2] -jollifications 2.0 0.7746 [2, 3, 2, 2, 2, 2, 3, 2, 0, 2] -jollify 2.1 0.53852 [2, 3, 2, 2, 2, 2, 2, 3, 1, 2] -jollily 2.7 0.64031 [3, 3, 3, 3, 3, 3, 3, 1, 3, 2] -jolliness 2.5 0.67082 [3, 1, 2, 3, 2, 3, 3, 3, 2, 3] -jollities 1.7 0.64031 [2, 1, 2, 2, 1, 2, 2, 3, 1, 1] -jollity 1.8 1.6 [3, 2, 1, 1, 4, 3, 1, 2, 3, -2] -jolly 2.3 1.00499 [4, 3, 3, 1, 1, 1, 3, 2, 3, 2] -jollying 2.3 0.64031 [2, 3, 3, 1, 3, 3, 2, 2, 2, 2] -jovial 1.9 0.53852 [2, 2, 1, 2, 1, 2, 3, 2, 2, 2] -joy 2.8 0.74833 [3, 2, 3, 4, 3, 3, 3, 1, 3, 3] -joyance 2.3 0.9 [1, 3, 4, 2, 2, 1, 2, 3, 2, 3] -joyed 2.9 0.3 [3, 3, 3, 3, 3, 3, 3, 2, 3, 3] -joyful 2.9 0.53852 [3, 2, 3, 3, 2, 3, 4, 3, 3, 3] -joyfuller 2.4 0.66332 [2, 4, 3, 2, 2, 2, 3, 2, 2, 2] -joyfully 2.5 0.67082 [2, 2, 3, 3, 2, 2, 3, 4, 2, 2] -joyfulness 2.7 1.00499 [4, 3, 1, 3, 3, 3, 4, 2, 1, 3] -joying 2.5 0.67082 [2, 2, 1, 3, 3, 3, 3, 3, 3, 2] -joyless -2.5 0.67082 [-1, -2, -3, -3, -3, -3, -2, -2, -3, -3] -joylessly -1.7 1.1 [-2, -2, -3, -3, -2, -1, 1, -2, -1, -2] -joylessness -2.7 0.9 [-4, -3, -3, -3, -3, -3, -3, -1, -1, -3] -joyous 3.1 0.7 [3, 4, 3, 2, 4, 3, 3, 4, 2, 3] -joyously 2.9 0.7 [2, 3, 4, 3, 4, 2, 2, 3, 3, 3] -joyousness 2.8 0.74833 [3, 3, 1, 3, 3, 3, 4, 2, 3, 3] -joypop -0.2 1.93907 [-3, 1, 2, 2, -3, -1, -2, -1, 1, 2] -joypoppers -0.1 1.22066 [2, -1, 1, -1, -1, 1, 1, 0, -2, -1] -joyridden 0.6 1.8 [-2, -1, 4, 0, 0, 2, 1, -1, 0, 3] -joyride 1.1 1.22066 [-1, 1, 2, 0, 2, 0, 2, 2, 3, 0] -joyrider 0.7 1.26886 [2, -2, 1, 2, 0, 2, -1, 1, 1, 1] -joyriders 1.3 1.18743 [1, 0, 0, 1, 4, 3, 1, 1, 1, 1] -joyrides 0.8 1.32665 [2, -2, 1, 2, 0, 2, -1, 1, 2, 1] -joyriding 0.9 1.04403 [1, -1, 1, 1, 0, 2, 0, 1, 3, 1] -joyrode 1.0 1.48324 [4, 0, -2, 0, 2, 1, 2, 1, 1, 1] -joys 2.2 0.4 [2, 2, 2, 2, 2, 3, 2, 3, 2, 2] -joystick 0.7 0.78102 [1, 0, 2, 2, 0, 0, 1, 1, 0, 0] -joysticks 0.2 0.4 [0, 0, 0, 0, 1, 0, 0, 1, 0, 0] -jubilant 3.0 0.63246 [3, 3, 4, 3, 3, 2, 3, 4, 2, 3] -jumpy -1.0 0.63246 [0, 0, -2, -1, -1, -1, -1, -1, -2, -1] -justice 2.4 1.0198 [3, 2, 1, 2, 3, 2, 4, 4, 2, 1] -justifiably 1.0 0.7746 [0, 1, 0, 1, 1, 1, 0, 2, 2, 2] -justified 1.7 0.64031 [1, 2, 2, 3, 1, 1, 1, 2, 2, 2] -keen 1.5 0.67082 [1, 1, 3, 1, 2, 1, 1, 2, 2, 1] -keened 0.3 1.00499 [-2, 0, 1, 0, 1, 1, 0, 2, 0, 0] -keener 0.5 1.20416 [-1, -1, 0, -1, 2, 1, 2, 2, 1, 0] -keeners 0.6 0.4899 [1, 0, 0, 1, 1, 0, 1, 1, 0, 1] -keenest 1.9 0.83066 [3, 3, 1, 1, 3, 2, 2, 1, 2, 1] -keening -0.7 1.41774 [0, -3, -1, -1, -3, 1, -1, 1, 1, -1] -keenly 1.0 0.7746 [2, 1, 1, 0, 1, 0, 2, 1, 2, 0] -keenness 1.4 0.4899 [1, 1, 2, 2, 1, 1, 1, 2, 2, 1] -keens 0.1 1.22066 [1, -3, 0, 0, 0, 2, 1, 0, 0, 0] -kewl 1.3 0.45826 [2, 1, 1, 1, 2, 1, 2, 1, 1, 1] -kidding 0.4 0.8 [0, 1, 0, -1, 1, 1, 1, 1, -1, 1] -kill -3.7 0.45826 [-4, -4, -4, -4, -3, -4, -4, -4, -3, -3] -killdeer -1.1 1.04403 [-3, 0, 0, -1, -2, 0, -1, -2, -2, 0] -killdeers -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1] -killdees -0.6 0.66332 [-2, 0, 0, 0, -1, 0, -1, -1, -1, 0] -killed -3.5 0.67082 [-3, -3, -2, -4, -4, -4, -3, -4, -4, -4] -killer -3.3 0.64031 [-4, -4, -3, -3, -4, -4, -3, -3, -2, -3] -killers -3.3 0.45826 [-3, -3, -4, -3, -3, -3, -4, -3, -4, -3] -killick 0.1 0.3 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] -killie -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1] -killifish -0.1 0.7 [0, 0, 0, 0, -2, 0, 0, 0, 1, 0] -killifishes -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] -killing -3.4 1.2 [-4, 0, -4, -4, -4, -3, -4, -3, -4, -4] -killingly -2.6 1.0198 [-3, -2, -4, -2, -1, -3, -4, -3, -3, -1] -killings -3.5 0.67082 [-4, -3, -4, -4, -2, -3, -4, -4, -3, -4] -killjoy -2.1 0.83066 [-1, -2, -3, -2, -1, -3, -2, -1, -3, -3] -killjoys -1.7 0.9 [-1, -3, -3, -1, -2, -1, -2, 0, -2, -2] -killock -0.3 0.64031 [0, 0, 0, 0, -2, 0, 0, 0, -1, 0] -killocks -0.4 0.66332 [0, 0, 0, -2, -1, 0, -1, 0, 0, 0] -kills -2.5 0.92195 [-2, -3, -2, -3, -4, -1, -3, -3, -1, -3] -kind 2.4 0.66332 [2, 2, 3, 3, 2, 3, 3, 2, 1, 3] -kinder 2.2 0.6 [3, 3, 3, 2, 2, 2, 2, 1, 2, 2] -kindly 2.2 0.4 [2, 2, 2, 3, 2, 2, 2, 2, 2, 3] -kindness 2.0 0.63246 [2, 1, 3, 3, 2, 1, 2, 2, 2, 2] -kindnesses 2.3 0.64031 [3, 1, 3, 2, 3, 2, 3, 2, 2, 2] -kiss 1.8 1.6 [4, 0, 3, 3, 2, 0, 4, 2, 0, 0] -kissable 2.0 0.89443 [2, 2, 2, 2, 4, 2, 3, 1, 1, 1] -kissably 1.9 1.04403 [1, 3, 4, 1, 2, 1, 3, 2, 1, 1] -kissed 1.6 1.11355 [2, 4, 1, 1, 1, 2, 3, 0, 1, 1] -kisser 1.7 1.34536 [2, 4, 1, 2, -1, 2, 3, 0, 2, 2] -kissers 1.5 0.80623 [1, 1, 1, 0, 2, 2, 3, 2, 1, 2] -kisses 2.3 0.9 [2, 4, 2, 2, 1, 2, 4, 2, 2, 2] -kissing 2.7 0.78102 [3, 3, 4, 1, 3, 2, 2, 3, 3, 3] -kissy 1.8 0.6 [2, 2, 2, 3, 1, 1, 2, 2, 1, 2] -kudos 2.3 0.64031 [2, 4, 2, 3, 2, 2, 2, 2, 2, 2] -lack -1.3 0.45826 [-1, -1, -1, -1, -2, -1, -2, -1, -1, -2] -lackadaisical -1.6 0.66332 [-1, -1, -2, -1, -2, -2, -3, -1, -2, -1] -lag -1.4 0.66332 [-1, -1, -1, -1, -1, -3, -1, -2, -2, -1] -lagged -1.2 0.6 [-2, -2, -1, -2, -1, -1, 0, -1, -1, -1] -lagging -1.1 0.83066 [-2, -2, -2, -1, 0, 0, -1, 0, -1, -2] -lags -1.5 0.67082 [-2, -1, -1, -2, -1, -3, -1, -2, -1, -1] -laidback 0.5 1.28452 [1, -1, 1, -2, -1, 1, 2, 1, 1, 2] -lame -1.8 0.74833 [-1, -3, -1, -2, -2, -1, -2, -3, -1, -2] -lamebrain -1.6 0.91652 [-3, -2, -1, 0, -3, -1, -1, -2, -2, -1] -lamebrained -2.5 0.67082 [-3, -3, -2, -2, -2, -2, -4, -3, -2, -2] -lamebrains -1.2 1.46969 [-2, -1, -3, -1, 2, -2, 1, -2, -2, -2] -lamedh 0.1 0.53852 [0, 0, 0, 0, 0, 1, 1, -1, 0, 0] -lamella -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] -lamellae -0.1 0.3 [0, 0, 0, 0, 0, 0, -1, 0, 0, 0] -lamellas 0.1 0.53852 [0, 0, 0, 0, 0, 1, 0, 1, 0, -1] -lamellibranch 0.2 0.4 [0, 0, 0, 0, 0, 1, 0, 1, 0, 0] -lamellibranchs -0.1 0.3 [0, 0, -1, 0, 0, 0, 0, 0, 0, 0] -lamely -2.0 0.89443 [-2, -3, 0, -1, -2, -3, -2, -3, -2, -2] -lameness -0.8 1.07703 [-2, -2, -1, -1, -1, 0, 2, -1, -1, -1] -lament -2.0 1.26491 [-3, -3, 1, -1, -2, -2, -1, -3, -3, -3] -lamentable -1.5 1.0247 [-2, 0, -2, -1, 0, -2, -3, -1, -1, -3] -lamentableness -1.3 0.64031 [-2, -1, -1, 0, -2, -1, -1, -1, -2, -2] -lamentably -1.5 0.80623 [-2, 0, -3, -1, -1, -2, -2, -1, -1, -2] -lamentation -1.4 1.49666 [-3, -2, 0, -3, -1, -1, 2, -2, -1, -3] -lamentations -1.9 1.44568 [-2, -2, -2, -3, 2, -1, -3, -3, -2, -3] -lamented -1.4 0.91652 [-1, 0, -1, -2, -2, -1, -2, -3, -2, 0] -lamenter -1.2 0.87178 [-1, 0, -1, -1, -1, -1, -2, -3, -2, 0] -lamenters -0.5 0.67082 [-1, 0, 0, -1, -1, 0, 0, 0, -2, 0] -lamenting -2.0 1.09545 [0, -2, -1, -4, -1, -3, -2, -2, -3, -2] -laments -1.5 0.80623 [-1, -3, 0, -1, -2, -1, -2, -2, -2, -1] -lamer -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -1, -2, -2, -1] -lames -1.2 0.6 [-2, -1, -1, -2, 0, -1, -1, -2, -1, -1] -lamest -1.5 1.28452 [-3, -2, -1, -4, 1, -1, -1, -1, -1, -2] -landmark 0.3 0.64031 [2, 0, 0, 0, 0, 0, 0, 0, 1, 0] -laugh 2.6 0.66332 [3, 2, 3, 1, 3, 3, 3, 3, 2, 3] -laughable 0.2 1.72047 [-2, -1, 3, -1, 2, 2, -1, -1, -1, 2] -laughableness 1.2 1.6 [2, 0, 3, 2, 2, 1, 3, -2, 2, -1] -laughably 1.2 1.249 [2, 1, 2, 1, 1, 1, 2, 3, -2, 1] -laughed 2.0 0.63246 [2, 2, 3, 1, 2, 1, 2, 2, 3, 2] -laugher 1.7 0.45826 [2, 2, 1, 1, 2, 1, 2, 2, 2, 2] -laughers 1.7 0.9 [1, 2, 4, 1, 2, 1, 2, 1, 1, 2] -laughing 2.2 0.87178 [2, 4, 1, 1, 3, 2, 2, 2, 2, 3] -laughingly 2.3 1.1 [2, 4, 0, 2, 3, 1, 3, 2, 3, 3] -laughings 1.9 0.7 [2, 1, 1, 1, 2, 3, 2, 2, 3, 2] -laughingstocks -1.3 1.26886 [-3, -2, 1, -2, -1, -1, 1, -2, -2, -2] -laughs 2.2 0.6 [1, 2, 2, 3, 3, 2, 3, 2, 2, 2] -laughter 2.2 0.6 [2, 3, 2, 2, 2, 2, 3, 1, 3, 2] -laughters 2.2 0.6 [3, 1, 2, 2, 2, 3, 3, 2, 2, 2] -launched 0.5 0.80623 [2, 0, 0, 0, 0, 0, 0, 1, 2, 0] -lawl 1.4 1.42829 [0, 2, 2, 1, 3, -2, 3, 1, 2, 2] -lawsuit -0.9 1.22066 [-2, -2, -1, -3, -1, 1, 0, 1, -1, -1] -lawsuits -0.6 1.68523 [-2, -1, 0, 3, 2, -1, -1, -2, -2, -2] -lazier -2.3 0.64031 [-3, -2, -3, -2, -1, -2, -2, -3, -2, -3] -laziest -2.7 0.64031 [-2, -2, -3, -4, -3, -3, -2, -2, -3, -3] -lazy -1.5 1.36015 [-3, -1, -3, -2, 2, -1, -1, -2, -2, -2] -leak -1.4 0.66332 [-1, -2, -1, -1, -1, -1, -1, -2, -3, -1] -leaked -1.3 0.78102 [-2, -2, -1, -3, -1, 0, -1, -1, -1, -1] -leave -0.2 0.9798 [1, -1, -1, 0, 0, -1, 2, -1, 0, -1] -leet 1.3 1.48661 [2, 4, 2, 2, 0, 1, -2, 2, 1, 1] -legal 0.5 0.80623 [0, 0, 0, 2, 0, 1, 0, 0, 2, 0] -legally 0.4 0.8 [1, 0, 0, 0, 1, 0, 2, 1, 0, -1] -lenient 1.1 1.04403 [1, 3, 1, 2, 1, 1, 2, -1, 0, 1] -lethargic -1.2 0.74833 [-2, -1, -2, -2, 0, -1, -1, -2, 0, -1] -lethargy -1.4 0.91652 [-1, 0, -2, -1, -2, 0, -2, -1, -3, -2] -liabilities -0.8 0.9798 [-1, 2, -1, -1, -1, -1, -1, -1, -2, -1] -liability -0.8 1.83303 [-2, -3, -1, -1, 3, -3, -1, -1, 2, -1] -liar -2.3 0.78102 [-1, -2, -3, -3, -2, -2, -3, -1, -3, -3] -liards -0.4 0.91652 [-2, 0, -1, 0, 0, 1, 0, 0, -2, 0] -liars -2.4 0.66332 [-3, -2, -2, -3, -2, -1, -3, -3, -2, -3] -libelous -2.1 1.3 [-3, -1, -1, -2, 1, -3, -3, -3, -3, -3] -libertarian 0.9 0.9434 [1, 2, 0, 1, 0, 0, 0, 3, 1, 1] -libertarianism 0.4 0.8 [0, 0, 2, 0, 2, 0, 0, 0, 0, 0] -libertarianisms 0.1 1.13578 [0, 0, 0, 2, 2, 0, -2, 0, -1, 0] -libertarians 0.1 0.83066 [0, 0, 1, 0, 0, -1, -1, 0, 2, 0] -liberties 2.3 0.78102 [2, 4, 3, 2, 2, 1, 2, 3, 2, 2] -libertinage 0.2 1.53623 [-1, -1, 0, 0, 4, 0, -2, 1, 1, 0] -libertine -0.9 1.44568 [0, -1, 0, 0, -1, -3, 2, -2, -1, -3] -libertines 0.4 1.35647 [-1, 3, -1, -1, 1, 1, 1, 2, 0, -1] -libertinisms 1.2 1.249 [0, 0, 3, 1, 1, 1, 4, 0, 1, 1] -liberty 2.4 0.91652 [2, 2, 3, 3, 3, 3, 2, 4, 1, 1] -lied -1.6 1.2 [-3, 0, -3, 1, -2, -1, -2, -2, -2, -2] -lies -1.8 0.9798 [-1, -1, -1, 0, -2, -3, -3, -2, -3, -2] -lifesaver 2.8 0.74833 [3, 3, 4, 2, 3, 1, 3, 3, 3, 3] -lighthearted 1.8 0.4 [2, 2, 2, 2, 1, 2, 2, 1, 2, 2] -like 1.5 0.67082 [1, 2, 2, 2, 1, 3, 1, 1, 1, 1] -likeable 2.0 0.63246 [1, 3, 2, 2, 2, 3, 2, 1, 2, 2] -liked 1.8 0.6 [2, 2, 1, 2, 2, 1, 3, 1, 2, 2] -likes 1.8 0.6 [2, 2, 1, 2, 2, 2, 3, 1, 1, 2] -liking 1.7 0.78102 [3, 1, 2, 1, 1, 2, 3, 1, 2, 1] -limitation -1.2 0.6 [-2, -1, 0, -1, -1, -2, -1, -2, -1, -1] -limited -0.9 0.53852 [-1, -1, 0, -2, -1, 0, -1, -1, -1, -1] -litigation -0.8 0.6 [0, -2, -1, 0, -1, -1, -1, -1, 0, -1] -litigious -0.8 0.9798 [-2, -1, 0, -2, 0, -2, 1, -1, 0, -1] -livelier 1.7 0.78102 [2, 2, 1, 3, 1, 3, 2, 1, 1, 1] -liveliest 2.1 0.9434 [2, 1, 2, 3, 1, 1, 2, 4, 3, 2] -livelihood 0.8 1.07703 [0, 3, 1, 0, 2, 2, 0, 0, 0, 0] -livelihoods 0.9 1.13578 [0, 0, 0, 3, 2, 2, 0, 2, 0, 0] -livelily 1.8 0.6 [2, 2, 2, 3, 1, 2, 1, 2, 2, 1] -liveliness 1.6 0.8 [1, 3, 0, 2, 2, 2, 2, 2, 1, 1] -livelong 1.7 0.78102 [3, 0, 1, 1, 2, 2, 2, 2, 2, 2] -lively 1.9 0.7 [2, 2, 3, 1, 1, 2, 3, 1, 2, 2] -livid -2.5 0.92195 [-2, -3, -1, -2, -4, -3, -1, -3, -3, -3] -lmao 2.9 0.9434 [3, 4, 3, 1, 2, 4, 3, 3, 2, 4] -loathe -2.2 2.08806 [-1, -4, -3, -2, -4, 2, 1, -3, -4, -4] -loathed -2.1 1.44568 [-4, -3, -3, -3, -1, 1, -1, -1, -3, -3] -loathes -1.9 1.13578 [-1, -4, -1, -3, -3, -1, -1, -3, -1, -1] -loathing -2.7 0.78102 [-3, -3, -3, -1, -4, -2, -3, -3, -2, -3] -lobby 0.1 0.53852 [0, 0, 0, 1, 0, 1, 0, -1, 0, 0] -lobbying -0.3 0.45826 [0, -1, 0, 0, 0, 0, 0, -1, -1, 0] -lol 1.8 1.46969 [1, 3, 4, 1, 2, 4, 1, 2, -1, 1] -lone -1.1 0.3 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -1] -lonelier -1.4 0.66332 [-2, -1, -2, -2, 0, -2, -1, -1, -1, -2] -loneliest -2.4 0.8 [-3, -1, -2, -4, -2, -2, -3, -3, -2, -2] -loneliness -1.8 0.6 [-2, -2, -1, -3, -2, -2, -1, -2, -1, -2] -lonelinesses -1.5 1.36015 [-2, -2, -1, -1, 2, -1, -3, -2, -3, -2] -lonely -1.5 0.5 [-1, -2, -2, -1, -1, -1, -1, -2, -2, -2] -loneness -1.1 0.83066 [-1, -2, -1, -2, -1, -1, -2, 1, -1, -1] -loner -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -2, -2, -1] -loners -0.9 0.53852 [-1, -1, -2, -1, -1, -1, 0, 0, -1, -1] -lonesome -1.5 0.67082 [-2, -1, -2, -1, -2, -1, -2, 0, -2, -2] -lonesomely -1.3 1.00499 [-2, -2, -2, -2, -1, -2, 0, -2, -1, 1] -lonesomeness -1.8 0.6 [-2, -2, -1, -3, -1, -2, -2, -2, -1, -2] -lonesomes -1.4 0.4899 [-2, -1, -1, -1, -1, -1, -2, -2, -2, -1] -longing -0.1 0.9434 [0, -1, 0, -1, -1, 0, 2, -1, 1, 0] -longingly 0.7 0.45826 [1, 0, 1, 0, 1, 1, 1, 0, 1, 1] -longings 0.4 1.2 [2, 0, -1, -1, 0, 1, 3, 0, 0, 0] -loom -0.9 0.53852 [-1, -1, -1, -1, -1, -2, 0, -1, -1, 0] -loomed -1.1 1.04403 [-2, -2, -1, -1, -1, -1, 0, -1, -3, 1] -looming -0.5 1.5 [-2, -1, -1, 0, -2, -2, 3, -1, 0, 1] -looms -0.6 1.0198 [-1, -2, -1, -1, 0, 0, 1, -2, 1, -1] -loose -1.3 1.18743 [-2, -1, 0, -2, 0, -1, 0, -2, -4, -1] -looses -0.6 0.91652 [0, -1, 0, -1, 0, 0, 0, 0, -3, -1] -lose -1.7 0.45826 [-1, -2, -1, -2, -1, -2, -2, -2, -2, -2] -loser -2.4 0.66332 [-3, -2, -2, -2, -2, -3, -3, -1, -3, -3] -losers -2.4 0.8 [-3, -1, -2, -2, -4, -2, -3, -3, -2, -2] -loses -1.3 1.00499 [0, -1, -1, -1, -1, -4, -1, -1, -2, -1] -losing -1.6 0.8 [-1, -1, -1, -2, -1, -2, -3, -3, -1, -1] -loss -1.3 0.45826 [-1, -2, -1, -1, -1, -2, -2, -1, -1, -1] -losses -1.7 0.9 [-2, -1, -2, -3, 0, -1, -3, -1, -2, -2] -lossy -1.2 0.87178 [-2, -2, -1, -2, 0, 0, 0, -1, -2, -2] -lost -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -2, -1, -1, -1] -louse -1.6 1.2 [-1, -1, -3, -4, 0, -3, -1, -1, -1, -1] -loused -1.0 0.7746 [-1, -1, -1, -1, 0, 0, -2, 0, -2, -2] -louses -1.3 0.78102 [-2, -1, -2, -1, -1, 0, -2, 0, -2, -2] -lousewort 0.1 1.3 [-2, -2, 1, 0, 0, 0, 0, 2, 2, 0] -louseworts -0.6 0.66332 [0, 0, 0, -2, 0, -1, 0, -1, -1, -1] -lousier -2.2 0.4 [-2, -3, -2, -2, -3, -2, -2, -2, -2, -2] -lousiest -2.6 0.8 [-4, -2, -3, -3, -1, -2, -3, -3, -2, -3] -lousily -1.2 0.9798 [-1, -1, -2, -2, -2, -2, 0, -1, 1, -2] -lousiness -1.7 0.64031 [-2, -2, -1, -1, -2, -2, -3, -2, -1, -1] -lousing -1.1 0.9434 [-3, 0, 0, 0, -1, -2, -1, -2, -1, -1] -lousy -2.5 0.67082 [-2, -4, -2, -3, -2, -3, -2, -2, -3, -2] -lovable 3.0 0.63246 [3, 3, 3, 4, 3, 2, 3, 3, 2, 4] -love 3.2 0.4 [3, 3, 3, 3, 3, 3, 3, 4, 4, 3] -loved 2.9 0.7 [3, 3, 4, 2, 2, 4, 3, 2, 3, 3] -lovelies 2.2 0.74833 [3, 3, 3, 1, 2, 2, 3, 2, 1, 2] -lovely 2.8 0.6 [2, 3, 3, 3, 2, 3, 4, 3, 2, 3] -lover 2.8 0.87178 [3, 1, 2, 3, 4, 3, 2, 3, 4, 3] -loverly 2.8 0.74833 [3, 2, 4, 3, 3, 2, 3, 2, 2, 4] -lovers 2.4 1.11355 [2, 3, 2, 4, 4, 1, 1, 3, 3, 1] -loves 2.7 0.9 [3, 3, 3, 2, 2, 4, 4, 2, 1, 3] -loving 2.9 0.53852 [3, 2, 3, 3, 3, 2, 4, 3, 3, 3] -lovingly 3.2 0.6 [3, 3, 3, 4, 4, 4, 2, 3, 3, 3] -lovingness 2.7 1.67631 [4, 4, 3, 3, 2, 3, -2, 4, 3, 3] -low -1.1 0.53852 [-1, -1, -1, -1, -1, -2, -1, -2, 0, -1] -lowball -0.8 0.87178 [-1, -2, 0, -2, -1, -1, 0, 1, -1, -1] -lowballed -1.5 0.67082 [-2, 0, -1, -1, -2, -2, -1, -2, -2, -2] -lowballing -0.7 0.78102 [-2, -1, -1, 1, 0, -1, -1, 0, -1, -1] -lowballs -1.2 0.74833 [-1, -1, -1, -1, -3, -1, -2, 0, -1, -1] -lowborn -0.7 1.1 [-1, 0, -1, 0, -2, -1, -2, -1, -1, 2] -lowboys -0.6 1.0198 [-1, 0, 0, 0, -3, -1, 1, 0, -1, -1] -lowbred -2.6 1.0198 [-2, -1, -2, -4, -2, -2, -4, -4, -3, -2] -lowbrow -1.9 0.7 [-1, -3, -1, -2, -2, -2, -1, -3, -2, -2] -lowbrows -0.6 0.66332 [0, 0, -1, 0, -2, -1, -1, 0, 0, -1] -lowdown -0.8 0.9798 [-1, -1, 0, 0, 0, -2, -3, 0, -1, 0] -lowdowns -0.2 0.4 [0, 0, 0, -1, 0, 0, 0, 0, -1, 0] -lowe 0.5 0.80623 [0, 0, 0, 0, 0, 1, 0, 0, 2, 2] -lowed -0.8 0.6 [0, -1, -1, -2, -1, 0, -1, 0, -1, -1] -lower -1.2 0.87178 [0, -2, -1, -1, -2, 0, -2, 0, -2, -2] -lowercase 0.3 0.45826 [0, 0, 0, 0, 1, 0, 1, 0, 1, 0] -lowercased -0.2 0.4 [0, -1, 0, 0, 0, 0, -1, 0, 0, 0] -lowerclassman -0.4 0.4899 [0, -1, -1, -1, 0, 0, 0, 0, 0, -1] -lowered -0.5 1.11803 [-1, -1, -2, -1, -1, 2, -1, -1, 1, 0] -lowering -1.0 0.7746 [0, -1, -1, -1, -1, 0, -3, -1, -1, -1] -lowermost -1.4 1.11355 [-1, -1, -3, -1, -1, -1, -2, -3, 1, -2] -lowers -0.5 0.5 [-1, -1, 0, -1, 0, 0, 0, -1, -1, 0] -lowery -1.8 0.87178 [-1, -1, -2, -3, -1, -2, -3, -3, -1, -1] -lowest -1.6 0.4899 [-2, -2, -2, -2, -1, -2, -1, -1, -1, -2] -lowing -0.5 0.67082 [0, 0, 0, -1, 0, 0, -1, -2, -1, 0] -lowish -0.9 0.53852 [-2, -1, -1, 0, -1, 0, -1, -1, -1, -1] -lowland -0.1 0.3 [0, 0, -1, 0, 0, 0, 0, 0, 0, 0] -lowlander -0.4 0.66332 [0, 0, 0, 0, 0, 0, -1, -1, -2, 0] -lowlanders -0.3 0.64031 [0, 0, 0, -2, 0, -1, 0, 0, 0, 0] -lowlands -0.1 0.7 [0, -1, -1, 0, -1, 1, 0, 1, 0, 0] -lowlier -1.7 0.78102 [-2, -2, -2, -3, -1, -2, -2, -1, 0, -2] -lowliest -1.8 1.6 [-1, -3, -3, -4, -2, -1, -1, 0, 1, -4] -lowlife -1.5 0.67082 [-2, -2, -2, -1, -1, -2, -1, 0, -2, -2] -lowlifes -2.2 1.249 [-3, -2, -3, -4, -2, 1, -2, -3, -2, -2] -lowlight -2.0 1.26491 [-3, -2, -1, -3, 1, -2, -1, -3, -3, -3] -lowlights -0.3 0.78102 [0, 0, -1, 1, -2, -1, 0, 0, 0, 0] -lowlihead -0.3 1.34536 [-1, -1, 1, -3, 0, 0, 1, -1, 2, -1] -lowliness -1.1 0.53852 [-1, -2, -1, -2, -1, -1, -1, 0, -1, -1] -lowlinesses -1.2 1.07703 [-3, -1, -2, -2, 0, -1, -1, -1, -2, 1] -lowlives -2.1 0.7 [-2, -3, -3, -2, -1, -2, -3, -2, -1, -2] -lowly -1.0 1.34164 [-1, -2, -1, -2, 2, -2, -1, 1, -2, -2] -lown 0.9 1.13578 [2, 2, 1, -1, 0, 1, 2, -1, 1, 2] -lowness -1.3 0.45826 [-1, -2, -2, -1, -1, -2, -1, -1, -1, -1] -lowrider -0.2 0.4 [0, 0, 0, -1, -1, 0, 0, 0, 0, 0] -lowriders 0.1 0.53852 [0, 0, 0, 0, 1, 0, -1, 0, 1, 0] -lows -0.8 0.9798 [0, -1, -1, -1, 0, 1, -3, -1, -1, -1] -lowse -0.7 0.78102 [0, -1, 1, -1, -1, -1, 0, -1, -2, -1] -loyal 2.1 0.7 [3, 2, 1, 1, 2, 2, 3, 2, 3, 2] -loyalism 1.0 0.89443 [1, 2, 1, -1, 0, 1, 2, 1, 1, 2] -loyalisms 0.9 0.83066 [2, 0, 0, 1, 1, 0, 2, 2, 1, 0] -loyalist 1.5 0.92195 [1, 0, 2, 2, 3, 0, 2, 2, 1, 2] -loyalists 1.1 0.83066 [1, 1, 1, 3, 0, 2, 1, 0, 1, 1] -loyally 2.1 0.7 [3, 2, 2, 2, 1, 3, 1, 2, 3, 2] -loyalties 1.9 0.7 [3, 1, 2, 2, 2, 3, 2, 1, 1, 2] -loyalty 2.5 0.67082 [1, 3, 3, 3, 3, 2, 2, 2, 3, 3] -luck 2.0 0.63246 [2, 2, 1, 3, 3, 2, 1, 2, 2, 2] -lucked 1.9 0.7 [2, 2, 2, 1, 1, 2, 3, 3, 1, 2] -luckie 1.6 0.66332 [1, 1, 1, 2, 2, 1, 1, 2, 2, 3] -luckier 1.9 0.7 [1, 3, 1, 2, 2, 1, 2, 3, 2, 2] -luckiest 2.9 0.7 [3, 3, 4, 2, 2, 4, 3, 3, 2, 3] -luckily 2.3 0.45826 [2, 2, 3, 2, 2, 3, 2, 2, 2, 3] -luckiness 1.0 1.61245 [2, 2, 1, -2, 3, 1, 1, 2, 2, -2] -lucking 1.2 0.6 [2, 1, 1, 0, 1, 1, 1, 2, 2, 1] -luckless -1.3 0.45826 [-2, -1, -2, -1, -1, -1, -2, -1, -1, -1] -lucks 1.6 0.91652 [0, 3, 1, 1, 3, 2, 2, 1, 2, 1] -lucky 1.8 0.74833 [2, 1, 1, 1, 3, 2, 1, 2, 2, 3] -ludicrous -1.5 1.36015 [2, -2, -2, -1, -1, -1, -3, -3, -2, -2] -ludicrously -0.2 1.83303 [3, -1, 0, -2, -1, 0, 3, -3, -1, 0] -ludicrousness -1.9 1.57797 [-1, 2, -2, -3, -2, -2, -3, -4, -1, -3] -lugubrious -2.1 1.37477 [-3, -2, -3, -3, -3, 1, -2, -3, 0, -3] -lulz 2.0 1.0 [2, 2, 2, 3, 4, 1, 3, 1, 1, 1] -lunatic -2.2 1.32665 [-2, -3, -4, -2, -3, -2, -1, -3, 1, -3] -lunatics -1.6 1.95959 [-4, -2, -3, -4, -2, 2, -1, -3, 1, 0] -lurk -0.8 0.87178 [-1, -1, 0, -3, -1, 0, -1, 0, -1, 0] -lurking -0.5 1.11803 [1, -1, -1, 0, -1, -2, 1, -2, 1, -1] -lurks -0.9 1.04403 [-1, -1, -1, -2, -2, -1, -1, -1, 2, -1] -lying -2.4 0.8 [-2, -4, -3, -1, -2, -2, -3, -2, -2, -3] -mad -2.2 0.74833 [-3, -3, -1, -1, -2, -3, -2, -2, -3, -2] -maddening -2.2 0.74833 [-3, -3, -1, -1, -3, -2, -2, -3, -2, -2] -madder -1.2 1.16619 [-2, 0, -3, 0, 0, -1, -3, -1, -2, 0] -maddest -2.8 1.16619 [-4, -4, -4, -4, -1, -3, -2, -1, -2, -3] -madly -1.7 1.1 [-2, 0, -2, -2, -2, -1, -4, -2, 0, -2] -madness -1.9 0.53852 [-1, -2, -1, -3, -2, -2, -2, -2, -2, -2] -magnific 2.3 1.1 [2, 2, 0, 2, 4, 4, 2, 2, 3, 2] -magnifical 2.4 1.28062 [1, 4, 1, 2, 4, 3, 1, 1, 4, 3] -magnifically 2.4 1.2 [3, 3, 3, 2, 4, 0, 1, 2, 2, 4] -magnification 1.0 0.89443 [2, 3, 1, 0, 0, 1, 1, 1, 0, 1] -magnifications 1.2 1.249 [-1, 0, 0, 2, 2, 2, 0, 2, 3, 2] -magnificence 2.4 1.0198 [3, 2, 1, 3, 2, 1, 4, 4, 2, 2] -magnificences 2.3 0.9 [3, 4, 3, 1, 3, 2, 1, 2, 2, 2] -magnificent 2.9 0.7 [2, 4, 2, 4, 3, 3, 3, 3, 2, 3] -magnificently 3.4 0.66332 [3, 3, 3, 4, 4, 2, 4, 4, 3, 4] -magnifico 1.8 0.87178 [2, 1, 1, 2, 1, 1, 3, 3, 3, 1] -magnificoes 1.4 0.8 [2, 2, 0, 2, 1, 1, 3, 1, 1, 1] -mandatory 0.3 0.9 [1, 0, -1, 0, -1, 0, 1, 2, 0, 1] -maniac -2.1 0.7 [-1, -2, -2, -2, -3, -3, -1, -2, -2, -3] -maniacal -0.3 1.73494 [2, -1, -3, -3, 0, 2, -1, 1, 1, -1] -maniacally -1.7 0.78102 [-1, -2, -1, -2, -3, -2, -1, -3, -1, -1] -maniacs -1.2 1.8868 [-3, 1, -2, 1, -3, -2, 0, 2, -3, -3] -manipulated -1.6 0.4899 [-2, -1, -1, -2, -1, -2, -2, -1, -2, -2] -manipulating -1.5 0.80623 [-1, -1, -1, -2, -2, -1, -2, -2, -3, 0] -manipulation -1.2 1.72047 [2, -3, -2, -3, -1, -1, -2, 2, -2, -2] -marvel 1.8 0.6 [2, 1, 1, 2, 1, 2, 3, 2, 2, 2] -marvelous 2.9 0.7 [2, 2, 3, 2, 3, 3, 4, 3, 4, 3] -marvels 2.0 0.89443 [3, 1, 1, 3, 1, 2, 1, 2, 3, 3] -masochism -1.6 1.11355 [-1, 0, -2, -2, -2, -2, 0, -4, -1, -2] -masochisms -1.1 1.57797 [3, -3, -2, -2, -1, -1, -2, -1, 0, -2] -masochist -1.7 0.9 [-1, 0, -3, -1, -2, -2, -2, -2, -1, -3] -masochistic -2.2 1.16619 [-1, -1, -1, -2, -3, -2, -4, -3, -4, -1] -masochistically -1.6 1.35647 [-1, -1, -3, -3, -3, -3, 0, -2, 1, -1] -masochists -1.2 1.07703 [1, -2, 0, -2, -3, -1, -2, -1, -1, -1] -masterpiece 3.1 0.83066 [3, 4, 4, 4, 2, 2, 2, 4, 3, 3] -masterpieces 2.5 0.67082 [2, 2, 3, 2, 2, 2, 4, 3, 3, 2] -matter 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] -matters 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] -mature 1.8 0.4 [2, 2, 2, 2, 2, 1, 2, 2, 1, 2] -meaningful 1.3 0.9 [0, 0, 2, 1, 1, 3, 1, 2, 2, 1] -meaningless -1.9 0.7 [-1, -2, -2, -2, -1, -1, -2, -3, -3, -2] -medal 2.1 1.22066 [2, 4, 3, 1, 0, 2, 2, 2, 1, 4] -mediocrity -0.3 1.1 [-1, 0, -2, 0, -1, 2, -1, -1, 0, 1] -meditative 1.4 0.66332 [2, 0, 1, 2, 2, 1, 2, 1, 2, 1] -meh -0.3 0.78102 [-1, 0, -1, 0, -1, -1, 1, 0, 1, -1] -melancholia -0.5 1.28452 [0, -2, -2, 0, 1, -1, 2, -2, 0, -1] -melancholiac -2.0 0.63246 [-2, -2, -3, -2, -2, -3, -1, -1, -2, -2] -melancholias -1.6 0.8 [-1, -2, -3, -2, 0, -2, -1, -1, -2, -2] -melancholic -0.3 1.18743 [0, 2, -2, 0, 1, -1, 0, -2, 0, -1] -melancholics -1.0 1.0 [0, -1, -3, 1, -1, -2, -1, -1, -1, -1] -melancholies -1.1 0.83066 [-1, 0, -1, 0, -3, -1, -2, -1, -1, -1] -melancholy -1.9 1.13578 [-3, -2, -3, -2, -3, -2, -2, 1, -1, -2] -menace -2.2 0.87178 [-3, -3, -2, -1, -1, -2, -3, -1, -3, -3] -menaced -1.7 1.48661 [-3, -2, -2, -3, -3, -1, 1, -3, 1, -2] -mercy 1.5 0.67082 [1, 2, 1, 1, 1, 3, 2, 2, 1, 1] -merit 1.8 0.74833 [2, 2, 2, 2, 0, 2, 3, 2, 2, 1] -merited 1.4 0.4899 [1, 2, 2, 1, 1, 1, 2, 1, 2, 1] -meriting 1.1 1.13578 [1, 2, 1, -2, 1, 1, 2, 2, 1, 2] -meritocracy 0.6 1.35647 [2, 4, 0, 0, 1, -1, 0, 0, 0, 0] -meritocrat 0.4 0.8 [0, 0, 0, 1, -1, 0, 0, 1, 2, 1] -meritocrats 1.1 1.13578 [2, 1, 1, 0, 0, 1, 1, 4, 0, 1] -meritorious 2.1 0.53852 [3, 2, 2, 2, 2, 2, 2, 2, 3, 1] -meritoriously 1.3 1.95192 [3, -1, 3, -2, 2, 0, -1, 3, 3, 3] -meritoriousness 1.7 1.18743 [4, 1, 2, 1, 2, 0, 3, 2, 2, 0] -merits 1.7 0.78102 [1, 3, 1, 1, 2, 2, 1, 1, 3, 2] -merrier 1.7 1.41774 [3, 2, 2, 3, 2, 2, -1, -1, 3, 2] -merriest 2.7 1.41774 [3, 4, 4, 4, 2, 3, -1, 2, 3, 3] -merrily 2.4 0.66332 [3, 3, 2, 2, 2, 3, 2, 3, 1, 3] -merriment 2.4 1.35647 [1, 3, 3, 4, 2, -1, 3, 3, 3, 3] -merriments 2.0 0.89443 [2, 2, 3, 3, 0, 2, 2, 1, 2, 3] -merriness 2.2 0.74833 [2, 1, 2, 3, 2, 2, 3, 3, 1, 3] -merry 2.5 0.80623 [2, 4, 2, 2, 3, 3, 3, 3, 2, 1] -merrymaker 2.2 1.4 [3, 1, 3, 3, 3, -1, 2, 1, 3, 4] -merrymakers 1.7 1.34536 [1, 4, 1, 3, 1, 3, -1, 2, 1, 2] -merrymaking 2.2 0.6 [3, 2, 2, 2, 2, 1, 3, 3, 2, 2] -merrymakings 2.4 1.11355 [3, 3, 2, 3, 4, 2, 0, 3, 1, 3] -merrythought 1.1 0.9434 [1, 1, 3, 0, 2, 0, 0, 1, 2, 1] -merrythoughts 1.6 1.11355 [1, 3, 2, 1, 2, 1, 0, 3, 3, 0] -mess -1.5 0.92195 [-1, -3, -1, -1, -3, -1, -2, -1, 0, -2] -messed -1.4 0.8 [-2, -1, -1, -3, 0, -2, -2, -1, -1, -1] -messy -1.5 0.80623 [-1, -2, -2, -2, -1, -1, -2, 0, -1, -3] -methodical 0.6 0.8 [0, 0, 0, 2, 2, 0, 1, 1, 0, 0] -mindless -1.9 0.7 [-2, -1, -2, -1, -1, -2, -3, -3, -2, -2] -miracle 2.8 0.87178 [4, 4, 3, 2, 3, 4, 2, 2, 2, 2] -mirth 2.6 0.66332 [3, 3, 3, 2, 3, 3, 3, 2, 1, 3] -mirthful 2.7 0.45826 [3, 3, 3, 2, 3, 3, 3, 2, 3, 2] -mirthfully 2.0 1.48324 [2, 3, 4, 3, 0, -1, 2, 1, 3, 3] -misbehave -1.9 0.7 [-3, -3, -1, -2, -2, -1, -1, -2, -2, -2] -misbehaved -1.6 0.4899 [-1, -2, -1, -2, -2, -2, -1, -2, -1, -2] -misbehaves -1.6 0.4899 [-1, -2, -2, -1, -2, -2, -1, -2, -1, -2] -misbehaving -1.7 0.64031 [-1, -2, -1, -2, -3, -2, -1, -2, -1, -2] -mischief -1.5 0.67082 [-2, -1, -1, -1, -1, -2, -3, -2, -1, -1] -mischiefs -0.8 1.72047 [-2, -1, -2, -2, 3, -1, -2, 2, -1, -2] -miser -1.8 0.87178 [-1, -2, 0, -3, -2, -2, -3, -2, -2, -1] -miserable -2.2 1.32665 [-2, -2, -3, -3, -4, -3, -1, -2, 1, -3] -miserableness -2.8 0.6 [-3, -3, -3, -3, -2, -2, -3, -4, -2, -3] -miserably -2.1 1.37477 [-2, -1, -3, -3, -4, -3, -1, -2, 1, -3] -miserere -0.8 1.07703 [-1, -1, 0, -3, 0, -1, 0, 1, -2, -1] -misericorde 0.1 1.64012 [1, 1, -1, 2, 1, 2, -3, -1, -2, 1] -misericordes -0.5 1.36015 [0, 0, -1, 0, 0, 1, -3, 0, 1, -3] -miseries -2.7 0.78102 [-3, -4, -1, -2, -3, -3, -2, -3, -3, -3] -miserliness -2.6 1.0198 [-3, -1, -3, -2, -2, -1, -3, -4, -4, -3] -miserly -1.4 0.91652 [0, -2, -2, 0, -1, -2, -2, -1, -3, -1] -misers -1.5 0.92195 [0, -1, -1, -3, -1, -1, -2, -3, -2, -1] -misery -2.7 0.45826 [-2, -2, -3, -3, -2, -3, -3, -3, -3, -3] -misgiving -1.4 0.4899 [-2, -2, -2, -1, -1, -1, -2, -1, -1, -1] -misinformation -1.3 0.64031 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -3] -misinformed -1.6 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -2, -2] -misinterpreted -1.3 0.64031 [-1, -2, -1, 0, -2, -1, -1, -1, -2, -2] -misleading -1.7 0.64031 [-2, -1, -3, -1, -1, -2, -2, -2, -1, -2] -misread -1.1 0.3 [-1, -1, -1, -2, -1, -1, -1, -1, -1, -1] -misreporting -1.5 0.5 [-2, -1, -1, -1, -2, -1, -2, -2, -1, -2] -misrepresentation -2.0 0.63246 [-2, -3, -2, -1, -1, -3, -2, -2, -2, -2] -miss -0.6 1.35647 [-1, -1, -1, -1, -2, -1, 2, 2, -2, -1] -missed -1.2 0.74833 [-2, -1, 0, -1, -1, -1, -3, -1, -1, -1] -misses -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] -missing -1.2 0.4 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -1] -mistakable -0.8 0.4 [-1, -1, -1, -1, -1, -1, -1, 0, 0, -1] -mistake -1.4 0.4899 [-1, -2, -1, -1, -1, -1, -2, -2, -2, -1] -mistaken -1.5 0.67082 [-2, -1, -2, -2, -1, -1, -1, -3, -1, -1] -mistakenly -1.2 0.4 [-1, -1, -2, -1, -1, -1, -1, -2, -1, -1] -mistaker -1.6 0.4899 [-2, -1, -2, -1, -2, -2, -1, -2, -1, -2] -mistakers -1.6 0.8 [-3, -1, -1, -1, -3, -1, -1, -2, -2, -1] -mistakes -1.5 0.67082 [-2, -1, -2, -1, -3, -2, -1, -1, -1, -1] -mistaking -1.1 0.53852 [-1, -1, -1, -1, 0, -1, -1, -1, -2, -2] -misunderstand -1.5 0.67082 [-3, -2, -1, -1, -1, -1, -1, -2, -2, -1] -misunderstanding -1.8 0.6 [-1, -1, -1, -3, -2, -2, -2, -2, -2, -2] -misunderstands -1.3 0.45826 [-1, -2, -1, -2, -1, -1, -2, -1, -1, -1] -misunderstood -1.4 0.66332 [-1, -1, -1, -3, -1, -1, -2, -1, -2, -1] -mlm -1.4 1.68523 [0, -2, -2, -3, -4, -2, 0, 1, 1, -3] -mmk 0.6 1.0198 [0, 0, 0, 0, 0, 3, 1, 0, 0, 2] -moan -0.6 1.62481 [-2, -1, 0, -3, 2, -2, 0, 0, -2, 2] -moaned -0.4 1.35647 [-2, 0, -3, 0, -1, -1, 2, 1, 0, 0] -moaning -0.4 1.28062 [-1, -1, 1, -1, 0, 0, 2, 0, -3, -1] -moans -0.6 0.8 [-2, 0, 0, -2, 0, -1, 0, 0, 0, -1] -mock -1.8 0.74833 [-3, -1, -1, -2, -2, -1, -3, -1, -2, -2] -mocked -1.3 1.26886 [-2, -2, -1, -2, -2, -3, -2, 1, 1, -1] -mocker -0.8 1.46969 [-1, -2, 2, -2, -2, -2, -2, 1, 1, -1] -mockeries -1.6 0.8 [-3, -1, -2, -2, -2, 0, -1, -2, -1, -2] -mockers -1.3 0.78102 [-2, -3, 0, -1, -1, -1, -2, -1, -1, -1] -mockery -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -2, -1, -1] -mocking -1.7 0.64031 [-2, -1, -1, -2, -1, -1, -3, -2, -2, -2] -mocks -2.0 0.63246 [-1, -3, -2, -2, -2, -2, -2, -1, -3, -2] -molest -2.1 1.81384 [-4, -1, -2, -4, -3, 1, -3, 1, -2, -4] -molestation -1.9 1.57797 [-2, -2, -3, -2, -3, -2, -4, 1, 1, -3] -molestations -2.9 1.04403 [-3, -4, -4, -4, -3, -2, -2, -1, -2, -4] -molested -1.9 1.92094 [-4, 1, -1, -4, -2, -1, -4, -4, 1, -1] -molester -2.3 1.61555 [-4, -2, -1, -4, -2, -1, -4, -4, 1, -2] -molesters -2.2 1.66132 [-2, -4, -3, -3, -3, 1, 1, -3, -3, -3] -molesting -2.8 1.72047 [-4, -4, -4, -4, -3, -4, -1, -1, 1, -4] -molests -3.1 1.13578 [-3, -4, -4, -4, -3, -4, 0, -3, -3, -3] -mongering -0.8 1.16619 [-3, -2, 0, 0, -1, 1, -2, 0, -1, 0] -monopolize -0.8 1.6 [-1, -3, -2, -2, 0, -1, -1, -2, 2, 2] -monopolized -0.9 0.53852 [0, -2, -1, 0, -1, -1, -1, -1, -1, -1] -monopolizes -1.1 0.83066 [0, -3, -1, 0, -1, -1, -2, -1, -1, -1] -monopolizing -0.5 1.56525 [2, -1, -2, -1, -3, -1, -1, 2, 1, -1] -mooch -1.7 0.9 [-1, -1, -1, -3, -1, -3, -3, -2, -1, -1] -mooched -1.4 0.4899 [-2, -1, -2, -1, -1, -2, -1, -1, -2, -1] -moocher -1.5 0.67082 [-2, -1, -2, -1, -1, -2, -1, -1, -3, -1] -moochers -1.9 0.7 [-3, -2, -2, -3, -1, -1, -1, -2, -2, -2] -mooches -1.4 0.66332 [-2, -1, -2, -1, 0, -2, -1, -1, -2, -2] -mooching -1.7 0.64031 [-3, -2, -1, -1, -2, -2, -1, -2, -1, -2] -moodier -1.1 1.13578 [-2, -1, -1, -1, -2, -1, -2, 2, -1, -2] -moodiest -2.1 0.9434 [-1, -2, -2, -2, -1, -2, -4, -3, -1, -3] -moodily -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -2, -1, -2, -1] -moodiness -1.4 0.66332 [-2, -1, -2, -2, -1, 0, -2, -1, -1, -2] -moodinesses -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -1, -2, -2, -1] -moody -1.5 0.67082 [-1, -1, -1, -2, -2, -3, -1, -1, -1, -2] -mope -1.9 0.53852 [-2, -2, -1, -2, -2, -2, -2, -3, -1, -2] -moping -1.0 1.48324 [-2, -2, -1, -1, 1, 2, -3, -2, 0, -2] -moron -2.2 0.6 [-2, -1, -2, -3, -3, -2, -2, -3, -2, -2] -moronic -2.7 0.64031 [-3, -3, -3, -3, -2, -4, -2, -3, -2, -2] -moronically -1.4 1.8 [-4, -2, -1, 2, -2, -2, -3, -3, 0, 1] -moronity -1.1 1.22066 [-2, -1, -2, -1, 0, -2, 2, -2, -2, -1] -morons -1.3 1.1 [-1, -1, -1, 0, -3, -2, 0, 0, -2, -3] -motherfucker -3.6 0.66332 [-3, -4, -4, -4, -4, -2, -4, -3, -4, -4] -motherfucking -2.8 1.249 [-3, -1, -4, 0, -3, -3, -4, -4, -3, -3] -motivate 1.6 0.4899 [1, 1, 1, 1, 2, 2, 2, 2, 2, 2] -motivated 2.0 0.63246 [3, 3, 1, 2, 1, 2, 2, 2, 2, 2] -motivating 2.2 0.6 [2, 2, 3, 3, 3, 2, 2, 2, 1, 2] -motivation 1.4 0.66332 [1, 1, 2, 0, 2, 1, 2, 1, 2, 2] -mourn -1.8 0.6 [-2, -2, -2, -2, -2, -1, -2, -3, -1, -1] -mourned -1.3 1.55242 [-1, -2, -3, -3, -2, -1, 1, -2, 2, -2] -mourner -1.6 1.35647 [-3, 0, -2, -1, -1, 0, -2, 0, -3, -4] -mourners -1.8 0.74833 [-1, -2, -3, -1, -2, -1, -2, -1, -2, -3] -mournful -1.6 1.62481 [-2, -3, -3, 2, -2, -3, -2, 1, -2, -2] -mournfuller -1.9 0.9434 [-2, -3, -3, -3, 0, -2, -1, -2, -2, -1] -mournfully -1.7 1.55242 [-4, -3, -2, -3, 1, -2, -2, -2, 1, -1] -mournfulness -1.8 1.4 [-4, -3, 1, -3, -1, -2, 0, -2, -2, -2] -mourning -1.9 1.04403 [-1, -1, -1, -1, -2, -3, -4, -3, -2, -1] -mourningly -2.3 1.18743 [-3, -3, -3, -3, -2, -3, -2, 1, -2, -3] -mourns -2.4 0.66332 [-2, -2, -3, -2, -3, -3, -3, -1, -2, -3] -muah 2.3 1.26886 [0, 3, 1, 2, 3, 1, 4, 4, 3, 2] -mumpish -1.4 0.66332 [-1, -1, -2, -2, 0, -1, -2, -2, -1, -2] -murder -3.7 0.64031 [-4, -4, -4, -4, -2, -4, -4, -4, -3, -4] -murdered -3.4 0.66332 [-4, -3, -2, -3, -4, -4, -3, -3, -4, -4] -murderee -3.2 0.6 [-3, -3, -2, -3, -4, -4, -3, -3, -4, -3] -murderees -3.1 0.7 [-2, -4, -3, -4, -3, -2, -3, -3, -4, -3] -murderer -3.6 0.4899 [-4, -3, -3, -3, -4, -4, -4, -3, -4, -4] -murderers -3.3 0.78102 [-3, -4, -4, -4, -4, -2, -4, -3, -3, -2] -murderess -2.2 1.72047 [-2, -2, -3, -4, -3, -3, -4, 1, 1, -3] -murderesses -2.6 0.8 [-2, -4, -3, -4, -2, -2, -2, -2, -3, -2] -murdering -3.3 0.78102 [-4, -2, -4, -3, -4, -3, -2, -4, -4, -3] -murderous -3.2 0.74833 [-3, -3, -4, -3, -4, -4, -4, -2, -2, -3] -murderously -3.1 0.9434 [-3, -4, -4, -4, -3, -4, -1, -2, -3, -3] -murderousness -2.9 0.7 [-3, -3, -4, -2, -2, -2, -4, -3, -3, -3] -murders -3.0 1.84391 [-4, -4, -4, 2, -4, -2, -4, -4, -2, -4] -n00b -1.6 0.8 [-1, -3, -1, -2, -2, -2, -2, -2, -1, 0] -nag -1.5 0.80623 [-1, -1, -3, -1, -3, -2, -1, -1, -1, -1] -nagana -1.7 0.9 [-2, -2, 0, 0, -2, -3, -2, -2, -2, -2] -nagged -1.7 0.45826 [-2, -1, -2, -1, -2, -2, -1, -2, -2, -2] -nagger -1.8 0.4 [-2, -1, -2, -2, -2, -2, -1, -2, -2, -2] -naggers -1.5 0.67082 [-1, -1, -2, -2, -2, -1, -1, -3, -1, -1] -naggier -1.4 1.11355 [-2, -3, -2, -2, 1, -1, -2, -1, 0, -2] -naggiest -2.4 0.91652 [-3, -2, -2, -1, -4, -2, -3, -3, -3, -1] -nagging -1.7 0.64031 [-1, -1, -1, -1, -2, -2, -2, -2, -3, -2] -naggingly -0.9 1.37477 [-2, 2, -1, -1, -1, -3, 1, -1, -1, -2] -naggy -1.7 0.64031 [-2, -2, -1, -1, -3, -2, -1, -2, -1, -2] -nags -1.1 0.53852 [-1, -1, -2, -1, -1, -2, -1, -1, 0, -1] -nah -0.4 1.28062 [0, 0, 1, -1, -3, -1, 0, 2, -1, -1] -naive -1.1 1.22066 [-2, -2, -1, 2, -1, -1, -1, -3, -1, -1] -nastic 0.2 0.6 [2, 0, 0, 0, 0, 0, 0, 0, 0, 0] -nastier -2.3 0.45826 [-2, -2, -2, -3, -3, -2, -3, -2, -2, -2] -nasties -2.1 0.3 [-2, -2, -2, -2, -3, -2, -2, -2, -2, -2] -nastiest -2.4 1.85472 [-4, -4, -4, -2, -3, -2, 1, 1, -3, -4] -nastily -1.9 0.7 [-2, -3, -1, -2, -2, -3, -1, -1, -2, -2] -nastiness -1.1 1.44568 [-2, -2, -3, -2, 1, -1, -1, -1, 2, -2] -nastinesses -2.6 0.66332 [-2, -3, -3, -2, -3, -3, -3, -1, -3, -3] -nasturtium 0.4 0.66332 [0, 0, 0, 0, 0, 1, 1, 0, 2, 0] -nasturtiums 0.1 0.3 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] -nasty -2.6 1.0198 [-3, -1, -2, -4, -3, -3, -1, -2, -4, -3] -natural 1.5 1.0247 [2, 0, 0, 1, 1, 3, 2, 2, 3, 1] -neat 2.0 0.89443 [2, 1, 1, 2, 3, 1, 2, 2, 2, 4] -neaten 1.2 0.4 [1, 1, 1, 1, 1, 2, 2, 1, 1, 1] -neatened 2.0 1.09545 [0, 2, 1, 3, 1, 2, 4, 3, 2, 2] -neatening 1.3 0.45826 [1, 1, 1, 1, 2, 2, 2, 1, 1, 1] -neatens 1.1 0.83066 [0, 1, 0, 1, 1, 1, 1, 3, 2, 1] -neater 1.0 0.44721 [1, 1, 1, 1, 1, 1, 2, 0, 1, 1] -neatest 1.7 0.64031 [1, 2, 2, 1, 2, 2, 1, 2, 1, 3] -neath 0.2 0.9798 [0, 0, -2, 0, 0, 2, 0, 1, 1, 0] -neatherd -0.4 0.8 [0, 0, 0, -2, 0, -1, 1, -1, -1, 0] -neatly 1.4 0.66332 [2, 1, 1, 2, 2, 2, 0, 1, 1, 2] -neatness 1.3 0.64031 [2, 1, 1, 0, 1, 1, 2, 2, 2, 1] -neats 1.1 0.53852 [2, 1, 2, 1, 0, 1, 1, 1, 1, 1] -needy -1.4 0.4899 [-1, -2, -2, -2, -1, -1, -1, -1, -2, -1] -negative -2.7 0.9 [-1, -3, -3, -2, -4, -2, -2, -4, -3, -3] -negativity -2.3 0.45826 [-2, -2, -2, -2, -3, -2, -3, -3, -2, -2] -neglect -2.0 0.63246 [-2, -2, -1, -1, -3, -2, -3, -2, -2, -2] -neglected -2.4 1.0198 [-1, -2, -4, -3, -2, -2, -1, -4, -3, -2] -neglecter -1.7 0.64031 [-2, -2, -1, -1, -1, -3, -2, -2, -1, -2] -neglecters -1.5 0.67082 [-2, -1, -1, -1, -2, -1, -1, -2, -3, -1] -neglectful -2.0 0.63246 [-3, -3, -1, -2, -2, -2, -1, -2, -2, -2] -neglectfully -2.1 0.9434 [-1, -3, -3, -1, -1, -2, -2, -2, -4, -2] -neglectfulness -2.0 0.63246 [-2, -2, -2, -2, -1, -3, -2, -2, -1, -3] -neglecting -1.7 0.78102 [-2, -1, -3, -2, -1, -3, -1, -1, -2, -1] -neglects -2.2 0.4 [-2, -2, -2, -2, -2, -3, -2, -3, -2, -2] -nerd -1.2 0.6 [-1, -2, -1, -2, -1, 0, -1, -1, -2, -1] -nerdier -0.2 0.87178 [0, 0, -1, -1, 0, -1, 2, 0, 0, -1] -nerdiest 0.6 1.28062 [2, 3, 0, -1, 1, 0, 0, -1, 2, 0] -nerdish -0.1 1.04403 [-1, -1, 2, 0, -1, -1, 1, 0, 1, -1] -nerdy -0.2 1.249 [-1, -1, -1, 3, 0, 0, 0, 0, -2, 0] -nerves -0.4 0.8 [0, -1, 0, 1, -2, -1, 0, -1, 0, 0] -nervous -1.1 0.53852 [-1, -1, -1, -2, -2, -1, -1, 0, -1, -1] -nervously -0.6 1.56205 [-1, -1, -1, -1, -1, -2, 4, -1, -1, -1] -nervousness -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] -neurotic -1.4 1.11355 [-3, -2, -2, -1, 1, -2, -2, -1, 0, -2] -neurotically -1.8 1.16619 [0, -2, -1, -3, -3, -1, 0, -2, -3, -3] -neuroticism -0.9 1.22066 [-2, -1, -1, -1, -2, 0, -3, 1, 1, -1] -neurotics -0.7 1.61555 [-2, 0, -1, -2, -1, -3, 0, 2, 2, -2] -nice 1.8 0.74833 [3, 1, 1, 2, 2, 1, 3, 1, 2, 2] -nicely 1.9 0.83066 [2, 1, 2, 2, 4, 2, 1, 1, 2, 2] -niceness 1.6 0.66332 [1, 1, 3, 2, 1, 1, 2, 2, 2, 1] -nicenesses 2.1 1.22066 [4, 0, 3, 1, 2, 1, 4, 2, 2, 2] -nicer 1.9 0.53852 [2, 2, 1, 2, 3, 2, 2, 2, 1, 2] -nicest 2.2 0.87178 [1, 4, 1, 2, 2, 2, 3, 3, 2, 2] -niceties 1.5 1.20416 [1, 4, 1, 1, 2, 1, 0, 3, 2, 0] -nicety 1.2 1.07703 [1, 0, 4, 1, 1, 0, 2, 1, 1, 1] -nifty 1.7 0.64031 [2, 2, 1, 1, 1, 2, 3, 2, 2, 1] -niggas -1.4 2.2 [-4, -3, 2, 1, -4, -2, 0, -1, 1, -4] -nigger -3.3 1.18743 [-4, -4, -4, -4, -4, -4, -1, -3, -1, -4] -no -1.2 0.74833 [-1, -1, -1, -1, -1, -1, 0, -1, -2, -3] -noble 2.0 0.89443 [2, 1, 2, 2, 3, 0, 2, 3, 2, 3] -noisy -0.7 0.64031 [-2, 0, -1, -1, 0, -1, -1, 0, 0, -1] -nonsense -1.7 0.64031 [-3, -1, -1, -1, -2, -1, -2, -2, -2, -2] -noob -0.2 1.16619 [-2, 0, -1, 0, -1, 2, 1, 1, -1, -1] -nosey -0.8 1.16619 [-2, -2, -2, 1, -1, -1, 0, 1, 0, -2] -notorious -1.9 1.3 [-2, -4, -3, -2, -2, -2, -1, -1, -3, 1] -novel 1.3 0.64031 [2, 0, 1, 1, 1, 1, 2, 2, 2, 1] -numb -1.4 0.66332 [-1, -1, -1, -1, -2, -1, -1, -3, -2, -1] -numbat 0.2 0.4 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0] -numbed -0.9 0.53852 [-1, -1, -1, -1, 0, 0, -2, -1, -1, -1] -number 0.3 0.64031 [0, 0, 1, 0, 0, 2, 0, 0, 0, 0] -numberable 0.6 0.91652 [0, 2, 0, 0, 0, 2, 2, 0, 0, 0] -numbest -1.0 0.89443 [-2, -1, 0, 0, -3, -1, -1, -1, 0, -1] -numbfish -0.4 0.66332 [-1, 0, 0, 0, -2, 0, 0, -1, 0, 0] -numbfishes -0.7 0.9 [0, -1, 0, -1, -1, 0, -1, 0, 0, -3] -numbing -1.1 0.83066 [-1, 0, -1, -1, -2, -1, -3, -1, 0, -1] -numbingly -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -2, -1, -2, -1] -numbles 0.4 0.66332 [0, 0, 0, 0, 1, 2, 0, 0, 1, 0] -numbly -1.4 1.0198 [-3, -2, 0, -1, -1, -3, -1, -2, -1, 0] -numbness -1.1 0.7 [-1, -1, -2, -1, -1, -2, -1, 0, -2, 0] -numbs -0.7 1.00499 [-1, 0, -1, 0, 1, 0, -3, -1, -1, -1] -numbskull -2.3 1.41774 [-2, -4, -3, 0, -2, -2, -4, -4, 0, -2] -numbskulls -2.2 1.07703 [-2, -2, -4, -2, -2, -1, -3, -3, 0, -3] -nurtural 1.5 0.80623 [2, 1, 2, 2, 1, 3, 0, 1, 2, 1] -nurturance 1.6 0.8 [1, 2, 1, 1, 3, 0, 2, 2, 2, 2] -nurturances 1.3 1.55242 [0, -2, 3, 1, 1, 2, 3, 0, 2, 3] -nurturant 1.7 0.78102 [2, 1, 3, 2, 2, 2, 2, 1, 0, 2] -nurture 1.4 0.8 [3, 1, 2, 2, 1, 2, 1, 0, 1, 1] -nurtured 1.9 0.9434 [2, 1, 3, 3, 3, 1, 2, 2, 0, 2] -nurturer 1.9 0.83066 [2, 1, 3, 3, 3, 1, 2, 2, 1, 1] -nurturers 0.8 1.66132 [2, -1, 2, 2, 1, -2, -2, 2, 2, 2] -nurtures 1.9 0.83066 [2, 1, 3, 3, 3, 1, 2, 2, 1, 1] -nurturing 2.0 0.63246 [3, 3, 2, 2, 1, 2, 2, 1, 2, 2] -nuts -1.3 1.26886 [-2, -1, -2, -3, 1, -1, 1, -2, -2, -2] -o.o -0.8 1.07703 [-1, -1, 0, -2, -1, -1, -2, 1, -2, 1] -o/\o 2.1 1.04403 [1, 2, 3, 1, 3, 4, 1, 2, 3, 1] -o_0 -0.1 0.53852 [-1, -1, 0, 0, 0, 0, 0, 0, 1, 0] -obliterate -2.9 0.83066 [-3, -4, -3, -3, -3, -3, -2, -1, -4, -3] -obliterated -2.1 1.3 [-3, 0, -1, -4, -3, -2, 0, -2, -3, -3] -obnoxious -2.0 0.44721 [-1, -2, -3, -2, -2, -2, -2, -2, -2, -2] -obnoxiously -2.3 0.64031 [-3, -2, -1, -2, -2, -3, -2, -3, -3, -2] -obnoxiousness -2.1 0.7 [-3, -1, -1, -2, -2, -3, -2, -2, -3, -2] -obscene -2.8 0.87178 [-3, -3, -2, -1, -3, -4, -3, -4, -2, -3] -obsess -1.0 0.89443 [-2, 0, -2, -1, 1, -1, -2, -1, -1, -1] -obsessed -0.7 0.78102 [0, 0, -1, 0, -1, 0, -1, -2, -2, 0] -obsesses -1.0 0.7746 [-2, -2, -1, -2, 0, -1, -1, -1, 0, 0] -obsessing -1.4 0.66332 [-1, -1, -1, -2, -1, -1, -1, -3, -2, -1] -obsession -1.4 0.8 [0, -2, -2, -1, -1, -1, -3, -1, -1, -2] -obsessional -1.5 0.92195 [0, -2, -1, -1, -3, -1, -2, -1, -3, -1] -obsessionally -1.3 0.9 [-1, -2, -2, -2, -2, -1, 1, -1, -1, -2] -obsessions -0.9 1.44568 [-1, -4, -2, -1, 1, -1, 0, 1, 0, -2] -obsessive -0.9 1.04403 [-2, 0, -1, 0, 1, -1, -3, -1, -1, -1] -obsessively -0.4 1.2 [-1, -1, -1, -1, -1, 1, 2, -2, 1, -1] -obsessiveness -1.2 1.32665 [0, -3, -1, -1, -1, 1, -4, -1, -1, -1] -obsessives -0.7 0.9 [-1, -1, -1, -1, -1, 1, -2, 1, -1, -1] -obsolete -1.2 0.74833 [-1, -1, -1, -1, -2, -1, -1, -3, -1, 0] -obstacle -1.5 1.0247 [-1, -3, -1, -2, -2, -2, 1, -1, -2, -2] -obstacles -1.6 0.8 [-3, -1, -2, -1, -2, -2, 0, -2, -1, -2] -obstinate -1.2 0.74833 [-2, -1, -1, -1, 0, 0, -2, -1, -2, -2] -odd -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -2, -1, -2, -1] -offence -1.2 1.93907 [-2, -2, -3, 3, -2, -2, -3, 2, -1, -2] -offences -1.4 1.49666 [-2, -2, -4, -1, -2, -2, -1, 0, 2, -2] -offend -1.2 1.4 [-2, -2, -2, -2, -1, -2, -2, 1, 2, -2] -offended -1.0 1.41421 [-2, -2, -2, -2, -1, 0, -2, 2, 1, -2] -offender -1.5 1.28452 [-3, -2, -2, -2, -2, -2, -2, 1, 1, -2] -offenders -1.5 1.28452 [-2, -1, -2, -2, -2, -2, 2, -3, -2, -1] -offending -2.3 0.64031 [-2, -2, -3, -2, -2, -4, -2, -2, -2, -2] -offends -2.0 0.7746 [-3, -1, -1, -2, -2, -2, -3, -1, -2, -3] -offense -1.0 1.61245 [-2, 1, -1, -2, -2, -2, -3, 2, 1, -2] -offenseless 0.7 1.79165 [3, 1, 0, 2, 1, 2, 1, 0, -4, 1] -offenses -1.5 1.5 [-1, -2, -2, -4, -1, -2, 1, -3, 1, -2] -offensive -2.0 1.48324 [-3, -3, -3, -2, -1, -2, 2, -2, -3, -3] -offensively -2.8 0.87178 [-2, -4, -3, -3, -2, -4, -4, -2, -2, -2] -offensiveness -2.3 0.45826 [-2, -2, -2, -2, -2, -3, -2, -3, -3, -2] -offensives -0.8 1.249 [0, 0, -1, -2, 0, 2, -2, -1, -2, -2] -offline -0.5 0.92195 [0, 0, 0, 0, -3, 0, -1, 0, -1, 0] -ok 1.2 0.4 [1, 2, 1, 1, 1, 1, 2, 1, 1, 1] -okay 0.9 0.53852 [1, 1, 0, 0, 1, 1, 1, 2, 1, 1] -okays 2.1 1.13578 [1, 1, 1, 4, 3, 2, 2, 1, 2, 4] -ominous -1.4 1.49666 [-3, -2, -1, -2, -2, -1, -1, 1, 1, -4] -once-in-a-lifetime 1.8 1.4 [4, 2, 1, 0, 1, 1, 4, 3, 2, 0] -openness 1.4 0.8 [2, 1, 1, 2, 2, 1, 1, 1, 3, 0] -opportune 1.7 0.78102 [2, 2, 0, 1, 2, 3, 2, 2, 1, 2] -opportunely 1.5 1.0247 [1, 1, 4, 1, 2, 1, 1, 2, 2, 0] -opportuneness 1.2 1.249 [0, 1, 2, 2, 2, 2, 2, 2, -2, 1] -opportunism 0.4 1.11355 [-1, -1, 0, -1, 1, 2, 0, 1, 2, 1] -opportunisms 0.2 1.4 [2, -1, 0, -1, 1, -2, 2, 2, -1, 0] -opportunist 0.2 0.9798 [-1, -1, 0, -1, 0, 2, 0, 1, 1, 1] -opportunistic -0.1 2.11896 [-2, 1, -1, 0, -4, 2, -1, 4, 1, -1] -opportunistically 0.9 1.51327 [1, -3, 1, 3, 2, 2, 1, 0, 1, 1] -opportunists 0.3 1.34536 [0, -1, -1, 2, 1, 3, -1, -1, 1, 0] -opportunities 1.6 0.4899 [1, 1, 2, 2, 2, 1, 2, 2, 1, 2] -opportunity 1.8 0.6 [2, 2, 2, 2, 3, 1, 2, 1, 1, 2] -oppressed -2.1 0.53852 [-2, -2, -2, -1, -2, -2, -3, -2, -2, -3] -oppressive -1.7 1.34536 [-3, -2, -1, -2, -2, -2, -3, 2, -2, -2] -optimal 1.5 0.67082 [1, 2, 1, 3, 1, 1, 1, 2, 2, 1] -optimality 1.9 0.7 [3, 3, 2, 1, 2, 1, 2, 2, 1, 2] -optimally 1.3 0.9 [0, 3, 0, 1, 1, 2, 1, 1, 2, 2] -optimisation 1.6 0.8 [3, 1, 1, 1, 2, 1, 1, 3, 2, 1] -optimisations 1.8 0.6 [3, 1, 1, 2, 1, 2, 2, 2, 2, 2] -optimise 1.9 0.83066 [1, 2, 3, 2, 3, 3, 2, 1, 1, 1] -optimised 1.7 1.26886 [2, 4, 1, 2, 1, 2, 3, 2, 1, -1] -optimises 1.6 1.0198 [3, 1, 1, 1, 1, 3, 2, 0, 3, 1] -optimising 1.7 1.00499 [1, 2, 3, 3, 1, 2, 1, 3, 0, 1] -optimism 2.5 0.67082 [2, 2, 3, 3, 3, 4, 2, 2, 2, 2] -optimisms 2.0 0.63246 [2, 3, 1, 3, 1, 2, 2, 2, 2, 2] -optimist 2.4 0.4899 [3, 2, 3, 2, 3, 3, 2, 2, 2, 2] -optimistic 1.3 1.48661 [2, 2, -3, 2, 2, 2, 1, 2, 1, 2] -optimistically 2.1 0.53852 [3, 2, 2, 2, 3, 2, 1, 2, 2, 2] -optimists 1.6 0.66332 [3, 2, 2, 1, 2, 1, 2, 1, 1, 1] -optimization 1.6 0.8 [2, 3, 1, 1, 1, 2, 0, 2, 2, 2] -optimizations 0.9 1.04403 [0, 2, 0, 2, 1, 0, 3, 1, 0, 0] -optimize 2.2 0.87178 [2, 3, 3, 2, 1, 2, 4, 2, 2, 1] -optimized 2.0 0.44721 [1, 3, 2, 2, 2, 2, 2, 2, 2, 2] -optimizer 1.5 0.67082 [1, 3, 1, 1, 2, 2, 1, 2, 1, 1] -optimizers 2.1 0.7 [3, 3, 1, 3, 2, 2, 1, 2, 2, 2] -optimizes 1.8 0.6 [1, 3, 2, 1, 2, 2, 1, 2, 2, 2] -optimizing 2.0 0.7746 [1, 1, 2, 2, 1, 3, 3, 3, 2, 2] -optionless -1.7 0.64031 [-2, -1, -2, -3, -1, -2, -2, -2, -1, -1] -original 1.3 0.9 [0, 2, 0, 2, 2, 0, 2, 1, 2, 2] -outcry -2.3 0.64031 [-3, -2, -2, -3, -2, -1, -3, -2, -2, -3] -outgoing 1.2 1.16619 [1, 1, 1, 2, -1, 1, 3, 3, 0, 1] -outmaneuvered 0.5 1.36015 [-2, 2, 0, 0, 3, 1, 1, 0, 1, -1] -outrage -2.3 1.00499 [-2, -2, -4, -3, -1, -3, -3, -1, -1, -3] -outraged -2.5 0.92195 [-3, -2, -2, -1, -3, -3, -1, -4, -3, -3] -outrageous -2.0 1.34164 [-3, 0, -2, -1, -3, 0, -3, -3, -4, -1] -outrageously -1.2 1.32665 [-1, -1, -3, -3, -2, -1, 2, -1, -1, -1] -outrageousness -1.2 1.249 [-2, 0, 1, -2, -1, -1, -3, 0, -1, -3] -outrageousnesses -1.3 1.67631 [-1, -3, -2, 1, 0, 1, 0, -3, -2, -4] -outrages -2.3 1.00499 [-3, -2, -2, -1, -3, -3, -1, -4, -1, -3] -outraging -2.0 1.18322 [-4, -1, -2, -3, -1, 0, -1, -3, -3, -2] -outreach 1.1 0.7 [2, 1, 0, 0, 2, 1, 1, 1, 2, 1] -outstanding 3.0 0.89443 [3, 1, 3, 3, 4, 4, 2, 3, 4, 3] -overjoyed 2.7 0.78102 [4, 3, 3, 4, 2, 2, 2, 2, 3, 2] -overload -1.5 0.67082 [-2, 0, -1, -2, -2, -1, -1, -2, -2, -2] -overlooked -0.1 1.44568 [-1, -2, -1, -1, 2, 0, -1, 2, -1, 2] -overreact -1.0 1.73205 [-2, -2, -2, -2, 0, -3, 1, 3, -1, -2] -overreacted -1.7 0.64031 [-2, -2, -2, -1, -1, -1, -1, -3, -2, -2] -overreaction -0.7 1.34536 [-2, -1, 0, -1, -1, 3, -2, -1, -1, -1] -overreacts -2.2 0.87178 [-2, -2, -2, -3, -4, -1, -3, -1, -2, -2] -oversell -0.9 0.7 [0, -1, -1, 0, -2, -1, -1, -1, -2, 0] -overselling -0.8 1.16619 [0, -1, 0, -1, -2, -1, -1, -2, -2, 2] -oversells 0.3 1.26886 [-1, -1, 0, 0, 2, 2, 2, -1, 1, -1] -oversimplification 0.2 1.53623 [-1, 1, -1, -1, 1, -1, -2, 1, 2, 3] -oversimplifies 0.1 1.37477 [3, 0, 0, -1, 1, -1, 2, -1, -1, -1] -oversimplify -0.6 1.35647 [-3, -1, 0, -2, 0, 1, 2, -1, -1, -1] -overstatement -1.1 0.7 [-2, 0, -1, -2, -1, 0, -1, -1, -2, -1] -overstatements -0.7 1.34536 [-1, -1, -3, -1, 2, 0, -1, -1, -2, 1] -overweight -1.5 0.67082 [-3, -2, -1, -1, -1, -2, -1, -2, -1, -1] -overwhelm -0.7 1.26886 [-1, 2, -1, -1, -2, -2, 1, 0, -1, -2] -overwhelmed 0.2 1.53623 [-2, -1, 2, -2, 2, 1, -1, 2, 1, 0] -overwhelmingly -0.5 1.28452 [0, -2, -1, 0, -2, -1, -2, 0, 1, 2] -overwhelms -0.8 1.249 [-2, -2, -1, -1, -1, -2, 2, 1, -1, -1] -oxymoron -0.5 0.80623 [0, 0, -1, -1, -1, -2, 1, 0, 0, -1] -pain -2.3 0.64031 [-2, -3, -2, -2, -2, -2, -2, -2, -2, -4] -pained -1.8 0.6 [-1, -2, -3, -2, -2, -2, -2, -1, -1, -2] -painful -1.9 0.9434 [-2, -1, -1, -3, -4, -1, -1, -2, -2, -2] -painfuller -1.7 1.34536 [-2, -2, -2, 2, -1, -3, -2, -2, -3, -2] -painfully -2.4 0.4899 [-2, -3, -2, -3, -3, -2, -2, -2, -2, -3] -painfulness -2.7 0.64031 [-3, -4, -3, -2, -3, -3, -3, -2, -2, -2] -paining -1.7 0.45826 [-1, -2, -2, -2, -2, -2, -1, -2, -1, -2] -painless 1.2 0.87178 [1, 2, -1, 1, 2, 1, 2, 1, 2, 1] -painlessly 1.1 0.3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 2] -painlessness 0.4 1.0198 [1, 1, 1, 1, -1, 1, -2, 0, 1, 1] -pains -1.8 0.6 [-2, -2, -1, -1, -1, -2, -2, -2, -3, -2] -palatable 1.6 0.8 [2, 1, 2, 1, 2, 1, 3, 0, 2, 2] -palatableness 0.8 0.87178 [2, 1, 1, 0, -1, 2, 0, 1, 1, 1] -palatably 1.1 0.83066 [2, 1, 2, 1, 1, 1, 2, -1, 1, 1] -panic -2.3 0.64031 [-3, -2, -1, -2, -2, -2, -3, -3, -2, -3] -panicked -2.0 1.61245 [-2, -4, -3, -3, -3, 1, -2, -2, 1, -3] -panicking -1.9 0.53852 [-2, -2, -3, -2, -2, -2, -2, -2, -1, -1] -panicky -1.5 0.67082 [-2, -2, -1, -1, -1, -1, -1, -2, -3, -1] -panicle 0.5 0.67082 [2, 0, 0, 0, 0, 0, 0, 1, 1, 1] -panicled 0.1 0.83066 [2, 0, 0, 0, 0, -1, 0, -1, 1, 0] -panicles -0.2 0.6 [1, 0, 0, 0, 0, -1, 0, -1, -1, 0] -panics -1.9 1.3 [-2, -3, -2, -3, -1, -2, 1, -4, -1, -2] -paniculate 0.1 0.3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] -panicums -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] -paradise 3.2 0.9798 [4, 1, 4, 2, 4, 4, 3, 3, 3, 4] -paradox -0.4 0.66332 [-1, -1, 0, 0, -1, 0, -1, 0, 1, -1] -paranoia -1.0 1.48324 [1, -2, -2, -3, -1, 0, -2, -1, -2, 2] -paranoiac -1.3 1.61555 [-2, -3, -2, -2, 1, -3, 2, -2, 0, -2] -paranoiacs -0.7 1.18743 [-1, 0, -1, -1, -3, 1, -2, 0, 1, -1] -paranoias -1.5 1.0247 [-2, -3, -2, 0, -1, -3, 0, -1, -1, -2] -paranoid -1.0 1.41421 [0, -3, -3, -2, -1, -1, 0, 1, -2, 1] -paranoids -1.6 0.91652 [-2, -1, -1, -2, -2, -1, -1, -1, -4, -1] -pardon 1.3 0.45826 [1, 2, 1, 2, 1, 2, 1, 1, 1, 1] -pardoned 0.9 0.9434 [1, 1, 1, 1, 1, 1, 1, 0, 3, -1] -pardoning 1.7 0.78102 [3, 2, 2, 2, 1, 1, 2, 2, 0, 2] -pardons 1.2 0.6 [2, 1, 1, 1, 1, 2, 1, 2, 0, 1] -parley -0.4 0.66332 [0, -2, 0, 0, -1, -1, 0, 0, 0, 0] -partied 1.4 1.11355 [2, 3, 1, 1, 1, 2, 3, -1, 1, 1] -partier 1.4 0.8 [2, 2, 1, 1, 0, 2, 3, 1, 1, 1] -partiers 0.7 1.00499 [0, 0, 3, 0, 0, 0, 2, 1, 0, 1] -parties 1.7 0.78102 [2, 3, 1, 1, 1, 2, 3, 1, 2, 1] -party 1.7 0.78102 [3, 2, 2, 1, 3, 2, 1, 1, 1, 1] -partyer 1.2 1.07703 [1, 3, 1, 0, 1, 0, 2, 1, 3, 0] -partyers 1.1 0.83066 [1, 2, 0, 3, 1, 1, 1, 0, 1, 1] -partying 1.6 1.11355 [0, 3, 1, 0, 3, 2, 3, 1, 2, 1] -passion 2.0 0.44721 [2, 2, 1, 3, 2, 2, 2, 2, 2, 2] -passional 1.6 0.8 [2, 1, 3, 0, 2, 1, 1, 2, 2, 2] -passionate 2.4 1.35647 [0, 4, 3, 3, 4, 2, 0, 2, 3, 3] -passionately 2.4 0.91652 [3, 0, 3, 3, 2, 3, 2, 3, 2, 3] -passionateness 2.3 0.64031 [1, 3, 2, 3, 2, 3, 2, 3, 2, 2] -passionflower 0.3 0.45826 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0] -passionflowers 0.4 0.66332 [0, 0, 0, 0, 2, 1, 1, 0, 0, 0] -passionless -1.9 0.7 [-3, -2, -2, -2, -1, -1, -1, -3, -2, -2] -passions 2.2 0.6 [3, 3, 3, 2, 2, 1, 2, 2, 2, 2] -passive 0.8 1.46969 [4, 1, 1, 0, -2, 0, 1, 1, 2, 0] -passively -0.7 0.64031 [0, -1, 0, 0, -1, -2, 0, -1, -1, -1] -pathetic -2.7 1.48661 [-3, -4, -3, -4, -2, 1, -2, -2, -4, -4] -pathetical -1.2 1.249 [-2, -1, -2, -1, -2, 1, -3, 1, -1, -2] -pathetically -1.8 1.72047 [-3, -4, -2, 0, -3, -2, -3, -3, 1, 1] -pay -0.4 0.91652 [0, 0, -3, 0, 0, 0, 0, 0, -1, 0] -peace 2.5 1.0247 [3, 2, 1, 4, 2, 3, 4, 1, 3, 2] -peaceable 1.7 0.45826 [2, 2, 1, 2, 1, 2, 2, 1, 2, 2] -peaceableness 1.8 1.16619 [2, 2, 4, 2, 2, 2, 2, 1, 2, -1] -peaceably 2.0 0.63246 [2, 3, 2, 2, 1, 2, 3, 1, 2, 2] -peaceful 2.2 0.74833 [4, 2, 1, 2, 2, 2, 3, 2, 2, 2] -peacefuller 1.9 0.7 [2, 2, 2, 1, 3, 3, 2, 2, 1, 1] -peacefullest 3.1 0.7 [3, 3, 2, 3, 4, 2, 4, 3, 4, 3] -peacefully 2.4 0.66332 [3, 2, 2, 2, 4, 2, 2, 3, 2, 2] -peacefulness 2.1 0.83066 [3, 2, 1, 2, 3, 1, 3, 3, 1, 2] -peacekeeper 1.6 1.11355 [1, 1, 0, 2, 1, 1, 4, 3, 2, 1] -peacekeepers 1.6 1.11355 [4, 1, 1, 2, 1, 1, 2, 3, 0, 1] -peacekeeping 2.0 0.63246 [2, 1, 1, 2, 3, 3, 2, 2, 2, 2] -peacekeepings 1.6 0.8 [0, 1, 1, 2, 2, 3, 2, 2, 2, 1] -peacemaker 2.0 0.89443 [2, 1, 2, 4, 2, 2, 1, 3, 1, 2] -peacemakers 2.4 1.0198 [0, 3, 4, 2, 3, 2, 3, 3, 2, 2] -peacemaking 1.7 0.78102 [1, 1, 1, 3, 3, 1, 2, 2, 2, 1] -peacenik 0.8 0.87178 [1, 1, 0, 1, 2, 0, 1, 1, -1, 2] -peaceniks 0.7 1.00499 [2, 0, 0, 1, 0, 2, 1, -1, 2, 0] -peaces 2.1 0.83066 [2, 2, 2, 2, 3, 0, 3, 3, 2, 2] -peacetime 2.2 1.16619 [3, 1, 4, 2, 4, 3, 1, 1, 2, 1] -peacetimes 2.1 0.83066 [3, 2, 2, 4, 1, 2, 2, 2, 1, 2] -peculiar 0.6 1.2 [-1, 0, -1, 1, 2, -1, 2, 1, 2, 1] -peculiarities 0.1 1.37477 [-1, -1, 0, -1, -1, 1, 3, 2, -1, 0] -peculiarity 0.6 1.2 [-1, 1, -1, 0, 2, -1, 1, 2, 2, 1] -peculiarly -0.4 1.2 [-1, 2, -2, -1, 0, 0, -2, 1, -1, 0] -penalty -2.0 0.63246 [-2, -3, -2, -2, -1, -2, -3, -2, -2, -1] -pensive 0.3 1.1 [1, 0, 0, 1, 0, -1, 3, 0, -1, 0] -perfect 2.7 0.78102 [2, 4, 2, 3, 4, 2, 3, 2, 3, 2] -perfecta 1.4 1.42829 [1, 0, 0, 3, 1, 0, 0, 4, 3, 2] -perfectas 0.6 1.11355 [0, 0, -1, 1, 0, 2, 3, 0, 1, 0] -perfected 2.7 0.78102 [1, 3, 3, 4, 2, 3, 3, 2, 3, 3] -perfecter 1.8 0.9798 [2, 1, 3, 1, 2, 1, 2, 4, 1, 1] -perfecters 1.4 1.11355 [2, 1, 3, 0, 0, 3, 2, 0, 1, 2] -perfectest 3.1 1.04403 [2, 4, 4, 4, 3, 2, 1, 3, 4, 4] -perfectibilities 2.1 1.04403 [3, 2, 2, 3, 4, 1, 2, 2, 0, 2] -perfectibility 1.8 1.249 [4, 3, 3, 0, 1, 0, 1, 2, 2, 2] -perfectible 1.5 0.67082 [1, 2, 1, 1, 2, 1, 1, 3, 2, 1] -perfecting 2.3 0.9 [1, 2, 3, 3, 1, 2, 2, 4, 2, 3] -perfection 2.7 1.1 [3, 3, 3, 1, 2, 4, 4, 1, 2, 4] -perfectionism 1.3 1.26886 [3, -1, 2, 1, 2, 2, 2, -1, 1, 2] -perfectionist 1.5 1.20416 [3, -1, 3, 1, 2, 2, 2, 0, 1, 2] -perfectionistic 0.7 1.67631 [-1, 0, 2, 0, 1, 0, 3, -1, 4, -1] -perfectionists 0.1 1.22066 [1, -1, 1, -1, 0, 0, -1, 0, 3, -1] -perfections 2.5 1.43178 [2, 4, 4, 3, 3, 4, -1, 2, 2, 2] -perfective 1.2 0.87178 [1, 0, 1, 1, 3, 2, 2, 0, 1, 1] -perfectively 2.1 1.13578 [3, 3, 1, 4, 0, 2, 1, 2, 2, 3] -perfectiveness 0.9 1.51327 [-2, 3, -1, 0, 2, 0, 2, 2, 2, 1] -perfectives 0.9 0.83066 [0, 2, 1, 1, 1, 0, 2, 0, 2, 0] -perfectivity 2.2 0.9798 [3, 2, 0, 3, 1, 2, 3, 3, 2, 3] -perfectly 3.2 0.4 [3, 4, 4, 3, 3, 3, 3, 3, 3, 3] -perfectness 3.0 0.63246 [4, 3, 3, 3, 3, 2, 4, 2, 3, 3] -perfecto 1.3 1.34536 [1, 0, 0, 2, 0, 0, 1, 4, 3, 2] -perfects 1.6 1.11355 [1, 1, 1, 2, 1, 0, 1, 4, 3, 2] -peril -1.7 1.67631 [-3, -2, -2, 3, -3, -2, -3, -2, -1, -2] -perjury -1.9 0.9434 [-3, -2, -3, -2, -2, 0, -1, -2, -3, -1] -perpetrator -2.2 0.74833 [-2, -3, -2, -2, -2, -2, -4, -2, -1, -2] -perpetrators -1.0 1.67332 [-1, -2, -2, -2, -2, 2, 0, -4, 1, 0] -perplexed -1.3 0.64031 [-1, -1, -2, -1, -1, -1, 0, -2, -2, -2] -persecute -2.1 1.37477 [-2, -3, -2, 1, -1, -4, -2, -2, -2, -4] -persecuted -1.3 1.61555 [-2, -1, -2, -1, -2, 2, -4, 1, -2, -2] -persecutes -1.2 1.4 [-2, -1, -2, 0, -2, 1, -3, 1, -1, -3] -persecuting -1.5 1.62788 [-3, -2, -2, 0, -4, -3, -2, -1, 1, 1] -perturbed -1.4 0.8 [-2, -1, -1, 0, -2, -2, -2, 0, -2, -2] -perverse -1.8 1.8868 [-2, -4, -3, 1, -2, -4, 1, 0, -1, -4] -perversely -2.2 0.87178 [-1, -2, -2, -2, -1, -3, -2, -3, -4, -2] -perverseness -2.1 1.22066 [-3, -3, 1, -2, -3, -2, -3, -2, -1, -3] -perversenesses -0.5 1.74642 [-2, 3, -1, -2, 1, 0, 1, 0, -2, -3] -perversion -1.3 1.34536 [-3, -2, -2, 1, 1, -3, -1, -2, -1, -1] -perversions -1.2 1.83303 [-2, 0, -4, -2, -3, -3, 0, 1, -1, 2] -perversities -1.1 1.22066 [-2, -1, -2, 0, -2, -2, -2, 1, 1, -2] -perversity -2.6 0.8 [-2, -3, -2, -2, -4, -3, -3, -1, -3, -3] -perversive -2.1 0.7 [-3, -1, -3, -2, -2, -2, -2, -1, -3, -2] -pervert -2.3 0.9 [-2, -2, -1, -3, -4, -2, -3, -1, -3, -2] -perverted -2.5 1.56525 [-2, -4, -2, -4, -3, -4, 1, -2, -1, -4] -pervertedly -1.2 1.77764 [-3, -2, -1, -2, 2, -3, 1, -3, 1, -2] -pervertedness -1.2 1.46969 [1, -2, -3, -2, 0, -2, -3, 1, 0, -2] -perverter -1.7 1.48661 [-3, -4, -2, -2, -1, -1, 2, -2, -2, -2] -perverters -0.6 1.68523 [-2, -2, -1, 0, -1, 2, -3, 1, 2, -2] -perverting -1.0 2.09762 [4, -2, -2, -4, -2, 1, 0, -1, -2, -2] -perverts -2.8 0.6 [-3, -3, -2, -3, -3, -2, -2, -4, -3, -3] -pesky -1.2 0.4 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -1] -pessimism -1.5 1.36015 [-2, -3, 1, -2, -2, -1, 1, -3, -2, -2] -pessimisms -2.0 1.0 [-3, -1, -2, -2, -3, -1, 0, -2, -3, -3] -pessimist -1.5 1.36015 [-1, -3, 1, -2, -2, -2, 1, -3, -2, -2] -pessimistic -1.5 1.43178 [-3, -1, -1, 1, -3, -3, -2, -2, -2, 1] -pessimistically -2.0 1.0 [-1, -1, -3, -4, -2, -1, -1, -3, -2, -2] -pessimists -1.0 1.26491 [-1, 1, -1, 0, -2, -2, -2, -3, -1, 1] -petrifaction -1.9 1.3 [-3, -2, -1, -4, -3, 0, -1, 0, -2, -3] -petrifactions -0.3 1.00499 [0, -1, 0, 0, 0, 0, 0, 0, -3, 1] -petrification -0.1 1.44568 [-1, 2, -1, -1, 0, 2, 2, -2, -1, -1] -petrifications -0.4 0.8 [0, 0, -2, 0, 0, 0, 0, 0, -2, 0] -petrified -2.5 0.92195 [-4, -3, -2, -1, -2, -3, -2, -2, -2, -4] -petrifies -2.3 1.00499 [-4, -3, -2, -1, -2, -2, -1, -2, -2, -4] -petrify -1.7 0.9 [-2, -3, -1, -2, -1, -1, -2, -3, 0, -2] -petrifying -2.6 0.8 [-2, -3, -3, -2, -4, -2, -3, -1, -3, -3] -pettier -0.3 1.41774 [-1, -1, -1, -1, 2, 0, 2, -2, 1, -2] -pettiest -1.3 1.95192 [1, -3, -3, -3, -2, -1, 2, -1, 1, -4] -petty -0.8 1.32665 [1, -3, -2, -1, -1, -1, -1, -1, 2, -1] -phobia -1.6 1.0198 [-2, -2, 1, -2, -3, -1, -1, -2, -2, -2] -phobias -2.0 1.0 [-3, -2, -2, -3, -3, 0, -1, -2, -1, -3] -phobic -1.2 1.16619 [-2, -2, 1, -1, -2, -1, 1, -2, -2, -2] -phobics -1.3 0.64031 [-1, -1, -1, -2, -2, -1, 0, -2, -2, -1] -picturesque 1.6 1.11355 [4, 1, 1, 2, 1, 2, 1, 0, 3, 1] -pileup -1.1 1.13578 [-2, 1, 0, -1, 0, -1, -3, -2, -2, -1] -pique -1.1 1.13578 [-2, -2, -2, 0, 0, -1, 1, -1, -1, -3] -piqued 0.1 1.04403 [0, -2, 0, 1, 1, 1, -1, 1, -1, 1] -piss -1.7 0.9 [-2, -1, -1, -2, -1, -3, -3, 0, -2, -2] -pissant -1.5 1.5 [-1, -3, -3, 1, -3, -1, -1, -2, 1, -3] -pissants -2.5 0.80623 [-4, -3, -3, -2, -3, -1, -2, -3, -2, -2] -pissed -3.2 0.6 [-3, -3, -4, -3, -2, -4, -4, -3, -3, -3] -pisser -2.0 1.09545 [-2, -4, -1, -3, -2, -3, -1, -2, -2, 0] -pissers -1.4 2.00998 [-1, -1, -4, -2, -3, 4, -2, -1, -2, -2] -pisses -1.4 0.8 [-2, -2, -1, -3, -1, -1, -1, -2, -1, 0] -pissing -1.7 1.26886 [0, 0, -2, -2, -3, 0, -3, -1, -3, -3] -pissoir -0.8 1.4 [-2, 0, 0, -2, -1, -3, 0, -2, 0, 2] -piteous -1.2 1.46969 [-2, -1, -2, -2, -2, -1, 3, -1, -2, -2] -pitiable -1.1 1.22066 [-1, 0, -1, -1, 1, -2, -4, -1, -1, -1] -pitiableness -1.1 1.64012 [-2, -1, -1, -2, -4, 2, 1, 0, -2, -2] -pitiably -1.1 0.9434 [-1, 0, 0, -2, 0, -2, -3, -1, -1, -1] -pitied -1.3 1.1 [-2, -1, -3, -1, 1, 0, -2, -2, -1, -2] -pitier -1.2 1.32665 [-3, -1, -2, -3, -1, -1, 1, 1, -2, -1] -pitiers -1.3 0.9 [0, -1, -2, -2, -1, -1, -1, -3, -2, 0] -pities -1.2 1.249 [-2, -1, -2, -3, -1, -1, 1, 1, -2, -2] -pitiful -2.2 0.9798 [-3, -2, -1, -3, -2, -2, -3, -3, -3, 0] -pitifuller -1.8 1.07703 [-1, -1, -2, -3, -4, 0, -2, -2, -1, -2] -pitifullest -1.1 2.11896 [-2, 1, -1, -4, -4, -1, -3, -1, 2, 2] -pitifully -1.2 1.249 [-2, -1, -3, -2, -1, -1, -2, -1, 2, -1] -pitifulness -1.2 1.77764 [-3, -2, -1, -3, -2, -1, 3, 1, -2, -2] -pitiless -1.8 0.87178 [-2, 0, -2, -2, -2, -3, -1, -3, -1, -2] -pitilessly -2.1 0.7 [-2, -2, -1, -3, -3, -1, -3, -2, -2, -2] -pitilessness -0.5 1.62788 [1, 3, 1, -3, -2, -1, -1, -1, -1, -1] -pity -1.2 0.4 [-2, -2, -1, -1, -1, -1, -1, -1, -1, -1] -pitying -1.4 0.91652 [-1, -3, -1, -3, -2, -1, 0, -1, -1, -1] -pityingly -1.0 1.26491 [-2, -2, -1, -2, -2, 0, 0, -1, 2, -2] -pityriasis -0.8 0.87178 [-2, 0, 0, 0, -1, 0, -2, -1, -2, 0] -play 1.4 1.0198 [2, 0, 1, 1, 1, 2, 1, 4, 1, 1] -played 1.4 1.42829 [2, 1, 1, 1, 4, 0, 1, 0, 4, 0] -playful 1.9 0.83066 [4, 2, 2, 2, 1, 1, 1, 2, 2, 2] -playfully 1.6 0.4899 [2, 1, 1, 2, 1, 2, 2, 2, 1, 2] -playfulness 1.2 0.87178 [2, 1, 2, -1, 1, 2, 1, 2, 1, 1] -playing 0.8 0.87178 [0, 2, 2, 1, 0, 0, 2, 0, 0, 1] -plays 1.0 1.09545 [0, 2, 0, 2, 0, 1, 0, 2, 3, 0] -pleasant 2.3 0.64031 [2, 3, 3, 3, 2, 1, 2, 2, 3, 2] -pleasanter 1.5 0.67082 [2, 2, 2, 1, 0, 1, 1, 2, 2, 2] -pleasantest 2.6 0.8 [3, 3, 3, 1, 2, 4, 3, 2, 2, 3] -pleasantly 2.1 0.53852 [1, 2, 3, 2, 2, 2, 2, 2, 3, 2] -pleasantness 2.3 0.9 [3, 2, 3, 3, 3, 1, 1, 3, 1, 3] -pleasantnesses 2.3 0.78102 [3, 1, 2, 3, 1, 2, 3, 3, 2, 3] -pleasantries 1.3 0.45826 [1, 1, 1, 1, 1, 2, 1, 2, 2, 1] -pleasantry 2.0 0.7746 [2, 2, 1, 1, 4, 2, 2, 2, 2, 2] -please 1.3 0.78102 [2, 1, 2, 2, 2, 0, 2, 1, 0, 1] -pleased 1.9 0.53852 [2, 2, 2, 2, 1, 1, 2, 3, 2, 2] -pleaser 1.7 0.45826 [2, 2, 2, 2, 1, 1, 1, 2, 2, 2] -pleasers 1.0 1.0 [1, 1, 2, 0, 1, 3, 1, 1, -1, 1] -pleases 1.7 0.45826 [2, 1, 2, 2, 1, 1, 2, 2, 2, 2] -pleasing 2.4 0.91652 [2, 3, 2, 2, 2, 2, 4, 4, 1, 2] -pleasurability 1.9 0.83066 [1, 2, 2, 2, 2, 0, 2, 3, 3, 2] -pleasurable 2.4 0.4899 [2, 3, 3, 2, 3, 3, 2, 2, 2, 2] -pleasurableness 2.4 0.91652 [2, 3, 2, 1, 2, 3, 4, 3, 1, 3] -pleasurably 2.6 0.4899 [2, 2, 2, 3, 3, 3, 3, 2, 3, 3] -pleasure 2.7 0.9 [4, 4, 3, 2, 2, 3, 2, 1, 3, 3] -pleasured 2.3 0.64031 [3, 2, 3, 2, 3, 3, 1, 2, 2, 2] -pleasureless -1.6 0.8 [-1, -1, -1, -1, -2, -3, -3, -2, -1, -1] -pleasures 1.9 1.37477 [3, -2, 3, 2, 3, 2, 2, 2, 2, 2] -pleasuring 2.8 0.4 [3, 2, 3, 3, 3, 3, 3, 2, 3, 3] -poised 1.0 0.44721 [1, 1, 1, 1, 1, 1, 0, 1, 1, 2] -poison -2.5 0.92195 [-4, -3, -2, -4, -2, -2, -2, -3, -1, -2] -poisoned -2.2 0.9798 [-4, -1, -4, -1, -2, -2, -2, -2, -2, -2] -poisoner -2.7 0.78102 [-2, -3, -3, -4, -4, -2, -2, -2, -2, -3] -poisoners -3.1 0.83066 [-3, -4, -3, -4, -3, -4, -3, -3, -1, -3] -poisoning -2.8 1.249 [-4, -4, -2, 0, -2, -3, -4, -3, -2, -4] -poisonings -2.4 1.11355 [-2, 0, -2, -1, -4, -3, -3, -3, -3, -3] -poisonous -2.7 0.78102 [-3, -3, -4, -2, -1, -3, -3, -3, -3, -2] -poisonously -2.9 0.53852 [-3, -2, -3, -3, -2, -3, -3, -4, -3, -3] -poisons -2.7 0.9 [-3, -4, -3, -1, -2, -3, -3, -2, -2, -4] -poisonwood -1.0 0.89443 [0, -2, 0, 0, 0, -1, -2, -2, -2, -1] -pollute -2.3 0.64031 [-3, -2, -2, -2, -2, -3, -3, -1, -3, -2] -polluted -2.0 0.44721 [-2, -2, -1, -2, -2, -2, -2, -2, -3, -2] -polluter -1.8 0.6 [-2, -1, -2, -1, -2, -2, -3, -1, -2, -2] -polluters -2.0 0.44721 [-2, -2, -2, -2, -2, -3, -2, -1, -2, -2] -pollutes -2.2 0.87178 [-2, -1, -2, -1, -3, -1, -3, -3, -3, -3] -poor -2.1 1.13578 [-2, -2, -1, -4, -2, 0, -2, -4, -2, -2] -poorer -1.5 1.56525 [-2, -3, -2, -2, -2, -2, 3, -2, -1, -2] -poorest -2.5 0.80623 [-2, -3, -3, -1, -2, -3, -3, -4, -2, -2] -popular 1.8 0.74833 [2, 3, 1, 2, 2, 1, 3, 1, 2, 1] -popularise 1.6 0.66332 [1, 1, 2, 2, 3, 2, 1, 2, 1, 1] -popularised 1.1 0.9434 [1, 1, 0, 0, 3, 2, 1, 2, 1, 0] -popularises 0.5 0.67082 [1, 0, 0, 0, 0, 1, 1, 2, 0, 0] -popularising 1.2 0.6 [1, 0, 2, 2, 1, 1, 1, 2, 1, 1] -popularities 1.6 0.8 [2, 1, 1, 2, 0, 2, 1, 2, 3, 2] -popularity 2.1 1.04403 [2, 1, 1, 1, 3, 2, 3, 4, 3, 1] -popularization 1.3 0.78102 [1, 2, 1, 2, 1, 0, 1, 1, 3, 1] -popularizations 0.9 0.7 [1, 1, 1, 0, 2, 0, 1, 1, 2, 0] -popularize 1.3 0.64031 [2, 2, 0, 2, 1, 1, 1, 1, 2, 1] -popularized 1.9 0.83066 [3, 2, 3, 2, 1, 0, 2, 2, 2, 2] -popularizer 1.8 0.74833 [2, 2, 3, 2, 1, 0, 2, 2, 2, 2] -popularizers 1.0 0.89443 [0, 0, 1, 2, 1, 1, 1, 1, 3, 0] -popularizes 1.4 0.8 [2, 1, 3, 2, 1, 0, 1, 2, 1, 1] -popularizing 1.5 0.67082 [2, 2, 1, 1, 1, 2, 2, 0, 2, 2] -popularly 1.8 0.74833 [1, 3, 2, 1, 3, 1, 2, 1, 2, 2] -positive 2.6 0.91652 [2, 1, 2, 2, 3, 3, 4, 3, 4, 2] -positively 2.4 0.66332 [2, 2, 3, 3, 4, 2, 2, 2, 2, 2] -positiveness 2.3 1.18743 [2, 1, 4, 3, 4, 2, 0, 3, 2, 2] -positivenesses 2.2 0.74833 [3, 3, 2, 2, 2, 2, 1, 3, 1, 3] -positiver 2.3 0.78102 [1, 4, 2, 2, 2, 3, 2, 2, 2, 3] -positives 2.4 0.4899 [3, 3, 2, 2, 2, 2, 3, 2, 3, 2] -positivest 2.9 1.04403 [4, 3, 2, 1, 3, 4, 4, 4, 2, 2] -positivism 1.6 1.35647 [3, 0, 2, 1, 2, 0, 3, 4, 1, 0] -positivisms 1.8 0.9798 [4, 1, 2, 2, 2, 0, 2, 2, 1, 2] -positivist 2.0 1.0 [3, 1, 2, 2, 2, 0, 2, 4, 2, 2] -positivistic 1.9 0.83066 [2, 3, 1, 3, 1, 1, 3, 2, 1, 2] -positivists 1.7 1.1 [1, 2, 1, 4, 2, 1, 3, 0, 1, 2] -positivities 2.6 0.91652 [2, 2, 4, 3, 2, 3, 4, 3, 1, 2] -positivity 2.3 0.9 [2, 2, 2, 3, 3, 3, 3, 0, 3, 2] -possessive -0.9 1.22066 [-1, -1, -2, -2, 0, -1, 0, -2, 2, -2] -postpone -0.9 0.83066 [1, -1, -2, -1, -1, -2, -1, -1, 0, -1] -postponed -0.8 0.4 [-1, -1, 0, 0, -1, -1, -1, -1, -1, -1] -postpones -1.1 0.83066 [-1, -1, -1, 0, -1, 0, -2, -1, -3, -1] -postponing -0.5 0.5 [0, -1, 0, -1, 0, 0, 0, -1, -1, -1] -poverty -2.3 1.00499 [-2, -4, -2, -4, -3, -1, -2, -2, -1, -2] -powerful 1.8 0.9798 [4, 0, 2, 1, 2, 2, 2, 2, 1, 2] -powerless -2.2 0.6 [-2, -3, -2, -2, -3, -2, -3, -2, -1, -2] -praise 2.6 0.8 [2, 4, 3, 3, 2, 1, 3, 3, 2, 3] -praised 2.2 0.6 [3, 2, 2, 2, 2, 3, 1, 3, 2, 2] -praiser 2.0 0.89443 [3, 1, 3, 1, 1, 2, 1, 3, 2, 3] -praisers 2.0 0.63246 [2, 2, 1, 3, 3, 2, 1, 2, 2, 2] -praises 2.4 0.4899 [3, 2, 2, 3, 2, 3, 2, 3, 2, 2] -praiseworthily 1.9 0.7 [2, 1, 1, 3, 2, 2, 2, 3, 1, 2] -praiseworthiness 2.4 0.8 [1, 3, 2, 4, 2, 2, 3, 2, 3, 2] -praiseworthy 2.6 0.4899 [3, 3, 3, 3, 2, 2, 3, 2, 3, 2] -praising 2.5 0.67082 [2, 3, 3, 2, 2, 3, 3, 3, 1, 3] -pray 1.3 1.18743 [0, 3, 2, 1, 1, 1, -1, 3, 1, 2] -praying 1.5 0.92195 [2, 2, 0, 3, 1, 3, 1, 1, 1, 1] -prays 1.4 1.0198 [2, 0, 2, 0, 1, 1, 3, 1, 3, 1] -prblm -1.6 0.8 [-1, -1, -1, -1, -1, -3, -3, -2, -2, -1] -prblms -2.3 1.00499 [-2, -2, -2, -2, -4, -4, -3, -1, -2, -1] -precious 2.7 0.64031 [3, 3, 3, 3, 3, 1, 3, 3, 2, 3] -preciously 2.2 0.74833 [3, 3, 3, 2, 2, 1, 1, 3, 2, 2] -preciousness 1.9 0.83066 [2, 4, 2, 2, 2, 1, 1, 1, 2, 2] -prejudice -2.3 0.78102 [-2, -1, -2, -2, -3, -2, -2, -3, -4, -2] -prejudiced -1.9 0.53852 [-2, -3, -1, -2, -1, -2, -2, -2, -2, -2] -prejudices -1.8 0.74833 [-2, -3, -1, -2, -1, -3, -2, -1, -1, -2] -prejudicial -2.6 0.8 [-3, -3, -2, -2, -3, -4, -2, -1, -3, -3] -prejudicially -1.5 1.74642 [-3, -1, -1, -3, -3, -1, -3, 1, 2, -3] -prejudicialness -2.4 1.42829 [-2, -3, 1, -3, -2, -4, -4, -3, -1, -3] -prejudicing -1.8 1.07703 [-2, -2, -2, -3, -2, -1, 1, -3, -2, -2] -prepared 0.9 0.3 [1, 1, 1, 1, 1, 0, 1, 1, 1, 1] -pressure -1.2 0.6 [-1, -1, -1, -1, -2, -2, -1, -2, 0, -1] -pressured -0.9 1.04403 [-2, -1, -2, -1, 2, -1, -1, -1, -1, -1] -pressureless 1.0 1.26491 [2, 0, 1, -1, -1, 2, 1, 2, 1, 3] -pressures -1.3 0.64031 [-2, -1, -1, -1, -3, -1, -1, -1, -1, -1] -pressuring -1.4 0.91652 [-3, -1, -1, -1, -1, -1, -1, -3, -2, 0] -pressurise -0.6 1.0198 [0, -2, 0, 1, 0, -2, 0, -2, 0, -1] -pressurised -0.4 0.66332 [0, 0, 0, -1, 0, -1, 0, -2, 0, 0] -pressurises -0.8 0.6 [-1, -1, -1, 0, -1, -1, 0, -1, 0, -2] -pressurising -0.6 1.28062 [-1, 0, 0, 2, -1, -1, -3, 0, -2, 0] -pressurizations -0.3 1.00499 [0, 0, 1, -2, 0, 0, -1, -2, 0, 1] -pressurize -0.7 1.34536 [0, -2, -2, 0, 0, -1, -3, 2, -1, 0] -pressurized 0.1 0.83066 [0, 0, 0, 2, 0, 0, -1, -1, 0, 1] -pressurizer 0.1 0.83066 [0, 0, 0, 1, 0, 0, -1, -1, 0, 2] -pressurizers -0.7 0.9 [-1, 0, -2, -1, -2, -1, 0, 0, 1, -1] -pressurizes -0.2 0.87178 [0, 0, -1, 1, 0, 0, -1, -2, 0, 1] -pressurizing -0.2 0.9798 [1, 0, -1, -1, -1, 0, -1, 2, 0, -1] -pretend -0.4 0.91652 [0, 1, -1, -1, -2, 0, -1, -1, 1, 0] -pretending 0.4 1.49666 [2, 0, -1, -1, 0, 3, -2, 1, 0, 2] -pretends -0.4 0.66332 [0, -1, 0, -1, 1, 0, 0, -1, -1, -1] -prettied 1.6 0.66332 [2, 1, 1, 1, 1, 2, 3, 2, 1, 2] -prettier 2.1 0.53852 [2, 2, 2, 2, 2, 2, 3, 1, 2, 3] -pretties 1.7 0.78102 [2, 1, 1, 2, 1, 2, 3, 1, 1, 3] -prettiest 2.7 0.78102 [4, 3, 4, 2, 2, 2, 3, 2, 2, 3] -pretty 2.2 0.6 [3, 2, 2, 2, 3, 1, 2, 2, 2, 3] -prevent 0.1 1.22066 [-2, 1, 0, 0, -1, 2, -1, 2, 0, 0] -prevented 0.1 0.7 [0, -1, 0, 2, 0, 0, 0, 0, 0, 0] -preventing -0.1 1.51327 [-2, 0, -2, 3, 0, 0, -1, -1, 2, 0] -prevents 0.3 1.34536 [0, -2, 0, 0, 0, 2, 0, -1, 3, 1] -prick -1.4 1.42829 [-2, -2, -2, -1, 1, -1, -4, -2, 1, -2] -pricked -0.6 1.0198 [-1, -1, -2, 1, 0, -1, -2, -1, 1, 0] -pricker -0.3 0.9 [-1, -1, 0, 2, 0, -1, -1, -1, 0, 0] -prickers -0.2 0.87178 [1, -1, -1, 0, 1, -1, 0, 1, -1, -1] -pricket -0.5 0.67082 [0, -1, -1, -2, 0, 0, 0, 0, -1, 0] -prickets 0.3 0.64031 [0, 2, 0, 0, 0, 1, 0, 0, 0, 0] -pricking -0.9 1.22066 [-2, -1, -2, 2, -2, -2, -1, 0, -1, 0] -prickle -1.0 0.44721 [-1, -1, -1, -1, -1, -1, -2, 0, -1, -1] -prickled -0.2 1.53623 [-1, -1, 3, -1, -2, 2, 0, 0, 0, -2] -prickles -0.8 0.74833 [0, -1, -1, -1, -2, -1, 0, 0, 0, -2] -pricklier -1.6 0.8 [-1, -2, -2, -2, -2, -1, -2, -1, 0, -3] -prickliest -1.4 1.35647 [-4, -2, -1, 0, -3, -1, -1, 1, -2, -1] -prickliness -0.6 0.91652 [-2, -1, -1, -1, -1, 1, -1, 1, 0, -1] -prickling -0.8 0.6 [-2, -1, 0, -1, 0, 0, -1, -1, -1, -1] -prickly -0.9 1.04403 [-2, -1, -1, -2, -1, 1, -2, -1, 1, -1] -pricks -0.9 1.04403 [-2, 0, -1, -3, -1, 1, 0, -1, -1, -1] -pricky -0.6 1.2 [-2, 1, -1, -2, -1, 2, 0, -1, -1, -1] -pride 1.4 1.11355 [0, 2, 2, 2, 3, 1, -1, 2, 2, 1] -prison -2.3 0.64031 [-3, -3, -2, -2, -1, -2, -3, -3, -2, -2] -prisoner -2.5 1.0247 [-3, -1, -4, -4, -3, -2, -3, -2, -1, -2] -prisoners -2.3 0.78102 [-3, -2, -3, -3, -1, -3, -2, -1, -2, -3] -privilege 1.5 0.80623 [2, 1, 0, 1, 3, 1, 2, 2, 2, 1] -privileged 1.9 0.9434 [2, 3, 3, 2, 3, 1, 1, 2, 0, 2] -privileges 1.6 1.2 [2, 1, 3, 1, 2, 2, 0, 0, 4, 1] -privileging 0.7 1.1 [1, 1, 2, 2, -1, 2, 1, 0, 0, -1] -prize 2.3 1.1 [2, 2, 0, 4, 4, 3, 2, 2, 2, 2] -prized 2.4 0.8 [3, 3, 3, 2, 3, 2, 1, 3, 1, 3] -prizefight -0.1 1.13578 [-2, 2, 0, 0, 0, -2, 0, 1, 0, 0] -prizefighter 1.0 1.0 [0, 2, 0, 0, 0, 2, 0, 2, 2, 2] -prizefighters -0.1 1.04403 [0, 0, -3, 0, 0, 0, 0, 1, 1, 0] -prizefighting 0.4 0.91652 [0, 0, 0, 1, 0, 3, 0, 0, 0, 0] -prizefights 0.3 0.78102 [1, 2, 0, 0, -1, 0, 0, 1, 0, 0] -prizer 1.0 1.0 [0, 3, 0, 0, 2, 1, 2, 1, 0, 1] -prizers 0.8 0.9798 [2, 0, 0, 1, 3, 1, 0, 1, 0, 0] -prizes 2.0 1.09545 [3, 3, 2, 0, 2, 1, 2, 4, 1, 2] -prizewinner 2.3 1.00499 [3, 0, 3, 3, 2, 2, 2, 4, 2, 2] -prizewinners 2.4 1.11355 [4, 2, 2, 2, 0, 4, 2, 3, 3, 2] -prizewinning 3.0 0.7746 [3, 3, 3, 3, 3, 4, 3, 1, 3, 4] -proactive 1.8 0.87178 [2, 3, 3, 1, 1, 1, 1, 3, 1, 2] -problem -1.7 0.64031 [-2, -2, -1, -1, -1, -3, -1, -2, -2, -2] -problematic -1.9 0.53852 [-1, -2, -2, -2, -2, -3, -2, -1, -2, -2] -problematical -1.8 0.6 [-3, -1, -1, -2, -2, -2, -2, -2, -1, -2] -problematically -2.0 1.0 [-2, -1, -3, -1, -1, -2, -4, -3, -1, -2] -problematics -1.3 1.1 [0, -1, -1, 0, -2, -1, -4, -1, -2, -1] -problems -1.7 0.78102 [-2, -1, -1, -3, -2, -1, -3, -1, -1, -2] -profit 1.9 0.7 [2, 3, 2, 1, 2, 1, 3, 1, 2, 2] -profitabilities 1.1 0.7 [1, 1, 3, 1, 1, 1, 1, 0, 1, 1] -profitability 1.1 1.44568 [1, 1, -2, 2, 0, 3, 1, 3, 2, 0] -profitable 1.9 0.9434 [2, 3, 0, 3, 1, 2, 1, 3, 2, 2] -profitableness 2.4 1.11355 [1, 4, 2, 4, 2, 2, 4, 2, 1, 2] -profitably 1.6 0.91652 [1, 2, 0, 3, 1, 3, 1, 1, 2, 2] -profited 1.3 1.00499 [2, 2, 2, 1, 0, 0, 1, 3, 0, 2] -profiteer 0.8 1.6 [2, -2, -1, 3, -1, 2, 1, 2, 0, 2] -profiteered -0.5 1.9105 [0, 0, 2, -2, -3, -2, 3, 0, -3, 0] -profiteering -0.6 2.05913 [-1, 2, -2, -4, -2, 2, 1, -2, 2, -2] -profiteers 0.5 1.5 [-2, 1, -1, -1, 1, -1, 2, 2, 2, 2] -profiter 0.7 1.55242 [2, 2, 2, 1, -1, 1, -1, 3, 0, -2] -profiterole 0.4 0.66332 [0, 0, 0, 0, 0, 1, 0, 1, 2, 0] -profiteroles 0.5 0.92195 [0, 0, -1, 2, 2, 0, 0, 1, 0, 1] -profiting 1.6 0.91652 [1, 0, 3, 2, 1, 2, 3, 1, 1, 2] -profitless -1.5 0.92195 [-2, -2, -3, -1, -1, -1, 0, -1, -1, -3] -profits 1.9 1.04403 [2, 2, 1, 0, 2, 1, 2, 4, 3, 2] -profitwise 0.9 0.83066 [1, 2, 0, 0, 1, 2, 2, 0, 1, 0] -progress 1.8 0.74833 [3, 2, 1, 2, 3, 1, 1, 2, 2, 1] -prominent 1.3 0.45826 [2, 1, 1, 2, 1, 1, 1, 2, 1, 1] -promiscuities -0.8 1.32665 [-1, 0, -2, -2, -1, 2, -3, -1, 0, 0] -promiscuity -1.8 1.07703 [-1, -2, -4, -2, -3, -1, 0, -2, -1, -2] -promiscuous -0.3 1.34536 [2, -3, -1, -1, 0, -1, 0, -1, 1, 1] -promiscuously -1.5 1.28452 [-2, -1, -3, 2, -2, -2, -1, -2, -2, -2] -promiscuousness -0.9 1.37477 [-3, -1, 1, -2, -2, 1, 1, -1, -2, -1] -promise 1.3 0.64031 [1, 0, 1, 1, 2, 2, 1, 1, 2, 2] -promised 1.5 0.92195 [2, 1, 1, 0, 0, 2, 2, 3, 2, 2] -promisee 0.8 0.87178 [2, 1, 0, 0, 0, 2, 0, 2, 1, 0] -promisees 1.1 0.9434 [2, 0, 1, 0, 0, 0, 2, 2, 2, 2] -promiser 1.3 0.9 [2, 1, 1, 0, 0, 2, 2, 3, 1, 1] -promisers 1.6 0.4899 [2, 1, 2, 1, 2, 1, 2, 1, 2, 2] -promises 1.6 0.8 [2, 1, 1, 0, 2, 1, 3, 2, 2, 2] -promising 1.7 0.45826 [1, 2, 2, 1, 2, 2, 1, 2, 2, 2] -promisingly 1.2 0.6 [2, 2, 1, 1, 1, 2, 1, 0, 1, 1] -promisor 1.0 0.63246 [2, 2, 0, 1, 1, 1, 0, 1, 1, 1] -promisors 0.4 0.8 [0, 0, 0, 2, 0, 2, 0, 0, 0, 0] -promissory 0.9 1.13578 [2, 0, 0, 3, 0, 2, 2, 0, 0, 0] -promote 1.6 0.8 [2, 1, 2, 3, 0, 1, 2, 2, 1, 2] -promoted 1.8 0.74833 [2, 2, 1, 1, 1, 2, 2, 1, 3, 3] -promotes 1.4 0.91652 [1, 2, 0, 0, 1, 2, 2, 1, 3, 2] -promoting 1.5 0.67082 [1, 2, 2, 1, 2, 1, 2, 0, 2, 2] -propaganda -1.0 1.54919 [-2, -3, -2, -3, -2, 1, -1, 1, 0, 1] -prosecute -1.7 1.00499 [-2, -2, -2, -1, -1, -2, 0, -1, -4, -2] -prosecuted -1.6 1.95959 [-2, -2, -2, -3, -3, -3, -4, 2, 2, -1] -prosecutes -1.8 1.53623 [-2, -2, -2, -3, -2, -2, -4, 1, 1, -3] -prosecution -2.2 1.07703 [-4, -1, -2, -2, -3, -2, -1, -4, -1, -2] -prospect 1.2 0.87178 [1, 3, 1, 0, 2, 2, 1, 0, 1, 1] -prospects 1.2 0.6 [2, 1, 1, 1, 1, 0, 1, 2, 2, 1] -prosperous 2.1 1.86815 [-3, 3, 3, 2, 4, 2, 3, 3, 3, 1] -protect 1.6 0.8 [1, 3, 1, 1, 1, 1, 3, 2, 1, 2] -protected 1.9 0.7 [1, 1, 2, 3, 2, 2, 2, 1, 3, 2] -protects 1.3 0.78102 [2, 2, 0, 2, 1, 1, 0, 2, 2, 1] -protest -1.0 1.34164 [-2, -1, -1, -2, -1, -2, 1, -2, 2, -2] -protested -0.5 1.62788 [-2, -3, -1, -1, 0, 2, 2, -2, 1, -1] -protesters -0.9 0.7 [0, 0, 0, -1, -2, -2, -1, -1, -1, -1] -protesting -1.8 0.74833 [-2, -2, -1, -2, -1, -1, -2, -1, -3, -3] -protests -0.9 1.57797 [-2, -2, 2, 0, -1, -2, -2, -2, 2, -2] -proud 2.1 0.3 [2, 3, 2, 2, 2, 2, 2, 2, 2, 2] -prouder 2.2 1.16619 [2, 3, 3, 4, 0, 1, 1, 3, 2, 3] -proudest 2.6 0.66332 [4, 2, 2, 2, 2, 3, 2, 3, 3, 3] -proudful 1.9 1.51327 [3, 3, 0, 1, -1, 1, 4, 3, 2, 3] -proudhearted 1.4 0.91652 [2, -1, 1, 2, 2, 1, 2, 2, 2, 1] -proudly 2.6 0.4899 [2, 2, 3, 3, 2, 3, 3, 3, 2, 3] -provoke -1.7 0.64031 [-2, -2, -1, -1, -1, -2, -2, -1, -3, -2] -provoked -1.1 0.83066 [-1, -1, 0, -2, -2, -2, -2, 0, 0, -1] -provokes -1.3 0.78102 [-2, -2, -1, -2, -1, -2, -2, 0, 0, -1] -provoking -0.8 1.249 [-2, -2, -1, -2, 1, -1, 1, 1, -1, -2] -pseudoscience -1.2 1.32665 [-1, -1, -3, -4, 0, 0, -2, 0, 0, -1] -puke -2.4 1.0198 [-1, -3, -3, -2, -4, -4, -2, -1, -2, -2] -puked -1.8 0.6 [-1, -2, -2, -3, -1, -1, -2, -2, -2, -2] -pukes -1.9 0.7 [-1, -2, -3, -3, -1, -1, -2, -2, -2, -2] -puking -1.8 1.46969 [0, -2, -4, -3, -2, -3, 1, -1, -1, -3] -pukka 2.8 0.4 [3, 2, 3, 3, 3, 2, 3, 3, 3, 3] -punish -2.4 0.91652 [-1, -3, -3, -4, -3, -1, -2, -2, -2, -3] -punishabilities -1.7 0.78102 [0, -2, -3, -2, -1, -2, -2, -1, -2, -2] -punishability -1.6 1.49666 [-2, -2, -1, -1, -2, -2, -3, 2, -4, -1] -punishable -1.9 0.7 [-3, -1, -1, -2, -2, -1, -3, -2, -2, -2] -punished -2.0 0.44721 [-2, -2, -1, -2, -2, -2, -2, -2, -3, -2] -punisher -1.9 0.53852 [-3, -1, -2, -2, -2, -2, -2, -1, -2, -2] -punishers -2.6 0.8 [-3, -3, -3, -3, -2, -2, -4, -2, -1, -3] -punishes -2.1 0.7 [-3, -2, -3, -2, -1, -2, -2, -3, -1, -2] -punishing -2.6 0.8 [-2, -3, -3, -3, -4, -1, -3, -2, -2, -3] -punishment -2.2 0.6 [-2, -1, -2, -2, -3, -3, -2, -2, -2, -3] -punishments -1.8 0.6 [-2, -2, -2, -1, -1, -2, -2, -3, -1, -2] -punitive -2.3 0.78102 [-4, -2, -3, -1, -2, -2, -2, -2, -3, -2] -pushy -1.1 0.83066 [-2, -2, -1, -1, -1, 1, -1, -2, -1, -1] -puzzled -0.7 0.45826 [0, 0, -1, -1, 0, -1, -1, -1, -1, -1] -quaking -1.5 0.67082 [-1, -2, -2, -2, -1, 0, -2, -1, -2, -2] -questionable -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] -questioned -0.4 1.0198 [-2, 0, 0, -1, -1, 2, 0, 0, -1, -1] -questioning -0.4 0.66332 [0, -1, -1, 0, 0, 0, -2, 0, 0, 0] -racism -3.1 0.9434 [-4, -4, -4, -2, -3, -4, -2, -2, -2, -4] -racist -3.0 0.89443 [-1, -3, -3, -4, -3, -4, -4, -2, -3, -3] -racists -2.5 0.92195 [-3, 0, -3, -2, -2, -3, -3, -3, -3, -3] -radian 0.4 0.66332 [0, 0, 0, 0, 0, 0, 1, 2, 0, 1] -radiance 1.4 1.11355 [3, 1, 2, 3, 1, 1, -1, 1, 2, 1] -radiances 1.1 0.53852 [1, 2, 2, 1, 1, 1, 0, 1, 1, 1] -radiancies 0.8 1.16619 [-1, 0, 3, 1, 1, 1, 1, 2, -1, 1] -radiancy 1.4 0.66332 [2, 1, 1, 3, 1, 1, 1, 1, 2, 1] -radians 0.2 0.6 [0, 2, 0, 0, 0, 0, 0, 0, 0, 0] -radiant 2.1 0.83066 [4, 2, 2, 2, 2, 1, 1, 3, 2, 2] -radiantly 1.3 0.78102 [3, 2, 1, 1, 1, 1, 1, 0, 1, 2] -radiants 1.2 0.6 [2, 1, 0, 2, 1, 1, 1, 2, 1, 1] -rage -2.6 0.8 [-3, -2, -2, -3, -3, -4, -1, -2, -3, -3] -raged -2.0 0.63246 [-2, -1, -1, -3, -3, -2, -2, -2, -2, -2] -ragee -0.4 1.42829 [-2, -1, 0, 3, 0, -2, -2, 0, 0, 0] -rageful -2.8 0.6 [-3, -3, -3, -3, -2, -4, -2, -3, -2, -3] -rages -2.1 0.7 [-3, -1, -1, -3, -3, -2, -2, -2, -2, -2] -raging -2.4 1.0198 [-1, -3, -3, -1, -3, -3, -1, -4, -2, -3] -rainy -0.3 0.64031 [-1, 0, 1, 0, 0, 0, -1, 0, -1, -1] -rancid -2.5 1.11803 [-3, -3, -3, -2, -3, 0, -3, -1, -4, -3] -rancidity -2.6 0.8 [-4, -3, -3, -2, -2, -2, -2, -2, -2, -4] -rancidly -2.5 1.20416 [-2, -1, -4, -3, -4, -1, -2, -3, -4, -1] -rancidness -2.6 0.91652 [-3, -4, -2, -3, -4, -2, -3, -1, -2, -2] -rancidnesses -1.6 0.4899 [-2, -1, -2, -1, -1, -2, -2, -2, -1, -2] -rant -1.4 0.66332 [-1, -2, -2, -1, -2, -2, -2, -1, 0, -1] -ranter -1.2 1.16619 [-1, -2, -2, -2, -1, -1, -1, -2, 2, -2] -ranters -1.2 0.87178 [-1, -1, -1, 0, -1, -1, -3, -2, 0, -2] -rants -1.3 0.45826 [-1, -1, -1, -2, -1, -1, -1, -2, -2, -1] -rape -3.7 0.64031 [-4, -2, -4, -4, -4, -4, -4, -4, -3, -4] -raped -3.6 0.4899 [-3, -3, -4, -4, -3, -4, -4, -4, -3, -4] -raper -3.4 0.66332 [-3, -3, -4, -4, -3, -3, -4, -4, -2, -4] -rapers -3.6 0.66332 [-2, -4, -4, -3, -4, -3, -4, -4, -4, -4] -rapes -3.5 0.67082 [-4, -3, -4, -4, -3, -4, -4, -3, -2, -4] -rapeseeds -0.5 1.20416 [0, 0, 0, 0, 0, -4, 0, 0, -1, 0] -raping -3.8 0.4 [-3, -4, -4, -4, -4, -4, -4, -4, -3, -4] -rapist -3.9 0.3 [-4, -4, -4, -4, -4, -4, -3, -4, -4, -4] -rapists -3.3 0.64031 [-3, -3, -4, -3, -4, -3, -4, -2, -4, -3] -rapture 0.6 2.2891 [-2, 2, -2, 3, 3, 4, -1, -1, 2, -2] -raptured 0.9 1.97231 [0, -2, 0, 2, 4, -1, 4, -1, 1, 2] -raptures 0.7 2.05183 [0, -2, 0, 2, 4, -2, 4, -1, 1, 1] -rapturous 1.7 1.95192 [3, 4, 0, 3, 2, 2, 4, -2, -1, 2] -rash -1.7 0.78102 [-2, -1, -1, -3, -2, -2, -1, -1, -1, -3] -ratified 0.6 0.4899 [1, 0, 0, 1, 1, 0, 1, 1, 0, 1] -reach 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] -reached 0.4 0.4899 [1, 0, 0, 0, 1, 1, 0, 1, 0, 0] -reaches 0.2 0.4 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0] -reaching 0.8 0.6 [1, 0, 2, 0, 1, 0, 1, 1, 1, 1] -readiness 1.0 0.63246 [1, 1, 1, 1, 0, 1, 2, 1, 2, 0] -ready 1.5 1.0247 [2, 1, 1, 0, 2, 2, 1, 1, 1, 4] -reassurance 1.5 0.5 [1, 1, 1, 1, 2, 1, 2, 2, 2, 2] -reassurances 1.4 0.8 [0, 1, 1, 2, 1, 1, 1, 2, 3, 2] -reassure 1.4 0.4899 [2, 2, 1, 1, 2, 1, 2, 1, 1, 1] -reassured 1.7 0.45826 [2, 1, 1, 1, 2, 2, 2, 2, 2, 2] -reassures 1.5 0.92195 [2, 1, 1, 2, 2, 2, -1, 2, 2, 2] -reassuring 1.7 1.48661 [3, 3, 2, -2, 1, 3, 3, 2, 1, 1] -reassuringly 1.8 0.87178 [1, 3, 2, 1, 2, 3, 3, 1, 1, 1] -rebel -0.6 1.49666 [-2, -1, -1, 0, -2, -1, 2, 1, 1, -3] -rebeldom -1.5 1.0247 [-2, -2, -1, -3, -2, -2, -1, 1, -1, -2] -rebelled -1.0 1.26491 [-2, -2, 0, -2, 0, -2, -2, -1, -1, 2] -rebelling -1.1 1.51327 [-3, -1, -2, -1, -2, -1, -1, -3, 2, 1] -rebellion -0.5 1.80278 [-2, -2, -1, -1, 3, -1, 1, -3, 2, -1] -rebellions -1.1 1.57797 [-2, -4, -3, 0, 0, -1, 1, -2, -1, 1] -rebellious -1.2 1.249 [-2, -1, -3, -1, -2, -2, 1, -1, 1, -2] -rebelliously -1.8 0.87178 [-3, 0, -2, -2, -1, -2, -3, -1, -2, -2] -rebelliousness -1.2 1.16619 [0, -3, -1, -2, 1, -1, -2, 0, -2, -2] -rebels -0.8 1.07703 [-1, 0, 0, -2, 0, -3, 0, 0, 0, -2] -recession -1.8 1.07703 [-3, -1, -4, -2, -1, -1, -1, -1, -3, -1] -reckless -1.7 0.64031 [-2, -1, -1, -3, -1, -2, -1, -2, -2, -2] -recommend 1.5 0.67082 [1, 1, 1, 1, 2, 3, 2, 2, 1, 1] -recommended 0.8 1.07703 [1, 1, 0, -2, 1, 2, 1, 2, 1, 1] -recommends 0.9 0.9434 [1, 1, 2, 0, 0, 2, 1, -1, 2, 1] -redeemed 1.3 0.9 [2, 1, 2, 2, 1, -1, 2, 1, 2, 1] -reek -2.4 0.66332 [-3, -3, -2, -3, -3, -2, -2, -2, -1, -3] -reeked -2.0 1.09545 [-4, -3, -2, -3, -1, -2, 0, -1, -2, -2] -reeker -1.7 1.1 [0, -2, -1, 0, -3, -3, -2, -1, -3, -2] -reekers -1.5 1.0247 [-3, 0, 0, 0, -2, -2, -2, -2, -2, -2] -reeking -2.0 1.48324 [2, -2, -2, -3, -3, -3, -1, -3, -3, -2] -refuse -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] -refused -1.2 0.74833 [0, -1, -1, -1, -1, -1, -2, -1, -3, -1] -refusing -1.7 0.64031 [-1, -1, -1, -2, -2, -2, -3, -1, -2, -2] -regret -1.8 0.6 [-2, -2, -2, -2, -1, -3, -1, -1, -2, -2] -regretful -1.9 0.83066 [-1, -2, -1, -2, -1, -2, -1, -3, -3, -3] -regretfully -1.9 0.83066 [-1, -1, -1, -3, -2, -3, -1, -3, -2, -2] -regretfulness -1.6 0.66332 [-1, -3, -1, -1, -1, -2, -1, -2, -2, -2] -regrets -1.5 0.5 [-2, -2, -2, -1, -2, -1, -1, -2, -1, -1] -regrettable -2.3 0.78102 [-3, -1, -2, -1, -3, -2, -3, -3, -2, -3] -regrettably -2.0 0.63246 [-2, -3, -1, -3, -2, -1, -2, -2, -2, -2] -regretted -1.6 0.4899 [-2, -1, -2, -2, -2, -2, -1, -1, -1, -2] -regretter -1.6 0.66332 [-2, -1, -2, -2, -3, -2, -1, -1, -1, -1] -regretters -2.0 0.89443 [-1, -2, -2, -2, -4, -3, -1, -1, -2, -2] -regretting -1.7 0.78102 [-3, -2, -2, -1, -3, -1, -1, -1, -2, -1] -reinvigorate 2.3 0.78102 [3, 3, 3, 2, 3, 1, 2, 1, 2, 3] -reinvigorated 1.9 1.13578 [2, 2, 3, 1, 2, 3, 3, -1, 2, 2] -reinvigorates 1.8 0.9798 [2, 2, 3, 0, 2, 2, 3, 0, 2, 2] -reinvigorating 1.7 0.64031 [1, 2, 1, 1, 2, 2, 2, 1, 3, 2] -reinvigoration 2.2 0.4 [2, 2, 2, 3, 2, 3, 2, 2, 2, 2] -reject -1.7 0.64031 [-1, -2, -2, -2, -1, -3, -1, -1, -2, -2] -rejected -2.3 0.45826 [-3, -2, -3, -3, -2, -2, -2, -2, -2, -2] -rejectee -2.3 0.45826 [-3, -2, -2, -3, -2, -3, -2, -2, -2, -2] -rejectees -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -2, -2, -1] -rejecter -1.6 0.66332 [-2, -1, -1, -3, -2, -2, -1, -1, -1, -2] -rejecters -1.8 0.6 [-2, -3, -1, -1, -2, -1, -2, -2, -2, -2] -rejecting -2.0 0.7746 [-1, -2, -3, -1, -2, -3, -2, -1, -3, -2] -rejectingly -1.7 0.64031 [-1, -2, -2, -2, -1, -2, -2, -1, -3, -1] -rejection -2.5 0.67082 [-3, -3, -2, -4, -3, -2, -2, -2, -2, -2] -rejections -2.1 0.53852 [-3, -2, -2, -2, -1, -2, -3, -2, -2, -2] -rejective -1.8 0.6 [-3, -2, -2, -2, -1, -1, -2, -2, -1, -2] -rejector -1.8 0.74833 [-2, -1, -2, -3, -1, -2, -1, -2, -3, -1] -rejects -2.2 0.4 [-3, -2, -2, -2, -2, -3, -2, -2, -2, -2] -rejoice 1.9 0.9434 [2, 3, 1, 3, 1, 3, 1, 3, 1, 1] -rejoiced 2.0 0.63246 [2, 1, 2, 3, 2, 2, 3, 1, 2, 2] -rejoices 2.1 0.7 [2, 1, 2, 3, 2, 3, 3, 2, 2, 1] -rejoicing 2.8 0.4 [3, 3, 2, 3, 3, 3, 2, 3, 3, 3] -relax 1.9 1.13578 [2, 1, 1, 1, 4, 4, 2, 1, 1, 2] -relaxant 1.0 0.89443 [2, 1, 0, 0, 1, 0, 1, 3, 1, 1] -relaxants 0.7 0.9 [0, 1, 1, 0, -1, 2, 1, 2, 1, 0] -relaxation 2.4 0.4899 [3, 2, 3, 2, 2, 3, 3, 2, 2, 2] -relaxations 1.0 0.89443 [-1, 0, 2, 1, 1, 2, 1, 2, 1, 1] -relaxed 2.2 0.87178 [2, 3, 1, 3, 3, 3, 1, 2, 1, 3] -relaxedly 1.5 0.5 [2, 2, 1, 1, 2, 1, 2, 2, 1, 1] -relaxedness 2.0 0.63246 [2, 2, 3, 1, 3, 2, 2, 2, 1, 2] -relaxer 1.6 0.8 [0, 2, 1, 2, 1, 3, 1, 2, 2, 2] -relaxers 1.4 0.4899 [2, 1, 1, 1, 2, 2, 2, 1, 1, 1] -relaxes 1.5 0.5 [2, 1, 1, 1, 1, 2, 2, 2, 1, 2] -relaxin 1.7 0.64031 [2, 2, 1, 2, 0, 2, 2, 2, 2, 2] -relaxing 2.2 0.6 [1, 2, 2, 2, 2, 3, 3, 3, 2, 2] -relaxins 1.2 1.4 [1, 3, 2, 1, 0, 1, -2, 3, 2, 1] -relentless 0.2 1.07703 [3, -1, 0, -1, 0, 1, 0, 0, 0, 0] -reliant 0.5 1.20416 [0, 2, -1, 1, 0, 1, 2, -1, 2, -1] -relief 2.1 0.53852 [2, 2, 2, 3, 2, 3, 2, 1, 2, 2] -reliefs 1.3 0.78102 [1, 2, 2, 2, 2, 2, 0, 0, 1, 1] -relievable 1.1 1.22066 [1, -2, 1, 1, 1, 1, 3, 2, 1, 2] -relieve 1.5 0.5 [1, 2, 1, 2, 1, 1, 2, 2, 1, 2] -relieved 1.6 0.66332 [2, 1, 2, 1, 1, 3, 2, 1, 1, 2] -relievedly 1.4 0.4899 [1, 2, 1, 1, 1, 2, 2, 2, 1, 1] -reliever 1.5 0.80623 [2, 1, 2, 2, 1, 2, 0, 1, 1, 3] -relievers 1.0 0.63246 [1, 1, 1, 1, 2, 0, 2, 0, 1, 1] -relieves 1.5 0.80623 [2, 1, 2, 2, 1, 2, 0, 1, 1, 3] -relieving 1.5 1.0247 [2, 2, 1, 2, 3, -1, 2, 1, 1, 2] -relievo 1.3 1.00499 [0, 2, 1, 2, 2, -1, 2, 2, 2, 1] -relishing 1.6 0.8 [1, 2, 1, 3, 2, 3, 1, 1, 1, 1] -reluctance -1.4 0.4899 [-2, -2, -1, -1, -1, -1, -2, -1, -2, -1] -reluctancy -1.6 0.8 [-3, -2, -1, -1, -1, -1, -2, -1, -3, -1] -reluctant -1.0 0.7746 [0, -1, 0, -1, -1, 0, -1, -2, -2, -2] -reluctantly -0.4 1.42829 [-1, 2, -1, -2, -2, -1, 1, -1, 2, -1] -remarkable 2.6 1.0198 [3, 4, 3, 2, 2, 3, 3, 0, 3, 3] -remorse -1.1 1.51327 [-3, -1, -3, 1, 2, -2, -1, -1, -2, -1] -remorseful -0.9 2.07123 [-1, 1, -2, -3, 2, -1, -3, -2, 3, -3] -remorsefully -0.7 1.34536 [-1, -1, 0, -1, -2, -1, -1, 1, -3, 2] -remorsefulness -0.7 1.61555 [-1, -2, 2, -2, -2, -1, 0, -3, 2, 0] -remorseless -2.3 0.64031 [-4, -2, -2, -2, -3, -2, -2, -2, -2, -2] -remorselessly -2.0 1.09545 [-3, -3, -3, -2, -1, -1, -4, -1, -1, -1] -remorselessness -2.8 1.16619 [-3, -4, -2, -2, -3, -4, -1, -1, -4, -4] -repetitive -1.0 0.06325 [-1, -1, 0, -2, -1, -2, -1, -1, 0, -1] -repress -1.4 0.66332 [-1, -1, -3, -2, -1, -1, -2, -1, -1, -1] -repressed -1.3 0.78102 [-1, 0, -3, -1, -1, -2, -1, -1, -2, -1] -represses -1.3 1.00499 [-1, 0, -3, -1, 0, -3, -1, -1, -2, -1] -repressible -1.5 0.92195 [-1, -2, -3, -1, 0, -1, -3, -1, -2, -1] -repressing -1.8 0.6 [-1, -2, -2, -2, -1, -3, -2, -1, -2, -2] -repression -1.6 0.91652 [-2, -2, -1, -1, -1, -1, -4, -1, -2, -1] -repressions -1.7 1.00499 [-2, -3, -1, -2, -2, -3, -2, 0, 0, -2] -repressive -1.4 1.11355 [-3, -1, -1, -2, -1, -3, 1, -2, -1, -1] -repressively -1.7 0.45826 [-2, -1, -2, -2, -2, -2, -2, -2, -1, -1] -repressiveness -1.0 1.73205 [-2, -1, -2, -3, -1, -1, 1, -3, 3, -1] -repressor -1.4 1.28062 [-1, 0, -3, -1, -2, -4, 0, -1, 0, -2] -repressors -2.2 1.66132 [-2, -4, 0, -2, -1, -3, -4, -3, 1, -4] -repressurize -0.3 0.64031 [0, 0, 0, 0, 0, 0, -2, 0, -1, 0] -repressurized 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] -repressurizes 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] -repressurizing -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] -repulse -2.8 0.4 [-3, -3, -3, -3, -2, -3, -3, -3, -2, -3] -repulsed -2.2 0.9798 [0, -2, -2, -2, -3, -3, -1, -3, -3, -3] -rescue 2.3 0.78102 [1, 3, 1, 3, 2, 3, 3, 2, 2, 3] -rescued 1.8 1.53623 [3, 2, 2, -2, 3, 2, 1, 4, 1, 2] -rescues 1.3 0.78102 [3, 2, 0, 2, 1, 1, 1, 1, 1, 1] -resent -0.7 1.26886 [-2, -2, 0, -1, -1, -1, -2, 1, 2, -1] -resented -1.6 1.35647 [-2, -3, -2, -2, -1, -1, 2, -3, -2, -2] -resentence -1.0 0.7746 [-1, 0, -1, -1, 0, -2, -1, 0, -2, -2] -resentenced -0.8 0.9798 [0, -2, -1, 0, -1, 0, 0, 0, -3, -1] -resentences -0.6 0.8 [0, -2, -1, 0, -1, 0, 0, 0, -2, 0] -resentencing 0.2 0.87178 [-1, -1, 0, 1, 0, 0, 1, 2, 0, 0] -resentful -2.1 0.83066 [-3, -1, -2, -3, -1, -1, -3, -2, -2, -3] -resentfully -1.4 1.11355 [-1, -2, -1, -1, -3, 1, -1, -3, -1, -2] -resentfulness -2.0 0.7746 [-2, -2, -3, -3, -2, -3, -2, -1, -1, -1] -resenting -1.2 1.72047 [-2, -1, -2, -2, -1, -3, -3, 2, 2, -2] -resentment -1.9 0.83066 [-1, -3, -2, -3, -2, -3, -1, -1, -1, -2] -resentments -1.9 0.7 [-2, -1, -2, -3, -1, -2, -2, -2, -1, -3] -resents -1.2 1.32665 [-2, -1, -1, -3, 1, -1, 1, -3, -2, -1] -resign -1.4 0.66332 [-2, -1, -3, -1, -1, -1, -1, -2, -1, -1] -resignation -1.2 0.4 [-1, -1, -1, -2, -1, -1, -1, -1, -2, -1] -resignations -1.2 0.6 [0, -1, -1, -2, -2, -2, -1, -1, -1, -1] -resigned -1.0 0.63246 [-2, -1, 0, -1, -2, -1, -1, -1, 0, -1] -resignedly -0.7 1.26886 [-3, -1, -1, -1, -1, 1, 1, 1, -2, -1] -resignedness -0.8 1.07703 [-1, -2, 1, -2, -1, -1, 0, -2, -1, 1] -resigner -1.2 0.6 [-2, -1, 0, -1, -2, -2, -1, -1, -1, -1] -resigners -1.0 1.09545 [-1, 0, -1, -3, -1, 0, 0, -1, -3, 0] -resigning -0.9 1.22066 [-1, -1, -1, -1, -1, 0, -1, -3, -2, 2] -resigns -1.3 0.9 [0, -1, -1, 0, -2, -1, -3, -1, -2, -2] -resolute 1.1 0.53852 [2, 1, 0, 1, 1, 1, 2, 1, 1, 1] -resolvable 1.0 0.0 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] -resolve 1.6 0.66332 [2, 1, 1, 2, 2, 1, 3, 1, 1, 2] -resolved 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] -resolvent 0.7 0.78102 [1, 0, 1, 2, 0, -1, 1, 1, 1, 1] -resolvents 0.4 0.66332 [2, 0, 0, 1, 0, 0, 1, 0, 0, 0] -resolver 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] -resolvers 1.4 0.4899 [2, 1, 2, 1, 1, 1, 2, 1, 2, 1] -resolves 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] -resolving 1.6 0.4899 [2, 2, 1, 2, 2, 1, 1, 1, 2, 2] -respect 2.1 0.53852 [2, 2, 2, 2, 3, 3, 2, 2, 1, 2] -respectabilities 1.8 0.4 [2, 2, 2, 1, 2, 2, 2, 1, 2, 2] -respectability 2.4 0.8 [4, 1, 3, 2, 3, 3, 2, 2, 2, 2] -respectable 1.9 0.7 [2, 2, 2, 2, 1, 3, 3, 1, 1, 2] -respectableness 1.2 1.32665 [2, 1, 1, 0, 3, 2, -2, 2, 2, 1] -respectably 1.7 0.78102 [2, 2, 1, 3, 1, 3, 2, 1, 1, 1] -respected 2.1 0.7 [2, 2, 1, 2, 3, 1, 2, 3, 3, 2] -respecter 2.1 0.53852 [3, 2, 2, 2, 2, 2, 1, 3, 2, 2] -respecters 1.6 0.8 [2, 1, 2, 2, 3, 1, 2, 2, 0, 1] -respectful 2.0 0.7746 [1, 1, 3, 2, 2, 3, 1, 2, 3, 2] -respectfully 1.7 0.64031 [1, 2, 1, 2, 2, 2, 1, 3, 1, 2] -respectfulness 1.9 1.37477 [4, 2, 2, 1, 2, 4, -1, 1, 2, 2] -respectfulnesses 1.3 1.18743 [1, 1, 2, 2, 2, 2, 2, 1, -2, 2] -respecting 2.2 0.6 [1, 3, 2, 3, 2, 2, 3, 2, 2, 2] -respective 1.8 1.16619 [2, 2, 3, 0, 1, 3, 3, 1, 0, 3] -respectively 1.4 0.91652 [0, 0, 2, 2, 0, 2, 2, 2, 2, 2] -respectiveness 1.1 1.04403 [0, 2, 1, 0, 1, 0, 2, 2, 0, 3] -respects 1.3 1.00499 [2, 0, 0, 0, 2, 1, 2, 1, 2, 3] -responsible 1.3 1.1 [1, 1, 0, 4, 2, 2, 1, 0, 1, 1] -responsive 1.5 0.92195 [3, 1, 1, 0, 1, 1, 2, 3, 2, 1] -restful 1.5 0.67082 [1, 1, 1, 1, 2, 1, 2, 1, 2, 3] -restless -1.1 0.3 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -1] -restlessly -1.4 0.91652 [-1, -4, -1, -1, -1, -2, -1, -1, -1, -1] -restlessness -1.2 0.74833 [-3, -1, -1, 0, -1, -2, -1, -1, -1, -1] -restore 1.2 0.9798 [1, 1, 2, 2, 2, 2, 1, -1, 0, 2] -restored 1.4 0.91652 [2, 2, 1, 2, 1, 2, 2, 1, -1, 2] -restores 1.2 0.6 [2, 1, 1, 2, 1, 0, 1, 1, 2, 1] -restoring 1.2 0.4 [2, 1, 1, 1, 1, 2, 1, 1, 1, 1] -restrict -1.6 0.8 [-3, -1, -1, -1, -3, -1, -2, -1, -1, -2] -restricted -1.6 0.4899 [-1, -2, -1, -1, -1, -2, -2, -2, -2, -2] -restricting -1.6 0.4899 [-2, -2, -2, -2, -1, -2, -1, -1, -2, -1] -restriction -1.1 0.9434 [-1, -1, -1, -1, -3, 1, -2, -1, -1, -1] -restricts -1.3 1.1 [-2, -2, -3, -1, -1, -2, 1, -1, -2, 0] -retained 0.1 0.7 [-1, 1, 1, 1, 0, -1, 0, 0, 0, 0] -retard -2.4 0.8 [-2, -2, -2, -1, -3, -2, -4, -3, -3, -2] -retarded -2.7 1.26886 [-4, -1, -3, -3, -4, -4, -2, -1, -1, -4] -retreat 0.8 1.07703 [2, 2, 0, 0, -1, 1, 2, 0, 2, 0] -revenge -2.4 0.66332 [-2, -3, -2, -3, -3, -3, -2, -1, -2, -3] -revenged -0.9 1.37477 [-2, -3, -2, -1, -1, 2, -1, 1, -1, -1] -revengeful -2.4 0.4899 [-2, -2, -2, -3, -3, -2, -3, -3, -2, -2] -revengefully -1.4 2.00998 [-3, -2, -2, -2, 3, 2, -3, -3, -2, -2] -revengefulness -2.2 0.87178 [-2, -3, -3, -2, -2, -2, -1, -4, -1, -2] -revenger -2.1 0.83066 [-2, -3, -2, -1, -1, -2, -3, -3, -1, -3] -revengers -2.0 0.44721 [-2, -2, -3, -2, -2, -2, -1, -2, -2, -2] -revenges -1.9 0.7 [-2, -3, -2, -1, -1, -2, -3, -2, -1, -2] -revered 2.3 1.1 [3, 3, 1, 3, 3, 3, 0, 3, 3, 1] -revive 1.4 1.11355 [4, 0, 2, 1, 1, 0, 2, 2, 1, 1] -revives 1.6 0.4899 [1, 1, 2, 2, 1, 2, 2, 2, 1, 2] -reward 2.7 0.78102 [3, 4, 1, 2, 3, 3, 2, 3, 3, 3] -rewardable 2.0 1.0 [3, 1, 4, 3, 1, 2, 1, 2, 2, 1] -rewarded 2.2 0.74833 [1, 2, 3, 2, 2, 4, 2, 2, 2, 2] -rewarder 1.6 0.8 [1, 2, 3, 1, 1, 3, 2, 1, 1, 1] -rewarders 1.9 0.83066 [1, 2, 2, 1, 3, 3, 1, 2, 1, 3] -rewarding 2.4 0.8 [3, 4, 2, 2, 1, 3, 3, 2, 2, 2] -rewardingly 2.4 0.8 [3, 2, 3, 4, 3, 2, 2, 2, 1, 2] -rewards 2.1 0.83066 [2, 1, 3, 4, 2, 2, 2, 2, 1, 2] -rich 2.6 0.8 [2, 3, 2, 4, 4, 3, 2, 2, 2, 2] -richened 1.9 0.83066 [3, 2, 2, 1, 3, 1, 2, 3, 1, 1] -richening 1.0 1.34164 [2, 2, 0, 0, -1, 1, 2, 3, -1, 2] -richens 0.8 0.9798 [1, 0, 3, 0, 0, 0, 1, 2, 1, 0] -richer 2.4 1.2 [1, 4, 2, 1, 2, 4, 4, 1, 3, 2] -riches 2.4 1.0198 [2, 4, 1, 1, 2, 4, 3, 2, 3, 2] -richest 2.4 1.11355 [4, 4, 2, 2, 3, 0, 2, 2, 3, 2] -richly 1.9 0.53852 [2, 2, 2, 2, 3, 1, 2, 2, 1, 2] -richness 2.2 0.74833 [2, 3, 2, 2, 2, 2, 2, 1, 4, 2] -richnesses 2.1 0.9434 [2, 1, 2, 2, 3, 1, 3, 1, 4, 2] -richweed 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] -richweeds -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1] -ridicule -2.0 0.63246 [-2, -2, -2, -2, -3, -2, -1, -2, -1, -3] -ridiculed -1.5 0.5 [-1, -1, -1, -2, -2, -2, -1, -2, -1, -2] -ridiculer -1.6 0.91652 [-1, -1, -1, -2, -2, 0, -1, -3, -2, -3] -ridiculers -1.6 0.66332 [-2, -1, -1, -2, -3, -2, -1, -2, -1, -1] -ridicules -1.8 0.6 [-1, -1, -2, -2, -2, -2, -1, -2, -2, -3] -ridiculing -1.8 0.6 [-2, -3, -2, -1, -1, -2, -2, -1, -2, -2] -ridiculous -1.5 0.67082 [-3, -2, -1, -1, -2, -1, -2, -1, -1, -1] -ridiculously -1.4 0.8 [-1, -2, -1, 0, -2, -1, -1, -3, -1, -2] -ridiculousness -1.1 1.51327 [-1, -1, -1, -2, -1, 3, -3, -2, -1, -2] -ridiculousnesses -1.6 1.11355 [-3, 0, -2, -2, -1, -1, -1, -4, -1, -1] -rig -0.5 1.0247 [0, 0, 0, 0, -2, 0, 0, 0, -3, 0] -rigged -1.5 1.0247 [-2, -3, -2, -1, -1, -2, 1, -1, -2, -2] -rigid -0.5 0.67082 [-2, -1, 0, 0, 0, 0, 0, -1, -1, 0] -rigidification -1.1 0.9434 [-1, -2, 0, 0, 0, -2, -2, -2, 0, -2] -rigidifications -0.8 0.9798 [-2, -1, 0, 0, -2, -1, 0, 1, -2, -1] -rigidified -0.7 1.00499 [0, -1, 0, 0, 0, 0, -2, 0, -1, -3] -rigidifies -0.6 0.8 [0, -1, 0, 0, 0, 0, -2, 0, -1, -2] -rigidify -0.3 0.64031 [0, 0, 0, 0, -1, 0, 0, 0, -2, 0] -rigidities -0.7 0.78102 [0, -1, 0, 0, 0, 0, -2, -1, -1, -2] -rigidity -0.7 0.64031 [-1, 0, -1, 0, -1, 0, -2, 0, -1, -1] -rigidly -0.7 0.45826 [-1, -1, -1, -1, 0, 0, -1, 0, -1, -1] -rigidness -0.3 1.00499 [0, -1, -1, 0, 2, -1, -1, -1, 1, -1] -rigorous -1.1 1.51327 [-2, -3, 1, 0, 1, 0, -1, -1, -3, -3] -rigorously -0.4 1.28062 [0, 2, 1, 0, -1, 0, -1, -1, -3, -1] -riot -2.6 1.0198 [-3, 0, -3, -2, -3, -3, -3, -4, -3, -2] -riots -2.3 0.78102 [-2, -3, -3, -2, -1, -1, -3, -2, -3, -3] -risk -1.1 0.7 [-1, -1, 0, -2, -1, 0, -2, -2, -1, -1] -risked -0.9 0.7 [-1, -2, 0, 0, -1, 0, -2, -1, -1, -1] -risker -0.8 0.4 [-1, -1, -1, 0, -1, 0, -1, -1, -1, -1] -riskier -1.4 0.91652 [0, -3, -1, 0, -1, -2, -1, -2, -2, -2] -riskiest -1.5 1.0247 [-2, -3, -1, -1, -3, 0, -1, -2, 0, -2] -riskily -0.7 1.34536 [-1, -2, -1, -1, 3, 0, -1, -1, -1, -2] -riskiness -1.3 1.00499 [-3, -1, -1, 0, -1, 0, -1, -3, -2, -1] -riskinesses -1.6 0.91652 [-2, -1, -1, 0, -3, -1, -2, -1, -3, -2] -risking -1.3 1.1 [0, 0, -2, 0, -1, -3, -3, -1, -2, -1] -riskless 1.3 0.9 [2, 1, 0, 1, 1, 1, 2, 3, 0, 2] -risks -1.1 0.9434 [-1, 0, -1, -1, 0, 0, -2, -1, -3, -2] -risky -0.8 0.9798 [-1, 1, -1, -1, -1, 0, 0, -1, -3, -1] -rob -2.6 0.8 [-2, -4, -3, -2, -3, -4, -2, -2, -2, -2] -robber -2.6 1.0198 [-4, -1, -2, -3, -2, -1, -4, -3, -3, -3] -robed -0.7 0.9 [-2, 0, 0, 0, 0, -2, 0, -2, -1, 0] -robing -1.5 1.56525 [0, 0, 0, 0, -2, -3, -3, -4, -3, 0] -robs -2.0 1.0 [-2, -1, -3, -2, -2, -1, -4, -3, -1, -1] -robust 1.4 1.42829 [1, 0, 0, 1, 4, 0, 2, 3, 3, 0] -roflcopter 2.1 0.53852 [2, 2, 2, 1, 3, 2, 3, 2, 2, 2] -romance 2.6 0.66332 [2, 3, 4, 2, 3, 2, 3, 2, 3, 2] -romanced 2.2 0.87178 [2, 3, 2, 4, 2, 1, 2, 3, 1, 2] -romancer 1.3 1.1 [0, 0, 2, 2, 2, 2, 3, 2, 0, 0] -romancers 1.7 1.00499 [0, 2, 2, 2, 2, 2, 1, 3, 0, 3] -romances 1.3 0.9 [0, 1, 2, 2, 2, 2, 2, 2, 0, 0] -romancing 2.0 0.89443 [4, 1, 1, 2, 2, 2, 2, 1, 3, 2] -romantic 1.7 0.78102 [2, 2, 2, 1, 2, 3, 2, 2, 0, 1] -romantically 1.8 0.87178 [3, 1, 2, 0, 1, 2, 2, 2, 3, 2] -romanticise 1.7 1.61555 [-1, 4, 2, 1, 3, 1, 3, 3, 2, -1] -romanticised 1.7 0.9 [2, 2, 2, 2, 2, 2, 3, 0, 2, 0] -romanticises 1.3 1.1 [2, 2, 1, 1, 1, 2, 3, -1, 2, 0] -romanticising 2.7 0.78102 [3, 3, 3, 2, 1, 3, 2, 3, 4, 3] -romanticism 2.2 1.32665 [1, 4, 2, 1, 3, 1, 3, 3, 4, 0] -romanticisms 2.1 0.9434 [2, 3, 2, 1, 2, 3, 3, 2, 3, 0] -romanticist 1.9 1.3 [1, 4, 2, 0, 3, 1, 2, 3, 3, 0] -romanticists 1.3 1.00499 [2, 0, 0, 1, 3, 3, 1, 1, 1, 1] -romanticization 1.5 1.36015 [1, 3, 2, 2, -1, 2, 0, 1, 4, 1] -romanticizations 2.0 1.0 [4, 1, 3, 1, 2, 3, 1, 2, 2, 1] -romanticize 1.8 0.9798 [2, 2, 1, 1, 2, 1, 3, 3, 3, 0] -romanticized 0.9 1.22066 [0, 1, 1, 3, -1, 0, 1, 1, 3, 0] -romanticizes 1.8 0.87178 [2, 3, 2, 1, 2, 3, 0, 1, 2, 2] -romanticizing 1.2 1.07703 [0, 1, 2, 1, 3, 0, 1, 1, 0, 3] -romantics 1.9 0.83066 [2, 3, 2, 1, 0, 2, 3, 2, 2, 2] -rotten -2.3 0.78102 [-2, -3, -1, -3, -3, -1, -3, -2, -3, -2] -rude -2.0 0.44721 [-2, -1, -3, -2, -2, -2, -2, -2, -2, -2] -rudely -2.2 0.87178 [-3, -2, -3, -1, -2, -4, -2, -2, -1, -2] -rudeness -1.5 0.67082 [-2, -1, -1, -1, -1, -3, -2, -2, -1, -1] -ruder -2.1 0.83066 [-2, -1, -4, -2, -3, -1, -2, -2, -2, -2] -ruderal -0.8 1.46969 [-3, 0, -1, -2, 0, -1, -3, 0, 2, 0] -ruderals -0.4 0.66332 [0, -1, 0, -2, 0, -1, 0, 0, 0, 0] -rudesby -2.0 0.7746 [-2, -3, -2, -2, -1, -3, -1, -1, -2, -3] -rudest -2.5 0.5 [-3, -2, -3, -3, -2, -2, -2, -3, -2, -3] -ruin -2.8 0.87178 [-3, -3, -1, -4, -4, -3, -3, -2, -2, -3] -ruinable -1.6 0.8 [-1, -2, -1, -3, -1, -3, -1, -1, -2, -1] -ruinate -2.8 0.87178 [-4, -4, -3, -3, -1, -3, -3, -3, -2, -2] -ruinated -1.5 1.56525 [0, -4, 0, -4, -1, -2, 0, -1, -3, 0] -ruinates -1.5 1.56525 [0, -4, 0, -4, -1, -2, 0, -1, -3, 0] -ruinating -1.5 1.20416 [-2, -2, -2, -3, 0, -1, 1, -3, -1, -2] -ruination -2.7 1.00499 [-4, -4, -3, -3, -2, -1, -3, -3, -3, -1] -ruinations -1.6 1.35647 [-2, -2, -3, -4, 0, -1, 1, -2, -1, -2] -ruined -2.1 0.7 [-3, -2, -2, -1, -2, -2, -3, -3, -1, -2] -ruiner -2.0 0.63246 [-1, -3, -2, -2, -1, -2, -3, -2, -2, -2] -ruing -1.6 0.91652 [-2, -1, -2, -1, -1, -1, -3, 0, -3, -2] -ruining -1.0 1.94936 [-3, -3, 0, -2, 1, -3, 2, -2, 2, -2] -ruinous -2.7 0.78102 [-2, -3, -3, -3, -3, -4, -2, -3, -1, -3] -ruinously -2.6 0.8 [-3, -2, -2, -3, -1, -3, -4, -2, -3, -3] -ruinousness -1.0 1.09545 [-1, -2, -3, -1, -1, -2, 1, 0, -1, 0] -ruins -1.9 0.9434 [-1, -2, -1, -2, -1, -2, -4, -1, -3, -2] -sabotage -2.4 0.91652 [-3, -3, -3, -2, -2, -4, -2, -3, -1, -1] -sad -2.1 0.9434 [-1, -1, -2, -2, -3, -2, -3, -2, -4, -1] -sadden -2.6 0.4899 [-2, -3, -2, -3, -2, -3, -2, -3, -3, -3] -saddened -2.4 0.4899 [-3, -2, -3, -2, -3, -3, -2, -2, -2, -2] -saddening -2.2 0.4 [-3, -2, -2, -2, -2, -2, -3, -2, -2, -2] -saddens -1.9 0.7 [-3, -1, -1, -1, -2, -2, -2, -2, -3, -2] -sadder -2.4 0.91652 [-2, -2, -3, -4, -3, -1, -3, -1, -2, -3] -saddest -3.0 0.63246 [-4, -3, -2, -3, -3, -2, -3, -4, -3, -3] -sadly -1.8 0.6 [-2, -2, -2, -1, -2, -3, -2, -1, -1, -2] -sadness -1.9 0.3 [-2, -1, -2, -2, -2, -2, -2, -2, -2, -2] -safe 1.9 0.3 [2, 1, 2, 2, 2, 2, 2, 2, 2, 2] -safecracker -0.7 1.61555 [-3, -2, 0, -3, 0, -2, 0, 1, 2, 0] -safecrackers -0.9 1.04403 [-1, 0, -2, 0, -1, 0, 0, -3, 0, -2] -safecracking -0.9 0.9434 [0, 0, 0, 0, -2, 0, -1, -2, -2, -2] -safecrackings -0.7 1.67631 [-2, -1, -2, -4, 2, -1, -1, 0, 1, 1] -safeguard 1.6 0.4899 [2, 2, 1, 1, 1, 2, 2, 2, 2, 1] -safeguarded 1.5 0.92195 [1, 2, 2, 0, 2, 0, 3, 1, 2, 2] -safeguarding 1.1 0.7 [2, 1, 1, 0, 1, 0, 2, 1, 1, 2] -safeguards 1.4 0.66332 [1, 2, 1, 1, 0, 2, 2, 2, 2, 1] -safekeeping 1.4 0.66332 [3, 1, 1, 2, 1, 1, 2, 1, 1, 1] -safelight 1.1 1.22066 [0, 3, 0, 2, 0, 3, 0, 2, 1, 0] -safelights 0.8 1.07703 [0, 3, 1, 0, 0, 2, 0, 2, 0, 0] -safely 2.2 0.74833 [2, 2, 2, 3, 4, 2, 2, 1, 2, 2] -safeness 1.5 0.67082 [1, 1, 1, 1, 3, 1, 2, 2, 2, 1] -safer 1.8 0.6 [2, 1, 2, 3, 2, 2, 1, 1, 2, 2] -safes 0.4 0.8 [0, 0, 2, 0, 0, 0, 0, 0, 2, 0] -safest 1.7 1.61555 [2, 2, 2, 2, -3, 3, 3, 2, 2, 2] -safeties 1.5 1.0247 [2, 0, 1, 3, 2, 1, 3, 1, 0, 2] -safety 1.8 0.6 [2, 2, 2, 2, 1, 1, 2, 3, 1, 2] -safetyman 0.3 0.64031 [0, 0, 0, 0, 2, 0, 1, 0, 0, 0] -salient 1.1 1.22066 [1, 3, 0, -1, 0, 1, 2, 1, 1, 3] -sappy -1.0 1.18322 [-2, -1, 2, -2, -2, 0, -1, -1, -2, -1] -sarcasm -0.9 0.7 [0, -2, -1, -1, 0, 0, -1, -1, -2, -1] -sarcasms -0.9 0.7 [0, -1, 0, -1, -1, -2, 0, -1, -1, -2] -sarcastic -1.0 0.7746 [-1, -1, -1, -1, -1, -1, -1, -2, 1, -2] -sarcastically -1.1 1.37477 [-1, -4, 1, -1, -1, -2, 1, -2, -1, -1] -satisfaction 1.9 0.9434 [1, 3, 2, 4, 2, 1, 1, 1, 2, 2] -satisfactions 2.1 0.7 [3, 3, 3, 1, 2, 2, 1, 2, 2, 2] -satisfactorily 1.6 1.11355 [1, 2, 2, -1, 2, 1, 3, 3, 1, 2] -satisfactoriness 1.5 0.5 [1, 2, 1, 2, 2, 1, 2, 1, 2, 1] -satisfactory 1.5 0.67082 [2, 3, 1, 1, 1, 2, 2, 1, 1, 1] -satisfiable 1.9 0.83066 [3, 1, 2, 1, 2, 3, 1, 2, 3, 1] -satisfied 1.8 0.6 [2, 2, 2, 1, 1, 2, 3, 1, 2, 2] -satisfies 1.8 0.6 [3, 1, 2, 1, 1, 2, 2, 2, 2, 2] -satisfy 2.0 0.63246 [3, 2, 2, 2, 2, 1, 1, 2, 3, 2] -satisfying 2.0 1.48324 [2, 3, 2, 1, 3, 3, 3, 2, -2, 3] -satisfyingly 1.9 0.9434 [1, 2, 2, 1, 2, 1, 4, 1, 3, 2] -savage -2.0 1.73205 [-3, -4, -3, 1, -2, -1, -3, -4, -2, 1] -savaged -2.0 1.34164 [-1, 0, -4, -3, -3, -3, -2, 0, -1, -3] -savagely -2.2 0.74833 [-2, -1, -3, -2, -2, -1, -2, -3, -3, -3] -savageness -2.6 1.0198 [-3, -1, -2, -3, -2, -1, -4, -4, -3, -3] -savagenesses -0.9 1.86815 [-2, 3, -1, -3, -2, 2, -3, -1, -1, -1] -savageries -1.9 1.75784 [-3, 1, -3, -4, -3, 1, -2, -3, 0, -3] -savagery -2.5 1.62788 [-2, -3, -3, -3, 2, -3, -3, -4, -4, -2] -savages -2.4 1.0198 [-2, -2, -3, -4, -3, -3, -2, 0, -2, -3] -save 2.2 1.16619 [1, 3, 3, 1, 2, 1, 2, 4, 1, 4] -saved 1.8 0.6 [1, 2, 2, 2, 1, 3, 2, 2, 1, 2] -scam -2.7 0.64031 [-2, -3, -3, -3, -2, -2, -4, -3, -3, -2] -scams -2.8 0.87178 [-3, -1, -3, -4, -4, -3, -2, -2, -3, -3] -scandal -1.9 1.81384 [-3, -2, -2, -4, 3, -3, -3, -1, -2, -2] -scandalous -2.4 0.8 [-2, -1, -3, -2, -4, -2, -3, -3, -2, -2] -scandals -2.2 0.9798 [-2, -3, -3, -2, -1, 0, -3, -3, -2, -3] -scapegoat -1.7 0.64031 [-3, -2, -2, -2, -1, -1, -1, -2, -1, -2] -scapegoats -1.4 0.8 [-1, -2, -2, -1, 0, -2, -2, 0, -2, -2] -scare -2.2 0.87178 [-2, -2, -4, -2, -3, -1, -2, -1, -2, -3] -scarecrow -0.8 0.9798 [-1, 0, -1, 0, 0, 0, -2, -3, -1, 0] -scarecrows -0.7 1.1 [2, 0, -1, -1, -1, -2, -1, -2, 0, -1] -scared -1.9 0.7 [-1, -1, -2, -3, -2, -3, -1, -2, -2, -2] -scaremonger -2.1 0.53852 [-1, -2, -2, -3, -2, -2, -3, -2, -2, -2] -scaremongers -2.0 1.0 [-2, -2, 0, -4, -2, -2, -1, -2, -3, -2] -scarer -1.7 0.78102 [-2, -1, -1, -2, -3, -1, -3, -1, -2, -1] -scarers -1.3 0.9 [-1, -2, -1, 0, 0, -1, -3, -2, -1, -2] -scares -1.4 0.4899 [-1, -1, -2, -1, -1, -2, -1, -2, -2, -1] -scarey -1.7 0.64031 [-1, -1, -2, -2, -1, -2, -1, -2, -3, -2] -scaring -1.9 1.22066 [-3, -2, -1, -3, -1, -3, -2, -2, 1, -3] -scary -2.2 0.87178 [-2, -1, -4, -3, -3, -2, -2, -2, -2, -1] -sceptic -1.0 0.89443 [-3, 0, -1, -1, -1, 0, 0, -2, -1, -1] -sceptical -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] -scepticism -0.8 0.87178 [-1, -2, -2, 0, 0, -1, 1, -1, -1, -1] -sceptics -0.7 0.78102 [0, 0, 0, -1, -2, 0, -1, -1, 0, -2] -scold -1.7 0.78102 [-2, -1, -1, -1, -3, -3, -2, -2, -1, -1] -scoop 0.6 0.8 [0, 0, 1, 0, 2, 0, 2, 0, 1, 0] -scorn -1.7 0.64031 [-2, -3, -2, -1, -1, -1, -1, -2, -2, -2] -scornful -1.8 1.16619 [-3, -3, -2, -1, -4, 0, -2, -1, -1, -1] -scream -1.7 0.78102 [0, -3, -1, -1, -2, -2, -2, -2, -2, -2] -screamed -1.3 1.1 [-2, -3, -2, -1, -1, -2, -2, -1, 1, 0] -screamers -1.5 0.92195 [-2, -1, -2, -2, -2, -2, -1, -2, 1, -2] -screaming -1.6 0.8 [0, -1, -1, -2, -3, -1, -2, -2, -2, -2] -screams -1.2 0.9798 [-1, -2, -2, -1, -1, -2, 1, -2, 0, -2] -screw -0.4 0.91652 [-1, -2, -1, 0, 0, 1, 0, -1, 1, -1] -screwball -0.2 0.87178 [0, -1, 0, 0, 1, 1, -1, 0, -2, 0] -screwballs -0.3 1.00499 [-2, 0, -2, -1, 0, 1, 0, 1, 0, 0] -screwbean 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 2, 0, 0] -screwdriver 0.3 0.45826 [1, 0, 0, 0, 0, 1, 0, 0, 1, 0] -screwdrivers 0.1 0.53852 [-1, 0, 0, 1, 0, 0, 0, 1, 0, 0] -screwed -2.2 0.4 [-2, -2, -2, -2, -2, -3, -3, -2, -2, -2] -screwed up -1.5 0.67082 [-2, -2, -2, -1, -1, 0, -2, -1, -2, -2] -screwer -1.2 0.87178 [-1, -2, -1, -2, 0, 0, -2, 0, -2, -2] -screwers -0.5 1.5 [-2, -2, 0, -2, 0, 2, 2, -1, 0, -2] -screwier -0.6 1.2 [0, -1, 2, -2, -1, -2, -1, -1, 1, -1] -screwiest -2.0 0.89443 [-3, -2, -2, -4, -1, -2, -1, -1, -2, -2] -screwiness -0.5 1.80278 [-2, 0, -2, 3, -2, -1, -2, 1, 2, -2] -screwing -0.9 0.9434 [-1, 0, 0, 0, -1, -1, -3, -2, 0, -1] -screwlike 0.1 1.04403 [2, -1, 0, 0, 0, 1, 0, 1, -2, 0] -screws -1.0 1.09545 [0, -3, 0, 0, -1, 0, -2, -2, -2, 0] -screwup -1.7 0.9 [-2, -2, -2, 1, -2, -2, -2, -2, -2, -2] -screwups -1.0 1.61245 [-2, -2, -2, -2, 0, 2, -2, -2, 2, -2] -screwworm -0.4 0.66332 [0, -1, 0, 0, 0, 0, -2, 0, -1, 0] -screwworms -0.1 1.22066 [-3, 0, -1, 0, 0, 0, 0, 2, 1, 0] -screwy -1.4 0.8 [-2, -2, -1, -1, -1, 0, -2, -1, -3, -1] -scrumptious 2.1 1.22066 [3, 3, 0, 3, 2, 3, 1, 3, 0, 3] -scrumptiously 1.5 1.43178 [2, 3, 3, -2, 1, 1, 2, 3, 1, 1] -scumbag -3.2 0.6 [-4, -3, -3, -2, -3, -4, -3, -3, -4, -3] -secure 1.4 0.4899 [1, 2, 1, 1, 2, 1, 1, 2, 2, 1] -secured 1.7 0.78102 [2, 2, 3, 1, 1, 2, 2, 0, 2, 2] -securely 1.4 0.8 [2, 0, 1, 2, 1, 1, 1, 3, 2, 1] -securement 1.1 0.7 [0, 2, 1, 1, 1, 0, 2, 2, 1, 1] -secureness 1.4 0.66332 [2, 1, 1, 3, 1, 1, 1, 1, 2, 1] -securer 1.5 0.67082 [1, 2, 2, 2, 1, 2, 1, 0, 2, 2] -securers 0.6 0.91652 [1, 3, 0, 0, 1, 0, 0, 0, 0, 1] -secures 1.3 0.64031 [1, 2, 2, 1, 1, 2, 1, 0, 2, 1] -securest 2.6 0.8 [3, 3, 2, 3, 1, 4, 3, 2, 2, 3] -securing 1.3 1.00499 [0, 3, 1, 1, 1, 3, 1, 1, 2, 0] -securities 1.2 0.6 [1, 2, 2, 2, 1, 1, 1, 0, 1, 1] -securitization 0.2 1.07703 [0, 0, 1, -1, 1, 0, -2, 0, 2, 1] -securitizations 0.1 0.9434 [0, 0, 0, 0, 2, 0, -2, 0, 1, 0] -securitize 0.3 1.34536 [2, 1, 0, 0, 2, 0, 1, 0, -3, 0] -securitized 1.4 1.0198 [3, 0, 2, 2, 0, 1, 2, 2, 0, 2] -securitizes 1.6 1.0198 [3, 0, 2, 2, 0, 1, 3, 2, 1, 2] -securitizing 0.7 0.9 [2, 0, 0, 1, 2, 0, 2, 0, 0, 0] -security 1.4 0.8 [1, 2, 3, 2, 1, 1, 2, 0, 1, 1] -sedition -1.8 1.249 [-3, -4, -2, -2, -2, -2, -1, -1, -2, 1] -seditious -1.7 0.64031 [-1, -2, -2, -1, -1, -1, -3, -2, -2, -2] -seduced -1.5 0.67082 [0, -1, -2, -2, -2, -2, -1, -1, -2, -2] -self-confident 2.5 0.80623 [1, 3, 3, 3, 2, 3, 1, 3, 3, 3] -selfish -2.1 0.7 [-1, -2, -2, -3, -1, -2, -2, -2, -3, -3] -selfishly -1.4 0.91652 [-3, 0, -1, -1, -1, -2, -3, -1, -1, -1] -selfishness -1.7 0.64031 [-1, -1, -1, -2, -2, -1, -2, -2, -3, -2] -selfishnesses -2.0 1.94936 [-4, -3, -1, -3, -2, -4, 2, 1, -3, -3] -sentence 0.3 0.64031 [0, 0, 0, 0, 1, 2, 0, 0, 0, 0] -sentenced -0.1 1.3 [0, -2, 2, -1, 0, -2, 2, 0, 0, 0] -sentences 0.2 1.07703 [0, 0, 2, 0, 0, -2, 2, 0, 0, 0] -sentencing -0.6 1.8 [-2, 0, -3, -2, 2, 3, 0, -1, -1, -2] -sentimental 1.3 0.64031 [2, 1, 1, 2, 1, 0, 1, 2, 2, 1] -sentimentalise 1.2 0.87178 [2, 1, 0, 3, 2, 1, 1, 0, 1, 1] -sentimentalised 0.8 1.16619 [2, 1, 1, 0, 0, 2, 3, -1, 0, 0] -sentimentalising 0.4 0.91652 [0, 2, 0, 0, 0, -1, 1, 0, 2, 0] -sentimentalism 1.0 0.63246 [2, 1, 0, 2, 1, 1, 1, 0, 1, 1] -sentimentalisms 0.4 0.8 [0, 1, 1, 0, 0, 2, 1, 0, 0, -1] -sentimentalist 0.8 0.87178 [2, 1, 0, 2, 0, 1, 2, 0, 0, 0] -sentimentalists 0.7 0.78102 [0, 0, 1, 0, 0, 1, 1, 2, 0, 2] -sentimentalities 0.9 0.83066 [2, 1, 1, 2, 1, 0, 0, 2, 0, 0] -sentimentality 1.2 1.46969 [-2, 1, 1, 2, 2, 0, 4, 2, 1, 1] -sentimentalization 1.2 0.87178 [0, 1, 2, 0, 1, 1, 3, 1, 2, 1] -sentimentalizations 0.4 0.8 [0, 1, 0, 1, 0, 0, 0, 2, -1, 1] -sentimentalize 0.8 1.07703 [2, 0, 0, 2, 0, 2, 1, -1, 2, 0] -sentimentalized 1.1 1.22066 [3, 0, 2, 0, 1, 3, 2, 0, 0, 0] -sentimentalizes 1.1 1.37477 [3, 0, 1, 0, 1, 4, 2, 0, 0, 0] -sentimentalizing 0.8 0.87178 [1, 1, 1, 1, 2, 0, -1, 1, 0, 2] -sentimentally 1.9 0.9434 [3, 2, 3, 1, 0, 2, 1, 2, 3, 2] -serene 2.0 1.0 [1, 1, 3, 2, 2, 4, 3, 2, 1, 1] -serious -0.3 0.45826 [0, -1, 0, -1, -1, 0, 0, 0, 0, 0] -seriously -0.7 1.34536 [-3, -2, 0, 0, -1, -2, 2, -1, 0, 0] -seriousness -0.2 1.16619 [0, 2, 0, 0, 0, 0, -3, -1, 0, 0] -severe -1.6 1.8 [-3, -2, -4, 1, -2, -3, 2, -1, -1, -3] -severed -1.5 0.5 [-1, -1, -2, -1, -2, -1, -1, -2, -2, -2] -severely -2.0 0.89443 [-2, -1, -1, -2, -2, -1, -3, -2, -4, -2] -severeness -1.0 1.73205 [0, 0, -1, -4, 1, -2, 0, 1, -1, -4] -severer -1.6 1.49666 [-2, -3, -2, -1, -2, 2, -4, -1, -1, -2] -severest -1.5 1.85742 [-4, -1, 2, -2, -2, -3, -4, -1, 1, -1] -sexy 2.4 0.8 [2, 3, 3, 4, 2, 2, 2, 2, 3, 1] -shake -0.7 0.9 [-2, 0, 0, -2, 1, -1, 0, -1, -1, -1] -shakeable -0.3 1.00499 [2, -1, 0, 0, -1, -2, 0, 0, -1, 0] -shakedown -1.2 0.4 [-2, -1, -1, -1, -2, -1, -1, -1, -1, -1] -shakedowns -1.4 0.8 [-2, -1, -1, -3, -1, -1, 0, -2, -2, -1] -shaken -0.3 0.9 [-1, -1, 1, -1, 1, 0, -1, 1, -1, -1] -shakeout -1.3 0.78102 [-1, -2, 0, -1, -1, -2, -2, -2, 0, -2] -shakeouts -0.8 1.16619 [-2, -1, 0, 0, -1, 2, -2, -1, -2, -1] -shakers 0.3 1.00499 [2, 0, 0, -1, 2, 0, 1, -1, 0, 0] -shakeup -0.6 0.4899 [-1, 0, -1, -1, -1, 0, 0, 0, -1, -1] -shakeups -0.5 0.92195 [2, -1, 0, 0, -1, -1, -1, -1, -1, -1] -shakier -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] -shakiest -1.2 0.74833 [-1, 0, 0, -1, -1, -1, -2, -2, -2, -2] -shakily -0.7 0.45826 [-1, -1, -1, -1, -1, 0, 0, 0, -1, -1] -shakiness -0.7 1.1 [2, -1, -1, -1, -2, -1, -1, -2, 0, 0] -shaking -0.7 0.45826 [-1, -1, -1, 0, -1, -1, 0, 0, -1, -1] -shaky -0.9 0.3 [-1, -1, -1, 0, -1, -1, -1, -1, -1, -1] -shame -2.1 0.53852 [-2, -2, -2, -3, -3, -1, -2, -2, -2, -2] -shamed -2.6 0.4899 [-2, -3, -3, -2, -3, -3, -3, -2, -2, -3] -shamefaced -2.3 0.64031 [-2, -2, -2, -3, -3, -3, -3, -1, -2, -2] -shamefacedly -1.9 0.3 [-2, -2, -2, -2, -2, -2, -2, -1, -2, -2] -shamefacedness -2.0 0.89443 [-1, -1, -2, -2, -2, -1, -2, -4, -2, -3] -shamefast -1.0 0.44721 [-1, -1, 0, -1, -1, -1, -1, -2, -1, -1] -shameful -2.2 0.6 [-3, -3, -2, -2, -2, -3, -1, -2, -2, -2] -shamefully -1.9 0.7 [-2, -3, -1, -3, -1, -2, -2, -1, -2, -2] -shamefulness -2.4 0.4899 [-2, -3, -3, -2, -3, -2, -3, -2, -2, -2] -shamefulnesses -2.3 0.78102 [-4, -2, -2, -2, -3, -1, -2, -2, -3, -2] -shameless -1.4 1.0198 [-1, -1, 1, -2, -3, -1, -2, -2, -1, -2] -shamelessly -1.4 1.0198 [-1, 0, -1, -2, 0, -1, -3, -3, -1, -2] -shamelessness -1.4 1.0198 [-1, -3, -2, 1, -2, -1, -2, -2, -1, -1] -shamelessnesses -2.0 1.0 [-2, 0, -2, -4, -2, -1, -2, -3, -2, -2] -shames -1.7 0.9 [-3, -3, -3, -1, -1, -1, -1, -1, -1, -2] -share 1.2 0.74833 [0, 1, 1, 2, 2, 2, 1, 1, 0, 2] -shared 1.4 0.4899 [2, 2, 2, 1, 2, 1, 1, 1, 1, 1] -shares 1.2 0.87178 [0, 2, 1, 1, 0, 2, 2, 2, 2, 0] -sharing 1.8 0.6 [2, 2, 1, 2, 2, 3, 1, 1, 2, 2] -shattered -2.1 0.7 [-1, -3, -3, -2, -2, -2, -3, -2, -1, -2] -shit -2.6 1.0198 [-2, -1, -4, -3, -4, -4, -2, -2, -2, -2] -shitake -0.3 1.26886 [-4, 0, 0, 0, 0, 0, 0, 0, 1, 0] -shitakes -1.1 1.7 [0, -4, 0, 0, 0, 0, -3, 0, -4, 0] -shithead -3.1 0.83066 [-3, -4, -4, -3, -4, -3, -1, -3, -3, -3] -shitheads -2.6 1.35647 [-2, -3, -4, -3, -3, -3, -2, -4, 1, -3] -shits -2.1 1.22066 [-3, 0, -3, 0, -2, -4, -2, -2, -2, -3] -shittah 0.1 1.3 [-2, -2, 0, 2, 0, 0, 0, 0, 1, 2] -shitted -1.7 0.64031 [-2, -1, -2, -1, -2, -2, -3, -1, -2, -1] -shittier -2.1 0.83066 [-3, -3, -2, -1, -1, -1, -3, -2, -2, -3] -shittiest -3.4 0.66332 [-3, -4, -3, -4, -4, -4, -3, -3, -4, -2] -shittim -0.6 1.0198 [-3, 0, 0, 0, 0, -2, 0, 0, -1, 0] -shittimwood -0.3 0.9 [0, 0, -3, 0, 0, 0, 0, 0, 0, 0] -shitting -1.8 0.9798 [-1, -2, -2, -1, -3, -1, -1, -2, -4, -1] -shitty -2.6 0.8 [-3, -4, -2, -3, -3, -2, -3, -1, -2, -3] -shock -1.6 0.91652 [0, -3, -1, -2, -1, -2, -2, -1, -3, -1] -shockable -1.0 1.0 [-3, -1, -1, 0, 0, -2, -1, -2, 0, 0] -shocked -1.3 1.18743 [-2, -1, -1, 0, 0, -2, 0, -2, -1, -4] -shocker -0.6 1.49666 [-2, -1, 3, -1, 0, -3, -1, 0, -1, 0] -shockers -1.1 0.9434 [-1, -2, -2, -1, -1, 0, 0, -3, 0, -1] -shocking -1.7 1.34536 [-3, -3, 0, -1, 0, -3, 0, -1, -3, -3] -shockingly -0.7 1.48661 [-2, 0, -1, -3, -3, 0, 2, 0, 0, 0] -shockproof 1.3 0.64031 [1, 0, 1, 1, 2, 2, 1, 2, 1, 2] -shocks -1.6 0.91652 [-3, -1, 0, -1, -2, -2, -1, -3, -2, -1] -shook -0.4 0.66332 [-1, -2, 0, 0, 0, 0, 0, 0, 0, -1] -shoot -1.4 1.11355 [-1, -4, -1, -1, -2, 0, -2, 0, -1, -2] -short-sighted -1.2 0.6 [0, -1, -2, -2, -1, -1, -1, -2, -1, -1] -short-sightedness -1.1 1.37477 [-1, -2, -2, -2, -3, -1, 0, 2, 0, -2] -shortage -1.0 1.09545 [-2, -2, -1, -2, -1, -1, 2, -1, -1, -1] -shortages -0.6 1.0198 [0, -2, -1, -1, 0, -2, 1, 1, -1, -1] -shrew -0.9 1.04403 [-2, -1, -2, -2, 1, 0, 0, 0, -1, -2] -shy -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] -shyer -0.8 0.6 [-1, -1, -1, -1, 0, -1, 0, 0, -2, -1] -shying -0.9 0.83066 [-1, -2, -1, 0, -2, 0, 0, 0, -2, -1] -shylock -2.1 1.13578 [-2, -2, -2, 0, -3, -3, -3, -3, 0, -3] -shylocked -0.7 1.00499 [0, -3, -1, 0, 0, -2, 0, -1, 0, 0] -shylocking -1.5 1.11803 [0, -2, -3, 0, -1, -3, -2, 0, -2, -2] -shylocks -1.4 1.11355 [0, -2, -1, -2, -3, 0, -3, -1, -2, 0] -shyly -0.7 0.45826 [-1, -1, -1, -1, 0, 0, -1, 0, -1, -1] -shyness -1.3 1.00499 [-2, 0, -3, 0, -1, -2, -2, -1, -2, 0] -shynesses -1.2 0.6 [-2, -1, -1, -2, -1, -2, 0, -1, -1, -1] -shyster -1.6 0.66332 [-2, -1, -2, -3, -2, -1, -1, -1, -1, -2] -shysters -0.9 0.7 [0, -2, 0, 0, -2, -1, -1, -1, -1, -1] -sick -2.3 0.78102 [-1, -2, -3, -2, -2, -4, -3, -2, -2, -2] -sicken -1.9 0.7 [-2, -3, -1, -3, -1, -1, -2, -2, -2, -2] -sickened -2.5 0.92195 [-3, -2, -4, -3, -1, -1, -3, -3, -2, -3] -sickener -2.2 0.87178 [-3, -1, -2, -3, -1, -1, -3, -3, -2, -3] -sickeners -2.2 0.6 [-3, -1, -2, -3, -2, -3, -2, -2, -2, -2] -sickening -2.4 0.91652 [-3, -4, -1, -3, -2, -2, -1, -3, -2, -3] -sickeningly -2.1 0.7 [-3, -3, -1, -2, -2, -1, -3, -2, -2, -2] -sickens -2.0 0.63246 [-2, -1, -2, -2, -3, -2, -1, -2, -3, -2] -sigh 0.1 1.22066 [2, -1, -1, -1, 0, 2, 1, 1, -1, -1] -significance 1.1 1.22066 [0, 0, 0, 1, 3, 2, 3, 2, 0, 0] -significant 0.8 0.9798 [1, 0, 1, 3, 0, 1, 0, 0, 2, 0] -silencing -0.5 0.67082 [-2, -1, 0, 0, 0, 0, 0, -1, 0, -1] -sillibub -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] -sillier 1.0 0.7746 [1, 1, 0, 2, 0, 1, 1, 2, 2, 0] -sillies 0.8 0.74833 [2, 1, 0, 1, 0, 1, 0, 2, 1, 0] -silliest 0.8 0.9798 [0, 1, 1, 1, 1, 0, 3, 1, -1, 1] -sillily -0.1 1.04403 [1, -1, -1, -1, 2, 1, -1, 0, 0, -1] -sillimanite 0.1 0.3 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] -sillimanites 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] -silliness -0.9 1.22066 [1, -3, -1, 0, 1, -1, -2, -1, -2, -1] -sillinesses -1.2 1.46969 [-3, -2, -3, 0, -2, 0, 1, -2, -2, 1] -silly 0.1 1.04403 [1, 1, 0, 0, 0, 2, -1, -2, 0, 0] -sin -2.6 0.8 [-2, -4, -3, -2, -2, -2, -4, -3, -2, -2] -sincere 1.7 0.78102 [1, 2, 3, 0, 2, 2, 2, 2, 1, 2] -sincerely 2.1 1.04403 [1, 3, 2, 4, 2, 3, 1, 1, 3, 1] -sincereness 1.8 0.74833 [3, 1, 1, 2, 2, 3, 1, 2, 2, 1] -sincerer 2.0 1.0 [1, 3, 3, 2, 3, 2, 1, 3, 0, 2] -sincerest 2.0 1.34164 [0, 3, 1, 1, 4, 2, 1, 4, 1, 3] -sincerities 1.5 0.67082 [2, 1, 1, 1, 1, 1, 3, 2, 2, 1] -sinful -2.6 0.8 [-4, -3, -3, -2, -1, -2, -3, -2, -3, -3] -singleminded 1.2 0.87178 [1, 2, 0, 0, 3, 2, 1, 1, 1, 1] -sinister -2.9 1.13578 [-4, -4, -1, -3, -1, -4, -3, -3, -2, -4] -sins -2.0 1.0 [-2, -1, -2, -3, -1, -4, -3, -2, -1, -1] -skeptic -0.9 1.13578 [0, 0, -1, -1, -1, 0, -2, -2, 1, -3] -skeptical -1.3 0.9 [0, -3, -2, -2, -1, -2, 0, -1, -1, -1] -skeptically -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -2] -skepticism -1.0 0.89443 [0, 0, -1, -1, -1, -1, 0, -1, -3, -2] -skepticisms -1.2 0.9798 [1, -2, 0, -1, -2, -1, -2, -2, -1, -2] -skeptics -0.4 0.91652 [-2, 0, 0, -1, -1, 1, -1, 0, 1, -1] -slam -1.6 1.11355 [-2, -1, -3, -1, -3, -2, -1, -2, 1, -2] -slash -1.1 1.22066 [-2, -3, -2, 0, -2, 0, -1, -2, 0, 1] -slashed -0.9 0.83066 [-2, -1, -2, -1, -1, 0, 1, -1, -1, -1] -slashes -0.8 0.6 [0, -1, -2, -1, 0, 0, -1, -1, -1, -1] -slashing -1.1 1.86815 [-3, -2, -3, -3, 3, 1, 0, -1, -2, -1] -slavery -3.8 0.4 [-4, -3, -4, -3, -4, -4, -4, -4, -4, -4] -sleeplessness -1.6 1.49666 [-3, -4, -2, -1, -2, -2, -2, 2, -1, -1] -slicker 0.4 1.28062 [-2, 1, -1, 2, 0, 0, 2, 2, 0, 0] -slickest 0.3 1.00499 [1, 0, -1, 0, -1, 0, 0, 0, 2, 2] -sluggish -1.7 0.64031 [-1, -2, -1, -3, -2, -2, -1, -2, -1, -2] -slut -2.8 0.87178 [-4, -2, -2, -1, -3, -3, -3, -3, -4, -3] -sluts -2.7 1.48661 [-3, -3, -4, -4, -3, -4, -1, -3, 1, -3] -sluttier -2.7 1.18743 [-2, -2, -4, -3, -4, -4, -1, -1, -2, -4] -sluttiest -3.1 0.83066 [-3, -4, -3, -4, -3, -4, -2, -2, -4, -2] -sluttish -2.2 0.87178 [-2, -3, -3, -2, -2, -4, -2, -1, -1, -2] -sluttishly -2.1 1.13578 [-2, 0, -2, -3, -1, -2, -3, -1, -3, -4] -sluttishness -2.5 0.92195 [-2, -1, -3, -4, -2, -1, -3, -3, -3, -3] -sluttishnesses -2.0 1.09545 [0, -2, -1, -3, -3, -1, -3, -1, -3, -3] -slutty -2.3 0.9 [-3, -1, -3, -3, -3, -2, -1, -3, -1, -3] -smart 1.7 0.78102 [2, 2, 1, 2, 1, 3, 2, 0, 2, 2] -smartass -2.1 0.83066 [-1, -1, -2, -3, -2, -1, -2, -3, -3, -3] -smartasses -1.7 2.05183 [-1, -2, -3, -3, -3, -1, -2, -3, 4, -3] -smarted 0.7 1.41774 [2, 1, -2, 1, 1, 2, 2, 2, -1, -1] -smarten 1.9 0.7 [3, 1, 2, 1, 2, 2, 2, 3, 1, 2] -smartened 1.5 0.67082 [2, 2, 1, 3, 1, 1, 1, 1, 2, 1] -smartening 1.7 0.9 [1, 3, 3, 1, 1, 1, 2, 1, 1, 3] -smartens 1.5 0.5 [2, 2, 1, 1, 1, 1, 2, 2, 2, 1] -smarter 2.0 0.7746 [2, 2, 1, 1, 2, 2, 2, 2, 4, 2] -smartest 3.0 1.0 [4, 3, 4, 3, 2, 2, 4, 3, 1, 4] -smartie 1.3 0.9 [1, 4, 1, 1, 1, 1, 1, 1, 1, 1] -smarties 1.7 0.9 [1, 1, 2, 4, 2, 2, 1, 2, 1, 1] -smarting -0.7 1.9 [2, 3, -1, -2, 1, -2, -1, -3, -2, -2] -smartly 1.5 0.67082 [2, 1, 1, 1, 1, 2, 1, 3, 1, 2] -smartness 2.0 0.89443 [1, 3, 3, 1, 2, 1, 2, 3, 1, 3] -smartnesses 1.5 0.92195 [1, 0, 1, 1, 1, 2, 1, 2, 3, 3] -smarts 1.6 0.66332 [2, 1, 3, 1, 2, 1, 2, 1, 2, 1] -smartweed 0.2 0.6 [0, 0, 0, 0, 0, 2, 0, 0, 0, 0] -smartweeds 0.1 0.53852 [0, 0, -1, 0, 0, 0, 1, 0, 0, 1] -smarty 1.1 0.53852 [0, 2, 1, 2, 1, 1, 1, 1, 1, 1] -smear -1.5 1.20416 [-2, -1, -1, -2, -3, 0, 0, -4, -1, -1] -smilax 0.6 0.66332 [0, 2, 1, 0, 0, 0, 1, 1, 1, 0] -smilaxes 0.3 0.78102 [0, 0, 0, 0, 1, 2, 1, -1, 0, 0] -smile 1.5 0.67082 [2, 1, 1, 1, 2, 2, 3, 1, 1, 1] -smiled 2.5 0.80623 [3, 2, 3, 2, 1, 2, 3, 4, 3, 2] -smileless -1.4 0.4899 [-1, -1, -1, -1, -2, -1, -2, -1, -2, -2] -smiler 1.7 0.78102 [1, 1, 3, 1, 3, 2, 2, 2, 1, 1] -smiles 2.1 1.04403 [2, 4, 2, 1, 3, 1, 1, 3, 1, 3] -smiley 1.7 0.78102 [1, 2, 1, 2, 2, 0, 2, 3, 2, 2] -smileys 1.5 0.92195 [1, 2, 1, 3, 1, 0, 1, 3, 1, 2] -smiling 2.0 1.18322 [2, 1, 1, 1, 2, 3, 4, 1, 4, 1] -smilingly 2.3 0.64031 [3, 2, 3, 2, 3, 1, 2, 2, 2, 3] -smog -1.2 0.6 [-1, -1, -2, -1, -1, -2, -2, -1, 0, -1] -smother -1.8 0.87178 [-2, -2, -3, -1, -2, -1, -2, -2, -3, 0] -smothered -0.9 1.7 [2, -4, 0, -1, -3, -2, 0, -1, 1, -1] -smothering -1.4 1.56205 [-2, -3, -1, -4, 0, -2, -1, 2, -1, -2] -smothers -1.9 1.04403 [-1, -1, -3, -1, -2, -3, 0, -2, -3, -3] -smothery -1.1 0.7 [-2, 0, -2, -1, -2, -1, 0, -1, -1, -1] -smug 0.8 1.16619 [-1, 2, 0, 2, 1, -1, 2, 1, 0, 2] -smugger -1.0 0.89443 [1, -2, -1, -2, -1, -1, -1, 0, -2, -1] -smuggest -1.5 1.28452 [-1, -1, -1, 1, -1, -3, -4, -2, -1, -2] -smuggle -1.6 1.11355 [-2, -1, -1, -1, -2, 0, -1, -1, -3, -4] -smuggled -1.5 0.92195 [-1, -1, -2, -1, -1, -1, -2, -1, -1, -4] -smuggler -2.1 1.22066 [-1, -3, -3, -1, -1, -1, -4, -1, -2, -4] -smugglers -1.4 1.56205 [-2, -3, -4, 1, -2, 0, -2, 1, -1, -2] -smuggles -1.7 1.00499 [-1, -2, -2, -1, -1, -1, -3, -1, -1, -4] -smuggling -2.1 0.83066 [-3, -2, -2, -1, -2, -2, -1, -2, -4, -2] -smugly 0.2 1.249 [-1, 2, -1, -1, 1, 1, -1, 1, 2, -1] -smugness -1.4 1.11355 [-1, -1, -1, -3, -3, -2, 1, -1, -2, -1] -smugnesses -1.7 0.78102 [-1, -1, -2, -1, -3, -1, -2, -2, -3, -1] -sneaky -0.9 0.7 [-1, -1, -1, -2, -1, -1, -1, 1, -1, -1] -snob -2.0 0.63246 [-2, -2, -2, -2, -2, -1, -3, -1, -3, -2] -snobbery -2.0 0.63246 [-1, -2, -2, -2, -2, -3, -2, -1, -3, -2] -snobbier -0.7 1.00499 [-1, 2, -1, -1, -1, -1, -1, 0, -2, -1] -snobbiest -0.5 1.11803 [-2, -2, 1, -1, 1, -1, 0, -1, 1, -1] -snobbily -1.6 1.11355 [-1, -2, -2, -2, -1, -3, -3, -1, 1, -2] -snobbish -0.9 1.37477 [-2, -1, 1, -1, 1, -2, -3, -2, 1, -1] -snobbishly -1.2 1.249 [-2, 1, -2, -1, -2, -3, -1, -2, -1, 1] -snobbishness -1.1 1.22066 [-1, -2, -2, -1, -3, -1, -1, -1, 2, -1] -snobbishnesses -1.7 0.78102 [-2, -1, -3, -2, -1, -1, -2, -1, -3, -1] -snobbism -1.0 1.41421 [-2, -1, 1, -1, 1, -2, -3, -2, 1, -2] -snobbisms -0.3 1.18743 [1, -1, -1, 0, -1, -1, 1, -2, 2, -1] -snobby -1.7 1.00499 [-1, -1, -1, -3, -2, -2, 0, -3, -3, -1] -snobs -1.4 1.0198 [-2, -1, -1, -2, -2, -3, -1, -2, 1, -1] -snub -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -2, -1, -2] -snubbed -2.0 0.7746 [-2, -2, 0, -2, -3, -2, -2, -2, -3, -2] -snubbing -0.9 1.13578 [-2, -1, -1, -1, 1, -1, -3, 1, -1, -1] -snubs -2.1 0.9434 [-2, -1, -1, -1, -3, -2, -4, -3, -2, -2] -sob -1.0 1.34164 [-1, -2, -2, -2, -1, -1, 2, 1, -2, -2] -sobbed -1.9 1.3 [-2, -4, 1, -1, -3, -1, -3, -2, -2, -2] -sobbing -1.6 1.49666 [1, -2, -3, -1, -1, -3, 1, -2, -3, -3] -sobering -0.8 1.32665 [2, -2, 0, -2, -1, -1, -2, 1, -1, -2] -sobs -2.5 0.67082 [-3, -3, -2, -2, -3, -3, -3, -1, -2, -3] -sociabilities 1.2 0.9798 [1, 3, 1, 2, 0, 1, 0, 2, 2, 0] -sociability 1.1 0.9434 [0, 1, 1, 1, 0, 2, 1, 0, 2, 3] -sociable 1.9 0.7 [1, 1, 2, 3, 1, 2, 2, 2, 3, 2] -sociableness 1.5 0.5 [1, 1, 1, 2, 2, 2, 1, 2, 1, 2] -sociably 1.6 0.91652 [3, 2, 0, 1, 3, 2, 1, 1, 2, 1] -sok 1.3 1.1 [0, 1, 2, 1, 1, 0, 1, 4, 2, 1] -solemn -0.3 1.1 [-1, -2, -1, 0, -1, 2, 0, -1, 1, 0] -solemnified -0.5 0.67082 [0, 0, 0, 0, -1, -1, -1, 0, -2, 0] -solemnifies -0.5 0.67082 [0, 0, 0, 0, -1, -2, -1, 0, -1, 0] -solemnify 0.3 1.18743 [2, 1, 2, 1, 0, 0, -2, -1, 0, 0] -solemnifying 0.1 1.3 [2, -1, 0, -3, 0, 1, 1, 1, 0, 0] -solemnities 0.3 0.78102 [0, 1, -1, 0, 0, 0, 2, 1, 0, 0] -solemnity -1.1 0.9434 [0, -2, 0, -2, -2, -1, -2, 0, 0, -2] -solemnization 0.7 1.34536 [-1, -1, 0, 2, 2, 0, 3, 2, 0, 0] -solemnize 0.3 0.78102 [1, -1, 0, 2, 0, 0, 1, 0, 0, 0] -solemnized -0.7 0.9 [0, 0, 0, -1, -1, -1, -1, 0, 0, -3] -solemnizes 0.6 0.91652 [0, 0, 0, 0, 0, 0, 2, 2, 2, 0] -solemnizing -0.6 0.8 [0, 0, -1, -1, 0, 0, -2, -2, 0, 0] -solemnly 0.8 0.9798 [0, 2, 0, 1, 1, 2, -1, 2, 1, 0] -solid 0.6 0.8 [0, 2, 1, 2, 0, 1, 0, 0, 0, 0] -solidarity 1.2 0.6 [1, 1, 1, 1, 2, 0, 1, 2, 2, 1] -solution 1.3 0.64031 [1, 2, 1, 2, 1, 1, 2, 2, 0, 1] -solutions 0.7 0.78102 [1, 1, 2, 0, 1, 0, 2, 0, 0, 0] -solve 0.8 0.4 [0, 1, 1, 1, 1, 0, 1, 1, 1, 1] -solved 1.1 0.53852 [1, 2, 1, 0, 1, 1, 1, 2, 1, 1] -solves 1.1 0.7 [2, 0, 1, 0, 1, 2, 1, 2, 1, 1] -solving 1.4 0.8 [0, 3, 1, 2, 1, 1, 2, 1, 2, 1] -somber -1.8 0.6 [-1, -2, -2, -3, -2, -1, -2, -1, -2, -2] -son-of-a-bitch -2.7 0.64031 [-3, -3, -3, -1, -2, -3, -3, -3, -3, -3] -soothe 1.5 0.92195 [3, 2, 2, 1, 2, 0, 2, 0, 2, 1] -soothed 0.5 1.43178 [2, -3, 1, 1, 0, 1, 1, 1, 2, -1] -soothing 1.3 0.64031 [2, 1, 2, 1, 1, 1, 2, 0, 2, 1] -sophisticated 2.6 0.91652 [3, 4, 3, 3, 3, 1, 2, 1, 3, 3] -sore -1.5 0.5 [-2, -2, -2, -1, -1, -1, -2, -1, -1, -2] -sorrow -2.4 0.8 [-2, -2, -2, -1, -2, -3, -2, -4, -3, -3] -sorrowed -2.4 0.8 [-1, -2, -3, -3, -2, -3, -2, -4, -2, -2] -sorrower -2.3 0.78102 [-1, -2, -1, -3, -3, -2, -2, -3, -3, -3] -sorrowful -2.2 0.6 [-3, -3, -2, -2, -2, -2, -3, -1, -2, -2] -sorrowfully -2.3 0.64031 [-3, -3, -2, -1, -2, -2, -3, -2, -2, -3] -sorrowfulness -2.5 0.67082 [-4, -3, -2, -3, -2, -3, -2, -2, -2, -2] -sorrowing -1.7 1.26886 [-2, -2, 1, -1, -1, -2, -4, -3, -2, -1] -sorrows -1.6 0.66332 [-1, -1, -2, -1, -2, -2, -1, -2, -1, -3] -sorry -0.3 1.61555 [-1, 0, -1, -2, -1, -1, 4, 1, -1, -1] -soulmate 2.9 0.83066 [4, 2, 2, 2, 3, 4, 3, 3, 2, 4] -spam -1.5 1.0247 [-1, -1, -1, -2, 1, -2, -3, -2, -2, -2] -spammer -2.2 0.6 [-3, -2, -2, -1, -2, -3, -2, -2, -3, -2] -spammers -1.6 1.11355 [-2, -1, -2, -3, -2, -1, -2, -1, 1, -3] -spamming -2.1 0.83066 [-3, -3, -1, -3, -2, -1, -2, -2, -1, -3] -spark 0.9 1.04403 [0, 2, 1, 1, 0, 1, 3, -1, 1, 1] -sparkle 1.8 0.74833 [0, 2, 2, 2, 1, 2, 3, 2, 2, 2] -sparkles 1.3 1.18743 [3, 2, 0, 0, 3, 0, 2, 0, 1, 2] -sparkling 1.2 0.4 [1, 1, 1, 2, 1, 1, 1, 2, 1, 1] -special 1.7 0.78102 [3, 1, 3, 2, 2, 1, 1, 2, 1, 1] -speculative 0.4 1.11355 [1, -1, 1, 0, -1, -1, 1, 2, 2, 0] -spirit 0.7 1.00499 [0, 0, 1, 2, 3, 1, 0, 0, 0, 0] -spirited 1.3 1.00499 [1, 1, 0, 1, 1, 3, 2, 3, 0, 1] -spiritless -1.3 0.64031 [-2, -1, -1, -2, -2, -1, 0, -1, -2, -1] -spite -2.4 0.8 [-2, -2, -3, -2, -3, -2, -4, -1, -3, -2] -spited -2.4 0.91652 [-2, -3, -3, -4, -2, -1, -2, -1, -3, -3] -spiteful -1.9 1.75784 [-2, 3, -2, -3, -2, -3, -2, -2, -4, -2] -spitefully -2.3 0.78102 [-2, -2, -1, -3, -3, -2, -2, -2, -4, -2] -spitefulness -1.5 1.74642 [-3, -2, 1, -3, -3, -3, -2, 2, 0, -2] -spitefulnesses -2.3 0.9 [-1, -4, -2, -3, -3, -2, -2, -3, -1, -2] -spites -1.4 1.28062 [0, -2, -2, -3, -2, -1, 1, 0, -3, -2] -splendent 2.7 0.78102 [3, 2, 1, 3, 2, 3, 4, 3, 3, 3] -splendid 2.8 0.9798 [4, 2, 3, 4, 2, 2, 3, 1, 3, 4] -splendidly 2.1 1.22066 [1, 4, 1, 3, 3, 4, 1, 2, 1, 1] -splendidness 2.3 0.9 [2, 1, 3, 3, 4, 2, 1, 3, 2, 2] -splendiferous 2.6 1.95959 [4, 4, 3, -3, 3, 3, 4, 2, 3, 3] -splendiferously 1.9 1.3 [2, 4, 4, 3, 0, 1, 1, 1, 2, 1] -splendiferousness 1.7 1.18743 [1, 2, 3, 1, 2, 3, 3, 2, -1, 1] -splendor 3.0 0.63246 [3, 3, 3, 3, 3, 2, 4, 4, 3, 2] -splendorous 2.2 0.87178 [4, 2, 1, 2, 2, 3, 3, 1, 2, 2] -splendors 2.0 0.44721 [2, 2, 2, 2, 3, 2, 2, 2, 1, 2] -splendour 2.2 0.6 [2, 2, 2, 3, 3, 1, 2, 3, 2, 2] -splendours 2.2 1.249 [3, 0, 2, 1, 4, 3, 2, 4, 1, 2] -splendrous 2.2 1.16619 [4, 4, 3, 2, 1, 1, 3, 1, 2, 1] -sprightly 2.0 0.89443 [0, 2, 3, 2, 2, 1, 2, 3, 3, 2] -squelched -1.0 0.63246 [-1, -1, -1, -1, 0, -2, -1, 0, -1, -2] -stab -2.8 0.6 [-3, -2, -2, -3, -3, -3, -3, -2, -4, -3] -stabbed -1.9 1.22066 [-2, -1, -3, -2, -2, 1, -3, -3, -1, -3] -stable 1.2 0.74833 [1, 2, 2, 0, 1, 2, 1, 1, 2, 0] -stabs -1.9 1.13578 [-3, -3, -4, 0, -1, -2, -2, -2, -1, -1] -stall -0.8 0.74833 [-1, 0, -1, 0, -1, 0, -2, 0, -2, -1] -stalled -0.8 0.87178 [-2, -1, 0, -1, -1, 0, 1, -2, -1, -1] -stalling -0.8 1.4 [-3, -2, -1, -1, 0, 2, 1, -2, -1, -1] -stamina 1.2 0.9798 [1, 0, 3, 0, 1, 2, 2, 1, 2, 0] -stammer -0.9 0.3 [-1, 0, -1, -1, -1, -1, -1, -1, -1, -1] -stammered -0.9 0.7 [-2, -1, -1, -1, 1, -1, -1, -1, -1, -1] -stammerer -1.1 0.3 [-1, -2, -1, -1, -1, -1, -1, -1, -1, -1] -stammerers -0.8 0.4 [-1, -1, -1, -1, -1, 0, 0, -1, -1, -1] -stammering -1.0 0.63246 [-2, -1, 0, -1, -1, -2, 0, -1, -1, -1] -stammers -0.8 0.4 [-1, -1, -1, 0, -1, -1, -1, 0, -1, -1] -stampede -1.8 1.07703 [-2, -3, -2, -3, 0, 0, -2, -1, -2, -3] -stank -1.9 1.04403 [-2, -2, -2, -1, -2, -4, -3, 0, -1, -2] -startle -1.3 0.64031 [-1, -1, -1, -1, -1, -2, -1, -1, -3, -1] -startled -0.7 0.78102 [-2, -1, -1, 0, 1, -1, -1, 0, -1, -1] -startlement -0.5 1.20416 [-1, 0, 0, 1, -1, -1, 2, -2, -1, -2] -startlements 0.2 1.32665 [2, 2, 0, 0, -1, 2, 0, -2, -1, 0] -startler -0.8 0.74833 [-2, -1, -1, 0, 1, -1, -1, -1, -1, -1] -startlers -0.5 0.80623 [0, 0, 0, 0, -1, -1, -1, 1, -1, -2] -startles -0.5 1.36015 [-2, 2, -1, 0, 2, -1, -1, -2, -1, -1] -startling 0.3 1.41774 [-2, 2, -1, 0, -1, 2, -1, 1, 1, 2] -startlingly -0.3 0.9 [-1, -1, 0, -2, 1, 0, 1, 0, -1, 0] -starve -1.9 2.02237 [2, -3, -4, -1, -3, -4, -1, -2, 1, -4] -starved -2.6 1.11355 [-3, -4, -1, -3, -3, -4, -1, -1, -3, -3] -starves -2.3 0.78102 [-3, -2, -2, -3, -2, -3, -1, -1, -3, -3] -starving -1.8 2.03961 [-2, -2, -4, -4, -3, -3, 2, 2, -2, -2] -steadfast 1.0 1.0 [0, 0, 2, 1, 1, 2, 3, 0, 1, 0] -steal -2.2 0.6 [-2, -2, -2, -3, -3, -3, -1, -2, -2, -2] -stealable -1.7 1.00499 [-3, -1, -2, -1, -2, -1, -1, -1, -4, -1] -stealer -1.7 0.78102 [-2, -2, -1, -2, -3, -1, -2, -2, -2, 0] -stealers -2.2 0.74833 [-2, -2, -2, -4, -2, -2, -3, -1, -2, -2] -stealing -2.7 0.9 [-3, -2, -2, -4, -4, -3, -1, -3, -2, -3] -stealings -1.9 0.9434 [-2, -2, -1, -1, -1, -3, -4, -2, -1, -2] -steals -2.3 0.64031 [-4, -2, -2, -3, -2, -2, -2, -2, -2, -2] -stealth -0.3 1.34536 [-2, 1, 1, -1, 0, -3, 0, 1, -1, 1] -stealthier -0.3 1.00499 [0, 0, -3, 0, 0, 1, 0, -1, 0, 0] -stealthiest 0.4 2.10713 [-1, 2, 1, 1, 3, 4, -1, 0, -2, -3] -stealthily 0.1 1.37477 [2, 0, 0, -1, 1, 0, -3, 2, 0, 0] -stealthiness 0.2 0.74833 [1, 0, 0, -1, 1, 0, -1, 0, 1, 1] -stealths -0.3 0.78102 [-2, 0, 0, -1, 0, 1, -1, 0, 0, 0] -stealthy -0.1 0.7 [0, 0, 0, -1, 1, -1, -1, 0, 1, 0] -stench -2.3 0.64031 [-3, -2, -2, -3, -3, -1, -3, -2, -2, -2] -stenches -1.5 1.11803 [-2, -2, -1, -3, 0, 0, -3, -2, 0, -2] -stenchful -2.4 0.91652 [-3, -1, -3, -1, -2, -2, -3, -4, -2, -3] -stenchy -2.3 1.00499 [-4, -1, -2, -3, -1, -1, -2, -3, -3, -3] -stereotype -1.3 0.78102 [-1, -1, -2, 0, -2, 0, -2, -1, -2, -2] -stereotyped -1.2 0.4 [-1, -1, -2, -1, -2, -1, -1, -1, -1, -1] -stifled -1.4 0.66332 [-1, -1, -1, -1, -3, -1, -2, -2, -1, -1] -stimulate 0.9 0.83066 [1, 0, 1, 1, 1, 2, -1, 2, 1, 1] -stimulated 0.9 0.7 [1, 0, 0, 0, 1, 1, 2, 1, 2, 1] -stimulates 1.0 0.89443 [1, 0, 0, 0, 1, 1, 2, 1, 3, 1] -stimulating 1.9 0.7 [2, 3, 2, 1, 3, 2, 1, 2, 1, 2] -stingy -1.6 0.8 [-1, 0, -2, -2, -1, -1, -2, -2, -3, -2] -stink -1.7 0.64031 [-2, -2, -1, -3, -2, -1, -1, -2, -1, -2] -stinkard -2.3 0.9 [-2, -3, -3, -2, -3, -2, -3, -3, 0, -2] -stinkards -1.0 1.26491 [-2, -1, 2, -2, -1, -1, 0, -3, -1, -1] -stinkbug -0.2 0.4 [-1, 0, 0, 0, 0, 0, 0, 0, -1, 0] -stinkbugs -1.0 1.26491 [0, 0, 0, -4, -1, -2, -1, 0, -2, 0] -stinker -1.5 0.80623 [-3, -1, -3, -1, -1, -2, -1, -1, -1, -1] -stinkers -1.2 1.07703 [-3, 1, -1, -2, -2, -1, -1, -2, 0, -1] -stinkhorn -0.2 1.16619 [-2, -2, 0, 0, -1, 0, 1, 2, 0, 0] -stinkhorns -0.8 0.9798 [0, -3, 0, -2, 0, 0, -1, -1, -1, 0] -stinkier -1.5 1.0247 [-2, -1, -2, -2, -1, 1, -2, -1, -3, -2] -stinkiest -2.1 1.57797 [-1, -2, -3, -4, -2, -1, 1, -4, -1, -4] -stinking -2.4 0.91652 [-2, -4, -2, -3, -3, -1, -2, -1, -3, -3] -stinkingly -1.3 1.55242 [-2, -3, -3, -2, -2, 1, -2, 2, -1, -1] -stinko -1.5 0.80623 [-1, -2, -2, -2, 0, -1, -2, -1, -1, -3] -stinkpot -2.5 0.92195 [-4, -1, -3, -4, -2, -2, -3, -2, -2, -2] -stinkpots -0.7 1.26886 [-1, -3, -2, -1, 0, 2, 0, -1, 0, -1] -stinks -1.0 1.34164 [-2, -2, -1, -2, 2, -1, -2, 1, -1, -2] -stinkweed -0.4 1.0198 [-2, 0, -1, 0, 2, 0, -1, -1, 0, -1] -stinkwood -0.1 1.13578 [0, -2, 0, 0, 0, -2, 1, 0, 2, 0] -stinky -1.5 0.5 [-2, -1, -1, -2, -1, -1, -2, -2, -1, -2] -stolen -2.2 0.9798 [-3, -2, -2, -1, -3, -2, -3, 0, -3, -3] -stop -1.2 0.87178 [-1, 0, -2, -2, 0, -1, -2, -2, 0, -2] -stopped -0.9 0.53852 [-1, -1, -1, -1, -2, -1, -1, -1, 0, 0] -stopping -0.6 0.66332 [-1, 0, 0, -1, 0, 0, 0, -1, -2, -1] -stops -0.6 0.8 [-1, -1, 0, 0, -2, 0, -2, 0, 0, 0] -stout 0.7 1.34536 [2, 0, 3, 1, 2, 1, 0, 0, -2, 0] -straight 0.9 1.04403 [2, 0, 1, 0, 0, 0, 1, 2, 3, 0] -strain -0.2 0.9798 [0, 0, -2, 0, -1, 2, 0, -1, 0, 0] -strained -1.7 0.78102 [0, -2, -1, -1, -2, -2, -2, -3, -2, -2] -strainer -0.8 1.249 [2, -2, -1, 0, -1, 0, -2, 0, -2, -2] -strainers -0.3 0.45826 [0, 0, 0, 0, -1, -1, 0, -1, 0, 0] -straining -1.3 0.78102 [0, -3, -2, -1, -1, -1, -1, -1, -2, -1] -strains -1.2 0.4 [-1, -1, -1, -2, -1, -2, -1, -1, -1, -1] -strange -0.8 0.74833 [0, -1, -1, 0, -2, 0, -1, -2, 0, -1] -strangely -1.2 0.87178 [0, -1, -2, -2, 0, -3, -1, -1, -1, -1] -strangled -2.5 1.0247 [-1, -1, -3, -3, -3, -3, -1, -4, -3, -3] -strength 2.2 0.6 [1, 2, 2, 3, 2, 3, 3, 2, 2, 2] -strengthen 1.3 0.64031 [1, 1, 2, 1, 2, 1, 2, 0, 2, 1] -strengthened 1.8 0.4 [2, 2, 2, 2, 1, 2, 2, 1, 2, 2] -strengthener 1.8 0.6 [2, 0, 2, 2, 2, 2, 2, 2, 2, 2] -strengtheners 1.4 0.91652 [1, 2, 1, 2, 3, 0, 2, 0, 2, 1] -strengthening 2.2 0.74833 [3, 3, 1, 1, 2, 2, 2, 2, 3, 3] -strengthens 2.0 0.63246 [3, 2, 1, 2, 2, 3, 2, 1, 2, 2] -strengths 1.7 0.64031 [2, 1, 3, 1, 2, 1, 2, 1, 2, 2] -stress -1.8 0.6 [-1, -2, -2, -1, -2, -1, -2, -3, -2, -2] -stressed -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -1] -stresses -2.0 1.0 [-3, -3, -2, -1, -2, 0, -2, -1, -3, -3] -stressful -2.3 0.45826 [-2, -2, -2, -2, -3, -3, -2, -3, -2, -2] -stressfully -2.6 0.66332 [-2, -3, -1, -3, -3, -3, -3, -2, -3, -3] -stressing -1.5 0.67082 [-1, -2, -1, -1, -3, -1, -2, -2, -1, -1] -stressless 1.6 0.4899 [1, 2, 1, 2, 1, 2, 1, 2, 2, 2] -stresslessness 1.6 0.8 [1, 3, 1, 3, 2, 1, 2, 1, 1, 1] -stressor -1.8 0.74833 [-2, -1, -1, -2, -3, -2, -1, -2, -3, -1] -stressors -2.1 0.83066 [-3, -2, -2, -2, -3, -1, -3, -1, -1, -3] -stricken -2.3 0.9 [0, -2, -2, -2, -2, -3, -3, -3, -3, -3] -strike -0.5 1.11803 [0, 0, 0, -2, -2, 1, 1, -2, -1, 0] -strikers -0.6 1.0198 [0, 0, -2, -3, 0, 0, -1, 0, 0, 0] -strikes -1.5 0.92195 [0, -2, -2, -2, -3, -1, -2, -1, 0, -2] -strong 2.3 0.78102 [3, 2, 3, 3, 1, 1, 3, 2, 2, 3] -strongbox 0.7 0.78102 [2, 1, 0, 0, 0, 1, 2, 1, 0, 0] -strongboxes 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 2, 0, 0] -stronger 1.6 0.66332 [2, 1, 1, 1, 2, 3, 2, 1, 2, 1] -strongest 1.9 0.9434 [2, 3, 2, 1, 2, 2, 0, 3, 1, 3] -stronghold 0.5 0.80623 [0, 2, 0, 0, 2, 0, 0, 0, 0, 1] -strongholds 1.0 0.89443 [2, 2, 0, 1, 2, 2, 1, 0, 0, 0] -strongish 1.7 0.78102 [1, 1, 2, 3, 1, 2, 1, 3, 2, 1] -strongly 1.1 0.83066 [0, 0, 2, 2, 0, 1, 2, 2, 1, 1] -strongman 0.7 1.00499 [0, 1, 3, 0, 1, -1, 1, 1, 0, 1] -strongmen 0.5 1.11803 [-1, 0, 0, 3, 0, 1, 0, 2, 0, 0] -strongyl 0.6 1.0198 [0, 1, 0, 0, 0, 0, 0, 2, 3, 0] -strongyles 0.2 1.07703 [0, -2, 1, 1, -1, 1, 0, 0, 2, 0] -strongyloidosis -0.8 1.66132 [-2, -3, 0, 0, -2, -2, 2, -2, 2, -1] -strongyls 0.1 0.3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] -struck -1.0 0.89443 [-1, -2, -1, 0, -2, -2, -1, -1, 1, -1] -struggle -1.3 0.45826 [-2, -1, -2, -1, -2, -1, -1, -1, -1, -1] -struggled -1.4 0.66332 [-2, -2, -1, -1, -1, -1, -2, -2, 0, -2] -struggler -1.1 0.7 [-1, -1, -1, -1, 0, -1, -2, -2, 0, -2] -strugglers -1.4 0.4899 [-1, -2, -1, -1, -2, -1, -2, -2, -1, -1] -struggles -1.5 0.5 [-2, -2, -1, -1, -1, -1, -2, -2, -1, -2] -struggling -1.8 0.6 [-2, -2, -2, -2, -1, -1, -2, -2, -3, -1] -stubborn -1.7 1.00499 [0, -1, -2, -2, -2, -4, -1, -2, -1, -2] -stubborner -1.5 1.20416 [-2, -3, -1, -1, -2, 1, -3, -2, 0, -2] -stubbornest -0.6 1.62481 [-2, 4, -2, -1, -1, 0, -1, -1, -1, -1] -stubbornly -1.4 0.4899 [-2, -2, -1, -2, -1, -1, -2, -1, -1, -1] -stubbornness -1.1 0.53852 [-1, -1, 0, -2, -1, -1, -1, -2, -1, -1] -stubbornnesses -1.5 0.80623 [-1, -2, -3, -1, -1, -3, -1, -1, -1, -1] -stuck -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -1, -1, -1, -2] -stunk -1.6 1.68523 [-2, -2, -3, 2, -2, -3, -3, 1, -1, -3] -stunned -0.4 1.28062 [-1, -3, -1, 0, -1, -1, 0, 2, 1, 0] -stunning 1.6 1.42829 [0, 0, 3, 2, 2, 4, 3, 0, 2, 0] -stuns 0.1 1.04403 [1, 0, -1, -2, 0, 1, 1, -1, 1, 1] -stupid -2.4 0.66332 [-2, -3, -3, -2, -3, -3, -2, -1, -2, -3] -stupider -2.5 0.5 [-3, -2, -3, -3, -2, -2, -3, -2, -3, -2] -stupidest -2.4 0.66332 [-2, -3, -2, -3, -1, -3, -3, -2, -2, -3] -stupidities -2.0 0.7746 [-2, -3, -2, -1, -3, -1, -3, -1, -2, -2] -stupidity -1.9 0.3 [-2, -2, -2, -2, -2, -2, -1, -2, -2, -2] -stupidly -2.0 0.7746 [-1, -2, -3, -3, -1, -3, -2, -1, -2, -2] -stupidness -1.7 0.64031 [-3, -1, -2, -1, -2, -1, -2, -2, -1, -2] -stupidnesses -2.6 0.8 [-2, -2, -2, -4, -4, -3, -3, -2, -2, -2] -stupids -2.3 0.64031 [-2, -3, -1, -3, -2, -3, -3, -2, -2, -2] -stutter -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] -stuttered -0.9 1.04403 [-1, -1, 2, -1, -1, -1, -2, -2, -1, -1] -stutterer -1.0 1.18322 [-1, -1, 2, -1, -1, -1, -3, -2, -1, -1] -stutterers -1.1 0.53852 [-1, -1, -1, 0, -1, -1, -2, -2, -1, -1] -stuttering -1.3 0.9 [-1, -1, -1, 0, -3, -1, -1, -1, -3, -1] -stutters -1.0 0.63246 [-1, -1, -1, -2, 0, -2, 0, -1, -1, -1] -suave 2.0 0.44721 [2, 3, 2, 2, 2, 1, 2, 2, 2, 2] -submissive -1.3 0.9 [-1, 0, -1, -3, -1, 0, -1, -2, -2, -2] -submissively -1.0 1.18322 [-1, -1, -1, -1, 2, -1, -1, -2, -3, -1] -submissiveness -0.7 0.78102 [-2, 0, -1, 0, -1, 0, -2, 0, -1, 0] -substantial 0.8 0.6 [2, 0, 1, 1, 0, 0, 1, 1, 1, 1] -subversive -0.9 1.81384 [-3, 0, -4, -1, -2, -1, 2, -1, 2, -1] -succeed 2.2 0.74833 [2, 3, 2, 2, 2, 1, 2, 4, 2, 2] -succeeded 1.8 0.87178 [2, 2, 1, 2, 2, 0, 2, 3, 3, 1] -succeeder 1.2 1.07703 [1, 0, 0, 2, 2, 0, 0, 3, 2, 2] -succeeders 1.3 0.64031 [2, 0, 2, 1, 2, 1, 1, 1, 1, 2] -succeeding 2.2 1.16619 [2, 3, 0, 3, 4, 3, 1, 1, 2, 3] -succeeds 2.2 0.9798 [4, 1, 4, 1, 2, 2, 2, 2, 2, 2] -success 2.7 0.64031 [4, 3, 2, 2, 3, 2, 3, 3, 2, 3] -successes 2.6 0.66332 [2, 4, 3, 3, 2, 3, 2, 2, 3, 2] -successful 2.8 0.6 [3, 3, 2, 3, 4, 3, 3, 3, 2, 2] -successfully 2.2 0.6 [2, 2, 1, 2, 2, 2, 3, 3, 2, 3] -successfulness 2.7 0.78102 [3, 3, 4, 3, 3, 2, 3, 2, 1, 3] -succession 0.8 0.87178 [2, 0, 1, 2, 0, 2, 1, 0, 0, 0] -successional 0.9 1.04403 [0, 1, 0, 2, 3, 0, 0, 1, 2, 0] -successionally 1.1 1.13578 [2, 2, 0, 0, 0, 0, 2, 3, 0, 2] -successions 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] -successive 1.1 1.13578 [3, 0, 0, 1, 3, 2, 1, 0, 1, 0] -successively 0.9 1.04403 [1, 0, 0, 1, 3, 0, 2, 0, 2, 0] -successiveness 1.0 1.0 [0, 1, 2, 0, 3, 1, 1, 2, 0, 0] -successor 0.9 0.83066 [0, 2, 0, 0, 1, 2, 2, 1, 1, 0] -successors 1.1 1.04403 [2, 0, 1, 2, 0, 1, 3, 0, 2, 0] -suck -1.9 1.04403 [-1, -1, -1, -2, -1, -1, -3, -4, -3, -2] -sucked -2.0 0.89443 [-2, -2, -1, -1, -1, -3, -4, -2, -2, -2] -sucker -2.4 1.2 [-3, -1, -1, -2, -1, -4, -4, -2, -4, -2] -suckered -2.0 1.0 [-2, -1, -1, -3, -3, -1, -1, -2, -2, -4] -suckering -2.1 0.7 [-2, -3, -2, -1, -2, -3, -3, -2, -1, -2] -suckers -2.3 1.00499 [-2, -1, -2, -4, -1, -2, -3, -2, -4, -2] -sucks -1.5 1.28452 [-1, -2, -2, -1, -3, -4, -1, 1, -1, -1] -sucky -1.9 0.9434 [-1, -2, -2, -1, -2, -4, -1, -1, -3, -2] -suffer -2.5 0.67082 [-3, -3, -2, -2, -3, -3, -3, -2, -1, -3] -suffered -2.2 0.74833 [-3, -2, -1, -3, -2, -3, -1, -3, -2, -2] -sufferer -2.0 0.63246 [-3, -2, -2, -2, -2, -3, -1, -2, -2, -1] -sufferers -2.4 0.8 [-1, -3, -3, -2, -1, -2, -3, -3, -3, -3] -suffering -2.1 0.83066 [-2, -1, -3, -2, -1, -2, -3, -3, -1, -3] -suffers -2.1 0.7 [-3, -2, -1, -2, -2, -2, -3, -1, -3, -2] -suicidal -3.5 0.67082 [-4, -4, -4, -4, -3, -4, -3, -3, -2, -4] -suicide -3.5 0.67082 [-4, -3, -4, -4, -4, -2, -3, -4, -4, -3] -suing -1.1 1.13578 [1, -1, -1, 0, -1, -3, -1, -1, -3, -1] -sulking -1.5 0.67082 [-2, -1, -3, -1, -1, -2, -1, -2, -1, -1] -sulky -0.8 1.77764 [-3, 3, -2, -3, 0, -2, 0, -1, 1, -1] -sullen -1.7 1.00499 [0, -2, -2, -1, -1, -4, -2, -1, -2, -2] -sunnier 2.3 0.64031 [3, 2, 3, 2, 3, 2, 2, 1, 3, 2] -sunniest 2.4 1.28062 [2, 0, 4, 2, 1, 3, 2, 4, 4, 2] -sunny 1.8 0.87178 [2, 2, 1, 2, 0, 2, 3, 3, 2, 1] -sunshine 2.2 0.6 [3, 1, 2, 2, 2, 2, 2, 3, 3, 2] -sunshiny 1.9 0.7 [2, 2, 3, 1, 2, 2, 1, 3, 1, 2] -super 2.9 0.7 [4, 2, 4, 3, 3, 3, 2, 3, 2, 3] -superb 3.1 0.9434 [3, 4, 2, 4, 3, 1, 3, 3, 4, 4] -superior 2.5 1.11803 [2, 3, 1, 3, 3, 0, 3, 3, 4, 3] -superiorities 0.8 1.6 [-1, 1, 3, -1, -1, 2, 2, 1, 3, -1] -superiority 1.4 1.2 [0, 1, -1, 3, 1, 2, 2, 2, 3, 1] -superiorly 2.2 1.4 [4, 3, 1, 2, 3, -1, 2, 4, 2, 2] -superiors 1.0 1.0 [3, 0, 0, 1, 2, 1, 1, 2, 0, 0] -support 1.7 0.9 [1, 1, 1, 2, 1, 3, 3, 3, 1, 1] -supported 1.3 0.45826 [2, 1, 2, 1, 1, 2, 1, 1, 1, 1] -supporter 1.1 0.3 [1, 1, 1, 1, 1, 2, 1, 1, 1, 1] -supporters 1.9 0.7 [1, 1, 1, 2, 2, 3, 2, 2, 3, 2] -supporting 1.9 0.9434 [3, 2, 1, 1, 3, 3, 1, 1, 3, 1] -supportive 1.2 0.4 [1, 1, 1, 1, 1, 2, 2, 1, 1, 1] -supportiveness 1.5 1.11803 [3, 1, 2, 1, 3, 2, 2, 1, -1, 1] -supports 1.5 0.67082 [2, 1, 2, 0, 2, 2, 2, 1, 1, 2] -supremacies 0.8 1.72047 [3, -2, 3, 0, 0, 2, -1, 3, 0, 0] -supremacist 0.5 2.15639 [3, 2, -3, 1, 2, 2, 2, -2, 1, -3] -supremacists -1.0 1.89737 [-4, -2, -1, -3, -2, 2, 2, 0, 0, -2] -supremacy 0.2 1.77764 [-1, -2, 0, 3, 2, 0, -3, 0, 1, 2] -suprematists 0.4 1.56205 [2, 1, 0, 0, 2, 2, 2, -2, -1, -2] -supreme 2.6 1.11355 [2, 3, 2, 1, 4, 2, 1, 3, 4, 4] -supremely 2.7 1.00499 [2, 4, 1, 4, 2, 4, 2, 3, 2, 3] -supremeness 2.3 0.64031 [1, 2, 2, 3, 3, 2, 2, 3, 3, 2] -supremer 2.3 1.1 [4, 3, 3, 0, 1, 2, 3, 2, 3, 2] -supremest 2.2 1.98997 [4, 3, 1, 0, 4, 4, -2, 3, 1, 4] -supremo 1.9 1.3 [1, 0, 3, 0, 4, 3, 1, 3, 2, 2] -supremos 1.3 0.78102 [0, 2, 2, 1, 0, 2, 2, 1, 2, 1] -sure 1.3 0.64031 [1, 1, 3, 1, 1, 2, 1, 1, 1, 1] -surefire 1.0 0.7746 [1, 1, 0, 2, 2, 1, 0, 1, 2, 0] -surefooted 1.9 0.83066 [0, 3, 2, 2, 2, 2, 1, 2, 3, 2] -surefootedly 1.6 0.91652 [1, 1, 2, 0, 2, 1, 3, 3, 1, 2] -surefootedness 1.5 1.20416 [2, 1, 4, 1, 0, 3, 2, 1, 1, 0] -surely 1.9 0.7 [2, 2, 2, 1, 1, 1, 3, 2, 3, 2] -sureness 2.0 0.7746 [2, 3, 2, 1, 2, 1, 3, 3, 2, 1] -surer 1.2 1.32665 [1, 1, 3, 1, 3, 2, 1, -2, 1, 1] -surest 1.3 0.78102 [2, 0, 2, 2, 2, 1, 0, 1, 1, 2] -sureties 1.3 0.9 [2, 0, 2, 0, 2, 2, 1, 2, 0, 2] -surety 1.0 0.44721 [1, 1, 1, 1, 1, 0, 1, 1, 2, 1] -suretyship -0.1 1.51327 [-1, 0, 0, -2, -1, 2, -2, 3, 0, 0] -suretyships 0.4 0.66332 [0, 0, 0, 1, 0, 0, 1, 0, 0, 2] -surprisal 1.5 0.80623 [3, 1, 1, 2, 1, 2, 2, 1, 2, 0] -surprisals 0.7 1.1 [0, 0, 0, 0, 0, 0, 0, 2, 2, 3] -surprise 1.1 1.04403 [0, 2, 0, 2, 3, 0, 1, 1, 2, 0] -surprised 0.9 0.9434 [2, 0, 0, 0, 0, 2, 2, 1, 2, 0] -surpriser 0.6 0.66332 [2, 0, 0, 0, 0, 1, 1, 1, 1, 0] -surprisers 0.3 1.00499 [2, 0, 1, 1, 0, 0, -2, 1, 0, 0] -surprises 0.9 0.7 [2, 0, 0, 0, 1, 1, 2, 1, 1, 1] -surprising 1.1 0.9434 [1, 1, 1, 0, 0, 2, 0, 1, 3, 2] -surprisingly 1.2 0.87178 [1, 0, 2, 0, 0, 2, 2, 1, 2, 2] -survived 2.3 0.78102 [3, 4, 2, 2, 2, 1, 2, 3, 2, 2] -surviving 1.2 0.87178 [1, 3, 1, 0, 2, 0, 1, 1, 1, 2] -survivor 1.5 1.0247 [1, 3, 2, 3, 1, 0, 0, 1, 2, 2] -suspect -1.2 0.9798 [0, -1, -1, -2, -2, -2, 1, -1, -2, -2] -suspected -0.9 1.13578 [-1, 0, -1, -2, -1, -1, -2, 2, -2, -1] -suspecting -0.7 1.34536 [-1, 2, -1, -1, -1, 1, -2, -1, -3, 0] -suspects -1.4 0.91652 [-2, -2, -2, -1, -2, -1, -2, -2, 1, -1] -suspend -1.3 0.64031 [0, -2, -1, -2, -1, -1, -2, -1, -2, -1] -suspended -2.1 0.83066 [-2, -1, -2, -3, -3, -1, -3, -1, -2, -3] -suspicion -1.6 0.91652 [-2, -2, -1, -2, 1, -2, -2, -2, -2, -2] -suspicions -1.5 0.67082 [-1, -2, -1, -2, -1, -1, -3, -1, -2, -1] -suspicious -1.5 0.67082 [-1, -2, -1, -1, -2, -1, -2, -1, -3, -1] -suspiciously -1.7 0.45826 [-2, -2, -1, -2, -1, -2, -2, -1, -2, -2] -suspiciousness -1.2 1.46969 [-2, -3, -2, -1, -1, 1, 2, -2, -2, -2] -sux -1.5 0.92195 [-1, -1, -2, -1, -2, -1, -3, 0, -3, -1] -swear -0.2 1.53623 [-2, 2, -1, 1, 1, 0, -1, -2, 2, -2] -swearing -1.0 1.09545 [0, -2, -1, -1, -2, 0, 1, -3, -1, -1] -swears 0.2 1.4 [1, -2, 2, 0, 1, -2, -1, 2, 1, 0] -sweet 2.0 0.63246 [1, 2, 2, 2, 3, 3, 2, 1, 2, 2] -sweet<3 3.0 0.44721 [3, 3, 3, 3, 4, 2, 3, 3, 3, 3] -sweetheart 3.3 1.00499 [4, 1, 3, 4, 4, 4, 2, 3, 4, 4] -sweethearts 2.8 0.87178 [2, 2, 2, 4, 3, 2, 4, 3, 4, 2] -sweetie 2.2 0.6 [2, 3, 3, 2, 1, 3, 2, 2, 2, 2] -sweeties 2.1 0.9434 [1, 2, 2, 3, 2, 1, 2, 4, 3, 1] -sweetly 2.1 0.7 [1, 2, 2, 2, 2, 2, 1, 3, 3, 3] -sweetness 2.2 0.74833 [3, 2, 3, 1, 2, 2, 3, 3, 2, 1] -sweets 2.2 0.6 [2, 1, 3, 2, 2, 2, 3, 2, 3, 2] -swift 0.8 0.6 [1, 0, 1, 1, 0, 2, 0, 1, 1, 1] -swiftly 1.2 0.9798 [0, 3, 1, 0, 1, 1, 1, 3, 1, 1] -swindle -2.4 1.0198 [-1, -4, -1, -3, -3, -2, -2, -2, -4, -2] -swindles -1.5 0.92195 [0, -2, -2, -3, -2, -1, -1, 0, -2, -2] -swindling -2.0 1.0 [-2, -2, -2, -4, -1, 0, -3, -2, -2, -2] -sympathetic 2.3 0.64031 [3, 3, 2, 2, 3, 3, 2, 2, 1, 2] -sympathy 1.5 1.11803 [-1, 2, 3, 2, 1, 1, 1, 2, 1, 3] -talent 1.8 1.07703 [3, 1, 2, 2, 0, 3, 3, 2, 2, 0] -talented 2.3 0.64031 [1, 2, 2, 3, 2, 3, 3, 2, 3, 2] -talentless -1.6 0.4899 [-2, -2, -2, -1, -2, -1, -1, -1, -2, -2] -talents 2.0 1.18322 [2, 4, 1, 2, 0, 2, 4, 2, 2, 1] -tantrum -1.8 1.16619 [-3, -2, -2, -3, -1, 0, -1, 0, -3, -3] -tantrums -1.5 1.36015 [-1, -2, -4, -2, -2, -1, -1, 0, 1, -3] -tard -2.5 0.92195 [-3, -3, -3, -2, -2, -3, -1, -4, -1, -3] -tears -0.9 1.13578 [0, -2, -2, -1, -1, -2, -2, 1, 1, -1] -teas 0.3 0.45826 [1, 0, 0, 0, 0, 1, 0, 1, 0, 0] -tease -1.3 0.9 [0, -1, -1, -2, -1, 0, -3, -2, -1, -2] -teased -1.2 0.87178 [0, -2, -2, -1, -1, -1, 0, -3, -1, -1] -teasel -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] -teaseled -0.8 0.74833 [-1, 0, -1, 0, 0, -1, -2, -1, -2, 0] -teaseler -0.8 0.87178 [0, 0, -2, 0, 0, -1, -2, -1, -2, 0] -teaselers -1.2 1.249 [0, -3, 0, 0, 0, -3, -2, -2, -2, 0] -teaseling -0.4 0.91652 [-1, 0, -3, 0, 0, 0, 0, 0, 0, 0] -teaselled -0.4 0.91652 [0, -3, 0, 0, 0, 0, -1, 0, 0, 0] -teaselling -0.2 0.4 [0, 0, 0, 0, -1, 0, -1, 0, 0, 0] -teasels -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, -1, 0] -teaser -1.0 1.18322 [0, -1, -3, -1, -1, -1, 0, -3, -1, 1] -teasers -0.7 1.1 [-1, -2, -3, -1, 0, 0, -1, 1, 0, 0] -teases -1.2 0.74833 [-1, -1, 0, -1, -2, -1, -3, -1, -1, -1] -teashops 0.2 0.4 [0, 1, 0, 1, 0, 0, 0, 0, 0, 0] -teasing -0.3 1.1 [0, 0, 1, 1, -1, 0, 0, 0, -1, -3] -teasingly -0.4 1.11355 [0, 1, 1, 0, -2, 0, -2, 0, -2, 0] -teaspoon 0.2 0.4 [0, 0, 0, 0, 0, 0, 1, 0, 1, 0] -teaspoonful 0.2 0.4 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0] -teaspoonfuls 0.4 0.8 [2, 0, 0, 0, 0, 0, 0, 0, 2, 0] -teaspoons 0.5 0.80623 [0, 0, 0, 2, 0, 0, 1, 2, 0, 0] -teaspoonsful 0.3 0.9 [2, 0, 0, 0, 0, 2, 0, -1, 0, 0] -temper -1.8 0.4 [-1, -2, -2, -2, -2, -2, -2, -2, -1, -2] -tempers -1.3 0.64031 [-1, -1, 0, -1, -1, -2, -2, -2, -1, -2] -tendered 0.5 0.92195 [0, 0, 2, 1, -1, -1, 1, 1, 1, 1] -tenderer 0.6 0.66332 [0, 1, 1, 0, 0, 0, 2, 1, 1, 0] -tenderers 1.2 0.9798 [2, 0, 0, 1, 0, 2, 3, 1, 1, 2] -tenderest 1.4 1.56205 [2, 1, 3, -1, 0, 2, 2, 2, -1, 4] -tenderfeet -0.4 0.91652 [-1, -1, 0, 0, -1, 0, -1, -2, 1, 1] -tenderfoot -0.1 0.53852 [-1, 1, 0, 0, 0, 0, 0, -1, 0, 0] -tenderfoots -0.5 1.11803 [1, -1, 0, 0, 0, -1, -1, 1, -3, -1] -tenderhearted 1.5 1.0247 [2, 2, 1, 2, 3, 1, 1, -1, 2, 2] -tenderheartedly 2.7 0.64031 [2, 2, 2, 3, 3, 3, 3, 4, 3, 2] -tenderheartedness 0.7 1.48661 [1, 3, 2, 2, -1, -1, 1, -2, 1, 1] -tenderheartednesses 2.8 0.74833 [2, 3, 3, 2, 3, 3, 4, 4, 2, 2] -tendering 0.6 0.66332 [0, 0, 1, 1, 1, 0, 0, 1, 2, 0] -tenderization 0.2 0.74833 [-1, 2, 0, 0, 0, 1, 0, 0, 0, 0] -tenderize 0.1 0.53852 [0, 0, 0, 0, 0, -1, 0, 1, 0, 1] -tenderized 0.1 0.53852 [0, 1, 0, 1, 0, 0, -1, 0, 0, 0] -tenderizer 0.4 0.66332 [0, 1, 0, 1, 0, 0, 2, 0, 0, 0] -tenderizes 0.3 0.45826 [0, 1, 0, 1, 0, 0, 1, 0, 0, 0] -tenderizing 0.3 0.45826 [1, 1, 0, 0, 0, 1, 0, 0, 0, 0] -tenderloin -0.2 0.74833 [0, 0, 0, 0, -2, 0, 1, 0, -1, 0] -tenderloins 0.4 0.66332 [1, 0, 0, 0, 2, 0, 0, 1, 0, 0] -tenderly 1.8 0.74833 [2, 1, 2, 1, 3, 2, 1, 2, 3, 1] -tenderness 1.8 0.4 [2, 2, 1, 2, 2, 2, 2, 1, 2, 2] -tendernesses 0.9 1.44568 [1, 2, 1, 1, 3, -1, -2, 2, 2, 0] -tenderometer 0.2 0.4 [1, 0, 0, 0, 0, 1, 0, 0, 0, 0] -tenderometers 0.2 0.4 [0, 0, 1, 0, 0, 0, 0, 0, 1, 0] -tenders 0.6 0.8 [0, 2, 0, 1, 1, 1, -1, 0, 1, 1] -tense -1.4 0.4899 [-1, -1, -1, -1, -1, -2, -1, -2, -2, -2] -tensed -1.0 0.44721 [-1, 0, -1, -1, -1, -1, -2, -1, -1, -1] -tensely -1.2 0.6 [-1, -2, -2, -2, -1, 0, -1, -1, -1, -1] -tenseness -1.5 0.67082 [-1, -1, -1, -1, -1, -2, -2, -1, -2, -3] -tenser -1.5 0.67082 [-2, -2, -1, -2, -1, -1, -3, -1, -1, -1] -tenses -0.9 1.04403 [-1, -3, 0, 0, 0, -1, 0, -2, -2, 0] -tensest -1.2 1.07703 [-2, 0, -2, -2, -2, 0, 1, -1, -2, -2] -tensing -1.0 0.44721 [-1, -2, -1, 0, -1, -1, -1, -1, -1, -1] -tension -1.3 1.00499 [-2, -1, -1, -1, -1, -2, -2, -3, 1, -1] -tensional -0.8 0.74833 [-1, 0, -1, -1, -1, -2, 1, -1, -1, -1] -tensioned -0.4 1.11355 [-2, 0, -1, 2, -1, 0, -1, -1, -1, 1] -tensioner -1.6 0.8 [-1, -3, -2, -2, -2, 0, -1, -2, -1, -2] -tensioners -0.9 1.04403 [-1, 0, -2, -2, -1, 1, -2, 0, 0, -2] -tensioning -1.4 1.0198 [-1, -1, -1, -1, 0, -2, -3, -3, 0, -2] -tensionless 0.6 0.8 [1, 1, 1, -1, 0, 0, 0, 2, 1, 1] -tensions -1.7 0.78102 [-1, -3, -1, -1, -2, -2, -3, -1, -2, -1] -terrible -2.1 0.9434 [-1, -3, -2, -1, -3, -1, -2, -2, -4, -2] -terribleness -1.9 1.81384 [3, -3, -3, -3, -3, -1, -2, -1, -3, -3] -terriblenesses -2.6 0.4899 [-2, -3, -3, -2, -3, -2, -2, -3, -3, -3] -terribly -2.6 0.4899 [-3, -3, -3, -2, -2, -3, -3, -2, -2, -3] -terrific 2.1 1.81384 [4, 3, 4, 1, -1, -1, 4, 2, 2, 3] -terrifically 1.7 1.95192 [2, 2, 4, 2, 3, 3, -2, 3, -2, 2] -terrified -3.0 0.63246 [-2, -3, -3, -3, -4, -3, -4, -2, -3, -3] -terrifies -2.6 1.0198 [-2, -4, -3, -3, -4, -1, -2, -3, -1, -3] -terrify -2.3 0.78102 [-3, -3, -2, -2, -1, -4, -2, -2, -2, -2] -terrifying -2.7 0.78102 [-4, -3, -3, -2, -2, -2, -4, -2, -3, -2] -terror -2.4 1.2 [-3, -4, -2, -1, 0, -4, -3, -2, -2, -3] -terrorise -3.1 0.83066 [-2, -3, -4, -4, -3, -3, -2, -4, -2, -4] -terrorised -3.3 0.64031 [-3, -3, -4, -3, -2, -4, -4, -3, -4, -3] -terrorises -3.3 0.45826 [-3, -3, -4, -3, -3, -4, -4, -3, -3, -3] -terrorising -3.0 0.44721 [-3, -3, -3, -3, -2, -3, -4, -3, -3, -3] -terrorism -3.6 0.4899 [-4, -3, -4, -4, -4, -3, -3, -4, -3, -4] -terrorisms -3.2 0.6 [-4, -4, -4, -3, -3, -3, -2, -3, -3, -3] -terrorist -3.7 0.45826 [-4, -3, -4, -4, -4, -3, -4, -4, -3, -4] -terroristic -3.3 0.78102 [-4, -3, -2, -3, -4, -3, -4, -2, -4, -4] -terrorists -3.1 0.9434 [-3, -4, -2, -2, -4, -2, -2, -4, -4, -4] -terrorization -2.7 0.9 [-4, -4, -3, -2, -2, -4, -2, -2, -2, -2] -terrorize -3.3 0.78102 [-4, -4, -3, -3, -4, -2, -2, -4, -3, -4] -terrorized -3.1 0.7 [-2, -3, -2, -4, -4, -4, -3, -3, -3, -3] -terrorizes -3.1 0.53852 [-2, -3, -3, -4, -3, -4, -3, -3, -3, -3] -terrorizing -3.0 1.0 [-3, -1, -4, -4, -4, -3, -2, -3, -2, -4] -terrorless 0.9 1.04403 [-2, 2, 1, 2, 1, 1, 1, 1, 1, 1] -terrors -2.6 0.4899 [-2, -3, -3, -3, -2, -2, -3, -2, -3, -3] -thank 1.5 0.92195 [3, 1, 1, 0, 1, 1, 2, 3, 1, 2] -thanked 1.9 1.22066 [1, 3, 1, 1, 1, 1, 4, 4, 2, 1] -thankful 2.7 0.78102 [4, 2, 2, 3, 2, 4, 3, 3, 2, 2] -thankfuller 1.9 0.53852 [2, 2, 1, 2, 2, 2, 1, 2, 3, 2] -thankfullest 2.0 1.0 [3, 1, 1, 4, 1, 2, 2, 2, 3, 1] -thankfully 1.8 0.6 [2, 1, 2, 1, 2, 3, 2, 2, 1, 2] -thankfulness 2.1 1.44568 [3, 3, 4, 2, 2, 1, -1, 1, 2, 4] -thanks 1.9 1.04403 [1, 1, 1, 1, 3, 2, 1, 4, 3, 2] -thief -2.4 0.66332 [-3, -2, -2, -2, -2, -4, -2, -2, -3, -2] -thieve -2.2 0.4 [-2, -2, -2, -3, -2, -2, -3, -2, -2, -2] -thieved -1.4 1.28062 [-1, -2, -3, -1, -2, 2, -2, -1, -2, -2] -thieveries -2.1 0.53852 [-2, -3, -2, -3, -1, -2, -2, -2, -2, -2] -thievery -2.0 0.89443 [-2, -2, -2, -1, -1, -3, -1, -2, -4, -2] -thieves -2.3 0.78102 [-3, -2, -2, -4, -1, -2, -2, -2, -3, -2] -thorny -1.1 0.83066 [1, -1, -1, -1, -1, -1, -1, -2, -2, -2] -thoughtful 1.6 0.4899 [2, 2, 1, 1, 1, 1, 2, 2, 2, 2] -thoughtfully 1.7 0.64031 [2, 1, 1, 3, 1, 2, 1, 2, 2, 2] -thoughtfulness 1.9 0.53852 [1, 2, 1, 2, 2, 3, 2, 2, 2, 2] -thoughtless -2.0 0.63246 [-2, -1, -3, -3, -2, -1, -2, -2, -2, -2] -threat -2.4 0.66332 [-2, -3, -2, -2, -2, -4, -3, -2, -2, -2] -threaten -1.6 1.56205 [-4, -1, -3, -2, 1, -3, -1, 1, -2, -2] -threatened -2.0 0.63246 [-2, -2, -3, -2, -2, -1, -2, -3, -1, -2] -threatener -1.4 1.68523 [-2, -2, -3, -2, 3, 0, -2, -3, -1, -2] -threateners -1.8 0.74833 [-3, -1, -2, -1, -1, -3, -2, -2, -2, -1] -threatening -2.4 0.8 [-3, -3, -2, -3, -2, -1, -3, -1, -3, -3] -threateningly -2.2 0.6 [-2, -2, -2, -2, -2, -2, -2, -2, -4, -2] -threatens -1.6 1.56205 [-2, -2, -2, 1, -4, -3, -3, -1, 1, -1] -threating -2.0 0.44721 [-3, -2, -2, -2, -1, -2, -2, -2, -2, -2] -threats -1.8 0.74833 [-1, -1, -1, -2, -2, -2, -3, -3, -2, -1] -thrill 1.5 1.11803 [2, 2, 2, 0, 1, -1, 2, 3, 2, 2] -thrilled 1.9 1.81384 [3, -1, 3, 3, 1, -2, 3, 3, 3, 3] -thriller 0.4 1.2 [0, 0, 3, 1, 1, -2, 0, 1, 0, 0] -thrillers 0.1 0.83066 [0, 2, 0, 0, 0, -1, 0, -1, 0, 1] -thrilling 2.1 1.04403 [3, 0, 2, 3, 1, 3, 3, 2, 1, 3] -thrillingly 2.0 0.7746 [0, 2, 2, 3, 3, 2, 2, 2, 2, 2] -thrills 1.5 0.92195 [2, 3, 1, 2, 0, 2, 1, 0, 2, 2] -thwarted -0.1 1.75784 [1, -2, -3, 0, 2, 0, 2, -2, -1, 2] -thwarting -0.7 0.78102 [0, 0, -1, -1, -1, -2, 1, -1, -1, -1] -thwarts -0.4 1.28062 [-2, 0, 0, -2, 0, 1, 2, 0, -1, -2] -ticked -1.8 0.6 [-2, -1, -1, -2, -2, -1, -2, -2, -3, -2] -timid -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -2, -1, -1, -1] -timider -1.0 0.44721 [-1, -2, -1, -1, -1, 0, -1, -1, -1, -1] -timidest -0.9 0.7 [0, -1, 0, -1, 0, -1, -1, -2, -1, -2] -timidities -0.7 0.64031 [-1, -1, -1, 0, -2, 0, -1, 0, 0, -1] -timidity -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -2, -2, -1, -1] -timidly -0.7 0.78102 [0, -1, -1, -1, -1, 1, 0, -1, -2, -1] -timidness -1.0 0.89443 [-1, -2, -1, 0, -1, -2, 1, -2, -1, -1] -timorous -0.8 0.9798 [-2, -1, -1, -1, -1, -2, -1, 1, 1, -1] -tired -1.9 0.7 [-2, -1, -2, -3, -2, -3, -1, -1, -2, -2] -tits -0.9 0.53852 [-1, -1, -2, -1, -1, -1, 0, -1, 0, -1] -tolerance 1.2 1.53623 [2, 3, 2, 2, -2, 1, 1, 3, -1, 1] -tolerances 0.3 0.9 [-1, 1, 0, 0, 1, 2, 0, -1, 1, 0] -tolerant 1.1 0.53852 [1, 2, 1, 1, 1, 1, 1, 1, 0, 2] -tolerantly 0.4 1.2 [0, 1, 1, 1, 0, -3, 1, 1, 1, 1] -toothless -1.4 1.0198 [-1, -4, -1, -2, -1, 0, -1, -2, -1, -1] -top 0.8 0.87178 [1, 3, 1, 1, 1, 0, 0, 1, 0, 0] -tops 2.3 1.00499 [3, 3, 3, 0, 2, 2, 3, 3, 1, 3] -torn -1.0 1.0 [-1, -1, -1, 0, -1, -1, -3, -2, 1, -1] -torture -2.9 1.51327 [-4, -4, -3, -4, 1, -2, -3, -2, -4, -4] -tortured -2.6 1.0198 [-4, -1, -2, -2, -4, -3, -2, -2, -4, -2] -torturer -2.3 1.18743 [-4, -1, -1, -2, -4, -1, -2, -2, -4, -2] -torturers -3.5 0.67082 [-4, -4, -3, -3, -4, -4, -4, -2, -3, -4] -tortures -2.5 0.92195 [-2, -3, -2, -4, -1, -3, -2, -4, -2, -2] -torturing -3.0 0.89443 [-4, -4, -4, -2, -3, -2, -4, -2, -2, -3] -torturous -2.7 0.78102 [-3, -3, -1, -3, -4, -2, -2, -3, -3, -3] -torturously -2.2 1.6 [2, -3, -3, -2, -3, -2, -4, -3, -1, -3] -totalitarian -2.1 1.3 [0, -4, -3, 0, -3, -2, -3, -1, -2, -3] -totalitarianism -2.7 1.18743 [-2, -3, 0, -4, -2, -4, -4, -2, -3, -3] -tough -0.5 1.43178 [0, -2, 0, 0, 1, 2, -1, -2, -3, 0] -toughed 0.7 0.64031 [1, 1, 0, 1, 1, 0, 2, 1, 0, 0] -toughen 0.1 1.04403 [0, 0, 1, 0, 1, 0, 2, 0, -2, -1] -toughened 0.1 0.53852 [1, 0, 0, 0, 0, -1, 1, 0, 0, 0] -toughening 0.9 0.83066 [0, 2, 2, 1, 1, 0, 1, 0, 0, 2] -toughens -0.2 1.16619 [1, -1, 0, 1, 0, -2, -2, 1, -1, 1] -tougher 0.7 1.00499 [1, 1, -1, 0, 2, 0, 2, 2, 0, 0] -toughest -0.3 1.84662 [2, 1, -1, -3, 0, -2, 2, -2, 2, -2] -toughie -0.7 0.64031 [-1, 1, 0, -1, -1, -1, -1, -1, -1, -1] -toughies -0.6 0.66332 [-1, -1, -1, 0, 0, -1, 1, -1, -1, -1] -toughing -0.5 1.20416 [-1, 0, -2, 0, 0, -2, 2, 0, -2, 0] -toughish -1.0 1.0 [0, -1, 0, -2, -2, -1, 1, -2, -2, -1] -toughly -1.1 0.83066 [-1, 0, 0, -1, 0, -1, -2, -2, -2, -2] -toughness -0.2 1.07703 [0, 0, -1, -2, 0, 1, 1, 1, -2, 0] -toughnesses 0.3 1.18743 [1, 2, -1, 0, 1, 1, -2, 1, -1, 1] -toughs -0.8 1.16619 [0, 0, -1, 0, -1, -3, -2, 1, 0, -2] -toughy -0.5 1.11803 [-1, -2, -1, 0, -1, -1, 1, -1, 2, -1] -tout -0.5 0.67082 [-1, 0, -2, -1, 0, 0, -1, 0, 0, 0] -touted -0.2 0.9798 [-1, 2, 0, -2, -1, 0, 0, 0, 0, 0] -touting -0.7 0.64031 [0, 0, -1, -1, -1, -1, 0, -2, 0, -1] -touts -0.1 0.7 [1, 1, 0, -1, 0, -1, -1, 0, 0, 0] -tragedian -0.5 0.67082 [-2, 0, -1, 0, 0, -1, 0, -1, 0, 0] -tragedians -1.0 1.18322 [-1, 0, -2, -1, 0, -3, 0, 0, 0, -3] -tragedienne -0.4 0.4899 [0, 0, -1, -1, 0, 0, -1, -1, 0, 0] -tragediennes -1.4 1.28062 [0, -3, 0, -1, -3, 0, -2, -3, 0, -2] -tragedies -1.9 1.86815 [-3, -4, -2, 2, -3, -4, -2, 1, -2, -2] -tragedy -3.4 1.0198 [-4, -4, -4, -4, -2, -3, -1, -4, -4, -4] -tragic -2.0 1.94936 [-1, -3, -4, -3, -3, -4, -2, 1, 2, -3] -tragical -2.4 1.11355 [-3, -3, -3, -2, -1, -3, -4, -3, 0, -2] -tragically -2.7 1.48661 [-4, -4, -4, -2, -1, -4, -1, 0, -3, -4] -tragicomedy 0.2 0.9798 [0, -2, 0, 0, 0, 2, 1, 1, 0, 0] -tragicomic -0.2 0.74833 [0, -1, 1, 0, 0, 0, -2, 0, 0, 0] -tragics -2.2 0.74833 [-3, -2, -4, -1, -2, -2, -2, -2, -2, -2] -tranquil 0.2 1.77764 [2, 1, -1, 2, -3, 3, -1, 1, -1, -1] -tranquiler 1.9 0.7 [2, 1, 2, 2, 3, 3, 2, 2, 1, 1] -tranquilest 1.6 1.35647 [1, 2, 2, 2, 0, 2, -1, 4, 3, 1] -tranquilities 1.5 1.36015 [3, 2, 4, -1, 1, 0, 2, 2, 1, 1] -tranquility 1.8 1.16619 [3, 2, 1, 2, 3, 4, 1, 1, 1, 0] -tranquilize 0.3 1.00499 [0, -2, 1, -1, 1, 1, 1, 0, 1, 1] -tranquilized -0.2 1.32665 [-2, 0, 1, 0, 1, 2, 0, -2, -2, 0] -tranquilizer -0.1 0.9434 [0, 1, -1, 0, -1, 0, -2, 1, 1, 0] -tranquilizers -0.4 0.8 [0, 0, 0, -2, -1, -1, -1, 1, 0, 0] -tranquilizes -0.1 0.9434 [-2, 0, 1, 0, 1, 1, 0, -1, -1, 0] -tranquilizing -0.5 0.67082 [-1, 0, 0, -1, -1, -1, 1, 0, -1, -1] -tranquillest 0.8 1.4 [1, 1, 2, 3, 1, 1, 0, -1, -2, 2] -tranquillities 0.5 1.20416 [-2, 1, 2, 0, 2, 1, 0, -1, 1, 1] -tranquillity 1.8 1.07703 [1, 2, 2, 2, 3, 3, 2, -1, 2, 2] -tranquillized -0.2 1.07703 [0, 1, 0, 0, -3, 0, 1, 0, -1, 0] -tranquillizer -0.1 0.7 [0, 1, 0, 0, -1, 0, 1, 0, -1, -1] -tranquillizers -0.2 0.74833 [0, 0, 0, -2, 1, 0, 0, 0, -1, 0] -tranquillizes 0.1 0.7 [-1, -1, 0, 0, 1, 1, 1, 0, 0, 0] -tranquillizing 0.8 0.87178 [1, 2, 0, 2, 0, 0, 2, 0, 0, 1] -tranquilly 1.2 0.87178 [2, 2, 1, 2, -1, 2, 1, 1, 1, 1] -tranquilness 1.5 1.20416 [3, 3, 1, 2, 2, 2, 0, -1, 1, 2] -trap -1.3 0.78102 [-1, -1, -2, 0, -1, -1, -2, -1, -1, -3] -trapped -2.4 0.91652 [-3, -2, -3, -1, -3, -1, -2, -2, -4, -3] -trauma -1.8 1.249 [-2, -2, -3, -1, -2, 1, -2, -4, -1, -2] -traumas -2.2 1.6 [-3, -3, -2, -4, 0, -1, -4, -3, 1, -3] -traumata -1.7 1.34536 [-2, -3, -2, 0, -2, 1, -4, -2, -1, -2] -traumatic -2.7 1.00499 [-2, -4, -2, -1, -4, -3, -2, -3, -4, -2] -traumatically -2.8 0.6 [-4, -2, -3, -2, -2, -3, -3, -3, -3, -3] -traumatise -2.8 0.6 [-4, -3, -3, -2, -2, -3, -2, -3, -3, -3] -traumatised -2.4 0.91652 [-4, -4, -2, -2, -1, -2, -3, -2, -2, -2] -traumatises -2.2 0.87178 [-3, -4, -2, -2, -1, -2, -3, -1, -2, -2] -traumatising -1.9 1.86815 [-3, -3, -3, -1, -3, 1, -4, -2, 2, -3] -traumatism -2.4 0.4899 [-3, -2, -3, -2, -2, -2, -2, -3, -3, -2] -traumatization -3.0 1.0 [-4, -4, -4, -2, -2, -2, -4, -4, -2, -2] -traumatizations -2.2 1.16619 [-3, -2, -4, 0, -1, -2, -4, -2, -2, -2] -traumatize -2.4 0.66332 [-3, -3, -2, -4, -2, -2, -2, -2, -2, -2] -traumatized -1.7 1.41774 [-1, -2, -2, -2, 2, -4, -2, -2, -2, -2] -traumatizes -1.4 1.42829 [-2, -1, -2, -2, 2, -4, -1, -2, -1, -1] -traumatizing -2.3 1.61555 [-4, -2, -2, -3, -2, -4, -4, 1, 0, -3] -travesty -2.7 1.48661 [-3, -4, 0, -2, -4, -3, -4, 0, -3, -4] -treason -1.9 1.75784 [-3, -3, -2, -3, -3, 1, -2, -3, -3, 2] -treasonous -2.7 1.34536 [-3, -3, -3, -4, -3, -4, -2, 1, -3, -3] -treasurable 2.5 0.67082 [2, 3, 3, 3, 2, 4, 2, 2, 2, 2] -treasure 1.2 1.16619 [3, 1, 3, 2, 0, 2, 1, 0, 0, 0] -treasured 2.6 0.66332 [3, 3, 2, 3, 3, 2, 1, 3, 3, 3] -treasurer 0.5 0.67082 [1, 0, 0, 0, 1, 0, 0, 0, 1, 2] -treasurers 0.4 0.66332 [0, 0, 0, 0, 1, 1, 2, 0, 0, 0] -treasurership 0.4 0.66332 [0, 0, 2, 0, 1, 0, 1, 0, 0, 0] -treasurerships 1.2 0.87178 [2, 0, 2, 0, 2, 1, 2, 2, 1, 0] -treasures 1.8 1.32665 [3, 3, 0, 1, 1, 4, 0, 3, 2, 1] -treasuries 0.9 1.04403 [0, 0, 1, 3, 2, 2, 0, 1, 0, 0] -treasuring 2.1 0.7 [2, 1, 3, 1, 3, 2, 2, 2, 2, 3] -treasury 0.8 1.07703 [2, 3, 0, 0, 0, 0, 0, 1, 2, 0] -treat 1.7 0.78102 [2, 2, 2, 0, 2, 1, 3, 2, 1, 2] -tremble -1.1 1.3 [-2, 0, -1, -2, -2, -2, 2, 0, -2, -2] -trembled -1.1 1.22066 [-1, 1, -1, -2, -2, -1, -3, -2, 1, -1] -trembler -0.6 1.28062 [-2, -2, -1, 0, -1, 2, 1, -2, -1, 0] -tremblers -1.0 0.63246 [-2, 0, -1, -1, 0, -2, -1, -1, -1, -1] -trembles -0.1 1.51327 [-1, -2, -1, 0, -1, 2, 2, -2, 2, 0] -trembling -1.5 0.92195 [-3, 0, -1, -3, -1, -1, -1, -2, -1, -2] -trembly -1.2 0.87178 [-2, 0, -1, -2, -2, -1, 0, 0, -2, -2] -tremulous -1.0 1.09545 [-1, -2, -1, -1, -1, -1, 2, -2, -2, -1] -trick -0.2 1.32665 [-1, 1, -2, -2, -1, 2, 0, 1, 1, -1] -tricked -0.6 0.91652 [-1, -1, -1, -1, 2, 0, -1, -1, -1, -1] -tricker -0.9 0.83066 [-2, 0, -1, -1, 1, -2, -1, -1, -1, -1] -trickeries -1.2 1.46969 [-2, -2, -1, -2, -1, 2, 1, -2, -3, -2] -trickers -1.4 0.66332 [-1, -3, -1, -2, -2, -1, -1, -1, -1, -1] -trickery -1.1 1.51327 [1, -1, -1, -2, -3, -2, -3, 2, -1, -1] -trickie -0.4 1.0198 [1, -1, 0, -1, -1, 1, -2, -1, 1, -1] -trickier -0.7 0.78102 [-1, -1, -1, 0, 1, -1, -1, -1, 0, -2] -trickiest -1.2 0.6 [-2, -2, 0, -1, -2, -1, -1, -1, -1, -1] -trickily -0.8 0.74833 [0, 1, -1, -1, -1, -1, -1, -1, -2, -1] -trickiness -1.2 0.9798 [-2, -1, -1, -2, -1, -2, 1, 0, -2, -2] -trickinesses -0.4 1.0198 [0, 2, 0, -2, -1, -1, 0, 0, -1, -1] -tricking 0.1 1.37477 [0, -2, 2, -1, 2, -2, 0, 1, 1, 0] -trickish -1.0 0.44721 [-1, -2, 0, -1, -1, -1, -1, -1, -1, -1] -trickishly -0.7 1.55242 [-3, -2, -1, 2, -1, 2, -2, -1, 0, -1] -trickishness -0.4 1.28062 [-1, 1, -2, -1, -1, -1, 0, -2, 1, 2] -trickled 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] -trickledown -0.7 0.64031 [0, -1, 0, -1, -2, 0, 0, -1, -1, -1] -trickles 0.2 0.4 [0, 0, 0, 1, 0, 0, 0, 0, 1, 0] -trickling -0.2 0.9798 [0, 0, -1, -2, -1, 2, 0, 0, 0, 0] -trickly -0.3 0.45826 [0, 0, -1, 0, 0, 0, 0, -1, 0, -1] -tricks -0.5 0.67082 [0, 0, -1, -1, 1, -1, -1, 0, -1, -1] -tricksier -0.5 0.67082 [-1, -1, 1, 0, -1, 0, 0, -1, -1, -1] -tricksiness -1.0 0.89443 [0, 0, -1, -1, -1, 0, -1, -2, -3, -1] -trickster -0.9 0.83066 [-1, -2, 0, -1, -2, -1, -1, 1, -1, -1] -tricksters -1.3 0.9 [-1, -2, -1, -2, 1, -2, -2, -1, -1, -2] -tricksy -0.8 0.9798 [-1, -1, -2, -1, 2, -1, -1, -1, -1, -1] -tricky -0.6 0.66332 [0, 0, -1, -1, 1, -1, -1, -1, -1, -1] -trite -0.8 0.4 [-1, -1, 0, 0, -1, -1, -1, -1, -1, -1] -triumph 2.1 1.04403 [2, 4, 3, 3, 1, 3, 1, 2, 1, 1] -triumphal 2.0 0.63246 [2, 3, 3, 2, 1, 2, 1, 2, 2, 2] -triumphalisms 1.9 0.9434 [2, 1, 2, 2, 2, 0, 2, 2, 4, 2] -triumphalist 0.5 1.20416 [1, 1, 2, 2, -1, -2, 0, 1, 0, 1] -triumphalists 0.9 1.64012 [1, -1, 0, 0, 1, 3, -2, 3, 1, 3] -triumphant 2.4 0.91652 [2, 3, 3, 3, 4, 1, 2, 1, 3, 2] -triumphantly 2.3 1.00499 [3, 3, 3, 3, 1, 0, 3, 2, 2, 3] -triumphed 2.2 1.4 [2, 3, 3, 3, 4, 3, 1, 1, -1, 3] -triumphing 2.3 0.64031 [2, 2, 3, 2, 2, 3, 2, 3, 1, 3] -triumphs 2.0 1.41421 [3, 2, 3, 3, 3, 1, -1, 1, 1, 4] -trivial -0.1 0.83066 [0, -1, -1, 0, 1, 0, 1, -1, 1, -1] -trivialise -0.8 1.16619 [-3, -1, -2, 0, 1, -1, -1, 1, -1, -1] -trivialised -0.8 1.6 [-2, 0, -2, 1, -1, 0, 1, 1, -4, -2] -trivialises -1.1 0.53852 [-1, -1, -1, 0, -1, -1, -1, -2, -2, -1] -trivialising -1.4 0.66332 [-2, -1, -2, -1, 0, -1, -2, -1, -2, -2] -trivialities -1.0 0.63246 [-2, -2, -1, -1, -1, 0, 0, -1, -1, -1] -triviality -0.5 1.11803 [-1, -1, -2, 0, -1, -1, 2, -1, 1, -1] -trivialization -0.9 1.04403 [-1, 2, -1, -1, -2, -2, -1, -1, -1, -1] -trivializations -0.7 1.18743 [-2, -1, -1, -2, 1, -1, -1, -1, 2, -1] -trivialize -1.1 0.53852 [0, -2, -2, -1, -1, -1, -1, -1, -1, -1] -trivialized -0.6 0.8 [-1, -1, 0, 0, -1, -1, 1, -1, 0, -2] -trivializes -1.0 0.7746 [-1, -1, -1, 0, -1, 0, -1, -1, -1, -3] -trivializing -0.6 1.95959 [-1, -1, -2, -1, -1, 2, -2, -4, 1, 3] -trivially 0.4 1.56205 [-1, -1, -1, -1, 0, 3, 0, 2, 3, 0] -trivium -0.3 0.64031 [0, 0, -2, 0, 0, 0, 0, -1, 0, 0] -trouble -1.7 0.64031 [-2, -2, -1, -1, -3, -2, -1, -2, -1, -2] -troubled -2.0 0.44721 [-2, -2, -2, -1, -2, -3, -2, -2, -2, -2] -troublemaker -2.0 0.63246 [-3, -2, -3, -2, -2, -1, -1, -2, -2, -2] -troublemakers -2.2 0.74833 [-3, -3, -3, -1, -3, -1, -2, -2, -2, -2] -troublemaking -1.8 0.6 [-2, -1, -1, -2, -2, -2, -3, -2, -1, -2] -troubler -1.4 0.4899 [-1, -1, -2, -1, -1, -1, -2, -2, -2, -1] -troublers -1.9 0.3 [-2, -2, -2, -2, -1, -2, -2, -2, -2, -2] -troubles -2.0 0.44721 [-2, -2, -2, -1, -2, -3, -2, -2, -2, -2] -troubleshoot 0.8 0.9798 [0, 0, 0, 2, 2, 2, 2, 0, 0, 0] -troubleshooter 1.0 0.89443 [0, 0, 0, 1, 2, 2, 0, 1, 2, 2] -troubleshooters 0.8 0.87178 [0, 0, 1, 2, 0, 1, 0, 2, 2, 0] -troubleshooting 0.7 1.34536 [0, 2, 1, 1, -1, 2, 0, 2, -2, 2] -troubleshoots 0.5 0.92195 [1, -1, 0, 0, 0, 0, 1, 0, 2, 2] -troublesome -2.3 0.78102 [-3, -2, -3, -2, -3, -3, -1, -2, -1, -3] -troublesomely -1.8 0.6 [-3, -1, -2, -2, -1, -2, -2, -2, -2, -1] -troublesomeness -1.9 0.7 [-2, -1, -2, -3, -2, -3, -1, -2, -1, -2] -troubling -2.5 0.67082 [-3, -3, -3, -3, -1, -2, -3, -2, -3, -2] -troublous -2.1 0.53852 [-2, -2, -2, -2, -2, -3, -2, -3, -1, -2] -troublously -2.1 1.22066 [-2, -3, -3, -3, -2, -1, 1, -2, -3, -3] -trueness 2.1 0.9434 [2, 1, 1, 3, 3, 4, 2, 1, 2, 2] -truer 1.5 0.67082 [1, 2, 1, 2, 1, 1, 2, 1, 3, 1] -truest 1.9 0.83066 [2, 2, 2, 3, 3, 0, 2, 1, 2, 2] -truly 1.9 0.9434 [4, 3, 1, 2, 2, 1, 1, 1, 2, 2] -trust 2.3 1.26886 [0, 4, 3, 3, 4, 1, 2, 2, 1, 3] -trustability 2.1 0.7 [1, 3, 3, 2, 2, 2, 1, 3, 2, 2] -trustable 2.3 0.45826 [2, 2, 3, 2, 2, 3, 3, 2, 2, 2] -trustbuster -0.5 1.28452 [-3, -1, 0, 0, 0, 0, -2, 0, 2, -1] -trusted 2.1 0.9434 [3, 2, 2, 1, 4, 1, 2, 2, 3, 1] -trustee 1.0 0.89443 [2, 2, 0, 1, 1, 0, 2, 0, 2, 0] -trustees 0.3 0.64031 [0, 1, 0, 0, 2, 0, 0, 0, 0, 0] -trusteeship 0.5 0.67082 [0, 1, 1, 0, 0, 1, 0, 0, 2, 0] -trusteeships 0.6 1.0198 [3, 0, 0, 0, 0, 0, 0, 2, 1, 0] -truster 1.9 1.3 [2, 2, 1, 1, 4, 0, 3, 1, 4, 1] -trustful 2.1 0.9434 [1, 2, 2, 1, 2, 2, 1, 3, 3, 4] -trustfully 1.5 0.67082 [2, 1, 2, 1, 1, 3, 1, 2, 1, 1] -trustfulness 2.1 0.83066 [3, 2, 3, 2, 3, 2, 2, 2, 0, 2] -trustier 1.3 1.1 [1, 1, 1, 2, 0, 0, 3, 0, 3, 2] -trusties 1.0 0.7746 [1, 1, 0, 2, 1, 0, 2, 0, 1, 2] -trustiest 2.2 0.87178 [3, 2, 2, 3, 2, 2, 4, 1, 1, 2] -trustily 1.6 0.91652 [2, 0, 3, 1, 2, 1, 1, 1, 2, 3] -trustiness 1.6 0.91652 [2, 3, 0, 1, 2, 2, 2, 2, 0, 2] -trusting 1.7 1.00499 [3, 0, 1, 2, 3, 0, 2, 2, 2, 2] -trustingly 1.6 0.91652 [3, 1, 2, 3, 2, 2, 0, 1, 1, 1] -trustingness 1.6 1.2 [1, 2, 1, 3, 2, 1, 4, 2, 0, 0] -trustless -2.3 0.78102 [-2, -4, -3, -2, -2, -3, -2, -2, -1, -2] -trustor 0.4 0.66332 [2, 0, 0, 1, 0, 0, 0, 1, 0, 0] -trustors 1.2 0.87178 [0, 0, 2, 1, 1, 2, 2, 2, 0, 2] -trusts 2.1 0.53852 [2, 2, 2, 2, 1, 2, 2, 3, 2, 3] -trustworthily 2.3 0.9 [3, 1, 2, 2, 2, 1, 3, 4, 3, 2] -trustworthiness 1.8 0.74833 [2, 1, 3, 1, 2, 2, 1, 2, 3, 1] -trustworthy 2.6 0.91652 [3, 2, 3, 4, 2, 4, 2, 3, 1, 2] -trusty 2.2 0.74833 [3, 2, 3, 1, 2, 2, 3, 2, 1, 3] -truth 1.3 1.00499 [2, 1, 0, 1, 1, 0, 3, 3, 1, 1] -truthful 2.0 0.63246 [2, 2, 1, 3, 3, 2, 1, 2, 2, 2] -truthfully 1.9 1.04403 [3, 1, 3, 0, 2, 1, 3, 2, 1, 3] -truthfulness 1.7 1.1 [3, 2, 2, 2, 1, -1, 3, 2, 2, 1] -truths 1.8 0.87178 [0, 1, 1, 3, 2, 2, 3, 2, 2, 2] -tumor -1.6 1.49666 [-3, -2, -2, -1, -2, 1, -4, 1, -2, -2] -turmoil -1.5 0.92195 [-1, -1, -3, -3, -2, -2, -1, -1, 0, -1] -twat -3.4 0.91652 [-3, -4, -4, -4, -3, -1, -4, -4, -3, -4] -ugh -1.8 0.9798 [-1, -1, -1, -1, -1, -2, -4, -2, -3, -2] -uglier -2.2 0.87178 [-2, -2, -1, -3, -4, -1, -3, -2, -2, -2] -uglies -2.0 0.89443 [-2, -2, -1, -3, -4, -1, -2, -2, -1, -2] -ugliest -2.8 0.74833 [-3, -3, -4, -3, -3, -3, -3, -3, -1, -2] -uglification -2.2 0.87178 [-3, -1, -2, -2, -1, -2, -4, -3, -2, -2] -uglified -1.5 0.67082 [-1, -1, -3, -2, -2, -1, -1, -1, -2, -1] -uglifies -1.8 0.74833 [-1, -1, -3, -2, -3, -1, -2, -2, -2, -1] -uglify -2.1 0.9434 [-3, -3, -1, -4, -2, -2, -1, -2, -1, -2] -uglifying -2.2 0.4 [-3, -2, -2, -2, -2, -2, -2, -2, -3, -2] -uglily -2.1 0.3 [-3, -2, -2, -2, -2, -2, -2, -2, -2, -2] -ugliness -2.7 0.9 [-4, -2, -3, -2, -4, -2, -4, -2, -2, -2] -uglinesses -2.5 1.0247 [-3, -3, -2, -1, -1, -3, -2, -2, -4, -4] -ugly -2.3 0.9 [-3, -2, -1, -2, -4, -1, -3, -2, -2, -3] -unacceptable -2.0 0.44721 [-2, -2, -1, -2, -2, -2, -2, -3, -2, -2] -unappreciated -1.7 0.78102 [-1, -3, -2, -1, -1, -1, -2, -1, -2, -3] -unapproved -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -1] -unattractive -1.9 0.53852 [-1, -2, -3, -2, -1, -2, -2, -2, -2, -2] -unaware -0.8 0.4 [-1, -1, -1, 0, -1, -1, 0, -1, -1, -1] -unbelievable 0.8 1.6 [0, 0, 1, -2, 1, 3, 1, 0, 4, 0] -unbelieving -0.8 0.4 [0, -1, -1, -1, -1, -1, -1, 0, -1, -1] -unbiased -0.1 1.22066 [-2, -1, 2, 1, 0, -1, -1, 1, 1, -1] -uncertain -1.2 0.6 [-2, -1, -2, -1, -1, -1, 0, -1, -2, -1] -uncertainly -1.4 0.4899 [-2, -1, -1, -1, -2, -1, -1, -2, -2, -1] -uncertainness -1.3 0.45826 [-2, -2, -1, -1, -1, -1, -1, -2, -1, -1] -uncertainties -1.4 0.66332 [-3, -2, -1, -1, -1, -1, -1, -2, -1, -1] -uncertainty -1.4 0.4899 [-1, -1, -2, -1, -2, -1, -2, -1, -2, -1] -unclear -1.0 0.44721 [-2, -1, 0, -1, -1, -1, -1, -1, -1, -1] -uncomfortable -1.6 0.4899 [-2, -1, -2, -1, -1, -2, -2, -1, -2, -2] -uncomfortably -1.7 0.64031 [-2, -1, -3, -1, -1, -2, -2, -1, -2, -2] -uncompelling -0.9 0.7 [0, -2, -1, 0, -1, -1, -1, 0, -1, -2] -unconcerned -0.9 0.83066 [-2, -2, -1, 1, -1, -1, -1, 0, -1, -1] -unconfirmed -0.5 0.67082 [0, -1, 0, -1, 0, -1, 0, 0, -2, 0] -uncontrollability -1.7 0.45826 [-1, -1, -2, -2, -2, -2, -1, -2, -2, -2] -uncontrollable -1.5 1.11803 [-2, -1, -1, -2, -1, -1, 1, -2, -3, -3] -uncontrollably -1.5 0.67082 [-2, -1, 0, -2, -1, -1, -2, -2, -2, -2] -uncontrolled -1.0 0.7746 [-1, 0, -1, -2, -1, 0, -1, -2, -2, 0] -unconvinced -1.6 0.8 [-2, -3, -1, -2, -1, 0, -2, -2, -1, -2] -uncredited -1.0 1.09545 [-1, -2, -2, 2, -1, -2, -1, -1, -1, -1] -undecided -0.9 0.9434 [-1, 0, -1, 0, -1, -1, -2, 0, -3, 0] -underestimate -1.2 0.4 [-1, -2, -1, -1, -1, -1, -1, -1, -2, -1] -underestimated -1.1 0.53852 [-1, -1, -1, -2, 0, -1, -2, -1, -1, -1] -underestimates -1.1 1.64012 [-2, -4, -1, -1, -1, -1, 3, -1, -2, -1] -undermine -1.2 1.16619 [-2, -2, -1, -1, -1, -1, 2, -2, -2, -2] -undermined -1.5 0.67082 [-1, -2, -1, -3, -1, -1, -1, -2, -2, -1] -undermines -1.4 0.4899 [-1, -2, -1, -2, -1, -1, -1, -2, -2, -1] -undermining -1.5 0.67082 [-1, -3, -1, -2, -2, -1, -1, -1, -2, -1] -undeserving -1.9 0.3 [-2, -2, -1, -2, -2, -2, -2, -2, -2, -2] -undesirable -1.9 0.7 [-1, -2, -3, -1, -3, -2, -1, -2, -2, -2] -unease -1.7 0.64031 [-2, -2, -2, -1, -1, -2, -1, -3, -1, -2] -uneasier -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -1] -uneasiest -2.1 0.83066 [-1, -4, -3, -2, -2, -2, -2, -2, -1, -2] -uneasily -1.4 1.0198 [-2, -2, -1, -1, -2, 1, -3, -1, -2, -1] -uneasiness -1.6 0.4899 [-2, -2, -1, -2, -1, -1, -2, -2, -1, -2] -uneasinesses -1.8 0.87178 [-2, -1, -4, -1, -1, -2, -2, -2, -1, -2] -uneasy -1.6 0.4899 [-1, -2, -2, -1, -1, -2, -2, -1, -2, -2] -unemployment -1.9 0.7 [-2, -1, -2, -3, -1, -2, -1, -2, -2, -3] -unequal -1.4 0.66332 [-1, -2, -2, -2, -1, -1, -2, 0, -2, -1] -unequaled 0.5 1.80278 [-2, 3, 0, 3, 3, 0, 0, 0, -2, 0] -unethical -2.3 0.78102 [-3, -3, -1, -2, -2, -2, -3, -1, -3, -3] -unfair -2.1 0.83066 [-1, -3, -3, -2, -3, -1, -2, -3, -1, -2] -unfocused -1.7 0.64031 [-2, -1, -2, -1, -1, -2, -3, -2, -1, -2] -unfortunate -2.0 0.63246 [-2, -2, -2, -3, -3, -1, -2, -1, -2, -2] -unfortunately -1.4 0.91652 [-2, -1, -2, -2, 1, -2, -1, -1, -2, -2] -unfortunates -1.9 0.7 [-2, -3, -1, -1, -2, -2, -2, -1, -3, -2] -unfriendly -1.5 0.5 [-1, -2, -1, -2, -1, -2, -2, -2, -1, -1] -unfulfilled -1.8 0.4 [-2, -2, -2, -2, -1, -2, -2, -1, -2, -2] -ungrateful -2.0 0.0 [-2, -2, -2, -2, -2, -2, -2, -2, -2, -2] -ungratefully -1.8 0.6 [-2, -2, -1, -2, -2, -1, -3, -1, -2, -2] -ungratefulness -1.6 0.4899 [-2, -2, -2, -2, -1, -1, -1, -2, -2, -1] -unhappier -2.4 0.8 [-2, -2, -1, -4, -3, -3, -2, -2, -2, -3] -unhappiest -2.5 0.80623 [-3, -4, -3, -2, -1, -3, -2, -2, -2, -3] -unhappily -1.9 0.53852 [-2, -1, -2, -2, -3, -2, -1, -2, -2, -2] -unhappiness -2.4 0.66332 [-3, -2, -2, -3, -2, -2, -3, -1, -3, -3] -unhappinesses -2.2 0.87178 [-3, -4, -2, -2, -2, -2, -1, -2, -1, -3] -unhappy -1.8 0.6 [-2, -2, -1, -3, -2, -2, -2, -1, -2, -1] -unhealthy -2.4 0.66332 [-1, -2, -3, -3, -2, -3, -3, -2, -2, -3] -unified 1.6 0.66332 [1, 2, 2, 1, 2, 1, 2, 1, 3, 1] -unimportant -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -1, -2, -1] -unimpressed -1.4 0.66332 [-1, -1, -1, -2, -1, -2, -1, -1, -3, -1] -unimpressive -1.4 0.4899 [-1, -2, -2, -1, -1, -2, -2, -1, -1, -1] -unintelligent -2.0 1.18322 [-1, -2, -3, -1, -1, -4, -1, -1, -4, -2] -uninvolved -2.2 0.9798 [-2, -1, -3, -2, -1, -3, -1, -2, -4, -3] -uninvolving -2.0 1.18322 [-4, -1, -3, -2, -1, -4, -1, -1, -2, -1] -united 1.8 0.6 [1, 2, 2, 2, 1, 2, 2, 1, 2, 3] -unjust -2.3 0.45826 [-3, -3, -2, -2, -2, -2, -3, -2, -2, -2] -unkind -1.6 0.66332 [-2, -2, -1, -1, -1, -2, -3, -1, -1, -2] -unlovable -2.7 0.9 [-4, -2, -1, -3, -3, -3, -4, -2, -3, -2] -unloved -1.9 0.53852 [-1, -2, -2, -1, -2, -2, -3, -2, -2, -2] -unlovelier -1.9 0.7 [-2, -2, -1, -3, -1, -2, -1, -3, -2, -2] -unloveliest -1.9 0.83066 [-2, -4, -2, -2, -1, -1, -1, -2, -2, -2] -unloveliness -2.0 0.89443 [-2, -3, -1, -1, -3, -1, -3, -2, -3, -1] -unlovely -2.1 0.53852 [-2, -3, -2, -3, -1, -2, -2, -2, -2, -2] -unloving -2.3 0.45826 [-2, -3, -2, -3, -2, -2, -2, -3, -2, -2] -unmatched -0.3 2.0025 [0, -1, 2, 3, 0, -1, -3, 0, -4, 1] -unmotivated -1.4 0.4899 [-2, -2, -1, -1, -1, -2, -2, -1, -1, -1] -unpleasant -2.1 0.53852 [-2, -2, -3, -3, -2, -2, -2, -2, -1, -2] -unprofessional -2.3 0.78102 [-2, -1, -3, -3, -2, -1, -3, -2, -3, -3] -unprotected -1.5 0.67082 [-2, -2, -1, -1, -3, -1, -1, -2, -1, -1] -unresearched -1.1 0.7 [-2, -1, -1, -1, -1, -2, -2, 0, 0, -1] -unsatisfied -1.7 0.64031 [-2, -1, -2, -1, -1, -2, -3, -1, -2, -2] -unsavory -1.9 0.53852 [-2, -1, -2, -2, -2, -3, -1, -2, -2, -2] -unsecured -1.6 0.4899 [-1, -2, -2, -1, -1, -2, -1, -2, -2, -2] -unsettled -1.3 0.45826 [-1, -1, -1, -2, -2, -1, -2, -1, -1, -1] -unsophisticated -1.2 0.87178 [-1, -1, -1, -2, -2, -2, -1, -2, 1, -1] -unstable -1.5 0.5 [-2, -2, -1, -2, -1, -1, -1, -2, -2, -1] -unstoppable -0.8 1.77764 [0, -4, 2, 0, 1, -2, -2, 0, -3, 0] -unsuccessful -1.5 0.5 [-2, -1, -1, -2, -2, -1, -1, -1, -2, -2] -unsuccessfully -1.7 0.78102 [-2, -2, -1, -1, -1, -2, -3, -3, -1, -1] -unsupported -1.7 0.78102 [-2, 0, -3, -2, -2, -1, -2, -2, -1, -2] -unsure -1.0 0.44721 [-1, -1, -1, -1, 0, -2, -1, -1, -1, -1] -unsurely -1.3 0.78102 [-1, 0, -1, -1, -1, -3, -1, -2, -2, -1] -untarnished 1.6 1.35647 [3, 2, 2, 1, 1, 2, -2, 3, 2, 2] -unwanted -0.9 1.3 [-1, -2, -2, -1, -2, 1, 2, -1, -2, -1] -unwelcome -1.7 0.45826 [-2, -2, -2, -1, -1, -2, -2, -1, -2, -2] -unworthy -2.0 0.44721 [-3, -2, -2, -2, -2, -2, -1, -2, -2, -2] -upset -1.6 0.4899 [-1, -1, -2, -2, -1, -1, -2, -2, -2, -2] -upsets -1.5 0.67082 [-2, -3, -1, -1, -1, -1, -2, -2, -1, -1] -upsetter -1.9 0.7 [-2, -2, -1, -1, -3, -2, -3, -1, -2, -2] -upsetters -2.0 0.63246 [-3, -3, -1, -2, -2, -2, -2, -2, -1, -2] -upsetting -2.1 0.53852 [-2, -3, -2, -3, -2, -1, -2, -2, -2, -2] -uptight -1.6 0.4899 [-2, -1, -2, -1, -1, -2, -2, -1, -2, -2] -uptightness -1.2 0.4 [-1, -2, -1, -2, -1, -1, -1, -1, -1, -1] -urgent 0.8 1.16619 [3, -1, 0, 1, 1, 0, 0, 0, 2, 2] -useful 1.9 0.83066 [2, 1, 1, 2, 2, 4, 2, 1, 2, 2] -usefully 1.8 0.6 [2, 2, 1, 3, 1, 2, 1, 2, 2, 2] -usefulness 1.2 1.32665 [3, 1, 3, -1, 2, 2, 1, 1, -1, 1] -useless -1.8 0.4 [-2, -1, -2, -2, -1, -2, -2, -2, -2, -2] -uselessly -1.5 0.67082 [-2, -3, -1, -1, -1, -1, -2, -2, -1, -1] -uselessness -1.6 0.8 [-3, -2, -2, -2, -1, -2, 0, -1, -1, -2] -v.v -2.9 0.9434 [-3, -3, -4, -3, -1, -3, -4, -2, -4, -2] -vague -0.4 0.8 [0, -1, -1, -1, 0, -1, 1, -1, 1, -1] -vain -1.8 0.6 [-2, -1, -2, -3, -2, -1, -1, -2, -2, -2] -validate 1.5 0.92195 [1, 2, 1, 1, 1, 3, 1, 3, 0, 2] -validated 0.9 0.83066 [2, 1, 0, 1, 1, 0, 2, 0, 0, 2] -validates 1.4 0.66332 [1, 1, 1, 2, 3, 1, 2, 1, 1, 1] -validating 1.4 0.8 [2, 2, 1, 3, 0, 2, 1, 1, 1, 1] -valuable 2.1 0.83066 [3, 2, 4, 2, 2, 2, 2, 1, 1, 2] -valuableness 1.7 0.78102 [2, 2, 1, 3, 3, 2, 1, 1, 1, 1] -valuables 2.1 0.83066 [4, 1, 2, 2, 3, 2, 1, 2, 2, 2] -valuably 2.3 1.00499 [3, 4, 4, 1, 2, 2, 2, 2, 1, 2] -value 1.4 1.11355 [2, 3, 0, 1, 1, 3, 0, 2, 0, 2] -valued 1.9 0.7 [3, 1, 2, 1, 2, 2, 2, 3, 2, 1] -values 1.7 1.18743 [2, 2, 2, 4, 0, 1, 0, 1, 3, 2] -valuing 1.4 0.91652 [1, 0, 3, 2, 2, 2, 2, 0, 1, 1] -vanity -0.9 1.7 [-2, -3, -3, 0, -2, -1, 2, 2, -1, -1] -verdict 0.6 0.91652 [0, 0, 0, 0, 0, 0, 0, 2, 2, 2] -verdicts 0.3 1.1 [0, 0, 0, 0, 2, 2, 0, -2, 1, 0] -vested 0.6 1.28062 [2, -2, 1, 3, 1, 0, 0, 1, 0, 0] -vexation -1.9 1.04403 [0, -2, -3, -3, -2, -2, -2, -3, 0, -2] -vexing -2.0 0.44721 [-2, -2, -2, -1, -2, -2, -2, -3, -2, -2] -vibrant 2.4 0.8 [2, 3, 1, 1, 3, 3, 3, 2, 3, 3] -vicious -1.5 1.5 [1, -2, -3, -1, -1, -3, 1, -3, -1, -3] -viciously -1.3 1.26886 [-2, -3, -1, -2, -2, -1, -1, 2, -1, -2] -viciousness -2.4 1.35647 [-3, -1, -4, -2, -3, -3, 1, -3, -3, -3] -viciousnesses -0.6 1.62481 [0, -1, -1, -3, 0, -3, 2, 1, 1, -2] -victim -1.1 1.92094 [-1, -2, 2, -3, -3, -2, -3, 1, 2, -2] -victimhood -2.0 0.44721 [-2, -2, -2, -2, -2, -1, -3, -2, -2, -2] -victimhoods -0.9 1.37477 [-1, 0, -1, 1, -2, -1, -4, 1, -1, -1] -victimise -1.1 1.92094 [-3, -3, -2, -2, -1, 2, -2, 1, -3, 2] -victimised -1.5 1.56525 [-2, -2, -2, 1, -3, 2, -2, -3, -2, -2] -victimises -1.2 2.31517 [-3, -3, -4, 2, -2, -2, 1, 2, 1, -4] -victimising -2.5 0.67082 [-3, -1, -3, -2, -2, -3, -3, -2, -3, -3] -victimization -2.3 0.78102 [-1, -3, -3, -2, -3, -1, -3, -2, -3, -2] -victimizations -1.5 1.85742 [-2, -3, -3, -1, -2, 2, 2, -2, -3, -3] -victimize -2.5 0.67082 [-3, -2, -4, -2, -2, -2, -2, -3, -3, -2] -victimized -1.8 1.53623 [-2, -1, -3, -3, -3, 1, 1, -2, -3, -3] -victimizer -1.8 1.72047 [-3, -2, -3, -3, -2, 2, 1, -2, -3, -3] -victimizers -1.6 1.68523 [-3, -2, -3, 1, -3, -1, -2, 2, -2, -3] -victimizes -1.5 1.9105 [-2, -1, -4, -3, -2, 2, 2, -2, -3, -2] -victimizing -2.6 0.4899 [-2, -3, -3, -3, -2, -3, -2, -3, -2, -3] -victimless 0.6 0.4899 [0, 1, 0, 1, 1, 0, 0, 1, 1, 1] -victimologies -0.6 1.35647 [-2, 0, -2, -1, 0, 2, 1, 0, -2, -2] -victimologist -0.5 0.67082 [0, -1, -1, 0, 0, 0, 0, -1, -2, 0] -victimologists -0.4 0.91652 [0, 1, 0, -2, -2, 0, 0, 0, -1, 0] -victimology 0.3 1.00499 [0, 0, 0, -1, 0, 1, 0, 0, 3, 0] -victims -1.3 2.05183 [-3, -1, -3, -3, -3, 2, 1, -2, 2, -3] -vigilant 0.7 0.9 [0, 2, 0, 2, 0, -1, 1, 1, 1, 1] -vigor 1.1 1.37477 [0, 3, 2, 1, 2, 2, 0, 1, -2, 2] -vigorish -0.4 1.2 [0, -3, -1, -1, 0, -1, 0, 0, 2, 0] -vigorishes 0.4 1.56205 [0, 0, 2, 1, 2, 0, -2, -2, 0, 3] -vigoroso 1.5 0.67082 [2, 0, 1, 2, 2, 1, 2, 1, 2, 2] -vigorously 0.5 0.92195 [0, 0, 0, 1, 2, 0, 2, -1, 1, 0] -vigorousness 0.4 1.11355 [0, 3, 0, -1, -1, 0, 0, 1, 1, 1] -vigors 1.0 1.0 [0, 1, 0, 1, 0, 0, 1, 3, 2, 2] -vigour 0.9 0.9434 [0, 2, 2, 2, 1, 1, 0, 1, -1, 1] -vigours 0.4 1.68523 [-4, 1, 1, 1, -1, 1, 2, 2, 0, 1] -vile -3.1 0.83066 [-4, -2, -4, -4, -2, -3, -3, -3, -2, -4] -villain -2.6 0.4899 [-3, -2, -2, -3, -2, -2, -3, -3, -3, -3] -villainess -2.9 0.53852 [-3, -2, -3, -4, -3, -2, -3, -3, -3, -3] -villainesses -2.0 1.18322 [-2, -3, -2, -2, -2, -3, 1, -3, -1, -3] -villainies -2.3 1.00499 [-3, -2, -3, -3, -3, -1, -3, -2, -3, 0] -villainous -2.0 0.63246 [-3, -2, -1, -2, -2, -2, -2, -1, -2, -3] -villainously -2.9 0.53852 [-3, -3, -3, -3, -3, -4, -2, -3, -2, -3] -villainousness -2.7 0.9 [-4, -3, -4, -3, -1, -3, -2, -2, -2, -3] -villains -3.4 0.91652 [-4, -3, -4, -3, -4, -3, -4, -4, -1, -4] -villainy -2.6 0.4899 [-3, -2, -3, -3, -2, -2, -2, -3, -3, -3] -vindicate 0.3 1.95192 [2, -1, -2, -3, -1, 3, 0, 3, 1, 1] -vindicated 1.8 1.16619 [1, 3, -1, 2, 2, 1, 3, 2, 2, 3] -vindicates 1.6 0.66332 [2, 3, 2, 2, 2, 1, 1, 1, 1, 1] -vindicating -1.1 1.97231 [-3, -2, 2, -3, -2, 1, 1, 1, -3, -3] -violate -2.2 0.6 [-3, -3, -2, -3, -2, -2, -1, -2, -2, -2] -violated -2.4 0.66332 [-3, -3, -3, -3, -2, -3, -1, -2, -2, -2] -violater -2.6 0.91652 [-3, -3, -4, -4, -2, -3, -2, -2, -2, -1] -violaters -2.4 0.8 [-1, -3, -1, -2, -3, -3, -3, -2, -3, -3] -violates -2.3 0.9 [-3, -2, -4, -3, -2, -3, -2, -2, -1, -1] -violating -2.5 0.92195 [-2, -3, -3, -1, -3, -2, -4, -1, -3, -3] -violation -2.2 0.9798 [-3, -1, -1, -3, -3, -2, -1, -2, -2, -4] -violations -2.4 0.66332 [-2, -2, -2, -3, -2, -4, -2, -2, -2, -3] -violative -2.4 0.66332 [-2, -3, -3, -3, -1, -3, -2, -2, -2, -3] -violator -2.4 1.0198 [-1, -4, -3, -2, -3, -2, -2, -1, -4, -2] -violators -1.9 1.51327 [-2, 2, -3, -4, -1, -2, -3, -2, -2, -2] -violence -3.1 0.53852 [-2, -3, -3, -3, -3, -4, -4, -3, -3, -3] -violent -2.9 0.53852 [-3, -3, -3, -3, -3, -4, -3, -2, -2, -3] -violently -2.8 0.74833 [-3, -3, -2, -3, -3, -3, -4, -1, -3, -3] -virtue 1.8 0.74833 [1, 2, 3, 2, 2, 2, 3, 1, 1, 1] -virtueless -1.4 1.0198 [-2, 0, -2, -3, -1, -3, -1, -1, -1, 0] -virtues 1.5 0.80623 [2, 2, 2, 1, 0, 1, 3, 1, 2, 1] -virtuosa 1.7 1.48661 [0, 4, 2, 3, 2, 3, 0, 2, -1, 2] -virtuosas 1.8 0.87178 [2, 3, 1, 2, 1, 0, 3, 2, 2, 2] -virtuose 1.0 1.41421 [2, 1, 0, 2, 1, -1, 1, 1, -1, 4] -virtuosi 0.9 1.37477 [2, 0, 0, 2, 1, 0, 0, 1, -1, 4] -virtuosic 2.2 1.07703 [2, 2, 4, 1, 0, 3, 3, 2, 2, 3] -virtuosity 2.1 0.83066 [3, 3, 3, 2, 1, 3, 2, 2, 1, 1] -virtuoso 2.0 1.0 [2, 2, 3, 2, 1, 0, 3, 3, 3, 1] -virtuosos 1.8 1.16619 [2, 3, 1, -1, 2, 1, 3, 3, 2, 2] -virtuous 2.4 1.2 [0, 3, 2, 1, 3, 4, 2, 2, 4, 3] -virtuously 1.8 1.16619 [3, 2, 3, 1, 3, 1, -1, 2, 2, 2] -virtuousness 2.0 1.09545 [3, 4, 2, 2, 0, 1, 2, 3, 2, 1] -virulent -2.7 0.64031 [-3, -2, -4, -2, -3, -3, -2, -3, -2, -3] -vision 1.0 1.0 [0, 0, 0, 2, 1, 3, 2, 1, 1, 0] -visionary 2.4 1.0198 [1, 3, 1, 2, 4, 1, 3, 3, 3, 3] -visioning 1.1 0.9434 [1, 2, 0, 0, 3, 0, 1, 1, 2, 1] -visions 0.9 0.9434 [2, 0, 0, 0, 0, 1, 2, 2, 0, 2] -vital 1.2 1.46969 [-3, 2, 1, 1, 2, 2, 1, 2, 2, 2] -vitalise 1.1 0.9434 [1, 2, 0, 2, 2, 0, 2, 0, 2, 0] -vitalised 0.6 1.49666 [1, -2, 2, 0, 2, 1, -2, 2, 0, 2] -vitalises 1.1 1.3 [1, 2, 2, 0, 2, 2, -2, 2, 0, 2] -vitalising 2.1 0.53852 [2, 2, 3, 2, 3, 2, 2, 1, 2, 2] -vitalism 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] -vitalist 0.3 0.64031 [0, 0, 0, 0, 0, 0, 1, 0, 2, 0] -vitalists 0.3 1.34536 [2, -3, 1, 0, 0, 0, 1, 0, 2, 0] -vitalities 1.2 0.87178 [2, 1, 3, 1, 1, 0, 2, 1, 0, 1] -vitality 1.3 0.9 [3, 2, 0, 1, 1, 1, 2, 0, 2, 1] -vitalization 1.6 0.91652 [2, 3, 3, 1, 2, 1, 0, 2, 1, 1] -vitalizations 0.8 0.74833 [0, 1, 1, 2, 0, 0, 0, 2, 1, 1] -vitalize 1.6 0.66332 [3, 2, 2, 1, 2, 1, 1, 1, 2, 1] -vitalized 1.5 0.67082 [1, 1, 2, 2, 0, 2, 1, 2, 2, 2] -vitalizes 1.4 0.4899 [2, 1, 1, 2, 1, 2, 1, 2, 1, 1] -vitalizing 1.3 0.9 [3, 1, 0, 0, 1, 1, 2, 2, 2, 1] -vitally 1.1 0.53852 [0, 2, 1, 1, 1, 1, 2, 1, 1, 1] -vitals 1.1 0.7 [1, 0, 1, 2, 2, 0, 2, 1, 1, 1] -vitamin 1.2 0.87178 [3, 1, 0, 0, 1, 2, 1, 2, 1, 1] -vitriolic -2.1 0.83066 [-2, -2, -2, -4, -3, -2, -1, -1, -2, -2] -vivacious 1.8 0.9798 [0, 1, 3, 3, 3, 2, 2, 2, 1, 1] -vociferous -0.8 0.9798 [1, -2, -1, -2, -1, -1, 1, -1, -1, -1] -vulnerabilities -0.6 1.49666 [0, -3, -1, -1, -1, 2, -2, 2, -1, -1] -vulnerability -0.9 1.75784 [1, -1, -1, -2, 1, -3, -1, 2, -4, -1] -vulnerable -0.9 1.37477 [-2, -2, 2, -1, -3, -1, 1, -1, -1, -1] -vulnerableness -1.1 1.04403 [-1, -1, -2, -3, -1, 1, 0, -2, -1, -1] -vulnerably -1.2 1.46969 [-2, -2, 2, -1, -2, -3, 1, -1, -2, -2] -vulture -2.0 0.89443 [-2, -3, -1, -2, -1, -1, -1, -3, -3, -3] -vultures -1.3 1.55242 [-2, -3, -2, 2, -2, -2, -3, -1, -1, 1] -w00t 2.2 1.32665 [3, 2, 3, 2, 0, 4, 0, 4, 2, 2] -walkout -1.3 0.9 [-1, -2, -2, -1, -1, -2, -1, 1, -2, -2] -walkouts -0.7 1.00499 [-2, -2, -1, 0, -1, -1, -1, 1, -1, 1] -wanker -2.5 0.67082 [-2, -3, -3, -2, -3, -3, -2, -1, -3, -3] -want 0.3 1.18743 [0, -2, 0, 1, 2, -1, 2, 1, 0, 0] -war -2.9 1.13578 [-1, -3, -4, -4, -3, -1, -2, -3, -4, -4] -warfare -1.2 1.16619 [-2, 0, -1, -2, 0, -3, 1, -2, -2, -1] -warfares -1.8 0.87178 [-2, -1, -2, -2, -3, -1, -3, 0, -2, -2] -warm 0.9 0.7 [1, 0, 0, 1, 1, 2, 1, 2, 1, 0] -warmblooded 0.2 0.6 [0, 0, 2, 0, 0, 0, 0, 0, 0, 0] -warmed 1.1 0.53852 [2, 0, 1, 1, 1, 2, 1, 1, 1, 1] -warmer 1.2 0.9798 [2, 2, 2, 1, -1, 0, 2, 1, 1, 2] -warmers 1.0 0.44721 [1, 1, 1, 2, 1, 1, 1, 0, 1, 1] -warmest 1.7 1.34536 [3, 2, 1, 2, 3, 2, 2, 2, -2, 2] -warmhearted 1.8 0.6 [3, 2, 2, 2, 2, 1, 2, 1, 1, 2] -warmheartedness 2.7 0.64031 [2, 4, 3, 2, 3, 3, 3, 2, 2, 3] -warming 0.6 0.8 [0, 0, 2, 2, 1, 1, 0, 0, 0, 0] -warmish 1.4 0.66332 [1, 3, 2, 1, 1, 1, 1, 2, 1, 1] -warmly 1.7 0.64031 [2, 1, 2, 1, 2, 1, 2, 1, 2, 3] -warmness 1.5 0.92195 [3, 1, 2, 1, 0, 1, 3, 2, 1, 1] -warmonger -2.9 1.13578 [-3, 0, -4, -4, -2, -3, -4, -3, -3, -3] -warmongering -2.5 0.67082 [-2, -3, -3, -1, -2, -3, -3, -2, -3, -3] -warmongers -2.8 0.87178 [-2, -3, -4, -4, -3, -1, -2, -3, -3, -3] -warmouth 0.4 0.66332 [0, 0, 2, 0, 0, 0, 0, 1, 1, 0] -warmouths -0.8 1.32665 [-1, -1, -2, -1, -2, -2, 0, 2, 1, -2] -warms 1.1 0.7 [2, 2, 1, 2, 1, 0, 1, 1, 0, 1] -warmth 2.0 0.44721 [2, 2, 2, 2, 1, 2, 2, 3, 2, 2] -warmup 0.4 0.66332 [0, 2, 0, 1, 1, 0, 0, 0, 0, 0] -warmups 0.8 0.9798 [0, 2, 0, 0, 0, 2, 2, 0, 2, 0] -warn -0.4 1.35647 [0, -1, 0, -2, -1, 2, 1, -2, 1, -2] -warned -1.1 0.53852 [-1, -1, -2, 0, -1, -1, -1, -2, -1, -1] -warning -1.4 1.0198 [-2, -1, -1, -1, -2, 0, -4, -1, -1, -1] -warnings -1.2 0.9798 [-2, -1, 0, -1, -2, 0, 0, -1, -3, -2] -warns -0.4 1.0198 [1, -1, -1, 1, -1, -1, -2, 1, 0, -1] -warred -2.4 0.8 [-2, -2, -4, -1, -3, -2, -3, -2, -3, -2] -warring -1.9 1.04403 [-3, -3, 0, -1, -2, -2, -3, -1, -1, -3] -wars -2.6 0.8 [-2, -3, -1, -3, -2, -4, -3, -3, -2, -3] -warsaw -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] -warsaws -0.2 0.4 [0, 0, 0, -1, 0, 0, 0, 0, -1, 0] -warship -0.7 0.9 [0, 0, 0, 0, 0, -2, -1, 0, -2, -2] -warships -0.5 0.80623 [0, -1, 0, 0, -2, 0, 0, -2, 0, 0] -warstle 0.1 0.7 [0, 0, 0, 0, 0, 0, 0, 0, 2, -1] -waste -1.8 0.9798 [-2, -2, -1, -3, -2, -1, -1, -4, -1, -1] -wasted -2.2 0.6 [-2, -3, -2, -3, -1, -3, -2, -2, -2, -2] -wasting -1.7 0.9 [-3, -1, -2, -2, -1, -2, -3, 0, -1, -2] -wavering -0.6 1.0198 [-1, -1, 0, 0, -1, -1, -1, 2, -1, -2] -weak -1.9 0.7 [-1, -3, -2, -2, -3, -2, -2, -1, -2, -1] -weaken -1.8 0.6 [-2, -2, -2, -1, -1, -3, -2, -2, -1, -2] -weakened -1.3 0.9 [-2, -1, -1, -1, -1, -2, -2, -2, 1, -2] -weakener -1.6 1.11355 [-2, -1, -1, -1, -2, -2, -3, -3, 1, -2] -weakeners -1.3 0.45826 [-1, -2, -1, -2, -1, -1, -2, -1, -1, -1] -weakening -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -1, -2, -2, -1] -weakens -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -1, -2, -1, -2] -weaker -1.9 0.83066 [-2, -2, -2, -2, -2, -1, -4, -1, -1, -2] -weakest -2.3 0.64031 [-2, -4, -2, -3, -2, -2, -2, -2, -2, -2] -weakfish -0.2 1.07703 [0, -2, 0, 0, 0, 0, -2, 0, 2, 0] -weakfishes -0.6 0.8 [0, -1, 0, -2, 0, 0, -1, 0, -2, 0] -weakhearted -1.6 0.8 [-1, -3, -1, -1, -2, -1, -3, -2, -1, -1] -weakish -1.2 0.4 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -1] -weaklier -1.5 0.67082 [-1, -2, -1, -3, -2, -1, -1, -2, -1, -1] -weakliest -2.1 0.83066 [-2, -2, -2, -2, -3, -1, -2, -1, -4, -2] -weakling -1.3 1.00499 [-1, -2, -1, -3, -2, -2, -1, -1, 1, -1] -weaklings -1.4 0.66332 [-2, -1, -1, -1, -1, -2, -2, 0, -2, -2] -weakly -1.8 0.87178 [-2, -2, -2, -2, -4, -1, -1, -1, -1, -2] -weakness -1.8 0.6 [-2, -2, -2, -1, -1, -2, -1, -3, -2, -2] -weaknesses -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -2, -1, -2] -weakside -1.1 1.37477 [-3, -2, -3, -1, -2, -1, 1, 1, -1, 0] -wealth 2.2 0.4 [2, 3, 2, 2, 2, 3, 2, 2, 2, 2] -wealthier 2.2 0.6 [3, 2, 1, 3, 2, 2, 2, 3, 2, 2] -wealthiest 2.2 0.9798 [2, 4, 4, 1, 2, 1, 2, 2, 2, 2] -wealthily 2.0 0.89443 [2, 3, 1, 4, 2, 1, 1, 2, 2, 2] -wealthiness 2.4 1.11355 [2, 4, 2, 4, 1, 2, 4, 1, 2, 2] -wealthy 1.5 1.0247 [1, 2, 1, 4, 1, 0, 2, 1, 2, 1] -weapon -1.2 0.87178 [0, -2, -2, -1, 0, -2, -1, -2, 0, -2] -weaponed -1.4 0.91652 [-2, -2, -3, -1, -1, 0, 0, -2, -1, -2] -weaponless 0.1 1.13578 [2, -1, 0, 0, -1, 1, -1, 0, 2, -1] -weaponry -0.9 0.7 [-2, -2, 0, -1, 0, -1, -1, -1, 0, -1] -weapons -1.9 0.9434 [-2, -1, -2, -2, -1, -3, -3, -3, -2, 0] -weary -1.1 1.13578 [-2, -1, -2, -3, 0, -1, -1, -2, 0, 1] -weep -2.7 0.9 [-2, -4, -4, -3, -3, -3, -3, -2, -1, -2] -weeper -1.9 0.53852 [-2, -2, -2, -3, -1, -1, -2, -2, -2, -2] -weepers -1.1 1.13578 [-2, -2, -1, -2, -1, 1, -2, 1, -1, -2] -weepie -0.4 0.91652 [0, 1, -1, 0, -1, -2, 0, -1, -1, 1] -weepier -1.8 0.87178 [-3, -3, -2, -1, -2, -2, -2, 0, -1, -2] -weepies -1.6 0.8 [-2, -3, -2, -1, -1, -2, -2, 0, -1, -2] -weepiest -2.4 0.91652 [-4, -2, -2, -2, -2, -1, -2, -2, -4, -3] -weeping -1.9 0.9434 [-2, -2, -1, -1, -1, -1, -4, -2, -2, -3] -weepings -1.9 0.9434 [-2, -2, -3, 0, -1, -2, -2, -3, -1, -3] -weeps -1.4 1.35647 [-2, -3, -1, -2, -1, -3, 1, -2, 1, -2] -weepy -1.3 1.55242 [-2, -3, -1, -2, 2, -3, -1, -2, 1, -2] -weird -0.7 0.64031 [-1, 0, 0, -1, -1, -1, 0, 0, -2, -1] -weirder -0.5 0.80623 [1, -1, -1, -1, -1, 1, -1, -1, 0, -1] -weirdest -0.9 1.22066 [-2, 0, -2, -1, -1, -1, -3, 1, 1, -1] -weirdie -1.3 0.45826 [-1, -2, -1, -2, -1, -1, -2, -1, -1, -1] -weirdies -1.0 0.63246 [0, -1, -1, -1, -1, 0, -2, -2, -1, -1] -weirdly -1.2 0.74833 [0, -1, -1, -2, -3, -1, -1, -1, -1, -1] -weirdness -0.9 1.64012 [-3, -2, -1, -1, 2, -1, 1, -3, 1, -2] -weirdnesses -0.7 1.00499 [-1, -2, 0, -1, -2, 1, -1, -1, -1, 1] -weirdo -1.8 0.6 [-2, -2, -2, -2, -2, -2, -1, -1, -3, -1] -weirdoes -1.3 0.64031 [-2, -1, -2, -1, -1, -2, -1, 0, -1, -2] -weirdos -1.1 0.9434 [-1, -1, -1, -2, 1, -3, -1, -1, -1, -1] -weirds -0.6 0.4899 [-1, -1, -1, 0, -1, 0, 0, -1, 0, -1] -weirdy -0.9 0.83066 [-1, -1, 0, 0, -1, 0, -2, -2, 0, -2] -welcome 2.0 0.63246 [1, 3, 2, 1, 2, 2, 2, 2, 3, 2] -welcomed 1.4 0.4899 [1, 1, 2, 2, 1, 2, 1, 2, 1, 1] -welcomely 1.9 0.53852 [2, 2, 2, 2, 1, 3, 2, 1, 2, 2] -welcomeness 2.0 0.89443 [2, 3, 1, 2, 3, 0, 2, 3, 2, 2] -welcomer 1.4 0.4899 [1, 1, 2, 2, 2, 2, 1, 1, 1, 1] -welcomers 1.9 0.7 [2, 2, 3, 2, 2, 1, 1, 3, 1, 2] -welcomes 1.7 0.78102 [1, 1, 2, 2, 3, 3, 1, 2, 1, 1] -welcoming 1.9 0.7 [2, 2, 1, 1, 2, 2, 2, 3, 3, 1] -well 1.1 1.04403 [0, 0, 2, 0, 2, 0, 1, 1, 3, 2] -welladay 0.3 1.18743 [2, -2, 0, 0, -1, 1, 0, 1, 2, 0] -wellaway -0.8 1.98997 [3, -2, -3, -3, -1, -2, 1, -2, -1, 2] -wellborn 1.8 0.74833 [2, 1, 2, 1, 2, 2, 1, 3, 1, 3] -welldoer 2.5 0.67082 [2, 2, 2, 3, 2, 3, 4, 3, 2, 2] -welldoers 1.6 0.8 [3, 1, 1, 0, 2, 1, 2, 2, 2, 2] -welled 0.4 0.8 [0, 0, 2, 0, 0, 0, 0, 0, 2, 0] -wellhead 0.1 0.3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] -wellheads 0.5 0.92195 [0, 2, 0, 2, -1, 0, 1, 1, 0, 0] -wellhole -0.1 0.3 [0, 0, 0, -1, 0, 0, 0, 0, 0, 0] -wellies 0.4 0.4899 [0, 1, 0, 0, 0, 1, 0, 0, 1, 1] -welling 1.6 0.8 [2, 0, 1, 2, 2, 1, 3, 2, 2, 1] -wellness 1.9 0.9434 [1, 2, 2, 1, 2, 1, 1, 3, 4, 2] -wells 1.0 1.0 [2, 0, 3, 0, 1, 0, 2, 1, 1, 0] -wellsite 0.5 0.67082 [0, 0, 1, 2, 0, 0, 0, 0, 1, 1] -wellspring 1.5 0.92195 [3, 1, 1, 1, 0, 2, 2, 3, 1, 1] -wellsprings 1.4 0.8 [1, 0, 0, 2, 2, 2, 1, 2, 2, 2] -welly 0.2 0.4 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0] -wept -2.0 1.09545 [-3, -2, -3, -3, -1, -3, 0, -1, -1, -3] -whimsical 0.3 1.61555 [2, 1, 1, 2, -1, 1, -3, -2, 1, 1] -whine -1.5 1.11803 [-1, -4, -1, -1, -1, -3, 0, -2, -1, -1] -whined -0.9 1.04403 [-2, -1, -2, -1, -1, -1, -2, 1, 1, -1] -whiner -1.2 0.4 [-1, -2, -1, -1, -1, -2, -1, -1, -1, -1] -whiners -0.6 1.95959 [-2, 0, -2, -2, 4, 1, 1, -2, -2, -2] -whines -1.8 0.6 [-2, -2, -2, -1, -2, -2, -3, -1, -2, -1] -whiney -1.3 0.45826 [-1, -2, -1, -1, -1, -2, -2, -1, -1, -1] -whining -0.9 1.51327 [-3, 0, -1, -1, -3, -1, 1, 2, -2, -1] -whitewash 0.1 0.7 [-1, 0, 1, -1, 0, 0, 0, 1, 1, 0] -whore -3.3 0.64031 [-4, -4, -3, -2, -3, -4, -3, -3, -4, -3] -whored -2.8 0.87178 [-2, -3, -4, -2, -2, -3, -4, -4, -2, -2] -whoredom -2.1 2.02237 [-4, -2, -4, -3, -3, -3, -4, -1, 2, 1] -whoredoms -2.4 1.11355 [-1, -3, 0, -3, -2, -3, -3, -4, -2, -3] -whorehouse -1.1 2.11896 [-2, -2, -2, 3, 3, -3, -3, -2, -1, -2] -whorehouses -1.9 1.92094 [-4, -3, -4, -3, 0, 0, -3, 2, -1, -3] -whoremaster -1.9 1.22066 [-1, -3, -3, -2, -1, -3, 0, 0, -3, -3] -whoremasters -1.5 1.85742 [-3, -1, -1, -4, -2, 2, -1, 1, -2, -4] -whoremonger -2.6 0.91652 [-3, -1, -3, -3, -3, -3, -3, -1, -4, -2] -whoremongers -2.0 1.78885 [-4, -3, 0, -3, -3, -3, -3, 1, 1, -3] -whores -3.0 1.0 [-3, -3, -4, -2, -1, -3, -4, -4, -2, -4] -whoreson -2.2 1.46969 [-2, -3, -4, -4, -3, -1, -1, 1, -3, -2] -whoresons -2.5 1.20416 [-3, -3, -2, -2, 0, -4, -3, -1, -3, -4] -wicked -2.4 0.8 [-3, -4, -3, -3, -2, -2, -2, -1, -2, -2] -wickeder -2.2 1.32665 [-2, -3, -1, -4, 1, -3, -3, -3, -2, -2] -wickedest -2.9 1.04403 [-3, -1, -3, -3, -3, -3, -1, -4, -4, -4] -wickedly -2.1 0.83066 [-2, -2, -1, -3, -2, -3, -1, -3, -1, -3] -wickedness -2.1 0.83066 [-2, -1, -2, -2, -3, -1, -2, -4, -2, -2] -wickednesses -2.2 1.16619 [-1, -2, -4, -2, -3, -1, -3, -4, -1, -1] -widowed -2.1 1.22066 [0, -4, -2, -4, -3, -2, -2, -2, -1, -1] -willingness 1.1 0.7 [0, 2, 1, 1, 2, 2, 1, 0, 1, 1] -wimp -1.4 1.28062 [-2, -3, -1, -2, -1, -2, -2, -1, 2, -2] -wimpier -1.0 1.18322 [-1, -2, -2, -1, -2, 0, 1, -2, 1, -2] -wimpiest -0.9 1.22066 [-3, -1, -2, -1, -2, -1, 1, 1, 0, -1] -wimpiness -1.2 0.9798 [1, -1, -3, -1, -2, -1, -1, -1, -2, -1] -wimpish -1.6 0.4899 [-2, -1, -2, -1, -2, -2, -1, -2, -2, -1] -wimpishness -0.2 1.249 [-3, -1, 0, -1, -1, 1, 1, 1, 1, 0] -wimple -0.2 0.74833 [0, -1, 0, 0, 0, 0, -2, 0, 0, 1] -wimples -0.3 0.78102 [-2, 0, 0, 0, 0, -1, 0, -1, 1, 0] -wimps -1.0 1.18322 [-2, -2, -1, -1, 0, -2, -2, 1, -2, 1] -wimpy -0.9 1.04403 [-2, -1, -1, -1, -1, -2, -1, 1, -2, 1] -win 2.8 0.87178 [3, 2, 4, 3, 2, 4, 3, 1, 3, 3] -winnable 1.8 0.6 [3, 2, 2, 2, 2, 1, 1, 1, 2, 2] -winned 1.8 0.6 [2, 2, 2, 2, 1, 2, 1, 1, 3, 2] -winner 2.8 0.87178 [2, 2, 2, 3, 4, 2, 3, 4, 2, 4] -winners 2.1 1.44568 [3, 3, 2, 3, 3, 2, 2, -2, 3, 2] -winning 2.4 0.4899 [2, 3, 3, 2, 2, 2, 3, 3, 2, 2] -winningly 2.3 1.48661 [1, 3, 4, 3, 3, 1, 2, 3, -1, 4] -winnings 2.5 0.92195 [3, 4, 3, 2, 2, 3, 1, 1, 3, 3] -winnow -0.3 1.00499 [0, -1, 0, -2, 1, 1, -2, 0, 0, 0] -winnower -0.1 0.3 [0, 0, 0, 0, 0, -1, 0, 0, 0, 0] -winnowers -0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, -2, 0] -winnowing -0.1 0.53852 [0, 0, -1, 0, 0, 0, 0, 1, -1, 0] -winnows -0.2 0.4 [0, 0, -1, -1, 0, 0, 0, 0, 0, 0] -wins 2.7 0.78102 [2, 2, 3, 3, 4, 4, 3, 2, 2, 2] -wisdom 2.4 0.66332 [2, 3, 4, 2, 3, 2, 2, 2, 2, 2] -wise 2.1 0.83066 [2, 3, 1, 4, 2, 2, 1, 2, 2, 2] -wiseacre -1.2 1.16619 [-2, -1, -2, -2, -2, -1, -2, 1, 1, -2] -wiseacres -0.1 0.9434 [-2, 1, 0, -1, 0, 1, 1, -1, 0, 0] -wiseass -1.8 0.6 [-2, -2, -1, -1, -2, -2, -3, -2, -1, -2] -wiseasses -1.5 1.36015 [-1, -2, 2, -2, -1, -3, -2, -3, -1, -2] -wisecrack -0.1 1.22066 [-1, -1, -1, -2, 2, 1, -1, 1, 1, 0] -wisecracked -0.5 0.92195 [1, 1, -1, -1, 0, -1, -2, 0, -1, -1] -wisecracker -0.1 0.7 [-1, 1, -1, -1, 0, 0, 0, 0, 1, 0] -wisecrackers 0.1 1.04403 [-1, 0, 1, 1, 0, 2, 1, -1, -1, -1] -wisecracking -0.6 0.4899 [0, 0, -1, 0, -1, 0, -1, -1, -1, -1] -wisecracks -0.3 1.55242 [1, 2, -1, 2, -3, 0, 0, -2, -1, -1] -wised 1.5 0.67082 [2, 2, 2, 1, 1, 2, 0, 1, 2, 2] -wiseguys 0.3 1.9 [4, -1, 1, -1, 1, 2, 2, -2, -2, -1] -wiselier 0.9 1.3 [1, 2, 2, -2, 0, 1, 3, 1, 0, 1] -wiseliest 1.6 1.49666 [1, 4, 2, 2, 1, 2, 2, 3, -2, 1] -wisely 1.8 0.6 [1, 2, 3, 2, 1, 2, 2, 1, 2, 2] -wiseness 1.9 0.7 [2, 3, 2, 2, 3, 1, 1, 1, 2, 2] -wisenheimer -1.0 1.18322 [-1, 1, -1, -1, -1, 0, -1, -3, 0, -3] -wisenheimers -1.4 0.91652 [-3, -3, -2, -1, -1, -1, 0, -1, -1, -1] -wisents 0.4 0.91652 [0, 0, 0, 0, 1, 0, 0, 0, 3, 0] -wiser 1.2 0.87178 [1, 3, 0, 1, 1, 2, 0, 2, 1, 1] -wises 1.3 1.48661 [3, 3, 2, -2, 2, 0, 0, 2, 2, 1] -wisest 2.1 1.51327 [1, 3, 3, 3, 3, 2, 2, 3, -2, 3] -wisewomen 1.3 0.9 [2, 2, 0, 0, 2, 0, 1, 2, 2, 2] -wish 1.7 1.1 [2, 1, 1, 0, 2, 1, 3, 2, 4, 1] -wishes 0.6 0.8 [0, 0, 1, 0, 1, 0, 2, 0, 2, 0] -wishing 0.9 0.7 [2, 1, 1, 0, 0, 0, 1, 1, 2, 1] -witch -1.5 0.80623 [-1, -2, -2, -1, -3, 0, -2, -2, -1, -1] -withdrawal 0.1 1.57797 [1, -1, 0, -2, -2, 2, -1, 1, 0, 3] -woe -1.8 0.6 [-3, -2, -2, -2, -1, -1, -2, -1, -2, -2] -woebegone -2.6 0.66332 [-3, -2, -3, -2, -2, -4, -3, -2, -2, -3] -woebegoneness -1.1 1.37477 [-3, 0, -1, 1, -1, -4, 0, -1, -1, -1] -woeful -1.9 0.83066 [-1, -2, -2, -1, -3, -3, -1, -2, -1, -3] -woefully -1.7 1.48661 [-1, -3, -2, 1, -3, -3, -2, -2, 1, -3] -woefulness -2.1 0.7 [-3, -2, -2, -1, -2, -3, -3, -1, -2, -2] -woes -1.9 0.83066 [-2, -2, -2, -1, -2, -3, -3, 0, -2, -2] -woesome -1.2 1.6 [-2, -3, -2, -1, 0, 3, -2, -2, -1, -2] -won 2.7 0.9 [3, 4, 2, 2, 2, 4, 4, 2, 2, 2] -wonderful 2.7 0.78102 [2, 3, 3, 2, 4, 2, 2, 3, 4, 2] -wonderfully 2.9 0.83066 [1, 3, 3, 4, 3, 2, 3, 3, 4, 3] -wonderfulness 2.9 0.53852 [3, 2, 3, 3, 3, 3, 3, 2, 4, 3] -woo 2.1 1.37477 [4, 2, 1, 3, 2, 2, -1, 2, 2, 4] -woohoo 2.3 1.1 [3, 3, 1, 4, 4, 2, 1, 1, 2, 2] -woot 1.8 1.07703 [2, 0, 2, 2, 2, 2, 0, 4, 2, 2] -worn -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -2, -1] -worried -1.2 0.74833 [-1, -1, -1, -1, -1, -2, -3, 0, -1, -1] -worriedly -2.0 0.44721 [-2, -2, -3, -2, -2, -2, -2, -1, -2, -2] -worrier -1.8 0.6 [-2, -2, -1, -2, -1, -3, -2, -2, -1, -2] -worriers -1.7 0.45826 [-2, -1, -2, -2, -2, -2, -1, -2, -1, -2] -worries -1.8 0.6 [-2, -2, -1, -2, -1, -2, -2, -3, -1, -2] -worriment -1.5 0.67082 [-1, -2, -1, -1, -1, -2, -1, -3, -1, -2] -worriments -1.9 0.7 [-2, -1, -2, -3, -1, -2, -3, -1, -2, -2] -worrisome -1.7 0.64031 [-1, -1, -1, -2, -1, -2, -3, -2, -2, -2] -worrisomely -2.0 0.63246 [-1, -2, -1, -2, -2, -3, -2, -2, -3, -2] -worrisomeness -1.9 0.53852 [-2, -2, -3, -1, -2, -2, -2, -1, -2, -2] -worrit -2.1 0.53852 [-2, -2, -1, -2, -2, -3, -3, -2, -2, -2] -worrits -1.2 0.9798 [-1, -2, -2, -1, 0, 0, -1, -3, 0, -2] -worry -1.9 0.7 [-2, -3, -1, -3, -1, -2, -1, -2, -2, -2] -worrying -1.4 0.66332 [-2, -1, -2, -2, -1, 0, -1, -1, -2, -2] -worrywart -1.8 0.9798 [-2, -2, -2, -1, -1, -1, -1, -3, -1, -4] -worrywarts -1.5 0.5 [-2, -1, -2, -2, -2, -1, -1, -1, -2, -1] -worse -2.1 0.83066 [-2, -2, -1, -3, -4, -2, -1, -2, -2, -2] -worsen -2.3 0.78102 [-4, -3, -1, -2, -2, -2, -2, -3, -2, -2] -worsened -1.9 1.22066 [-2, -2, -2, -1, -2, -2, -4, 1, -3, -2] -worsening -2.0 0.44721 [-2, -3, -2, -2, -2, -2, -1, -2, -2, -2] -worsens -2.1 0.53852 [-2, -2, -2, -2, -1, -2, -2, -3, -3, -2] -worser -2.0 0.89443 [-2, -2, -4, -1, -2, -2, -2, -3, -1, -1] -worship 1.2 1.07703 [1, 0, 0, 1, 3, 0, 2, 3, 1, 1] -worshiped 2.4 1.0198 [1, 2, 4, 3, 4, 1, 2, 3, 2, 2] -worshiper 1.0 1.0 [0, 0, 2, 3, 0, 2, 1, 1, 1, 0] -worshipers 0.9 0.83066 [0, 0, 0, 2, 1, 1, 1, 2, 2, 0] -worshipful 0.7 1.00499 [1, -1, 3, 1, 1, 1, 0, 0, 0, 1] -worshipfully 1.1 1.3 [0, 0, 0, 1, 3, 0, 3, 3, 1, 0] -worshipfulness 1.6 0.8 [3, 1, 2, 2, 1, 1, 3, 1, 1, 1] -worshiping 1.0 1.18322 [0, 3, 0, 3, 0, 1, 1, 2, 0, 0] -worshipless -0.6 1.0198 [0, -1, -3, -1, -1, -1, 0, 0, 0, 1] -worshipped 2.7 0.78102 [3, 2, 3, 3, 1, 4, 2, 3, 3, 3] -worshipper 0.6 0.66332 [1, 1, 0, 0, 1, 0, 0, 2, 1, 0] -worshippers 0.8 0.87178 [0, 1, 0, 0, 3, 1, 1, 1, 0, 1] -worshipping 1.6 1.28062 [1, 3, 3, 3, 0, 3, 1, 0, 2, 0] -worships 1.4 1.11355 [2, 0, 1, 3, 2, 1, 0, 3, 2, 0] -worst -3.1 1.04403 [-4, -4, -3, -1, -3, -4, -2, -2, -4, -4] -worth 0.9 0.9434 [0, 0, 1, 1, 2, 1, 1, 3, 0, 0] -worthless -1.9 1.13578 [-3, -1, -3, -4, -1, -3, -1, -1, -1, -1] -worthwhile 1.4 0.4899 [1, 1, 1, 2, 1, 1, 2, 1, 2, 2] -worthy 1.9 0.53852 [2, 2, 2, 1, 1, 2, 2, 2, 3, 2] -wow 2.8 0.9798 [2, 3, 2, 4, 4, 3, 3, 2, 1, 4] -wowed 2.6 0.8 [3, 3, 4, 3, 2, 1, 3, 3, 2, 2] -wowing 2.5 0.67082 [2, 2, 3, 3, 2, 3, 4, 2, 2, 2] -wows 2.0 1.61245 [2, 3, 3, 3, 2, 1, -2, 1, 4, 3] -wowser -1.1 2.02237 [-3, 3, 0, 2, -2, -1, -3, -2, -2, -3] -wowsers 1.0 2.14476 [0, -2, 4, 2, 3, 0, 1, 2, -3, 3] -wrathful -2.7 0.64031 [-3, -2, -2, -3, -3, -2, -4, -2, -3, -3] -wreck -1.9 0.7 [-1, -2, -3, -3, -2, -2, -2, -1, -1, -2] -wrong -2.1 1.04403 [-2, -2, -2, -2, -4, -4, -1, -1, -1, -2] -wronged -1.9 0.53852 [-2, -2, -2, -2, -2, -1, -3, -2, -2, -1] -x-d 2.6 0.91652 [2, 3, 3, 4, 1, 2, 3, 4, 2, 2] -x-p 1.7 0.45826 [2, 2, 1, 2, 2, 1, 1, 2, 2, 2] -xd 2.8 0.87178 [3, 3, 4, 2, 3, 3, 1, 2, 4, 3] -xp 1.6 0.4899 [2, 2, 2, 1, 1, 1, 2, 2, 1, 2] -yay 2.4 1.0198 [1, 3, 3, 2, 2, 1, 4, 4, 2, 2] -yeah 1.2 0.6 [1, 1, 1, 2, 1, 1, 0, 2, 1, 2] -yearning 0.5 1.0247 [0, 1, 0, 1, 0, 3, 0, 1, -1, 0] -yeees 1.7 1.00499 [1, 3, 1, 2, 1, 1, 4, 2, 1, 1] -yep 1.2 0.4 [1, 1, 1, 1, 1, 1, 2, 2, 1, 1] -yes 1.7 0.78102 [1, 2, 2, 1, 1, 1, 3, 3, 1, 2] -youthful 1.3 0.45826 [1, 2, 1, 2, 1, 1, 1, 1, 2, 1] -yucky -1.8 0.6 [-2, -1, -1, -2, -2, -1, -2, -2, -3, -2] -yummy 2.4 1.0198 [1, 2, 4, 3, 2, 2, 3, 1, 4, 2] -zealot -1.9 1.04403 [-2, -3, -1, -2, -1, -3, -4, -1, -1, -1] -zealots -0.8 1.83303 [-1, -2, -1, -2, -2, 1, -2, 4, -1, -2] -zealous 0.5 1.43178 [2, -1, 2, 1, 0, 0, 3, 0, -2, 0] -{: 1.8 0.9798 [1, 3, 2, 2, 1, 1, 4, 2, 1, 1] -|-0 -1.2 0.74833 [0, -2, -1, -1, -1, -1, -1, -1, -1, -3] -|-: -0.8 0.74833 [-1, -2, 0, -1, 0, -2, -1, -1, 0, 0] -|-:> -1.6 0.4899 [-1, -2, -2, -2, -2, -1, -1, -2, -2, -1] -|-o -1.2 0.9798 [-1, 0, -1, -1, -1, -1, -1, -4, -1, -1] -|: -0.5 1.68819 [2, -3, -1, 0, -1, -1, -1, -2, -1, 3] -|;-) 2.2 1.32665 [4, 1, 1, 1, 3, 2, 4, 1, 4, 1] -|= -0.4 1.56205 [2, -2, -1, 0, -1, -1, -1, -2, -1, 3] -|^: -1.1 0.7 [-2, 0, -1, -1, 0, -1, -1, -2, -2, -1] -|o: -0.9 0.53852 [-1, 0, -1, -2, -1, 0, -1, -1, -1, -1] -||-: -2.3 0.45826 [-2, -2, -2, -3, -3, -3, -2, -2, -2, -2] -}: -2.1 0.83066 [-1, -1, -3, -2, -3, -2, -2, -1, -3, -3] -}:( -2.0 0.63246 [-3, -1, -2, -1, -3, -2, -2, -2, -2, -2] -}:) 0.4 1.42829 [1, 1, -2, 1, 2, -2, 1, -1, 2, 1] -}:-( -2.1 0.7 [-2, -1, -2, -2, -2, -4, -2, -2, -2, -2] -}:-) 0.3 1.61555 [1, 1, -2, 1, -1, -3, 2, 2, 1, 1] \ No newline at end of file +๏ปฟ$: -1.5 0.80623 [-1, -1, -1, -1, -3, -1, -3, -1, -2, -1] +%) -0.4 1.0198 [-1, 0, -1, 0, 0, -2, -1, 2, -1, 0] +%-) -1.5 1.43178 [-2, 0, -2, -2, -1, 2, -2, -3, -2, -3] +&-: -0.4 1.42829 [-3, -1, 0, 0, -1, -1, -1, 2, -1, 2] +&: -0.7 0.64031 [0, -1, -1, -1, 1, -1, -1, -1, -1, -1] +( '}{' ) 1.6 0.66332 [1, 2, 2, 1, 1, 2, 2, 1, 3, 1] +(% -0.9 0.9434 [0, 0, 1, -1, -1, -1, -2, -2, -1, -2] +('-: 2.2 1.16619 [4, 1, 4, 3, 1, 2, 3, 1, 2, 1] +(': 2.3 0.9 [1, 3, 3, 2, 2, 4, 2, 3, 1, 2] +((-: 2.1 0.53852 [2, 2, 2, 1, 2, 3, 2, 2, 3, 2] +(* 1.1 1.13578 [2, 1, 1, -1, 1, 2, 2, -1, 2, 2] +(-% -0.7 1.26886 [-1, 2, 0, -1, -1, -2, 0, 0, -3, -1] +(-* 1.3 1.26886 [4, 1, 2, 0, 2, -1, 1, 2, 1, 1] +(-: 1.6 0.8 [2, 2, 1, 3, 1, 1, 1, 3, 1, 1] +(-:0 2.8 0.87178 [3, 2, 3, 4, 3, 2, 3, 1, 4, 3] +(-:< -0.4 2.15407 [-3, 3, -1, -1, 2, -1, -2, 3, -3, -1] +(-:o 1.5 0.67082 [3, 1, 1, 2, 2, 2, 1, 1, 1, 1] +(-:O 1.5 0.67082 [3, 1, 1, 2, 2, 2, 1, 1, 1, 1] +(-:{ -0.1 1.57797 [-2, -3, 1, -2, 1, 1, 0, 0, 2, 1] +(-:|>* 1.9 0.83066 [3, 2, 2, 1, 0, 2, 3, 2, 2, 2] +(-; 1.3 1.18743 [3, 2, 3, 0, 1, -1, 1, 2, 1, 1] +(-;| 2.1 1.13578 [3, 2, 2, 4, 1, 1, 1, 4, 2, 1] +(8 2.6 1.0198 [4, 2, 1, 3, 3, 3, 3, 1, 2, 4] +(: 2.2 1.16619 [3, 1, 1, 2, 1, 2, 4, 3, 4, 1] +(:0 2.4 1.11355 [0, 2, 3, 4, 3, 2, 3, 3, 1, 3] +(:< -0.2 2.03961 [-2, -3, 1, 1, 2, -1, 2, 1, -4, 1] +(:o 2.5 0.92195 [3, 3, 1, 3, 3, 1, 2, 2, 4, 3] +(:O 2.5 0.92195 [3, 3, 1, 3, 3, 1, 2, 2, 4, 3] +(; 1.1 1.22066 [3, 1, 1, -1, 1, 2, 2, -1, 1, 2] +(;< 0.3 1.00499 [1, 2, -1, -1, 0, 0, 1, -1, 1, 1] +(= 2.2 1.16619 [3, 1, 2, 2, 1, 1, 4, 3, 4, 1] +(?: 2.1 0.83066 [2, 2, 1, 3, 2, 2, 4, 1, 2, 2] +(^: 1.5 0.67082 [1, 2, 2, 1, 3, 2, 1, 1, 1, 1] +(^; 1.5 0.5 [1, 2, 2, 1, 2, 1, 2, 1, 1, 2] +(^;0 2.0 0.7746 [2, 2, 1, 2, 1, 4, 2, 2, 2, 2] +(^;o 1.9 0.83066 [2, 2, 1, 2, 1, 4, 2, 1, 2, 2] +(o: 1.6 0.8 [2, 1, 3, 1, 1, 1, 2, 3, 1, 1] +)': -2.0 0.44721 [-2, -2, -2, -2, -1, -3, -2, -2, -2, -2] +)-': -2.1 0.53852 [-2, -2, -3, -2, -1, -2, -3, -2, -2, -2] +)-: -2.1 0.9434 [-3, -2, -4, -1, -3, -2, -2, -2, -1, -1] +)-:< -2.2 0.4 [-2, -2, -2, -2, -2, -2, -3, -3, -2, -2] +)-:{ -2.1 0.9434 [-1, -3, -2, -1, -2, -2, -3, -4, -1, -2] +): -1.8 0.87178 [-1, -3, -1, -2, -1, -3, -1, -3, -1, -2] +):< -1.9 0.53852 [-1, -3, -2, -2, -2, -1, -2, -2, -2, -2] +):{ -2.3 0.78102 [-1, -2, -3, -3, -2, -2, -4, -2, -2, -2] +);< -2.6 0.8 [-2, -2, -2, -3, -2, -3, -2, -2, -4, -4] +*) 0.6 1.42829 [1, -1, 1, -3, 1, 1, 2, 1, 1, 2] +*-) 0.3 1.61555 [1, -3, -2, 2, 1, 1, -1, 2, 1, 1] +*-: 2.1 1.51327 [2, 2, 4, 4, 2, 1, -1, 4, 1, 2] +*-; 2.4 1.62481 [2, 3, 4, 4, 2, 1, -1, 4, 1, 4] +*: 1.9 1.04403 [2, 1, 1, 3, 1, 2, 4, 3, 1, 1] +*<|:-) 1.6 1.28062 [0, 1, 3, 1, 1, 2, 3, 0, 4, 1] +*\0/* 2.3 1.00499 [2, 0, 3, 1, 3, 3, 2, 3, 3, 3] +*^: 1.6 1.42829 [2, 2, 1, 3, 2, 2, 3, 3, -1, -1] +,-: 1.2 0.4 [1, 1, 2, 1, 1, 1, 1, 1, 2, 1] +---'-;-{@ 2.3 1.18743 [0, 1, 3, 4, 2, 3, 2, 2, 2, 4] +--<--<@ 2.2 1.249 [0, 1, 2, 4, 2, 1, 3, 2, 3, 4] +.-: -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -2, -1] +..###-: -1.7 0.78102 [-2, -3, -3, -2, -1, -1, -1, -1, -1, -2] +..###: -1.9 1.04403 [-4, -1, -3, -1, -2, -2, -1, -3, -1, -1] +/-: -1.3 0.64031 [-1, -1, -1, -1, -1, -1, -1, -2, -3, -1] +/: -1.3 0.45826 [-2, -1, -1, -1, -2, -1, -1, -2, -1, -1] +/:< -1.4 0.4899 [-1, -2, -2, -1, -1, -1, -1, -1, -2, -2] +/= -0.9 0.53852 [-1, -1, -1, 0, -1, -2, -1, -1, -1, 0] +/^: -1.0 0.7746 [-2, -1, -2, 1, -1, -1, -1, -1, -1, -1] +/o: -1.4 0.66332 [0, -2, -1, -1, -2, -2, -1, -2, -1, -2] +0-8 0.1 1.44568 [2, -1, -2, 0, 2, 0, 2, 0, -2, 0] +0-| -1.2 0.4 [-2, -1, -1, -1, -1, -1, -1, -1, -2, -1] +0:) 1.9 1.04403 [2, 2, 2, 1, 0, 2, 4, 1, 3, 2] +0:-) 1.4 0.91652 [2, 1, 0, 1, 2, 3, 2, 1, 2, 0] +0:-3 1.5 0.92195 [2, 1, 0, 2, 2, 3, 2, 1, 2, 0] +0:03 1.9 1.22066 [2, 3, 2, 0, 0, 1, 4, 2, 3, 2] +0;^) 1.6 0.91652 [0, 1, 3, 1, 2, 1, 2, 1, 2, 3] +0_o -0.3 0.78102 [0, -2, 0, 1, 0, 0, -1, 0, -1, 0] +10q 2.1 1.22066 [1, 3, 1, 2, 1, 4, 3, 4, 1, 1] +1337 2.1 1.13578 [3, 1, 4, 0, 2, 3, 1, 2, 2, 3] +143 3.2 0.74833 [4, 4, 2, 3, 2, 3, 4, 3, 4, 3] +1432 2.6 0.8 [4, 3, 3, 2, 2, 4, 2, 2, 2, 2] +14aa41 2.4 0.91652 [3, 2, 2, 4, 2, 2, 1, 2, 4, 2] +182 -2.9 1.3 [-4, 0, -3, -3, -1, -3, -4, -4, -4, -3] +187 -3.1 1.22066 [-4, 0, -4, -3, -2, -4, -3, -3, -4, -4] +2g2b4g 2.8 0.6 [4, 2, 3, 2, 3, 3, 3, 3, 2, 3] +2g2bt -0.1 1.57797 [-1, 2, -1, 1, 0, 2, 0, -3, -2, 1] +2qt 2.1 0.83066 [3, 3, 3, 3, 2, 1, 2, 1, 2, 1] +3:( -2.2 0.87178 [-4, -3, -2, -3, -2, -1, -1, -2, -2, -2] +3:) 0.5 1.28452 [-2, 1, -2, 1, 1, 1, 1, 2, 1, 1] +3:-( -2.3 0.78102 [-2, -3, -2, -2, -2, -2, -4, -1, -3, -2] +3:-) -1.4 1.35647 [-1, -2, 1, 1, -2, -2, -3, -1, -3, -2] +4col -2.2 1.16619 [-2, -3, -1, -3, -4, -1, -2, -1, -4, -1] +4q -3.1 1.51327 [-3, -3, -4, -2, -4, -4, -4, 1, -4, -4] +5fs 1.5 1.11803 [1, 2, 1, 1, 2, 3, 2, 3, -1, 1] +8) 1.9 0.7 [2, 2, 2, 1, 1, 2, 2, 3, 3, 1] +8-d 1.7 0.64031 [1, 2, 0, 2, 2, 2, 2, 2, 2, 2] +8-o -0.3 0.78102 [1, -1, 0, 0, 0, -1, 0, -2, 0, 0] +86 -1.6 1.0198 [-1, -1, -1, -1, -1, -4, -1, -2, -1, -3] +8d 2.9 0.53852 [3, 3, 4, 2, 3, 3, 3, 3, 2, 3] +:###.. -2.4 0.91652 [-3, -2, -4, -3, -1, -2, -2, -3, -1, -3] +:$ -0.2 1.83303 [-2, -1, 0, 0, -1, 1, 4, -3, 1, -1] +:& -0.6 1.0198 [-2, -1, 0, 0, -1, -1, 1, -2, 1, -1] +:'( -2.2 0.74833 [-2, -1, -2, -2, -2, -2, -4, -3, -2, -2] +:') 2.3 0.78102 [3, 1, 3, 2, 2, 2, 2, 4, 2, 2] +:'-( -2.4 0.66332 [-2, -1, -2, -3, -2, -3, -3, -3, -2, -3] +:'-) 2.7 0.64031 [2, 1, 3, 3, 3, 3, 3, 3, 3, 3] +:( -1.9 1.13578 [-2, -3, -2, 0, -1, -1, -2, -3, -1, -4] +:) 2.0 1.18322 [2, 2, 1, 1, 1, 1, 4, 3, 4, 1] +:* 2.5 1.0247 [3, 2, 1, 1, 2, 3, 4, 3, 4, 2] +:-###.. -2.5 0.92195 [-3, -2, -3, -2, -4, -3, -1, -3, -1, -3] +:-& -0.5 0.92195 [-1, -1, 0, -1, -1, -1, -1, 0, 2, -1] +:-( -1.5 0.5 [-2, -1, -1, -1, -2, -2, -2, -1, -2, -1] +:-) 1.3 0.45826 [1, 1, 1, 1, 2, 1, 2, 1, 2, 1] +:-)) 2.8 1.07703 [3, 4, 4, 1, 2, 2, 4, 2, 4, 2] +:-* 1.7 0.64031 [1, 2, 1, 1, 1, 3, 2, 2, 2, 2] +:-, 1.1 0.53852 [1, 1, 1, 0, 1, 1, 1, 1, 2, 2] +:-. -0.9 0.53852 [-1, -1, 0, -1, 0, -1, -1, -1, -2, -1] +:-/ -1.2 0.6 [0, -1, -1, -1, -1, -2, -2, -1, -1, -2] +:-< -1.5 0.5 [-2, -1, -1, -2, -1, -2, -2, -1, -2, -1] +:-d 2.3 0.45826 [2, 2, 3, 3, 2, 3, 2, 2, 2, 2] +:-D 2.3 0.45826 [2, 2, 3, 3, 2, 3, 2, 2, 2, 2] +:-o 0.1 1.3 [2, -1, -2, 0, 1, 1, 2, 0, -1, -1] +:-p 1.2 0.4 [1, 2, 1, 1, 1, 1, 2, 1, 1, 1] +:-[ -1.6 0.4899 [-1, -2, -1, -2, -2, -1, -2, -1, -2, -2] +:-\ -0.9 0.3 [-1, -1, -1, -1, -1, -1, -1, 0, -1, -1] +:-c -1.3 0.45826 [-1, -1, -1, -2, -2, -1, -2, -1, -1, -1] +:-p 1.5 0.5 [1, 1, 1, 1, 1, 2, 2, 2, 2, 2] +:-| -0.7 0.64031 [-1, -1, 0, 0, 0, -1, -1, -2, 0, -1] +:-|| -2.5 0.67082 [-2, -2, -2, -3, -2, -3, -3, -2, -2, -4] +:-รž 0.9 1.04403 [1, -1, 1, 2, 1, -1, 1, 2, 2, 1] +:/ -1.4 0.66332 [-1, -1, -1, -1, -1, -1, -3, -2, -2, -1] +:3 2.3 1.26886 [4, 1, 1, 1, 2, 2, 4, 3, 4, 1] +:< -2.1 0.7 [-3, -1, -2, -2, -2, -2, -3, -3, -2, -1] +:> 2.1 1.22066 [3, 1, 1, 1, 1, 2, 4, 3, 4, 1] +:?) 1.3 0.64031 [3, 1, 1, 1, 1, 2, 1, 1, 1, 1] +:?c -1.6 0.4899 [-1, -2, -1, -1, -2, -2, -1, -2, -2, -2] +:@ -2.5 0.80623 [-1, -3, -3, -2, -1, -3, -3, -3, -3, -3] +:d 2.3 1.1 [4, 2, 2, 1, 2, 1, 4, 3, 3, 1] +:D 2.3 1.1 [4, 2, 2, 1, 2, 1, 4, 3, 3, 1] +:l -1.7 0.9 [-1, -3, -1, -1, -1, -3, -2, -3, -1, -1] +:o -0.4 1.35647 [2, -1, -2, 0, 1, 0, -3, 0, -1, 0] +:p 1.0 0.7746 [-1, 1, 1, 1, 1, 1, 2, 1, 2, 1] +:s -1.2 0.9798 [-2, -2, -1, -1, -1, 1, -3, -1, -1, -1] +:[ -2.0 0.63246 [-2, -2, -1, -2, -2, -3, -3, -2, -1, -2] +:\ -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -1, -1, -2] +:] 2.2 1.16619 [3, 1, 1, 1, 3, 1, 4, 2, 2, 4] +:^) 2.1 1.13578 [3, 2, 4, 1, 1, 1, 1, 2, 4, 2] +:^* 2.6 0.91652 [2, 1, 2, 3, 4, 4, 3, 2, 3, 2] +:^/ -1.2 0.6 [-2, -1, -2, 0, -1, -1, -1, -1, -2, -1] +:^\ -1.0 0.44721 [-1, -1, -1, -1, -1, -2, 0, -1, -1, -1] +:^| -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] +:c -2.1 0.83066 [-3, -2, -1, -2, -2, -1, -3, -3, -3, -1] +:c) 2.0 1.18322 [2, 1, 1, 1, 1, 2, 3, 4, 4, 1] +:o) 2.1 0.9434 [1, 3, 3, 1, 1, 3, 2, 3, 1, 3] +:o/ -1.4 0.4899 [-1, -1, -1, -2, -1, -1, -2, -2, -1, -2] +:o\ -1.1 0.3 [-1, -1, -1, -2, -1, -1, -1, -1, -1, -1] +:o| -0.6 1.0198 [0, 0, 0, 0, -1, 0, 0, -3, 0, -2] +:P 1.4 0.8 [3, 1, 0, 2, 1, 1, 2, 2, 1, 1] +:{ -1.9 0.83066 [-2, -1, -1, -2, -2, -1, -3, -3, -3, -1] +:| -0.4 1.11355 [-1, -1, 0, -1, -1, -1, 1, -2, 2, 0] +:} 2.1 1.22066 [3, 1, 1, 1, 2, 1, 4, 3, 4, 1] +:รž 1.1 0.53852 [1, 1, 1, 1, 0, 1, 1, 2, 2, 1] +;) 0.9 1.04403 [2, -1, 1, 1, 1, 1, -1, 2, 2, 1] +;-) 1.0 1.73205 [1, -2, 1, -2, 1, 4, 2, 1, 2, 2] +;-* 2.2 0.74833 [2, 2, 1, 3, 4, 2, 2, 2, 2, 2] +;-] 0.7 1.67631 [1, -2, 1, -3, 1, 2, 2, 1, 2, 2] +;d 0.8 1.249 [2, -1, 2, 1, 1, 1, -2, 2, 1, 1] +;D 0.8 1.249 [2, -1, 2, 1, 1, 1, -2, 2, 1, 1] +;] 0.6 1.11355 [1, -1, 1, 1, 1, 1, -2, 2, 1, 1] +;^) 1.4 0.91652 [2, 2, 1, 2, 1, 2, -1, 1, 2, 2] +-: -2.0 0.89443 [-2, -3, -2, -4, -1, -1, -1, -2, -2, -2] +>.< -1.3 0.45826 [-1, -2, -1, -2, -2, -1, -1, -1, -1, -1] +>: -2.1 1.13578 [-4, -1, -1, -4, -2, -3, -1, -1, -2, -2] +>:( -2.7 0.64031 [-2, -3, -2, -3, -3, -2, -4, -2, -3, -3] +>:) 0.4 1.42829 [1, 1, 2, 1, -1, -2, 1, 2, -2, 1] +>:-( -2.7 0.78102 [-3, -2, -3, -2, -4, -2, -3, -2, -2, -4] +>:-) -0.4 1.68523 [1, 2, 1, -2, -2, -1, -1, -3, -1, 2] +>:/ -1.6 0.8 [-1, -2, -1, -3, -1, -1, -1, -1, -2, -3] +>:o -1.2 1.16619 [-3, -1, -2, 0, -2, -2, 0, -1, 1, -2] +>:p 1.0 0.7746 [-1, 1, 1, 2, 1, 2, 1, 1, 1, 1] +>:[ -2.1 0.53852 [-2, -2, -2, -2, -3, -3, -2, -1, -2, -2] +>:\ -1.7 0.64031 [-1, -2, -1, -2, -2, -3, -1, -1, -2, -2] +>;( -2.9 0.7 [-3, -4, -3, -2, -2, -3, -3, -3, -2, -4] +>;) 0.1 1.04403 [-1, 1, 0, -1, 2, 0, -1, 1, 1, -1] +>_>^ 2.1 0.9434 [2, 2, 1, 4, 3, 2, 1, 3, 1, 2] +@: -2.1 0.9434 [-3, -2, -3, -1, -2, -4, -1, -2, -1, -2] +@>-->-- 2.1 1.22066 [1, 1, 0, 2, 4, 2, 4, 2, 3, 2] +@}-;-'--- 2.2 1.32665 [0, 1, 3, 2, 1, 4, 4, 1, 3, 3] +aas 2.5 0.80623 [2, 3, 3, 4, 1, 2, 3, 2, 2, 3] +aayf 2.7 0.78102 [2, 3, 2, 4, 3, 2, 2, 3, 4, 2] +afu -2.9 0.83066 [-3, -3, -3, -3, -3, -1, -4, -4, -2, -3] +alol 2.8 0.74833 [2, 2, 2, 3, 3, 2, 3, 4, 4, 3] +ambw 2.9 0.7 [2, 3, 4, 2, 3, 2, 3, 3, 4, 3] +aml 3.4 0.66332 [4, 3, 2, 4, 3, 3, 4, 4, 3, 4] +atab -1.9 1.22066 [-2, 0, -1, -2, -1, -1, -2, -4, -4, -2] +awol -1.3 0.78102 [0, -1, -1, -1, -1, -1, -2, -2, -3, -1] +ayc 0.2 0.9798 [0, 1, -1, 1, 0, 1, 0, -1, 2, -1] +ayor -1.2 0.6 [-1, -1, -2, -2, -1, -1, -1, 0, -2, -1] +aug-00 0.3 1.18743 [2, 0, -2, 0, 0, 1, -1, 2, 1, 0] +bfd -2.7 0.78102 [-3, -2, -4, -2, -3, -2, -3, -2, -4, -2] +bfe -2.6 1.35647 [-3, -3, -4, -2, -3, -2, 1, -3, -4, -3] +bff 2.9 0.83066 [3, 3, 4, 2, 4, 2, 2, 3, 4, 2] +bffn 1.0 0.89443 [2, 1, -1, 1, 0, 1, 2, 1, 2, 1] +bl 2.3 1.1 [2, 1, 4, 1, 2, 2, 4, 3, 1, 3] +bsod -2.2 1.07703 [-1, -4, -3, -3, 0, -2, -3, -2, -2, -2] +btd -2.1 0.83066 [-1, -2, -3, -3, -3, -1, -3, -2, -1, -2] +btdt -0.1 1.22066 [0, -1, 0, -1, 0, 3, 1, -1, -1, -1] +bz 0.4 1.35647 [-1, 0, 0, 0, 4, 1, -1, 1, 0, 0] +b^d 2.6 0.8 [3, 2, 2, 4, 3, 1, 3, 3, 3, 2] +cwot -2.3 0.45826 [-3, -2, -2, -2, -2, -3, -2, -3, -2, -2] +d-': -2.5 0.67082 [-3, -3, -2, -2, -2, -4, -2, -3, -2, -2] +d8 -3.2 0.6 [-3, -3, -3, -3, -4, -4, -2, -3, -3, -4] +d: -2.9 0.83066 [-3, -3, -3, -3, -2, -4, -1, -3, -3, -4] +d:< -3.2 0.9798 [-4, -4, -4, -1, -3, -3, -4, -2, -3, -4] +d; -2.9 0.83066 [-1, -3, -3, -3, -3, -4, -2, -3, -3, -4] +d= -3.0 0.89443 [-4, -3, -3, -3, -2, -4, -1, -3, -3, -4] +doa -2.3 1.00499 [-2, -3, -3, -2, -2, -2, -4, 0, -2, -3] +dx -3.0 0.63246 [-3, -2, -3, -3, -4, -3, -4, -2, -3, -3] +ez 1.5 0.67082 [3, 2, 2, 1, 1, 1, 2, 1, 1, 1] +fav 2.4 0.91652 [3, 1, 3, 2, 2, 3, 1, 2, 3, 4] +fcol -1.8 0.74833 [-2, -2, -1, -2, -1, -2, -1, -3, -3, -1] +ff 1.8 1.249 [4, 2, 1, 2, 1, 3, 3, 0, 2, 0] +ffs -2.8 0.9798 [-2, -2, -3, -3, -2, -4, -4, -4, -1, -3] +fkm -2.4 1.35647 [-4, -1, -4, -2, -2, -3, -1, 0, -3, -4] +foaf 1.8 1.249 [2, 1, 2, 0, 4, 1, 1, 1, 2, 4] +ftw 2.0 0.7746 [2, 1, 1, 2, 2, 2, 3, 3, 1, 3] +fu -3.7 0.45826 [-3, -4, -4, -3, -3, -4, -4, -4, -4, -4] +fubar -3.0 1.09545 [-4, -3, -3, -4, -3, -3, -3, -4, 0, -3] +fwb 2.5 1.43178 [2, 3, 4, 0, 1, 2, 4, 1, 4, 4] +fyi 0.8 1.66132 [0, 1, 0, -1, 0, 0, 4, 4, 0, 0] +fysa 0.4 0.91652 [0, 0, 0, 1, 0, 3, 0, 0, 0, 0] +g1 1.4 0.4899 [2, 1, 1, 1, 2, 1, 2, 1, 1, 2] +gg 1.2 0.74833 [0, 2, 2, 1, 0, 1, 2, 2, 1, 1] +gga 1.7 0.45826 [2, 2, 1, 2, 2, 1, 2, 2, 1, 2] +gigo -0.6 1.11355 [-2, -1, 1, 0, 0, 0, -1, -2, -2, 1] +gj 2.0 1.0 [2, 1, 2, 1, 1, 3, 4, 2, 3, 1] +gl 1.3 0.64031 [1, 1, 1, 1, 3, 1, 1, 2, 1, 1] +gla 2.5 0.92195 [1, 2, 2, 4, 2, 4, 2, 3, 3, 2] +gn 1.2 0.74833 [1, 1, 1, 1, 3, 1, 1, 2, 1, 0] +gr8 2.7 0.78102 [1, 3, 3, 4, 3, 2, 3, 2, 3, 3] +grrr -0.4 1.42829 [-2, -1, 0, 1, -2, -1, -1, 3, 0, -1] +gt 1.1 0.53852 [1, 1, 1, 1, 1, 1, 2, 1, 0, 2] +h&k 2.3 0.78102 [2, 2, 2, 3, 4, 2, 3, 2, 1, 2] +hagd 2.2 0.87178 [2, 2, 3, 2, 1, 3, 4, 1, 2, 2] +hagn 2.2 0.87178 [2, 2, 3, 2, 1, 3, 4, 1, 2, 2] +hago 1.2 0.4 [1, 2, 1, 1, 1, 2, 1, 1, 1, 1] +hak 1.9 0.7 [3, 1, 2, 2, 1, 2, 3, 2, 1, 2] +hand 2.2 0.87178 [2, 2, 1, 3, 2, 3, 4, 1, 2, 2] +hho1/2k 1.4 1.11355 [1, -1, 2, 3, 1, 1, 1, 2, 3, 1] +hhoj 2.0 1.09545 [4, 2, 1, 1, 2, 1, 1, 4, 2, 2] +hhok 0.9 0.9434 [1, 2, 1, 0, -1, 0, 2, 1, 1, 2] +hugz 2.0 0.7746 [2, 3, 1, 3, 1, 3, 1, 2, 2, 2] +hi5 1.9 0.53852 [2, 2, 2, 1, 3, 2, 1, 2, 2, 2] +idk -0.4 0.66332 [0, 0, 0, 0, -1, -2, 0, 0, 0, -1] +ijs 0.7 1.84662 [0, -1, 0, -1, 0, 4, 0, 4, -1, 2] +ilu 3.4 0.66332 [3, 4, 3, 4, 2, 3, 4, 3, 4, 4] +iluaaf 2.7 1.1 [3, 3, 3, 2, 3, 0, 4, 3, 2, 4] +ily 3.4 0.66332 [3, 4, 3, 4, 2, 3, 4, 3, 4, 4] +ily2 2.6 0.66332 [3, 2, 3, 2, 3, 2, 3, 4, 2, 2] +iou 0.7 1.34536 [0, 0, -1, 2, 0, 0, 0, 4, 1, 1] +iyq 2.3 1.18743 [3, 3, 1, 1, 2, 1, 4, 4, 3, 1] +j/j 2.0 1.34164 [4, 1, 1, 1, 1, 4, 4, 1, 2, 1] +j/k 1.6 1.2 [1, 2, 1, 3, 0, 0, 2, 2, 1, 4] +j/p 1.4 0.66332 [1, 1, 0, 2, 1, 2, 2, 2, 1, 2] +j/t -0.2 1.46969 [1, -1, -1, -2, 1, 1, 2, -2, 1, -2] +j/w 1.0 1.0 [1, 1, 1, 3, 0, 0, 0, 2, 0, 2] +j4f 1.4 0.8 [2, 1, 1, 0, 3, 1, 1, 1, 2, 2] +j4g 1.7 1.18743 [1, 4, 1, 1, 3, 1, 3, 0, 2, 1] +jho 0.8 0.4 [1, 1, 1, 1, 0, 1, 1, 1, 0, 1] +jhomf 1.0 0.63246 [1, 1, 1, 0, 1, 0, 2, 2, 1, 1] +jj 1.0 0.63246 [1, 1, 1, 1, 2, 0, 2, 1, 1, 0] +jk 0.9 1.22066 [1, 0, 0, 1, 0, 0, 2, 1, 4, 0] +jp 0.8 0.74833 [1, 1, 1, 0, 2, 0, 2, 0, 1, 0] +jt 0.9 0.83066 [1, 1, 0, 2, 2, 0, 2, 0, 1, 0] +jw 1.6 1.68523 [3, 0, 0, 0, 0, 0, 3, 4, 2, 4] +jealz -1.2 0.9798 [-1, -1, -1, 1, -2, -2, -1, -3, -1, -1] +k4y 2.3 1.00499 [2, 1, 1, 2, 4, 2, 3, 4, 2, 2] +kfy 2.3 0.64031 [2, 2, 2, 1, 3, 2, 3, 3, 2, 3] +kia -3.2 0.6 [-3, -3, -3, -4, -3, -2, -3, -3, -4, -4] +kk 1.5 1.0247 [2, 1, 0, 0, 1, 2, 3, 3, 2, 1] +kmuf 2.2 1.4 [2, 2, 2, 3, 4, 3, -1, 1, 4, 2] +l 2.0 0.7746 [2, 1, 2, 3, 2, 3, 1, 3, 2, 1] +l&r 2.2 0.74833 [3, 2, 2, 3, 1, 3, 1, 3, 2, 2] +laoj 1.3 1.73494 [1, -2, -1, 3, 3, 2, 4, 1, 1, 1] +lmao 2.0 1.18322 [3, 0, 3, 0, 3, 1, 3, 2, 3, 2] +lmbao 1.8 1.77764 [3, 2, 2, 2, 1, 3, -3, 2, 4, 2] +lmfao 2.5 1.28452 [3, 2, 3, 3, 3, -1, 4, 2, 3, 2] +lmso 2.7 0.78102 [3, 3, 4, 3, 3, 1, 3, 3, 2, 2] +lol 2.9 0.83066 [4, 2, 2, 2, 4, 2, 3, 3, 4, 3] +lolz 2.7 0.78102 [2, 3, 3, 2, 2, 4, 4, 3, 2, 2] +lts 1.6 0.66332 [1, 1, 2, 2, 1, 3, 1, 1, 2, 2] +ly 2.6 0.91652 [2, 2, 1, 3, 4, 4, 3, 2, 2, 3] +ly4e 2.7 0.78102 [3, 3, 3, 2, 1, 3, 3, 4, 2, 3] +lya 3.3 0.78102 [3, 4, 4, 4, 2, 2, 3, 4, 3, 4] +lyb 3.0 0.63246 [3, 3, 4, 3, 2, 3, 2, 4, 3, 3] +lyl 3.1 0.7 [4, 3, 4, 3, 2, 3, 3, 2, 4, 3] +lylab 2.7 0.78102 [3, 3, 3, 1, 3, 4, 2, 2, 3, 3] +lylas 2.6 0.8 [3, 3, 3, 1, 3, 4, 2, 2, 2, 3] +lylb 1.6 1.56205 [2, 2, 3, -2, 4, 1, 3, 1, 1, 1] +m8 1.4 1.0198 [3, 0, 1, 0, 1, 3, 2, 2, 1, 1] +mia -1.2 0.4 [-2, -1, -1, -2, -1, -1, -1, -1, -1, -1] +mml 2.0 1.0 [1, 1, 2, 3, 3, 2, 1, 2, 4, 1] +mofo -2.4 2.2 [-4, -4, -4, 0, -3, -2, -2, -4, 3, -4] +muah 2.8 1.07703 [1, 2, 4, 4, 4, 2, 4, 2, 2, 3] +mubar -1.0 2.36643 [-4, -2, -3, -2, -2, -2, 1, 4, 2, -2] +musm 0.9 2.07123 [-1, 1, 1, 1, 4, 3, 1, -4, 1, 2] +mwah 2.5 0.80623 [2, 2, 2, 4, 2, 3, 2, 2, 4, 2] +n1 1.9 1.04403 [1, 1, 3, 2, 2, 3, 4, 1, 1, 1] +nbd 1.3 1.34536 [2, 1, 0, 0, 0, 4, 2, 0, 3, 1] +nbif -0.5 0.67082 [-1, -2, 0, 0, 0, 0, -1, -1, 0, 0] +nfc -2.7 0.9 [-3, -2, -2, -3, -1, -2, -4, -3, -4, -3] +nfw -2.4 1.0198 [-2, -2, -1, -3, -1, -2, -4, -3, -4, -2] +nh 2.2 0.6 [2, 2, 2, 2, 1, 3, 3, 3, 2, 2] +nimby -0.8 0.6 [0, 0, -1, 0, -1, -2, -1, -1, -1, -1] +nimjd -0.7 0.78102 [0, -2, -1, -2, 0, -1, 0, 0, 0, -1] +nimq -0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, -2, 0] +nimy -1.4 1.68523 [-1, -2, -3, -2, -1, 2, -3, 0, 0, -4] +nitl -1.5 0.92195 [-1, -1, -2, -3, -1, -3, -1, -2, 0, -1] +nme -2.1 1.13578 [-1, -2, -2, -1, -4, -2, -3, -3, 0, -3] +noyb -0.7 1.67631 [-1, -2, 0, -1, -1, -2, -2, -1, 4, -1] +np 1.4 1.0198 [0, 1, 1, 1, 1, 2, 2, 4, 1, 1] +ntmu 1.4 0.66332 [1, 1, 0, 1, 2, 2, 2, 2, 2, 1] +o-8 -0.5 1.5 [2, -1, 0, 0, -2, -2, 0, -2, 2, -2] +o-: -0.3 1.18743 [2, -1, 0, 0, -1, -2, 0, -2, 1, 0] +o-| -1.1 0.53852 [-1, -1, -1, 0, -1, -1, -1, -2, -2, -1] +o.o -0.6 0.8 [-1, -1, -2, 0, 1, 0, -1, 0, -1, -1] +O.o -0.6 0.8 [-1, -1, -2, 0, 1, 0, -1, 0, -1, -1] +o.O -0.6 0.8 [-1, -1, -2, 0, 1, 0, -1, 0, -1, -1] +o: -0.2 0.87178 [-1, 0, -1, -2, 0, 1, 0, 1, 0, 0] +o:) 1.5 0.67082 [3, 1, 1, 2, 2, 2, 1, 1, 1, 1] +o:-) 2.0 1.18322 [1, 4, 1, 2, 4, 1, 1, 2, 3, 1] +o:-3 2.2 0.9798 [1, 4, 2, 3, 3, 2, 1, 2, 3, 1] +o:3 2.3 0.78102 [3, 3, 2, 2, 1, 2, 4, 2, 2, 2] +o:< -0.3 1.1 [-1, -1, -2, 0, -1, 0, 1, 2, 0, -1] +o;^) 1.6 0.8 [1, 2, 1, 2, 1, 2, 2, 0, 3, 2] +ok 1.6 1.42829 [0, 0, 1, 1, 1, 4, 3, 4, 1, 1] +o_o -0.5 0.92195 [0, -1, 0, -2, -2, 0, -1, 1, 0, 0] +O_o -0.5 0.92195 [0, -1, 0, -2, -2, 0, -1, 1, 0, 0] +o_O -0.5 0.92195 [0, -1, 0, -2, -2, 0, -1, 1, 0, 0] +pita -2.4 1.2 [-2, -1, -1, -4, -4, -2, -4, -2, -3, -1] +pls 0.3 0.45826 [0, 1, 1, 1, 0, 0, 0, 0, 0, 0] +plz 0.3 0.45826 [0, 1, 1, 1, 0, 0, 0, 0, 0, 0] +pmbi 0.8 1.32665 [3, 0, 0, 1, 1, -2, 2, 2, 0, 1] +pmfji 0.3 0.78102 [0, 0, 1, 0, 2, -1, 0, 1, 0, 0] +pmji 0.7 1.00499 [1, 2, 0, -1, 0, 0, 2, 2, 1, 0] +po -2.6 0.91652 [-2, -3, -4, -3, -3, -3, -1, -3, -1, -3] +ptl 2.6 1.11355 [3, 4, 2, 4, 1, 2, 3, 1, 4, 2] +pu -1.1 1.3 [-3, -1, -3, -2, -1, -1, -1, -1, 1, 1] +qq -2.2 0.6 [-2, -2, -1, -3, -3, -2, -2, -3, -2, -2] +qt 1.8 0.6 [2, 2, 1, 2, 1, 3, 2, 1, 2, 2] +r&r 2.4 1.0198 [2, 4, 2, 3, 1, 4, 2, 2, 1, 3] +rofl 2.7 0.78102 [3, 2, 2, 2, 4, 4, 2, 3, 3, 2] +roflmao 2.5 1.11803 [4, 2, 2, 4, 1, 1, 2, 4, 3, 2] +rotfl 2.6 0.66332 [3, 2, 3, 3, 1, 3, 3, 3, 2, 3] +rotflmao 2.8 1.07703 [4, 3, 2, 4, 1, 1, 4, 3, 3, 3] +rotflmfao 2.5 1.11803 [3, 4, 1, 3, 3, 3, 0, 3, 2, 3] +rotflol 3.0 1.09545 [1, 4, 4, 4, 2, 2, 2, 3, 4, 4] +rotgl 2.9 0.7 [4, 3, 2, 2, 3, 3, 3, 2, 4, 3] +rotglmao 1.8 2.4 [3, 3, 4, 3, -1, 1, 4, -4, 2, 3] +s: -1.1 0.83066 [-1, -1, -2, -2, -1, -1, -2, -1, 1, -1] +sapfu -1.1 1.57797 [-2, 0, -3, -1, -1, 1, -2, 2, -2, -3] +sete 2.8 0.87178 [3, 3, 3, 2, 3, 3, 4, 4, 1, 2] +sfete 2.7 0.78102 [4, 3, 3, 3, 2, 4, 2, 2, 2, 2] +sgtm 2.4 1.0198 [2, 1, 1, 2, 3, 3, 2, 2, 4, 4] +slap 0.6 2.15407 [2, -1, 1, -1, 0, 4, -3, 4, 1, -1] +slaw 2.1 1.04403 [3, 2, 0, 2, 2, 2, 3, 1, 4, 2] +smh -1.3 0.64031 [-2, -1, 0, -1, -1, -2, -2, -1, -2, -1] +snafu -2.5 1.11803 [-3, -4, -3, -3, -1, 0, -2, -3, -3, -3] +sob -2.8 0.9798 [-3, -4, -3, -2, -2, -1, -2, -4, -4, -3] +swak 2.3 1.00499 [2, 2, 2, 1, 4, 2, 3, 2, 1, 4] +tgif 2.3 1.34536 [1, 3, 3, 3, -1, 2, 4, 2, 3, 3] +thks 1.4 0.4899 [1, 2, 1, 2, 1, 2, 1, 1, 2, 1] +thx 1.5 0.92195 [0, 1, 3, 2, 1, 2, 1, 1, 3, 1] +tia 2.3 0.9 [3, 1, 2, 1, 4, 3, 2, 3, 2, 2] +tmi -0.3 1.61555 [-1, -1, 2, -1, 1, -2, -2, -1, 3, -1] +tnx 1.1 0.53852 [2, 1, 1, 0, 1, 1, 2, 1, 1, 1] +true 1.8 1.32665 [2, 1, 1, 0, 1, 4, 3, 1, 4, 1] +tx 1.5 0.92195 [3, 2, 1, 0, 2, 1, 3, 1, 1, 1] +txs 1.1 0.7 [1, 2, 0, 1, 2, 0, 1, 2, 1, 1] +ty 1.6 0.66332 [1, 2, 3, 1, 2, 2, 1, 2, 1, 1] +tyvm 2.5 1.11803 [2, 2, 1, 3, 1, 4, 2, 4, 2, 4] +urw 1.9 1.13578 [1, 2, 1, 2, 4, 2, 4, 1, 1, 1] +vbg 2.1 1.75784 [2, 3, 3, 3, 3, -3, 3, 2, 2, 3] +vbs 3.1 0.53852 [2, 3, 3, 3, 4, 4, 3, 3, 3, 3] +vip 2.3 1.00499 [2, 1, 1, 3, 4, 2, 2, 4, 2, 2] +vwd 2.6 0.91652 [4, 2, 4, 2, 1, 3, 3, 2, 3, 2] +vwp 2.1 0.7 [3, 1, 2, 2, 3, 2, 2, 3, 1, 2] +wag -0.2 0.74833 [-1, 0, 0, 0, 0, 0, -2, 1, 0, 0] +wd 2.7 1.1 [3, 1, 4, 3, 4, 2, 1, 3, 2, 4] +wilco 0.9 0.9434 [1, 3, 1, 0, 1, 0, 2, 1, 0, 0] +wp 1.0 0.0 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +wtf -2.8 0.74833 [-4, -3, -2, -3, -2, -2, -2, -4, -3, -3] +wtg 2.1 0.7 [1, 3, 2, 3, 2, 2, 2, 1, 2, 3] +wth -2.4 0.4899 [-2, -3, -2, -3, -2, -2, -2, -3, -3, -2] +x-d 2.7 0.78102 [1, 3, 4, 2, 3, 3, 3, 2, 3, 3] +x-p 1.8 0.87178 [2, 1, 3, 1, 3, 1, 3, 1, 2, 1] +xd 2.7 0.9 [1, 4, 4, 3, 2, 2, 3, 3, 2, 3] +xlnt 3.0 0.89443 [4, 3, 3, 1, 4, 4, 3, 3, 3, 2] +xoxo 3.0 0.7746 [2, 2, 4, 2, 3, 3, 4, 3, 3, 4] +xoxozzz 2.3 0.78102 [3, 1, 2, 2, 2, 2, 3, 2, 4, 2] +xp 1.2 0.4 [1, 1, 1, 1, 2, 1, 2, 1, 1, 1] +xqzt 1.6 1.42829 [0, 2, 1, 2, 4, -1, 3, 1, 1, 3] +xtc 0.8 1.93907 [2, 0, -3, 3, 3, -1, 3, 1, -1, 1] +yolo 1.1 0.83066 [0, 1, 1, 2, 1, 1, 1, 3, 0, 1] +yoyo 0.4 1.85472 [-1, 0, -1, -1, 4, 2, -2, 2, 2, -1] +yvw 1.6 0.4899 [1, 2, 1, 1, 2, 2, 2, 1, 2, 2] +yw 1.8 1.32665 [1, 1, 1, 4, 1, 1, 4, 0, 3, 2] +ywia 2.5 1.11803 [3, 2, 3, 4, 1, 1, 1, 3, 3, 4] +zzz -1.2 0.87178 [0, -1, 0, -1, -3, -1, -1, -2, -2, -1] +[-; 0.5 1.28452 [1, -1, -1, 1, 1, 1, 2, -2, 2, 1] +[: 1.3 0.45826 [1, 1, 2, 1, 2, 2, 1, 1, 1, 1] +[; 1.0 1.34164 [2, 1, 2, 2, 1, 2, 2, -2, -1, 1] +[= 1.7 0.64031 [2, 2, 1, 1, 1, 2, 2, 3, 2, 1] +\-: -1.0 1.18322 [-3, -1, -1, -1, -1, -1, 2, -2, -1, -1] +\: -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] +\:< -1.7 1.18743 [-1, -3, -2, -2, -3, -3, -2, -1, 1, -1] +\= -1.1 0.3 [-1, -1, -1, -1, -1, -1, -1, -2, -1, -1] +\^: -1.3 0.45826 [-1, -1, -1, -2, -1, -1, -1, -2, -2, -1] +\o/ 2.2 0.9798 [2, 1, 1, 2, 4, 2, 2, 4, 2, 2] +\o: -1.2 0.4 [-1, -1, -1, -1, -2, -1, -1, -2, -1, -1] +]-: -2.1 0.53852 [-2, -3, -3, -2, -2, -2, -1, -2, -2, -2] +]: -1.6 0.66332 [-1, -2, -1, -2, -3, -2, -1, -1, -1, -2] +]:< -2.5 0.80623 [-2, -2, -2, -3, -4, -2, -2, -2, -2, -4] +^<_< 1.4 1.11355 [3, 1, 3, 2, 1, 1, 1, -1, 2, 1] +^urs -2.8 0.6 [-2, -3, -3, -2, -3, -3, -2, -3, -4, -3] +abandon -1.9 0.53852 [-1, -2, -2, -2, -2, -3, -2, -2, -1, -2] +abandoned -2.0 1.09545 [-1, -1, -3, -2, -1, -4, -1, -3, -3, -1] +abandoner -1.9 0.83066 [-1, -1, -3, -2, -1, -3, -1, -2, -3, -2] +abandoners -1.9 0.83066 [-2, -3, -2, -3, -2, -1, -2, -2, 0, -2] +abandoning -1.6 0.8 [-3, -2, -3, -2, -1, -1, -1, -1, -1, -1] +abandonment -2.4 1.0198 [-4, -2, -1, -4, -2, -1, -2, -3, -3, -2] +abandonments -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] +abandons -1.3 0.9 [-2, -1, -1, -2, -1, -2, -1, -2, 1, -2] +abducted -2.3 1.18743 [-3, -1, 0, -3, -1, -3, -4, -2, -3, -3] +abduction -2.8 0.87178 [-4, -3, -3, -4, -1, -3, -2, -2, -3, -3] +abductions -2.0 1.41421 [-3, -4, -1, -3, -1, -3, 1, -2, -1, -3] +abhor -2.0 1.09545 [-3, -3, -1, -1, -2, -1, -3, -3, 0, -3] +abhorred -2.4 1.49666 [-4, -4, 0, -3, -2, -1, -4, -3, -3, 0] +abhorrent -3.1 1.3 [-4, -4, -4, -2, 0, -4, -2, -3, -4, -4] +abhors -2.9 1.51327 [0, -4, -3, -3, -4, -4, 0, -4, -3, -4] +abilities 1.0 0.63246 [1, 2, 0, 1, 0, 1, 1, 1, 1, 2] +ability 1.3 0.64031 [1, 1, 1, 0, 1, 2, 2, 2, 2, 1] +aboard 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] +absentee -1.1 0.53852 [-1, -1, 0, -2, -1, -1, -2, -1, -1, -1] +absentees -0.8 0.6 [-1, 0, 0, -1, -1, 0, -2, -1, -1, -1] +absolve 1.2 1.46969 [2, -3, 2, 2, 1, 1, 2, 1, 2, 2] +absolved 1.5 0.92195 [3, 1, 2, 1, 0, 2, 3, 1, 1, 1] +absolves 1.3 1.00499 [3, 1, 1, 0, 0, 2, 3, 1, 1, 1] +absolving 1.6 0.8 [3, 1, 2, 1, 1, 2, 3, 1, 1, 1] +abuse -3.2 0.6 [-4, -2, -3, -4, -3, -4, -3, -3, -3, -3] +abused -2.3 0.64031 [-2, -2, -3, -2, -2, -4, -2, -2, -2, -2] +abuser -2.6 0.4899 [-3, -2, -3, -3, -2, -3, -2, -2, -3, -3] +abusers -2.6 1.0198 [-2, -3, -3, -3, -3, -2, -3, -4, -3, 0] +abuses -2.6 0.66332 [-3, -2, -3, -3, -3, -3, -1, -2, -3, -3] +abusing -2.0 1.41421 [-1, -2, -2, -4, -4, -2, -3, -1, 1, -2] +abusive -3.2 0.74833 [-4, -3, -3, -4, -4, -3, -4, -2, -3, -2] +abusively -2.8 0.6 [-3, -4, -3, -2, -3, -2, -2, -3, -3, -3] +abusiveness -2.5 0.92195 [-2, -4, -2, -3, -2, -3, -4, -2, -1, -2] +abusivenesses -3.0 0.63246 [-3, -3, -4, -3, -4, -2, -2, -3, -3, -3] +accept 1.6 0.91652 [2, 1, 2, 1, 1, 2, 4, 1, 1, 1] +acceptabilities 1.6 0.66332 [0, 2, 2, 2, 1, 2, 2, 2, 1, 2] +acceptability 1.1 0.53852 [1, 0, 1, 2, 1, 2, 1, 1, 1, 1] +acceptable 1.3 0.45826 [1, 2, 1, 1, 1, 2, 1, 1, 2, 1] +acceptableness 1.3 0.9 [1, 0, 2, 1, 2, 1, 1, 0, 2, 3] +acceptably 1.5 0.67082 [3, 2, 1, 1, 1, 2, 1, 1, 2, 1] +acceptance 2.0 0.63246 [3, 1, 3, 2, 1, 2, 2, 2, 2, 2] +acceptances 1.7 0.78102 [3, 1, 1, 1, 2, 2, 1, 2, 3, 1] +acceptant 1.6 0.8 [0, 1, 2, 2, 2, 1, 2, 1, 3, 2] +acceptation 1.3 0.78102 [0, 1, 2, 1, 1, 1, 1, 3, 2, 1] +acceptations 0.9 0.83066 [1, 2, 0, 2, 0, 1, 0, 2, 1, 0] +accepted 1.1 0.3 [1, 1, 1, 1, 1, 2, 1, 1, 1, 1] +accepting 1.6 0.66332 [2, 2, 2, 1, 1, 2, 1, 3, 1, 1] +accepts 1.3 0.45826 [1, 2, 1, 1, 1, 2, 2, 1, 1, 1] +accident -2.1 0.83066 [-2, -2, -1, -3, -4, -2, -2, -1, -2, -2] +accidental -0.3 0.45826 [-1, -1, 0, 0, 0, 0, 0, 0, -1, 0] +accidentally -1.4 0.91652 [-2, 0, -2, 0, -3, -1, -1, -1, -2, -2] +accidents -1.3 0.78102 [-1, -1, -1, -1, -2, 0, -3, -1, -2, -1] +accomplish 1.8 0.6 [1, 2, 3, 2, 2, 2, 1, 1, 2, 2] +accomplished 1.9 0.53852 [2, 2, 2, 1, 2, 2, 3, 1, 2, 2] +accomplishes 1.7 0.9 [2, 2, 1, 0, 2, 3, 3, 1, 1, 2] +accusation -1.0 1.09545 [-1, -1, -2, -2, -2, -1, -1, -1, 2, -1] +accusations -1.3 1.26886 [-2, -2, -1, -3, -2, -1, -1, 2, -2, -1] +accuse -0.8 1.53623 [-3, -1, -1, -2, 1, -2, 1, -2, 2, -1] +accused -1.2 1.46969 [-2, -1, -2, 2, -2, -3, -2, -2, -1, 1] +accuses -1.4 1.0198 [-2, -1, -2, 1, -2, -3, -1, -2, -1, -1] +accusing -0.7 1.34536 [-2, -1, -1, 1, -3, -1, -1, 2, -1, 0] +ache -1.6 1.2 [-1, -2, -2, -2, -1, -4, -1, 1, -2, -2] +ached -1.6 0.8 [-2, -2, -1, -2, -1, -2, -3, 0, -1, -2] +aches -1.0 0.7746 [-1, -2, -1, -1, -1, 1, -2, -1, -1, -1] +achievable 1.3 0.45826 [2, 1, 1, 1, 1, 1, 1, 2, 2, 1] +aching -2.2 0.74833 [-2, -3, -2, -1, -3, -3, -2, -3, -1, -2] +acquit 0.8 1.72047 [-3, 3, -1, 3, 2, 1, 1, 1, 0, 1] +acquits 0.1 1.37477 [1, -3, -1, 0, 2, 0, -1, 1, 1, 1] +acquitted 1.0 0.89443 [2, 2, 1, 1, 2, 0, 1, 1, -1, 1] +acquitting 1.3 0.78102 [3, 2, 0, 1, 1, 1, 2, 1, 1, 1] +acrimonious -1.7 1.73494 [-1, -3, -2, -3, 3, -3, -1, -2, -2, -3] +active 1.7 1.26886 [1, 2, 1, 1, 1, 4, 2, 4, 0, 1] +actively 1.3 0.78102 [0, 1, 0, 2, 2, 1, 1, 2, 2, 2] +activeness 0.6 0.8 [0, 2, 0, 0, 1, 0, 1, 0, 2, 0] +activenesses 0.8 0.74833 [2, 0, 1, 0, 0, 0, 1, 2, 1, 1] +actives 1.1 0.7 [2, 1, 0, 1, 1, 0, 1, 1, 2, 2] +adequate 0.9 0.7 [0, 0, 1, 1, 0, 2, 1, 1, 2, 1] +admirability 2.4 0.4899 [2, 3, 3, 3, 3, 2, 2, 2, 2, 2] +admirable 2.6 0.66332 [2, 3, 3, 3, 4, 3, 2, 2, 2, 2] +admirableness 2.2 0.87178 [2, 2, 3, 3, 3, 1, 3, 1, 3, 1] +admirably 2.5 0.67082 [2, 3, 3, 3, 4, 2, 2, 2, 2, 2] +admiral 1.3 1.18743 [0, 0, 1, 3, 3, 2, 2, 0, 2, 0] +admirals 1.5 0.80623 [2, 2, 0, 2, 2, 0, 1, 2, 2, 2] +admiralties 1.6 0.66332 [2, 2, 2, 1, 0, 2, 2, 2, 1, 2] +admiralty 1.2 1.53623 [0, 4, 0, 0, 0, 2, 2, 3, 2, -1] +admiration 2.5 0.80623 [3, 1, 1, 3, 3, 2, 3, 3, 3, 3] +admirations 1.6 0.66332 [2, 2, 1, 1, 2, 2, 2, 2, 2, 0] +admire 2.1 0.83066 [3, 3, 1, 3, 3, 2, 1, 2, 1, 2] +admired 2.3 0.78102 [4, 2, 2, 2, 2, 2, 3, 3, 1, 2] +admirer 1.8 0.74833 [2, 1, 1, 2, 3, 2, 3, 1, 1, 2] +admirers 1.7 1.00499 [2, 3, 2, 2, 2, 1, -1, 2, 2, 2] +admires 1.5 0.67082 [3, 1, 1, 2, 1, 2, 2, 1, 1, 1] +admiring 1.6 0.8 [1, 2, 1, 1, 3, 3, 2, 1, 1, 1] +admiringly 2.3 0.64031 [1, 3, 3, 2, 2, 2, 2, 3, 3, 2] +admit 0.8 1.07703 [0, 0, 0, 0, 0, 1, 3, 2, 2, 0] +admits 1.2 0.87178 [1, 2, 2, 2, 0, 0, 1, 2, 0, 2] +admitted 0.4 0.66332 [0, 1, 0, 1, 0, 0, 2, 0, 0, 0] +admonished -1.9 0.9434 [-2, -2, -2, -1, -2, -3, -1, -1, -1, -4] +adopt 0.7 0.64031 [0, 0, 1, 1, 1, 0, 1, 0, 1, 2] +adopts 0.7 0.64031 [0, 0, 1, 2, 1, 0, 1, 1, 0, 1] +adorability 2.2 0.74833 [2, 2, 2, 2, 1, 2, 3, 2, 4, 2] +adorable 2.2 0.6 [3, 2, 2, 3, 2, 2, 1, 3, 2, 2] +adorableness 2.5 0.67082 [2, 3, 3, 2, 3, 2, 1, 3, 3, 3] +adorably 2.1 0.7 [3, 1, 2, 3, 2, 2, 1, 3, 2, 2] +adoration 2.9 0.7 [3, 3, 3, 2, 3, 3, 4, 2, 4, 2] +adorations 2.2 0.87178 [2, 2, 3, 1, 3, 1, 3, 3, 1, 3] +adore 2.6 0.91652 [3, 3, 1, 2, 3, 3, 3, 4, 1, 3] +adored 1.8 0.87178 [2, 3, 3, 2, 2, 1, 1, 0, 2, 2] +adorer 1.7 1.1 [2, 4, 3, 1, 2, 1, 1, 0, 2, 1] +adorers 2.1 0.7 [3, 2, 1, 2, 2, 2, 3, 2, 3, 1] +adores 1.6 0.66332 [2, 1, 3, 2, 2, 1, 1, 1, 2, 1] +adoring 2.6 0.66332 [2, 3, 3, 3, 1, 3, 3, 2, 3, 3] +adoringly 2.4 0.8 [2, 3, 2, 3, 3, 3, 3, 1, 1, 3] +adorn 0.9 0.53852 [1, 1, 1, 0, 2, 1, 1, 0, 1, 1] +adorned 0.8 1.249 [1, 1, 0, 2, -1, 3, -1, 2, 1, 0] +adorner 1.3 0.78102 [1, 1, 1, 2, 1, 3, 1, 2, 1, 0] +adorners 0.9 0.9434 [2, 2, 0, 1, -1, 2, 1, 1, 0, 1] +adorning 1.0 0.7746 [0, 0, 1, 1, 1, 2, 2, 1, 0, 2] +adornment 1.3 0.78102 [1, 3, 1, 0, 2, 2, 1, 1, 1, 1] +adornments 0.8 1.16619 [2, -1, 0, 0, 2, 1, 2, -1, 1, 2] +adorns 0.5 1.56525 [3, -1, 1, 0, 2, -1, 3, -1, 0, -1] +advanced 1.0 0.63246 [1, 0, 1, 1, 1, 0, 1, 2, 1, 2] +advantage 1.0 0.63246 [1, 2, 1, 1, 2, 0, 1, 0, 1, 1] +advantaged 1.4 0.91652 [1, 0, 3, 0, 1, 1, 2, 2, 2, 2] +advantageous 1.5 0.67082 [2, 0, 2, 2, 2, 1, 1, 1, 2, 2] +advantageously 1.9 0.53852 [2, 2, 2, 3, 2, 2, 2, 1, 1, 2] +advantageousness 1.6 1.28062 [-2, 2, 3, 1, 2, 2, 2, 2, 2, 2] +advantages 1.5 0.80623 [1, 0, 3, 1, 1, 1, 2, 2, 2, 2] +advantaging 1.6 0.66332 [3, 1, 1, 2, 1, 1, 2, 2, 2, 1] +adventure 1.3 0.45826 [1, 2, 1, 1, 2, 1, 1, 1, 1, 2] +adventured 1.3 0.45826 [1, 2, 1, 2, 1, 2, 1, 1, 1, 1] +adventurer 1.2 0.6 [1, 2, 0, 2, 1, 2, 1, 1, 1, 1] +adventurers 0.9 0.9434 [0, 1, 0, 1, 0, 1, 0, 1, 3, 2] +adventures 1.4 1.2 [2, 2, 1, 2, -2, 2, 2, 1, 2, 2] +adventuresome 1.7 1.1 [0, 3, 0, 1, 2, 2, 3, 1, 2, 3] +adventuresomeness 1.3 1.00499 [1, 0, 0, 2, 3, 2, 2, 0, 1, 2] +adventuress 0.8 1.72047 [3, -1, 2, 2, 0, 0, 1, 2, -3, 2] +adventuresses 1.4 1.11355 [1, 0, 0, 3, 2, 2, 3, 0, 1, 2] +adventuring 2.3 0.78102 [2, 3, 2, 3, 1, 3, 3, 1, 2, 3] +adventurism 1.5 0.67082 [1, 0, 2, 2, 2, 2, 1, 1, 2, 2] +adventurist 1.4 0.4899 [1, 1, 2, 1, 2, 2, 2, 1, 1, 1] +adventuristic 1.7 0.64031 [2, 1, 1, 2, 2, 1, 3, 2, 2, 1] +adventurists 1.2 0.9798 [3, 1, 0, 0, 1, 2, 1, 0, 2, 2] +adventurous 1.4 1.11355 [0, 1, 2, 1, 2, 0, 3, 2, 3, 0] +adventurously 1.3 0.9 [0, 1, 2, 2, 1, 2, 1, 1, 0, 3] +adventurousness 1.8 0.87178 [0, 1, 3, 2, 1, 3, 2, 2, 2, 2] +adversarial -1.5 0.92195 [-2, 0, -1, -3, -2, -2, 0, -1, -2, -2] +adversaries -1.0 0.63246 [-1, -1, -1, -1, 0, -2, -2, -1, -1, 0] +adversary -0.8 1.72047 [-3, -1, -2, -2, -2, 2, 1, -1, 2, -2] +adversative -1.2 0.74833 [-1, -1, -2, -1, -1, -1, -3, -1, 0, -1] +adversatively -0.1 1.37477 [0, -2, -1, 0, -1, -1, 1, 1, 3, -1] +adversatives -1.0 0.7746 [-1, -1, -2, -1, -2, 1, -1, -1, -1, -1] +adverse -1.5 0.80623 [-2, -2, -2, -1, -1, 0, -1, -3, -1, -2] +adversely -0.8 1.6 [-2, -2, 0, -2, -2, 2, -2, 2, -2, 0] +adverseness -0.6 1.35647 [-1, -2, -1, 2, -1, -2, -1, 2, -1, -1] +adversities -1.5 0.67082 [-2, -2, -1, -1, -2, 0, -2, -1, -2, -2] +adversity -1.8 0.6 [-3, -2, -1, -2, -2, -2, -1, -1, -2, -2] +affected -0.6 1.35647 [-1, -2, 0, -2, 0, 0, 2, -2, 1, -2] +affection 2.4 0.8 [3, 2, 2, 3, 4, 1, 3, 2, 2, 2] +affectional 1.9 1.04403 [3, 3, 2, 0, 2, 2, 2, 3, 2, 0] +affectionally 1.5 0.92195 [1, 1, 3, 1, 1, 0, 2, 2, 3, 1] +affectionate 1.9 1.13578 [1, 0, 3, 1, 3, 2, 2, 1, 2, 4] +affectionately 2.2 0.87178 [4, 1, 1, 2, 2, 2, 3, 3, 2, 2] +affectioned 1.8 0.4 [2, 2, 1, 2, 2, 1, 2, 2, 2, 2] +affectionless -2.0 0.44721 [-2, -1, -2, -2, -2, -2, -2, -2, -2, -3] +affections 1.5 1.11803 [-1, 3, 2, 2, 1, 1, 2, 1, 3, 1] +afflicted -1.5 1.0247 [-1, -2, -3, -2, 1, -1, -1, -2, -2, -2] +affronted 0.2 2.03961 [1, -2, 2, -2, -2, 4, 0, 2, 1, -2] +aggravate -2.5 0.80623 [-3, -3, -2, -3, -2, -4, -3, -2, -2, -1] +aggravated -1.9 1.04403 [-4, -3, -3, -1, -1, -1, -1, -2, -2, -1] +aggravates -1.9 0.83066 [-3, -2, -2, -2, -3, -1, -2, -2, 0, -2] +aggravating -1.2 0.9798 [-2, -2, -1, -2, -2, -1, 0, 1, -1, -2] +aggress -1.3 1.55242 [-2, -2, 2, -2, -1, -3, -3, -1, 1, -2] +aggressed -1.4 0.4899 [-1, -1, -1, -1, -2, -1, -2, -2, -2, -1] +aggresses -0.5 1.43178 [-1, -2, -1, -1, -3, 0, -1, 1, 2, 1] +aggressing -0.6 1.28062 [-1, -2, -1, 0, -1, -2, 2, -2, 1, 0] +aggression -1.2 1.77764 [-2, -2, 1, 1, -4, 2, -2, -2, -2, -2] +aggressions -1.3 1.48661 [-1, -2, -2, -2, -2, -3, 1, -2, 2, -2] +aggressive -0.6 1.28062 [-2, 1, -2, -2, 0, -2, -1, 1, 1, 0] +aggressively -1.3 1.55242 [-1, -2, 3, -2, -3, -2, -1, -1, -2, -2] +aggressiveness -1.8 0.74833 [-1, -2, -1, -2, -2, -1, -3, -1, -3, -2] +aggressivities -1.4 1.28062 [-1, -1, -1, -2, 2, -2, -2, -2, -3, -2] +aggressivity -0.6 1.35647 [-3, -1, 1, 0, 0, 0, -3, -1, 1, 0] +aggressor -0.8 1.32665 [-2, 0, -1, 2, -2, -2, -1, -1, -2, 1] +aggressors -0.9 1.13578 [-2, -2, -1, -1, -1, 1, 1, 0, -2, -2] +aghast -1.9 1.04403 [-2, -3, -1, 0, -2, -1, -4, -2, -2, -2] +agitate -1.7 0.64031 [-2, -2, -3, -1, -1, -1, -2, -1, -2, -2] +agitated -2.0 0.63246 [-2, -2, -2, -2, -1, -3, -3, -2, -2, -1] +agitatedly -1.6 0.8 [-1, -2, -1, -3, -1, -3, -1, -1, -2, -1] +agitates -1.4 0.8 [-2, 0, -1, -2, -1, -1, -3, -1, -2, -1] +agitating -1.8 0.87178 [-2, -1, -1, -1, -2, -3, -1, -3, -3, -1] +agitation -1.0 1.09545 [-2, -1, 1, -1, -2, -1, -2, -1, 1, -2] +agitational -1.2 1.66132 [-3, -3, -2, 1, -1, -2, 0, 2, -1, -3] +agitations -1.3 1.18743 [-1, -2, -1, -3, -2, -3, 0, -1, 1, -1] +agitative -1.3 1.26886 [-2, -2, -1, -2, -1, -3, 1, -2, 1, -2] +agitato -0.1 1.13578 [1, 2, 0, 0, 0, 0, -2, 0, -2, 0] +agitator -1.4 0.8 [-1, -1, -1, -2, -1, -1, -2, -3, -2, 0] +agitators -2.1 0.9434 [-2, -3, -3, -2, -2, -1, -3, -2, 0, -3] +agog 1.9 0.7 [2, 1, 3, 3, 2, 1, 2, 2, 1, 2] +agonise -2.1 0.9434 [-3, -3, -2, -3, -1, -3, -1, -3, -1, -1] +agonised -2.3 0.64031 [-2, -3, -3, -2, -2, -2, -2, -3, -1, -3] +agonises -2.4 0.91652 [-1, -4, -3, -3, -2, -2, -2, -3, -1, -3] +agonising -1.5 1.43178 [-3, -2, -3, -3, -1, 1, 0, 0, -1, -3] +agonize -2.3 0.9 [-2, -3, -1, -2, -2, -2, -4, -1, -3, -3] +agonized -2.2 1.249 [-2, -3, -3, -3, -3, -2, -1, -3, 1, -3] +agonizes -2.3 1.18743 [-1, -3, -4, -3, -3, -2, -1, -3, 0, -3] +agonizing -2.7 0.78102 [-3, -2, -2, -2, -4, -3, -3, -2, -4, -2] +agonizingly -2.3 1.48661 [-3, -1, -3, -4, -4, -2, -3, 1, -1, -3] +agony -1.8 1.16619 [-3, -1, -2, -4, -2, -1, 0, -3, -1, -1] +agree 1.5 1.11803 [1, 0, 3, 1, 2, 1, 4, 1, 1, 1] +agreeability 1.9 1.04403 [1, 1, 1, 3, 3, 2, 1, 2, 4, 1] +agreeable 1.8 0.4 [2, 1, 2, 1, 2, 2, 2, 2, 2, 2] +agreeableness 1.8 0.9798 [2, 3, 2, 1, 1, 1, 4, 1, 2, 1] +agreeablenesses 1.3 0.45826 [2, 1, 1, 2, 1, 2, 1, 1, 1, 1] +agreeably 1.6 0.4899 [1, 1, 2, 1, 1, 2, 2, 2, 2, 2] +agreed 1.1 0.53852 [1, 1, 2, 1, 1, 2, 1, 0, 1, 1] +agreeing 1.4 0.4899 [1, 1, 1, 1, 2, 1, 1, 2, 2, 2] +agreement 2.2 0.74833 [2, 1, 1, 3, 3, 3, 2, 2, 2, 3] +agreements 1.1 1.13578 [0, 1, 0, 1, 1, 2, 1, 0, 4, 1] +agrees 0.8 1.4 [1, 1, 1, 1, 3, 1, -3, 1, 1, 1] +alarm -1.4 0.91652 [-1, -1, -2, -2, -2, -2, -1, 1, -2, -2] +alarmed -1.4 0.4899 [-2, -1, -2, -2, -1, -1, -1, -2, -1, -1] +alarming -0.5 1.62788 [-1, 1, -1, 1, -3, 1, -2, -3, 1, 1] +alarmingly -2.6 0.91652 [-3, -3, -4, -3, -2, -1, -3, -3, -1, -3] +alarmism -0.3 1.26886 [-2, 0, -2, -1, 0, 1, 1, -1, 2, -1] +alarmists -1.1 1.3 [-1, -2, -3, -2, -1, -2, 1, 1, 0, -2] +alarms -1.1 1.04403 [-2, 0, -2, -1, 0, 0, 0, -1, -2, -3] +alas -1.1 1.22066 [-1, -2, -1, 0, -1, 0, 1, -3, -1, -3] +alert 1.2 0.87178 [1, 2, 0, 1, 0, 2, 2, 0, 2, 2] +alienation -1.1 1.51327 [-3, -2, -3, -1, -2, -1, 2, -1, 1, -1] +alive 1.6 0.8 [1, 1, 2, 3, 3, 2, 1, 1, 1, 1] +allergic -1.2 0.4 [-1, -2, -1, -2, -1, -1, -1, -1, -1, -1] +allow 0.9 0.83066 [0, 0, 0, 1, 2, 2, 1, 1, 2, 0] +alone -1.0 0.63246 [-2, -1, -1, -1, -2, -1, 0, -1, -1, 0] +alright 1.0 0.7746 [0, 1, 0, 3, 1, 1, 1, 1, 1, 1] +amaze 2.5 1.0247 [3, 2, 3, 4, 2, 3, 1, 4, 2, 1] +amazed 2.2 1.07703 [1, 0, 3, 2, 2, 4, 3, 3, 2, 2] +amazedly 2.1 0.53852 [2, 2, 2, 2, 3, 2, 2, 3, 1, 2] +amazement 2.5 0.80623 [3, 3, 2, 4, 1, 2, 2, 3, 2, 3] +amazements 2.2 0.87178 [3, 1, 1, 3, 3, 2, 1, 2, 3, 3] +amazes 2.2 0.9798 [1, 0, 3, 2, 2, 3, 3, 3, 2, 3] +amazing 2.8 0.87178 [1, 4, 3, 2, 4, 2, 3, 3, 3, 3] +amazon 0.7 0.64031 [0, 1, 1, 0, 1, 0, 1, 0, 1, 2] +amazonite 0.2 0.6 [0, 0, 2, 0, 0, 0, 0, 0, 0, 0] +amazons -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, -1, 0] +amazonstone 1.0 1.61245 [0, 0, 0, 0, 4, 4, 2, 0, 0, 0] +amazonstones 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] +ambitious 2.1 0.53852 [2, 3, 2, 2, 2, 2, 2, 2, 3, 1] +ambivalent 0.5 0.92195 [0, 0, -1, 2, 1, 1, 1, -1, 1, 1] +amor 3.0 0.63246 [3, 3, 2, 4, 3, 2, 4, 3, 3, 3] +amoral -1.6 0.66332 [-1, -2, 0, -2, -2, -2, -2, -2, -1, -2] +amoralism -0.7 1.34536 [-2, -1, -2, 0, 0, -3, 2, 0, -1, 0] +amoralisms -0.7 1.00499 [-2, 0, 1, -1, -2, -1, -1, 1, -1, -1] +amoralities -1.2 1.6 [-3, 0, 0, -2, 1, -1, 0, -4, -3, 0] +amorality -1.5 0.92195 [0, -1, -1, -2, -1, -3, -1, -3, -2, -1] +amorally -1.0 1.61245 [-2, 0, 1, -4, -1, 1, 1, -2, -2, -2] +amoretti 0.2 0.4 [0, 0, 0, 1, 0, 0, 0, 0, 0, 1] +amoretto 0.6 0.8 [0, 1, 0, 1, 0, 0, 2, 0, 0, 2] +amorettos 0.3 0.64031 [0, 1, 0, 1, 0, 0, 0, 1, 1, -1] +amorino 1.2 0.87178 [2, 1, 1, 0, 3, 1, 1, 0, 1, 2] +amorist 1.6 1.0198 [3, 0, 0, 2, 2, 1, 3, 1, 2, 2] +amoristic 1.0 1.67332 [1, 0, 2, 3, -1, 3, 1, 3, 0, -2] +amorists 0.1 0.9434 [0, 2, 0, 0, 1, 0, -2, 0, 0, 0] +amoroso 2.3 0.78102 [3, 1, 1, 2, 3, 3, 3, 3, 2, 2] +amorous 1.8 0.9798 [3, 1, 2, 2, 1, 1, 3, 0, 2, 3] +amorously 2.3 0.78102 [1, 1, 3, 2, 3, 3, 2, 3, 2, 3] +amorousness 2.0 0.89443 [2, 3, 1, 2, 0, 2, 2, 3, 3, 2] +amorphous -0.2 0.4 [0, 0, 0, 0, 0, 0, -1, 0, 0, -1] +amorphously 0.1 0.7 [-1, 0, 0, 0, 0, 0, 2, 0, 0, 0] +amorphousness 0.3 0.45826 [0, 0, 0, 0, 0, 1, 1, 1, 0, 0] +amort -2.1 0.83066 [-3, -1, -2, -2, -2, -2, -2, -4, -1, -2] +amortise 0.5 1.43178 [0, 1, 1, 0, -3, 2, 0, 0, 2, 2] +amortised -0.2 1.16619 [-1, -3, 0, 0, 0, 2, 0, 0, 0, 0] +amortises 0.1 0.83066 [-1, -1, 0, 0, 0, 2, 1, 0, 0, 0] +amortizable 0.5 1.0247 [2, 0, 1, 0, 1, 1, -2, 1, 0, 1] +amortization 0.6 1.0198 [0, 0, 0, 0, 1, 0, 0, 0, 3, 2] +amortizations 0.2 1.07703 [-1, 1, 0, 0, 1, 0, 2, 1, -2, 0] +amortize -0.1 1.04403 [0, 0, 0, 0, 2, -2, -1, 1, -1, 0] +amortized 0.8 0.74833 [0, 2, 0, 0, 1, 1, 1, 0, 1, 2] +amortizes 0.6 0.8 [0, 2, 0, 0, 1, 1, 0, 0, 0, 2] +amortizing 0.8 1.249 [0, 3, 0, 0, 0, 0, 0, 0, 3, 2] +amusable 0.7 1.18743 [2, 1, 1, 1, 1, 1, 2, -2, -1, 1] +amuse 1.7 0.78102 [1, 2, 1, 1, 2, 1, 1, 3, 3, 2] +amused 1.8 0.6 [1, 2, 2, 2, 2, 2, 1, 2, 3, 1] +amusedly 2.2 0.74833 [3, 3, 2, 2, 3, 2, 2, 3, 1, 1] +amusement 1.5 1.11803 [3, 2, 3, 1, 2, 2, -1, 1, 1, 1] +amusements 1.5 1.0247 [2, 1, 2, 1, 2, 2, 3, -1, 2, 1] +amuser 1.1 1.7 [2, 1, -3, 2, 2, 3, -1, 1, 2, 2] +amusers 1.3 0.45826 [1, 1, 2, 1, 2, 1, 2, 1, 1, 1] +amuses 1.7 0.64031 [1, 2, 1, 2, 2, 2, 1, 2, 3, 1] +amusia 0.3 1.48661 [0, -1, 1, -1, 2, 2, -1, -1, -1, 3] +amusias -0.4 0.66332 [-1, 0, 0, 1, 0, 0, -1, -1, -1, -1] +amusing 1.6 0.91652 [2, 2, 2, -1, 2, 2, 1, 2, 2, 2] +amusingly 0.8 1.249 [1, 2, 1, 1, 1, 2, 2, -2, -1, 1] +amusingness 1.8 0.6 [1, 2, 3, 2, 1, 2, 2, 1, 2, 2] +amusive 1.7 1.1 [3, 1, 3, 1, 2, 2, 2, 2, -1, 2] +anger -2.7 1.18743 [-1, -2, -3, -2, -4, -4, -2, -1, -4, -4] +angered -2.3 0.78102 [-2, -3, -2, -4, -2, -2, -3, -2, -2, -1] +angering -2.2 0.6 [-3, -2, -1, -3, -2, -2, -3, -2, -2, -2] +angerly -1.9 0.53852 [-2, -2, -1, -1, -3, -2, -2, -2, -2, -2] +angers -2.3 0.9 [-3, -1, -2, -3, -2, -2, -4, -1, -3, -2] +angrier -2.3 0.64031 [-2, -3, -2, -3, -1, -3, -2, -3, -2, -2] +angriest -3.1 0.83066 [-4, -3, -2, -2, -2, -4, -3, -4, -4, -3] +angrily -1.8 0.4 [-2, -1, -2, -2, -2, -1, -2, -2, -2, -2] +angriness -1.7 0.64031 [-2, 0, -2, -2, -1, -2, -2, -2, -2, -2] +angry -2.3 0.9 [-2, -2, -1, -3, -1, -2, -4, -2, -3, -3] +anguish -2.9 0.83066 [-3, -3, -2, -3, -4, -1, -3, -3, -4, -3] +anguished -1.8 1.4 [-3, -4, -1, -3, -2, -1, -1, 1, -1, -3] +anguishes -2.1 1.44568 [-4, -4, -2, -3, 1, -2, -1, -1, -2, -3] +anguishing -2.7 0.9 [-2, -2, -1, -3, -2, -4, -4, -3, -3, -3] +animosity -1.9 1.75784 [-2, -3, -3, -3, -2, 2, 1, -3, -3, -3] +annoy -1.9 0.53852 [-2, -2, -1, -2, -2, -1, -2, -2, -2, -3] +annoyance -1.3 1.55242 [-2, -3, -2, -2, -1, 1, -3, -2, 2, -1] +annoyances -1.8 0.6 [-2, -2, -2, -1, -1, -2, -3, -1, -2, -2] +annoyed -1.6 1.11355 [-3, -1, 1, -3, -1, -1, -2, -2, -2, -2] +annoyer -2.2 0.87178 [-3, -2, -1, -3, -2, -4, -2, -1, -2, -2] +annoyers -1.5 1.0247 [-2, -1, -2, -3, -2, -1, -1, -2, 1, -2] +annoying -1.7 0.64031 [-1, -2, -1, -2, -1, -1, -2, -2, -3, -2] +annoys -1.8 0.6 [-1, -2, -3, -2, -2, -2, -1, -2, -1, -2] +antagonism -1.9 1.04403 [-1, -1, -3, -2, -4, -2, -2, 0, -2, -2] +antagonisms -1.2 1.53623 [0, -2, -2, -2, -2, -2, 3, -2, -1, -2] +antagonist -1.9 0.7 [-3, -1, -2, -3, -2, -2, -1, -2, -2, -1] +antagonistic -1.7 0.9 [-2, -2, -2, 1, -2, -2, -2, -2, -2, -2] +antagonistically -2.2 0.87178 [-2, -3, -4, -2, -2, -3, -2, -2, -1, -1] +antagonists -1.7 0.64031 [-2, -1, -1, -2, -1, -2, -2, -3, -1, -2] +antagonize -2.0 0.44721 [-2, -2, -2, -3, -2, -1, -2, -2, -2, -2] +antagonized -1.4 0.66332 [-2, -1, -2, -2, -1, 0, -2, -1, -1, -2] +antagonizes -0.5 1.9105 [-2, 4, -2, -2, 1, 0, -2, 1, -1, -2] +antagonizing -2.7 0.64031 [-4, -2, -2, -3, -2, -3, -3, -2, -3, -3] +anti -1.3 0.78102 [0, -2, -3, -1, -1, -2, -1, -1, -1, -1] +anticipation 0.4 1.28062 [1, 1, -1, 0, -1, 1, 1, 2, -2, 2] +anxieties -0.6 1.85472 [-2, -3, -3, -2, -1, 2, -1, 1, 1, 2] +anxiety -0.7 2.1 [-2, -2, -2, -3, 3, -1, -3, 2, 2, -1] +anxious -1.0 0.44721 [-1, -2, -1, -1, 0, -1, -1, -1, -1, -1] +anxiously -0.9 0.83066 [-1, -1, -2, -1, -1, -1, -1, 0, 1, -2] +anxiousness -1.0 1.48324 [-2, -1, -1, -1, -1, -2, 3, -3, -1, -1] +aok 2.0 0.89443 [2, 3, 2, 1, 2, 1, 1, 4, 2, 2] +apathetic -1.2 0.87178 [-1, -1, 0, -2, -2, -1, -1, 0, -3, -1] +apathetically -0.4 1.28062 [-1, -1, 0, -1, -2, 2, -1, -1, 2, -1] +apathies -0.6 1.0198 [-1, -1, -1, -2, 0, 1, -1, -2, 1, 0] +apathy -1.2 1.32665 [-2, -2, -1, 1, -1, -3, -1, 1, -1, -3] +apeshit -0.9 2.21133 [-4, -3, 2, -3, -2, -3, 1, 0, 2, 1] +apocalyptic -3.4 0.66332 [-4, -2, -3, -4, -3, -4, -4, -3, -3, -4] +apologise 1.6 0.66332 [2, 3, 2, 2, 1, 1, 2, 1, 1, 1] +apologised 0.4 0.91652 [-1, 0, 2, 0, 0, 1, 0, 2, 0, 0] +apologises 0.8 1.07703 [2, 0, 2, 0, 0, 1, 0, 3, 0, 0] +apologising 0.2 1.6 [0, -1, -1, 2, 2, 1, -2, -1, 3, -1] +apologize 0.4 0.8 [1, -1, 0, 1, 1, 1, -1, 1, 0, 1] +apologized 1.3 0.64031 [1, 1, 1, 2, 0, 2, 1, 2, 2, 1] +apologizes 1.5 0.80623 [2, 1, 1, 2, 0, 2, 1, 2, 3, 1] +apologizing -0.3 1.34536 [1, 2, -1, 1, -1, 0, -3, 0, -1, -1] +apology 0.2 1.249 [1, 1, 1, 1, -1, 1, -1, -1, -2, 2] +appall -2.4 0.66332 [-3, -2, -2, -3, -2, -3, -1, -3, -2, -3] +appalled -2.0 0.63246 [-3, -2, -3, -2, -2, -1, -1, -2, -2, -2] +appalling -1.5 1.5 [-2, -4, 1, -1, 1, -1, -2, -3, -2, -2] +appallingly -2.0 1.67332 [-3, -2, 0, -2, 2, -3, -4, -3, -2, -3] +appalls -1.9 1.37477 [0, -3, -2, -3, -3, -2, -1, -3, 1, -3] +appease 1.1 0.9434 [1, 1, 1, -1, 2, 0, 1, 2, 2, 2] +appeased 0.9 0.53852 [0, 1, 1, 1, 1, 1, 0, 1, 2, 1] +appeases 0.9 0.53852 [0, 1, 1, 1, 1, 1, 0, 1, 2, 1] +appeasing 1.0 1.09545 [1, 2, -1, 1, 2, 1, 2, 2, 1, -1] +applaud 2.0 0.63246 [3, 2, 2, 2, 1, 2, 3, 1, 2, 2] +applauded 1.5 0.5 [2, 2, 1, 2, 2, 2, 1, 1, 1, 1] +applauding 2.1 0.83066 [2, 2, 4, 1, 2, 2, 2, 1, 2, 3] +applauds 1.4 0.66332 [1, 1, 2, 1, 3, 1, 1, 1, 2, 1] +applause 1.8 0.6 [2, 1, 1, 2, 3, 2, 1, 2, 2, 2] +appreciate 1.7 0.78102 [2, 1, 2, 1, 1, 3, 1, 2, 3, 1] +appreciated 2.3 0.78102 [2, 1, 3, 2, 3, 4, 2, 2, 2, 2] +appreciates 2.3 0.9 [3, 1, 3, 1, 2, 4, 2, 3, 2, 2] +appreciating 1.9 0.7 [1, 1, 2, 2, 2, 2, 1, 3, 2, 3] +appreciation 2.3 0.9 [3, 3, 2, 1, 1, 3, 3, 1, 3, 3] +appreciations 1.7 0.78102 [3, 2, 1, 2, 2, 1, 3, 1, 1, 1] +appreciative 2.6 0.8 [3, 3, 3, 2, 1, 3, 4, 2, 2, 3] +appreciatively 1.8 0.6 [2, 2, 2, 2, 2, 1, 3, 2, 1, 1] +appreciativeness 1.6 0.8 [2, 1, 1, 2, 1, 1, 3, 3, 1, 1] +appreciator 2.6 0.8 [2, 3, 2, 3, 3, 2, 1, 3, 4, 3] +appreciators 1.5 0.80623 [1, 3, 1, 3, 1, 1, 2, 1, 1, 1] +appreciatory 1.7 0.78102 [1, 2, 1, 3, 1, 3, 2, 2, 1, 1] +apprehensible 1.1 1.04403 [2, 0, -1, 3, 1, 2, 1, 1, 1, 1] +apprehensibly -0.2 1.16619 [0, 0, -1, 2, -1, 2, -1, -1, -1, -1] +apprehension -2.1 0.83066 [-1, -2, -2, -1, -2, -3, -3, -3, -1, -3] +apprehensions -0.9 1.04403 [-1, -1, -1, -1, -2, -2, -1, -1, -1, 2] +apprehensively -0.3 1.18743 [-1, -1, -1, 0, 1, -2, -1, 1, -1, 2] +apprehensiveness -0.7 0.9 [-1, 1, -1, -1, 1, -1, -2, -1, -1, -1] +approval 2.1 0.53852 [2, 2, 2, 2, 2, 1, 3, 3, 2, 2] +approved 1.8 0.6 [1, 1, 1, 2, 3, 2, 2, 2, 2, 2] +approves 1.7 0.64031 [1, 1, 1, 2, 3, 2, 2, 2, 2, 1] +ardent 2.1 0.7 [3, 3, 2, 2, 3, 1, 2, 2, 1, 2] +arguable -1.0 0.63246 [-1, -1, -2, -1, -1, -2, 0, 0, -1, -1] +arguably -1.0 1.09545 [0, -2, 0, -2, 0, 1, -1, -2, -2, -2] +argue -1.4 0.66332 [-1, -2, -1, -3, -2, -1, -1, -1, -1, -1] +argued -1.5 0.5 [-2, -2, -1, -1, -1, -1, -2, -2, -2, -1] +arguer -1.6 0.4899 [-2, -2, -1, -2, -1, -1, -2, -2, -2, -1] +arguers -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -2, -2, -1, -1] +argues -1.6 0.4899 [-2, -2, -1, -2, -1, -1, -2, -2, -2, -1] +arguing -2.0 0.63246 [-3, -3, -1, -1, -2, -2, -2, -2, -2, -2] +argument -1.5 0.80623 [-3, -1, -1, -1, -1, -2, 0, -2, -2, -2] +argumentative -1.5 0.67082 [-3, -2, -1, -1, -1, -1, -1, -2, -2, -1] +argumentatively -1.8 0.9798 [-4, -2, -1, -1, -3, -1, -2, -2, -1, -1] +argumentive -1.5 0.80623 [-3, -2, -2, -1, 0, -1, -1, -1, -2, -2] +arguments -1.7 0.64031 [-1, -1, -2, -2, -2, -3, -2, -1, -1, -2] +arrest -1.4 1.42829 [-1, 0, -1, 0, -2, -3, 0, -4, -3, 0] +arrested -2.1 1.04403 [-2, -2, -2, -1, -1, -4, -1, -4, -2, -2] +arrests -1.9 0.83066 [-4, -2, -1, -1, -1, -2, -2, -2, -2, -2] +arrogance -2.4 0.66332 [-3, -2, -2, -3, -1, -2, -3, -3, -2, -3] +arrogances -1.9 0.53852 [-1, -2, -3, -2, -2, -2, -2, -1, -2, -2] +arrogant -2.2 0.6 [-2, -2, -2, -3, -2, -3, -3, -2, -1, -2] +arrogantly -1.8 1.4 [-3, -2, 2, -3, -1, -3, -2, -2, -2, -2] +ashamed -2.1 1.3 [-3, -3, -3, -2, -2, 1, -2, -4, -1, -2] +ashamedly -1.7 0.64031 [-2, -2, -2, -1, -2, -3, -1, -2, -1, -1] +ass -2.5 1.43178 [-4, -1, -2, -1, -3, 0, -2, -4, -4, -4] +assassination -2.9 0.9434 [-2, -4, -4, -3, -3, -4, -2, -3, -3, -1] +assassinations -2.7 1.34536 [-4, -2, -3, -2, -3, -1, -4, -4, 0, -4] +assault -2.8 0.9798 [-3, -4, -2, -2, -4, -3, -1, -3, -2, -4] +assaulted -2.4 1.28062 [-3, -3, 1, -3, -3, -3, -1, -3, -3, -3] +assaulting -2.3 1.1 [-4, -3, -2, -1, -2, -1, -1, -4, -3, -2] +assaultive -2.8 0.87178 [-3, -4, -2, -4, -3, -2, -3, -1, -3, -3] +assaults -2.5 0.92195 [-1, -3, -3, -3, -4, -3, -1, -2, -2, -3] +asset 1.5 0.80623 [2, 1, 1, 3, 2, 0, 2, 2, 1, 1] +assets 0.7 1.00499 [0, 0, 1, 3, 0, 1, 0, 0, 2, 0] +assfucking -2.5 1.43178 [-3, -3, 0, -3, 0, -2, -4, -4, -4, -2] +assholes -2.8 0.74833 [-3, -3, -3, -3, -4, -3, -2, -3, -1, -3] +assurance 1.4 0.4899 [1, 1, 2, 2, 1, 1, 1, 2, 2, 1] +assurances 1.4 0.4899 [2, 2, 1, 1, 1, 2, 2, 1, 1, 1] +assure 1.4 0.4899 [1, 1, 1, 1, 2, 1, 1, 2, 2, 2] +assured 1.5 0.67082 [1, 1, 2, 1, 1, 3, 2, 1, 2, 1] +assuredly 1.6 0.66332 [1, 1, 1, 3, 2, 2, 2, 1, 2, 1] +assuredness 1.4 0.8 [2, 2, 2, 1, 1, 0, 2, 0, 2, 2] +assurer 0.9 1.13578 [2, 1, 0, 1, -2, 2, 2, 1, 1, 1] +assurers 1.1 0.9434 [2, 0, 0, 1, 3, 2, 0, 1, 1, 1] +assures 1.3 0.45826 [2, 1, 1, 1, 2, 1, 2, 1, 1, 1] +assurgent 1.3 0.9 [2, 1, 0, 0, 1, 2, 1, 2, 3, 1] +assuring 1.6 0.66332 [1, 2, 2, 3, 1, 1, 1, 1, 2, 2] +assuror 0.5 0.67082 [0, 1, 0, 1, 2, 0, 0, 1, 0, 0] +assurors 0.7 1.34536 [2, -1, 0, 2, 0, -2, 2, 1, 1, 2] +astonished 1.6 0.8 [3, 1, 0, 2, 2, 1, 2, 2, 1, 2] +astound 1.7 1.26886 [2, 2, 2, 2, 0, 3, 4, 0, 0, 2] +astounded 1.8 0.9798 [1, 3, 0, 1, 2, 2, 3, 2, 1, 3] +astounding 1.8 1.4 [3, 4, 2, 0, 1, 2, -1, 3, 2, 2] +astoundingly 2.1 1.44568 [3, 0, 4, 1, 4, 3, 1, 3, 0, 2] +astounds 2.1 1.22066 [3, 3, 1, 0, 3, 2, 3, 3, 0, 3] +attachment 1.2 0.9798 [2, 0, 1, 2, 3, 1, 1, 2, 0, 0] +attachments 1.1 0.7 [1, 1, 2, 0, 2, 1, 2, 0, 1, 1] +attack -2.1 0.83066 [-1, -3, -2, -3, -3, -1, -2, -1, -2, -3] +attacked -2.0 1.78885 [-2, 3, -2, -2, -3, -3, -3, -4, -2, -2] +attacker -2.7 0.9 [-2, -3, -2, -1, -3, -3, -4, -4, -2, -3] +attackers -2.7 0.64031 [-3, -3, -3, -2, -3, -3, -4, -2, -2, -2] +attacking -2.0 0.89443 [-3, -1, -1, -3, -3, -1, -3, -1, -2, -2] +attacks -1.9 0.9434 [-2, -2, 0, -2, -2, -2, -1, -4, -2, -2] +attract 1.5 0.92195 [1, 3, 1, 1, 3, 1, 1, 2, 0, 2] +attractancy 0.9 0.7 [1, 0, 2, 1, 0, 2, 1, 1, 0, 1] +attractant 1.3 0.9 [0, 1, 0, 1, 1, 2, 3, 2, 1, 2] +attractants 1.4 0.8 [1, 1, 0, 2, 2, 2, 3, 1, 1, 1] +attracted 1.8 0.6 [1, 3, 1, 2, 2, 2, 2, 2, 2, 1] +attracting 2.1 0.83066 [3, 1, 2, 2, 3, 1, 1, 3, 2, 3] +attraction 2.0 0.7746 [2, 2, 1, 1, 2, 3, 3, 2, 3, 1] +attractions 1.8 0.87178 [1, 3, 0, 2, 2, 2, 2, 3, 1, 2] +attractive 1.9 0.53852 [2, 2, 2, 1, 3, 2, 1, 2, 2, 2] +attractively 2.2 0.6 [3, 2, 2, 3, 2, 2, 2, 3, 1, 2] +attractiveness 1.8 1.16619 [3, 2, 2, 1, 4, 2, 0, 0, 2, 2] +attractivenesses 2.1 0.7 [2, 1, 2, 3, 2, 3, 3, 1, 2, 2] +attractor 1.2 1.16619 [1, 1, 2, 2, 2, -2, 2, 1, 2, 1] +attractors 1.2 0.87178 [1, 1, 2, 2, 0, 1, 3, 1, 0, 1] +attracts 1.7 1.00499 [2, 1, 2, 0, 2, 4, 2, 1, 1, 2] +audacious 0.9 2.02237 [3, -1, -2, 2, 1, 2, -3, 2, 2, 3] +authority 0.3 0.64031 [0, 0, 0, 1, 0, 0, 2, 0, 0, 0] +aversion -1.9 1.04403 [-3, -3, -1, -2, 0, -3, -1, -2, -1, -3] +aversions -1.1 1.13578 [-2, -1, -2, -2, -2, 1, -1, -2, 1, -1] +aversive -1.6 0.66332 [-2, -1, -1, -1, -2, -2, -1, -2, -3, -1] +aversively -0.8 1.53623 [-3, -1, -2, -1, 1, -2, 2, -2, 1, -1] +avert -0.7 0.78102 [-1, 0, -2, -1, -1, 1, -1, 0, -1, -1] +averted -0.3 1.00499 [-1, 1, 0, 0, 1, 0, -2, 0, 0, -2] +averts -0.4 1.0198 [-2, -2, -1, -1, 0, 0, 1, 0, 1, 0] +avid 1.2 0.87178 [-1, 2, 2, 1, 1, 1, 2, 2, 1, 1] +avoid -1.2 0.6 [-1, -1, -1, -1, -2, -2, -1, -2, 0, -1] +avoidance -1.7 0.45826 [-2, -2, -1, -1, -1, -2, -2, -2, -2, -2] +avoidances -1.1 0.53852 [-1, -1, -1, -1, -2, 0, -1, -2, -1, -1] +avoided -1.4 0.4899 [-2, -1, -2, -1, -1, -1, -2, -1, -2, -1] +avoider -1.8 0.6 [-2, -1, -3, -1, -2, -2, -2, -1, -2, -2] +avoiders -1.4 0.66332 [-2, -2, -1, -2, -1, -1, 0, -1, -2, -2] +avoiding -1.4 0.91652 [-2, 1, -2, -2, -1, -2, -1, -1, -2, -2] +avoids -0.7 0.45826 [-1, -1, -1, -1, -1, -1, 0, 0, 0, -1] +await 0.4 0.4899 [0, 0, 0, 1, 0, 1, 0, 1, 1, 0] +awaited -0.1 0.83066 [1, 0, 0, 0, 1, -1, 0, 0, -2, 0] +awaits 0.3 0.78102 [0, 0, 0, 1, 2, 1, 0, 0, -1, 0] +award 2.5 0.92195 [2, 1, 1, 3, 3, 2, 4, 3, 3, 3] +awardable 2.4 0.8 [3, 3, 3, 1, 3, 1, 2, 3, 2, 3] +awarded 1.7 0.78102 [2, 0, 1, 3, 2, 2, 2, 1, 2, 2] +awardee 1.8 0.6 [2, 2, 1, 3, 2, 2, 1, 1, 2, 2] +awardees 1.2 0.74833 [1, 1, 1, 1, 0, 1, 1, 1, 3, 2] +awarder 0.9 1.04403 [2, 0, 1, 3, 0, 2, 1, 0, 0, 0] +awarders 1.3 1.18743 [2, 1, 0, 2, 2, 0, 0, 4, 1, 1] +awarding 1.9 0.7 [3, 2, 1, 2, 1, 2, 3, 1, 2, 2] +awards 2.0 0.44721 [2, 2, 2, 2, 1, 2, 2, 3, 2, 2] +awesome 3.1 0.83066 [3, 4, 2, 3, 2, 2, 4, 4, 4, 3] +awful -2.0 2.04939 [-2, -2, -3, -3, -2, -3, 4, -3, -3, -3] +awkward -0.6 1.56205 [-2, -1, -1, -1, -1, -1, -1, -1, 4, -1] +awkwardly -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -1, -2, -2, -1] +awkwardness -0.7 1.41774 [-1, -2, -2, -1, -2, 2, -1, -1, 2, -1] +axe -0.4 0.8 [-2, 0, 0, 0, 0, 0, -1, -1, -1, 1] +axed -1.3 0.78102 [-1, -2, 0, -3, -1, -2, -1, -1, -1, -1] +backed 0.1 0.3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] +backing 0.1 0.83066 [1, 1, -1, 0, 0, 0, -1, 1, -1, 1] +backs -0.2 0.4 [0, 0, -1, 0, 0, 0, 0, -1, 0, 0] +bad -2.5 0.67082 [-3, -2, -4, -3, -2, -2, -3, -2, -2, -2] +badass 1.4 1.26491 [1, 3, 2, 0, -1, 1, 3, 2, 1, 2] +badly -2.1 0.7 [-2, -3, -2, -1, -3, -2, -3, -2, -1, -2] +bailout -0.4 1.35647 [-1, 0, 0, 2, -2, -1, -2, 2, -1, -1] +bamboozle -1.5 1.0247 [-3, -2, -2, -1, -2, -2, 1, -1, -1, -2] +bamboozled -1.5 1.11803 [-1, 0, -2, -4, -2, -1, -2, -1, 0, -2] +bamboozles -1.5 1.0247 [-1, 0, -2, -4, -2, -1, -2, -1, -1, -1] +ban -2.6 1.0198 [-4, -3, -4, -3, -2, -1, -3, -2, -1, -3] +banish -1.9 0.9434 [-2, -2, -2, -2, -1, -3, -1, -1, -1, -4] +bankrupt -2.6 1.0198 [-4, -4, -2, -2, -4, -3, -2, -2, -1, -2] +bankster -2.1 0.53852 [-3, -1, -2, -2, -2, -2, -2, -3, -2, -2] +banned -2.0 1.0 [-2, -1, -1, -1, -2, -2, -4, -3, -3, -1] +bargain 0.8 1.16619 [1, 1, 1, 1, 0, 1, 2, 3, -1, -1] +barrier -0.5 0.92195 [-2, 0, 0, -2, -1, -1, 1, 0, 0, 0] +bashful -0.1 1.13578 [-1, 2, -1, 0, -1, 2, 0, 0, -1, -1] +bashfully 0.2 0.9798 [0, 0, 0, -1, 1, 1, 1, 1, -2, 1] +bashfulness -0.8 0.9798 [-2, -1, 1, 1, -1, -2, -1, -1, -1, -1] +bastard -2.5 0.67082 [-2, -4, -2, -3, -2, -2, -3, -3, -2, -2] +bastardies -1.8 0.87178 [-2, -1, -3, -2, -2, -2, -1, 0, -2, -3] +bastardise -2.1 0.83066 [-2, -1, -4, -2, -2, -3, -2, -2, -2, -1] +bastardised -2.3 0.9 [-3, -2, -3, -1, -2, -3, -4, -1, -2, -2] +bastardises -2.3 1.18743 [-1, -4, -2, -3, -3, 0, -2, -4, -2, -2] +bastardising -2.6 0.8 [-3, -2, -3, -2, -2, -1, -3, -4, -3, -3] +bastardization -2.4 1.28062 [-1, -3, -4, -4, -2, -2, -2, 0, -2, -4] +bastardizations -2.1 0.7 [-2, -1, -3, -3, -2, -2, -3, -1, -2, -2] +bastardize -2.4 0.66332 [-2, -2, -3, -2, -2, -3, -4, -2, -2, -2] +bastardized -2.0 0.7746 [-2, -1, -1, -2, -3, -2, -3, -2, -1, -3] +bastardizes -1.8 0.87178 [-2, -1, -1, -2, -2, -2, -3, -3, 0, -2] +bastardizing -2.3 0.9 [-2, -2, -1, -4, -3, -2, -1, -2, -3, -3] +bastardly -2.7 0.64031 [-3, -3, -2, -2, -3, -2, -2, -4, -3, -3] +bastards -3.0 0.63246 [-4, -2, -3, -3, -4, -3, -3, -3, -3, -2] +bastardy -2.7 1.1 [-4, -3, -2, -2, -4, -3, -3, -3, -3, 0] +battle -1.6 1.28062 [-1, -3, 0, -3, -2, -3, -2, -2, 1, -1] +battled -1.2 0.87178 [0, 0, -2, 0, -2, -1, -2, -1, -2, -2] +battlefield -1.6 0.8 [-2, -2, 0, -1, -2, -1, -3, -2, -1, -2] +battlefields -0.9 1.22066 [-1, -1, 0, 0, -4, -1, 0, 0, 0, -2] +battlefront -1.2 0.87178 [-1, 0, -2, -1, 0, -3, -1, -2, -1, -1] +battlefronts -0.8 1.16619 [0, 0, -2, -1, 0, -3, -1, 1, -2, 0] +battleground -1.7 0.78102 [-2, 0, -2, -2, -1, -2, -2, -3, -1, -2] +battlegrounds -0.6 1.35647 [2, -2, 0, -1, 0, -2, -2, -2, 0, 1] +battlement -0.4 0.8 [0, -1, 0, -1, 0, -2, 0, 1, 0, -1] +battlements -0.4 0.66332 [0, 0, 0, 0, 0, -1, -2, 0, -1, 0] +battler -0.8 1.4 [2, 0, -2, 0, -2, 1, -2, -1, -2, -2] +battlers -0.2 0.9798 [-1, 0, 2, -2, 0, 0, 0, -1, 0, 0] +battles -1.6 0.4899 [-1, -1, -2, -1, -2, -2, -2, -1, -2, -2] +battleship -0.1 1.3 [2, -3, -1, -1, 0, 0, 1, 1, 0, 0] +battleships -0.5 0.80623 [-2, 0, 0, 0, 0, -1, -2, 0, 0, 0] +battlewagon -0.3 0.64031 [0, 0, -1, -2, 0, 0, 0, 0, 0, 0] +battlewagons -0.5 0.67082 [0, 0, 0, -1, -2, -1, 0, -1, 0, 0] +battling -1.1 1.04403 [0, -1, -2, -2, -1, 1, -2, 0, -2, -2] +beaten -1.8 0.6 [-1, -2, -2, -2, -3, -2, -2, -2, -1, -1] +beatific 1.8 1.6 [3, 0, 2, 4, -2, 2, 2, 2, 2, 3] +beating -2.0 0.63246 [-2, -3, -2, -2, -1, -1, -2, -3, -2, -2] +beaut 1.6 1.2 [2, 2, 2, 0, 1, -1, 2, 3, 3, 2] +beauteous 2.5 1.0247 [2, 1, 4, 3, 3, 2, 1, 4, 2, 3] +beauteously 2.6 0.8 [2, 3, 3, 3, 2, 1, 3, 4, 2, 3] +beauteousness 2.7 1.00499 [1, 3, 4, 3, 4, 1, 2, 3, 3, 3] +beautician 1.2 0.9798 [0, 0, 3, 2, 2, 0, 1, 1, 1, 2] +beauticians 0.4 0.66332 [0, 1, 0, 0, 0, 0, 1, 0, 2, 0] +beauties 2.4 0.8 [2, 3, 3, 3, 3, 1, 2, 1, 3, 3] +beautification 1.9 0.7 [2, 2, 2, 1, 2, 1, 3, 1, 2, 3] +beautifications 2.4 0.8 [3, 2, 3, 3, 1, 3, 2, 3, 1, 3] +beautified 2.1 0.7 [2, 2, 3, 1, 2, 2, 3, 1, 2, 3] +beautifier 1.7 0.64031 [2, 1, 2, 1, 2, 1, 3, 1, 2, 2] +beautifiers 1.7 0.78102 [3, 3, 1, 2, 1, 2, 2, 1, 1, 1] +beautifies 1.8 0.74833 [2, 1, 2, 1, 2, 1, 3, 1, 2, 3] +beautiful 2.9 0.7 [2, 3, 2, 3, 2, 3, 4, 4, 3, 3] +beautifuler 2.1 0.83066 [2, 0, 2, 2, 3, 2, 2, 2, 3, 3] +beautifulest 2.6 0.8 [3, 3, 3, 3, 2, 2, 4, 2, 1, 3] +beautifully 2.7 0.64031 [3, 3, 2, 2, 3, 3, 2, 2, 4, 3] +beautifulness 2.6 0.8 [3, 3, 3, 2, 3, 4, 3, 2, 2, 1] +beautify 2.3 0.45826 [2, 3, 3, 2, 2, 3, 2, 2, 2, 2] +beautifying 2.3 0.78102 [1, 2, 1, 3, 2, 2, 3, 3, 3, 3] +beauts 1.7 0.78102 [1, 2, 0, 3, 1, 2, 2, 2, 2, 2] +beauty 2.8 0.74833 [3, 3, 2, 3, 4, 4, 2, 2, 3, 2] +belittle -1.9 0.53852 [-2, -2, -2, -1, -2, -2, -1, -2, -3, -2] +belittled -2.0 1.0 [-3, -2, -3, -3, -2, -3, -1, -1, -2, 0] +beloved 2.3 0.45826 [2, 2, 3, 2, 2, 2, 2, 3, 3, 2] +benefic 1.4 0.4899 [2, 2, 1, 1, 1, 2, 2, 1, 1, 1] +benefice 0.4 0.66332 [0, 2, 0, 1, 0, 0, 1, 0, 0, 0] +beneficed 1.1 0.7 [1, 1, 1, 0, 2, 0, 1, 1, 2, 2] +beneficence 2.8 0.87178 [1, 4, 3, 4, 2, 2, 3, 3, 3, 3] +beneficences 1.5 0.67082 [1, 1, 2, 2, 1, 1, 1, 3, 2, 1] +beneficent 2.3 0.45826 [3, 2, 3, 2, 2, 2, 2, 3, 2, 2] +beneficently 2.2 0.6 [3, 2, 3, 3, 2, 2, 1, 2, 2, 2] +benefices 1.1 0.83066 [1, 1, 1, 0, 1, 0, 1, 1, 2, 3] +beneficial 1.9 0.53852 [2, 2, 1, 2, 2, 1, 3, 2, 2, 2] +beneficially 2.4 0.8 [3, 3, 2, 2, 2, 1, 3, 4, 2, 2] +beneficialness 1.7 0.64031 [2, 1, 2, 2, 1, 1, 2, 2, 1, 3] +beneficiaries 1.8 1.16619 [0, 1, 2, 1, 3, 4, 3, 1, 2, 1] +beneficiary 2.1 0.83066 [1, 3, 2, 2, 2, 1, 3, 3, 1, 3] +beneficiate 1.0 1.18322 [0, 0, 1, 3, 1, 0, 2, 0, 3, 0] +beneficiation 0.4 1.0198 [2, 2, 0, -1, 1, 0, -1, 0, 0, 1] +benefit 2.0 0.63246 [2, 3, 1, 2, 2, 3, 2, 1, 2, 2] +benefits 1.6 0.4899 [2, 2, 2, 1, 2, 1, 2, 2, 1, 1] +benefitted 1.7 0.64031 [2, 2, 1, 2, 2, 2, 2, 2, 0, 2] +benefitting 1.9 0.7 [1, 2, 2, 3, 1, 1, 2, 3, 2, 2] +benevolence 1.7 1.1 [2, 1, 3, 2, 2, 1, 2, 2, -1, 3] +benevolences 1.9 1.64012 [3, 2, -1, -1, 3, 1, 3, 4, 2, 3] +benevolent 2.7 0.78102 [2, 2, 3, 2, 4, 2, 3, 2, 4, 3] +benevolently 1.4 1.11355 [2, 1, 2, 2, 1, -1, 2, 3, 0, 2] +benevolentness 1.2 1.249 [2, 2, 1, -1, 2, 2, 3, -1, 1, 1] +benign 1.3 0.9 [1, 3, 2, 2, 1, 1, 2, 0, 0, 1] +benignancy 0.6 1.2 [2, -1, -2, 1, 0, 1, 1, 2, 1, 1] +benignant 2.2 0.9798 [2, 2, 2, 2, 2, 2, 4, 0, 3, 3] +benignantly 1.1 1.3 [3, 2, 3, 0, 1, 1, -1, 2, 0, 0] +benignities 0.9 0.9434 [-1, 2, 1, 0, 1, 1, 2, 2, 1, 0] +benignity 1.3 1.18743 [2, -2, 2, 2, 2, 1, 2, 1, 1, 2] +benignly 0.2 1.07703 [0, -1, 1, 1, 1, 0, 2, 0, -2, 0] +bereave -2.1 1.13578 [0, -2, -2, -3, -3, -4, -3, -2, -1, -1] +bereaved -2.1 0.9434 [-2, -2, -2, -1, -2, -1, -4, -1, -3, -3] +bereaves -1.9 1.22066 [0, -3, 0, -1, -3, -2, -3, -1, -3, -3] +bereaving -1.3 1.84662 [-3, -4, -3, 1, -2, 0, -3, -1, 1, 1] +best 3.2 0.6 [2, 4, 4, 3, 4, 3, 3, 3, 3, 3] +betray -3.2 0.6 [-3, -4, -4, -3, -2, -3, -4, -3, -3, -3] +betrayal -2.8 0.74833 [-3, -4, -4, -2, -3, -2, -3, -3, -2, -2] +betrayed -3.0 0.63246 [-2, -3, -3, -3, -4, -4, -3, -3, -2, -3] +betraying -2.5 0.67082 [-2, -2, -3, -2, -3, -2, -4, -2, -2, -3] +betrays -2.5 0.67082 [-2, -3, -3, -2, -2, -2, -4, -2, -3, -2] +better 1.9 0.7 [2, 1, 2, 1, 1, 3, 2, 2, 3, 2] +bias -0.4 1.11355 [-1, -2, 0, -2, -1, 1, -1, 1, 0, 1] +biased -1.1 0.83066 [-2, -2, -1, -1, -1, -1, -1, 1, -2, -1] +bitch -2.8 0.87178 [-1, -4, -2, -4, -3, -2, -3, -3, -3, -3] +bitched -2.6 1.0198 [-1, -3, -2, -3, -2, -1, -4, -3, -3, -4] +bitcheries -2.3 0.78102 [-2, -2, -2, -4, -2, -2, -3, -1, -3, -2] +bitchery -2.7 1.18743 [-2, -2, -4, -2, -4, -4, -1, -1, -3, -4] +bitches -2.9 0.9434 [-2, -1, -3, -3, -2, -4, -4, -3, -3, -4] +bitchier -2.0 0.63246 [-2, -3, -1, -2, -3, -1, -2, -2, -2, -2] +bitchiest -3.0 0.7746 [-2, -4, -2, -3, -4, -3, -3, -4, -2, -3] +bitchily -2.6 1.11355 [-4, -4, -2, -2, -1, -4, -1, -2, -3, -3] +bitchiness -2.6 0.66332 [-3, -3, -2, -2, -3, -3, -1, -3, -3, -3] +bitching -1.1 1.64012 [-2, 2, -2, -1, 2, -1, -2, -2, -3, -2] +bitchy -2.3 1.00499 [-4, -1, -2, -3, -3, -2, -1, -1, -3, -3] +bitter -1.8 0.4 [-2, -2, -2, -1, -2, -2, -1, -2, -2, -2] +bitterbrush -0.2 0.74833 [0, 0, 0, 0, -2, 1, 0, 0, -1, 0] +bitterbrushes -0.6 0.8 [-1, 0, -2, -1, -2, 0, 0, 0, 0, 0] +bittered -1.8 1.07703 [-1, -1, -3, -1, -2, -4, -2, 0, -2, -2] +bitterer -1.9 1.04403 [-1, -2, -3, -1, -1, -4, -3, -1, -2, -1] +bitterest -2.3 1.41774 [-4, -4, -2, -1, 1, -2, -3, -3, -2, -3] +bittering -1.2 0.87178 [0, 0, -1, -2, 0, -2, -1, -2, -2, -2] +bitterish -1.6 0.8 [0, -2, -1, -1, -2, -2, -2, -1, -3, -2] +bitterly -2.0 0.63246 [-2, -2, -1, -1, -2, -2, -3, -2, -2, -3] +bittern -0.2 0.6 [0, 0, -2, 0, 0, 0, 0, 0, 0, 0] +bitterness -1.7 0.45826 [-2, -2, -1, -2, -1, -2, -1, -2, -2, -2] +bitterns -0.4 1.11355 [0, 0, 0, -3, 0, 0, 0, 1, 0, -2] +bitterroots -0.2 0.4 [0, 0, 0, -1, -1, 0, 0, 0, 0, 0] +bitters -0.4 0.4899 [-1, -1, -1, 0, 0, 0, 0, -1, 0, 0] +bittersweet -0.3 0.64031 [0, -1, 0, 0, 0, 0, 0, 0, -2, 0] +bittersweetness -0.6 0.91652 [0, 0, 0, -2, 0, -2, 0, 0, -2, 0] +bittersweets -0.2 0.9798 [-2, 1, 0, 0, 0, -2, 0, 0, 0, 1] +bitterweeds -0.5 0.67082 [0, -2, 0, -1, -1, 0, 0, -1, 0, 0] +bizarre -1.3 1.00499 [-2, 0, 0, -2, 0, -1, -3, -2, -1, -2] +blah -0.4 1.49666 [-2, -1, -1, -1, -1, -1, -1, 3, 2, -1] +blam -0.2 1.16619 [-1, 0, 0, -1, -1, -2, -1, 1, 2, 1] +blamable -1.8 0.4 [-2, -2, -2, -2, -1, -1, -2, -2, -2, -2] +blamably -1.8 0.4 [-2, -2, -2, -2, -1, -1, -2, -2, -2, -2] +blame -1.4 1.42829 [-4, -2, -2, -1, -1, -1, -2, 2, -2, -1] +blamed -2.1 0.53852 [-2, -2, -2, -2, -3, -2, -2, -2, -3, -1] +blameful -1.7 0.45826 [-2, -2, -2, -2, -2, -2, -1, -1, -2, -1] +blamefully -1.6 0.66332 [-1, -2, -1, -1, -2, -1, -1, -2, -2, -3] +blameless 0.7 1.73494 [3, 1, 2, 3, -2, 1, -1, 1, 1, -2] +blamelessly 0.9 1.37477 [2, 0, 2, 0, 1, -1, 1, 4, 0, 0] +blamelessness 0.6 1.35647 [0, 2, 1, 2, 1, 0, 1, -3, 1, 1] +blamer -2.1 0.83066 [-2, -2, -1, -2, -3, -3, -3, -1, -1, -3] +blamers -2.0 0.63246 [-3, -2, -2, -3, -1, -2, -2, -1, -2, -2] +blames -1.7 0.45826 [-2, -2, -1, -2, -2, -2, -2, -1, -1, -2] +blameworthiness -1.6 0.66332 [-2, -2, -1, -2, -2, -1, -3, -1, -1, -1] +blameworthy -2.3 0.78102 [-3, -3, -2, -2, -2, -1, -1, -3, -3, -3] +blaming -2.2 0.6 [-2, -3, -1, -3, -2, -2, -3, -2, -2, -2] +bless 1.8 0.6 [3, 2, 2, 1, 2, 2, 1, 2, 2, 1] +blessed 2.9 0.3 [2, 3, 3, 3, 3, 3, 3, 3, 3, 3] +blesseder 2.0 0.63246 [3, 3, 2, 2, 1, 1, 2, 2, 2, 2] +blessedest 2.8 0.87178 [2, 4, 1, 4, 3, 3, 2, 3, 3, 3] +blessedly 1.7 1.1 [2, 2, 1, -1, 3, 2, 3, 1, 2, 2] +blessedness 1.6 1.35647 [2, 2, 2, 2, 2, 3, 3, -1, -1, 2] +blesser 2.6 0.66332 [1, 3, 2, 3, 3, 3, 2, 3, 3, 3] +blessers 1.9 0.7 [2, 2, 1, 2, 2, 2, 3, 1, 3, 1] +blesses 2.6 0.66332 [1, 3, 3, 3, 3, 3, 2, 3, 2, 3] +blessing 2.2 1.07703 [3, 1, 0, 3, 1, 3, 2, 3, 3, 3] +blessings 2.5 0.92195 [3, 3, 3, 2, 1, 3, 2, 3, 4, 1] +blind -1.7 1.00499 [-4, -1, -1, -2, -1, -1, -3, -2, -1, -1] +bliss 2.7 0.78102 [3, 3, 3, 2, 1, 2, 4, 3, 3, 3] +blissful 2.9 0.83066 [4, 4, 2, 3, 3, 3, 1, 3, 3, 3] +blithe 1.2 1.16619 [2, 2, -1, 1, 1, 2, 2, 2, -1, 2] +block -1.9 1.13578 [-3, -2, -1, -2, 0, 0, -3, -2, -3, -3] +blockbuster 2.9 0.9434 [3, 4, 3, 2, 3, 4, 3, 2, 1, 4] +blocked -1.1 1.13578 [-1, 0, 0, -1, -2, -1, -1, -4, -1, 0] +blocking -1.6 0.91652 [-1, -1, -1, -1, -2, -2, -4, -1, -2, -1] +blocks -0.9 1.13578 [-1, 0, -1, -2, -2, -2, -1, -1, 2, -1] +bloody -1.9 0.7 [-2, -2, -2, 0, -2, -2, -3, -2, -2, -2] +blurry -0.4 1.28062 [-1, -1, -1, -1, 2, -2, -1, 2, 0, -1] +bold 1.6 0.66332 [2, 2, 2, 2, 1, 2, 0, 2, 1, 2] +bolder 1.2 0.6 [2, 1, 1, 1, 1, 2, 1, 2, 0, 1] +boldest 1.6 1.11355 [1, 3, 2, 3, 0, 0, 2, 3, 1, 1] +boldface 0.3 0.64031 [1, 0, 0, 0, 0, 0, 0, 2, 0, 0] +boldfaced -0.1 1.22066 [0, 0, 0, 2, -1, -2, 2, -1, -1, 0] +boldfaces 0.1 1.3 [0, 0, 0, 2, -2, -2, 2, 1, 0, 0] +boldfacing 0.1 0.7 [0, 0, -1, 2, 0, 0, 0, 0, 0, 0] +boldly 1.5 1.62788 [3, -2, -1, 1, 2, 3, 2, 3, 2, 2] +boldness 1.5 1.0247 [0, 1, 3, 1, 2, 0, 3, 1, 2, 2] +boldnesses 0.9 0.83066 [0, 0, 1, 0, 2, 1, 1, 2, 0, 2] +bolds 1.3 0.78102 [2, 2, 1, 1, 0, 2, 0, 2, 1, 2] +bomb -2.2 0.87178 [-2, -2, -1, -3, -4, -3, -2, -1, -2, -2] +bonus 2.5 0.67082 [2, 2, 2, 3, 4, 3, 2, 2, 3, 2] +bonuses 2.6 0.91652 [2, 2, 3, 4, 3, 4, 3, 1, 2, 2] +boost 1.7 0.64031 [1, 1, 2, 2, 2, 3, 1, 1, 2, 2] +boosted 1.5 1.5 [-1, 1, 0, 2, 1, 2, 3, 3, 4, 0] +boosting 1.4 0.91652 [1, 1, 3, 0, 2, 2, 0, 2, 1, 2] +boosts 1.3 0.9 [1, 1, 1, 1, 3, 0, 1, 1, 3, 1] +bore -1.0 0.44721 [-1, -2, 0, -1, -1, -1, -1, -1, -1, -1] +boreal -0.3 0.9 [0, 0, 0, 0, 1, -2, 0, 0, -2, 0] +borecole -0.2 0.74833 [1, 0, 0, 0, -1, -2, 0, 0, 0, 0] +borecoles -0.3 0.45826 [-1, 0, 0, 0, 0, 0, -1, 0, -1, 0] +bored -1.1 0.9434 [-2, -1, -2, -1, 0, 0, -3, 0, -1, -1] +boredom -1.3 0.45826 [-1, -1, -1, -1, -2, -1, -1, -2, -2, -1] +boredoms -1.1 0.83066 [-1, -1, -1, -2, 1, -1, -2, -1, -1, -2] +boreen 0.1 0.3 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] +boreens 0.2 0.6 [0, 0, 0, 2, 0, 0, 0, 0, 0, 0] +boreholes -0.2 0.74833 [0, 0, 0, 0, 0, 1, -1, 0, -2, 0] +borer -0.4 0.4899 [0, -1, 0, 0, -1, -1, 0, 0, 0, -1] +borers -1.2 0.9798 [-1, 0, -2, -1, -1, -3, -2, 0, -2, 0] +bores -1.3 0.78102 [-2, -1, -2, -1, -1, -1, -3, 0, -1, -1] +borescopes -0.1 0.83066 [-1, 0, -1, 2, 0, 0, 0, 0, -1, 0] +boresome -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -1, -2, -1] +boring -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -1, -1, -2, -2] +bother -1.4 0.91652 [-1, -1, -1, -2, -3, -3, -1, -1, -1, 0] +botheration -1.7 0.64031 [-1, -1, -1, -2, -2, -1, -2, -2, -2, -3] +botherations -1.3 0.64031 [-2, -2, -2, -1, -2, 0, -1, -1, -1, -1] +bothered -1.3 0.45826 [-1, -1, -2, -1, -2, -1, -1, -1, -1, -2] +bothering -1.6 0.4899 [-2, -1, -2, -2, -1, -1, -1, -2, -2, -2] +bothers -0.8 0.9798 [-1, -2, -1, -1, 2, -1, -1, -1, -1, -1] +bothersome -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -2, -1, -1] +boycott -1.3 0.45826 [-2, -1, -1, -1, -1, -2, -1, -1, -2, -1] +boycotted -1.7 0.64031 [-1, -2, -2, -3, -1, -1, -2, -2, -2, -1] +boycotting -1.7 0.64031 [-2, -2, -2, 0, -2, -1, -2, -2, -2, -2] +boycotts -1.4 0.91652 [-2, -2, -2, -2, -1, -2, -1, 1, -1, -2] +brainwashing -1.5 1.28452 [-2, -2, -2, -3, -1, -2, 2, -1, -2, -2] +brave 2.4 0.8 [2, 3, 4, 3, 1, 3, 2, 2, 2, 2] +braved 1.9 0.83066 [3, 1, 3, 1, 1, 2, 3, 2, 2, 1] +bravely 2.3 0.78102 [1, 3, 2, 2, 2, 4, 2, 2, 2, 3] +braver 2.4 0.8 [3, 2, 2, 1, 4, 2, 3, 3, 2, 2] +braveries 2.0 1.0 [2, 4, 2, 3, 1, 1, 2, 3, 1, 1] +bravery 2.2 0.74833 [1, 2, 2, 2, 3, 2, 3, 3, 1, 3] +braves 1.9 0.83066 [3, 1, 3, 1, 2, 2, 3, 2, 1, 1] +bravest 2.3 0.64031 [1, 3, 3, 2, 3, 2, 3, 2, 2, 2] +breathtaking 2.0 1.26491 [3, 1, 3, 2, -1, 1, 2, 3, 3, 3] +bribe -0.8 1.98997 [-3, 0, -1, -2, -1, -2, -4, 1, 3, 1] +bright 1.9 0.7 [2, 2, 1, 2, 1, 2, 1, 3, 3, 2] +brighten 1.9 0.7 [2, 1, 1, 2, 3, 2, 1, 2, 2, 3] +brightened 2.1 0.83066 [2, 3, 1, 1, 2, 2, 3, 1, 3, 3] +brightener 1.0 1.18322 [0, 0, 0, 1, 0, 1, 2, 0, 3, 3] +brighteners 1.0 0.89443 [0, 1, 0, 1, 1, 3, 0, 1, 2, 1] +brightening 2.5 0.92195 [2, 3, 2, 1, 2, 3, 4, 4, 2, 2] +brightens 1.5 0.5 [2, 1, 1, 2, 2, 1, 2, 2, 1, 1] +brighter 1.6 0.66332 [1, 1, 1, 2, 2, 2, 1, 2, 1, 3] +brightest 3.0 0.63246 [3, 3, 2, 3, 4, 3, 2, 3, 4, 3] +brightly 1.5 0.67082 [2, 3, 1, 2, 1, 1, 2, 1, 1, 1] +brightness 1.6 0.91652 [2, 2, 1, 1, 1, 3, 3, 0, 2, 1] +brightnesses 1.4 0.91652 [2, 3, 1, 2, 1, 1, 0, 0, 2, 2] +brights 0.4 0.66332 [0, 0, 2, 0, 0, 1, 0, 0, 1, 0] +brightwork 1.1 0.83066 [1, 0, 1, 2, 1, 0, 3, 1, 1, 1] +brilliance 2.9 0.83066 [4, 3, 2, 4, 4, 3, 2, 3, 2, 2] +brilliances 2.9 0.83066 [3, 4, 3, 4, 4, 2, 3, 2, 2, 2] +brilliancies 2.3 1.18743 [1, 4, 1, 3, 3, 2, 1, 3, 4, 1] +brilliancy 2.6 1.0198 [4, 3, 2, 4, 2, 3, 1, 3, 1, 3] +brilliant 2.8 0.6 [2, 3, 3, 2, 3, 3, 4, 2, 3, 3] +brilliantine 0.8 1.16619 [-1, 3, 1, 0, 1, 0, 2, 0, 2, 0] +brilliantines 2.0 1.34164 [0, 1, 4, 2, 3, 1, 3, 0, 3, 3] +brilliantly 3.0 0.44721 [3, 2, 3, 3, 3, 3, 3, 3, 4, 3] +brilliants 1.9 0.83066 [3, 1, 2, 1, 2, 1, 3, 2, 1, 3] +brisk 0.6 0.8 [0, 0, 0, 0, 1, 1, 0, 2, 0, 2] +broke -1.8 0.4 [-2, -2, -2, -2, -1, -2, -2, -1, -2, -2] +broken -2.1 0.53852 [-2, -2, -2, -2, -3, -2, -1, -3, -2, -2] +brooding 0.1 1.3 [3, 0, -1, -1, -1, 1, 1, -1, 1, -1] +brutal -3.1 0.7 [-3, -3, -4, -2, -3, -4, -3, -4, -3, -2] +brutalise -2.7 1.1 [-4, -3, -3, -4, -3, -2, -2, -3, 0, -3] +brutalised -2.9 0.83066 [-3, -3, -2, -3, -3, -4, -4, -1, -3, -3] +brutalises -3.2 0.4 [-3, -3, -3, -3, -3, -4, -4, -3, -3, -3] +brutalising -2.8 0.74833 [-3, -3, -4, -3, -2, -3, -3, -3, -1, -3] +brutalities -2.6 1.0198 [-4, -2, -2, -4, -2, -4, -2, -3, -1, -2] +brutality -3.0 0.63246 [-2, -3, -4, -2, -3, -3, -3, -4, -3, -3] +brutalization -2.1 2.16564 [-3, -2, -4, -2, -4, -4, 2, -3, 2, -3] +brutalizations -2.3 0.64031 [-2, -2, -3, -2, -1, -3, -3, -2, -2, -3] +brutalize -2.9 0.7 [-3, -4, -3, -3, -2, -2, -3, -4, -2, -3] +brutalized -2.4 0.4899 [-3, -2, -2, -3, -2, -2, -3, -3, -2, -2] +brutalizes -3.2 0.6 [-4, -4, -3, -2, -3, -4, -3, -3, -3, -3] +brutalizing -3.4 0.66332 [-4, -3, -4, -3, -4, -4, -3, -4, -2, -3] +brutally -3.0 0.44721 [-3, -3, -3, -3, -3, -3, -3, -2, -3, -4] +bullied -3.1 0.9434 [-4, -4, -4, -2, -2, -4, -4, -3, -2, -2] +bullshit -2.8 0.6 [-3, -3, -3, -3, -3, -4, -2, -3, -2, -2] +bully -2.2 1.6 [-2, -3, -3, -4, -2, -1, 2, -3, -3, -3] +bullying -2.9 0.7 [-3, -2, -3, -2, -4, -2, -3, -3, -4, -3] +bummer -1.6 0.8 [-3, -1, -1, -1, -3, -1, -1, -2, -2, -1] +buoyant 0.9 0.83066 [0, 1, 1, 2, 1, 0, 0, 2, 0, 2] +burden -1.9 0.53852 [-2, -2, -1, -2, -3, -2, -1, -2, -2, -2] +burdened -1.7 0.45826 [-2, -2, -2, -2, -1, -2, -1, -2, -2, -1] +burdener -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -2, -1, -2, -1] +burdeners -1.7 1.00499 [-2, -2, -2, -1, -3, -2, 0, 0, -2, -3] +burdening -1.4 0.66332 [-2, -1, -2, -2, -1, -1, -1, 0, -2, -2] +burdens -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -1, -2, -2] +burdensome -1.8 0.9798 [-1, -1, -3, -2, -1, -2, -2, -1, -4, -1] +bwahaha 0.4 1.0198 [0, 1, 0, 1, 0, 2, -1, -1, 2, 0] +bwahahah 2.5 0.92195 [3, 4, 2, 2, 2, 3, 1, 2, 2, 4] +calm 1.3 0.78102 [1, 1, 0, 1, 2, 3, 2, 1, 1, 1] +calmative 1.1 0.9434 [3, 2, -1, 1, 1, 1, 1, 1, 1, 1] +calmatives 0.5 0.80623 [-1, 1, 0, 1, 0, 0, 1, 2, 0, 1] +calmed 1.6 0.4899 [2, 2, 2, 1, 1, 1, 2, 1, 2, 2] +calmer 1.5 0.67082 [1, 2, 3, 1, 1, 1, 2, 1, 2, 1] +calmest 1.6 0.8 [3, 2, 2, 2, 1, 1, 0, 2, 1, 2] +calming 1.7 0.78102 [2, 1, 3, 2, 2, 1, 3, 1, 1, 1] +calmly 1.3 0.9 [0, 0, 1, 3, 2, 2, 1, 1, 2, 1] +calmness 1.7 0.9 [1, 1, 1, 2, 2, 2, 1, 4, 1, 2] +calmnesses 1.6 0.4899 [1, 2, 1, 2, 1, 2, 2, 2, 1, 2] +calmodulin 0.2 0.4 [0, 0, 0, 0, 0, 0, 1, 0, 0, 1] +calms 1.3 0.64031 [2, 1, 1, 2, 0, 1, 1, 2, 2, 1] +can't stand -2.0 0.63246 [-2, -2, -2, -1, -1, -2, -3, -2, -2, -3] +cancel -1.0 0.63246 [-2, -1, -1, -1, -1, 0, -1, 0, -2, -1] +cancelled -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -1, -2, -1, -1] +cancelling -0.8 0.74833 [0, 0, -1, 0, -1, -1, 0, -2, -1, -2] +cancels -0.9 0.53852 [0, -1, 0, -1, -1, -1, -1, -1, -2, -1] +cancer -3.4 0.8 [-2, -4, -3, -4, -4, -2, -3, -4, -4, -4] +capable 1.6 0.4899 [1, 2, 2, 2, 1, 1, 2, 2, 1, 2] +captivated 1.6 0.4899 [2, 1, 2, 2, 2, 2, 1, 2, 1, 1] +care 2.2 0.74833 [2, 1, 2, 1, 2, 2, 3, 3, 3, 3] +cared 1.8 0.74833 [1, 2, 1, 3, 1, 2, 2, 2, 3, 1] +carefree 1.7 0.64031 [1, 1, 2, 2, 2, 2, 1, 1, 2, 3] +careful 0.6 1.11355 [3, 0, 0, 0, 1, 0, -1, 2, 1, 0] +carefully 0.5 0.67082 [1, 0, 1, 1, 0, 1, 0, 1, 1, -1] +carefulness 2.0 0.44721 [3, 2, 2, 1, 2, 2, 2, 2, 2, 2] +careless -1.5 0.5 [-2, -1, -1, -2, -2, -1, -2, -2, -1, -1] +carelessly -1.0 0.44721 [-1, -1, -1, -2, -1, 0, -1, -1, -1, -1] +carelessness -1.4 0.4899 [-2, -1, -1, -2, -1, -2, -1, -1, -2, -1] +carelessnesses -1.6 1.11355 [-4, -2, -2, -3, -1, 0, -1, -1, -1, -1] +cares 2.0 0.7746 [2, 3, 1, 3, 1, 2, 2, 2, 3, 1] +caring 2.2 0.4 [2, 3, 2, 2, 2, 2, 2, 3, 2, 2] +casual 0.8 0.74833 [1, 1, 0, 1, 0, 2, 0, 1, 2, 0] +casually 0.7 1.00499 [1, 0, 0, 0, 1, 0, 0, 3, 2, 0] +casualty -2.4 0.91652 [-4, -3, -3, -2, -1, -2, -3, -1, -2, -3] +catastrophe -3.4 0.4899 [-3, -3, -3, -4, -4, -3, -3, -3, -4, -4] +catastrophic -2.2 2.22711 [-3, -2, -4, -4, -4, -3, -2, -4, 2, 2] +cautious -0.4 0.66332 [0, 1, -1, 0, 0, 0, -1, -1, -1, -1] +celebrate 2.7 1.00499 [4, 4, 3, 2, 4, 2, 2, 2, 3, 1] +celebrated 2.7 0.78102 [2, 3, 3, 2, 3, 4, 3, 3, 1, 3] +celebrates 2.7 0.64031 [2, 3, 3, 2, 2, 3, 3, 3, 4, 2] +celebrating 2.7 0.64031 [3, 3, 4, 2, 2, 2, 3, 3, 2, 3] +censor -2.0 1.34164 [0, -3, -2, -3, -3, 0, -4, -1, -1, -3] +censored -0.6 1.68523 [-1, -1, -1, 2, -3, -2, -1, -1, -1, 3] +censors -1.2 1.07703 [-1, 0, -3, 0, -1, 0, -1, -2, -1, -3] +certain 1.1 0.7 [1, 0, 2, 0, 2, 2, 1, 1, 1, 1] +certainly 1.4 1.0198 [3, 2, 0, 1, 3, 1, 0, 1, 1, 2] +certainties 0.9 1.44568 [0, -2, 4, 0, 1, 1, 1, 1, 2, 1] +certainty 1.0 0.89443 [2, 1, 0, 1, 0, 0, 2, 2, 2, 0] +chagrin -1.9 0.53852 [-1, -2, -3, -2, -1, -2, -2, -2, -2, -2] +chagrined -1.4 1.2 [-1, -2, 2, -1, -2, -2, -2, -2, -2, -2] +challenge 0.3 1.00499 [1, 0, -1, 1, 1, -1, 1, 0, 2, -1] +challenged -0.4 1.62481 [0, -2, 1, -1, -3, -1, 3, -1, 1, -1] +challenger 0.5 1.43178 [0, 0, 2, -1, -2, 1, 3, 0, 2, 0] +challengers 0.4 1.56205 [0, -2, -1, 1, 1, 2, 3, 2, -1, -1] +challenges 0.3 1.48661 [0, -1, 2, -1, -2, 0, 3, 0, 2, 0] +challenging 0.6 0.91652 [0, 0, 0, 1, 1, -1, 0, 2, 2, 1] +challengingly -0.6 1.68523 [0, -1, -2, 1, -3, 2, -2, -1, 2, -2] +champ 2.1 0.83066 [2, 2, 2, 3, 2, 3, 2, 0, 3, 2] +champac -0.2 0.6 [0, 0, -2, 0, 0, 0, 0, 0, 0, 0] +champagne 1.2 1.07703 [1, 2, 2, 3, 0, 2, 0, 0, 2, 0] +champagnes 0.5 0.92195 [0, 0, 0, 0, 0, 1, 1, 3, 0, 0] +champaign 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] +champaigns 0.5 0.67082 [1, 0, 0, 0, 0, 0, 0, 1, 2, 1] +champaks -0.2 0.6 [0, 0, 0, 0, 0, 0, -2, 0, 0, 0] +champed 1.0 0.63246 [1, 1, 2, 1, 1, 2, 1, 0, 0, 1] +champer -0.1 0.53852 [0, -1, 1, 0, 0, 0, 0, -1, 0, 0] +champers 0.5 0.67082 [1, 0, 0, 0, 0, 0, 0, 1, 1, 2] +champerties -0.1 0.83066 [0, -1, 1, 1, 0, 0, 0, 0, -2, 0] +champertous 0.3 0.78102 [0, 0, 0, 1, -1, 2, 1, 0, 0, 0] +champerty -0.2 1.32665 [-2, -1, 0, -1, 0, 0, 0, -2, 2, 2] +champignon 0.4 0.8 [0, 0, 0, 0, 0, 2, 0, 2, 0, 0] +champignons 0.2 0.6 [0, 2, 0, 0, 0, 0, 0, 0, 0, 0] +champing 0.7 1.34536 [0, 2, 0, 3, 1, 1, 2, 0, -2, 0] +champion 2.9 0.83066 [3, 2, 3, 4, 4, 3, 2, 2, 4, 2] +championed 1.2 1.53623 [2, 1, 3, 1, 1, -3, 2, 2, 1, 2] +championing 1.8 0.9798 [1, 3, 2, 0, 3, 1, 2, 2, 1, 3] +champions 2.4 1.42829 [4, 0, 0, 3, 1, 3, 4, 3, 3, 3] +championship 1.9 1.04403 [3, 1, 1, 3, 2, 1, 3, 3, 0, 2] +championships 2.2 0.74833 [2, 2, 1, 2, 3, 2, 4, 2, 2, 2] +champs 1.8 0.4 [2, 2, 2, 2, 1, 2, 1, 2, 2, 2] +champy 1.0 1.0 [3, 0, 0, 0, 0, 2, 1, 2, 1, 1] +chance 1.0 0.7746 [1, 1, 0, 0, 0, 2, 1, 2, 1, 2] +chances 0.8 0.4 [0, 1, 1, 0, 1, 1, 1, 1, 1, 1] +chaos -2.7 0.9 [-2, -2, -3, -1, -4, -3, -3, -2, -3, -4] +chaotic -2.2 1.4 [-3, -2, -1, -2, -3, 1, -2, -2, -4, -4] +charged -0.8 0.87178 [-1, -2, -2, -1, -1, 0, -1, 1, 0, -1] +charges -1.1 0.7 [-2, -2, -2, -1, -1, 0, -1, -1, 0, -1] +charitable 1.7 0.64031 [1, 2, 1, 2, 2, 1, 2, 1, 3, 2] +charitableness 1.9 0.9434 [3, 1, 1, 3, 1, 3, 3, 2, 1, 1] +charitablenesses 1.6 1.74356 [2, 2, 3, 4, 1, -1, -2, 3, 2, 2] +charitably 1.4 0.66332 [1, 2, 1, 2, 2, 1, 0, 1, 2, 2] +charities 2.2 0.6 [3, 3, 2, 2, 1, 2, 2, 3, 2, 2] +charity 1.8 0.87178 [1, 3, 2, 2, 2, 1, 2, 0, 2, 3] +charm 1.7 0.78102 [3, 1, 1, 3, 2, 2, 1, 1, 1, 2] +charmed 2.0 0.63246 [3, 1, 2, 2, 2, 3, 1, 2, 2, 2] +charmer 1.9 0.53852 [3, 2, 2, 2, 2, 2, 1, 1, 2, 2] +charmers 2.1 0.83066 [2, 1, 2, 2, 4, 3, 2, 1, 2, 2] +charmeuse 0.3 0.78102 [0, 0, 0, 1, 0, 2, 1, 0, -1, 0] +charmeuses 0.4 0.66332 [0, 0, 1, 0, 1, 0, 0, 0, 0, 2] +charming 2.8 0.4 [3, 3, 3, 3, 3, 3, 2, 3, 2, 3] +charminger 1.5 0.67082 [2, 3, 1, 2, 1, 1, 2, 1, 1, 1] +charmingest 2.4 0.66332 [2, 3, 3, 1, 3, 2, 3, 3, 2, 2] +charmingly 2.2 0.87178 [2, 2, 2, 1, 2, 2, 3, 3, 4, 1] +charmless -1.8 0.87178 [-3, -1, -3, -1, -1, -1, -2, -1, -3, -2] +charms 1.9 0.7 [1, 2, 3, 2, 1, 2, 3, 1, 2, 2] +chastise -2.5 0.92195 [-4, -3, -2, -1, -4, -3, -2, -2, -2, -2] +chastised -2.2 1.16619 [-2, -3, -2, -4, -1, -1, -3, 0, -3, -3] +chastises -1.7 1.61555 [-3, -3, -3, -1, 1, -2, 1, -1, -2, -4] +chastising -1.7 0.78102 [-2, -3, -2, -2, -2, 0, -1, -1, -2, -2] +cheat -2.0 0.7746 [-2, -3, -3, -2, -2, -1, -1, -1, -2, -3] +cheated -2.3 0.64031 [-2, -4, -2, -2, -2, -2, -3, -2, -2, -2] +cheater -2.5 0.67082 [-2, -4, -2, -3, -2, -2, -3, -2, -3, -2] +cheaters -1.9 0.83066 [-2, -2, -2, -1, -1, -4, -2, -1, -2, -2] +cheating -2.6 0.91652 [-2, -3, -3, -2, -4, -4, -3, -2, -1, -2] +cheats -1.8 0.6 [-3, -1, -2, -1, -2, -1, -2, -2, -2, -2] +cheer 2.3 0.64031 [2, 1, 2, 2, 2, 3, 3, 3, 2, 3] +cheered 2.3 0.78102 [2, 3, 3, 4, 2, 1, 2, 2, 2, 2] +cheerer 1.7 0.45826 [1, 2, 2, 2, 1, 1, 2, 2, 2, 2] +cheerers 1.8 0.87178 [2, 2, 3, 2, 1, 2, 0, 1, 3, 2] +cheerful 2.5 0.67082 [3, 2, 3, 2, 2, 2, 4, 2, 3, 2] +cheerfuller 1.9 0.83066 [3, 3, 2, 3, 2, 1, 1, 2, 1, 1] +cheerfullest 3.2 0.87178 [4, 4, 4, 4, 3, 2, 2, 3, 2, 4] +cheerfully 2.1 0.83066 [3, 2, 2, 2, 1, 3, 1, 3, 1, 3] +cheerfulness 2.1 0.9434 [3, 2, 1, 2, 3, 4, 1, 2, 1, 2] +cheerier 2.6 0.4899 [2, 2, 3, 3, 2, 3, 3, 2, 3, 3] +cheeriest 2.2 0.6 [3, 2, 3, 1, 2, 2, 3, 2, 2, 2] +cheerily 2.5 0.67082 [3, 3, 2, 3, 2, 4, 2, 2, 2, 2] +cheeriness 2.5 0.67082 [3, 2, 4, 2, 3, 2, 3, 2, 2, 2] +cheering 2.3 0.64031 [3, 3, 2, 1, 3, 2, 2, 2, 3, 2] +cheerio 1.2 0.6 [2, 1, 1, 1, 2, 1, 1, 1, 2, 0] +cheerlead 1.7 0.78102 [1, 2, 0, 2, 2, 2, 2, 3, 1, 2] +cheerleader 0.9 0.9434 [1, 1, 0, 2, 1, 0, 0, 1, 0, 3] +cheerleaders 1.2 1.07703 [2, 0, 0, 1, 1, 0, 3, 3, 1, 1] +cheerleading 1.2 1.07703 [2, 2, 0, 0, 1, 0, 3, 2, 0, 2] +cheerleads 1.2 1.07703 [2, 3, 0, 3, 1, 0, 0, 1, 1, 1] +cheerled 1.5 1.11803 [0, 2, 1, 4, 2, 2, 2, 1, 1, 0] +cheerless -1.7 1.1 [-2, -3, -2, -2, -3, -2, -1, -1, 1, -2] +cheerlessly -0.8 1.98997 [-2, 4, -1, -2, -1, -2, -2, -2, 2, -2] +cheerlessness -1.7 1.48661 [-2, -1, -2, -3, -2, -4, -1, 2, -2, -2] +cheerly 2.4 0.66332 [2, 2, 3, 2, 2, 3, 4, 2, 2, 2] +cheers 2.1 1.3 [2, 2, 1, 3, 2, 3, 3, 4, -1, 2] +cheery 2.6 0.66332 [3, 2, 2, 3, 2, 3, 4, 2, 3, 2] +cherish 1.6 1.49666 [0, 3, 3, 3, 2, 2, 2, 1, -2, 2] +cherishable 2.0 1.41421 [-2, 2, 2, 2, 3, 2, 3, 3, 2, 3] +cherished 2.3 0.64031 [3, 2, 2, 3, 2, 2, 1, 3, 2, 3] +cherisher 2.2 0.4 [2, 2, 3, 2, 2, 2, 2, 3, 2, 2] +cherishers 1.9 0.7 [3, 3, 2, 2, 1, 1, 2, 2, 2, 1] +cherishes 2.2 0.74833 [2, 2, 3, 2, 2, 2, 2, 4, 2, 1] +cherishing 2.0 0.7746 [3, 3, 2, 2, 1, 2, 1, 3, 2, 1] +chic 1.1 1.3 [1, 2, 2, -2, 2, 0, 1, 1, 3, 1] +childish -1.2 0.74833 [-1, -1, -2, -3, -1, 0, -1, -1, -1, -1] +chilling -0.1 1.92094 [3, -2, 0, 1, -2, -2, -1, -2, 1, 3] +choke -2.5 0.92195 [-1, -2, -3, -3, -2, -4, -2, -4, -2, -2] +choked -2.1 1.3 [-4, -3, 0, -2, -1, -3, -3, -2, 0, -3] +chokes -2.0 0.89443 [-4, -3, -1, -2, -1, -2, -2, -2, -1, -2] +choking -2.0 1.26491 [-4, -2, -2, -3, -2, -2, -3, -1, 1, -2] +chuckle 1.7 0.45826 [2, 1, 2, 2, 2, 2, 1, 1, 2, 2] +chuckled 1.2 0.9798 [2, 2, 1, 1, 2, 0, 1, 2, -1, 2] +chucklehead -1.9 0.53852 [-2, -2, -1, -3, -2, -2, -2, -2, -1, -2] +chuckleheaded -1.3 1.84662 [-3, -4, -2, 0, 3, -1, -2, 0, -2, -2] +chuckleheads -1.1 0.9434 [-1, -2, 0, -1, -1, -3, 0, 0, -2, -1] +chuckler 0.8 1.07703 [2, 1, -1, 0, 2, 1, 1, 2, -1, 1] +chucklers 1.2 0.87178 [1, 1, 2, 3, 1, 0, 1, 0, 2, 1] +chuckles 1.1 1.13578 [2, 2, -1, 1, 2, 1, 1, 2, -1, 2] +chucklesome 1.1 0.53852 [1, 1, 2, 1, 1, 1, 0, 2, 1, 1] +chuckling 1.4 0.4899 [1, 2, 1, 2, 1, 1, 2, 2, 1, 1] +chucklingly 1.2 0.4 [1, 1, 1, 1, 2, 1, 1, 1, 2, 1] +clarifies 0.9 1.13578 [-2, 1, 0, 2, 1, 2, 2, 1, 1, 1] +clarity 1.7 0.78102 [2, 1, 2, 3, 3, 1, 1, 2, 1, 1] +classy 1.9 0.53852 [1, 2, 2, 1, 3, 2, 2, 2, 2, 2] +clean 1.7 0.78102 [3, 1, 2, 1, 2, 1, 3, 2, 1, 1] +cleaner 0.7 0.78102 [1, 0, 1, 0, 0, 0, 2, 1, 2, 0] +clear 1.6 1.2 [2, 1, 1, 0, 3, 1, 2, 4, 2, 0] +cleared 0.4 0.4899 [0, 0, 1, 1, 0, 0, 0, 0, 1, 1] +clearly 1.7 0.78102 [2, 2, 2, 2, 1, 2, 0, 2, 1, 3] +clears 0.3 0.78102 [0, 1, 0, 0, 0, -1, 1, 2, 0, 0] +clever 2.0 0.7746 [2, 1, 2, 2, 2, 1, 3, 1, 3, 3] +cleverer 2.0 0.44721 [2, 2, 2, 3, 2, 2, 1, 2, 2, 2] +cleverest 2.6 0.91652 [4, 3, 2, 2, 4, 3, 2, 1, 2, 3] +cleverish 1.0 1.18322 [1, 1, 1, 1, 1, 1, 2, 1, -2, 3] +cleverly 2.3 0.45826 [2, 3, 2, 2, 2, 3, 2, 2, 3, 2] +cleverness 2.3 0.9 [2, 4, 2, 2, 1, 3, 3, 3, 1, 2] +clevernesses 1.4 0.66332 [1, 1, 1, 2, 2, 2, 2, 0, 2, 1] +clouded -0.2 0.9798 [-2, 0, 2, 0, 0, -1, 0, -1, 0, 0] +clueless -1.5 0.5 [-1, -2, -1, -2, -2, -1, -1, -1, -2, -2] +cock -0.6 1.49666 [0, 0, -4, 0, 0, 1, 0, -3, 0, 0] +cocksucker -3.1 0.83066 [-3, -4, -2, -2, -4, -4, -4, -2, -3, -3] +cocksuckers -2.6 1.42829 [-4, -3, -4, -3, -3, 1, -3, -1, -3, -3] +cocky -0.5 1.0247 [2, 0, -1, 0, -1, -2, 0, -1, -1, -1] +coerced -1.5 0.67082 [-1, -2, -2, -2, -1, 0, -1, -2, -2, -2] +collapse -2.2 0.87178 [-3, -1, -2, -4, -3, -2, -2, -2, -1, -2] +collapsed -1.1 1.64012 [-1, -2, -2, -1, -2, -2, 2, 2, -3, -2] +collapses -1.2 0.87178 [-2, -1, -2, 0, -2, 0, 0, -2, -1, -2] +collapsing -1.2 0.6 [-1, -1, -2, -2, -2, -1, 0, -1, -1, -1] +collide -0.3 1.61555 [-3, 0, -1, 3, 0, -1, -1, 2, -1, -1] +collides -1.1 1.22066 [-2, -2, -1, -1, 0, -2, 2, -2, -1, -2] +colliding -0.5 1.36015 [-2, 2, -1, -1, 0, -1, -2, 2, -1, -1] +collision -1.5 0.67082 [-1, -1, -2, -1, -2, -1, -1, -3, -2, -1] +collisions -1.1 0.7 [0, -2, -1, 0, -1, -1, -2, -2, -1, -1] +colluding -1.2 1.32665 [-1, -1, -2, -2, 0, -3, 2, -2, -1, -2] +combat -1.4 1.0198 [0, -2, 0, -2, -2, -2, -1, -3, 0, -2] +combats -0.8 1.16619 [0, -2, -3, -1, 0, 0, 0, -1, 1, -2] +comedian 1.6 1.0198 [1, 0, 2, 3, 2, 0, 3, 1, 2, 2] +comedians 1.2 1.16619 [0, 0, 0, 2, 3, 1, 3, 2, 0, 1] +comedic 1.7 0.64031 [2, 1, 1, 3, 1, 2, 2, 2, 1, 2] +comedically 2.1 0.7 [3, 2, 2, 1, 2, 3, 3, 2, 1, 2] +comedienne 0.6 0.66332 [0, 2, 1, 0, 1, 1, 0, 1, 0, 0] +comediennes 1.6 1.11355 [2, 1, 3, 0, 0, 3, 1, 1, 2, 3] +comedies 1.7 1.00499 [0, 2, 1, 3, 3, 3, 1, 1, 2, 1] +comedo 0.3 0.9 [0, 0, 0, 0, -1, 0, 2, 0, 2, 0] +comedones -0.8 0.9798 [0, 0, 0, -1, 0, -3, 0, -1, -1, -2] +comedown -0.8 1.07703 [-1, -1, -1, 0, -2, -1, 2, -1, -2, -1] +comedowns -0.9 0.53852 [-1, -1, -1, -1, 0, -2, 0, -1, -1, -1] +comedy 1.5 0.67082 [1, 1, 2, 1, 3, 2, 1, 1, 2, 1] +comfort 1.5 0.67082 [1, 3, 1, 2, 1, 1, 2, 1, 1, 2] +comfortable 2.3 0.64031 [1, 2, 3, 2, 2, 3, 3, 3, 2, 2] +comfortableness 1.3 1.48661 [4, 2, 2, 3, 1, 1, 1, -1, -1, 1] +comfortably 1.8 0.74833 [1, 2, 2, 1, 3, 3, 1, 2, 1, 2] +comforted 1.8 0.6 [2, 2, 2, 0, 2, 2, 2, 2, 2, 2] +comforter 1.9 0.53852 [2, 3, 2, 2, 2, 1, 2, 2, 2, 1] +comforters 1.2 0.6 [2, 1, 0, 2, 1, 1, 2, 1, 1, 1] +comforting 1.7 0.64031 [1, 2, 1, 1, 2, 2, 2, 3, 2, 1] +comfortingly 1.7 0.45826 [1, 2, 1, 2, 2, 1, 2, 2, 2, 2] +comfortless -1.8 0.6 [-3, -2, -1, -2, -1, -2, -1, -2, -2, -2] +comforts 2.1 0.7 [3, 1, 3, 1, 2, 2, 3, 2, 2, 2] +commend 1.9 0.7 [1, 2, 2, 1, 2, 1, 2, 3, 2, 3] +commended 1.9 0.9434 [1, 3, 2, 3, 2, 2, 0, 1, 3, 2] +commit 1.2 0.87178 [1, 0, 2, 2, 0, 0, 2, 2, 1, 2] +commitment 1.6 0.91652 [3, 1, 2, 0, 3, 1, 2, 1, 2, 1] +commitments 0.5 0.92195 [1, 3, 0, 0, 0, 0, 0, 0, 0, 1] +commits 0.1 1.13578 [0, -1, 0, 2, 1, -1, 1, 1, -2, 0] +committed 1.1 0.7 [0, 1, 1, 2, 0, 2, 1, 1, 2, 1] +committing 0.3 1.18743 [0, 1, 0, 3, 0, -2, 1, 0, 0, 0] +compassion 2.0 0.7746 [3, 2, 1, 1, 2, 1, 3, 2, 2, 3] +compassionate 2.2 0.87178 [0, 3, 3, 2, 2, 3, 3, 2, 2, 2] +compassionated 1.6 0.66332 [3, 1, 2, 2, 1, 2, 2, 1, 1, 1] +compassionately 1.7 1.41774 [1, 3, 3, 2, 1, 2, 3, 2, -2, 2] +compassionateness 0.9 1.37477 [-3, 2, 2, 1, 1, 1, 2, 1, 1, 1] +compassionates 1.6 0.4899 [2, 1, 2, 2, 1, 2, 2, 1, 1, 2] +compassionating 1.6 0.91652 [3, 0, 2, 1, 3, 1, 2, 1, 2, 1] +compassionless -2.6 0.8 [-3, -2, -2, -3, -4, -3, -1, -2, -3, -3] +compelled 0.2 1.07703 [-1, 0, 0, 0, 1, 2, -1, -1, 2, 0] +compelling 0.9 0.94339 [1, 1, 1, 0, 1, 2, 2, -1, 2, 0] +competent 1.3 0.78102 [1, 3, 1, 1, 2, 1, 1, 0, 2, 1] +competitive 0.7 0.9 [0, 2, 0, 2, 0, 1, 0, 0, 0, 2] +complacent -0.3 1.1 [2, -1, -1, 1, -1, -1, -1, 1, -1, -1] +complain -1.5 0.67082 [-1, -1, -1, -2, -1, -2, -3, -2, -1, -1] +complainant -0.7 0.78102 [0, 0, -1, 0, 0, -2, 0, -1, -2, -1] +complainants -1.1 1.3 [-2, -1, 0, -2, -3, -2, -1, 1, -2, 1] +complained -1.7 0.64031 [-1, -3, -2, -2, -1, -1, -2, -2, -1, -2] +complainer -1.8 0.4 [-2, -2, -2, -2, -1, -2, -2, -2, -1, -2] +complainers -1.3 1.00499 [-2, -1, -1, -2, -3, 1, -1, -1, -2, -1] +complaining -0.8 1.249 [-2, -1, -1, -1, -2, -1, -1, 2, 1, -2] +complainingly -1.7 0.64031 [-1, -2, -1, -2, -1, -2, -1, -2, -3, -2] +complains -1.6 0.66332 [-1, -2, -1, -2, -2, -3, -1, -1, -1, -2] +complaint -1.2 1.249 [-1, -1, -2, -2, -1, -3, -1, -1, 2, -2] +complaints -1.7 0.45826 [-2, -2, -2, -1, -2, -2, -2, -1, -1, -2] +compliment 2.1 0.7 [2, 2, 3, 1, 2, 3, 3, 1, 2, 2] +complimentarily 1.7 0.45826 [2, 2, 2, 2, 1, 1, 2, 1, 2, 2] +complimentary 1.9 0.7 [1, 2, 2, 1, 2, 1, 2, 3, 3, 2] +complimented 1.8 1.4 [3, 2, 2, 2, 3, 2, -2, 3, 1, 2] +complimenting 2.3 0.64031 [2, 2, 1, 3, 3, 2, 2, 3, 3, 2] +compliments 1.7 0.45826 [2, 1, 2, 2, 1, 2, 2, 1, 2, 2] +comprehensive 1.0 0.63246 [1, 1, 1, 0, 2, 2, 1, 0, 1, 1] +conciliate 1.0 1.18322 [2, 1, 1, 0, 2, 2, -2, 2, 1, 1] +conciliated 1.1 0.9434 [1, 3, 0, 0, 2, 0, 2, 1, 1, 1] +conciliates 1.1 0.9434 [1, 3, 0, 0, 2, 0, 2, 1, 1, 1] +conciliating 1.3 0.78102 [2, 2, 1, 1, 2, 0, 2, 1, 2, 0] +condemn -1.6 1.0198 [-2, -2, -1, -2, -2, 1, -2, -3, -1, -2] +condemnation -2.8 0.9798 [-3, -4, -2, -4, -2, -4, -2, -1, -3, -3] +condemned -1.9 1.81384 [2, -2, -2, -3, -2, -3, -3, -4, 1, -3] +condemns -2.3 0.64031 [-2, -2, -3, -3, -3, -2, -2, -3, -1, -2] +confidence 2.3 0.64031 [3, 3, 3, 3, 1, 2, 2, 2, 2, 2] +confident 2.2 0.87178 [1, 3, 3, 2, 3, 1, 3, 2, 1, 3] +confidently 2.1 0.53852 [2, 2, 3, 1, 2, 2, 2, 2, 3, 2] +conflict -1.3 0.45826 [-2, -2, -1, -2, -1, -1, -1, -1, -1, -1] +conflicting -1.7 0.64031 [-1, -2, -3, -1, -2, -1, -2, -1, -2, -2] +conflictive -1.8 0.6 [-2, -2, -2, -2, -1, -1, -3, -2, -1, -2] +conflicts -1.6 0.8 [-1, -1, -1, -2, -1, -1, -3, -2, -1, -3] +confront -0.7 0.78102 [0, -1, -1, 0, 1, -1, -1, -2, -1, -1] +confrontation -1.3 1.55242 [-3, -2, -3, -2, -1, -2, 1, 2, -1, -2] +confrontational -1.6 0.66332 [-1, -2, -1, -2, -1, -2, -1, -2, -3, -1] +confrontationist -1.0 1.34164 [-1, -2, -2, 2, 1, -1, -2, -1, -2, -2] +confrontationists -1.2 1.46969 [-2, -3, -1, -2, 2, 1, -1, -2, -2, -2] +confrontations -1.5 1.0247 [-1, -3, -2, -1, -3, 0, -2, -2, 0, -1] +confronted -0.8 0.74833 [-1, -2, -1, -1, -1, -1, -1, -1, 1, 0] +confronter -0.3 1.1 [0, -2, 1, -2, 0, -1, -1, 0, 1, 1] +confronters -1.3 1.26886 [-3, -2, -2, -2, -1, -2, 1, 1, -1, -2] +confronting -0.6 1.11355 [-2, -1, -1, 0, -2, 2, -1, 0, 0, -1] +confronts -0.9 0.53852 [-1, -1, -1, -1, 0, -1, 0, -1, -2, -1] +confuse -0.9 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, 0, -1] +confused -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -1, -2, -2] +confusedly -0.6 1.42829 [-3, -1, -1, 1, -1, -1, -2, 2, 1, -1] +confusedness -1.5 0.67082 [-3, -1, -1, -2, -1, -2, -2, -1, -1, -1] +confuses -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -1, -2, -2] +confusing -0.9 0.7 [-1, -1, -1, -2, -1, -1, 1, -1, -1, -1] +confusingly -1.4 0.66332 [-1, -1, -1, -1, -3, -1, -2, -1, -1, -2] +confusion -1.2 0.6 [-1, -1, -1, -1, -1, -2, 0, -1, -2, -2] +confusional -1.2 0.6 [-2, -2, 0, -1, -2, -1, -1, -1, -1, -1] +confusions -0.9 1.04403 [-1, -2, -1, -1, -1, 2, -2, -1, -1, -1] +congrats 2.4 0.91652 [1, 3, 3, 3, 2, 2, 4, 1, 2, 3] +congratulate 2.2 1.249 [3, 3, 2, 3, -1, 2, 1, 3, 3, 3] +congratulation 2.9 0.9434 [3, 3, 3, 2, 4, 2, 4, 3, 4, 1] +congratulations 2.9 0.53852 [2, 3, 3, 3, 3, 3, 3, 3, 4, 2] +consent 0.9 0.7 [0, 0, 1, 1, 1, 2, 1, 2, 0, 1] +consents 1.0 0.63246 [0, 2, 1, 0, 1, 1, 1, 2, 1, 1] +considerate 1.9 1.22066 [2, -1, 3, 2, 2, 2, 4, 1, 2, 2] +consolable 1.1 0.53852 [1, 1, 2, 1, 0, 1, 1, 1, 2, 1] +conspiracy -2.4 0.66332 [-2, -2, -3, -3, -2, -2, -4, -2, -2, -2] +constrained -0.4 1.0198 [-1, 0, -1, -1, -1, -1, 2, -1, 1, -1] +contagion -2.0 1.18322 [-1, 0, -2, -1, -2, -4, -2, -4, -2, -2] +contagions -1.5 0.92195 [-2, -2, -2, -2, 1, -2, -1, -1, -2, -2] +contagious -1.4 0.91652 [-2, -2, -2, 0, -1, -1, -2, 0, -1, -3] +contempt -2.8 0.6 [-3, -3, -4, -2, -3, -2, -3, -3, -2, -3] +contemptibilities -2.0 1.09545 [-2, 1, -2, -2, -3, -3, -3, -2, -2, -2] +contemptibility -0.9 1.51327 [-2, -1, -3, -1, 0, -3, -1, 1, 2, -1] +contemptible -1.6 1.68523 [-2, -2, -3, -3, -2, -3, -1, -3, 1, 2] +contemptibleness -1.9 0.7 [-2, -2, -1, -2, -2, -1, -1, -2, -3, -3] +contemptibly -1.4 1.49666 [-3, 0, -2, -3, -2, -2, -1, -3, 1, 1] +contempts -1.0 1.48324 [-2, -2, -1, 0, 1, -1, -2, -3, 2, -2] +contemptuous -2.2 1.83303 [-2, -3, -4, -2, -3, -3, 3, -2, -3, -3] +contemptuously -2.4 0.8 [-1, -3, -2, -3, -3, -2, -1, -3, -3, -3] +contemptuousness -1.1 1.57797 [-3, -1, -2, 3, -2, 0, -1, -1, -2, -2] +contend 0.2 1.07703 [0, 0, 1, 1, -2, 1, -1, 0, 2, 0] +contender 0.5 1.0247 [1, 3, -1, 0, 0, 1, 0, 1, 0, 0] +contented 1.4 1.56205 [1, 1, 3, 2, 2, 2, -3, 2, 2, 2] +contentedly 1.9 0.9434 [3, 1, 2, 3, 2, 3, 0, 2, 1, 2] +contentedness 1.4 0.4899 [1, 2, 1, 1, 2, 2, 2, 1, 1, 1] +contentious -1.2 1.4 [-2, -2, -2, -2, -2, -2, -1, 2, 1, -2] +contentment 1.5 1.74642 [2, 1, 3, 2, 2, 1, 2, 4, 1, -3] +contestable 0.6 1.0198 [2, -1, 1, 0, 1, -1, 1, 1, 2, 0] +contradict -1.3 0.78102 [-2, -1, -1, 0, -2, 0, -1, -2, -2, -2] +contradictable -1.0 0.63246 [-1, -1, -2, 0, -1, -1, 0, -1, -1, -2] +contradicted -1.3 0.45826 [-1, -1, -1, -1, -2, -1, -2, -1, -1, -2] +contradicting -1.3 0.9 [-2, -2, -2, -1, -2, -1, 1, -1, -1, -2] +contradiction -1.0 0.89443 [-1, 0, 0, -1, 0, -3, -2, -1, -1, -1] +contradictions -1.3 0.78102 [0, -2, -1, -2, -1, -2, -1, 0, -2, -2] +contradictious -1.9 1.04403 [-2, -3, 0, -3, -3, -1, -2, -1, -1, -3] +contradictor -1.0 0.63246 [-1, -1, -1, -2, -1, -2, 0, 0, -1, -1] +contradictories -0.5 1.11803 [-1, 0, -1, -2, 2, 1, -1, -1, -1, -1] +contradictorily -0.9 1.3 [0, -1, -1, -1, -3, -1, 1, 1, -3, -1] +contradictoriness -1.4 0.4899 [-2, -1, -1, -1, -2, -1, -1, -2, -2, -1] +contradictors -1.6 0.66332 [-1, -2, -1, -2, -1, -1, -3, -1, -2, -2] +contradictory -1.4 0.4899 [-1, -2, -1, -2, -1, -1, -1, -1, -2, -2] +contradicts -1.4 0.66332 [-1, -2, -1, -2, -2, -2, 0, -1, -1, -2] +controversial -0.8 0.87178 [0, 0, -1, 1, -2, -1, -1, -1, -1, -2] +controversially -1.1 1.04403 [0, -1, -1, -2, -1, -2, -1, 1, -3, -1] +convince 1.0 0.89443 [-1, 2, 2, 1, 1, 0, 1, 1, 2, 1] +convinced 1.7 0.64031 [2, 1, 1, 2, 1, 2, 2, 2, 1, 3] +convincer 0.6 0.66332 [2, 0, 1, 0, 1, 1, 0, 0, 0, 1] +convincers 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 0, 0, 2] +convinces 0.7 0.78102 [1, 0, 2, 0, 1, 0, 0, 0, 1, 2] +convincing 1.7 0.9 [2, 2, 0, 3, 3, 1, 1, 2, 2, 1] +convincingly 1.6 0.66332 [3, 2, 1, 1, 1, 2, 2, 1, 2, 1] +convincingness 0.7 1.34536 [0, 0, 0, 1, -2, 2, 0, 3, 1, 2] +convivial 1.2 1.16619 [1, 2, -2, 2, 1, 2, 2, 1, 2, 1] +cool 1.3 0.64031 [1, 1, 2, 1, 1, 1, 2, 2, 2, 0] +cornered -1.1 0.83066 [-1, -1, -3, -1, 0, -1, 0, -1, -2, -1] +corpse -2.7 1.18743 [-3, -4, 0, -4, -3, -3, -3, -1, -3, -3] +costly -0.4 1.0198 [-1, 0, -1, -1, 2, -1, -1, 1, -1, -1] +courage 2.2 0.74833 [2, 3, 1, 2, 3, 2, 3, 3, 1, 2] +courageous 2.4 0.4899 [2, 3, 3, 3, 3, 2, 2, 2, 2, 2] +courageously 2.3 0.78102 [3, 3, 3, 1, 3, 3, 2, 2, 2, 1] +courageousness 2.1 0.7 [3, 3, 1, 2, 1, 2, 2, 2, 3, 2] +courteous 2.3 0.45826 [2, 2, 2, 3, 3, 2, 3, 2, 2, 2] +courtesy 1.5 0.67082 [1, 1, 2, 3, 1, 2, 1, 1, 2, 1] +cover-up -1.2 1.16619 [-1, -1, -4, -1, 0, 0, -2, 0, -1, -2] +coward -2.0 0.63246 [-3, -3, -1, -2, -2, -1, -2, -2, -2, -2] +cowardly -1.6 0.8 [-1, -1, -1, -3, -1, -2, -3, -2, -1, -1] +coziness 1.5 1.11803 [2, 3, 1, 3, 1, 2, 2, -1, 1, 1] +cramp -0.8 1.66132 [0, -1, -1, -3, -3, 1, -2, 1, -2, 2] +crap -1.6 0.66332 [-1, -1, -2, -2, -1, -2, -3, -1, -1, -2] +crappy -2.6 0.8 [-1, -3, -3, -2, -3, -4, -2, -2, -3, -3] +crash -1.7 1.18743 [-2, -3, -2, -1, -2, 0, 0, -1, -4, -2] +craze -0.6 1.49666 [0, -3, -1, -1, -2, 0, 0, -1, 3, -1] +crazed -0.5 2.24722 [-2, -1, 3, -3, -3, 1, 1, -1, 3, -3] +crazes 0.2 1.6 [-2, -1, 3, -1, -1, 1, 2, 0, 2, -1] +crazier -0.1 1.7 [2, -2, -2, 0, -1, 1, 3, 1, -1, -2] +craziest -0.2 2.13542 [2, -2, -3, 3, -2, 0, 2, 2, -2, -2] +crazily -1.5 0.67082 [-2, -1, -1, -2, -1, -3, -2, -1, -1, -1] +craziness -1.6 0.66332 [-2, 0, -2, -1, -2, -1, -2, -2, -2, -2] +crazinesses -1.0 1.48324 [1, -2, -2, 2, -1, 0, -2, -1, -3, -2] +crazing -0.5 0.80623 [0, 0, 0, 0, -2, -1, -2, 0, 0, 0] +crazy -1.4 1.35647 [-2, -1, -1, -2, -3, -2, -3, -1, 2, -1] +crazyweed 0.8 0.9798 [2, 0, 0, 0, 0, 2, 2, 0, 2, 0] +create 1.1 1.13578 [1, 1, 1, 2, 3, 0, 0, 0, 3, 0] +created 1.0 0.7746 [2, 0, 0, 1, 1, 2, 0, 1, 1, 2] +creates 1.1 0.83066 [2, 0, 0, 1, 1, 2, 0, 1, 2, 2] +creatin 0.1 0.53852 [0, 0, 0, 1, 0, 0, 0, 1, -1, 0] +creatine 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 0, 2] +creating 1.2 1.249 [0, 0, 0, 0, 4, 1, 1, 2, 2, 2] +creatinine 0.4 1.2 [0, 0, 0, 4, 0, 0, 0, 0, 0, 0] +creation 1.1 0.83066 [2, 1, 1, 2, 0, 0, 0, 1, 2, 2] +creationism 0.7 0.9 [2, 0, 0, 0, 0, 0, 2, 0, 2, 1] +creationisms 1.1 1.37477 [2, 4, 0, 3, 0, 0, 1, 1, 0, 0] +creationist 0.8 0.9798 [2, 0, 0, 0, 0, 0, 2, 0, 2, 2] +creationists 0.5 0.67082 [0, 0, 0, 1, 1, 0, 2, 0, 1, 0] +creations 1.6 0.91652 [3, 2, 1, 1, 1, 3, 1, 2, 2, 0] +creative 1.9 0.53852 [2, 1, 2, 2, 2, 1, 3, 2, 2, 2] +creatively 1.5 0.80623 [2, 2, 1, 0, 2, 2, 2, 0, 2, 2] +creativeness 1.8 1.07703 [3, 2, 1, 0, 2, 2, 2, 0, 3, 3] +creativities 1.7 1.00499 [2, 2, 1, 0, 3, 2, 2, 0, 2, 3] +creativity 1.6 0.8 [2, 1, 2, 2, 3, 2, 0, 2, 1, 1] +credit 1.6 0.91652 [1, 1, 0, 2, 3, 3, 2, 2, 1, 1] +creditabilities 1.4 1.28062 [0, 3, -1, 2, 2, 2, 1, 2, 0, 3] +creditability 1.9 1.3 [3, 0, 4, 0, 1, 1, 3, 2, 2, 3] +creditable 1.8 0.6 [2, 1, 1, 1, 2, 2, 3, 2, 2, 2] +creditableness 1.2 0.74833 [1, 1, 1, 3, 2, 1, 0, 1, 1, 1] +creditably 1.7 0.78102 [3, 1, 1, 0, 2, 2, 2, 2, 2, 2] +credited 1.5 1.11803 [1, 1, 1, 0, 3, 2, 0, 3, 1, 3] +crediting 0.6 0.4899 [1, 0, 0, 0, 1, 1, 1, 0, 1, 1] +creditor -0.1 1.44568 [-2, -1, 1, -2, -1, 1, 2, -1, 2, 0] +credits 1.5 1.0247 [2, -1, 2, 0, 2, 2, 2, 2, 2, 2] +creditworthiness 1.9 1.3 [4, 0, 3, 1, 2, 1, 4, 2, 1, 1] +creditworthy 2.4 0.66332 [3, 3, 3, 1, 2, 3, 3, 2, 2, 2] +crestfallen -2.5 0.67082 [-2, -3, -3, -2, -3, -2, -4, -2, -2, -2] +cried -1.6 0.8 [-1, -3, -1, -2, -2, -2, 0, -2, -1, -2] +cries -1.7 0.64031 [-1, -3, -1, -2, -2, -2, -1, -2, -1, -2] +crime -2.5 0.80623 [-3, -3, -4, -2, -2, -1, -2, -2, -3, -3] +criminal -2.4 0.91652 [-3, -2, -4, -3, -1, -2, -3, -2, -1, -3] +criminals -2.7 0.9 [-2, -2, -1, -3, -3, -4, -4, -3, -2, -3] +crisis -3.1 0.7 [-3, -2, -4, -3, -3, -2, -4, -4, -3, -3] +critic -1.1 0.53852 [-1, 0, -2, -1, -1, -1, -1, -1, -2, -1] +critical -1.3 0.78102 [-2, 0, -1, -1, -1, -2, -1, -3, -1, -1] +criticise -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -3, -1, -2, -2] +criticised -1.8 0.4 [-2, -2, -1, -2, -2, -2, -1, -2, -2, -2] +criticises -1.3 1.26886 [-2, -1, -1, -1, 2, -1, -3, -2, -2, -2] +criticising -1.7 0.78102 [-1, -1, -1, -3, -1, -2, -2, -2, -1, -3] +criticism -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -3, -1, -2, -2] +criticisms -0.9 1.37477 [-1, -1, 1, -1, -2, -2, -1, -3, 2, -1] +criticizable -1.0 0.63246 [-1, -2, 0, -1, -2, -1, 0, -1, -1, -1] +criticize -1.6 1.0198 [-2, -1, 0, -2, -1, -3, 0, -3, -2, -2] +criticized -1.5 0.92195 [-1, -2, -3, -1, -1, -1, -3, -1, -2, 0] +criticizer -1.5 0.67082 [-1, -2, -2, -1, -1, -1, -3, -1, -2, -1] +criticizers -1.6 0.4899 [-1, -1, -1, -2, -2, -2, -1, -2, -2, -2] +criticizes -1.4 0.66332 [-1, -1, -2, -1, -1, -1, -3, -1, -2, -1] +criticizing -1.5 0.67082 [-1, -1, -1, -2, -2, -1, -2, -1, -3, -1] +critics -1.2 0.6 [-2, 0, -1, -1, -1, -1, -2, -1, -2, -1] +crude -2.7 0.64031 [-2, -2, -3, -4, -2, -3, -3, -2, -3, -3] +crudely -1.2 0.4 [-1, -2, -2, -1, -1, -1, -1, -1, -1, -1] +crudeness -2.0 0.7746 [-3, -1, -1, -1, -3, -2, -3, -2, -2, -2] +crudenesses -2.0 1.0 [-3, -1, -1, -2, -4, -1, -1, -2, -2, -3] +cruder -2.0 0.89443 [-3, -2, -2, -1, -1, -2, -2, -1, -4, -2] +crudes -1.1 0.83066 [-2, -1, -1, -1, 0, 0, -1, -1, -3, -1] +crudest -2.4 1.0198 [-2, -1, -3, -3, -2, -1, -4, -4, -2, -2] +cruel -2.8 1.16619 [-2, -4, -1, -4, -1, -4, -2, -3, -3, -4] +crueler -2.3 0.45826 [-2, -3, -2, -2, -2, -3, -2, -2, -3, -2] +cruelest -2.6 0.8 [-4, -3, -2, -4, -2, -2, -2, -2, -2, -3] +crueller -2.4 0.4899 [-2, -3, -3, -3, -2, -2, -3, -2, -2, -2] +cruellest -2.9 1.04403 [-2, -3, -4, -4, -4, -3, -1, -2, -2, -4] +cruelly -2.8 0.4 [-3, -3, -3, -3, -3, -3, -2, -2, -3, -3] +cruelness -2.9 0.3 [-3, -3, -3, -3, -3, -3, -3, -3, -2, -3] +cruelties -2.3 1.00499 [-4, -3, -2, -1, -2, -2, -1, -4, -2, -2] +cruelty -2.9 0.83066 [-3, -3, -3, -3, -4, -3, -1, -3, -4, -2] +crush -0.6 1.11355 [0, 0, 0, -1, 1, 0, -2, -3, -1, 0] +crushed -1.8 0.6 [-2, -2, -2, -1, -2, -1, -1, -3, -2, -2] +crushes -1.9 0.53852 [-2, -2, -2, -2, -2, -1, -1, -3, -2, -2] +crushing -1.5 1.85742 [-2, -3, -1, -3, 2, -2, -2, -3, 2, -3] +cry -2.1 0.53852 [-2, -2, -2, -1, -2, -2, -3, -3, -2, -2] +crying -2.1 0.7 [-3, -1, -2, -2, -3, -2, -3, -2, -1, -2] +cunt -2.2 2.08806 [-4, -1, -4, -2, 2, -4, -4, -3, 1, -3] +cunts -2.9 1.44568 [-3, -4, -3, -4, -4, -4, -3, 1, -3, -2] +curious 1.3 0.78102 [0, 1, 0, 2, 2, 2, 1, 1, 2, 2] +curse -2.5 0.67082 [-3, -3, -4, -2, -2, -3, -2, -2, -2, -2] +cut -1.1 0.53852 [-2, -1, -1, -1, 0, -1, -1, -1, -2, -1] +cute 2.0 0.63246 [1, 3, 1, 2, 2, 2, 2, 3, 2, 2] +cutely 1.3 1.00499 [3, 1, 1, 2, 2, 1, 1, 2, -1, 1] +cuteness 2.3 0.45826 [2, 2, 2, 3, 2, 3, 3, 2, 2, 2] +cutenesses 1.9 0.53852 [1, 2, 2, 1, 3, 2, 2, 2, 2, 2] +cuter 2.3 0.9 [1, 2, 3, 4, 1, 2, 2, 3, 3, 2] +cutes 1.8 0.87178 [1, 2, 3, 0, 1, 2, 2, 2, 3, 2] +cutesie 1.0 1.18322 [2, 2, 1, 1, 0, 2, 2, -1, 2, -1] +cutesier 1.5 1.20416 [3, -1, 2, 1, 1, 2, 2, 3, 0, 2] +cutesiest 2.2 1.4 [3, 3, 4, 2, 2, 4, 2, -1, 2, 1] +cutest 2.8 0.87178 [2, 3, 3, 4, 4, 3, 1, 3, 2, 3] +cutesy 2.1 0.83066 [2, 1, 2, 2, 4, 3, 1, 2, 2, 2] +cutey 2.1 1.04403 [1, 2, 3, 4, 1, 1, 3, 2, 3, 1] +cuteys 1.5 1.0247 [3, 2, 2, 0, 1, 2, 1, 1, 3, 0] +cutie 1.5 0.80623 [3, 1, 1, 2, 1, 1, 1, 3, 1, 1] +cutiepie 2.0 1.09545 [3, 1, 2, 4, 0, 2, 1, 3, 2, 2] +cuties 2.2 0.6 [3, 2, 2, 2, 3, 1, 2, 2, 3, 2] +cuts -1.2 0.6 [-1, -2, -1, 0, -1, -1, -2, -2, -1, -1] +cutting -0.5 0.67082 [0, -1, 0, 0, 0, -1, -1, -2, 0, 0] +cynic -1.4 0.8 [-1, -2, -1, 0, -2, -3, -1, -1, -1, -2] +cynical -1.6 0.66332 [-1, -1, -2, -2, -1, -1, -2, -2, -1, -3] +cynically -1.3 1.00499 [-2, -1, -1, -1, -3, -2, -1, -2, 1, -1] +cynicism -1.7 0.64031 [-2, -3, -1, -1, -2, -1, -2, -1, -2, -2] +cynicisms -1.7 0.78102 [-1, -1, -3, -1, -2, -3, -1, -2, -2, -1] +cynics -0.3 1.1 [-1, 0, -2, 0, 0, -1, 1, -1, 2, -1] +d-: 1.6 0.66332 [1, 1, 1, 2, 2, 3, 1, 1, 2, 2] +d: 1.2 0.87178 [1, 1, 1, 2, 1, 1, 2, 2, -1, 2] +d= 1.5 0.67082 [1, 1, 1, 2, 3, 2, 1, 1, 1, 2] +damage -2.2 0.4 [-2, -3, -2, -2, -3, -2, -2, -2, -2, -2] +damaged -1.9 0.53852 [-2, -2, -2, -1, -2, -1, -2, -2, -3, -2] +damager -1.9 0.53852 [-2, -2, -2, -2, -2, -1, -2, -2, -3, -1] +damagers -2.0 0.63246 [-2, -3, -1, -2, -2, -1, -3, -2, -2, -2] +damages -1.9 1.04403 [-1, 0, -2, -2, -2, -4, -2, -1, -3, -2] +damaging -2.3 0.9 [-4, -1, -2, -4, -2, -2, -2, -2, -2, -2] +damagingly -2.0 0.7746 [-2, -2, -2, -2, -1, -3, -3, -1, -3, -1] +damn -1.7 0.64031 [-2, -1, -2, -1, -1, -3, -1, -2, -2, -2] +damnable -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] +damnableness -1.8 0.74833 [-2, -2, -2, -2, -1, -2, -2, 0, -3, -2] +damnably -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] +damnation -2.6 1.0198 [-3, -2, -3, -4, -4, -3, -1, -2, -1, -3] +damnations -1.4 1.11355 [-2, -1, -2, -3, -2, 0, -1, 1, -2, -2] +damnatory -2.6 1.42829 [-4, -1, -4, -2, -1, -3, -3, 0, -4, -4] +damned -1.6 0.66332 [-1, -1, -3, -1, -2, -2, -1, -2, -1, -2] +damnedest -0.5 1.5 [1, 0, 0, 0, -1, -1, 0, 2, -3, -3] +damnified -2.8 0.9798 [-1, -3, -3, -2, -2, -3, -4, -4, -2, -4] +damnifies -1.8 0.87178 [-2, -2, -1, -2, -3, -2, -2, 0, -1, -3] +damnify -2.2 0.74833 [-2, -2, -4, -2, -3, -2, -1, -2, -2, -2] +damnifying -2.4 0.66332 [-3, -1, -2, -2, -2, -2, -3, -3, -3, -3] +damning -1.4 0.8 [-1, -3, -1, -1, -1, -1, -3, -1, -1, -1] +damningly -2.0 1.61245 [-3, -2, -1, -4, -3, -3, -3, -2, 2, -1] +damnit -2.4 1.0198 [-3, -3, -2, -2, -3, -2, -4, -2, 0, -3] +damns -2.2 0.74833 [-2, -3, -2, -1, -3, -2, -1, -2, -3, -3] +danger -2.4 0.91652 [-3, -1, -2, -3, -3, -3, -2, -1, -2, -4] +dangered -2.4 0.66332 [-3, -3, -2, -3, -3, -2, -1, -2, -3, -2] +dangering -2.5 0.80623 [-1, -2, -2, -3, -4, -3, -3, -2, -2, -3] +dangerous -2.1 0.3 [-2, -3, -2, -2, -2, -2, -2, -2, -2, -2] +dangerously -2.0 0.44721 [-2, -2, -2, -1, -2, -3, -2, -2, -2, -2] +dangerousness -2.0 0.44721 [-2, -3, -2, -1, -2, -2, -2, -2, -2, -2] +dangers -2.2 0.87178 [-1, -1, -2, -4, -2, -3, -3, -2, -2, -2] +daredevil 0.5 0.92195 [0, 1, -1, 2, 0, 0, 1, 0, 0, 2] +daring 1.5 1.5 [3, 0, 1, 1, 2, -2, 3, 2, 2, 3] +daringly 2.1 0.7 [3, 1, 2, 1, 3, 2, 2, 3, 2, 2] +daringness 1.4 0.8 [0, 2, 1, 3, 1, 2, 2, 1, 1, 1] +darings 0.4 0.91652 [0, 1, 1, 1, 0, 1, 0, 1, -2, 1] +darkest -2.2 0.6 [-3, -3, -2, -2, -3, -2, -1, -2, -2, -2] +darkness -1.0 0.44721 [-2, -1, -1, -1, -1, 0, -1, -1, -1, -1] +darling 2.8 0.6 [3, 3, 2, 2, 3, 3, 4, 2, 3, 3] +darlingly 1.6 0.66332 [1, 1, 2, 3, 1, 1, 2, 2, 2, 1] +darlingness 2.3 0.45826 [3, 3, 2, 2, 2, 2, 2, 2, 3, 2] +darlings 2.2 0.4 [3, 2, 2, 2, 2, 2, 2, 2, 3, 2] +dauntless 2.3 0.78102 [3, 3, 2, 1, 3, 3, 2, 1, 2, 3] +daze -0.7 0.78102 [-1, 0, -1, -1, 1, -1, -1, 0, -1, -2] +dazed -0.7 0.64031 [0, -1, -1, 0, -1, -1, 0, -1, 0, -2] +dazedly -0.4 1.0198 [-1, -1, -1, -1, -1, 2, -1, 1, 0, -1] +dazedness -0.5 1.11803 [-1, 2, 0, -1, -1, -1, 1, -2, -1, -1] +dazes -0.3 0.78102 [0, -1, 0, 0, 0, -1, 0, 1, 0, -2] +dead -3.3 1.00499 [-4, -4, -1, -4, -4, -3, -4, -2, -3, -4] +deadlock -1.4 0.8 [-2, -2, -1, -3, -1, 0, -2, -1, -1, -1] +deafening -1.2 1.6 [-4, -2, 0, -3, 1, -2, 1, -2, -1, 0] +dear 1.6 1.35647 [3, 3, 2, 2, 2, 2, 1, -2, 1, 2] +dearer 1.9 0.7 [2, 2, 1, 2, 1, 1, 2, 3, 2, 3] +dearest 2.6 0.8 [1, 2, 3, 3, 2, 2, 3, 3, 4, 3] +dearie 2.2 0.6 [2, 2, 2, 3, 2, 1, 3, 2, 3, 2] +dearies 1.0 1.0 [0, 1, 2, -1, 1, 1, 1, 1, 1, 3] +dearly 1.8 1.07703 [3, 4, 2, 1, 1, 0, 1, 2, 2, 2] +dearness 2.0 0.7746 [1, 1, 2, 3, 2, 2, 2, 3, 1, 3] +dears 1.9 0.83066 [3, 2, 2, 2, 1, 2, 2, 2, 0, 3] +dearth -2.3 1.00499 [-2, -2, -1, -4, -2, -1, -2, -4, -3, -2] +dearths -0.9 0.7 [0, -1, 0, -1, -2, -1, -2, 0, -1, -1] +deary 1.9 0.83066 [3, 2, 2, 1, 2, 2, 3, 2, 0, 2] +death -2.9 1.04403 [-3, -4, -4, -3, -3, -1, -1, -4, -3, -3] +debonair 0.8 1.72047 [1, -1, -1, -3, 2, 2, 2, 2, 2, 2] +debt -1.5 1.0247 [-2, -1, -2, -3, 1, -2, -2, -1, -1, -2] +decay -1.7 0.45826 [-2, -2, -2, -1, -2, -1, -1, -2, -2, -2] +decayed -1.6 0.91652 [-2, -2, -2, -2, -2, 1, -1, -2, -2, -2] +decayer -1.6 0.4899 [-2, -2, -2, -1, -2, -1, -1, -1, -2, -2] +decayers -1.6 0.4899 [-2, -1, -1, -2, -1, -2, -2, -2, -1, -2] +decaying -1.7 0.64031 [-1, -1, -2, -2, -1, -2, -3, -2, -2, -1] +decays -1.7 0.45826 [-2, -1, -2, -2, -1, -2, -1, -2, -2, -2] +deceit -2.0 1.34164 [-3, -2, -2, -3, -3, 0, 1, -2, -3, -3] +deceitful -1.9 1.22066 [-3, -2, -2, -3, -1, -3, -1, -3, -2, 1] +deceive -1.7 0.64031 [-1, -2, -2, -1, -2, -1, -1, -3, -2, -2] +deceived -1.9 1.3 [1, -3, -3, -1, -1, -2, -2, -2, -4, -2] +deceives -1.6 1.56205 [-1, 2, -2, -2, -3, -2, 0, -2, -4, -2] +deceiving -1.4 1.68523 [-3, -2, -2, -2, -1, -1, 1, -4, 2, -2] +deception -1.9 1.04403 [-1, -2, -2, -4, -2, 0, -2, -1, -3, -2] +decisive 0.9 0.83066 [2, 2, 0, 1, -1, 1, 1, 1, 1, 1] +dedicated 2.0 0.44721 [2, 2, 2, 2, 2, 2, 2, 1, 3, 2] +defeat -2.0 1.67332 [0, -4, -3, -4, -2, -1, -2, -1, 1, -4] +defeated -2.1 0.83066 [-1, -2, -1, -2, -3, -2, -2, -2, -2, -4] +defeater -1.4 0.8 [-2, -1, -1, -3, -2, -1, -2, -1, 0, -1] +defeaters -0.9 0.9434 [-2, 0, -1, -2, -2, -1, 0, -1, 1, -1] +defeating -1.6 0.66332 [-2, -2, -1, -1, -1, -1, -2, -2, -3, -1] +defeatism -1.3 1.00499 [-1, -2, -2, -1, -1, -3, 1, -2, -1, -1] +defeatist -1.7 0.9 [0, -1, -2, -3, -1, -2, -1, -3, -2, -2] +defeatists -2.1 0.9434 [-3, -2, -1, -2, -2, -1, -3, -4, -1, -2] +defeats -1.3 1.1 [-1, 0, -1, -2, -1, -2, -3, 1, -2, -2] +defeature -1.9 1.22066 [1, -2, -2, -2, -2, -1, -2, -3, -4, -2] +defeatures -1.5 1.20416 [-3, -2, -3, 0, -1, -1, -2, 0, -3, 0] +defect -1.4 0.8 [-2, -1, -2, -1, 0, -2, -3, -1, -1, -1] +defected -1.7 0.64031 [-3, -2, -2, -2, -1, -1, -1, -2, -1, -2] +defecting -1.8 0.6 [-2, -1, -2, -2, -2, -1, -3, -1, -2, -2] +defection -1.4 0.66332 [-1, -2, -1, -2, 0, -1, -2, -2, -2, -1] +defections -1.5 0.67082 [-2, -2, -2, -1, 0, -1, -2, -2, -1, -2] +defective -1.9 0.53852 [-2, -1, -2, -3, -2, -2, -2, -2, -1, -2] +defectively -2.1 0.83066 [-1, -3, -2, -1, -3, -2, -1, -3, -2, -3] +defectiveness -1.8 0.74833 [-1, -1, -2, -2, -2, -3, -1, -1, -2, -3] +defectives -1.8 0.74833 [-3, -3, -1, -2, -2, -1, -2, -1, -1, -2] +defector -1.9 0.53852 [-2, -3, -2, -2, -1, -2, -1, -2, -2, -2] +defectors -1.3 1.26886 [-2, -1, -2, 0, -1, -1, -2, -4, 1, -1] +defects -1.7 0.9 [-1, -2, -1, 0, -2, -3, -2, -2, -1, -3] +defence 0.4 0.91652 [0, 0, 0, 1, 0, 0, 0, 2, 2, -1] +defenceman 0.4 1.11355 [3, 0, 0, 0, 0, -1, 2, 0, 0, 0] +defencemen 0.6 0.91652 [0, 0, 0, 2, 0, 2, 0, 2, 0, 0] +defences -0.2 1.16619 [0, 0, 0, 1, -2, -1, 0, -2, 0, 2] +defender 0.4 1.0198 [0, 0, 2, 1, -1, 2, 0, 1, -1, 0] +defenders 0.3 0.78102 [0, 1, 1, 0, 0, 0, 0, -1, 2, 0] +defense 0.5 0.67082 [0, 1, 0, 1, 2, 1, 0, 0, 0, 0] +defenseless -1.4 0.8 [0, -1, -1, -2, -1, -1, -3, -1, -2, -2] +defenselessly -1.1 0.9434 [-2, -2, -2, -1, 0, -1, 1, -1, -1, -2] +defenselessness -1.3 1.18743 [-3, -1, -3, 0, -2, -1, -1, -2, 1, -1] +defenseman 0.1 1.13578 [2, 0, 0, 0, 0, 0, -1, 0, 2, -2] +defensemen -0.4 0.66332 [0, 0, -2, 0, -1, -1, 0, 0, 0, 0] +defenses 0.7 1.41774 [3, 0, 2, 0, -1, 1, -2, 1, 1, 2] +defensibility 0.4 1.56205 [1, -2, 1, 0, 4, 0, -1, 1, -1, 1] +defensible 0.8 0.87178 [0, 2, 0, 0, 1, 0, 2, 0, 2, 1] +defensibly 0.1 1.13578 [0, -1, 0, 0, -1, 0, 3, 0, -1, 1] +defensive 0.1 1.13578 [2, -1, 0, -1, 2, 0, -1, 1, 0, -1] +defensively -0.6 0.91652 [1, 1, -1, -1, -1, -1, -2, -1, 0, -1] +defensiveness -0.4 1.11355 [2, -1, -1, -1, -1, 0, 0, 1, -2, -1] +defensives -0.3 1.00499 [-1, 0, 0, -1, 0, -1, 0, -2, 2, 0] +defer -1.2 0.6 [-1, -2, -1, 0, -1, -2, -2, -1, -1, -1] +deferring -0.7 0.64031 [0, 0, -2, -1, -1, -1, -1, 0, -1, 0] +defiant -0.9 1.44568 [-1, -2, -1, 2, 1, -2, 0, -1, -3, -2] +deficit -1.7 0.78102 [-3, -3, -2, -1, -2, -2, -1, -1, -1, -1] +definite 1.1 0.7 [2, 1, 0, 1, 0, 1, 1, 2, 2, 1] +definitely 1.7 0.64031 [2, 2, 2, 2, 2, 1, 2, 2, 0, 2] +degradable -1.0 1.26491 [-1, -2, 0, -2, 0, -1, -2, -2, 2, -2] +degradation -2.4 1.0198 [-4, -3, -3, -3, -3, -2, -2, -2, 0, -2] +degradations -1.5 0.67082 [-2, -1, -3, -1, -2, -2, -1, -1, -1, -1] +degradative -2.0 0.63246 [-2, -1, -3, -2, -2, -2, -1, -2, -3, -2] +degrade -1.9 0.7 [-3, -2, -1, -3, -1, -2, -2, -2, -1, -2] +degraded -1.8 0.87178 [-2, -3, -1, 0, -2, -1, -2, -2, -3, -2] +degrader -2.0 0.63246 [-2, -3, -1, -1, -2, -2, -3, -2, -2, -2] +degraders -2.0 0.63246 [-2, -3, -1, -2, -2, -2, -3, -2, -1, -2] +degrades -2.1 0.83066 [-3, -1, -3, -3, -2, -3, -1, -1, -2, -2] +degrading -2.8 0.87178 [-3, -3, -2, -3, -4, -2, -3, -4, -3, -1] +degradingly -2.7 0.64031 [-3, -2, -3, -4, -2, -3, -3, -2, -3, -2] +dehumanize -1.8 2.18174 [-2, -4, -1, -3, 2, -4, -3, 2, -1, -4] +dehumanized -1.9 0.7 [-2, -2, -2, -2, -1, -3, -2, -1, -3, -1] +dehumanizes -1.5 0.67082 [-1, -1, -1, -2, -1, -3, -2, -1, -2, -1] +dehumanizing -2.4 0.91652 [-2, -3, -4, -2, -3, -2, -3, -1, -1, -3] +deject -2.2 0.6 [-2, -3, -2, -3, -2, -2, -3, -2, -1, -2] +dejected -2.2 0.74833 [-2, -1, -2, -3, -2, -2, -2, -2, -2, -4] +dejecting -2.3 0.64031 [-2, -2, -3, -2, -3, -2, -1, -2, -3, -3] +dejects -2.0 0.63246 [-2, -2, -3, -1, -2, -1, -3, -2, -2, -2] +delay -1.3 0.45826 [-1, -1, -1, -2, -1, -1, -2, -1, -2, -1] +delayed -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] +delectable 2.9 0.83066 [3, 4, 3, 2, 3, 4, 3, 1, 3, 3] +delectables 1.4 1.35647 [1, 2, 0, 4, 2, 1, 3, -1, 1, 1] +delectably 2.8 0.74833 [3, 4, 3, 2, 3, 3, 3, 1, 3, 3] +delicate 0.2 0.74833 [2, 0, 0, 0, 0, 0, 1, 0, -1, 0] +delicately 1.0 1.26491 [1, 1, 2, 0, 1, 3, -1, 2, -1, 2] +delicates 0.6 1.35647 [3, 0, 2, 1, -1, -1, 2, 0, 1, -1] +delicatessen 0.4 0.8 [0, 0, 0, 0, 0, 0, 0, 2, 2, 0] +delicatessens 0.4 0.8 [0, 0, 2, 0, 0, 2, 0, 0, 0, 0] +delicious 2.7 0.64031 [3, 2, 3, 4, 2, 3, 3, 3, 2, 2] +deliciously 1.9 0.83066 [2, 2, 1, 3, 1, 3, 2, 3, 1, 1] +deliciousness 1.8 0.87178 [1, 2, 3, 3, 2, 2, 1, 2, 2, 0] +delight 2.9 0.7 [2, 3, 4, 4, 3, 2, 3, 3, 2, 3] +delighted 2.3 0.64031 [3, 3, 2, 3, 2, 1, 3, 2, 2, 2] +delightedly 2.4 0.4899 [2, 3, 3, 3, 2, 2, 3, 2, 2, 2] +delightedness 2.1 0.53852 [2, 2, 2, 2, 3, 2, 3, 2, 1, 2] +delighter 2.0 0.63246 [3, 2, 2, 3, 1, 2, 2, 1, 2, 2] +delighters 2.6 0.66332 [3, 2, 2, 2, 3, 2, 3, 2, 4, 3] +delightful 2.8 0.6 [4, 3, 2, 3, 3, 3, 2, 2, 3, 3] +delightfully 2.7 0.45826 [3, 2, 2, 2, 3, 3, 3, 3, 3, 3] +delightfulness 2.1 0.7 [3, 2, 3, 1, 2, 3, 2, 2, 2, 1] +delighting 1.6 1.90788 [3, 3, 3, 2, 3, 2, 3, -2, -2, 1] +delights 2.0 1.54919 [2, 3, 1, -2, 2, 4, 2, 3, 3, 2] +delightsome 2.3 0.45826 [3, 3, 2, 2, 2, 3, 2, 2, 2, 2] +demand -0.5 0.67082 [0, 0, 0, 0, 0, -1, -1, -1, 0, -2] +demanded -0.9 0.7 [-2, 0, 0, 0, -2, -1, -1, -1, -1, -1] +demanding -0.9 0.53852 [-1, -2, 0, -1, -1, -1, -1, -1, 0, -1] +demonstration 0.4 0.91652 [0, 0, 0, 0, 0, 0, 3, 1, 0, 0] +demoralized -1.6 1.62481 [-2, -2, -2, -2, -3, 2, -2, -3, 1, -3] +denied -1.9 0.53852 [-2, -3, -1, -2, -2, -1, -2, -2, -2, -2] +denier -1.5 0.67082 [-1, -1, -1, -1, -2, -3, -2, -2, -1, -1] +deniers -1.1 1.13578 [-2, 0, -2, -1, -3, 1, 0, -1, -2, -1] +denies -1.8 0.6 [-1, -2, -1, -1, -2, -3, -2, -2, -2, -2] +denounce -1.4 0.91652 [-2, -1, -2, -1, 1, -2, -2, -1, -2, -2] +denounces -1.9 0.7 [-1, -3, -2, -3, -2, -1, -2, -2, -2, -1] +deny -1.4 0.4899 [-1, -1, -1, -1, -2, -1, -2, -2, -1, -2] +denying -1.4 0.4899 [-1, -1, -1, -2, -2, -2, -1, -2, -1, -1] +depress -2.2 0.74833 [-2, -1, -3, -3, -2, -2, -3, -3, -1, -2] +depressant -1.6 1.11355 [-3, -1, 0, -1, 0, -2, -3, -1, -3, -2] +depressants -1.6 0.91652 [-1, -1, -3, -3, -2, 0, -1, -2, -2, -1] +depressed -2.3 0.45826 [-2, -2, -2, -2, -2, -3, -3, -3, -2, -2] +depresses -2.2 0.6 [-2, -2, -2, -2, -3, -3, -1, -2, -3, -2] +depressible -1.7 0.78102 [-2, -1, 0, -3, -2, -2, -2, -1, -2, -2] +depressing -1.6 1.28062 [-2, -2, -2, 2, -3, -1, -2, -2, -2, -2] +depressingly -2.3 0.45826 [-2, -3, -2, -2, -2, -3, -3, -2, -2, -2] +depression -2.7 0.64031 [-3, -2, -2, -2, -2, -3, -4, -3, -3, -3] +depressions -2.2 0.6 [-2, -3, -3, -2, -2, -2, -3, -2, -2, -1] +depressive -1.6 1.11355 [-2, -1, -1, -2, -1, -2, -3, 1, -3, -2] +depressively -2.1 0.53852 [-3, -2, -3, -2, -2, -2, -2, -1, -2, -2] +depressives -1.5 0.5 [-2, -1, -1, -2, -1, -1, -1, -2, -2, -2] +depressor -1.8 1.16619 [-2, -4, -3, 0, 0, -2, -2, -2, -1, -2] +depressors -1.7 0.9 [-1, -1, -1, -2, -1, -2, -4, -2, -2, -1] +depressurization -0.3 0.78102 [1, 0, 0, -1, -1, 0, -2, 0, 0, 0] +depressurizations -0.4 0.91652 [0, 0, 0, 0, 1, -2, -1, 0, -2, 0] +depressurize -0.5 0.80623 [0, 0, -2, 0, -2, 0, 0, 0, 0, -1] +depressurized -0.3 0.64031 [0, 0, 0, 0, 0, 0, -1, 0, -2, 0] +depressurizes -0.3 0.64031 [0, 0, 0, 0, 0, 0, -1, 0, -2, 0] +depressurizing -0.7 1.34536 [2, 0, -1, -1, -2, -2, 1, -2, 0, -2] +deprival -2.1 0.7 [-1, -2, -2, -2, -1, -3, -3, -3, -2, -2] +deprivals -1.2 0.87178 [0, -1, -2, -1, 0, -2, -1, -1, -3, -1] +deprivation -1.8 1.4 [-3, -2, -3, -2, -1, -2, -2, 2, -2, -3] +deprivations -1.8 0.74833 [-1, -2, -3, -1, -2, -1, -2, -2, -3, -1] +deprive -2.1 0.7 [-3, -2, -1, -3, -1, -2, -2, -3, -2, -2] +deprived -2.1 0.7 [-2, -2, -2, -2, -2, -4, -2, -2, -1, -2] +depriver -1.6 0.91652 [-1, -2, -1, -2, -1, -4, -2, -1, -1, -1] +deprivers -1.4 0.66332 [-2, -1, -1, -3, -1, -1, -1, -1, -2, -1] +deprives -1.7 0.64031 [-2, -2, -1, -2, -1, -3, -2, -1, -1, -2] +depriving -2.0 0.0 [-2, -2, -2, -2, -2, -2, -2, -2, -2, -2] +derail -1.2 1.07703 [-1, 1, -1, -2, -1, -2, -1, -3, -2, 0] +derailed -1.4 0.66332 [-1, -2, -2, 0, -1, -1, -2, -1, -2, -2] +derails -1.3 0.78102 [-2, -3, -1, -2, -1, -1, 0, -1, -1, -1] +deride -1.1 1.22066 [-3, -2, -2, -1, -1, -1, 1, -2, -1, 1] +derided -0.8 0.87178 [-2, -1, -2, 0, 0, -1, -1, -1, 1, -1] +derides -1.0 1.0 [-1, -2, -2, 0, 0, 1, -1, -2, -1, -2] +deriding -1.5 0.80623 [-2, -2, 0, 0, -2, -1, -2, -2, -2, -2] +derision -1.2 1.249 [-1, -2, -2, -2, -1, -1, 1, 1, -3, -2] +desirable 1.3 0.45826 [2, 1, 1, 1, 1, 1, 1, 2, 2, 1] +desire 1.7 0.78102 [1, 1, 2, 1, 3, 3, 1, 2, 2, 1] +desired 1.1 1.04403 [1, 1, 0, 3, 1, 0, 1, 1, 3, 0] +desirous 1.3 0.64031 [1, 2, 1, 2, 2, 1, 2, 1, 0, 1] +despair -1.3 1.9 [2, -1, -3, -1, -3, 1, -3, 1, -3, -3] +despaired -2.7 0.45826 [-2, -2, -3, -3, -3, -3, -3, -2, -3, -3] +despairer -1.3 1.1 [-2, -2, -1, -3, -2, 1, -1, -1, 0, -2] +despairers -1.3 1.00499 [-2, -1, -1, 1, -2, -1, -2, -1, -1, -3] +despairing -2.3 0.64031 [-2, -1, -3, -2, -3, -2, -2, -2, -3, -3] +despairingly -2.2 0.74833 [-2, -2, -2, -2, -4, -2, -3, -1, -2, -2] +despairs -2.7 1.00499 [-3, -4, -1, -3, -4, -2, -1, -3, -3, -3] +desperate -1.3 1.34536 [-2, -1, -2, 1, -1, -2, -3, -3, -1, 1] +desperately -1.6 1.11355 [-3, -3, -2, -1, -2, -1, -2, -2, -1, 1] +desperateness -1.5 1.36015 [-1, -2, -2, -2, -3, -3, 1, -2, 1, -2] +desperation -2.0 1.0 [-2, -1, -1, -2, -3, -3, -1, -4, -1, -2] +desperations -2.2 1.66132 [-1, -4, -2, -4, -4, -1, -1, -2, 1, -4] +despise -1.4 1.35647 [-2, -3, -1, -2, -1, 1, -3, 1, -2, -2] +despised -1.7 1.48661 [-2, -1, -3, -2, -3, 1, -3, 1, -2, -3] +despisement -2.4 0.91652 [-3, -3, -2, -1, -3, -1, -4, -2, -2, -3] +despisements -2.5 1.0247 [-2, -2, -3, -2, 0, -3, -4, -3, -3, -3] +despiser -1.8 1.07703 [-2, -1, -3, 1, -2, -2, -3, -2, -2, -2] +despisers -1.6 1.35647 [-3, -3, -1, -3, -2, -1, -1, 1, 0, -3] +despises -2.0 1.26491 [-3, -1, -3, 1, -2, -1, -3, -2, -3, -3] +despising -2.7 0.9 [-4, -3, -3, -4, -1, -2, -3, -2, -2, -3] +despondent -2.1 0.53852 [-2, -2, -2, -3, -2, -2, -1, -3, -2, -2] +destroy -2.5 0.67082 [-2, -3, -3, -1, -3, -3, -3, -2, -2, -3] +destroyed -2.2 0.87178 [-1, -3, -3, -2, -1, -2, -1, -3, -3, -3] +destroyer -2.0 0.89443 [-2, -3, -3, -3, -1, -2, -2, -2, 0, -2] +destroyers -2.3 0.78102 [-1, -3, -3, -3, -2, -2, -3, -3, -1, -2] +destroying -2.6 0.91652 [-2, -4, -4, -2, -1, -3, -2, -3, -2, -3] +destroys -2.6 0.4899 [-3, -3, -3, -2, -2, -2, -3, -3, -2, -3] +destruct -2.4 0.4899 [-3, -3, -3, -2, -2, -2, -3, -2, -2, -2] +destructed -1.9 1.04403 [-4, -1, -2, -2, -2, -1, -3, -2, 0, -2] +destructibility -1.8 1.07703 [-1, -2, -1, -1, -2, -3, -2, 0, -4, -2] +destructible -1.5 1.11803 [-2, -2, -2, -1, 1, -1, -3, -1, -3, -1] +destructing -2.5 0.67082 [-2, -3, -2, -3, -2, -2, -2, -3, -2, -4] +destruction -2.7 0.9 [-4, -3, -4, -3, -2, -2, -3, -1, -2, -3] +destructionist -2.6 0.8 [-3, -4, -2, -2, -2, -3, -3, -1, -3, -3] +destructionists -2.1 0.53852 [-3, -1, -2, -2, -3, -2, -2, -2, -2, -2] +destructions -2.3 0.78102 [-3, -2, -2, -2, -1, -3, -4, -2, -2, -2] +destructive -3.0 0.63246 [-3, -4, -3, -2, -3, -3, -3, -2, -4, -3] +destructively -2.4 0.91652 [-2, -3, -1, -4, -2, -3, -3, -3, -1, -2] +destructiveness -2.4 0.91652 [-3, -3, -2, -4, -1, -2, -3, -2, -1, -3] +destructivity -2.2 1.53623 [2, -3, -3, -4, -3, -2, -2, -2, -2, -3] +destructs -2.4 0.91652 [-2, -1, -2, -4, -4, -2, -3, -2, -2, -2] +detached -0.5 1.20416 [-1, 2, -1, -1, -2, 0, 1, -2, -1, 0] +detain -1.8 0.9798 [-3, -1, -2, -2, -4, -2, -1, -1, -1, -1] +detained -1.7 0.9 [-1, -1, -1, -1, -1, -2, -2, -2, -2, -4] +detention -1.5 0.67082 [-1, -2, -1, -2, -1, -1, -3, -2, -1, -1] +determinable 0.9 0.7 [2, 1, 1, 1, 0, 1, 2, 0, 0, 1] +determinableness 0.2 1.07703 [0, 0, 0, 1, 0, 1, -1, 2, -2, 1] +determinably 0.9 0.83066 [2, 0, 1, 1, 0, 1, 2, 2, 0, 0] +determinacy 1.0 1.0 [0, 0, 0, 3, 1, 1, 2, 1, 0, 2] +determinant 0.2 0.6 [0, 1, -1, 0, 1, 1, 0, 0, 0, 0] +determinantal -0.3 1.41774 [0, 0, 0, -4, 0, -1, 0, 0, 2, 0] +determinate 0.8 0.87178 [2, 1, 0, 0, 0, 2, 2, 0, 1, 0] +determinately 1.2 0.6 [1, 2, 0, 1, 1, 1, 2, 1, 2, 1] +determinateness 1.1 0.9434 [1, 1, 1, 0, 0, 2, 3, 1, 0, 2] +determination 1.7 0.78102 [2, 3, 1, 1, 1, 2, 1, 1, 2, 3] +determinations 0.8 1.16619 [0, 3, 1, 0, 1, 3, 0, 0, 0, 0] +determinative 1.1 1.04403 [2, 0, 3, 2, 1, 1, 0, 0, 2, 0] +determinatives 0.9 1.3 [2, 0, -2, 1, 2, 2, 2, 0, 0, 2] +determinator 1.1 1.04403 [3, 0, 1, 0, 1, 0, 2, 2, 0, 2] +determined 1.4 1.35647 [-2, 1, 3, 2, 2, 2, 3, 1, 1, 1] +devastate -3.1 0.9434 [-4, -4, -1, -4, -4, -3, -3, -3, -2, -3] +devastated -3.0 0.89443 [-4, -3, -3, -4, -3, -1, -3, -4, -3, -2] +devastates -2.8 0.9798 [-4, -3, -2, -4, -2, -1, -3, -4, -3, -2] +devastating -3.3 0.9 [-4, -3, -4, -4, -1, -4, -3, -3, -3, -4] +devastatingly -2.4 1.28062 [-3, -4, -3, 0, -3, 0, -2, -3, -3, -3] +devastation -1.8 2.13542 [-1, -1, -3, -3, -4, -3, -4, 2, 2, -3] +devastations -1.9 1.92094 [-3, -3, -2, -2, 1, -1, 2, -4, -4, -3] +devastative -3.2 1.16619 [-4, -3, 0, -4, -4, -3, -3, -4, -3, -4] +devastator -2.8 0.74833 [-3, -3, -2, -2, -3, -2, -3, -4, -2, -4] +devastators -2.9 1.22066 [-3, -2, -3, -4, -4, -4, 0, -3, -2, -4] +devil -3.4 0.8 [-4, -3, -4, -4, -4, -4, -2, -3, -2, -4] +deviled -1.6 1.0198 [-1, -2, 0, -4, -1, -2, -2, -2, -1, -1] +devilfish -0.8 1.07703 [-2, -3, -1, 0, 0, 0, 0, -2, 0, 0] +devilfishes -0.6 1.0198 [-3, 0, -2, 0, 0, 0, 0, -1, 0, 0] +deviling -2.2 0.87178 [-1, -3, -1, -2, -3, -2, -2, -4, -2, -2] +devilish -2.1 1.04403 [-1, -2, -4, -1, -1, -2, -2, -4, -2, -2] +devilishly -1.6 0.8 [-2, -2, -3, -1, -2, -2, 0, -2, -1, -1] +devilishness -2.3 0.9 [-4, -1, -4, -2, -2, -2, -2, -2, -2, -2] +devilkin -2.4 0.91652 [-3, -1, -2, -3, -2, -4, -2, -3, -3, -1] +devilled -2.3 1.1 [-3, -1, -2, -3, 0, -4, -2, -3, -2, -3] +devilling -1.8 1.249 [-3, -1, -1, -2, -2, -3, -4, -2, 0, 0] +devilment -1.9 0.9434 [-2, -1, -2, -1, -3, -2, -2, -1, -1, -4] +devilments -1.1 0.7 [-2, -1, -2, -2, -1, 0, 0, -1, -1, -1] +devilries -1.6 1.35647 [-1, -1, -2, -4, -3, 0, -2, 0, 0, -3] +devilry -2.8 1.249 [-4, -3, 0, -2, -2, -2, -3, -4, -4, -4] +devils -2.7 0.9 [-3, -1, -3, -2, -2, -3, -4, -3, -2, -4] +deviltries -1.5 1.11803 [-1, -2, 1, -2, 0, -2, -2, -3, -2, -2] +deviltry -2.8 1.32665 [-4, -4, -3, -3, -3, -3, 1, -3, -3, -3] +devilwood -0.8 1.07703 [0, -1, -2, 0, 0, 0, 0, -3, -2, 0] +devilwoods -1.0 0.7746 [-2, 0, -2, -1, -1, 0, -1, -2, 0, -1] +devote 1.4 1.28062 [3, 0, 2, -1, 0, 3, 2, 2, 1, 2] +devoted 1.7 1.34536 [2, -1, 3, 2, 1, 0, 1, 3, 3, 3] +devotedly 1.6 1.35647 [1, 1, 2, 2, 3, 2, 2, -2, 2, 3] +devotedness 2.0 1.0 [0, 3, 2, 1, 3, 2, 2, 3, 1, 3] +devotee 1.6 1.11355 [1, 3, 0, 2, 1, 2, 1, 1, 4, 1] +devotees 0.5 1.0247 [0, 0, 3, 0, 0, 0, 2, 0, 0, 0] +devotement 1.5 1.36015 [2, -1, 3, 2, -1, 1, 2, 3, 2, 2] +devotements 1.1 1.04403 [0, 1, 0, 0, 0, 2, 2, 2, 3, 1] +devotes 1.6 0.91652 [2, 3, 0, 2, 2, 3, 1, 1, 1, 1] +devoting 2.1 0.7 [2, 2, 3, 1, 2, 3, 2, 3, 1, 2] +devotion 2.0 1.0 [2, 0, 1, 2, 4, 3, 2, 2, 2, 2] +devotional 1.2 1.16619 [0, 1, 0, 2, 2, 1, 0, 0, 3, 3] +devotionally 2.2 0.4 [2, 2, 2, 3, 2, 3, 2, 2, 2, 2] +devotionals 1.2 1.07703 [3, 1, 1, 0, -1, 2, 2, 2, 1, 1] +devotions 1.8 0.74833 [2, 3, 1, 2, 1, 3, 1, 2, 1, 2] +diamond 1.4 1.42829 [0, 0, 2, 0, 1, 3, 1, 3, 0, 4] +dick -2.3 1.18743 [-2, -3, -4, -2, 0, -4, -2, -1, -3, -2] +dickhead -3.1 0.53852 [-4, -3, -3, -3, -4, -2, -3, -3, -3, -3] +die -2.9 0.9434 [-4, -3, -1, -2, -4, -3, -3, -3, -2, -4] +died -2.6 1.28062 [-3, -1, -3, -4, -2, -4, -3, -4, -2, 0] +difficult -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -2, -1, -2] +difficulties -1.2 0.4 [-1, -2, -1, -1, -1, -2, -1, -1, -1, -1] +difficultly -1.7 0.45826 [-1, -2, -1, -2, -2, -1, -2, -2, -2, -2] +difficulty -1.4 0.66332 [-2, -2, -2, -2, 0, -1, -1, -2, -1, -1] +diffident -1.0 0.44721 [-1, -1, -1, -1, -1, 0, -2, -1, -1, -1] +dignified 2.2 0.6 [1, 2, 2, 2, 3, 3, 3, 2, 2, 2] +dignifies 2.0 0.7746 [1, 3, 2, 2, 3, 3, 2, 2, 1, 1] +dignify 1.8 0.74833 [1, 2, 2, 1, 3, 3, 1, 2, 2, 1] +dignifying 2.1 1.04403 [1, 1, 1, 3, 1, 4, 2, 3, 2, 3] +dignitaries 0.6 0.91652 [0, 0, 1, 0, 0, 0, 3, 0, 1, 1] +dignitary 1.9 1.3 [0, 3, 4, 2, 3, 1, 1, 3, 0, 2] +dignities 1.4 0.66332 [1, 2, 1, 1, 3, 2, 1, 1, 1, 1] +dignity 1.7 0.9 [0, 3, 2, 1, 2, 1, 2, 3, 1, 2] +dilemma -0.7 1.48661 [2, -1, -2, -2, -1, -1, 2, 0, -2, -2] +dipshit -2.1 0.7 [-1, -2, -2, -3, -2, -3, -3, -2, -2, -1] +dire -2.0 1.26491 [-2, -3, -3, -2, -3, -1, -1, 1, -3, -3] +direful -3.1 0.83066 [-3, -3, -3, -3, -4, -1, -4, -3, -4, -3] +dirt -1.4 0.91652 [-1, -1, -1, 0, -3, -1, -1, -2, -3, -1] +dirtier -1.4 0.4899 [-2, -1, -1, -2, -1, -2, -1, -1, -2, -1] +dirtiest -2.4 1.0198 [-4, -3, -2, -1, -2, -3, -1, -2, -4, -2] +dirty -1.9 0.83066 [-2, -1, -1, -1, -2, -2, -1, -3, -3, -3] +disabling -2.1 0.53852 [-2, -1, -3, -3, -2, -2, -2, -2, -2, -2] +disadvantage -1.8 0.4 [-2, -2, -1, -2, -2, -1, -2, -2, -2, -2] +disadvantaged -1.7 0.64031 [-2, -2, -3, -1, -2, -2, -2, -1, -1, -1] +disadvantageous -1.8 0.74833 [-1, -2, -2, -1, -3, -1, -1, -2, -3, -2] +disadvantageously -2.1 0.83066 [-2, -4, -1, -2, -1, -2, -2, -2, -3, -2] +disadvantageousness -1.6 0.66332 [-1, -1, -3, -2, -1, -1, -2, -1, -2, -2] +disadvantages -1.7 0.64031 [-2, -2, -3, -1, -2, -2, -2, -1, -1, -1] +disagree -1.6 0.4899 [-1, -2, -1, -1, -2, -2, -2, -2, -1, -2] +disagreeable -1.7 0.64031 [-1, -2, -1, -1, -1, -2, -2, -2, -3, -2] +disagreeableness -1.7 0.64031 [-1, -1, -2, -2, -1, -2, -3, -1, -2, -2] +disagreeablenesses -1.9 0.9434 [-2, 0, -3, -1, -2, -3, -2, -1, -3, -2] +disagreeably -1.5 0.67082 [-3, -2, -1, -1, -1, -2, -1, -2, -1, -1] +disagreed -1.3 0.64031 [-1, -2, -1, -1, -2, 0, -1, -2, -1, -2] +disagreeing -1.4 0.8 [-1, 0, -1, -2, -2, -1, -3, -1, -1, -2] +disagreement -1.5 0.67082 [-2, -1, -1, -1, -1, -1, -1, -3, -2, -2] +disagreements -1.8 0.6 [-2, -3, -1, -2, -2, -1, -2, -2, -1, -2] +disagrees -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -2, -1, -2] +disappear -0.9 0.7 [-2, -1, 0, 0, -2, -1, -1, -1, 0, -1] +disappeared -0.9 0.7 [-2, 0, -1, -1, 0, 0, -2, -1, -1, -1] +disappears -1.4 0.8 [-2, -2, 0, 0, -2, -1, -2, -1, -2, -2] +disappoint -1.7 0.64031 [-1, -1, -1, -3, -2, -2, -2, -1, -2, -2] +disappointed -2.1 0.83066 [-1, -3, -2, -2, -3, -1, -1, -2, -3, -3] +disappointedly -1.7 0.78102 [-3, -1, -3, -1, -2, -1, -1, -2, -2, -1] +disappointing -2.2 0.6 [-1, -2, -2, -3, -3, -2, -2, -2, -3, -2] +disappointingly -1.9 0.7 [-2, -1, -1, -3, -2, -3, -2, -2, -1, -2] +disappointment -2.3 1.00499 [-3, -1, -4, -1, -3, -1, -3, -2, -2, -3] +disappointments -2.0 1.09545 [-1, -2, -4, -3, -2, -2, -3, 0, -2, -1] +disappoints -1.6 0.4899 [-2, -1, -1, -1, -2, -1, -2, -2, -2, -2] +disaster -3.1 0.83066 [-2, -4, -4, -3, -3, -2, -4, -3, -2, -4] +disasters -2.6 0.8 [-2, -2, -3, -1, -3, -3, -2, -4, -3, -3] +disastrous -2.9 0.53852 [-2, -2, -3, -3, -3, -3, -4, -3, -3, -3] +disbelieve -1.2 0.87178 [-1, -2, -1, -2, -1, 0, 0, -1, -3, -1] +discard -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -1, -1, -2, -1] +discarded -1.4 0.91652 [-1, -1, -1, -1, 0, -1, -2, -3, -3, -1] +discarding -0.7 0.45826 [-1, 0, -1, -1, -1, 0, -1, 0, -1, -1] +discards -1.0 0.63246 [0, -1, -1, -1, -2, 0, -2, -1, -1, -1] +discomfort -1.8 0.6 [-2, -2, -2, -1, -1, -3, -2, -2, -1, -2] +discomfortable -1.6 0.8 [-1, -1, -1, -2, -3, -1, -2, -1, -3, -1] +discomforted -1.6 0.8 [-1, -1, -1, -2, -3, -3, -1, -1, -1, -2] +discomforting -1.6 1.11355 [-1, -2, -1, -1, -2, 1, -3, -2, -3, -2] +discomforts -1.3 0.9 [-2, -1, -2, -1, -1, -2, -2, -1, 1, -2] +disconsolate -2.3 0.78102 [-1, -2, -2, -3, -2, -2, -2, -4, -3, -2] +disconsolation -1.7 0.45826 [-2, -2, -1, -2, -1, -1, -2, -2, -2, -2] +discontented -1.8 0.9798 [-1, -3, -1, -2, -4, -2, -1, -2, -1, -1] +discord -1.7 0.64031 [-3, -2, -2, -2, -2, -1, -1, -1, -1, -2] +discounted 0.2 1.249 [-1, 0, 3, -1, 0, 1, 1, 1, -1, -1] +discourage -1.8 0.6 [-2, -2, -1, -2, -1, -1, -2, -2, -3, -2] +discourageable -1.2 0.9798 [-1, -2, -1, 1, -1, -1, -1, -2, -3, -1] +discouraged -1.7 0.45826 [-2, -1, -2, -2, -2, -2, -1, -1, -2, -2] +discouragement -2.0 0.89443 [-4, -1, -2, -2, -1, -1, -3, -2, -2, -2] +discouragements -1.8 0.6 [-2, -2, -2, -1, -1, -3, -2, -1, -2, -2] +discourager -1.7 0.78102 [-2, -1, -3, -2, -1, -3, -1, -2, -1, -1] +discouragers -1.9 0.53852 [-2, -2, -2, -2, -1, -1, -3, -2, -2, -2] +discourages -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -1, -3, -2, -2] +discouraging -1.9 0.7 [-2, -2, -2, -3, -1, -1, -2, -1, -2, -3] +discouragingly -1.8 0.87178 [-2, -1, -3, -1, -1, -3, -2, -1, -3, -1] +discredited -1.9 0.53852 [-2, -2, -2, -2, -1, -3, -1, -2, -2, -2] +disdain -2.1 0.3 [-3, -2, -2, -2, -2, -2, -2, -2, -2, -2] +disgrace -2.2 0.74833 [-2, -4, -1, -2, -2, -2, -2, -3, -2, -2] +disgraced -2.0 0.44721 [-3, -2, -2, -2, -1, -2, -2, -2, -2, -2] +disguise -1.0 1.09545 [-2, -1, 0, 0, 0, 0, -3, -2, -2, 0] +disguised -1.1 1.04403 [-3, 0, 0, -1, -1, 0, -3, -1, -1, -1] +disguises -1.0 0.63246 [-2, 0, 0, -1, -1, -1, -2, -1, -1, -1] +disguising -1.3 0.78102 [0, -2, -1, -1, -1, -2, -1, -1, -3, -1] +disgust -2.9 0.7 [-3, -3, -4, -2, -3, -3, -4, -2, -3, -2] +disgusted -2.4 0.91652 [-4, -3, -3, -1, -3, -1, -2, -2, -2, -3] +disgustedly -3.0 0.89443 [-2, -3, -4, -4, -2, -4, -4, -2, -3, -2] +disgustful -2.6 0.4899 [-3, -3, -2, -2, -2, -2, -3, -3, -3, -3] +disgusting -2.4 1.11355 [-3, -2, -3, -4, -1, -3, -1, -4, -1, -2] +disgustingly -2.9 0.7 [-3, -3, -4, -3, -3, -2, -2, -4, -2, -3] +disgusts -2.1 0.53852 [-2, -2, -3, -2, -2, -2, -2, -3, -1, -2] +dishearten -2.0 0.63246 [-3, -1, -2, -3, -2, -2, -1, -2, -2, -2] +disheartened -2.2 0.74833 [-2, -2, -2, -1, -2, -2, -4, -3, -2, -2] +disheartening -1.8 1.32665 [-2, -2, -2, -3, -2, 2, -2, -2, -3, -2] +dishearteningly -2.0 0.63246 [-2, -3, -2, -1, -2, -2, -2, -3, -2, -1] +disheartenment -2.3 0.45826 [-3, -2, -3, -2, -2, -2, -2, -3, -2, -2] +disheartenments -2.2 0.87178 [-2, -3, -3, -3, -3, -1, -1, -1, -2, -3] +disheartens -2.2 0.4 [-3, -2, -2, -2, -3, -2, -2, -2, -2, -2] +dishonest -2.7 0.9 [-3, -2, -1, -4, -3, -2, -4, -3, -3, -2] +disillusion -1.0 1.18322 [-2, 0, -2, -1, -2, 1, -2, -1, 1, -2] +disillusioned -1.9 0.7 [-2, -2, -3, -2, -3, -1, -1, -1, -2, -2] +disillusioning -1.3 1.00499 [-2, -2, 1, -2, 0, -2, -2, -1, -1, -2] +disillusionment -1.7 0.78102 [-1, -3, -2, -3, -1, -2, -2, -1, -1, -1] +disillusionments -1.5 1.0247 [-2, 1, -3, -2, -1, -1, -2, -1, -2, -2] +disillusions -1.6 0.4899 [-2, -2, -2, -1, -1, -1, -2, -2, -1, -2] +disinclined -1.1 0.53852 [0, -1, -1, -1, -1, -1, -1, -2, -2, -1] +disjointed -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -2, -1, -1] +dislike -1.6 0.4899 [-2, -1, -1, -2, -2, -1, -2, -1, -2, -2] +disliked -1.7 0.64031 [-2, -3, -2, -1, -1, -1, -2, -2, -1, -2] +dislikes -1.7 0.78102 [-2, -2, -1, -1, -2, -1, -3, -3, -1, -1] +disliking -1.3 0.45826 [-1, -1, -2, -2, -2, -1, -1, -1, -1, -1] +dismal -3.0 1.0 [-2, -1, -4, -4, -3, -2, -3, -4, -4, -3] +dismay -1.8 0.87178 [-3, -1, -1, -3, -1, -1, -3, -1, -2, -2] +dismayed -1.9 0.9434 [-1, -2, -1, -3, -4, -1, -2, -2, -1, -2] +dismaying -2.2 0.9798 [-2, -3, -2, -3, -3, 0, -2, -1, -3, -3] +dismayingly -1.9 0.83066 [-2, -3, -2, -3, -2, -1, -2, -2, 0, -2] +dismays -1.8 1.07703 [-1, -1, -4, -3, -2, -1, -2, 0, -2, -2] +disorder -1.7 0.64031 [-2, -1, -1, -2, -2, -1, -3, -1, -2, -2] +disorganized -1.2 0.4 [-1, -1, -1, -1, -1, -2, -1, -2, -1, -1] +disoriented -1.5 0.67082 [-2, -2, -1, 0, -1, -2, -2, -1, -2, -2] +disparage -2.0 0.44721 [-2, -2, -2, -1, -2, -2, -2, -3, -2, -2] +disparaged -1.4 0.8 [-1, -2, -2, -3, -1, -1, -1, -2, 0, -1] +disparages -1.6 0.8 [-1, -2, -3, -2, -1, -1, -2, -2, 0, -2] +disparaging -2.2 0.6 [-3, -1, -2, -2, -2, -3, -3, -2, -2, -2] +displeased -1.9 0.7 [-3, -2, -1, -1, -3, -2, -2, -1, -2, -2] +dispute -1.7 0.78102 [-1, -3, -1, -1, -2, -1, -2, -2, -3, -1] +disputed -1.4 0.66332 [-2, -2, -2, -2, 0, -1, -1, -1, -1, -2] +disputes -1.1 1.64012 [-2, -2, -2, 2, -3, -1, -2, 2, -1, -2] +disputing -1.7 0.64031 [-2, -2, -2, -2, -1, -1, -3, -1, -1, -2] +disqualified -1.8 0.6 [-1, -2, -1, -2, -1, -2, -2, -3, -2, -2] +disquiet -1.3 0.9 [-1, -2, -2, -1, -1, -1, 1, -2, -2, -2] +disregard -1.1 0.53852 [-1, -1, -2, -1, -1, -2, -1, -1, 0, -1] +disregarded -1.6 0.4899 [-1, -1, -2, -2, -2, -2, -1, -2, -1, -2] +disregarding -0.9 0.53852 [-1, 0, -1, 0, -2, -1, -1, -1, -1, -1] +disregards -1.4 0.4899 [-1, -1, -2, -1, -2, -2, -2, -1, -1, -1] +disrespect -1.8 0.6 [-2, -2, -2, -1, -2, -2, -1, -3, -1, -2] +disrespected -2.0 0.63246 [-2, -2, -2, -2, -2, -3, -3, -1, -1, -2] +disruption -1.5 0.67082 [-1, -1, -1, -2, -1, -3, -2, -2, -1, -1] +disruptions -1.4 0.4899 [-1, -2, -1, -1, -1, -2, -2, -2, -1, -1] +disruptive -1.3 1.00499 [-4, 0, -1, -1, -1, -1, -1, -1, -2, -1] +dissatisfaction -2.2 0.74833 [-4, -2, -2, -2, -1, -3, -2, -2, -2, -2] +dissatisfactions -1.9 0.83066 [-1, -3, -3, -1, -2, -1, -2, -2, -1, -3] +dissatisfactory -2.0 0.63246 [-2, -2, -3, -1, -2, -3, -2, -2, -1, -2] +dissatisfied -1.6 0.66332 [-2, -3, -1, -2, -1, -1, -2, -2, -1, -1] +dissatisfies -1.8 0.74833 [-3, -3, -1, -1, -2, -1, -2, -2, -2, -1] +dissatisfy -2.2 0.6 [-2, -3, -2, -2, -2, -2, -3, -3, -1, -2] +dissatisfying -2.4 0.91652 [-3, -1, -4, -3, -2, -1, -2, -2, -3, -3] +distort -1.3 0.45826 [-2, -1, -1, -1, -2, -1, -1, -1, -1, -2] +distorted -1.7 0.78102 [-3, -1, -3, -1, -2, -1, -2, -2, -1, -1] +distorting -1.1 0.53852 [0, -1, -1, -1, -2, -1, -1, -1, -2, -1] +distorts -1.4 0.4899 [-2, -1, -1, -1, -2, -2, -2, -1, -1, -1] +distract -1.2 0.6 [-1, -1, 0, -2, -1, -1, -1, -2, -1, -2] +distractable -1.3 1.00499 [-2, 0, 1, -2, -2, -1, -1, -2, -2, -2] +distracted -1.4 0.66332 [-1, -3, -1, -2, -2, -1, -1, -1, -1, -1] +distractedly -0.9 0.7 [-1, -1, 0, -2, -1, 0, -1, 0, -1, -2] +distractibility -1.3 1.1 [-1, -1, -3, -1, 0, -3, -2, 0, -2, 0] +distractible -1.5 0.92195 [-1, -2, -1, -1, -4, -1, -1, -1, -2, -1] +distracting -1.2 0.4 [-2, -1, -1, -1, -1, -1, -2, -1, -1, -1] +distractingly -1.4 1.0198 [-4, 0, -1, -1, -1, -2, -1, -1, -2, -1] +distraction -1.6 0.66332 [-1, -2, -2, -1, -1, -3, -1, -1, -2, -2] +distractions -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] +distractive -1.6 0.4899 [-2, -2, -1, -1, -1, -1, -2, -2, -2, -2] +distracts -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -2, -1, -1] +distraught -2.6 0.8 [-2, -3, -2, -3, -4, -2, -3, -3, -1, -3] +distress -2.4 0.8 [-1, -2, -2, -3, -3, -4, -3, -2, -2, -2] +distressed -1.8 0.6 [-2, -2, -2, -3, -2, -2, -1, -1, -2, -1] +distresses -1.6 0.66332 [-2, -1, -1, -2, -2, -2, -1, -1, -3, -1] +distressful -2.2 0.6 [-1, -3, -3, -2, -2, -3, -2, -2, -2, -2] +distressfully -1.7 1.1 [-1, -3, -2, 1, -3, -1, -2, -2, -2, -2] +distressfulness -2.4 0.66332 [-2, -3, -2, -3, -3, -3, -2, -1, -3, -2] +distressing -1.7 1.18743 [-3, -3, -1, -1, -2, -2, -3, -2, 1, -1] +distressingly -2.2 0.74833 [-3, -1, -2, -3, -3, -3, -2, -2, -2, -1] +distrust -1.8 0.87178 [-1, -2, -2, -2, -1, -1, -2, -4, -1, -2] +distrusted -2.4 0.66332 [-1, -3, -3, -3, -2, -2, -3, -2, -2, -3] +distrustful -2.1 0.83066 [-1, -3, -2, -2, -3, -1, -1, -3, -2, -3] +distrustfully -1.8 0.6 [-2, -1, -1, -2, -1, -2, -3, -2, -2, -2] +distrustfulness -1.6 0.66332 [-2, -1, -2, -1, -2, -1, -1, -3, -1, -2] +distrusting -2.1 0.83066 [-1, -2, -2, -2, -3, -3, -1, -3, -1, -3] +distrusts -1.3 0.45826 [-1, -1, -2, -1, -2, -1, -2, -1, -1, -1] +disturb -1.7 0.45826 [-2, -1, -1, -2, -2, -2, -1, -2, -2, -2] +disturbance -1.6 0.8 [-1, -2, -1, -2, -2, -3, -1, -2, 0, -2] +disturbances -1.4 0.66332 [-1, -1, -1, -2, -1, -1, -1, -1, -3, -2] +disturbed -1.6 0.4899 [-2, -2, -1, -1, -2, -2, -1, -2, -1, -2] +disturber -1.4 0.4899 [-2, -1, -1, -2, -2, -1, -1, -2, -1, -1] +disturbers -2.1 0.53852 [-2, -2, -2, -2, -2, -3, -3, -2, -1, -2] +disturbing -2.3 0.45826 [-2, -2, -3, -3, -2, -2, -3, -2, -2, -2] +disturbingly -2.3 0.78102 [-2, -2, -1, -3, -4, -3, -2, -2, -2, -2] +disturbs -1.9 0.53852 [-2, -2, -1, -2, -3, -2, -1, -2, -2, -2] +dithering -0.5 0.92195 [0, 0, 0, 0, 1, -1, -2, -2, -1, 0] +divination 1.7 1.1 [2, 3, 0, 1, 2, 1, 3, 3, 2, 0] +divinations 1.1 1.04403 [1, 0, 1, 2, 2, 0, 3, 2, 0, 0] +divinatory 1.6 1.42829 [4, 1, 0, 0, 1, 3, 3, 0, 1, 3] +divine 2.6 0.8 [3, 3, 3, 2, 1, 2, 3, 4, 2, 3] +divined 0.8 1.16619 [1, 0, 3, 0, 0, 1, 0, 3, 0, 0] +divinely 2.9 0.7 [3, 2, 3, 3, 2, 4, 3, 2, 4, 3] +diviner 0.3 0.9 [0, 0, 3, 0, 0, 0, 0, 0, 0, 0] +diviners 1.2 1.16619 [0, 1, 0, 2, 2, 0, 3, 1, 3, 0] +divines 0.8 1.249 [0, 0, 3, 0, 0, 0, 3, 2, 0, 0] +divinest 2.7 0.78102 [3, 4, 2, 4, 2, 2, 2, 3, 2, 3] +diving 0.3 0.45826 [1, 0, 0, 0, 0, 1, 0, 1, 0, 0] +divining 0.9 1.37477 [0, -1, 2, 0, 1, 0, 2, 4, 1, 0] +divinise 0.5 1.36015 [0, 2, 0, 0, 0, 0, 0, -2, 2, 3] +divinities 1.8 1.46969 [1, 3, 3, 4, 0, 0, 1, 0, 3, 3] +divinity 2.7 1.00499 [4, 4, 2, 3, 3, 1, 2, 4, 2, 2] +divinize 2.3 1.00499 [4, 2, 2, 3, 4, 1, 1, 2, 2, 2] +dizzy -0.9 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, 0, -1] +dodging -0.4 0.8 [-1, -1, 0, 1, 0, -1, 0, 0, -2, 0] +dodgy -0.9 0.9434 [-1, -1, -1, -3, -1, 1, -1, -1, -1, 0] +dolorous -2.2 0.6 [-2, -2, -2, -3, -3, -3, -2, -2, -1, -2] +dominance 0.8 0.87178 [2, 0, 0, 2, 1, 0, 0, 1, 2, 0] +dominances -0.1 0.9434 [-1, 0, 1, 1, 0, -1, 0, 1, 0, -2] +dominantly 0.2 1.16619 [-2, 0, 0, -1, 2, 1, 2, 0, 0, 0] +dominants 0.2 1.16619 [0, 2, -1, 0, -1, -1, -1, 1, 1, 2] +dominate -0.5 0.92195 [0, -1, 1, -1, 1, -1, -2, 0, -1, -1] +dominates 0.2 1.249 [1, 0, -2, -1, 1, -1, 2, 0, 0, 2] +dominating -1.2 1.98997 [-4, -1, -4, -1, -3, -1, -1, 2, 2, -1] +domination -0.2 0.9798 [0, 1, 0, -1, -1, -1, 0, 2, -1, -1] +dominations -0.3 0.45826 [0, 0, 0, 0, 0, -1, 0, -1, -1, 0] +dominative -0.7 1.18743 [-1, -1, -2, -2, -1, -1, -1, 2, 1, -1] +dominators -0.4 1.8 [-1, -2, -2, -2, 0, 2, 2, -3, 2, 0] +dominatrices -0.2 1.6 [-3, 0, 2, 0, -2, -2, 0, 1, 2, 0] +dominatrix -0.5 0.92195 [0, 0, -1, 0, 0, 1, 0, -1, -2, -2] +dominatrixes 0.6 1.35647 [0, 4, 0, -1, 0, 2, 1, 0, 0, 0] +doom -1.7 1.26886 [-2, -1, -1, -4, -2, -2, 1, -3, -1, -2] +doomed -3.2 0.74833 [-3, -3, -4, -4, -4, -2, -4, -3, -3, -2] +doomful -2.1 0.7 [-3, -2, -3, -1, -2, -3, -2, -1, -2, -2] +dooming -2.8 0.4 [-2, -3, -2, -3, -3, -3, -3, -3, -3, -3] +dooms -1.1 1.57797 [1, -3, -1, -3, -2, -1, -3, 1, 1, -1] +doomsayer -0.7 1.41774 [2, -1, -2, -1, 1, -2, -2, -1, 1, -2] +doomsayers -1.7 0.78102 [-1, -2, -3, 0, -2, -2, -2, -1, -2, -2] +doomsaying -1.5 1.28452 [-3, -2, -2, 0, 1, 0, -3, -2, -2, -2] +doomsayings -1.5 0.92195 [-2, -1, -1, -2, -2, 0, 0, -2, -3, -2] +doomsday -2.8 1.249 [-3, -1, -3, -4, -3, -4, 0, -4, -3, -3] +doomsdayer -2.2 1.249 [-3, -1, -4, -3, -4, -3, -1, -1, -1, -1] +doomsdays -2.4 1.85472 [-3, -2, -4, 1, -4, -3, -2, -4, 1, -4] +doomster -2.2 0.87178 [-2, -1, -2, -3, -1, -3, -1, -3, -3, -3] +doomsters -1.6 0.8 [-3, -1, -2, -2, 0, -2, -2, -1, -1, -2] +doomy -1.1 1.37477 [2, -2, -1, -2, -2, -2, -2, 1, -1, -2] +dork -1.4 0.66332 [-1, -2, -2, -1, -1, -1, -3, -1, -1, -1] +dorkier -1.1 0.53852 [-1, -1, -1, -1, -2, 0, -1, -2, -1, -1] +dorkiest -1.2 0.74833 [-1, -2, -1, -3, -1, 0, -1, -1, -1, -1] +dorks -0.5 0.67082 [-1, 1, -1, -1, -1, -1, 0, 0, -1, 0] +dorky -1.1 1.04403 [-1, 0, -1, 1, -1, -1, -3, -2, -2, -1] +doubt -1.5 0.5 [-1, -1, -2, -2, -1, -1, -2, -1, -2, -2] +doubtable -1.5 0.5 [-1, -1, -2, -1, -2, -1, -2, -2, -1, -2] +doubted -1.1 1.22066 [-1, -2, -2, 2, -1, -1, -2, -2, -2, 0] +doubter -1.6 0.91652 [-1, -3, -2, -1, -1, -1, -2, -2, -3, 0] +doubters -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -1, -2, -2, -1] +doubtful -1.4 0.4899 [-1, -1, -2, -1, -2, -2, -1, -1, -2, -1] +doubtfully -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -2] +doubtfulness -1.2 0.4 [-2, -1, -1, -1, -1, -1, -1, -1, -1, -2] +doubting -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -1, -1, -2, -2] +doubtingly -1.4 0.4899 [-2, -2, -1, -1, -1, -1, -1, -2, -2, -1] +doubtless 0.9 1.51327 [2, 2, 1, 2, -2, 2, -2, 1, 1, 2] +doubtlessly 1.2 0.9798 [2, 1, 1, 2, 0, -1, 2, 1, 2, 2] +doubtlessness 0.8 0.9798 [2, 1, 2, 0, 0, 0, 2, -1, 1, 1] +doubts -1.2 0.6 [-2, -1, -1, -1, -2, -2, -1, 0, -1, -1] +douche -1.5 1.68819 [-3, -2, -3, 1, 1, -2, -3, -2, 1, -3] +douchebag -3.0 0.44721 [-3, -3, -3, -3, -3, -3, -2, -3, -4, -3] +downcast -1.8 0.74833 [-1, -1, -1, -2, -2, -2, -1, -3, -3, -2] +downhearted -2.3 0.78102 [-1, -2, -2, -4, -2, -2, -2, -3, -3, -2] +downside -1.0 0.7746 [-1, -1, -1, -1, -1, -1, -2, 1, -2, -1] +drag -0.9 0.83066 [-1, -2, -1, -1, -2, -1, -1, 1, 0, -1] +dragged -0.2 1.07703 [-2, -1, 0, 0, -1, 0, 0, 1, 2, -1] +drags -0.7 0.64031 [0, -1, 0, -1, -1, -2, -1, 0, 0, -1] +drained -1.5 0.5 [-1, -1, -2, -2, -1, -2, -1, -2, -1, -2] +dread -2.0 0.63246 [-2, -3, -2, -2, -2, -2, -3, -1, -1, -2] +dreaded -2.7 0.64031 [-2, -3, -3, -3, -4, -3, -2, -2, -2, -3] +dreadful -1.9 1.86815 [-4, -2, -2, 2, -1, -4, -1, 0, -3, -4] +dreadfully -2.7 1.26886 [-4, -4, -3, -4, -3, -1, -2, -1, -1, -4] +dreadfulness -3.2 0.87178 [-3, -4, -2, -3, -4, -4, -2, -2, -4, -4] +dreadfuls -2.4 1.2 [-4, -3, -3, -2, -3, -2, -4, 0, -1, -2] +dreading -2.4 0.8 [-3, -2, -2, -2, -2, -2, -3, -4, -3, -1] +dreadlock -0.4 0.66332 [0, 0, 0, 0, 0, -1, -2, 0, -1, 0] +dreadlocks -0.2 0.9798 [0, 0, 0, 0, 0, -1, -2, 2, 0, -1] +dreadnought -0.6 1.35647 [-2, 0, 0, 0, -3, 0, -1, -2, 0, 2] +dreadnoughts -0.4 0.66332 [0, -1, -1, 0, 0, 0, 0, 0, -2, 0] +dreads -1.4 1.42829 [0, -1, 0, 0, -3, -3, 0, -4, -2, -1] +dream 1.0 1.18322 [0, 1, 2, 0, 0, 3, 0, 3, 1, 0] +dreams 1.7 1.1 [2, 2, 3, 0, 1, 1, 1, 4, 1, 2] +dreary -1.4 0.4899 [-1, -1, -2, -1, -1, -2, -2, -1, -2, -1] +droopy -0.8 0.74833 [-1, -1, 0, -1, -2, 0, 0, -1, 0, -2] +drop -1.1 0.53852 [0, -1, -1, -1, -2, -1, -2, -1, -1, -1] +drown -2.7 1.00499 [-4, -2, -2, -4, -4, -2, -3, -1, -3, -2] +drowned -2.9 0.7 [-2, -3, -3, -3, -2, -4, -4, -2, -3, -3] +drowns -2.2 1.6 [-3, -3, -3, -4, -2, -3, -1, -2, 2, -3] +drunk -1.4 0.91652 [-3, -1, 0, -2, 0, -1, -1, -2, -2, -2] +dubious -1.5 0.5 [-1, -2, -2, -1, -1, -2, -1, -1, -2, -2] +dud -1.0 0.89443 [-1, -1, -1, 0, -3, 0, -1, 0, -1, -2] +dull -1.7 0.45826 [-2, -2, -2, -1, -2, -2, -2, -1, -1, -2] +dullard -1.6 0.66332 [-2, -1, -1, -2, -2, -1, -1, -2, -1, -3] +dullards -1.8 0.87178 [-1, -3, -1, -1, -3, -1, -1, -2, -3, -2] +dulled -1.5 0.5 [-2, -1, -2, -1, -1, -1, -2, -2, -1, -2] +duller -1.7 0.64031 [-3, -1, -2, -2, -2, -1, -2, -1, -1, -2] +dullest -1.7 1.00499 [-1, -4, -1, -1, -2, -3, -2, -1, -1, -1] +dulling -1.1 0.7 [-1, -2, 0, -1, -2, -2, 0, -1, -1, -1] +dullish -1.1 0.53852 [-2, -1, -1, -1, -1, -1, -1, -1, 0, -2] +dullness -1.4 0.8 [-1, -1, -1, -1, -1, -1, -3, -1, -3, -1] +dullnesses -1.9 1.04403 [-3, -2, -1, -1, -3, -1, -4, -1, -2, -1] +dulls -1.0 0.44721 [-1, -1, -1, -1, -1, -1, 0, -1, -1, -2] +dullsville -2.4 0.8 [-2, -2, -4, -3, -2, -2, -3, -2, -3, -1] +dully -1.1 0.3 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -2] +dumb -2.3 0.9 [-4, -2, -2, -2, -2, -2, -4, -2, -2, -1] +dumbass -2.6 1.0198 [-3, -3, -4, -4, -1, -2, -3, -3, -1, -2] +dumbbell -0.8 0.9798 [0, -1, -3, -2, 0, -1, 0, 0, -1, 0] +dumbbells -0.2 0.4 [0, -1, 0, 0, 0, 0, 0, -1, 0, 0] +dumbcane -0.3 0.45826 [0, 0, 0, 0, 0, -1, -1, 0, -1, 0] +dumbcanes -0.6 1.2 [0, 0, -1, -1, -1, 2, 0, -1, -3, -1] +dumbed -1.4 0.4899 [-2, -1, -2, -2, -2, -1, -1, -1, -1, -1] +dumber -1.5 0.5 [-2, -1, -2, -1, -2, -1, -1, -2, -2, -1] +dumbest -2.3 1.00499 [-3, -1, -3, -4, -2, -1, -2, -3, -1, -3] +dumbfound -0.1 1.92094 [3, -2, -1, -1, 1, 1, -3, 3, -1, -1] +dumbfounded -1.6 1.11355 [-2, 0, -2, 0, -2, -1, -4, -1, -2, -2] +dumbfounder -1.0 0.89443 [-2, 0, 0, 0, -2, -1, -2, 0, -2, -1] +dumbfounders -1.0 0.89443 [-1, -3, -1, 0, -2, 0, -1, 0, -1, -1] +dumbfounding -0.8 0.74833 [-1, -2, 0, -1, -1, 0, 0, -1, 0, -2] +dumbfounds -0.3 1.26886 [0, -1, -1, 0, 0, -1, -1, -2, 0, 3] +dumbhead -2.6 0.66332 [-3, -4, -3, -2, -2, -3, -3, -2, -2, -2] +dumbheads -1.9 0.83066 [-2, -2, -2, -1, -2, -1, -2, -4, -1, -2] +dumbing -0.5 1.0247 [-1, 2, -1, 0, -1, -2, -1, 0, 0, -1] +dumbly -1.3 1.00499 [-2, -1, -2, -3, 1, -2, -1, -1, -1, -1] +dumbness -1.9 0.53852 [-2, -2, -2, -2, -2, -3, -2, -2, -1, -1] +dumbs -1.5 0.67082 [-1, -1, -1, -3, -2, -1, -2, -1, -2, -1] +dumbstruck -1.0 1.34164 [-1, -2, 0, 0, -2, 1, -3, 1, -2, -2] +dumbwaiter 0.2 1.07703 [0, 0, 0, 0, 2, 0, 2, 0, -2, 0] +dumbwaiters -0.1 0.3 [0, 0, 0, 0, 0, 0, -1, 0, 0, 0] +dump -1.6 0.91652 [-3, -2, -1, -2, -1, -3, -2, -1, -1, 0] +dumpcart -0.6 0.8 [0, -2, -1, 0, 0, 0, -1, 0, -2, 0] +dumped -1.7 0.78102 [-2, -3, -2, -1, -1, -1, -3, -2, -1, -1] +dumper -1.2 0.87178 [-2, -3, -1, -1, -1, -2, 0, -1, 0, -1] +dumpers -0.8 0.6 [0, 0, -2, -1, -1, 0, -1, -1, -1, -1] +dumpier -1.4 0.66332 [-2, -1, -2, -1, -1, -2, 0, -2, -1, -2] +dumpiest -1.6 1.35647 [-1, -2, -2, -3, -2, -4, 1, 0, -1, -2] +dumpiness -1.2 0.6 [-2, -1, 0, -1, -1, -2, -1, -2, -1, -1] +dumping -1.3 1.1 [-3, -2, -2, 0, -2, -1, -1, 1, -1, -2] +dumpings -1.1 0.83066 [-2, 0, -1, -1, 0, -1, -2, -2, 0, -2] +dumpish -1.8 0.6 [-2, -1, -2, -3, -2, -2, -1, -2, -2, -1] +dumpling 0.4 0.91652 [0, 0, 1, 0, -1, 2, 2, 0, 0, 0] +dumplings -0.3 1.26886 [0, 0, 0, 0, 2, 0, 0, 0, -2, -3] +dumps -1.7 0.9 [-3, -2, -3, -1, -1, -3, -1, -1, -1, -1] +dumpster -0.6 0.91652 [0, -2, 0, -2, 0, 0, 0, -2, 0, 0] +dumpsters -1.0 0.89443 [0, -1, 0, -2, -2, -2, 0, 0, -1, -2] +dumpy -1.7 0.78102 [-3, -2, -3, -1, -1, -2, -2, -1, -1, -1] +dupe -1.5 0.5 [-2, -2, -1, -1, -2, -1, -2, -1, -2, -1] +duped -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -1, -2, -2] +dwell 0.5 0.92195 [2, 1, -1, 0, -1, 1, 1, 1, 1, 0] +dwelled 0.4 0.66332 [2, 0, 0, 0, 0, 1, 1, 0, 0, 0] +dweller 0.3 0.64031 [2, 0, 0, 0, 0, 0, 1, 0, 0, 0] +dwellers -0.3 0.9 [-3, 0, 0, 0, 0, 0, 0, 0, 0, 0] +dwelling 0.1 0.53852 [0, 1, 0, 1, 0, 0, 0, -1, 0, 0] +dwells -0.1 0.53852 [0, 0, 0, 0, -1, 1, -1, 0, 0, 0] +dynamic 1.6 0.8 [1, 1, 1, 3, 1, 1, 2, 3, 2, 1] +dynamical 1.2 0.87178 [1, 2, 0, 1, 0, 2, 2, 2, 2, 0] +dynamically 1.5 1.0247 [2, 0, 3, 2, 0, 0, 2, 2, 2, 2] +dynamics 1.1 1.13578 [2, 3, 0, 0, 0, 2, 2, 0, 2, 0] +dynamism 1.6 1.11355 [0, 2, 0, 2, 0, 2, 3, 3, 2, 2] +dynamisms 1.2 0.9798 [2, 0, 2, 0, 0, 2, 2, 2, 0, 2] +dynamist 1.4 1.0198 [0, 2, 0, 2, 0, 1, 3, 2, 2, 2] +dynamistic 1.5 1.0247 [3, 1, 1, 2, 1, 3, 2, 0, 2, 0] +dynamists 0.9 0.83066 [1, 0, 0, 0, 0, 2, 2, 1, 2, 1] +dynamite 0.7 2.2383 [-3, 2, 3, 1, 2, 0, 2, 2, 2, -4] +dynamited -0.9 1.04403 [0, 0, 0, -1, -1, 0, -2, 0, -2, -3] +dynamiter -1.2 0.87178 [-1, 0, -1, -1, -2, 0, -1, -1, -2, -3] +dynamiters 0.4 1.42829 [0, 0, 0, -3, 1, 0, 2, 2, 2, 0] +dynamites -0.3 1.73494 [0, 0, 4, -1, -1, 0, 0, 0, -2, -3] +dynamitic 0.9 1.3 [2, 0, 1, -2, 2, 1, 1, 3, 0, 1] +dynamiting 0.2 1.32665 [-2, 0, 0, 2, -1, -1, 0, 2, 2, 0] +dynamometer 0.3 0.64031 [0, 0, 0, 0, 1, 0, 0, 2, 0, 0] +dynamometers 0.3 0.45826 [0, 0, 0, 0, 0, 1, 0, 1, 1, 0] +dynamometric 0.3 0.9 [0, 0, 0, 0, 0, 2, 0, 0, 2, -1] +dynamometry 0.6 1.28062 [-2, 0, 0, 0, 0, 2, 2, 2, 0, 2] +dynamos 0.3 0.64031 [1, 0, 0, 0, 0, 0, 0, 0, 2, 0] +dynamotor 0.6 0.91652 [0, 2, 0, 0, 0, 0, 2, 0, 2, 0] +dysfunction -1.8 0.6 [-2, -3, -2, -1, -2, -1, -2, -1, -2, -2] +eager 1.5 0.67082 [1, 3, 1, 2, 2, 2, 1, 1, 1, 1] +eagerly 1.6 0.66332 [0, 1, 2, 2, 2, 2, 2, 1, 2, 2] +eagerness 1.7 0.45826 [2, 2, 2, 2, 1, 1, 2, 2, 2, 1] +eagers 1.6 0.66332 [2, 2, 3, 1, 2, 1, 1, 1, 2, 1] +earnest 2.3 0.64031 [3, 2, 3, 1, 2, 2, 2, 3, 3, 2] +ease 1.5 0.92195 [1, 1, 1, 0, 2, 1, 2, 3, 3, 1] +eased 1.2 0.74833 [2, 0, 1, 0, 2, 2, 1, 1, 1, 2] +easeful 1.5 1.0247 [2, 1, 1, 2, 1, 0, 3, 2, 0, 3] +easefully 1.4 0.4899 [2, 2, 1, 1, 1, 1, 2, 2, 1, 1] +easel 0.3 0.45826 [0, 0, 0, 0, 1, 1, 0, 0, 0, 1] +easement 1.6 0.91652 [0, 1, 2, 3, 2, 1, 2, 1, 3, 1] +easements 0.4 1.11355 [0, 0, 0, 1, 2, -2, 1, 0, 2, 0] +eases 1.3 0.78102 [2, 0, 1, 0, 2, 2, 2, 1, 1, 2] +easier 1.8 0.9798 [1, 1, 2, 2, 4, 3, 2, 1, 1, 1] +easiest 1.8 1.07703 [2, 4, 1, 3, 2, 0, 2, 2, 1, 1] +easily 1.4 0.4899 [2, 1, 1, 2, 1, 2, 1, 2, 1, 1] +easiness 1.6 0.66332 [2, 1, 1, 2, 3, 2, 1, 1, 2, 1] +easing 1.0 0.63246 [0, 0, 2, 1, 1, 2, 1, 1, 1, 1] +easy 1.9 1.04403 [1, 4, 2, 1, 1, 3, 1, 3, 2, 1] +easygoing 1.3 0.45826 [1, 1, 1, 1, 1, 1, 2, 2, 2, 1] +easygoingness 1.5 0.67082 [1, 2, 1, 2, 1, 3, 1, 2, 1, 1] +ecstacy 3.3 1.18743 [4, 4, 3, 4, 4, 0, 3, 3, 4, 4] +ecstasies 2.3 1.34536 [3, 3, 2, 4, 3, 1, 3, -1, 2, 3] +ecstasy 2.9 1.75784 [4, 3, 3, 4, 4, 2, -2, 3, 4, 4] +ecstatic 2.3 1.34536 [3, 4, 3, 4, 1, 1, 1, 4, 1, 1] +ecstatically 2.8 1.93907 [3, 4, -1, 4, 4, 4, -1, 3, 4, 4] +ecstatics 2.9 0.83066 [1, 3, 4, 4, 3, 3, 3, 2, 3, 3] +eerie -1.5 0.67082 [-1, -1, -2, -2, -1, -1, -2, -1, -3, -1] +eery -0.9 1.04403 [-3, -1, -2, -1, -2, 0, 0, 0, 0, 0] +effective 2.1 0.83066 [2, 2, 2, 1, 3, 4, 2, 1, 2, 2] +effectively 1.9 0.7 [1, 2, 1, 2, 2, 1, 3, 3, 2, 2] +efficiencies 1.6 0.4899 [2, 1, 1, 2, 2, 2, 1, 2, 2, 1] +efficiency 1.5 0.5 [2, 1, 2, 2, 1, 2, 1, 1, 2, 1] +efficient 1.8 0.9798 [1, 2, 1, 1, 2, 3, 3, 0, 2, 3] +efficiently 1.7 0.78102 [1, 3, 2, 1, 3, 1, 1, 2, 2, 1] +effin -2.3 1.18743 [0, -3, -3, -3, -2, -1, -4, -1, -3, -3] +egotism -1.4 0.91652 [-2, -3, -1, -2, -2, 0, 0, -1, -2, -1] +egotisms -1.0 0.7746 [-1, -1, -1, -1, -1, 0, 0, -1, -3, -1] +egotist -2.3 0.9 [-2, -1, -2, -3, -4, -2, -3, -3, -1, -2] +egotistic -1.4 1.0198 [-2, -1, -1, -1, -2, 1, -3, -2, -1, -2] +egotistical -0.9 1.57797 [-1, -2, -2, -1, -2, 1, -3, 2, 1, -2] +egotistically -1.8 0.87178 [-2, -1, -1, -2, -1, -3, -3, -1, -1, -3] +egotists -1.7 0.78102 [-1, -2, 0, -2, -2, -2, -3, -1, -2, -2] +elated 3.2 0.74833 [2, 4, 4, 3, 4, 3, 3, 2, 3, 4] +elation 1.5 1.43178 [1, 2, -2, 2, 2, 3, 0, 3, 2, 2] +elegance 2.1 0.53852 [3, 2, 2, 1, 2, 2, 3, 2, 2, 2] +elegances 1.8 0.6 [2, 2, 1, 1, 2, 2, 2, 3, 2, 1] +elegancies 1.6 1.0198 [2, 1, 2, 1, 1, 0, 4, 1, 2, 2] +elegancy 2.1 0.53852 [3, 2, 2, 1, 2, 2, 3, 2, 2, 2] +elegant 2.1 0.83066 [2, 2, 2, 1, 4, 1, 2, 3, 2, 2] +elegantly 1.9 0.83066 [2, 1, 1, 3, 2, 2, 1, 3, 3, 1] +embarrass -1.2 1.66132 [-2, -2, -3, -1, -2, -2, 2, 2, -2, -2] +embarrassable -1.6 0.8 [-3, -2, -1, -3, -1, -1, -1, -2, -1, -1] +embarrassed -1.5 0.67082 [-2, -2, -1, -2, -1, -3, -1, -1, -1, -1] +embarrassedly -1.1 1.44568 [-2, -1, -2, -3, 1, -1, -1, -2, -2, 2] +embarrasses -1.7 0.78102 [-2, -3, -1, -2, -1, -3, -2, -1, -1, -1] +embarrassing -1.6 0.8 [-3, -1, -1, -1, -1, -2, -1, -2, -3, -1] +embarrassingly -1.7 0.64031 [-2, -1, -1, -2, -1, -2, -1, -3, -2, -2] +embarrassment -1.9 0.53852 [-2, -2, -1, -2, -2, -2, -2, -1, -3, -2] +embarrassments -1.7 0.64031 [-2, -1, -2, -1, -1, -2, -2, -1, -2, -3] +embittered -0.4 1.35647 [1, -2, -1, 1, -2, 2, 0, -1, 0, -2] +embrace 1.3 1.34536 [3, 2, 1, 3, 2, -1, 2, 1, -1, 1] +emergency -1.6 2.05913 [-3, -3, -3, -3, -4, 2, 1, -1, 1, -3] +emotional 0.6 1.0198 [1, -1, 0, 0, 0, 2, 0, 2, 2, 0] +empathetic 1.7 1.1 [-1, 3, 2, 2, 2, 1, 3, 1, 2, 2] +emptied -0.7 0.64031 [-1, 0, 0, 0, -1, -1, -1, -2, 0, -1] +emptier -0.7 0.64031 [-1, 0, 0, 0, -1, -1, -1, -2, 0, -1] +emptiers -0.7 0.78102 [0, 0, -1, 0, -1, -1, -2, 0, -2, 0] +empties -0.7 0.64031 [-1, 0, 0, 0, -1, -1, -1, -2, 0, -1] +emptiest -1.8 1.07703 [-1, -2, -2, -1, -1, -2, -3, 0, -4, -2] +emptily -1.0 1.41421 [-2, 2, -1, -1, -1, 0, -4, -1, -1, -1] +emptiness -1.9 0.7 [-2, -2, -3, -2, -2, -1, -1, -3, -1, -2] +emptinesses -1.5 1.11803 [-1, -1, -3, -1, -1, -1, -2, 0, -4, -1] +emptins -0.3 0.45826 [0, 0, 0, -1, 0, 0, 0, -1, -1, 0] +empty -0.8 0.74833 [-1, -1, -1, -1, -1, -1, -2, 0, -1, 1] +emptying -0.6 1.0198 [2, -1, -1, 0, -1, 0, -1, -1, -2, -1] +enchanted 1.6 0.8 [1, 3, 1, 2, 1, 3, 1, 2, 1, 1] +encourage 2.3 0.78102 [2, 1, 3, 2, 3, 4, 2, 2, 2, 2] +encouraged 1.5 0.5 [1, 2, 2, 2, 2, 2, 1, 1, 1, 1] +encouragement 1.8 0.9798 [2, 1, 2, 1, 1, 3, 1, 2, 4, 1] +encouragements 2.1 0.7 [3, 2, 3, 2, 1, 2, 3, 2, 2, 1] +encourager 1.5 0.5 [2, 1, 2, 1, 1, 2, 1, 1, 2, 2] +encouragers 1.5 0.5 [2, 2, 1, 1, 2, 2, 1, 1, 2, 1] +encourages 1.9 0.53852 [2, 2, 1, 2, 2, 1, 2, 2, 2, 3] +encouraging 2.4 0.66332 [2, 3, 2, 3, 3, 2, 3, 2, 1, 3] +encouragingly 2.0 0.7746 [1, 1, 1, 3, 2, 2, 2, 3, 2, 3] +endorse 1.3 0.9 [0, 1, 0, 1, 3, 2, 2, 2, 1, 1] +endorsed 1.0 0.89443 [1, 2, 0, 1, 1, 0, 1, 0, 3, 1] +endorsement 1.3 0.9 [0, 1, 2, 2, 1, 2, 0, 1, 3, 1] +endorses 1.4 0.4899 [1, 2, 1, 2, 1, 1, 1, 2, 2, 1] +enemies -2.2 0.6 [-2, -3, -1, -2, -2, -3, -2, -3, -2, -2] +enemy -2.5 0.92195 [-3, -2, -3, -3, -3, -4, -1, -3, -1, -2] +energetic 1.9 0.53852 [2, 1, 3, 2, 2, 2, 1, 2, 2, 2] +energetically 1.8 0.6 [2, 2, 1, 1, 2, 2, 3, 1, 2, 2] +energetics 0.3 0.64031 [1, 0, 0, 0, 0, 0, 2, 0, 0, 0] +energies 0.9 1.04403 [1, 0, 0, 2, 0, 1, 3, 2, 0, 0] +energise 2.2 0.4 [2, 2, 2, 2, 2, 2, 3, 2, 3, 2] +energised 2.1 0.53852 [2, 3, 1, 2, 2, 2, 3, 2, 2, 2] +energises 2.2 0.6 [3, 3, 2, 2, 1, 3, 2, 2, 2, 2] +energising 1.9 0.7 [2, 3, 1, 2, 2, 3, 2, 1, 1, 2] +energization 1.6 0.66332 [1, 2, 1, 3, 1, 1, 2, 2, 2, 1] +energizations 1.5 1.11803 [1, 0, 3, 1, 3, 0, 1, 1, 2, 3] +energize 2.1 0.7 [2, 2, 2, 1, 3, 2, 3, 2, 3, 1] +energized 2.3 0.64031 [3, 2, 3, 3, 3, 2, 2, 2, 1, 2] +energizer 2.1 0.53852 [3, 2, 2, 2, 2, 2, 2, 3, 1, 2] +energizers 1.7 0.9 [2, 0, 2, 3, 3, 1, 1, 2, 2, 1] +energizes 2.1 0.53852 [3, 2, 3, 2, 2, 2, 2, 2, 1, 2] +energizing 2.0 0.63246 [3, 3, 2, 1, 2, 2, 1, 2, 2, 2] +energy 1.1 0.83066 [0, 2, 0, 2, 1, 1, 2, 1, 2, 0] +engage 1.4 0.8 [1, 2, 3, 2, 1, 1, 0, 1, 2, 1] +engaged 1.7 1.1 [1, 1, 2, 2, 1, 0, 2, 3, 4, 1] +engagement 2.0 1.34164 [0, 0, 3, 4, 4, 2, 1, 2, 2, 2] +engagements 0.6 0.8 [1, 0, 0, 2, 0, 2, 0, 0, 1, 0] +engager 1.1 0.7 [1, 1, 0, 2, 1, 0, 2, 1, 2, 1] +engagers 1.0 0.7746 [1, 1, 1, 0, 2, 1, 0, 2, 2, 0] +engages 1.0 0.7746 [1, 1, 0, 2, 1, 0, 1, 2, 2, 0] +engaging 1.4 0.4899 [2, 2, 1, 1, 2, 1, 1, 1, 1, 2] +engagingly 1.5 0.67082 [1, 2, 3, 1, 1, 1, 1, 1, 2, 2] +engrossed 0.6 1.49666 [0, 2, 0, 2, -2, 2, 3, -1, 0, 0] +enjoy 2.2 0.6 [3, 2, 2, 2, 3, 2, 2, 3, 2, 1] +enjoyable 1.9 0.53852 [3, 2, 2, 1, 2, 1, 2, 2, 2, 2] +enjoyableness 1.9 1.13578 [2, 2, 2, 2, 1, 3, 3, 3, -1, 2] +enjoyably 1.8 0.4 [2, 2, 2, 1, 2, 1, 2, 2, 2, 2] +enjoyed 2.3 0.64031 [2, 2, 1, 3, 3, 3, 2, 2, 2, 3] +enjoyer 2.2 0.6 [2, 2, 1, 3, 3, 2, 2, 2, 2, 3] +enjoyers 2.2 0.74833 [2, 4, 2, 2, 2, 2, 2, 3, 2, 1] +enjoying 2.4 0.66332 [2, 2, 2, 3, 3, 3, 1, 3, 2, 3] +enjoyment 2.6 0.4899 [2, 3, 2, 3, 2, 3, 2, 3, 3, 3] +enjoyments 2.0 0.7746 [3, 1, 1, 3, 2, 1, 2, 2, 2, 3] +enjoys 2.3 0.45826 [2, 3, 2, 2, 2, 3, 2, 3, 2, 2] +enlighten 2.3 1.1 [2, 2, 1, 3, 2, 1, 1, 4, 3, 4] +enlightened 2.2 0.87178 [4, 2, 3, 1, 2, 2, 1, 3, 2, 2] +enlightening 2.3 0.64031 [3, 2, 2, 2, 2, 2, 2, 4, 2, 2] +enlightens 1.7 1.00499 [2, 1, 1, 1, 1, 2, 4, 1, 3, 1] +ennui -1.2 0.6 [-1, -1, -1, -2, -1, -1, -2, -1, 0, -2] +enrage -2.6 0.91652 [-3, -3, -3, -4, -1, -1, -3, -2, -3, -3] +enraged -1.7 1.79165 [-3, -3, -3, -3, 2, -1, -3, -1, 1, -3] +enrages -1.8 1.6 [-3, -3, -3, -3, 1, -1, -3, -1, 1, -3] +enraging -2.8 0.74833 [-4, -2, -3, -2, -2, -3, -3, -2, -4, -3] +enrapture 3.0 0.63246 [2, 4, 3, 3, 4, 3, 3, 2, 3, 3] +enslave -3.1 0.9434 [-3, -4, -2, -4, -4, -2, -4, -2, -4, -2] +enslaved -1.7 2.41039 [3, -3, -3, -3, -4, -4, -4, 1, -1, 1] +enslaves -1.6 2.15407 [2, -2, -3, -2, -4, -4, -4, 1, -1, 1] +ensure 1.6 0.91652 [2, 1, 3, 1, 1, 2, 3, 2, 0, 1] +ensuring 1.1 0.9434 [0, 1, 3, 1, 1, 2, 1, 0, 2, 0] +enterprising 2.3 0.78102 [3, 2, 1, 3, 3, 2, 1, 2, 3, 3] +entertain 1.3 0.64031 [1, 2, 1, 1, 2, 1, 2, 0, 1, 2] +entertained 1.7 0.64031 [1, 2, 2, 1, 2, 1, 1, 3, 2, 2] +entertainer 1.6 1.2 [1, 4, 2, 2, 0, 0, 1, 3, 1, 2] +entertainers 1.0 0.7746 [0, 1, 2, 2, 0, 0, 1, 1, 2, 1] +entertaining 1.9 0.83066 [1, 2, 1, 1, 3, 2, 3, 2, 3, 1] +entertainingly 1.9 0.53852 [2, 1, 2, 3, 2, 2, 1, 2, 2, 2] +entertainment 1.8 0.9798 [2, 0, 4, 2, 2, 1, 2, 2, 1, 2] +entertainments 2.3 1.18743 [3, 3, 3, 2, 1, 0, 3, 4, 1, 3] +entertains 2.4 0.66332 [2, 2, 2, 2, 2, 3, 4, 3, 2, 2] +enthral 0.4 1.42829 [2, 2, 0, 2, 0, -1, -2, 2, 0, -1] +enthuse 1.6 0.66332 [1, 2, 1, 1, 3, 1, 2, 2, 2, 1] +enthused 2.0 0.63246 [3, 3, 1, 2, 2, 2, 2, 1, 2, 2] +enthuses 1.7 0.78102 [2, 3, 1, 2, 1, 3, 1, 1, 1, 2] +enthusiasm 1.9 0.9434 [3, 3, 3, 2, 1, 0, 2, 1, 2, 2] +enthusiasms 2.0 0.89443 [1, 3, 2, 2, 3, 2, 0, 2, 3, 2] +enthusiast 1.5 0.67082 [1, 2, 2, 2, 0, 1, 1, 2, 2, 2] +enthusiastic 2.2 0.9798 [1, 2, 3, 4, 2, 3, 2, 1, 1, 3] +enthusiastically 2.6 0.66332 [3, 3, 3, 2, 3, 3, 3, 3, 2, 1] +enthusiasts 1.4 0.91652 [1, 1, 0, 3, 3, 2, 1, 1, 1, 1] +enthusing 1.9 0.7 [2, 1, 2, 1, 2, 3, 2, 1, 2, 3] +entitled 1.1 0.83066 [2, 2, 1, 1, 2, 1, 1, -1, 1, 1] +entrusted 0.8 1.46969 [3, 0, 2, 2, 1, 1, -1, 0, -2, 2] +envied -1.1 0.83066 [-1, -2, -2, 1, -2, -1, -1, -1, -1, -1] +envier -1.0 0.7746 [-1, -2, -2, -1, -1, 1, -1, -1, -1, -1] +enviers -1.1 1.13578 [-3, -1, 0, -3, -1, -1, -1, -1, 1, -1] +envies -0.8 0.9798 [-1, -2, -2, 1, -1, 1, -1, -1, -1, -1] +envious -1.1 0.83066 [-2, -1, -1, -1, -2, -1, -1, 1, -2, -1] +envy -1.1 0.83066 [-2, -1, -1, -2, -1, -1, -1, 1, -1, -2] +envying -0.8 1.32665 [-1, -1, -1, -1, -3, 2, -2, -1, 1, -1] +envyingly -1.3 1.55242 [-2, 3, -2, -2, -1, -3, -1, -1, -2, -2] +erroneous -1.8 0.6 [-2, -3, -2, -2, -2, -2, -1, -1, -1, -2] +error -1.7 0.64031 [-2, -1, -2, -1, -2, -1, -1, -2, -3, -2] +errors -1.4 0.66332 [-2, -1, -2, 0, -2, -2, -1, -1, -1, -2] +escape 0.7 1.00499 [2, 0, 0, 1, 0, 1, 0, 3, 0, 0] +escapes 0.5 1.36015 [4, 1, 1, 0, -1, 0, -1, 0, 1, 0] +escaping 0.2 1.46969 [-2, 2, -1, 0, 1, 0, 2, 2, -2, 0] +esteemed 1.9 0.83066 [3, 2, 1, 2, 3, 1, 1, 2, 3, 1] +ethical 2.3 0.78102 [3, 3, 3, 3, 2, 2, 1, 3, 2, 1] +euphoria 3.3 0.9 [4, 4, 3, 3, 3, 4, 4, 4, 1, 3] +euphoric 3.2 0.87178 [3, 4, 3, 3, 3, 4, 4, 4, 1, 3] +eviction -2.0 0.63246 [-2, -2, -3, -2, -3, -2, -1, -2, -1, -2] +evil -3.4 0.91652 [-4, -4, -4, -3, -3, -4, -1, -4, -3, -4] +evildoer -3.1 0.7 [-2, -3, -3, -3, -4, -4, -3, -2, -3, -4] +evildoers -2.4 0.4899 [-3, -3, -2, -2, -2, -2, -2, -2, -3, -3] +evildoing -3.1 0.7 [-4, -4, -3, -3, -3, -4, -2, -3, -2, -3] +evildoings -2.5 1.0247 [-3, -1, -1, -3, -4, -2, -4, -2, -2, -3] +eviler -2.1 1.13578 [-2, -1, -3, -2, -4, -3, -1, -2, 0, -3] +evilest -2.5 1.0247 [-3, -4, -1, -3, -2, -3, -1, -4, -2, -2] +eviller -2.9 0.83066 [-3, -3, -4, -2, -2, -3, -2, -4, -2, -4] +evillest -3.3 0.78102 [-3, -4, -2, -3, -4, -2, -4, -4, -3, -4] +evilly -3.4 0.8 [-2, -4, -4, -4, -3, -4, -4, -4, -3, -2] +evilness -3.1 1.04403 [-3, -4, -4, -4, -4, -2, -3, -2, -1, -4] +evils -2.7 0.78102 [-3, -2, -2, -4, -4, -2, -3, -2, -3, -2] +exaggerate -0.6 0.66332 [-1, -1, -1, 0, -1, 0, 1, -1, -1, -1] +exaggerated -0.4 1.2 [-1, -1, -1, -1, -1, 2, 1, 1, -2, -1] +exaggerates -0.6 1.28062 [-1, -1, -1, -1, -1, 1, 0, 2, -3, -1] +exaggerating -0.7 0.9 [-1, -2, 0, -1, 0, 0, -2, -1, 1, -1] +exasperated -1.8 1.53623 [-4, -3, -3, -1, -1, -1, 1, -1, -4, -1] +excel 2.0 1.0 [3, 0, 2, 3, 1, 1, 3, 3, 2, 2] +excelled 2.2 0.87178 [1, 2, 2, 2, 3, 2, 4, 3, 2, 1] +excellence 3.1 0.9434 [4, 3, 4, 3, 2, 3, 1, 4, 3, 4] +excellences 2.5 0.92195 [4, 2, 2, 2, 4, 3, 2, 2, 3, 1] +excellencies 2.4 0.4899 [3, 2, 3, 3, 2, 2, 2, 2, 3, 2] +excellency 2.5 0.80623 [4, 2, 3, 3, 2, 3, 1, 3, 2, 2] +excellent 2.7 0.64031 [2, 3, 3, 3, 3, 2, 3, 2, 2, 4] +excellently 3.1 0.7 [4, 3, 3, 3, 2, 3, 3, 4, 4, 2] +excelling 2.5 0.67082 [2, 2, 3, 3, 3, 2, 2, 4, 2, 2] +excels 2.5 0.92195 [4, 2, 4, 2, 2, 1, 2, 3, 3, 2] +excelsior 0.7 0.64031 [1, 0, 0, 2, 0, 1, 1, 1, 1, 0] +excitabilities 1.5 1.0247 [2, 0, 1, 1, 3, 1, 2, 3, 2, 0] +excitability 1.2 0.87178 [0, 1, 1, 0, 1, 2, 3, 1, 2, 1] +excitable 1.5 0.92195 [2, 3, 1, 0, 1, 2, 2, 0, 2, 2] +excitableness 1.0 1.09545 [0, 0, 2, 0, 2, 0, 2, 0, 1, 3] +excitant 1.8 1.16619 [1, 0, 1, 3, 2, 0, 3, 3, 2, 3] +excitants 1.2 0.9798 [1, 0, 1, 2, 2, 2, 1, -1, 2, 2] +excitation 1.8 0.87178 [2, 0, 3, 1, 3, 2, 2, 2, 1, 2] +excitations 1.8 1.16619 [3, 3, -1, 2, 2, 2, 1, 1, 3, 2] +excitative 0.3 0.78102 [0, 1, 1, 0, 0, 0, 2, 0, -1, 0] +excitatory 1.1 1.7 [-1, 2, 2, 1, 2, 2, 2, 3, -3, 1] +excite 2.1 1.22066 [1, 2, 2, 1, 2, 0, 4, 4, 3, 2] +excited 1.4 0.4899 [1, 1, 2, 1, 2, 1, 2, 1, 1, 2] +excitedly 2.3 0.9 [3, 3, 2, 3, 1, 3, 1, 3, 1, 3] +excitement 2.2 0.4 [2, 2, 2, 3, 3, 2, 2, 2, 2, 2] +excitements 1.9 0.53852 [2, 1, 2, 3, 2, 2, 2, 2, 2, 1] +exciter 1.9 0.9434 [3, 2, 3, 1, 0, 1, 2, 3, 2, 2] +exciters 1.4 1.42829 [1, 2, 0, 1, 2, 4, 0, -1, 3, 2] +excites 2.1 0.83066 [2, 3, 3, 2, 0, 2, 2, 3, 2, 2] +exciting 2.2 0.87178 [3, 2, 1, 1, 1, 3, 3, 3, 2, 3] +excitingly 1.9 0.9434 [3, 2, 3, 0, 1, 2, 1, 2, 2, 3] +exciton 0.3 0.64031 [2, 0, 0, 0, 0, 0, 1, 0, 0, 0] +excitonic 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] +excitons 0.8 0.6 [1, 2, 0, 1, 1, 0, 0, 1, 1, 1] +excitor 0.5 0.67082 [2, 0, 0, 0, 1, 1, 1, 0, 0, 0] +exclude -0.9 1.13578 [-1, -2, -1, -3, -1, 1, -1, -1, 1, -1] +excluded -1.4 1.62481 [-2, -1, -3, -3, -2, -3, -2, 1, -1, 2] +exclusion -1.2 1.249 [-2, -2, -3, -1, -2, -1, -1, -1, 2, -1] +exclusive 0.5 0.92195 [0, 0, 0, -1, 2, 0, 1, 2, 1, 0] +excruciate -2.7 0.64031 [-2, -3, -2, -3, -3, -2, -4, -3, -2, -3] +excruciated -1.3 1.9 [-4, -1, -4, 0, 2, -2, -1, -1, -3, 1] +excruciates -1.0 2.19089 [-4, 1, -4, 0, 1, -3, -1, 1, -3, 2] +excruciating -3.3 0.9 [-3, -4, -4, -4, -4, -4, -4, -2, -2, -2] +excruciatingly -2.9 1.04403 [-2, -4, -3, -2, -4, -1, -2, -3, -4, -4] +excruciation -3.4 0.66332 [-4, -3, -2, -4, -4, -3, -4, -3, -3, -4] +excruciations -1.9 1.51327 [-3, -3, -2, -4, -1, -1, 1, -4, -1, -1] +excuse 0.3 1.73494 [0, 0, 3, -1, 0, -1, -2, 0, 4, 0] +exempt 0.4 0.91652 [1, 0, 0, 0, 2, -1, 0, 0, 2, 0] +exhaust -1.2 0.87178 [0, -1, 0, -1, -1, -3, -2, -2, -1, -1] +exhausted -1.5 1.28452 [-2, -1, 2, -2, -3, -2, -2, -1, -2, -2] +exhauster -1.3 0.64031 [-1, -1, 0, -1, -2, -1, -1, -2, -2, -2] +exhausters -1.3 0.45826 [-2, -1, -2, -1, -1, -2, -1, -1, -1, -1] +exhaustibility -0.8 1.07703 [0, -2, -3, 0, 1, -1, -1, -1, 0, -1] +exhaustible -1.0 0.63246 [-1, -1, 0, -1, -2, -2, -1, 0, -1, -1] +exhausting -1.5 0.5 [-1, -2, -1, -1, -2, -1, -2, -2, -1, -2] +exhaustion -1.5 0.92195 [-2, -1, 1, -2, -2, -2, -2, -1, -2, -2] +exhaustions -1.1 0.9434 [-1, -3, -2, -1, -1, -1, -1, 1, -1, -1] +exhaustive -0.5 0.67082 [-1, -1, 0, -1, -2, 0, 0, 0, 0, 0] +exhaustively -0.7 0.78102 [-2, 0, -1, -1, -1, -2, 0, 0, 0, 0] +exhaustiveness -1.1 1.3 [-2, -2, 0, -1, -1, 1, -4, -1, 0, -1] +exhaustless 0.2 1.8868 [1, 1, 0, 2, 3, 0, -2, 2, -2, -3] +exhaustlessness 0.9 1.75784 [2, 2, 1, 1, -4, 2, 1, 2, 0, 2] +exhausts -1.1 0.53852 [-2, -1, 0, -1, -1, -2, -1, -1, -1, -1] +exhilarated 3.0 0.63246 [3, 3, 3, 3, 2, 2, 4, 4, 3, 3] +exhilarates 2.8 1.07703 [4, 3, 3, 3, 0, 2, 3, 4, 3, 3] +exhilarating 1.7 1.61555 [3, 4, 3, 2, -1, 1, 1, 3, -1, 2] +exonerate 1.8 0.74833 [2, 2, 2, 2, 3, 2, 1, 0, 2, 2] +exonerated 1.8 1.83303 [3, -2, 2, 3, 2, 4, 3, 1, -1, 3] +exonerates 1.6 1.90788 [3, -2, 1, 2, 3, 4, 0, 3, -1, 3] +exonerating 1.0 1.41421 [2, -2, 3, 0, 0, 2, 0, 2, 2, 1] +expand 1.3 0.64031 [0, 2, 2, 1, 1, 1, 2, 1, 2, 1] +expands 0.4 0.66332 [0, 1, 0, 0, 0, 0, 0, 0, 2, 1] +expel -1.9 1.44568 [0, -4, -3, -1, -3, -1, 0, -2, -4, -1] +expelled -1.0 1.94936 [-1, -2, 2, -2, -4, -3, -2, 1, 2, -1] +expelling -1.6 1.49666 [-2, -2, -2, -2, -2, -3, -4, -1, 1, 1] +expels -1.6 1.11355 [-4, -2, 0, -3, -1, -1, -1, -2, -1, -1] +exploit -0.4 1.62481 [-2, -1, -1, 2, -2, -2, 2, -1, 2, -1] +exploited -2.0 1.0 [-3, -3, -1, -1, -1, -4, -2, -2, -1, -2] +exploiting -1.9 1.22066 [0, -3, -3, 0, -2, -3, -1, -1, -3, -3] +exploits -1.4 0.8 [-2, -2, -2, -1, -1, 0, -2, 0, -2, -2] +exploration 0.9 0.7 [2, 2, 0, 1, 1, 0, 1, 0, 1, 1] +explorations 0.3 1.1 [1, 1, 0, 0, 1, 2, 1, -2, -1, 0] +expose -0.6 0.8 [-1, -1, 0, 0, -2, 1, -1, 0, -1, -1] +exposed -0.3 1.18743 [-2, -1, 0, 2, 0, 0, -1, 1, -2, 0] +exposes -0.5 0.92195 [-1, -1, 0, 2, -1, 0, -1, -1, -1, -1] +exposing -1.1 0.7 [-2, -2, -1, -1, 0, -2, -1, -1, 0, -1] +extend 0.7 0.78102 [2, 0, 0, 0, 1, 2, 1, 1, 0, 0] +extends 0.5 0.80623 [2, 0, 2, 0, 0, 0, 1, 0, 0, 0] +exuberant 2.8 0.6 [2, 3, 2, 3, 2, 4, 3, 3, 3, 3] +exultant 3.0 1.18322 [4, 4, 3, 0, 3, 4, 3, 3, 2, 4] +exultantly 1.4 1.49666 [3, 2, 4, 1, 1, 2, -2, 1, 1, 1] +fab 2.0 1.0 [2, 1, 1, 3, 1, 2, 2, 4, 3, 1] +fabulous 2.4 0.8 [2, 2, 3, 4, 3, 3, 1, 2, 2, 2] +fabulousness 2.8 1.07703 [4, 1, 4, 3, 1, 3, 3, 2, 4, 3] +fad 0.9 0.83066 [2, 0, 1, 1, 1, 0, 0, 2, 2, 0] +fag -2.1 0.83066 [-3, -1, -2, -4, -2, -2, -2, -1, -2, -2] +faggot -3.4 0.8 [-2, -4, -4, -3, -2, -4, -4, -4, -3, -4] +faggots -3.2 0.9798 [-2, -4, -4, -4, -3, -4, -4, -3, -1, -3] +fail -2.5 0.67082 [-2, -3, -3, -3, -4, -2, -2, -2, -2, -2] +failed -2.3 0.9 [-2, -3, -1, -2, -2, -1, -3, -3, -4, -2] +failing -2.3 1.1 [-2, -3, -3, -3, -4, -1, -2, -2, 0, -3] +failingly -1.4 0.8 [-1, -3, -2, -1, 0, -1, -2, -1, -2, -1] +failings -2.2 1.07703 [-2, -2, -3, -4, -1, -2, -1, -1, -4, -2] +faille 0.1 0.3 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] +fails -1.8 0.74833 [-2, -3, -2, -3, -2, -2, -1, -1, -1, -1] +failure -2.3 1.00499 [-3, -1, -3, -2, -1, -2, -3, -1, -4, -3] +failures -2.0 0.63246 [-1, -2, -1, -2, -3, -2, -2, -3, -2, -2] +fainthearted -0.3 1.34536 [3, -1, -1, -1, -2, -1, 0, 1, -1, 0] +fair 1.3 1.00499 [0, 1, 1, 2, 4, 1, 1, 1, 1, 1] +faith 1.8 0.6 [1, 3, 2, 2, 1, 2, 2, 2, 1, 2] +faithed 1.3 1.00499 [3, 2, 1, 2, 1, 2, -1, 1, 1, 1] +faithful 1.9 0.83066 [1, 3, 2, 2, 1, 1, 3, 3, 2, 1] +faithfully 1.8 1.07703 [3, 1, 2, 2, 4, 1, 0, 1, 2, 2] +faithfulness 1.9 0.53852 [1, 2, 2, 3, 2, 2, 2, 1, 2, 2] +faithless -1.0 0.89443 [-1, -1, -1, -2, -2, -1, -1, 0, 1, -2] +faithlessly -0.9 1.51327 [-1, -2, -1, -3, -2, -1, 3, 0, -1, -1] +faithlessness -1.8 1.249 [-3, -2, 1, -2, -2, -1, -2, -1, -4, -2] +faiths 1.8 0.9798 [2, 3, 1, 1, 3, 3, 0, 2, 2, 1] +fake -2.1 0.9434 [-2, -2, -1, -1, -1, -3, -3, -4, -2, -2] +fakes -1.8 1.07703 [-2, -3, -2, -2, -3, 1, -2, -2, -1, -2] +faking -1.8 0.87178 [-3, -1, -2, -1, -2, -2, -3, -2, 0, -2] +fallen -1.5 0.80623 [-1, -1, -2, -2, -1, -3, 0, -1, -2, -2] +falling -0.6 1.8 [-2, -2, -1, 0, -1, 3, -3, 2, 0, -2] +falsified -1.6 0.91652 [-4, -1, -1, -2, -1, -1, -2, -2, -1, -1] +falsify -2.0 0.7746 [-2, -1, -3, -3, -1, -2, -2, -2, -1, -3] +fame 1.9 1.13578 [0, 2, 1, 2, 2, 4, 1, 3, 3, 1] +fan 1.3 0.78102 [2, 0, 1, 1, 2, 1, 1, 3, 1, 1] +fantastic 2.6 0.91652 [1, 3, 3, 3, 2, 4, 4, 2, 2, 2] +fantastical 2.0 1.18322 [-1, 3, 2, 2, 2, 2, 3, 1, 3, 3] +fantasticalities 2.1 1.04403 [2, 4, 2, 2, 1, 1, 2, 4, 1, 2] +fantasticality 1.7 1.26886 [4, 1, 0, 2, 2, 1, 4, 1, 1, 1] +fantasticalness 1.3 1.9 [2, 3, -3, 0, 3, 2, 2, 3, -1, 2] +fantasticate 1.5 1.96214 [1, 2, -3, 1, 4, 1, 3, 4, 0, 2] +fantastico 0.4 1.49666 [0, 0, 2, 0, 2, -2, 1, -1, -1, 3] +farce -1.7 0.45826 [-2, -2, -1, -2, -2, -1, -1, -2, -2, -2] +fascinate 2.4 1.0198 [4, 2, 2, 3, 1, 2, 3, 4, 1, 2] +fascinated 2.1 0.83066 [2, 2, 2, 3, 1, 2, 4, 2, 1, 2] +fascinates 2.0 0.44721 [2, 3, 1, 2, 2, 2, 2, 2, 2, 2] +fascination 2.2 0.74833 [2, 1, 3, 3, 2, 3, 2, 2, 1, 3] +fascinating 2.5 0.92195 [3, 3, 3, 4, 2, 3, 2, 3, 1, 1] +fascist -2.6 0.8 [-3, -3, -2, -2, -2, -3, -1, -3, -4, -3] +fascists -0.8 1.6 [-2, -3, -1, 1, -1, 2, -3, 1, -1, -1] +fatal -2.5 1.62788 [-2, -3, -3, -4, -3, -3, 2, -4, -2, -3] +fatalism -0.6 1.8 [0, 0, -3, -4, -1, 1, 0, 2, -2, 1] +fatalisms -1.7 0.9 [-2, -4, -2, -2, -2, -1, -1, -1, -1, -1] +fatalist -0.5 1.56525 [0, 0, -1, -4, -1, 2, 0, 1, -2, 0] +fatalistic -1.0 1.34164 [-3, -1, -3, -1, 1, 0, 1, -2, -1, -1] +fatalists -1.2 0.87178 [0, -2, -1, -2, -1, 0, -1, -1, -3, -1] +fatalities -2.9 0.7 [-2, -3, -3, -4, -2, -2, -3, -4, -3, -3] +fatality -3.5 0.67082 [-2, -4, -4, -4, -3, -4, -4, -4, -3, -3] +fatally -3.2 0.74833 [-3, -2, -4, -2, -3, -4, -4, -3, -3, -4] +fatigue -1.0 0.7746 [-2, -1, -1, -1, 1, -1, -2, -1, -1, -1] +fatigued -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -2, -2, -1, -1] +fatigues -1.3 1.00499 [-2, -1, -1, -2, -1, 1, -3, -2, -1, -1] +fatiguing -1.2 0.6 [-1, -2, -2, -1, 0, -2, -1, -1, -1, -1] +fatiguingly -1.5 0.80623 [-1, 0, -3, -2, -1, -1, -2, -1, -2, -2] +fault -1.7 0.64031 [-1, -2, -2, -2, -1, -1, -2, -2, -1, -3] +faulted -1.4 0.4899 [-2, -2, -1, -2, -1, -1, -1, -1, -2, -1] +faultfinder -0.8 1.32665 [-3, -2, -2, -1, 1, 1, 1, -1, -1, -1] +faultfinders -1.5 0.80623 [-2, -2, -1, -3, -2, -1, 0, -1, -1, -2] +faultfinding -2.1 0.83066 [-3, -2, -1, -2, -1, -3, -1, -3, -2, -3] +faultier -2.1 0.7 [-3, -3, -3, -1, -2, -2, -2, -1, -2, -2] +faultiest -2.1 0.53852 [-3, -1, -2, -2, -2, -2, -2, -2, -3, -2] +faultily -2.0 0.89443 [-2, -2, -2, -3, -2, -1, 0, -3, -2, -3] +faultiness -1.5 0.92195 [-1, -1, -3, -1, 0, -2, -3, -1, -2, -1] +faulting -1.4 0.4899 [-1, -2, -1, -1, -2, -1, -1, -2, -1, -2] +faultless 2.0 1.41421 [3, 2, 0, 1, 3, 1, 4, 0, 2, 4] +faultlessly 2.0 1.09545 [3, 3, 2, 2, 0, 3, 2, 3, 2, 0] +faultlessness 1.1 2.02237 [3, 2, 4, 2, 1, -1, -2, 1, -2, 3] +faults -2.1 0.3 [-2, -2, -2, -2, -2, -2, -3, -2, -2, -2] +faulty -1.3 0.45826 [-1, -1, -1, -1, -2, -2, -2, -1, -1, -1] +fav 2.0 0.63246 [2, 1, 2, 2, 2, 1, 3, 2, 3, 2] +fave 1.9 1.51327 [1, 3, -2, 3, 2, 3, 1, 3, 2, 3] +favor 1.7 0.64031 [2, 2, 2, 2, 2, 2, 0, 1, 2, 2] +favorable 2.1 0.7 [2, 1, 2, 3, 1, 2, 2, 3, 3, 2] +favorableness 2.2 0.87178 [1, 2, 1, 3, 2, 2, 2, 4, 2, 3] +favorably 1.6 0.66332 [2, 1, 1, 1, 1, 2, 2, 2, 3, 1] +favored 1.8 0.6 [2, 2, 1, 1, 3, 1, 2, 2, 2, 2] +favorer 1.3 1.18743 [2, 2, 1, 1, -2, 1, 2, 2, 2, 2] +favorers 1.4 0.4899 [2, 2, 1, 2, 1, 2, 1, 1, 1, 1] +favoring 1.8 0.6 [2, 1, 1, 3, 2, 2, 1, 2, 2, 2] +favorite 2.0 0.63246 [2, 1, 3, 1, 2, 2, 2, 3, 2, 2] +favorited 1.7 0.45826 [1, 2, 2, 1, 2, 2, 2, 1, 2, 2] +favorites 1.8 0.6 [1, 2, 1, 3, 2, 2, 1, 2, 2, 2] +favoritism 0.7 1.79165 [-1, 3, -1, -1, 2, -2, 2, 2, 3, 0] +favoritisms 0.7 0.9 [0, 2, -1, 1, 0, 0, 1, 1, 2, 1] +favors 1.0 0.7746 [2, 1, 1, 1, 2, 1, -1, 1, 1, 1] +favour 1.9 0.53852 [2, 1, 2, 3, 2, 2, 2, 1, 2, 2] +favoured 1.8 0.4 [1, 2, 2, 2, 1, 2, 2, 2, 2, 2] +favourer 1.6 0.4899 [1, 2, 2, 1, 1, 2, 2, 2, 1, 2] +favourers 1.6 0.66332 [2, 2, 1, 0, 2, 2, 1, 2, 2, 2] +favouring 1.3 0.45826 [1, 2, 1, 1, 2, 1, 1, 1, 1, 2] +favours 1.8 0.6 [3, 2, 1, 2, 1, 2, 2, 1, 2, 2] +fear -2.2 0.6 [-2, -3, -2, -3, -2, -1, -2, -3, -2, -2] +feared -2.2 0.6 [-2, -3, -2, -1, -3, -2, -3, -2, -2, -2] +fearful -2.2 0.87178 [-2, -2, -3, -1, -2, -3, -2, -2, -4, -1] +fearfuller -2.2 0.87178 [-1, -4, -2, -2, -1, -2, -3, -2, -3, -2] +fearfullest -2.5 1.0247 [-3, -3, -4, -4, -3, -2, -1, -2, -2, -1] +fearfully -2.2 0.87178 [-2, -2, -2, -1, -1, -3, -4, -2, -3, -2] +fearfulness -1.8 0.87178 [-1, -1, -1, -2, -2, -1, -4, -2, -2, -2] +fearing -2.7 0.9 [-3, -3, -3, -2, -4, -2, -1, -3, -2, -4] +fearless 1.9 0.83066 [3, 3, 3, 2, 2, 2, 1, 1, 1, 1] +fearlessly 1.1 1.22066 [2, -2, 1, 1, 2, 1, 3, 1, 1, 1] +fearlessness 1.1 1.13578 [3, 2, -1, 2, 0, 2, 1, 1, 1, 0] +fears -1.8 0.6 [-2, -2, -3, -2, -2, -1, -1, -2, -1, -2] +fearsome -1.7 0.64031 [-3, -1, -1, -2, -1, -2, -2, -2, -1, -2] +fed up -1.8 1.249 [-2, -2, -3, -4, -2, -2, -1, -2, -1, 1] +feeble -1.2 1.249 [-2, -2, -3, -1, -1, -2, -1, -1, 2, -1] +feeling 0.5 1.0247 [0, 0, 0, 3, 0, 2, 0, 0, 0, 0] +felonies -2.5 0.5 [-3, -3, -3, -2, -2, -2, -2, -3, -2, -3] +felony -2.5 1.36015 [-4, -3, -4, -2, -3, -3, -2, -3, -2, 1] +ferocious -0.4 1.56205 [1, 1, -2, -3, -1, 2, 1, -2, -1, 0] +ferociously -1.1 1.86815 [-3, -4, 2, -2, 0, -2, -1, -1, 2, -2] +ferociousness -1.0 1.89737 [2, -4, -2, 0, -2, -3, -1, 0, 2, -2] +ferocities -1.0 1.54919 [1, 0, -2, 0, 0, -3, 0, 0, -2, -4] +ferocity -0.7 1.67631 [-2, -1, -4, 0, 0, -3, 1, 1, 0, 1] +fervent 1.1 1.44568 [3, 0, 0, 1, -2, 2, 2, 3, 1, 1] +fervid 0.5 2.20227 [4, -2, 1, -2, 4, 0, -1, 2, 1, -2] +festival 2.2 0.6 [2, 2, 3, 2, 3, 2, 2, 2, 3, 1] +festivalgoer 1.3 1.1 [1, 3, 2, 3, 0, 0, 1, 2, 0, 1] +festivalgoers 1.2 0.9798 [2, 2, 0, 0, 0, 2, 2, 0, 2, 2] +festivals 1.5 1.11803 [2, 0, 2, 3, 0, 3, 2, 1, 2, 0] +festive 2.0 0.63246 [2, 3, 2, 3, 1, 2, 2, 2, 1, 2] +festively 2.2 0.6 [2, 2, 3, 1, 3, 2, 3, 2, 2, 2] +festiveness 2.4 0.8 [1, 3, 2, 1, 3, 3, 3, 3, 2, 3] +festivities 2.1 0.7 [1, 2, 1, 2, 3, 2, 3, 3, 2, 2] +festivity 2.2 1.07703 [3, 3, 3, 0, 2, 1, 3, 3, 1, 3] +feud -1.4 0.66332 [-3, -2, -1, -2, -1, -1, -1, -1, -1, -1] +feudal -0.8 0.87178 [-1, -2, -2, 0, 0, 0, -2, -1, 0, 0] +feudalism -0.9 1.37477 [-2, -3, -2, -3, 0, 0, 1, 0, 0, 0] +feudalisms -0.2 0.74833 [0, 0, 0, 0, 0, 0, -1, 0, -2, 1] +feudalist -0.9 1.13578 [-2, -2, -2, -2, 0, 0, 1, 0, 0, -2] +feudalistic -1.1 0.7 [0, -1, -1, 0, -2, -1, -2, -1, -2, -1] +feudalities -0.4 1.0198 [-1, 0, -1, -2, -1, 0, -1, 0, 0, 2] +feudality -0.5 1.28452 [1, -1, 0, -1, 1, 0, -3, -2, 1, -1] +feudalization -0.3 1.18743 [-2, -2, 0, 0, 2, 0, -1, -1, 1, 0] +feudalize -0.5 0.92195 [-1, 0, -1, 0, -2, 0, 1, 0, 0, -2] +feudalized -0.8 1.07703 [-1, -1, -3, 0, 0, 0, 1, -1, -2, -1] +feudalizes -0.1 0.53852 [0, 0, -1, 0, -1, 0, 0, 0, 1, 0] +feudalizing -0.7 1.34536 [2, -2, -1, 0, 0, -2, -1, -2, 1, -2] +feudally -0.6 0.66332 [0, 0, -1, -1, 0, -1, 0, -1, -2, 0] +feudaries -0.3 0.9 [0, 0, 0, -2, -2, 0, 0, 0, 0, 1] +feudary -0.8 0.74833 [0, 0, -1, -1, -2, 0, -1, 0, -2, -1] +feudatories -0.5 0.92195 [-3, 0, -1, 0, 0, 0, 0, -1, 0, 0] +feudatory -0.1 0.83066 [-2, 0, 0, 0, 1, 0, 1, -1, 0, 0] +feuded -2.2 0.6 [-2, -2, -2, -1, -3, -3, -2, -3, -2, -2] +feuding -1.6 0.66332 [-2, -1, -2, -2, -1, -1, -3, -1, -2, -1] +feudist -1.1 0.83066 [-2, 0, -3, -1, -1, -1, 0, -1, -1, -1] +feudists -0.7 0.9 [0, 0, -1, 0, 0, -2, -2, 0, -2, 0] +feuds -1.4 1.0198 [-2, -2, -2, -1, -1, -1, -3, -2, 1, -1] +fiasco -2.3 0.64031 [-2, -2, -3, -3, -2, -3, -1, -3, -2, -2] +fidgety -1.4 0.66332 [-1, -2, -2, 0, -1, -1, -2, -1, -2, -2] +fiery -1.4 0.91652 [0, -1, -1, -2, -2, 0, -3, -1, -2, -2] +fiesta 2.1 0.7 [3, 2, 1, 2, 2, 1, 3, 3, 2, 2] +fiestas 1.5 1.0247 [3, 0, 3, 1, 0, 2, 2, 1, 2, 1] +fight -1.6 1.56205 [-1, -2, -3, -3, -1, 2, -4, -1, -2, -1] +fighter 0.6 1.11355 [3, 0, 0, -1, 1, 0, 1, 0, 2, 0] +fighters -0.2 1.46969 [-1, 2, -2, 0, 2, 0, -2, -2, 0, 1] +fighting -1.5 1.11803 [-1, -2, -3, -2, -2, -2, 0, -3, 0, 0] +fightings -1.9 0.53852 [-2, -3, -1, -2, -2, -2, -2, -1, -2, -2] +fights -1.7 0.64031 [-2, -2, -1, -2, -2, -1, -3, -1, -1, -2] +fine 0.8 0.6 [1, 0, 1, 2, 1, 1, 1, 1, 0, 0] +fire -1.4 1.49666 [-2, 0, -4, 0, -2, -1, -1, 0, -4, 0] +fired -2.6 0.91652 [-2, -3, -4, -3, -3, -1, -3, -3, -1, -3] +firing -1.4 0.8 [0, -1, -1, -1, -1, -2, -2, -3, -2, -1] +fit 1.5 1.0247 [2, 1, 2, 0, 4, 2, 1, 1, 1, 1] +fitness 1.1 0.9434 [0, 2, 1, 0, 1, 3, 2, 1, 0, 1] +flagship 0.4 0.91652 [0, 0, 0, 0, 0, 0, 0, 1, 3, 0] +flatter 0.4 1.42829 [-2, -2, 1, 2, 1, -1, 1, 2, 1, 1] +flattered 1.6 2.00998 [2, 3, 3, 1, 2, 3, 3, 1, 2, -4] +flatterer -0.3 1.9 [-4, 2, -1, 1, 2, 2, -2, -1, -1, -1] +flatterers 0.3 1.84662 [2, 1, -2, 1, 0, -4, 2, 1, 2, 0] +flatteries 1.2 1.16619 [2, 2, 3, 1, -1, 0, 0, 1, 2, 2] +flattering 1.3 2.19317 [3, 2, 2, 3, -4, 4, -1, 2, 1, 1] +flatteringly 1.0 1.61245 [2, 2, 1, 2, 1, -3, -1, 2, 2, 2] +flatters 0.6 2.10713 [1, 1, 2, 2, 3, -1, -2, 2, -4, 2] +flattery 0.4 1.49666 [1, -1, -2, 1, 3, -2, 1, 1, 1, 1] +flawless 2.3 2.14709 [4, 3, 4, 4, 1, 2, 4, 4, -2, -1] +flawlessly 0.8 1.83303 [-2, 2, 3, 1, 0, -2, 2, 2, -1, 3] +flees -0.7 1.18743 [-3, 0, -2, 0, -1, -1, -1, 1, -1, 1] +flexibilities 1.0 1.09545 [1, 3, 1, 0, 1, -1, 2, 0, 2, 1] +flexibility 1.4 0.8 [2, 2, 0, 2, 1, 2, 1, 0, 2, 2] +flexible 0.9 0.83066 [2, 1, 0, 0, 1, 2, 0, 1, 2, 0] +flexibly 1.3 0.78102 [2, 1, 0, 0, 1, 2, 2, 1, 2, 2] +flirtation 1.7 0.64031 [3, 1, 1, 2, 2, 1, 2, 1, 2, 2] +flirtations -0.1 1.64012 [0, -4, 1, 0, 0, -2, 1, 1, 2, 0] +flirtatious 0.5 2.5 [-4, 1, 2, 1, 2, -3, 3, 4, -2, 1] +flirtatiously -0.1 1.86815 [2, -1, 1, 2, 1, 1, -3, -3, -2, 1] +flirtatiousness 0.6 1.85472 [1, 0, 2, 1, 1, 2, 1, -4, -1, 3] +flirted -0.2 1.98997 [1, 2, -1, 1, 1, 1, -3, -3, -3, 2] +flirter -0.4 1.85472 [1, 2, -1, 0, 1, 1, -3, -3, -3, 1] +flirters 0.6 2.10713 [1, 4, 0, 1, 2, 1, -4, 2, 1, -2] +flirtier -0.1 1.37477 [-2, 1, 1, 1, 1, -2, 1, -1, -2, 1] +flirtiest 0.4 1.74356 [3, 1, 2, 1, 1, -1, -3, -2, 1, 1] +flirting 0.8 1.83303 [1, 2, 2, 2, 2, -1, 1, 2, -4, 1] +flirts 0.7 1.18743 [2, -1, 2, 1, 1, -2, 1, 1, 1, 1] +flirty 0.6 1.35647 [2, -2, 2, 1, 1, -2, 1, 1, 1, 1] +flop -1.4 0.4899 [-1, -1, -2, -1, -2, -1, -2, -1, -2, -1] +flops -1.4 0.8 [-2, -2, -2, 0, -2, -1, -2, -1, 0, -2] +flu -1.6 0.8 [0, -2, -1, -2, -1, -2, -3, -1, -2, -2] +flunk -1.3 0.78102 [-2, -1, -1, -3, -1, -1, 0, -2, -1, -1] +flunked -2.1 0.9434 [-4, -1, -3, -2, -1, -1, -3, -2, -2, -2] +flunker -1.9 1.04403 [-4, -1, -3, -2, -1, -1, -3, -2, -1, -1] +flunkers -1.6 0.8 [-2, -1, -3, -2, 0, -1, -1, -2, -2, -2] +flunkey -1.8 0.9798 [-4, -1, -3, -2, -1, -1, -2, -2, -1, -1] +flunkeys -0.6 1.2 [-2, -1, -1, 2, -1, 0, -1, -2, 1, -1] +flunkies -1.4 1.11355 [-2, -2, 0, -3, 1, -2, -1, -2, -1, -2] +flunking -1.5 0.92195 [-2, -1, -1, -3, -1, -1, 0, -2, -3, -1] +flunks -1.8 1.32665 [0, -2, -3, -3, -2, -3, -2, -1, 1, -3] +flunky -1.8 1.4 [-2, -3, -3, -3, -2, -1, -2, -2, 2, -2] +flustered -1.0 1.18322 [-1, -1, -1, -1, -3, -2, 2, -1, -1, -1] +focused 1.6 0.91652 [2, 2, 1, 3, 0, 1, 1, 2, 3, 1] +foe -1.9 1.22066 [-1, -3, -2, -2, -2, -2, -4, 1, -2, -2] +foehns 0.2 0.4 [1, 0, 0, 0, 0, 0, 0, 0, 1, 0] +foeman -1.8 0.6 [-2, -3, -1, -2, -2, -2, -2, -1, -1, -2] +foemen -0.3 1.18743 [0, 0, -1, 0, 0, -2, -2, -1, 2, 1] +foes -2.0 0.89443 [-2, -1, -2, -2, -4, -3, -2, -1, -1, -2] +foetal -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] +foetid -2.3 1.41774 [-1, -3, 0, -2, -3, 0, -3, -3, -4, -4] +foetor -3.0 0.89443 [-3, -4, -2, -3, -3, -1, -4, -4, -3, -3] +foetors -2.1 1.04403 [-2, -3, -1, -3, -2, -2, 0, -4, -2, -2] +foetus 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] +foetuses 0.2 0.6 [2, 0, 0, 0, 0, 0, 0, 0, 0, 0] +fond 1.9 0.83066 [2, 3, 2, 3, 1, 1, 3, 2, 1, 1] +fondly 1.9 0.7 [1, 2, 3, 2, 2, 3, 2, 1, 1, 2] +fondness 2.5 0.67082 [3, 2, 2, 2, 2, 3, 4, 3, 2, 2] +fool -1.9 0.53852 [-2, -2, -2, -2, -1, -2, -2, -3, -1, -2] +fooled -1.6 0.4899 [-2, -1, -1, -2, -2, -1, -2, -1, -2, -2] +fooleries -1.8 1.07703 [-1, -2, 0, -2, -1, -2, -4, -2, -3, -1] +foolery -1.8 0.87178 [-2, -2, -3, 0, -3, -1, -2, -2, -2, -1] +foolfish -0.8 0.87178 [-1, 0, -1, -2, 0, 0, 0, -2, 0, -2] +foolfishes -0.4 0.4899 [-1, -1, -1, 0, 0, 0, 0, 0, 0, -1] +foolhardier -1.5 0.67082 [-2, -1, -2, -1, -2, -1, -2, -2, 0, -2] +foolhardiest -1.3 0.64031 [0, -2, -1, -1, -1, -1, -2, -1, -2, -2] +foolhardily -1.0 1.41421 [-1, -1, -2, -2, -2, -2, -1, -1, 3, -1] +foolhardiness -1.6 0.66332 [-3, -1, -1, -1, -2, -1, -2, -2, -2, -1] +foolhardy -1.4 0.4899 [-2, -2, -1, -1, -1, -2, -1, -1, -2, -1] +fooling -1.7 0.64031 [-2, -2, -1, -2, -2, -2, -1, -3, -1, -1] +foolish -1.1 0.83066 [-1, -1, -1, -2, -2, -1, -1, -2, 1, -1] +foolisher -1.7 0.64031 [-2, -1, -2, -1, -2, -1, -2, -3, -2, -1] +foolishest -1.4 1.28062 [-2, 1, -2, -3, -2, -2, -1, 1, -2, -2] +foolishly -1.8 0.6 [-2, -1, -2, -2, -3, -1, -1, -2, -2, -2] +foolishness -1.8 0.6 [-1, -1, -2, -2, -2, -1, -3, -2, -2, -2] +foolishnesses -2.0 0.89443 [-1, -1, -1, -2, -3, -1, -3, -3, -2, -3] +foolproof 1.6 0.91652 [2, 1, 3, 1, 1, 0, 1, 2, 2, 3] +fools -2.2 0.74833 [-2, -4, -2, -2, -1, -2, -2, -2, -2, -3] +foolscaps -0.8 0.6 [0, -1, -1, -1, 0, -1, -2, 0, -1, -1] +forbid -1.3 0.78102 [-2, -2, -1, -1, -1, -1, 0, -1, -1, -3] +forbiddance -1.4 1.35647 [-3, -1, -2, -3, -1, 2, -1, -2, -2, -1] +forbiddances -1.0 2.0 [-2, 3, 1, -2, -4, -2, -3, -1, -1, 1] +forbidden -1.8 0.74833 [-1, -2, -2, -2, -1, -1, -3, -3, -2, -1] +forbidder -1.6 0.66332 [-1, -2, -2, -2, -2, 0, -2, -2, -2, -1] +forbidders -1.5 0.80623 [-1, -2, -1, -3, -2, -2, 0, -2, -1, -1] +forbidding -1.9 0.7 [-3, -1, -1, -2, -2, -1, -3, -2, -2, -2] +forbiddingly -1.9 0.53852 [-2, -1, -2, -2, -2, -2, -3, -2, -1, -2] +forbids -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -2, -1, -1] +forced -2.0 0.63246 [-1, -2, -3, -3, -1, -2, -2, -2, -2, -2] +foreclosure -0.5 1.43178 [-1, -2, -3, 2, -1, 1, -1, 0, 1, -1] +foreclosures -2.4 0.66332 [-3, -2, -3, -2, -3, -3, -1, -2, -2, -3] +forgave 1.4 0.91652 [2, 2, 1, 2, 1, -1, 1, 2, 2, 2] +forget -0.9 0.53852 [-1, -1, -1, -1, 0, -1, -1, 0, -2, -1] +forgetful -1.1 1.3 [-3, -1, -2, 1, 0, -2, 1, -1, -2, -2] +forgivable 1.7 0.64031 [2, 1, 2, 1, 2, 2, 1, 2, 3, 1] +forgivably 1.6 0.66332 [1, 1, 2, 1, 2, 2, 1, 2, 3, 1] +forgive 1.1 1.22066 [2, 1, 1, 3, 1, 1, 1, 2, -2, 1] +forgiven 1.6 0.66332 [2, 1, 1, 3, 2, 2, 1, 2, 1, 1] +forgiveness 1.1 1.22066 [2, 1, 1, 1, 3, 2, -2, 1, 1, 1] +forgiver 1.7 0.78102 [3, 1, 1, 3, 1, 2, 1, 2, 2, 1] +forgivers 1.2 0.6 [2, 1, 2, 1, 0, 1, 1, 2, 1, 1] +forgives 1.7 0.78102 [2, 1, 3, 1, 1, 3, 2, 1, 1, 2] +forgiving 1.9 0.7 [2, 3, 2, 1, 2, 3, 1, 1, 2, 2] +forgivingly 1.4 0.4899 [2, 1, 2, 1, 1, 1, 2, 1, 2, 1] +forgivingness 1.8 0.6 [3, 1, 2, 1, 2, 2, 2, 2, 2, 1] +forgotten -0.9 0.53852 [-1, 0, -1, 0, -1, -1, -1, -1, -2, -1] +fortunate 1.9 0.53852 [2, 2, 1, 1, 2, 2, 2, 3, 2, 2] +fought -1.3 0.78102 [-2, -1, -2, -1, 0, -1, -1, -1, -1, -3] +foughten -1.9 1.3 [-1, -3, 0, -2, -4, -3, -2, 0, -1, -3] +frantic -1.9 0.7 [-3, -2, -2, -1, -2, -1, -2, -3, -1, -2] +frantically -1.4 0.4899 [-2, -1, -2, -1, -1, -1, -1, -1, -2, -2] +franticness -0.7 1.18743 [-1, -2, 2, -1, -1, -1, 1, -2, -1, -1] +fraud -2.8 0.6 [-3, -3, -2, -3, -2, -3, -3, -2, -4, -3] +frauds -2.3 0.45826 [-2, -2, -2, -3, -3, -2, -3, -2, -2, -2] +fraudster -2.5 0.92195 [-4, -1, -2, -2, -4, -2, -3, -2, -3, -2] +fraudsters -2.4 0.91652 [-4, -3, -3, -3, -1, -2, -2, -2, -1, -3] +fraudulence -2.3 0.78102 [-3, -2, -2, -3, -2, -1, -2, -4, -2, -2] +fraudulent -2.2 0.6 [-2, -3, -2, -2, -2, -1, -3, -3, -2, -2] +freak -1.9 0.9434 [-3, -2, -1, -2, -4, -1, -2, -1, -2, -1] +freaked -1.2 1.32665 [-2, -2, 1, 0, -1, -2, -3, 1, -2, -2] +freakier -1.3 1.1 [-3, -2, -2, 1, -2, -2, -1, 0, -1, -1] +freakiest -1.6 1.0198 [-2, -3, -3, -3, -1, -1, -1, 0, -1, -1] +freakiness -1.4 0.8 [-1, -1, -1, -2, -3, 0, -2, -1, -2, -1] +freaking -1.8 1.16619 [0, -4, -3, -2, -3, -1, -1, -1, -2, -1] +freakish -2.1 1.37477 [-1, -3, -2, -1, -2, -3, -4, -3, 1, -3] +freakishly -0.8 1.249 [-2, -2, 1, -2, -1, 1, -1, 1, -1, -2] +freakishness -1.4 1.68523 [-2, -4, -1, 0, -1, -2, 1, 1, -4, -2] +freakout -1.8 1.6 [-3, 1, -3, -2, -3, -1, -4, 1, -2, -2] +freakouts -1.5 0.92195 [-2, -2, -1, -1, -2, -2, -2, 1, -2, -2] +freaks -0.4 1.35647 [2, 0, -2, -1, 0, 1, -2, 1, -1, -2] +freaky -1.5 1.20416 [-2, -2, -2, -2, -1, -2, 2, -2, -2, -2] +free 2.3 0.9 [2, 4, 3, 3, 2, 1, 2, 3, 1, 2] +freebase -0.1 1.44568 [2, 0, -2, 1, -3, 0, -1, 0, 1, 1] +freebased 0.8 1.16619 [2, 0, -1, 0, 3, 0, 1, 2, 1, 0] +freebases 0.8 1.249 [2, 0, -1, 0, 2, 0, 0, 3, 2, 0] +freebasing -0.4 1.56205 [-4, -2, 0, 0, 1, 2, 0, -1, 0, 0] +freebee 1.3 0.78102 [1, 2, 1, 1, 1, 0, 3, 2, 1, 1] +freebees 1.3 1.26886 [2, 2, -2, 2, 2, 2, 0, 2, 1, 2] +freebie 1.8 0.9798 [2, 1, 3, 2, 2, 4, 1, 1, 1, 1] +freebies 1.8 0.9798 [2, 3, 1, 1, 2, 4, 1, 1, 2, 1] +freeboard 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 0, 0, 2] +freeboards 0.7 0.9 [0, 0, 0, 1, 0, 0, 2, 2, 2, 0] +freeboot -0.7 1.67631 [1, -2, -3, -2, -1, -2, -1, 2, -1, 2] +freebooter -1.7 1.00499 [-2, -2, -3, -3, -2, -2, 0, -1, 0, -2] +freebooters -0.2 1.32665 [-1, -3, 1, 0, -2, 1, 0, 1, 0, 1] +freebooting -0.8 1.249 [-2, -2, -1, 2, -1, -1, -1, 1, -2, -1] +freeborn 1.2 0.74833 [1, 0, 3, 1, 1, 1, 1, 1, 2, 1] +freed 1.7 1.34536 [-2, 2, 3, 2, 2, 2, 3, 1, 2, 2] +freedman 1.1 0.9434 [1, 2, 0, 1, 2, 1, 3, 0, 0, 1] +freedmen 0.7 0.78102 [1, 2, 1, 2, 0, 1, 0, 0, 0, 0] +freedom 3.2 0.9798 [4, 4, 1, 3, 2, 4, 4, 3, 3, 4] +freedoms 1.2 1.07703 [2, 1, 1, 3, 2, 1, 2, 1, -1, 0] +freedwoman 1.6 1.74356 [3, 2, 0, 4, 4, 3, 1, -1, 0, 0] +freedwomen 1.3 0.78102 [2, 0, 2, 0, 2, 1, 1, 1, 2, 2] +freeform 0.9 0.83066 [0, 0, 0, 2, 1, 2, 1, 1, 2, 0] +freehand 0.5 0.80623 [0, 0, 0, 1, 0, 2, 0, 2, 0, 0] +freehanded 1.4 0.91652 [3, 0, 0, 2, 1, 2, 2, 1, 2, 1] +freehearted 1.5 0.67082 [2, 0, 1, 2, 2, 2, 2, 1, 1, 2] +freehold 0.7 0.78102 [1, 1, 0, 0, 2, 0, 2, 0, 1, 0] +freeholder 0.5 0.5 [1, 1, 0, 0, 0, 1, 1, 0, 1, 0] +freeholders 0.1 0.83066 [0, 0, 1, 0, 0, 1, 0, -2, 0, 1] +freeholds 1.0 0.63246 [1, 0, 2, 0, 1, 2, 1, 1, 1, 1] +freeing 2.1 1.04403 [2, 1, 1, 1, 4, 2, 2, 4, 2, 2] +freelance 1.2 1.66132 [3, 0, 0, 0, 0, 1, 4, 0, 4, 0] +freelanced 0.7 1.00499 [3, 0, 0, 0, 0, 2, 1, 0, 1, 0] +freelancer 1.1 1.04403 [2, 0, 3, 2, 1, 0, 0, 0, 2, 1] +freelancers 0.4 0.66332 [0, 0, 0, 2, 0, 0, 0, 1, 1, 0] +freelances 0.7 0.9 [1, 0, 0, 0, 0, 2, 2, 0, 2, 0] +freelancing 0.4 0.66332 [2, 0, 0, 0, 1, 0, 0, 0, 1, 0] +freeload -1.9 1.04403 [-2, -3, -1, -2, -1, 0, -1, -3, -3, -3] +freeloaded -1.6 0.8 [-2, 0, -3, -1, -1, -2, -2, -2, -2, -1] +freeloader -0.7 1.00499 [-2, 0, -1, -2, -1, 1, -1, 1, -1, -1] +freeloaders -0.1 1.57797 [-2, -2, -1, 0, 0, 2, -2, 0, 2, 2] +freeloading -1.3 2.0025 [1, -2, -4, -2, -3, -3, 1, 2, 0, -3] +freeloads -1.3 0.9 [-1, -1, -2, -2, -2, 0, 0, -1, -1, -3] +freely 1.9 0.53852 [2, 1, 2, 2, 2, 3, 2, 2, 1, 2] +freeman 1.7 0.78102 [2, 2, 2, 1, 2, 0, 3, 1, 2, 2] +freemartin -0.5 0.92195 [0, 0, 0, -1, 0, -1, 0, 0, -3, 0] +freemasonries 0.7 0.78102 [0, 1, 0, 0, 0, 1, 1, 0, 2, 2] +freemasonry 0.3 0.64031 [1, 0, 2, 0, 0, 0, 0, 0, 0, 0] +freemen 1.5 0.67082 [1, 1, 0, 2, 2, 2, 2, 2, 1, 2] +freeness 1.6 0.66332 [1, 2, 3, 2, 2, 1, 1, 1, 2, 1] +freenesses 1.7 0.78102 [1, 2, 1, 2, 2, 2, 3, 2, 2, 0] +freer 1.1 0.7 [2, 2, 0, 2, 1, 1, 1, 0, 1, 1] +freers 1.0 0.89443 [0, 1, 1, 2, 3, 1, 0, 1, 0, 1] +frees 1.2 0.6 [1, 2, 0, 1, 1, 1, 2, 1, 1, 2] +freesia 0.4 0.91652 [0, 0, 3, 0, 1, 0, 0, 0, 0, 0] +freesias 0.4 0.66332 [0, 0, 0, 1, 1, 2, 0, 0, 0, 0] +freest 1.6 1.28062 [3, 4, 0, 3, 0, 1, 1, 2, 1, 1] +freestanding 1.1 0.83066 [2, 1, 1, 2, 0, 0, 0, 2, 1, 2] +freestyle 0.7 0.9 [2, 0, 1, 0, 2, 0, 0, 2, 0, 0] +freestyler 0.4 0.91652 [0, 0, 0, 0, 1, 0, 0, 0, 0, 3] +freestylers 0.8 0.87178 [2, 1, 0, 0, 0, 1, 0, 2, 2, 0] +freestyles 0.3 0.64031 [0, 0, 0, 0, 1, 0, 0, 0, 0, 2] +freethinker 1.0 0.63246 [1, 2, 1, 1, 2, 1, 0, 0, 1, 1] +freethinkers 1.0 0.7746 [1, 0, 0, 1, 2, 2, 1, 2, 0, 1] +freethinking 1.1 0.7 [1, 0, 1, 1, 2, 2, 0, 2, 1, 1] +freeware 0.7 1.48661 [1, 0, 0, 2, 4, 0, 1, -2, 1, 0] +freeway 0.2 0.6 [0, 0, 0, 0, 0, 0, 2, 0, 0, 0] +freewheel 0.5 1.11803 [2, 0, 1, 2, 0, -2, 0, 0, 1, 1] +freewheeled 0.3 0.78102 [1, 0, 0, 0, 0, 1, 2, -1, 0, 0] +freewheeler 0.2 0.87178 [-2, 1, 0, 0, 0, 1, 1, 1, 0, 0] +freewheelers -0.3 1.00499 [-2, 0, 0, 0, 2, -1, -1, 0, -1, 0] +freewheeling 0.5 1.11803 [-1, 2, 0, -1, 1, 2, 2, 0, 0, 0] +freewheelingly 0.8 0.87178 [1, 2, 0, 0, 1, 2, 1, -1, 1, 1] +freewheels 0.6 0.91652 [0, 3, 1, 1, 1, 0, 0, 0, 0, 0] +freewill 1.0 0.7746 [1, 1, 1, -1, 1, 1, 1, 2, 2, 1] +freewriting 0.8 1.07703 [0, 2, 0, 0, 1, 0, 3, 0, 2, 0] +freeze 0.2 0.9798 [-1, 0, 1, 1, -1, 0, 0, -1, 2, 1] +freezers -0.1 0.3 [0, 0, 0, -1, 0, 0, 0, 0, 0, 0] +freezes -0.1 1.13578 [0, -2, -2, 1, 0, 0, 0, 0, 2, 0] +freezing -0.4 1.28062 [-2, -1, -2, -2, 0, 0, 0, 1, 2, 0] +freezingly -1.6 0.4899 [-1, -2, -2, -1, -2, -2, -2, -2, -1, -1] +frenzy -1.3 1.48661 [-1, -1, -2, -2, 2, -4, -1, -2, 0, -2] +fresh 1.3 0.45826 [2, 2, 1, 1, 1, 1, 2, 1, 1, 1] +friend 2.2 0.6 [2, 2, 3, 2, 3, 3, 1, 2, 2, 2] +friended 1.7 0.78102 [2, 2, 1, 3, 1, 1, 2, 3, 1, 1] +friending 1.8 1.07703 [1, 4, 2, 0, 1, 3, 2, 2, 1, 2] +friendless -1.5 0.67082 [-1, -2, -2, -1, 0, -2, -1, -2, -2, -2] +friendlessness -0.3 2.05183 [-2, -2, 2, 1, -4, -1, 2, 1, -2, 2] +friendlier 2.0 0.63246 [3, 2, 2, 1, 2, 2, 2, 1, 3, 2] +friendlies 2.2 0.74833 [3, 2, 2, 3, 2, 2, 1, 3, 1, 3] +friendliest 2.6 0.91652 [3, 3, 1, 3, 2, 1, 3, 3, 4, 3] +friendlily 1.8 0.74833 [1, 2, 2, 1, 3, 1, 1, 2, 3, 2] +friendliness 2.0 0.7746 [3, 1, 3, 2, 2, 3, 2, 1, 2, 1] +friendly 2.2 0.6 [2, 1, 3, 3, 2, 2, 3, 2, 2, 2] +friends 2.1 0.53852 [3, 3, 2, 2, 2, 1, 2, 2, 2, 2] +friendship 1.9 0.53852 [1, 2, 2, 1, 3, 2, 2, 2, 2, 2] +friendships 1.6 0.91652 [2, 1, 1, 0, 3, 2, 2, 3, 1, 1] +fright -1.6 1.35647 [-2, -1, 0, -3, -2, -4, 1, -1, -2, -2] +frighted -1.4 0.91652 [0, -1, -1, -1, -2, -1, -3, -1, -1, -3] +frighten -1.4 0.8 [0, -1, -1, -1, -2, -1, -3, -2, -1, -2] +frightened -1.9 0.7 [-2, -3, -1, -1, -2, -2, -3, -1, -2, -2] +frightening -2.2 0.9798 [-1, -1, -4, -3, -3, -3, -2, -2, -1, -2] +frighteningly -2.1 0.7 [-2, -2, -2, -2, -4, -2, -1, -2, -2, -2] +frightens -1.7 0.78102 [-2, -1, -2, -1, -1, -1, -2, -3, -3, -1] +frightful -2.3 0.78102 [-2, -2, -2, -2, -3, -2, -3, -1, -4, -2] +frightfully -1.7 0.78102 [-1, -1, -1, -2, -2, -1, -2, -3, -1, -3] +frightfulness -1.9 0.7 [-1, -1, -2, -3, -3, -2, -1, -2, -2, -2] +frighting -1.5 0.67082 [-1, -2, -2, -3, -1, -1, -1, -1, -2, -1] +frights -1.1 0.83066 [-2, 0, -2, 0, -2, -1, 0, -1, -1, -2] +frisky 1.0 1.48324 [1, -2, 1, 1, 1, 3, 3, 2, -1, 1] +frowning -1.4 1.42829 [-1, -1, -1, -3, -3, 1, -2, -3, 1, -2] +frustrate -2.0 0.63246 [-2, -3, -2, -1, -3, -2, -2, -1, -2, -2] +frustrated -2.4 0.66332 [-2, -1, -3, -3, -2, -2, -3, -2, -3, -3] +frustrates -1.9 0.7 [-1, -1, -3, -2, -1, -2, -2, -2, -3, -2] +frustrating -1.9 0.83066 [-2, -2, -1, -1, -1, -2, -2, -2, -4, -2] +frustratingly -2.0 0.63246 [-1, -3, -2, -2, -2, -2, -2, -3, -2, -1] +frustration -2.1 0.7 [-3, -2, -3, -2, -1, -2, -3, -2, -1, -2] +frustrations -2.0 0.7746 [-2, -1, -1, -3, -2, -2, -3, -3, -2, -1] +fuck -2.5 1.20416 [0, -3, -4, -3, -2, -3, -4, -1, -2, -3] +fucked -3.4 0.66332 [-2, -3, -4, -3, -4, -4, -3, -4, -3, -4] +fucker -3.3 0.78102 [-3, -4, -4, -2, -3, -4, -4, -2, -4, -3] +fuckers -2.9 0.9434 [-3, -3, -4, -3, -4, -4, -2, -1, -2, -3] +fuckface -3.2 1.07703 [-4, -2, -4, -1, -4, -4, -2, -4, -3, -4] +fuckhead -3.1 1.04403 [-1, -4, -2, -4, -3, -3, -2, -4, -4, -4] +fucks -2.1 1.13578 [-3, -2, -1, -1, -1, -2, -4, -2, -4, -1] +fucktard -3.1 0.9434 [-4, -4, -4, -3, -4, -2, -4, -2, -2, -2] +fud -1.1 1.37477 [-1, -3, -1, -1, -3, -2, 2, 0, -1, -1] +fuked -2.5 0.92195 [-2, -3, -3, -3, -3, -3, 0, -3, -3, -2] +fuking -3.2 0.9798 [-4, -1, -3, -4, -3, -2, -4, -3, -4, -4] +fulfill 1.9 1.04403 [1, 1, 2, 4, 1, 1, 2, 1, 3, 3] +fulfilled 1.8 0.87178 [1, 2, 1, 0, 2, 2, 3, 2, 2, 3] +fulfills 1.0 1.09545 [2, 1, 1, 1, 1, -2, 2, 2, 1, 1] +fume -1.2 1.16619 [0, 0, 0, -2, -3, -2, -1, -3, -1, 0] +fumed -1.8 0.87178 [-3, -2, -3, -2, -2, 0, -2, -1, -1, -2] +fumeless 0.3 0.64031 [0, 0, 0, 1, 0, 0, 0, 2, 0, 0] +fumelike -0.7 1.18743 [0, 0, -3, 0, 0, -2, -1, -2, 1, 0] +fumer 0.7 0.9 [2, 1, 0, 1, 0, 2, 0, -1, 1, 1] +fumers -0.8 0.6 [0, -1, -1, -2, -1, 0, 0, -1, -1, -1] +fumes -0.1 1.13578 [0, -2, 0, 0, -1, 1, -1, -1, 1, 2] +fumet 0.4 1.0198 [2, 0, 0, -1, 0, 1, -1, 0, 2, 1] +fumets -0.4 0.66332 [0, -1, 0, -1, 0, 0, -2, 0, 0, 0] +fumette -0.6 1.11355 [-2, -2, 0, -1, -1, 2, 0, 0, -1, -1] +fuming -2.7 0.64031 [-2, -3, -3, -2, -3, -4, -3, -2, -2, -3] +fun 2.3 0.45826 [2, 3, 2, 3, 2, 2, 3, 2, 2, 2] +funeral -1.5 1.74642 [-2, -3, -2, -1, -3, -1, -4, 1, 2, -2] +funerals -1.6 2.2891 [-3, -4, -1, -4, 2, -3, -3, 2, 1, -3] +funky -0.4 1.62481 [0, -1, 2, -1, 2, 0, -4, -1, 0, -1] +funned 2.3 0.9 [2, 3, 3, 4, 1, 2, 2, 2, 3, 1] +funnel 0.1 0.53852 [1, 0, 0, 0, 0, -1, 0, 0, 1, 0] +funneled 0.1 0.3 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] +funnelform 0.5 0.80623 [0, 0, 1, 0, 0, 0, 0, 2, 2, 0] +funneling -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] +funnelled -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] +funnelling 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] +funnels 0.4 0.66332 [0, 0, 0, 1, 0, 0, 0, 0, 2, 1] +funner 2.2 0.74833 [2, 2, 3, 4, 1, 2, 2, 2, 2, 2] +funnest 2.9 0.7 [4, 3, 4, 3, 2, 3, 2, 3, 2, 3] +funnier 1.7 1.00499 [2, 2, -1, 2, 2, 2, 3, 1, 2, 2] +funnies 1.3 1.00499 [2, 1, -1, 2, 1, 2, 3, 1, 1, 1] +funniest 2.6 0.8 [3, 3, 3, 3, 2, 2, 1, 2, 4, 3] +funnily 1.9 0.53852 [2, 3, 1, 2, 2, 2, 2, 1, 2, 2] +funniness 1.8 0.9798 [3, 2, 3, 2, 2, 1, 3, 0, 1, 1] +funninesses 1.6 0.91652 [1, 3, 0, 3, 1, 2, 1, 2, 2, 1] +funning 1.8 0.9798 [2, 2, 1, 2, 1, 4, 0, 2, 2, 2] +funny 1.9 0.53852 [3, 2, 2, 1, 2, 2, 1, 2, 2, 2] +funnyman 1.4 0.4899 [2, 2, 1, 2, 1, 1, 1, 1, 2, 1] +funnymen 1.3 1.1 [2, 1, 1, 0, 0, 3, 3, 1, 2, 0] +furious -2.7 1.41774 [-3, -3, -3, -4, -4, -4, 1, -2, -3, -2] +furiously -1.9 1.04403 [-2, -2, -4, -2, -1, -2, -1, -3, 0, -2] +fury -2.7 0.78102 [-4, -3, -2, -2, -2, -3, -4, -2, -3, -2] +futile -1.9 0.83066 [0, -3, -2, -2, -2, -2, -3, -1, -2, -2] +gag -1.4 1.0198 [-2, -2, -1, -2, 0, -2, -3, 0, 0, -2] +gagged -1.3 1.55242 [-2, -2, -1, -2, 2, -3, -1, -3, 1, -2] +gain 2.4 0.4899 [2, 3, 2, 2, 3, 2, 3, 2, 3, 2] +gained 1.6 0.66332 [2, 1, 2, 1, 1, 3, 2, 1, 2, 1] +gaining 1.8 0.4 [1, 2, 2, 2, 1, 2, 2, 2, 2, 2] +gains 1.4 0.4899 [1, 2, 1, 2, 2, 2, 1, 1, 1, 1] +gallant 1.7 1.1 [4, 0, 3, 1, 1, 2, 2, 2, 1, 1] +gallantly 1.9 0.53852 [2, 2, 3, 2, 2, 2, 2, 1, 2, 1] +gallantry 2.6 0.8 [3, 3, 1, 2, 2, 3, 4, 2, 3, 3] +geek -0.8 0.9798 [0, 0, 0, -2, -3, -1, -1, 0, 0, -1] +geekier 0.2 1.4 [0, 3, -1, -1, -1, 1, 2, 1, -1, -1] +geekiest -0.1 0.9434 [1, -1, -1, -1, -1, 1, 1, 1, 0, -1] +geeks -0.4 0.91652 [0, 0, -1, 0, 0, 0, 0, 0, -3, 0] +geeky -0.6 0.91652 [0, 0, -1, 0, -1, 0, -1, 0, -3, 0] +generosities 2.6 0.4899 [3, 3, 2, 3, 2, 3, 2, 3, 2, 3] +generosity 2.3 0.64031 [3, 1, 2, 2, 3, 2, 3, 3, 2, 2] +generous 2.3 0.78102 [3, 2, 4, 2, 2, 1, 2, 3, 2, 2] +generously 1.8 0.74833 [3, 3, 2, 1, 2, 1, 1, 2, 1, 2] +generousness 2.4 0.91652 [3, 2, 3, 1, 3, 4, 3, 2, 2, 1] +genial 1.8 0.6 [3, 1, 2, 1, 2, 2, 1, 2, 2, 2] +gentle 1.9 0.53852 [2, 2, 2, 1, 2, 3, 2, 2, 1, 2] +gentler 1.4 0.4899 [2, 1, 1, 1, 1, 2, 2, 1, 2, 1] +gentlest 1.8 0.4 [2, 1, 2, 2, 2, 1, 2, 2, 2, 2] +gently 2.0 0.7746 [2, 2, 2, 1, 1, 3, 3, 2, 1, 3] +ghost -1.3 1.34536 [-2, 0, 0, 0, 0, -3, -2, -3, 0, -3] +giddy -0.6 1.62481 [-2, -2, 3, -1, -1, -1, -1, -2, 2, -1] +gift 1.9 0.53852 [2, 1, 2, 2, 2, 1, 2, 3, 2, 2] +giggle 1.8 0.9798 [2, 2, 2, 2, 2, 3, 2, -1, 2, 2] +giggled 1.5 1.20416 [1, 3, 1, 3, 3, 1, 1, -1, 2, 1] +giggler 0.6 0.8 [1, 1, 1, 1, -1, 1, 1, 1, -1, 1] +gigglers 1.4 0.4899 [1, 2, 2, 1, 2, 1, 1, 1, 1, 2] +giggles 0.8 1.249 [1, 2, 2, 1, -1, 1, 1, 2, -2, 1] +gigglier 1.0 1.09545 [2, 1, 1, 2, 2, 1, -1, 2, 1, -1] +giggliest 1.7 1.26886 [4, 2, 1, 2, 1, 3, 2, 2, -1, 1] +giggling 1.5 0.5 [2, 2, 1, 2, 2, 1, 1, 1, 1, 2] +gigglingly 1.1 1.37477 [1, 2, 1, 1, -1, 2, 1, -1, 4, 1] +giggly 1.0 1.41421 [1, 2, -2, 1, 2, 3, 1, -1, 2, 1] +giver 1.4 0.66332 [1, 2, 2, 0, 1, 2, 1, 2, 1, 2] +givers 1.7 1.34536 [2, -1, 3, 3, 3, 1, 1, 2, 0, 3] +giving 1.4 1.0198 [1, 1, 3, 1, 1, 2, 3, 0, 2, 0] +glad 2.0 0.63246 [3, 2, 1, 2, 2, 2, 1, 3, 2, 2] +gladly 1.4 0.4899 [2, 2, 1, 2, 1, 1, 2, 1, 1, 1] +glamor 2.1 0.9434 [1, 2, 2, 2, 1, 3, 2, 4, 3, 1] +glamorise 1.3 1.1 [0, 1, 4, 1, 0, 2, 1, 2, 1, 1] +glamorised 1.8 0.74833 [1, 2, 2, 2, 2, 2, 0, 2, 3, 2] +glamorises 2.1 1.04403 [1, 3, 2, 4, 2, 2, 0, 2, 3, 2] +glamorising 1.2 1.16619 [3, 2, 0, 3, 1, 2, 0, 1, 0, 0] +glamorization 1.6 0.91652 [2, 2, 3, 0, 3, 1, 2, 1, 1, 1] +glamorize 1.7 1.1 [1, 2, 1, 4, 2, 0, 3, 1, 2, 1] +glamorized 2.1 1.04403 [3, 2, 1, 2, 4, 2, 2, 0, 3, 2] +glamorizer 2.4 1.0198 [3, 2, 2, 3, 4, 3, 2, 0, 3, 2] +glamorizers 1.6 1.11355 [4, 1, 1, 1, 1, 2, 0, 2, 3, 1] +glamorizes 2.4 1.2 [3, 2, 2, 4, 4, 1, 2, 0, 3, 3] +glamorizing 1.8 1.16619 [3, 0, 1, 2, 3, 2, 1, 0, 3, 3] +glamorous 2.3 0.78102 [3, 2, 4, 2, 2, 2, 3, 2, 2, 1] +glamorously 2.1 1.04403 [1, 3, 2, 1, 2, 1, 4, 1, 3, 3] +glamors 1.4 0.66332 [1, 1, 2, 2, 2, 1, 2, 2, 0, 1] +glamour 2.4 0.91652 [2, 4, 2, 1, 3, 2, 2, 2, 2, 4] +glamourize 0.8 1.32665 [2, 1, 0, 1, 0, 4, 0, 0, -1, 1] +glamourless -1.6 1.49666 [-4, -1, -1, -2, -2, -3, -2, -1, 2, -2] +glamourous 2.0 0.7746 [1, 3, 3, 2, 1, 2, 2, 2, 3, 1] +glamours 1.9 0.83066 [1, 3, 2, 2, 3, 2, 1, 1, 3, 1] +glee 3.2 0.4 [3, 4, 3, 3, 4, 3, 3, 3, 3, 3] +gleeful 2.9 0.53852 [3, 3, 3, 3, 3, 4, 2, 2, 3, 3] +gloom -2.6 0.66332 [-4, -2, -3, -3, -2, -3, -2, -2, -2, -3] +gloomed -1.9 0.7 [-1, -2, -3, -1, -2, -2, -1, -2, -3, -2] +gloomful -2.1 0.9434 [-3, -1, -4, -2, -1, -1, -2, -3, -2, -2] +gloomier -1.5 1.20416 [-3, -2, -2, -3, -1, -2, 0, 1, -1, -2] +gloomiest -1.8 2.03961 [-2, -2, 2, -4, -2, -3, -4, -3, 2, -2] +gloominess -1.8 0.6 [-2, -1, -2, -3, -2, -1, -2, -2, -2, -1] +gloominesses -1.0 1.09545 [-1, -2, -2, -1, -1, -2, 2, -1, -1, -1] +glooming -1.8 0.74833 [-1, -2, -2, -1, -2, -1, -3, -1, -3, -2] +glooms -0.9 1.57797 [3, -2, -1, -2, -2, -2, 1, -2, -1, -1] +gloomy -0.6 1.56205 [2, -1, -2, -2, -2, -1, 1, -2, 2, -1] +gloried 2.4 1.0198 [2, 3, 3, 4, 4, 1, 1, 2, 2, 2] +glories 2.1 1.3 [4, 1, 4, 1, 1, 4, 2, 2, 1, 1] +glorification 2.0 0.89443 [3, 1, 3, 2, 3, 1, 1, 3, 2, 1] +glorified 2.3 0.9 [1, 4, 2, 2, 4, 2, 2, 2, 2, 2] +glorifier 2.3 1.00499 [1, 4, 1, 2, 4, 2, 3, 2, 2, 2] +glorifiers 1.6 1.0198 [2, 1, 2, -1, 2, 2, 2, 1, 2, 3] +glorifies 2.2 0.9798 [1, 4, 2, 2, 4, 2, 1, 2, 2, 2] +glorify 2.7 0.78102 [3, 3, 4, 3, 1, 3, 2, 3, 2, 3] +glorifying 2.4 1.28062 [3, 4, 2, 2, 4, 4, 0, 1, 2, 2] +gloriole 1.5 1.36015 [2, 4, 1, 2, 0, -1, 1, 3, 2, 1] +glorioles 1.2 0.87178 [0, 2, 0, 2, 0, 1, 2, 2, 1, 2] +glorious 3.2 0.6 [4, 3, 3, 2, 3, 3, 3, 4, 3, 4] +gloriously 2.9 0.83066 [3, 4, 3, 2, 4, 2, 2, 2, 4, 3] +gloriousness 2.6 1.0198 [3, 2, 3, 4, 3, 2, 1, 4, 3, 1] +glory 2.5 0.80623 [1, 3, 3, 1, 3, 3, 3, 2, 3, 3] +glum -2.1 0.7 [-2, -1, -3, -3, -1, -2, -2, -3, -2, -2] +gn8 0.6 0.66332 [1, 1, 0, 0, 0, 0, 2, 1, 0, 1] +god 1.1 1.51327 [0, 0, 0, 1, 0, 3, 0, 3, 0, 4] +goddam -2.5 1.28452 [0, -3, -3, -4, -3, -1, -4, -1, -3, -3] +goddammed -2.4 0.91652 [-2, -3, -1, -1, -2, -2, -4, -3, -3, -3] +goddamn -2.1 1.75784 [-3, -3, -2, -4, -4, -3, -3, -1, 1, 1] +goddamned -1.8 2.03961 [-3, -3, -3, -4, -1, 2, -2, -3, 2, -3] +goddamns -2.1 1.51327 [-3, -2, -4, 2, -2, -3, -3, -2, -2, -2] +goddams -1.9 1.92094 [-3, -3, -2, -4, -4, -2, -3, -1, 2, 1] +godsend 2.8 0.87178 [2, 3, 3, 2, 4, 3, 3, 1, 4, 3] +good 1.9 0.9434 [2, 1, 1, 3, 2, 4, 2, 2, 1, 1] +goodness 2.0 1.54919 [2, 2, 2, 3, 1, 2, -2, 4, 3, 3] +gorgeous 3.0 0.63246 [3, 3, 2, 3, 3, 3, 4, 4, 3, 2] +gorgeously 2.3 0.78102 [2, 2, 2, 3, 1, 2, 4, 3, 2, 2] +gorgeousness 2.9 0.9434 [3, 4, 3, 1, 4, 4, 2, 2, 3, 3] +gorgeousnesses 2.1 0.7 [3, 2, 1, 3, 2, 2, 1, 2, 3, 2] +gossip -0.7 0.45826 [-1, -1, -1, 0, 0, -1, -1, 0, -1, -1] +gossiped -1.1 0.53852 [-1, -1, -1, -1, -1, -1, 0, -1, -2, -2] +gossiper -1.1 0.7 [-1, -1, -1, 0, -2, -1, -1, -2, 0, -2] +gossipers -1.1 0.53852 [-1, 0, -1, -1, -1, -1, -1, -1, -2, -2] +gossiping -1.6 0.4899 [-1, -2, -1, -2, -1, -2, -2, -1, -2, -2] +gossipmonger -1.0 1.41421 [-1, -2, 1, -3, -2, 1, -1, -2, -2, 1] +gossipmongers -1.4 0.66332 [-2, -1, -1, -1, -2, -2, -1, 0, -2, -2] +gossipped -1.3 0.9 [-2, -2, -1, -2, -1, -1, -2, -1, 1, -2] +gossipping -1.8 0.6 [-2, -1, -2, -2, -1, -2, -2, -1, -3, -2] +gossipries -0.8 0.6 [-1, -1, -1, 0, -1, 0, -1, 0, -2, -1] +gossipry -1.2 1.16619 [1, 0, -1, -2, -1, -1, -1, -3, -3, -1] +gossips -1.3 0.64031 [-1, -2, -1, -1, -2, -1, 0, -1, -2, -2] +gossipy -1.3 0.78102 [-1, -2, -2, -1, -2, -1, 0, 0, -2, -2] +grace 1.8 0.4 [2, 1, 2, 2, 1, 2, 2, 2, 2, 2] +graced 0.9 1.04403 [1, 1, 2, -2, 1, 1, 1, 2, 1, 1] +graceful 2.0 0.63246 [2, 1, 2, 2, 2, 3, 3, 2, 2, 1] +gracefuller 2.2 0.74833 [2, 3, 2, 2, 1, 2, 3, 1, 3, 3] +gracefullest 2.8 0.74833 [3, 3, 3, 3, 1, 3, 3, 3, 4, 2] +gracefully 2.4 0.66332 [3, 3, 2, 1, 3, 2, 2, 2, 3, 3] +gracefulness 2.2 0.6 [3, 2, 1, 2, 2, 2, 3, 2, 2, 3] +graces 1.6 0.4899 [2, 2, 2, 1, 1, 2, 1, 2, 1, 2] +gracile 1.7 0.78102 [1, 3, 2, 1, 2, 3, 2, 1, 1, 1] +graciles 0.6 0.8 [0, 0, 0, 0, 0, 0, 2, 1, 2, 1] +gracilis 0.4 0.66332 [0, 0, 0, 0, 0, 1, 0, 1, 0, 2] +gracility 1.2 0.87178 [1, 1, 0, 1, 1, 3, 2, 2, 0, 1] +gracing 1.3 0.9 [1, 0, 3, 2, 1, 2, 0, 1, 2, 1] +gracioso 1.0 0.63246 [2, 2, 1, 1, 1, 1, 0, 1, 0, 1] +gracious 2.6 0.8 [2, 2, 3, 3, 3, 3, 2, 4, 1, 3] +graciously 2.3 0.9 [2, 4, 1, 3, 3, 2, 1, 2, 3, 2] +graciousness 2.4 0.66332 [2, 2, 2, 2, 2, 3, 4, 3, 2, 2] +grand 2.0 0.63246 [2, 2, 3, 1, 2, 2, 2, 2, 3, 1] +grandee 1.1 0.83066 [0, 1, 1, 0, 1, 1, 2, 1, 3, 1] +grandees 1.2 0.87178 [0, 2, 2, 1, 0, 1, 0, 2, 2, 2] +grander 1.7 0.9 [3, 1, 1, 2, 2, 2, 0, 2, 3, 1] +grandest 2.4 1.2 [3, 3, 1, 2, 2, 0, 4, 2, 4, 3] +grandeur 2.4 1.11355 [3, 2, 3, 2, 4, 1, 1, 4, 1, 3] +grandeurs 2.1 1.3 [2, 2, 1, 0, 0, 4, 3, 3, 3, 3] +grant 1.5 0.80623 [2, 2, 1, 0, 3, 1, 1, 1, 2, 2] +granted 1.0 1.09545 [3, 0, 0, 0, 0, 1, 2, 2, 2, 0] +granting 1.3 0.45826 [2, 1, 1, 2, 1, 2, 1, 1, 1, 1] +grants 0.9 0.7 [2, 1, 2, 1, 0, 1, 0, 0, 1, 1] +grateful 2.0 0.63246 [2, 3, 1, 2, 2, 2, 3, 1, 2, 2] +gratefuller 1.8 0.87178 [2, 3, 0, 3, 2, 1, 1, 2, 2, 2] +gratefully 2.1 0.53852 [2, 3, 2, 2, 2, 2, 2, 3, 1, 2] +gratefulness 2.2 0.6 [2, 3, 2, 1, 2, 2, 3, 2, 3, 2] +graticule 0.1 0.3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] +graticules 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] +gratification 1.6 0.8 [1, 2, 3, 2, 2, 1, 2, 0, 2, 1] +gratifications 1.8 0.4 [2, 2, 1, 2, 2, 1, 2, 2, 2, 2] +gratified 1.6 0.91652 [3, 1, 1, 1, 3, 1, 1, 1, 1, 3] +gratifies 1.5 0.80623 [3, 1, 1, 1, 2, 1, 1, 1, 1, 3] +gratify 1.3 1.00499 [2, -1, 1, 3, 1, 1, 1, 1, 2, 2] +gratifying 2.3 0.45826 [2, 3, 2, 2, 2, 2, 3, 2, 2, 3] +gratifyingly 2.0 0.63246 [2, 2, 2, 1, 3, 2, 1, 3, 2, 2] +gratin 0.4 0.91652 [0, 1, 0, 0, 0, 0, 2, 0, -1, 2] +grating -0.4 0.4899 [-1, -1, -1, 0, 0, -1, 0, 0, 0, 0] +gratingly -0.2 1.6 [1, -3, -2, -2, 0, 2, 1, -1, 1, 1] +gratings -0.8 0.9798 [0, -2, -1, -1, 0, 0, -3, 0, 0, -1] +gratins 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] +gratis 0.2 0.9798 [-2, 1, 1, 0, 0, 0, -1, 1, 1, 1] +gratitude 2.3 0.64031 [2, 2, 3, 1, 2, 3, 2, 3, 3, 2] +gratz 2.0 0.89443 [2, 3, 2, 1, 1, 1, 2, 2, 4, 2] +grave -1.6 1.62481 [-2, -2, 0, -2, -3, 2, -3, -1, -1, -4] +graved -0.9 1.13578 [0, 0, -1, 0, -1, -1, -1, -1, -4, 0] +gravel -0.5 0.5 [0, -1, 0, -1, -1, -1, -1, 0, 0, 0] +graveled -0.5 0.80623 [0, 0, 0, 0, -1, -2, 0, 0, -2, 0] +graveless -1.3 1.34536 [-2, -2, 0, -1, 0, -2, -4, 1, -1, -2] +graveling -0.4 1.28062 [-3, 0, -2, 0, 2, -1, 0, 0, 0, 0] +gravelled -0.9 0.53852 [0, -1, -1, -2, 0, -1, -1, -1, -1, -1] +gravelling -0.4 1.11355 [0, -1, -2, -2, 0, -1, 0, 0, 2, 0] +gravelly -0.9 0.7 [0, -2, -1, -1, 0, -1, -1, 0, -1, -2] +gravels -0.5 0.80623 [0, -1, 0, 0, 0, -2, 0, 0, 0, -2] +gravely -1.5 1.0247 [0, -3, -1, 0, -3, -2, -1, -1, -2, -2] +graven -0.9 1.22066 [0, 0, -1, 0, -2, -1, -1, 0, -4, 0] +graveness -1.5 0.67082 [-1, -2, -2, -3, -2, -1, -1, -1, -1, -1] +graver -1.1 1.22066 [0, -2, -1, 0, 0, -2, -1, 0, -4, -1] +gravers -1.2 1.6 [-4, 0, -2, 0, -2, -2, -2, 0, 2, -2] +graves -1.2 1.07703 [0, 0, -1, -1, -2, -1, -1, -1, -4, -1] +graveside -0.8 0.6 [-1, -1, -1, 0, 0, 0, -1, -2, -1, -1] +gravesides -1.6 1.2 [-2, -1, 0, -3, -1, 0, -1, -2, -2, -4] +gravest -1.3 1.9 [-3, -1, -2, -2, 1, 1, -2, 2, -3, -4] +gravestone -0.7 0.78102 [0, -1, 0, -1, -1, -2, 0, 0, -2, 0] +gravestones -0.5 0.5 [-1, -1, 0, -1, -1, -1, 0, 0, 0, 0] +graveyard -1.2 0.87178 [0, 0, -1, -2, -1, -1, -2, -1, -3, -1] +graveyards -1.2 0.87178 [0, -1, -3, -1, -1, -2, 0, -1, -2, -1] +great 3.1 0.7 [2, 4, 4, 4, 3, 3, 3, 3, 2, 3] +greater 1.5 0.67082 [2, 1, 2, 1, 2, 2, 2, 1, 0, 2] +greatest 3.2 0.74833 [3, 4, 3, 3, 3, 4, 4, 2, 2, 4] +greed -1.7 1.61555 [-2, -1, -2, -1, -2, -4, -1, 2, -4, -2] +greedier -2.0 0.63246 [-2, -2, -2, -2, -2, -3, -2, -1, -1, -3] +greediest -2.8 0.87178 [-3, -4, -3, -2, -2, -4, -4, -2, -2, -2] +greedily -1.9 1.22066 [-2, -1, -3, -3, -3, -2, -1, -2, 1, -3] +greediness -1.7 1.00499 [-2, -1, -2, -1, -2, -4, -1, 0, -2, -2] +greeds -1.0 1.18322 [-1, -2, -2, -2, -2, -2, 1, 0, -1, 1] +greedy -1.3 1.48661 [-2, -2, -2, -2, -3, -2, 2, -1, -2, 1] +greenwash -1.8 1.4 [-1, 0, -2, -2, -3, -4, 0, 0, -3, -3] +greenwashing -0.4 0.91652 [-1, 0, 0, 1, 1, -2, -1, -1, 0, -1] +greet 1.3 0.64031 [1, 1, 1, 1, 0, 2, 2, 2, 2, 1] +greeted 1.1 0.9434 [2, 0, 0, 1, 1, 1, 0, 2, 1, 3] +greeting 1.6 0.4899 [2, 1, 2, 2, 1, 2, 2, 1, 1, 2] +greetings 1.8 1.07703 [1, 2, 3, 3, 1, 1, 1, 4, 1, 1] +greets 0.6 0.66332 [0, 0, 2, 0, 1, 1, 0, 1, 1, 0] +grey 0.2 0.4 [0, 0, 1, 0, 0, 0, 1, 0, 0, 0] +grief -2.2 0.6 [-2, -1, -3, -2, -3, -3, -2, -2, -2, -2] +grievance -2.1 0.53852 [-2, -2, -3, -2, -2, -3, -2, -1, -2, -2] +grievances -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -2, -2, -1] +grievant -0.8 1.249 [-2, 1, -1, -2, -1, 2, -2, -1, -1, -1] +grievants -1.1 0.83066 [-1, -1, -1, -1, -1, -1, 0, -2, 0, -3] +grieve -1.6 1.49666 [-2, -3, -1, -3, 1, -3, -1, -2, 1, -3] +grieved -2.0 0.89443 [-3, -3, -3, -2, -2, -3, -1, -1, -1, -1] +griever -1.9 0.83066 [-2, -2, -3, -2, -3, -3, -1, -1, -1, -1] +grievers -0.3 1.55242 [-1, 2, -2, -1, 1, -2, 2, -2, 1, -1] +grieves -2.1 0.9434 [-3, -3, -3, -2, -3, -3, -1, -1, -1, -1] +grieving -2.3 1.1 [-2, -4, -2, -3, -3, 0, -3, -2, -1, -3] +grievous -2.0 1.84391 [-3, -4, -2, -3, -1, 3, -2, -3, -2, -3] +grievously -1.7 1.55242 [-3, -1, -4, -2, -2, 1, -3, 1, -2, -2] +grievousness -2.7 0.78102 [-3, -3, -3, -2, -3, -4, -2, -1, -3, -3] +grim -2.7 0.64031 [-2, -4, -3, -3, -2, -2, -3, -3, -2, -3] +grimace -1.0 2.14476 [-4, -3, -2, -2, 2, -1, -1, -3, 2, 2] +grimaced -2.0 0.63246 [-2, -3, -2, -2, -2, -2, -1, -3, -1, -2] +grimaces -1.8 0.74833 [-1, -2, -1, -2, -2, -1, -3, -3, -1, -2] +grimacing -1.4 1.56205 [-3, -2, -3, -3, -1, -1, 1, 0, 1, -3] +grimalkin -0.9 1.04403 [-1, -2, -1, 1, -2, -2, -1, -1, 1, -1] +grimalkins -0.9 0.9434 [0, 0, 0, -2, -1, -1, -1, 0, -3, -1] +grime -1.5 0.92195 [-1, -2, -1, -1, -1, -3, 0, -2, -1, -3] +grimed -1.2 0.74833 [-2, -2, 0, -2, -1, -1, -1, -2, -1, 0] +grimes -1.0 0.7746 [-2, -2, 0, 0, -1, -1, -1, -2, -1, 0] +grimier -1.6 1.0198 [-1, -2, -2, -2, -1, 0, -4, -1, -1, -2] +grimiest -0.7 2.05183 [-2, -3, 1, -3, 2, -2, -2, -2, 2, 2] +grimily -0.7 1.61555 [-2, -1, -1, -2, -2, 2, -2, 2, 1, -2] +griminess -1.6 0.4899 [-1, -2, -2, -2, -1, -2, -2, -1, -1, -2] +griming -0.7 1.55242 [-3, -1, -1, -2, 0, 2, -1, -2, -1, 2] +grimly -1.3 1.55242 [-2, -1, 2, -2, -2, -1, -3, -3, 1, -2] +grimmer -1.5 1.36015 [1, -2, -3, 1, -2, -1, -2, -2, -3, -2] +grimmest -0.8 1.72047 [-2, -1, -3, 0, -2, -1, 0, 2, 2, -3] +grimness -0.8 1.98997 [2, -2, -3, -2, -3, 2, -1, 1, 1, -3] +grimy -1.8 0.87178 [-2, -2, -2, -1, -1, -3, 0, -2, -2, -3] +grin 2.1 0.83066 [2, 4, 2, 2, 2, 1, 2, 3, 1, 2] +grinned 1.1 0.9434 [1, 1, 2, 1, 3, 1, -1, 1, 1, 1] +grinner 1.1 0.83066 [1, 1, 2, 2, 2, 1, -1, 1, 1, 1] +grinners 1.6 0.8 [2, 2, 2, 3, 1, 0, 2, 2, 1, 1] +grinning 1.5 1.0247 [3, 2, 2, 1, 1, -1, 1, 2, 2, 2] +grins 0.9 1.92094 [1, 4, -3, 1, 2, 1, 2, -2, 2, 1] +gross -2.1 1.51327 [-1, -3, -2, -3, -3, -3, -3, 2, -2, -3] +grossed -0.4 1.11355 [-1, -2, -1, -2, 0, 0, 1, 1, 1, -1] +grosser -0.3 1.41774 [1, -2, -1, -2, 0, -1, 1, 2, 1, -2] +grosses -0.8 1.77764 [-2, -2, 3, -2, -3, -1, 1, -1, 1, -2] +grossest -2.1 0.83066 [-2, -1, -2, -3, -3, -1, -3, -3, -1, -2] +grossing -0.3 1.79165 [-1, -3, -1, 1, 0, -1, -3, 1, 1, 3] +grossly -0.9 1.44568 [1, -2, 0, -3, -1, -2, 1, 1, -2, -2] +grossness -1.8 0.6 [-2, -2, -1, -1, -1, -3, -2, -2, -2, -2] +grossular -0.3 1.34536 [0, -2, 0, -1, -2, -1, 0, 0, 0, 3] +grossularite -0.1 1.13578 [2, 0, 0, 0, 0, -3, 0, 0, 0, 0] +grossularites -0.7 1.26886 [0, -4, -1, -2, 0, 0, 0, 0, 0, 0] +grossulars -0.3 0.45826 [0, 0, 0, 0, -1, -1, 0, 0, 0, -1] +grouch -2.2 0.87178 [-2, -3, -3, -3, -2, -1, -3, -1, -1, -3] +grouched -0.8 0.9798 [-2, -1, -2, -2, 1, -1, 0, 0, 0, -1] +grouches -0.9 1.13578 [-2, -1, -2, -1, -1, -1, -1, 2, 0, -2] +grouchier -2.0 0.63246 [-2, -3, -3, -2, -2, -2, -2, -1, -2, -1] +grouchiest -2.3 0.78102 [-3, -3, -2, -2, -1, -3, -1, -3, -3, -2] +grouchily -1.4 1.56205 [-2, -1, -2, -3, -3, 2, -2, -2, 1, -2] +grouchiness -2.0 0.7746 [-2, -2, -3, -2, -3, -2, -2, 0, -2, -2] +grouching -1.7 1.1 [-1, -3, -2, 1, -2, -3, -2, -1, -2, -2] +grouchy -1.9 0.7 [-1, -3, -2, -2, -1, -3, -1, -2, -2, -2] +growing 0.7 0.64031 [0, 1, 1, 2, 1, 0, 0, 1, 1, 0] +growth 1.6 1.0198 [2, 0, 3, 0, 2, 3, 1, 1, 2, 2] +guarantee 1.0 1.0 [2, 3, 1, 0, 2, 0, 1, 0, 0, 1] +guilt -1.1 1.22066 [-1, -3, 2, -1, -1, -2, -1, -2, -1, -1] +guiltier -2.0 0.63246 [-2, -1, -3, -1, -3, -2, -2, -2, -2, -2] +guiltiest -1.7 1.79165 [-3, -2, -2, -4, -1, -2, 3, -1, -3, -2] +guiltily -1.1 1.57797 [-3, -1, -1, -2, 0, -2, 3, -2, -1, -2] +guiltiness -1.8 0.6 [-2, -2, -1, -2, -1, -1, -2, -2, -3, -2] +guiltless 0.8 1.53623 [3, 2, 1, 2, -2, 1, 1, -2, 1, 1] +guiltlessly 0.7 1.18743 [-1, 1, -2, 2, 1, 1, 1, 1, 2, 1] +guiltlessness 0.6 1.42829 [1, 1, -1, -1, -1, 1, 2, 3, -1, 2] +guilts -1.4 0.66332 [-1, -2, -1, -1, -3, -1, -1, -2, -1, -1] +guilty -1.8 0.6 [-1, -2, -2, -3, -2, -2, -1, -2, -2, -1] +gullibility -1.6 0.66332 [-1, -1, -2, -2, -1, -2, -1, -2, -1, -3] +gullible -1.5 0.67082 [-1, -2, -2, -1, -1, -3, -2, -1, -1, -1] +gun -1.4 1.49666 [0, -4, 0, -3, 0, -3, -2, 0, -2, 0] +h8 -2.7 1.00499 [-4, -3, -4, -1, -1, -3, -3, -3, -2, -3] +ha 1.4 0.8 [1, 0, 1, 1, 3, 2, 2, 1, 2, 1] +hacked -1.7 1.00499 [-2, -1, -2, -4, 0, -2, -2, -1, -1, -2] +haha 2.0 0.89443 [1, 1, 2, 3, 2, 1, 4, 2, 2, 2] +hahaha 2.6 1.0198 [2, 4, 2, 4, 1, 2, 3, 4, 2, 2] +hahas 1.8 0.9798 [1, 2, 2, 4, 3, 2, 1, 1, 1, 1] +hail 0.3 0.9 [0, 0, 0, 2, 0, 0, 2, 0, -1, 0] +hailed 0.9 0.83066 [1, 2, 1, 1, 0, 0, 0, 2, 2, 0] +hallelujah 3.0 0.7746 [3, 4, 3, 1, 3, 3, 3, 3, 3, 4] +handsome 2.2 0.74833 [2, 2, 2, 2, 2, 3, 4, 1, 2, 2] +handsomely 1.9 0.7 [1, 3, 1, 1, 2, 2, 2, 2, 2, 3] +handsomeness 2.4 1.28062 [2, 4, 1, 4, 0, 2, 4, 3, 2, 2] +handsomer 2.0 0.63246 [2, 3, 2, 2, 2, 2, 1, 3, 1, 2] +handsomest 2.6 0.91652 [3, 2, 1, 2, 3, 4, 4, 3, 2, 2] +hapless -1.4 1.11355 [-3, -1, -1, -1, -2, -1, 1, -2, -3, -1] +haplessness -1.4 1.0198 [-1, -2, 0, -1, -1, -1, -1, -2, -1, -4] +happier 2.4 0.66332 [3, 1, 2, 3, 2, 2, 3, 3, 3, 2] +happiest 3.2 0.74833 [4, 3, 2, 4, 4, 3, 3, 3, 2, 4] +happily 2.6 0.91652 [4, 1, 2, 4, 2, 3, 2, 2, 3, 3] +happiness 2.6 0.4899 [2, 3, 3, 3, 3, 2, 2, 3, 2, 3] +happing 1.1 0.83066 [1, 1, 1, 0, 2, 2, 0, 2, 0, 2] +happy 2.7 0.9 [2, 2, 2, 4, 2, 4, 3, 4, 2, 2] +harass -2.2 0.6 [-2, -3, -2, -2, -2, -3, -2, -3, -1, -2] +harassed -2.5 0.80623 [-4, -2, -3, -3, -2, -2, -3, -2, -3, -1] +harasser -2.4 0.8 [-3, -2, -2, -3, -2, -2, -4, -2, -3, -1] +harassers -2.8 0.6 [-3, -3, -2, -2, -3, -3, -3, -4, -2, -3] +harasses -2.5 0.80623 [-3, -3, -2, -3, -2, -2, -4, -2, -3, -1] +harassing -2.5 1.62788 [-2, -4, -3, -4, -3, -3, 2, -2, -3, -3] +harassment -2.5 0.67082 [-2, -3, -2, -2, -3, -2, -4, -3, -2, -2] +harassments -2.6 0.4899 [-3, -3, -2, -3, -2, -3, -3, -2, -2, -3] +hard -0.4 1.2 [0, -1, 0, -1, 0, 1, -2, -1, -2, 2] +hardier -0.6 1.68523 [-3, -2, -2, 1, 1, 2, 1, 0, -2, -2] +hardship -1.3 1.84662 [-2, 2, -4, -1, -2, -3, -1, -2, 2, -2] +hardy 1.7 1.00499 [1, 2, 1, 0, 2, 2, 4, 1, 2, 2] +harm -2.5 0.80623 [-2, -2, -2, -3, -2, -1, -3, -3, -3, -4] +harmed -2.1 0.83066 [-1, -4, -2, -2, -2, -2, -1, -2, -3, -2] +harmfully -2.6 0.91652 [-3, -4, -3, -1, -3, -3, -3, -3, -1, -2] +harmfulness -2.6 0.8 [-3, -1, -3, -3, -3, -2, -4, -2, -2, -3] +harming -2.6 0.66332 [-3, -3, -2, -2, -3, -3, -2, -2, -2, -4] +harmless 1.0 0.7746 [2, 1, 1, 1, 1, 0, 0, 2, 0, 2] +harmlessly 1.4 1.2 [4, 0, 1, 0, 1, 1, 1, 2, 3, 1] +harmlessness 0.8 1.16619 [1, 2, 0, 1, 0, 1, 2, 1, 2, -2] +harmonic 1.8 0.87178 [2, 1, 2, 3, 0, 1, 3, 2, 2, 2] +harmonica 0.6 0.8 [0, 1, 0, 0, 0, 2, 1, 0, 2, 0] +harmonically 2.1 1.13578 [3, 3, 4, 1, 0, 1, 2, 2, 2, 3] +harmonicas 0.1 0.3 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] +harmonicist 0.5 0.92195 [0, 0, 0, 0, 1, 0, 0, 0, 1, 3] +harmonicists 0.9 1.3 [2, 1, 0, 0, 2, 0, 0, 0, 4, 0] +harmonics 1.5 1.0247 [2, 2, 2, 0, 0, 2, 3, 2, 0, 2] +harmonies 1.3 0.9 [2, 0, 2, 1, 2, 2, 0, 2, 0, 2] +harmonious 2.0 1.09545 [3, 4, 2, 2, 2, 0, 2, 3, 1, 1] +harmoniously 1.9 0.9434 [4, 2, 2, 1, 2, 1, 1, 3, 2, 1] +harmoniousness 1.8 0.6 [1, 2, 2, 2, 2, 1, 2, 3, 2, 1] +harmonise 1.8 0.74833 [1, 1, 2, 3, 2, 1, 1, 3, 2, 2] +harmonised 1.3 0.9 [2, 3, 2, 0, 2, 1, 1, 1, 1, 0] +harmonising 1.4 0.66332 [1, 2, 1, 1, 2, 1, 1, 1, 1, 3] +harmonium 0.9 1.22066 [0, 3, 0, 2, 3, 0, 0, 0, 0, 1] +harmoniums 0.8 0.9798 [0, 0, 0, 2, 0, 2, 0, 2, 2, 0] +harmonization 1.9 0.83066 [3, 1, 2, 2, 2, 2, 3, 0, 2, 2] +harmonizations 0.9 0.9434 [0, 0, 2, 0, 2, 2, 0, 2, 1, 0] +harmonize 1.7 0.78102 [3, 2, 2, 1, 2, 2, 0, 1, 2, 2] +harmonized 1.6 0.91652 [1, 2, 1, 1, 2, 2, 3, 3, 0, 1] +harmonizer 1.6 0.8 [1, 2, 1, 1, 2, 2, 2, 3, 0, 2] +harmonizers 1.6 1.11355 [2, 2, 2, 1, 2, 0, 4, 0, 2, 1] +harmonizes 1.5 0.92195 [0, 2, 2, 2, 0, 1, 1, 2, 3, 2] +harmonizing 1.4 0.66332 [0, 1, 1, 2, 2, 1, 2, 2, 1, 2] +harmony 1.7 0.45826 [2, 2, 2, 2, 1, 2, 2, 2, 1, 1] +harms -2.2 1.6 [2, -3, -2, -2, -3, -2, -4, -4, -2, -2] +harried -1.4 0.4899 [-1, -1, -2, -1, -2, -2, -1, -1, -1, -2] +harsh -1.9 0.7 [-1, -1, -2, -2, -1, -3, -3, -2, -2, -2] +harsher -2.2 0.6 [-2, -3, -2, -3, -2, -2, -1, -3, -2, -2] +harshest -2.9 0.83066 [-4, -2, -2, -2, -2, -3, -3, -4, -4, -3] +hate -2.7 1.00499 [-4, -3, -4, -4, -2, -2, -2, -2, -1, -3] +hated -3.2 0.6 [-3, -3, -4, -3, -2, -3, -3, -4, -4, -3] +hateful -2.2 1.249 [-3, 1, -3, -3, -1, -2, -2, -3, -3, -3] +hatefully -2.3 0.78102 [-1, -3, -3, -3, -1, -2, -2, -2, -3, -3] +hatefulness -3.6 0.4899 [-4, -4, -3, -3, -3, -4, -4, -4, -4, -3] +hater -1.8 0.6 [-2, -1, -2, -2, -2, -1, -1, -2, -2, -3] +haters -2.2 0.6 [-2, -1, -3, -2, -3, -2, -3, -2, -2, -2] +hates -1.9 0.7 [-2, -1, -2, -2, -3, -1, -1, -2, -2, -3] +hating -2.3 1.1 [-4, -3, -4, -1, -2, -2, -1, -2, -1, -3] +hatred -3.2 0.9798 [-1, -3, -2, -4, -3, -3, -4, -4, -4, -4] +haunt -1.7 1.00499 [-1, -1, -3, -1, -2, -2, -1, -4, -1, -1] +haunted -2.1 0.7 [-2, -2, -1, -3, -3, -2, -2, -3, -1, -2] +haunting -1.1 0.83066 [-3, 0, -2, -1, 0, -1, -1, -1, -1, -1] +haunts -1.0 1.41421 [0, -2, -2, -2, -2, -1, 2, -2, 1, -2] +havoc -2.9 0.7 [-2, -4, -4, -3, -2, -3, -3, -3, -2, -3] +healthy 1.7 0.9 [1, 3, 1, 1, 3, 3, 1, 2, 1, 1] +heartbreak -2.7 0.78102 [-1, -3, -3, -3, -2, -4, -2, -3, -3, -3] +heartbreaker -2.2 1.07703 [-2, -3, 0, -3, -2, -1, -4, -3, -2, -2] +heartbreakers -2.1 0.9434 [-3, -2, -3, -2, -1, -1, -4, -1, -2, -2] +heartbreaking -2.0 1.73205 [-3, -1, -3, -3, -4, 2, -3, -2, 0, -3] +heartbreakingly -1.8 2.08806 [-3, 3, 1, -3, -3, -2, -3, -3, -4, -1] +heartbreaks -1.8 1.77764 [-2, 1, -3, -2, -3, -2, -3, 2, -4, -2] +heartbroken -3.3 0.45826 [-4, -3, -3, -4, -3, -3, -4, -3, -3, -3] +heartfelt 2.5 0.5 [3, 3, 2, 3, 2, 2, 3, 2, 2, 3] +heartless -2.2 0.74833 [-2, -2, -2, -4, -2, -1, -2, -3, -2, -2] +heartlessly -2.8 0.6 [-3, -2, -3, -3, -2, -3, -4, -2, -3, -3] +heartlessness -2.8 0.87178 [-3, -3, -2, -3, -4, -4, -1, -3, -2, -3] +heartwarming 2.1 1.22066 [3, 2, 3, 3, 2, 2, 3, 3, -1, 1] +heaven 2.3 1.18743 [1, 1, 2, 4, 3, 3, 3, 4, 1, 1] +heavenlier 3.0 0.63246 [3, 2, 3, 3, 4, 3, 3, 4, 2, 3] +heavenliest 2.7 1.1 [3, 2, 3, 4, 2, 4, 3, 0, 3, 3] +heavenliness 2.7 0.9 [3, 2, 1, 4, 3, 2, 3, 4, 3, 2] +heavenlinesses 2.3 2.2383 [4, 4, 4, 3, -2, 3, 3, 4, -2, 2] +heavenly 3.0 0.63246 [3, 3, 3, 3, 2, 3, 3, 4, 2, 4] +heavens 1.7 1.18743 [4, 0, 1, 2, 0, 3, 2, 2, 2, 1] +heavenward 1.4 1.35647 [0, 3, 0, 4, 1, 2, 2, 0, 2, 0] +heavenwards 1.2 1.32665 [1, 4, 0, 0, 2, 1, 1, 0, 3, 0] +heavyhearted -2.1 0.83066 [-2, -3, -3, -2, -3, -1, -1, -1, -2, -3] +heh -0.6 1.28062 [0, 1, -1, 1, -1, -2, -1, -3, 1, -1] +hell -3.6 0.66332 [-4, -4, -4, -4, -4, -2, -3, -4, -3, -4] +hellish -3.2 0.74833 [-3, -3, -2, -2, -4, -3, -4, -4, -3, -4] +help 1.7 0.78102 [3, 2, 1, 2, 1, 2, 3, 1, 1, 1] +helper 1.4 0.8 [1, 1, 0, 1, 1, 2, 1, 2, 3, 2] +helpers 1.1 0.83066 [1, 1, 0, 2, 1, 1, 1, 1, 3, 0] +helpful 1.8 0.87178 [2, 1, 3, 1, 1, 3, 1, 2, 3, 1] +helpfully 2.3 0.9 [1, 2, 2, 3, 2, 3, 3, 2, 4, 1] +helpfulness 1.9 1.13578 [1, 4, 1, 2, 2, 1, 1, 2, 4, 1] +helping 1.2 0.6 [2, 1, 1, 2, 0, 1, 1, 1, 2, 1] +helpless -2.0 0.63246 [-2, -3, -2, -2, -2, -3, -1, -2, -1, -2] +helplessly -1.4 0.4899 [-1, -1, -2, -2, -1, -1, -1, -2, -2, -1] +helplessness -2.1 0.9434 [-2, -4, -1, -2, -1, -3, -3, -2, -1, -2] +helplessnesses -1.7 0.64031 [-2, -1, -2, -1, -2, -1, -3, -2, -1, -2] +helps 1.6 0.4899 [1, 1, 1, 2, 2, 2, 1, 2, 2, 2] +hero 2.6 0.8 [2, 3, 2, 2, 4, 4, 2, 3, 2, 2] +heroes 2.3 0.9 [3, 4, 3, 1, 3, 2, 1, 2, 2, 2] +heroic 2.6 0.8 [3, 3, 1, 4, 2, 3, 2, 3, 2, 3] +heroical 2.9 1.04403 [4, 4, 2, 4, 2, 3, 1, 4, 2, 3] +heroically 2.4 0.8 [2, 2, 2, 3, 3, 3, 4, 1, 2, 2] +heroicomic 1.0 1.0 [1, 0, 1, 0, 2, 0, 3, 1, 2, 0] +heroicomical 1.1 0.83066 [2, 0, 0, 2, 1, 2, 1, 2, 1, 0] +heroics 2.4 0.8 [2, 1, 2, 2, 2, 3, 3, 3, 4, 2] +heroin -2.2 1.83303 [0, -2, -4, 2, -4, -2, -2, -3, -3, -4] +heroine 2.7 1.1 [0, 2, 4, 4, 3, 3, 3, 3, 2, 3] +heroines 1.8 1.32665 [2, 1, 1, 4, 3, 1, 0, 3, 3, 0] +heroinism -2.0 2.0 [-3, -4, 2, -2, -4, -3, -2, -1, 1, -4] +heroism 2.8 0.6 [3, 3, 4, 3, 2, 2, 3, 3, 2, 3] +heroisms 2.2 0.87178 [3, 1, 2, 4, 3, 2, 2, 2, 1, 2] +heroize 2.1 0.7 [3, 2, 3, 1, 2, 2, 2, 3, 1, 2] +heroized 2.0 1.18322 [1, 0, 3, 3, 2, 0, 3, 3, 2, 3] +heroizes 2.2 0.9798 [1, 3, 2, 3, 4, 3, 2, 1, 2, 1] +heroizing 1.9 1.64012 [2, 3, -2, 2, 4, 3, 2, 2, 3, 0] +heron 0.1 0.3 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] +heronries 0.7 1.1 [2, 0, 0, 0, 2, 0, 3, 0, 0, 0] +heronry 0.1 0.9434 [0, 0, 0, 0, 0, 2, 0, 1, -2, 0] +herons 0.5 1.0247 [0, 0, 0, 3, 0, 2, 0, 0, 0, 0] +heros 1.3 1.18743 [3, 0, 0, 2, 0, 2, 2, 3, 1, 0] +hesitance -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] +hesitancies -1.0 0.63246 [-1, -1, -1, -2, -1, -1, -2, 0, 0, -1] +hesitancy -0.9 0.53852 [0, -1, 0, -2, -1, -1, -1, -1, -1, -1] +hesitant -1.0 0.7746 [0, -1, 0, -1, -2, 0, -1, -2, -1, -2] +hesitantly -1.2 0.4 [-1, -1, -2, -1, -1, -1, -1, -2, -1, -1] +hesitate -1.1 0.53852 [-2, -1, -1, -1, -2, -1, -1, 0, -1, -1] +hesitated -1.3 0.9 [-1, -2, -1, -2, -2, -2, -1, 1, -1, -2] +hesitater -1.4 0.66332 [-1, -1, -1, -1, -1, -2, -1, -3, -2, -1] +hesitaters -1.4 0.4899 [-1, -2, -1, -1, -1, -1, -2, -2, -2, -1] +hesitates -1.4 0.4899 [-1, -1, -1, -2, -1, -2, -1, -2, -2, -1] +hesitating -1.4 0.66332 [-1, -1, -2, -1, -1, -3, -2, -1, -1, -1] +hesitatingly -1.5 0.80623 [-1, -1, -1, -1, -3, -2, -3, -1, -1, -1] +hesitation -1.1 0.53852 [-2, 0, -1, -1, -1, -1, -1, -2, -1, -1] +hesitations -1.1 0.53852 [-1, -1, -1, 0, -2, -1, -1, -2, -1, -1] +hid -0.4 0.4899 [0, -1, 0, 0, -1, -1, -1, 0, 0, 0] +hide -0.7 0.64031 [0, -1, -1, -1, -1, 0, 0, -2, -1, 0] +hides -0.7 0.9 [-1, -2, -1, 0, -1, 0, 0, -2, 1, -1] +hiding -1.2 0.4 [-1, -1, -2, -1, -1, -1, -1, -1, -2, -1] +highlight 1.4 0.91652 [3, 0, 1, 1, 2, 1, 0, 2, 2, 2] +hilarious 1.7 1.41774 [2, 2, 2, 3, 3, 1, -2, 2, 3, 1] +hindrance -1.7 0.78102 [-2, -3, -2, -1, -1, -1, -3, -1, -2, -1] +hoax -1.1 1.04403 [-3, -1, -2, -1, 1, -2, -1, -1, -1, 0] +holiday 1.7 1.18743 [1, 3, 2, 2, 0, 0, 1, 2, 4, 2] +holidays 1.6 1.0198 [2, 0, 1, 2, 3, 0, 1, 2, 3, 2] +homesick -0.7 1.67631 [-2, -1, -1, -2, -1, -2, 2, -1, 3, -2] +homesickness -1.8 1.249 [-3, -2, -1, -1, -3, -2, -1, 1, -3, -3] +homesicknesses -1.8 0.6 [-1, -2, -2, -2, -1, -2, -1, -2, -3, -2] +honest 2.3 0.9 [3, 2, 1, 2, 3, 1, 2, 3, 2, 4] +honester 1.9 0.7 [2, 3, 2, 2, 1, 3, 1, 1, 2, 2] +honestest 3.0 0.7746 [1, 3, 3, 3, 3, 3, 4, 4, 3, 3] +honesties 1.8 1.07703 [4, 3, 1, 1, 1, 1, 3, 2, 1, 1] +honestly 2.0 0.63246 [2, 3, 2, 2, 1, 2, 2, 1, 3, 2] +honesty 2.2 0.6 [2, 3, 2, 2, 1, 2, 3, 2, 3, 2] +honor 2.2 1.16619 [3, 2, 1, 2, 0, 4, 3, 1, 3, 3] +honorability 2.2 0.4 [3, 3, 2, 2, 2, 2, 2, 2, 2, 2] +honorable 2.5 0.67082 [2, 2, 3, 2, 4, 3, 2, 2, 2, 3] +honorableness 2.2 0.87178 [2, 4, 1, 3, 3, 2, 1, 2, 2, 2] +honorably 2.4 0.66332 [2, 2, 3, 2, 3, 3, 3, 1, 2, 3] +honoraria 0.6 0.8 [1, 0, 1, 0, 0, 0, 2, 0, 2, 0] +honoraries 1.5 1.5 [2, 2, 1, 3, 3, 1, -2, 2, 3, 0] +honorarily 1.9 0.7 [2, 2, 3, 1, 2, 1, 2, 1, 3, 2] +honorarium 0.7 1.48661 [3, 2, -1, 2, 1, -2, 1, 1, -1, 1] +honorariums 1.0 1.0 [0, 0, 0, 0, 1, 2, 1, 3, 2, 1] +honorary 1.4 0.91652 [2, 2, 2, 3, 1, 1, 0, 1, 2, 0] +honored 2.8 0.87178 [3, 4, 4, 3, 1, 2, 2, 3, 3, 3] +honoree 2.1 0.7 [3, 2, 3, 3, 1, 2, 1, 2, 2, 2] +honorees 2.3 0.78102 [1, 3, 3, 4, 2, 2, 2, 2, 2, 2] +honorer 1.7 0.78102 [2, 1, 3, 3, 1, 2, 1, 2, 1, 1] +honorers 1.3 0.45826 [1, 1, 2, 2, 1, 1, 2, 1, 1, 1] +honorific 1.4 1.2 [2, 2, 2, 2, 2, 1, 2, 1, 2, -2] +honorifically 2.2 0.74833 [3, 4, 1, 2, 2, 2, 2, 2, 2, 2] +honorifics 1.7 0.78102 [1, 2, 0, 1, 2, 2, 2, 3, 2, 2] +honoring 2.3 0.64031 [3, 3, 1, 2, 2, 3, 3, 2, 2, 2] +honors 2.3 0.64031 [3, 2, 2, 2, 1, 3, 3, 2, 3, 2] +honour 2.7 0.78102 [2, 3, 2, 2, 2, 3, 4, 4, 3, 2] +honourable 2.1 0.53852 [2, 3, 2, 2, 2, 1, 3, 2, 2, 2] +honoured 2.2 1.249 [3, 3, 4, 3, -1, 2, 2, 2, 2, 2] +honourer 1.8 0.87178 [2, 3, 2, 1, 2, 3, 1, 0, 2, 2] +honourers 1.6 1.0198 [0, 2, 2, 1, 2, 2, 1, 3, 0, 3] +honouring 2.1 0.3 [2, 2, 2, 3, 2, 2, 2, 2, 2, 2] +honours 2.2 0.87178 [4, 3, 2, 2, 3, 2, 2, 1, 2, 1] +hooligan -1.5 0.5 [-1, -2, -1, -2, -2, -2, -1, -1, -2, -1] +hooliganism -2.1 0.83066 [-3, -2, -3, -3, -2, -2, -2, -2, 0, -2] +hooligans -1.1 1.22066 [-2, -1, -1, 2, -1, -1, -1, -3, -2, -1] +hooray 2.3 0.9 [3, 2, 3, 2, 1, 3, 1, 2, 2, 4] +hope 1.9 0.53852 [3, 2, 2, 1, 2, 2, 1, 2, 2, 2] +hoped 1.6 0.4899 [1, 2, 1, 1, 2, 2, 1, 2, 2, 2] +hopeful 2.3 0.78102 [2, 1, 1, 3, 3, 3, 2, 3, 2, 3] +hopefully 1.7 0.78102 [1, 3, 1, 3, 1, 2, 1, 1, 2, 2] +hopefulness 1.6 1.35647 [2, 1, -2, 2, 3, 2, 1, 3, 2, 2] +hopeless -2.0 1.78885 [-3, -3, -3, -3, 3, -1, -3, -3, -2, -2] +hopelessly -2.2 0.74833 [-3, -4, -2, -2, -1, -2, -2, -2, -2, -2] +hopelessness -3.1 0.7 [-3, -4, -4, -3, -3, -3, -4, -3, -2, -2] +hopes 1.8 0.6 [1, 3, 1, 2, 2, 2, 1, 2, 2, 2] +hoping 1.8 0.4 [2, 2, 2, 1, 2, 2, 2, 2, 2, 1] +horrendous -2.8 0.87178 [-3, -3, -4, -4, -3, -3, -2, -2, -1, -3] +horrendously -1.9 1.92094 [-3, -2, -4, -4, 2, -1, -3, -2, 1, -3] +horrent -0.9 1.04403 [0, -1, -2, 0, 0, -3, -1, 0, -2, 0] +horrible -2.5 0.67082 [-2, -2, -3, -2, -2, -4, -3, -3, -2, -2] +horribleness -2.4 0.4899 [-3, -3, -2, -2, -3, -2, -2, -3, -2, -2] +horribles -2.1 0.7 [-2, -4, -2, -2, -1, -2, -2, -2, -2, -2] +horribly -2.4 0.66332 [-2, -2, -2, -2, -2, -4, -3, -3, -2, -2] +horrid -2.5 1.0247 [-2, -3, -3, -4, -4, -1, -2, -2, -3, -1] +horridly -1.4 1.49666 [-2, 0, -3, -2, 0, -3, 2, -2, -2, -2] +horridness -2.3 1.26886 [-3, -3, -2, 1, -3, -3, -3, -3, -1, -3] +horridnesses -3.0 1.09545 [-2, -3, -4, -4, -4, -4, -2, -2, -1, -4] +horrific -3.4 0.91652 [-2, -4, -4, -4, -2, -4, -2, -4, -4, -4] +horrifically -2.9 0.7 [-2, -3, -2, -4, -2, -4, -3, -3, -3, -3] +horrified -2.5 0.92195 [-2, -3, -2, -2, -1, -4, -2, -2, -3, -4] +horrifies -2.9 1.22066 [-1, -3, -2, -1, -4, -4, -4, -4, -2, -4] +horrify -2.5 0.67082 [-2, -2, -3, -2, -2, -2, -4, -2, -3, -3] +horrifying -2.7 0.9 [-3, -4, -3, -2, -3, -3, -4, -2, -2, -1] +horrifyingly -3.3 0.9 [-3, -3, -4, -4, -1, -4, -3, -3, -4, -4] +horror -2.7 1.1 [-3, -1, -4, -4, -4, -3, -1, -2, -3, -2] +horrors -2.7 0.64031 [-3, -3, -4, -3, -2, -2, -2, -3, -2, -3] +hostile -1.6 1.74356 [-4, -3, -3, -1, 1, -2, 2, -2, -2, -2] +hostilely -2.2 0.6 [-1, -3, -3, -2, -2, -2, -2, -2, -2, -3] +hostiles -1.3 1.9 [-3, -3, -3, -3, -1, 2, -3, -1, 1, 1] +hostilities -2.1 0.53852 [-2, -3, -2, -2, -2, -2, -1, -2, -3, -2] +hostility -2.5 0.80623 [-2, -2, -3, -3, -3, -2, -4, -2, -3, -1] +huckster -0.9 0.7 [-1, 0, -1, 0, -1, -2, -2, 0, -1, -1] +hug 2.1 1.04403 [1, 3, 2, 1, 1, 2, 3, 3, 1, 4] +huge 1.3 0.9 [0, 2, 2, 0, 0, 2, 2, 2, 1, 2] +huggable 1.6 0.66332 [2, 2, 1, 1, 1, 3, 1, 2, 2, 1] +hugged 1.7 0.78102 [2, 2, 2, 2, 3, 1, 1, 2, 0, 2] +hugger 1.6 0.91652 [3, 2, 2, 2, 3, 1, 1, 1, 0, 1] +huggers 1.8 0.6 [1, 3, 1, 2, 1, 2, 2, 2, 2, 2] +hugging 1.8 0.74833 [2, 1, 1, 3, 3, 2, 2, 1, 2, 1] +hugs 2.2 0.74833 [3, 2, 1, 2, 2, 2, 3, 1, 3, 3] +humerous 1.4 1.11355 [-1, 2, 2, 3, 1, 1, 2, 0, 2, 2] +humiliate -2.5 1.28452 [-3, -3, -3, -3, -2, -2, -4, -3, 1, -3] +humiliated -1.4 2.498 [3, -3, -4, -3, -3, -4, -3, 0, 1, 2] +humiliates -1.0 2.09762 [1, -2, -3, -3, -3, -2, -3, 1, 2, 2] +humiliating -1.2 1.8868 [-4, -1, -3, -1, 2, -1, 2, -3, -2, -1] +humiliatingly -2.6 0.4899 [-3, -3, -2, -2, -3, -3, -3, -3, -2, -2] +humiliation -2.7 0.78102 [-2, -3, -4, -2, -2, -2, -3, -2, -4, -3] +humiliations -2.4 0.66332 [-3, -2, -2, -2, -2, -2, -2, -3, -2, -4] +humor 1.1 0.53852 [1, 0, 2, 2, 1, 1, 1, 1, 1, 1] +humoral 0.6 1.0198 [2, 0, 0, 0, 0, 0, 3, 1, 0, 0] +humored 1.2 0.87178 [1, 1, 2, 2, 1, 1, 2, 1, 2, -1] +humoresque 1.2 0.6 [1, 1, 1, 2, 1, 2, 2, 1, 1, 0] +humoresques 0.9 1.04403 [1, 0, 2, 0, 0, 1, 2, 0, 3, 0] +humoring 2.1 0.7 [3, 2, 2, 2, 1, 2, 2, 1, 3, 3] +humorist 1.2 0.74833 [1, 2, 1, 1, 2, 1, 2, 0, 0, 2] +humoristic 1.5 0.80623 [3, 0, 2, 1, 2, 1, 2, 2, 1, 1] +humorists 1.3 0.78102 [2, 1, 1, 1, 0, 1, 2, 3, 1, 1] +humorless -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -2] +humorlessness -1.4 1.11355 [1, -3, -3, -1, -1, -2, -1, -1, -2, -1] +humorous 1.6 0.4899 [1, 2, 1, 2, 2, 1, 2, 2, 1, 2] +humorously 2.3 0.78102 [3, 3, 2, 2, 1, 3, 3, 1, 2, 3] +humorousness 2.4 0.66332 [1, 2, 3, 2, 3, 2, 3, 3, 2, 3] +humors 1.6 0.4899 [2, 1, 2, 2, 2, 2, 1, 2, 1, 1] +humour 2.1 0.9434 [1, 2, 2, 4, 2, 1, 1, 3, 3, 2] +humoured 1.1 0.53852 [1, 0, 1, 2, 2, 1, 1, 1, 1, 1] +humouring 1.7 0.78102 [2, 3, 1, 2, 1, 0, 2, 2, 2, 2] +humourous 2.0 0.7746 [1, 2, 3, 2, 2, 3, 3, 2, 1, 1] +hunger -1.0 1.67332 [-4, 0, 2, -2, -1, -2, 1, -2, 0, -2] +hurrah 2.6 0.8 [3, 2, 3, 3, 1, 3, 4, 2, 2, 3] +hurrahed 1.9 0.53852 [2, 2, 1, 1, 2, 2, 3, 2, 2, 2] +hurrahing 2.4 0.4899 [3, 2, 2, 2, 3, 2, 3, 3, 2, 2] +hurrahs 2.1 1.44568 [2, 3, 0, 3, 2, 3, -1, 2, 3, 4] +hurray 2.7 0.78102 [3, 2, 3, 3, 1, 3, 4, 2, 3, 3] +hurrayed 1.8 1.32665 [3, 3, 2, 3, 3, 3, 0, 0, 1, 0] +hurraying 1.2 1.66132 [2, -3, 2, 3, 0, 2, 2, 2, 0, 2] +hurrays 2.4 1.11355 [2, 3, 2, 4, 0, 3, 2, 2, 2, 4] +hurt -2.4 0.8 [-3, -3, -2, -2, -4, -3, -2, -1, -2, -2] +hurter -2.3 0.78102 [-2, -4, -1, -2, -3, -3, -2, -2, -2, -2] +hurters -1.9 1.04403 [-2, -3, -1, -2, -1, 0, -3, -3, -3, -1] +hurtful -2.4 1.0198 [-2, -4, -2, -2, -1, -3, -2, -3, -1, -4] +hurtfully -2.6 0.66332 [-3, -2, -3, -2, -2, -3, -4, -3, -2, -2] +hurtfulness -1.9 1.51327 [2, -2, -2, -2, -3, -1, -2, -3, -4, -2] +hurting -1.7 0.78102 [-3, -1, -1, -2, -1, -1, -3, -2, -2, -1] +hurtle -0.3 1.1 [-2, 1, 0, -1, -1, -1, 0, 2, 0, -1] +hurtled -0.6 0.8 [0, -2, 0, 0, 0, 0, -1, -1, -2, 0] +hurtles -1.0 0.63246 [-1, -2, 0, 0, -1, -1, -1, -1, -2, -1] +hurtless 0.3 1.55242 [-1, -3, 2, 1, 2, 1, 0, 0, -1, 2] +hurtling -1.4 0.8 [-3, -2, -1, -1, -1, -1, -1, -2, 0, -2] +hurts -2.1 0.83066 [-4, -2, -2, -2, -3, -1, -2, -2, -2, -1] +hypocritical -2.0 0.89443 [-4, -2, -1, -3, -2, -1, -2, -1, -2, -2] +hysteria -1.9 0.7 [-1, -3, -1, -2, -2, -2, -2, -2, -1, -3] +hysterical -0.1 1.97231 [2, 0, 0, 3, -2, -2, 3, -1, -2, -2] +hysterics -1.8 1.77764 [-3, -3, -3, -1, -3, -1, -2, 3, -3, -2] +ideal 2.4 1.2 [4, 3, 4, 4, 2, 2, 1, 2, 1, 1] +idealess -1.9 1.3 [-4, -2, -3, -2, -1, 0, -4, -1, -1, -1] +idealise 1.4 0.91652 [2, 2, 1, 0, 1, 3, 2, 0, 1, 2] +idealised 2.1 0.83066 [1, 4, 1, 3, 2, 2, 2, 2, 2, 2] +idealises 2.0 0.89443 [1, 4, 1, 2, 2, 2, 2, 3, 1, 2] +idealising 0.6 0.4899 [0, 1, 1, 1, 1, 1, 1, 0, 0, 0] +idealism 1.7 1.1 [1, 2, 0, 3, 3, 2, 1, 2, 3, 0] +idealisms 0.8 0.9798 [0, 2, 3, 1, 0, 0, 1, 0, 0, 1] +idealist 1.6 1.56205 [2, 3, -2, 1, 3, 3, 1, 0, 2, 3] +idealistic 1.8 0.9798 [2, 1, 0, 2, 4, 2, 2, 2, 1, 2] +idealistically 1.7 1.1 [0, 3, 3, 1, 2, 3, 0, 2, 1, 2] +idealists 0.7 1.1 [0, -2, 1, 2, 1, 1, 2, 0, 1, 1] +idealities 1.5 0.67082 [2, 1, 1, 2, 1, 0, 2, 2, 2, 2] +ideality 1.9 0.9434 [0, 1, 2, 3, 2, 1, 2, 3, 3, 2] +idealization 1.8 0.9798 [2, 2, 2, 1, 4, 2, 2, 0, 1, 2] +idealizations 1.4 0.66332 [2, 1, 1, 2, 1, 2, 1, 0, 2, 2] +idealize 1.2 0.9798 [1, 2, 2, 0, 0, 1, 3, 0, 2, 1] +idealized 1.8 0.74833 [2, 3, 1, 1, 2, 1, 3, 1, 2, 2] +idealizer 1.3 0.9 [1, 1, 1, 1, 1, 3, 0, 1, 3, 1] +idealizers 1.9 1.37477 [1, 4, 1, 2, 0, 2, 3, 2, 4, 0] +idealizes 2.0 1.0 [3, 2, 2, 1, 4, 2, 2, 0, 2, 2] +idealizing 1.4 1.0198 [1, 1, 2, 3, 0, 1, 3, 0, 2, 1] +idealless -1.7 1.00499 [-2, -2, -2, -2, -4, -1, 0, -1, -2, -1] +ideally 1.8 1.16619 [1, 0, 2, 2, 3, 2, 4, 0, 2, 2] +idealogues 0.5 0.92195 [1, 0, -1, 2, 0, 0, 2, 0, 1, 0] +idealogy 0.8 1.16619 [0, 3, 1, 0, 2, 0, 0, 1, 2, -1] +ideals 0.8 0.6 [0, 1, 0, 2, 1, 1, 1, 0, 1, 1] +idiot -2.3 0.64031 [-2, -3, -1, -3, -2, -3, -3, -2, -2, -2] +idiotic -2.6 0.91652 [-3, -4, -2, -3, -2, -2, -4, -1, -3, -2] +ignorable -1.0 0.63246 [-1, -1, -1, -2, 0, -1, 0, -1, -2, -1] +ignorami -1.9 0.83066 [-2, -2, -3, -2, 0, -1, -2, -2, -3, -2] +ignoramus -1.9 0.83066 [-1, -2, -1, -3, -1, -3, -1, -3, -2, -2] +ignoramuses -2.3 1.1 [-2, -2, -3, -4, 0, -1, -3, -2, -3, -3] +ignorance -1.5 1.20416 [-2, -2, -3, -2, 0, -2, -1, -3, -1, 1] +ignorances -1.2 0.9798 [0, -1, -2, -1, -2, -2, -1, 1, -2, -2] +ignorant -1.1 0.83066 [-1, -1, -1, -2, 1, -2, -1, -2, -1, -1] +ignorantly -1.6 0.91652 [-1, -2, -2, -2, -2, -2, -2, 1, -2, -2] +ignorantness -1.1 1.44568 [3, -1, -2, -1, -1, -2, -2, -2, -1, -2] +ignore -1.5 0.67082 [-1, -2, -1, -1, -1, -1, -2, -3, -2, -1] +ignored -1.3 0.45826 [-2, -1, -2, -1, -1, -2, -1, -1, -1, -1] +ignorer -1.3 0.45826 [-1, -1, -2, -1, -2, -1, -1, -1, -2, -1] +ignorers -0.7 1.00499 [-1, -2, -1, -1, -1, 1, 0, -2, 1, -1] +ignores -1.1 0.3 [-1, -1, -2, -1, -1, -1, -1, -1, -1, -1] +ignoring -1.7 0.64031 [-1, -1, -1, -2, -2, -3, -2, -1, -2, -2] +ill -1.8 0.9798 [-2, 0, -2, -1, -4, -2, -2, -2, -1, -2] +illegal -2.6 0.8 [-3, -4, -3, -2, -1, -2, -3, -3, -2, -3] +illiteracy -1.9 0.7 [-2, -1, -2, -2, -3, -2, -1, -2, -1, -3] +illness -1.7 0.64031 [-2, -1, -2, -2, -3, -2, -1, -2, -1, -1] +illnesses -2.2 0.74833 [-2, -2, -2, -4, -2, -3, -2, -1, -2, -2] +imbecile -2.2 0.9798 [-3, -2, -3, -3, -3, -1, -3, 0, -2, -2] +immobilized -1.2 0.87178 [-1, -3, 0, -1, -1, 0, -2, -1, -2, -1] +immoral -2.0 1.09545 [-4, -1, -1, -3, -2, -3, -3, -1, -1, -1] +immoralism -1.6 0.91652 [-2, -2, -2, -2, 1, -2, -2, -2, -1, -2] +immoralist -2.1 0.3 [-2, -2, -3, -2, -2, -2, -2, -2, -2, -2] +immoralists -1.7 0.78102 [-2, -2, -2, -3, -1, -1, -1, -1, -3, -1] +immoralities -1.1 1.51327 [-2, -1, -4, -3, 1, 1, -1, 0, -1, -1] +immorality -0.6 2.2891 [3, -3, 1, 2, 2, -2, -4, -1, -2, -2] +immorally -2.1 0.7 [-1, -1, -2, -2, -3, -2, -3, -2, -2, -3] +immortal 1.0 1.73205 [3, 3, 2, 2, -2, -2, 2, 1, 1, 0] +immune 1.2 0.74833 [2, 2, 0, 1, 2, 1, 2, 1, 1, 0] +impatience -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -1, -2, -2] +impatiens -0.2 0.6 [0, 0, -1, 0, 0, 0, 1, -1, -1, 0] +impatient -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -2] +impatiently -1.7 0.64031 [-1, -1, -2, -3, -1, -2, -1, -2, -2, -2] +imperfect -1.3 0.64031 [-1, -1, -1, -1, -1, -2, -3, -1, -1, -1] +impersonal -1.3 0.45826 [-2, -2, -1, -1, -2, -1, -1, -1, -1, -1] +impolite -1.6 0.66332 [-2, -1, -3, -1, -1, -1, -1, -2, -2, -2] +impolitely -1.8 0.6 [-2, -2, -1, -1, -2, -1, -2, -2, -3, -2] +impoliteness -1.8 0.87178 [-1, -3, -2, -3, -2, -3, -1, -1, -1, -1] +impolitenesses -2.3 0.78102 [-3, -2, -2, -1, -1, -3, -3, -2, -3, -3] +importance 1.5 0.80623 [2, 1, 2, 3, 1, 2, 1, 0, 2, 1] +importancies 0.4 1.42829 [0, 0, 1, 2, 0, 0, 2, 2, 0, -3] +importancy 1.4 0.66332 [2, 1, 2, 2, 1, 2, 1, 0, 2, 1] +important 0.8 1.07703 [0, 0, 0, 2, 1, 0, 0, 3, 2, 0] +importantly 1.3 0.78102 [2, 1, 2, 1, 2, 2, 0, 0, 1, 2] +impose -1.2 0.4 [-1, -1, -1, -1, -2, -1, -2, -1, -1, -1] +imposed -0.3 1.41774 [2, -1, -1, -1, 1, 0, -2, 2, -2, -1] +imposes -0.4 1.42829 [-2, -1, 1, -2, -1, -1, -2, 1, 2, 1] +imposing -0.4 1.0198 [1, -1, -2, -1, 1, 1, 0, -1, -1, -1] +impotent -1.1 0.3 [-1, -1, -1, -2, -1, -1, -1, -1, -1, -1] +impress 1.9 0.53852 [2, 2, 1, 2, 2, 2, 2, 1, 2, 3] +impressed 2.1 0.3 [2, 2, 2, 2, 2, 2, 3, 2, 2, 2] +impresses 2.1 0.3 [2, 2, 2, 2, 2, 2, 3, 2, 2, 2] +impressibility 1.2 1.249 [-1, 2, 0, 2, 0, 2, 2, 3, 2, 0] +impressible 0.8 1.16619 [2, -1, 1, 0, -1, 2, 1, 0, 2, 2] +impressing 2.5 0.92195 [3, 4, 1, 2, 3, 2, 3, 1, 3, 3] +impression 0.9 0.9434 [0, 1, 0, 0, 2, 2, 0, 2, 0, 2] +impressionable 0.2 1.07703 [0, 0, -1, 1, -1, -1, 0, 2, 0, 2] +impressionism 0.8 1.07703 [0, 2, 3, 0, 0, 2, 0, 0, 1, 0] +impressionisms 0.5 0.80623 [0, 0, 0, 0, 0, 2, 0, 1, 0, 2] +impressionist 1.0 1.09545 [0, 2, 3, 0, 0, 2, 2, 0, 1, 0] +impressionistic 1.5 1.20416 [2, 2, 0, 0, 1, 0, 2, 2, 4, 2] +impressionistically 1.6 0.8 [2, 0, 1, 1, 2, 2, 3, 2, 2, 1] +impressionists 0.5 1.43178 [2, 0, 0, 1, 1, 2, -2, 2, 1, -2] +impressions 0.9 1.13578 [2, 0, 0, 3, 0, 2, 0, 2, 0, 0] +impressive 2.3 0.78102 [1, 2, 3, 2, 3, 2, 3, 3, 3, 1] +impressively 2.0 0.89443 [3, 1, 1, 2, 2, 2, 2, 4, 2, 1] +impressiveness 1.7 0.64031 [2, 1, 2, 3, 1, 2, 2, 2, 1, 1] +impressment -0.4 1.85472 [-2, 1, 3, -2, -1, -3, 0, 0, 2, -2] +impressments 0.5 1.20416 [2, 0, 0, 1, 2, 2, 0, -2, 0, 0] +impressure 0.6 1.0198 [-1, 0, 0, 0, 0, 2, 0, 2, 1, 2] +imprisoned -2.0 1.0 [-4, -2, -3, -1, -3, -2, -1, -2, -1, -1] +improve 1.9 0.7 [2, 3, 3, 2, 1, 1, 2, 2, 1, 2] +improved 2.1 0.7 [3, 1, 2, 3, 2, 3, 1, 2, 2, 2] +improvement 2.0 0.63246 [2, 3, 3, 2, 1, 1, 2, 2, 2, 2] +improvements 1.3 0.64031 [0, 2, 2, 1, 2, 2, 1, 1, 1, 1] +improver 1.8 0.6 [2, 1, 2, 1, 2, 3, 1, 2, 2, 2] +improvers 1.3 0.78102 [1, 2, 2, 1, 2, 2, 0, 0, 1, 2] +improves 1.8 1.07703 [3, -1, 2, 2, 2, 3, 1, 2, 2, 2] +improving 1.8 0.4 [2, 2, 1, 1, 2, 2, 2, 2, 2, 2] +inability -1.7 0.9 [-2, -2, -3, 0, -2, -3, -2, -1, -1, -1] +inaction -1.0 0.63246 [-2, -1, 0, -1, -1, 0, -1, -2, -1, -1] +inadequacies -1.7 0.64031 [-1, -3, -2, -1, -2, -1, -2, -2, -1, -2] +inadequacy -1.7 0.78102 [-1, -3, -1, -1, -3, -2, -2, -1, -2, -1] +inadequate -1.7 0.64031 [-2, -1, -1, -3, -1, -1, -2, -2, -2, -2] +inadequately -1.0 1.26491 [-3, -1, -1, -2, 2, -1, -2, -1, 0, -1] +inadequateness -1.7 0.45826 [-2, -2, -1, -1, -1, -2, -2, -2, -2, -2] +inadequatenesses -1.6 0.91652 [-1, -1, -2, -1, -2, -4, -2, -1, -1, -1] +incapable -1.6 0.4899 [-1, -2, -1, -1, -2, -1, -2, -2, -2, -2] +incapacitated -1.9 0.9434 [-2, -2, -1, -1, -2, -4, -1, -1, -2, -3] +incensed -2.0 1.0 [-2, -1, -4, 0, -2, -2, -2, -3, -2, -2] +incentive 1.5 1.0247 [1, 2, 1, 2, 1, 0, 4, 2, 1, 1] +incentives 1.3 1.34536 [2, 2, 1, 1, 3, 1, -2, 3, 1, 1] +incompetence -2.3 0.45826 [-3, -2, -2, -3, -2, -3, -2, -2, -2, -2] +incompetent -2.1 0.83066 [-1, -1, -2, -2, -3, -3, -2, -3, -1, -3] +inconsiderate -1.9 0.7 [-2, -1, -1, -1, -2, -2, -2, -3, -3, -2] +inconvenience -1.5 0.5 [-1, -2, -1, -1, -1, -2, -2, -1, -2, -2] +inconvenient -1.4 0.4899 [-2, -2, -1, -2, -1, -2, -1, -1, -1, -1] +increase 1.3 0.64031 [1, 2, 2, 1, 2, 0, 1, 1, 2, 1] +increased 1.1 1.04403 [2, 0, 3, 2, 2, 1, 0, 1, 0, 0] +indecision -0.8 0.6 [-1, 0, -1, 0, -1, -1, -2, 0, -1, -1] +indecisions -1.1 0.53852 [-1, -1, -1, -1, -2, -1, -2, -1, 0, -1] +indecisive -1.0 0.44721 [0, -1, -1, -1, -1, -2, -1, -1, -1, -1] +indecisively -0.7 1.18743 [-2, -1, -1, -1, -1, -1, -2, 2, 1, -1] +indecisiveness -1.3 0.64031 [-1, -3, -1, -2, -1, -1, -1, -1, -1, -1] +indecisivenesses -0.9 0.53852 [-1, -1, 0, -1, -1, 0, -1, -2, -1, -1] +indestructible 0.6 1.85472 [3, 4, -1, -2, 1, 1, 2, 0, -1, -1] +indifference -0.2 0.74833 [0, -1, 0, 0, 0, 1, -2, 0, 0, 0] +indifferent -0.8 0.6 [-1, 0, 0, -1, -2, -1, -1, 0, -1, -1] +indignant -1.8 0.74833 [-1, -3, -2, -2, -2, -1, -1, -1, -3, -2] +indignation -2.4 0.8 [-2, -1, -2, -3, -3, -3, -1, -3, -3, -3] +indoctrinate -1.4 0.91652 [-1, -3, -1, 0, -2, -1, -2, -2, 0, -2] +indoctrinated -0.4 1.35647 [1, -2, -3, 1, -1, 1, 1, -1, -1, 0] +indoctrinates -0.6 1.2 [1, -1, -3, 1, -1, 1, -1, -1, -1, -1] +indoctrinating -0.7 1.41774 [-1, 0, -3, -1, -2, -1, 2, -2, 0, 1] +ineffective -0.5 1.74642 [-2, -1, -1, -1, -2, 2, -2, 1, 3, -2] +ineffectively -1.3 0.9 [-2, -2, -2, 1, -1, -1, -1, -2, -1, -2] +ineffectiveness -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -1, -2, -1] +ineffectual -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] +ineffectuality -1.6 0.66332 [-2, -1, -1, -1, -2, -1, -3, -2, -2, -1] +ineffectually -1.1 0.9434 [-1, -2, -2, -1, 0, -1, -2, -1, 1, -2] +ineffectualness -1.3 0.45826 [-2, -1, -1, -1, -1, -2, -1, -1, -2, -1] +infatuated 0.2 1.72047 [3, 2, 0, 3, -1, -1, -2, 0, -1, -1] +infatuation 0.6 1.74356 [1, -1, -1, 2, -1, 1, 4, 2, 1, -2] +infected -2.2 0.6 [-3, -2, -2, -2, -2, -2, -3, -1, -2, -3] +inferior -1.7 0.78102 [-1, -2, -2, -1, -1, -3, -2, -1, -1, -3] +inferiorities -1.9 0.7 [-2, -3, -1, -2, -2, -3, -1, -1, -2, -2] +inferiority -1.1 1.7 [-2, -3, -2, -2, -2, -3, 2, 1, -1, 1] +inferiorly -2.0 0.63246 [-3, -2, -2, -2, -2, -3, -1, -2, -1, -2] +inferiors -0.5 1.43178 [-1, -1, -1, -2, -1, 0, 3, -1, 1, -2] +inflamed -1.4 1.28062 [-2, -2, -1, -2, -2, -1, 2, -3, -2, -1] +influential 1.9 1.04403 [3, 1, 2, 3, 4, 1, 1, 2, 1, 1] +infringement -2.1 0.83066 [-3, -1, -2, -1, -2, -1, -3, -3, -2, -3] +infuriate -2.2 0.87178 [-2, -1, -3, -3, -2, -3, -3, -1, -1, -3] +infuriated -3.0 0.7746 [-1, -4, -3, -3, -3, -3, -3, -3, -3, -4] +infuriates -2.6 0.8 [-4, -2, -1, -3, -3, -3, -2, -3, -3, -2] +infuriating -2.4 1.42829 [-1, -3, -3, -3, -3, -4, 0, 0, -4, -3] +inhibin -0.2 0.4 [-1, 0, 0, 0, 0, 0, 0, 0, -1, 0] +inhibit -1.6 0.4899 [-1, -2, -1, -2, -1, -2, -2, -2, -1, -2] +inhibited -0.4 0.4899 [0, 0, -1, 0, -1, -1, 0, -1, 0, 0] +inhibiting -0.4 1.42829 [1, -1, -1, -1, -2, -1, 2, -2, 2, -1] +inhibition -1.5 0.67082 [-1, -1, -1, -1, -2, -1, -1, -2, -2, -3] +inhibitions -0.8 0.74833 [-2, -1, -2, 0, 0, 0, 0, -1, -1, -1] +inhibitive -1.4 0.4899 [-2, -2, -1, -1, -2, -1, -2, -1, -1, -1] +inhibitor -0.3 1.00499 [-2, 1, 1, -1, 1, 0, -1, -1, 0, -1] +inhibitors -1.0 0.7746 [-1, 0, -2, -1, -2, -2, 0, 0, -1, -1] +inhibitory -1.0 0.7746 [0, -1, -2, -2, -1, -2, 0, 0, -1, -1] +inhibits -0.9 0.53852 [-1, -1, -2, -1, -1, 0, -1, -1, -1, 0] +injured -1.7 0.64031 [-2, -1, -1, -1, -2, -1, -2, -2, -3, -2] +injury -1.8 0.6 [-2, -2, -1, -2, -1, -1, -2, -3, -2, -2] +injustice -2.7 0.64031 [-3, -2, -3, -4, -3, -3, -2, -2, -3, -2] +innocence 1.6 0.91652 [3, 1, 1, 1, 2, 2, 0, 3, 2, 1] +innocency 1.9 0.83066 [3, 1, 2, 0, 2, 2, 2, 3, 2, 2] +innocent 1.4 1.2 [1, -1, 2, 2, 2, 0, 1, 3, 3, 1] +innocenter 0.9 1.37477 [1, 1, 1, 2, 2, 1, 1, -3, 1, 2] +innocently 1.4 0.8 [0, 2, 1, 1, 1, 1, 3, 2, 2, 1] +innocents 1.1 1.04403 [0, 0, 2, 2, 2, -1, 1, 1, 2, 2] +innovate 2.2 0.74833 [2, 4, 3, 2, 2, 1, 2, 2, 2, 2] +innovates 2.0 0.89443 [2, 2, 2, 0, 1, 3, 3, 2, 3, 2] +innovation 1.6 0.91652 [1, 0, 3, 2, 1, 2, 3, 2, 1, 1] +innovative 1.9 0.83066 [1, 1, 2, 1, 2, 4, 2, 2, 2, 2] +inquisition -1.2 1.249 [-2, 1, -1, 0, 0, -3, -1, -3, -2, -1] +inquisitive 0.7 1.18743 [2, 1, 1, 2, -2, -1, 1, 1, 1, 1] +insane -1.7 0.78102 [-2, 0, -2, -1, -2, -3, -2, -2, -1, -2] +insanity -2.7 1.00499 [-2, -4, -1, -1, -3, -4, -3, -3, -3, -3] +insecure -1.8 0.74833 [-1, -2, -2, -1, -3, -2, -3, -2, -1, -1] +insecurely -1.4 0.66332 [-3, -1, -1, -1, -2, -1, -2, -1, -1, -1] +insecureness -1.8 0.87178 [-1, -1, -1, -3, -3, -3, -2, -2, -1, -1] +insecurities -1.8 0.6 [-3, -2, -2, -2, -1, -2, -1, -1, -2, -2] +insecurity -1.8 0.74833 [-2, -2, -2, -1, -3, -3, -2, -1, -1, -1] +insensitive -0.9 1.81384 [2, -3, -2, -1, 2, -3, -2, 1, -1, -2] +insensitivity -1.8 0.6 [-2, -2, -1, -3, -2, -2, -1, -2, -1, -2] +insignificant -1.4 0.8 [-3, -2, -1, -2, -1, -2, 0, -1, -1, -1] +insincere -1.8 0.6 [-2, -1, -2, -1, -2, -2, -2, -2, -1, -3] +insincerely -1.9 0.7 [-2, -1, -2, -2, -1, -3, -2, -3, -1, -2] +insincerity -1.4 1.35647 [-1, -1, -3, -2, -1, 2, -2, -1, -2, -3] +insipid -2.0 0.7746 [-1, -2, -2, -1, -3, -3, -3, -2, -2, -1] +inspiration 2.4 0.8 [3, 3, 3, 3, 1, 3, 1, 3, 2, 2] +inspirational 2.3 0.64031 [2, 3, 2, 3, 2, 3, 2, 3, 1, 2] +inspirationally 2.3 0.64031 [3, 2, 2, 3, 3, 1, 2, 2, 3, 2] +inspirations 2.1 0.53852 [2, 2, 2, 2, 1, 2, 2, 3, 3, 2] +inspirator 1.9 1.22066 [2, 2, 3, 0, 3, 4, 0, 2, 1, 2] +inspirators 1.2 0.74833 [3, 1, 1, 2, 1, 1, 1, 1, 0, 1] +inspiratory 1.5 0.67082 [2, 2, 3, 1, 1, 1, 1, 1, 2, 1] +inspire 2.7 0.78102 [2, 3, 3, 3, 3, 3, 3, 1, 4, 2] +inspired 2.2 0.87178 [3, 2, 1, 3, 1, 1, 3, 2, 3, 3] +inspirer 2.2 1.07703 [3, 2, 2, 4, 0, 2, 3, 1, 3, 2] +inspirers 2.0 0.63246 [2, 2, 3, 2, 3, 2, 1, 2, 1, 2] +inspires 1.9 1.04403 [2, 2, 2, 4, 0, 2, 3, 1, 1, 2] +inspiring 1.8 1.07703 [2, 2, 2, -1, 2, 3, 2, 2, 1, 3] +inspiringly 2.6 0.4899 [2, 3, 3, 2, 3, 3, 2, 3, 2, 3] +inspirit 1.9 0.7 [1, 3, 2, 1, 2, 1, 3, 2, 2, 2] +inspirited 1.3 1.18743 [2, 2, 0, 0, 3, 0, 2, 0, 3, 1] +inspiriting 1.8 0.4 [1, 2, 1, 2, 2, 2, 2, 2, 2, 2] +inspiritingly 2.1 1.44568 [3, 2, 2, 2, 4, 1, -1, 3, 4, 1] +inspirits 0.8 1.46969 [3, 0, 3, -2, 0, 1, 1, 0, 2, 0] +insult -2.3 1.00499 [-2, -1, -2, -3, -4, -1, -3, -1, -3, -3] +insulted -2.3 0.45826 [-2, -2, -2, -2, -3, -2, -2, -2, -3, -3] +insulter -2.0 0.63246 [-2, -1, -2, -2, -1, -3, -3, -2, -2, -2] +insulters -2.0 0.44721 [-2, -3, -2, -2, -2, -2, -2, -1, -2, -2] +insulting -2.2 0.74833 [-3, -2, -3, -3, -2, -3, -1, -2, -2, -1] +insultingly -2.3 0.78102 [-3, -3, -1, -2, -2, -3, -2, -1, -3, -3] +insults -1.8 0.6 [-2, -3, -2, -2, -1, -1, -1, -2, -2, -2] +intact 0.8 0.6 [1, 1, 0, 0, 1, 1, 0, 1, 1, 2] +integrity 1.6 0.66332 [2, 1, 1, 1, 2, 1, 3, 1, 2, 2] +intellect 2.0 1.09545 [2, 1, 4, 2, 1, 3, 2, 3, 0, 2] +intellection 0.6 1.0198 [0, 0, 0, 1, 0, 0, 0, 0, 2, 3] +intellections 0.8 0.87178 [1, 0, 1, 0, 1, 1, 1, 0, 0, 3] +intellective 1.7 0.78102 [3, 2, 1, 2, 2, 1, 0, 2, 2, 2] +intellectively 0.8 0.9798 [0, 0, 1, 1, 0, 3, 0, 1, 2, 0] +intellects 1.8 0.87178 [1, 0, 2, 1, 3, 2, 2, 2, 3, 2] +intellectual 2.3 0.9 [3, 3, 1, 2, 3, 4, 2, 2, 1, 2] +intellectualism 2.2 1.07703 [4, 0, 3, 1, 3, 2, 2, 3, 2, 2] +intellectualist 2.0 1.0 [4, 0, 2, 1, 3, 2, 2, 2, 2, 2] +intellectualistic 1.3 1.73494 [1, 4, 0, 3, -2, 0, 2, 3, 0, 2] +intellectualists 0.8 0.74833 [0, 1, 1, 1, 0, 2, 0, 1, 2, 0] +intellectualities 1.7 1.34536 [3, 3, 0, 2, 1, 0, 0, 4, 2, 2] +intellectuality 1.7 1.1 [3, 2, 2, 1, 2, 1, 0, 3, 0, 3] +intellectualization 1.5 1.11803 [2, 1, 2, 1, 4, 2, 0, 0, 2, 1] +intellectualize 1.5 0.92195 [1, 2, 1, 1, 3, 2, 3, 0, 1, 1] +intellectualized 1.2 0.74833 [1, 0, 1, 1, 2, 0, 1, 2, 2, 2] +intellectualizes 1.8 0.87178 [2, 3, 2, 0, 2, 3, 2, 2, 1, 1] +intellectualizing 0.8 1.77764 [0, 1, 2, 1, 0, 2, 2, -4, 2, 2] +intellectually 1.4 0.8 [2, 0, 0, 1, 2, 2, 2, 2, 2, 1] +intellectualness 1.5 0.80623 [2, 2, 2, 2, 0, 0, 1, 2, 2, 2] +intellectuals 1.6 0.8 [0, 1, 2, 1, 3, 2, 1, 2, 2, 2] +intelligence 2.1 0.9434 [3, 2, 2, 1, 3, 3, 3, 2, 2, 0] +intelligencer 1.5 0.80623 [2, 0, 0, 2, 2, 2, 2, 1, 2, 2] +intelligencers 1.6 0.91652 [2, 2, 0, 2, 2, 0, 3, 2, 2, 1] +intelligences 1.6 0.91652 [3, 0, 0, 2, 2, 2, 2, 1, 2, 2] +intelligent 2.0 0.7746 [1, 2, 2, 1, 4, 2, 2, 2, 2, 2] +intelligential 1.9 0.9434 [3, 2, 2, 1, 3, 2, 2, 3, 0, 1] +intelligently 2.0 0.63246 [2, 3, 2, 3, 1, 2, 2, 1, 2, 2] +intelligentsia 1.5 1.20416 [0, 1, 2, 0, 4, 3, 2, 1, 1, 1] +intelligibility 1.5 0.80623 [2, 2, 0, 2, 2, 1, 2, 0, 2, 2] +intelligible 1.4 0.8 [1, 2, 2, 1, 0, 2, 1, 1, 3, 1] +intelligibleness 1.5 1.20416 [2, 1, 3, -1, 2, 2, 2, 0, 1, 3] +intelligibly 1.2 0.87178 [1, 2, 1, 2, 1, -1, 2, 2, 1, 1] +intense 0.3 0.45826 [0, 1, 1, 0, 0, 0, 0, 0, 1, 0] +interest 2.0 1.18322 [2, 3, 3, 1, 1, 3, 4, 1, 2, 0] +interested 1.7 0.45826 [2, 1, 2, 2, 1, 2, 2, 2, 1, 2] +interestedly 1.5 0.67082 [2, 2, 2, 1, 2, 1, 2, 1, 0, 2] +interesting 1.7 0.78102 [1, 2, 1, 3, 1, 1, 1, 3, 2, 2] +interestingly 1.7 0.45826 [2, 2, 2, 1, 2, 1, 1, 2, 2, 2] +interestingness 1.8 0.87178 [2, 3, 1, 3, 1, 3, 2, 1, 1, 1] +interests 1.0 0.89443 [1, 0, 1, 2, 0, 0, 1, 1, 1, 3] +interrogated -1.6 1.0198 [-3, -1, -1, -1, -2, -1, -3, -1, -3, 0] +interrupt -1.4 0.4899 [-2, -1, -1, -1, -2, -2, -1, -1, -2, -1] +interrupted -1.2 0.6 [-1, -2, -1, 0, -1, -1, -2, -1, -2, -1] +interrupter -1.1 0.53852 [-1, -2, -1, 0, -1, -1, -1, -1, -2, -1] +interrupters -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -2, -1, -2, -1] +interruptible -1.3 1.00499 [-2, -1, 0, -2, 0, -3, -2, -1, 0, -2] +interrupting -1.2 0.4 [-2, -1, -1, -1, -1, -2, -1, -1, -1, -1] +interruption -1.5 0.67082 [-1, -1, -2, -3, -2, -1, -1, -1, -2, -1] +interruptions -1.7 0.45826 [-2, -2, -2, -2, -2, -1, -1, -1, -2, -2] +interruptive -1.4 0.66332 [-2, -2, -1, -2, -2, 0, -1, -1, -1, -2] +interruptor -1.3 0.64031 [-2, -1, -1, -1, 0, -2, -2, -2, -1, -1] +interrupts -1.3 0.64031 [-1, -1, -2, -1, -1, -1, -1, -1, -3, -1] +intimidate -0.8 1.46969 [-1, -2, -2, -2, -2, -1, 2, 1, 1, -2] +intimidated -1.9 0.7 [-2, -1, -3, -3, -1, -2, -2, -1, -2, -2] +intimidates -1.3 0.78102 [-2, -1, -1, -1, -3, -2, -1, -1, -1, 0] +intimidating -1.9 1.04403 [0, -2, -1, -3, -2, -1, -1, -3, -3, -3] +intimidatingly -1.1 1.64012 [2, -2, -3, -1, -2, -2, 2, -2, -1, -2] +intimidation -1.8 1.249 [1, -2, -3, -1, -2, -3, -1, -3, -1, -3] +intimidations -1.4 1.49666 [1, -2, -2, -2, -1, -1, -1, -4, 1, -3] +intimidator -1.6 0.4899 [-1, -1, -2, -2, -1, -2, -2, -1, -2, -2] +intimidators -1.6 0.8 [-1, -1, -3, -2, -1, -1, -3, -1, -2, -1] +intimidatory -1.1 1.22066 [-1, -2, -3, -1, -1, -1, -2, 2, -1, -1] +intricate 0.6 0.66332 [1, 0, 2, 1, 0, 1, 1, 0, 0, 0] +intrigues 0.9 0.9434 [2, -1, 2, 1, 2, 0, 1, 1, 0, 1] +invigorate 1.9 0.83066 [2, 2, 2, 0, 2, 3, 3, 2, 1, 2] +invigorated 0.8 1.8868 [-2, 3, 2, 2, -2, -2, 2, 2, 1, 2] +invigorates 2.1 0.53852 [3, 2, 3, 2, 1, 2, 2, 2, 2, 2] +invigorating 2.1 0.7 [2, 1, 1, 3, 3, 3, 2, 2, 2, 2] +invigoratingly 2.0 0.63246 [2, 2, 1, 2, 1, 3, 2, 2, 2, 3] +invigoration 1.5 1.36015 [2, 2, 1, -2, 1, 3, 3, 2, 1, 2] +invigorations 1.2 0.87178 [1, -1, 2, 2, 1, 1, 2, 1, 2, 1] +invigorator 1.1 1.3 [3, 1, 0, 2, 2, -2, 1, 1, 2, 1] +invigorators 1.2 0.87178 [1, 1, 1, 1, 3, 2, 0, 0, 1, 2] +invincible 2.2 1.77764 [4, 1, 3, 2, 4, 1, 4, -1, 0, 4] +invite 0.6 0.66332 [2, 1, 1, 0, 0, 0, 0, 1, 1, 0] +inviting 1.3 0.45826 [1, 1, 1, 2, 1, 2, 2, 1, 1, 1] +invulnerable 1.3 1.73494 [2, 3, 4, 2, 0, 3, 0, 1, -2, 0] +irate -2.9 0.53852 [-3, -3, -3, -2, -3, -4, -3, -3, -2, -3] +ironic -0.5 1.28452 [1, 0, 0, 0, 0, 0, -4, -1, -1, 0] +irony -0.2 1.07703 [-1, 0, -3, 0, 0, 0, 1, 0, 1, 0] +irrational -1.4 0.4899 [-1, -1, -1, -2, -2, -2, -1, -1, -2, -1] +irrationalism -1.5 0.5 [-1, -2, -1, -1, -2, -1, -2, -2, -1, -2] +irrationalist -2.1 0.9434 [-1, -4, -2, -2, -3, -3, -2, -1, -1, -2] +irrationalists -1.5 0.92195 [-2, -2, -1, -2, -2, 1, -1, -2, -2, -2] +irrationalities -1.5 0.80623 [-2, -2, 0, -1, -1, -1, -2, -3, -1, -2] +irrationality -1.7 0.9 [-3, -3, -1, -2, -1, -1, -1, -1, -3, -1] +irrationally -1.6 0.4899 [-1, -2, -1, -2, -1, -2, -2, -2, -1, -2] +irrationals -1.1 0.83066 [-2, 0, -1, 0, -1, -1, -3, -1, -1, -1] +irresistible 1.4 2.2 [2, 3, 2, 3, 4, 4, 1, -1, -2, -2] +irresolute -1.4 0.66332 [-2, -2, -1, -2, -1, -1, -1, -2, -2, 0] +irresponsible -1.9 0.3 [-2, -2, -2, -2, -2, -2, -1, -2, -2, -2] +irreversible -0.8 0.87178 [-2, -2, 0, -1, 0, 0, 0, -1, -2, 0] +irritabilities -1.7 0.64031 [-2, -2, -2, -1, -1, -1, -1, -2, -3, -2] +irritability -1.4 1.28062 [-2, -1, -2, -1, 2, -2, -2, -2, -1, -3] +irritable -2.1 0.7 [-2, -2, -3, -1, -2, -1, -3, -2, -3, -2] +irritableness -1.7 0.64031 [-2, -2, -2, -1, -2, -1, -1, -3, -1, -2] +irritably -1.8 0.6 [-2, -2, -1, -1, -3, -2, -1, -2, -2, -2] +irritant -2.3 0.78102 [-3, -3, -3, -3, -3, -1, -2, -2, -2, -1] +irritants -2.1 0.83066 [-2, -3, -1, -4, -2, -1, -2, -2, -2, -2] +irritate -1.8 0.6 [-3, -2, -2, -2, -1, -2, -1, -2, -1, -2] +irritated -2.0 0.63246 [-1, -2, -2, -2, -3, -2, -2, -3, -1, -2] +irritates -1.7 0.78102 [-1, -2, -1, -1, -3, -2, -2, -3, -1, -1] +irritating -2.0 0.63246 [-2, -2, -2, -1, -1, -3, -2, -2, -3, -2] +irritatingly -2.0 0.44721 [-2, -2, -2, -3, -1, -2, -2, -2, -2, -2] +irritation -2.3 0.78102 [-3, -2, -2, -2, -1, -3, -3, -1, -3, -3] +irritations -1.5 0.67082 [-2, -2, -1, -1, -1, -1, -1, -2, -3, -1] +irritative -2.0 0.63246 [-3, -2, -3, -2, -1, -2, -2, -2, -1, -2] +isolatable 0.2 1.249 [1, 0, -2, 0, -1, -1, 2, 0, 2, 1] +isolate -0.8 0.74833 [-1, -1, -1, 0, 0, 0, 0, -2, -1, -2] +isolated -1.3 0.64031 [-1, -1, -1, -1, -1, -1, -2, -1, -3, -1] +isolates -1.3 0.64031 [-1, -1, -1, -1, -2, -1, -3, -1, -1, -1] +isolation -1.7 0.78102 [-1, -3, -1, -2, -2, -1, -3, -1, -2, -1] +isolationism 0.4 1.62481 [2, 0, -1, -2, -1, 3, 0, 2, -1, 2] +isolationist 0.7 1.55242 [2, 0, 0, -1, -1, 3, 0, 2, -1, 3] +isolations -0.5 1.11803 [-1, -2, -2, -1, 1, 1, -1, 0, 1, -1] +isolator -0.4 0.66332 [0, 0, -1, 0, -1, 0, -2, 0, 0, 0] +isolators -0.4 1.42829 [-2, -1, -1, -2, 2, 2, -1, 1, -1, -1] +itchy -1.1 0.53852 [-1, -1, -1, -1, -2, 0, -1, -1, -2, -1] +jackass -1.8 1.07703 [-1, 0, -3, -2, -2, -3, 0, -2, -2, -3] +jackasses -2.8 0.9798 [-2, -2, -4, -3, -4, -4, -3, -1, -2, -3] +jaded -1.6 0.66332 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -3] +jailed -2.2 0.87178 [-4, -3, -2, -2, -1, -2, -2, -3, -1, -2] +jaunty 1.2 0.6 [2, 1, 0, 2, 1, 1, 1, 2, 1, 1] +jealous -2.0 0.63246 [-2, -2, -3, -2, -3, -2, -1, -1, -2, -2] +jealousies -2.0 0.63246 [-2, -3, -2, -1, -2, -3, -2, -1, -2, -2] +jealously -2.0 0.89443 [-1, -3, -1, -4, -2, -2, -1, -2, -2, -2] +jealousness -1.7 0.45826 [-1, -2, -2, -2, -2, -1, -1, -2, -2, -2] +jealousy -1.3 1.73494 [-2, -3, -2, -2, -2, 2, -3, -1, 2, -2] +jeopardy -2.1 0.9434 [-3, -3, -3, -1, -1, -3, -2, -1, -1, -3] +jerk -1.4 0.8 [-1, -1, -1, -2, -3, 0, -2, -1, -1, -2] +jerked -0.8 0.74833 [0, -1, -1, 0, -2, -1, 0, -1, 0, -2] +jerks -1.1 1.51327 [-2, -2, -1, -2, -1, 0, -2, 3, -2, -2] +jewel 1.5 1.20416 [1, 3, 2, 0, 2, 1, 3, 0, 3, 0] +jewels 2.0 1.34164 [3, 1, 0, 0, 4, 3, 3, 2, 3, 1] +jocular 1.2 1.249 [0, 1, 2, -2, 1, 2, 2, 2, 2, 2] +join 1.2 0.74833 [2, 2, 1, 2, 1, 0, 1, 2, 0, 1] +joke 1.2 0.74833 [1, 1, 1, 1, 1, 1, 0, 2, 1, 3] +joked 1.3 0.64031 [1, 1, 2, 2, 0, 2, 1, 1, 2, 1] +joker 0.5 0.92195 [1, 1, -1, 1, 2, -1, 1, 1, 0, 0] +jokes 1.0 0.7746 [1, 1, -1, 1, 1, 2, 1, 1, 2, 1] +jokester 1.5 0.67082 [2, 2, 2, 2, 1, 1, 0, 1, 2, 2] +jokesters 0.9 0.83066 [0, 0, 2, 1, 1, 2, 2, 0, 1, 0] +jokey 1.1 0.3 [1, 1, 2, 1, 1, 1, 1, 1, 1, 1] +joking 0.9 0.53852 [1, 2, 1, 1, 1, 0, 1, 1, 0, 1] +jollied 2.4 0.66332 [3, 3, 2, 2, 3, 3, 2, 2, 1, 3] +jollier 2.4 0.4899 [2, 2, 3, 3, 2, 2, 2, 3, 2, 3] +jollies 2.0 0.63246 [1, 2, 3, 2, 2, 2, 1, 2, 2, 3] +jolliest 2.9 0.7 [3, 3, 2, 4, 3, 2, 3, 4, 2, 3] +jollification 2.2 0.74833 [2, 3, 3, 1, 2, 1, 3, 2, 3, 2] +jollifications 2.0 0.7746 [2, 3, 2, 2, 2, 2, 3, 2, 0, 2] +jollify 2.1 0.53852 [2, 3, 2, 2, 2, 2, 2, 3, 1, 2] +jollily 2.7 0.64031 [3, 3, 3, 3, 3, 3, 3, 1, 3, 2] +jolliness 2.5 0.67082 [3, 1, 2, 3, 2, 3, 3, 3, 2, 3] +jollities 1.7 0.64031 [2, 1, 2, 2, 1, 2, 2, 3, 1, 1] +jollity 1.8 1.6 [3, 2, 1, 1, 4, 3, 1, 2, 3, -2] +jolly 2.3 1.00499 [4, 3, 3, 1, 1, 1, 3, 2, 3, 2] +jollying 2.3 0.64031 [2, 3, 3, 1, 3, 3, 2, 2, 2, 2] +jovial 1.9 0.53852 [2, 2, 1, 2, 1, 2, 3, 2, 2, 2] +joy 2.8 0.74833 [3, 2, 3, 4, 3, 3, 3, 1, 3, 3] +joyance 2.3 0.9 [1, 3, 4, 2, 2, 1, 2, 3, 2, 3] +joyed 2.9 0.3 [3, 3, 3, 3, 3, 3, 3, 2, 3, 3] +joyful 2.9 0.53852 [3, 2, 3, 3, 2, 3, 4, 3, 3, 3] +joyfuller 2.4 0.66332 [2, 4, 3, 2, 2, 2, 3, 2, 2, 2] +joyfully 2.5 0.67082 [2, 2, 3, 3, 2, 2, 3, 4, 2, 2] +joyfulness 2.7 1.00499 [4, 3, 1, 3, 3, 3, 4, 2, 1, 3] +joying 2.5 0.67082 [2, 2, 1, 3, 3, 3, 3, 3, 3, 2] +joyless -2.5 0.67082 [-1, -2, -3, -3, -3, -3, -2, -2, -3, -3] +joylessly -1.7 1.1 [-2, -2, -3, -3, -2, -1, 1, -2, -1, -2] +joylessness -2.7 0.9 [-4, -3, -3, -3, -3, -3, -3, -1, -1, -3] +joyous 3.1 0.7 [3, 4, 3, 2, 4, 3, 3, 4, 2, 3] +joyously 2.9 0.7 [2, 3, 4, 3, 4, 2, 2, 3, 3, 3] +joyousness 2.8 0.74833 [3, 3, 1, 3, 3, 3, 4, 2, 3, 3] +joypop -0.2 1.93907 [-3, 1, 2, 2, -3, -1, -2, -1, 1, 2] +joypoppers -0.1 1.22066 [2, -1, 1, -1, -1, 1, 1, 0, -2, -1] +joyridden 0.6 1.8 [-2, -1, 4, 0, 0, 2, 1, -1, 0, 3] +joyride 1.1 1.22066 [-1, 1, 2, 0, 2, 0, 2, 2, 3, 0] +joyrider 0.7 1.26886 [2, -2, 1, 2, 0, 2, -1, 1, 1, 1] +joyriders 1.3 1.18743 [1, 0, 0, 1, 4, 3, 1, 1, 1, 1] +joyrides 0.8 1.32665 [2, -2, 1, 2, 0, 2, -1, 1, 2, 1] +joyriding 0.9 1.04403 [1, -1, 1, 1, 0, 2, 0, 1, 3, 1] +joyrode 1.0 1.48324 [4, 0, -2, 0, 2, 1, 2, 1, 1, 1] +joys 2.2 0.4 [2, 2, 2, 2, 2, 3, 2, 3, 2, 2] +joystick 0.7 0.78102 [1, 0, 2, 2, 0, 0, 1, 1, 0, 0] +joysticks 0.2 0.4 [0, 0, 0, 0, 1, 0, 0, 1, 0, 0] +jubilant 3.0 0.63246 [3, 3, 4, 3, 3, 2, 3, 4, 2, 3] +jumpy -1.0 0.63246 [0, 0, -2, -1, -1, -1, -1, -1, -2, -1] +justice 2.4 1.0198 [3, 2, 1, 2, 3, 2, 4, 4, 2, 1] +justifiably 1.0 0.7746 [0, 1, 0, 1, 1, 1, 0, 2, 2, 2] +justified 1.7 0.64031 [1, 2, 2, 3, 1, 1, 1, 2, 2, 2] +keen 1.5 0.67082 [1, 1, 3, 1, 2, 1, 1, 2, 2, 1] +keened 0.3 1.00499 [-2, 0, 1, 0, 1, 1, 0, 2, 0, 0] +keener 0.5 1.20416 [-1, -1, 0, -1, 2, 1, 2, 2, 1, 0] +keeners 0.6 0.4899 [1, 0, 0, 1, 1, 0, 1, 1, 0, 1] +keenest 1.9 0.83066 [3, 3, 1, 1, 3, 2, 2, 1, 2, 1] +keening -0.7 1.41774 [0, -3, -1, -1, -3, 1, -1, 1, 1, -1] +keenly 1.0 0.7746 [2, 1, 1, 0, 1, 0, 2, 1, 2, 0] +keenness 1.4 0.4899 [1, 1, 2, 2, 1, 1, 1, 2, 2, 1] +keens 0.1 1.22066 [1, -3, 0, 0, 0, 2, 1, 0, 0, 0] +kewl 1.3 0.45826 [2, 1, 1, 1, 2, 1, 2, 1, 1, 1] +kidding 0.4 0.8 [0, 1, 0, -1, 1, 1, 1, 1, -1, 1] +kill -3.7 0.45826 [-4, -4, -4, -4, -3, -4, -4, -4, -3, -3] +killdeer -1.1 1.04403 [-3, 0, 0, -1, -2, 0, -1, -2, -2, 0] +killdeers -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1] +killdees -0.6 0.66332 [-2, 0, 0, 0, -1, 0, -1, -1, -1, 0] +killed -3.5 0.67082 [-3, -3, -2, -4, -4, -4, -3, -4, -4, -4] +killer -3.3 0.64031 [-4, -4, -3, -3, -4, -4, -3, -3, -2, -3] +killers -3.3 0.45826 [-3, -3, -4, -3, -3, -3, -4, -3, -4, -3] +killick 0.1 0.3 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] +killie -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1] +killifish -0.1 0.7 [0, 0, 0, 0, -2, 0, 0, 0, 1, 0] +killifishes -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] +killing -3.4 1.2 [-4, 0, -4, -4, -4, -3, -4, -3, -4, -4] +killingly -2.6 1.0198 [-3, -2, -4, -2, -1, -3, -4, -3, -3, -1] +killings -3.5 0.67082 [-4, -3, -4, -4, -2, -3, -4, -4, -3, -4] +killjoy -2.1 0.83066 [-1, -2, -3, -2, -1, -3, -2, -1, -3, -3] +killjoys -1.7 0.9 [-1, -3, -3, -1, -2, -1, -2, 0, -2, -2] +killock -0.3 0.64031 [0, 0, 0, 0, -2, 0, 0, 0, -1, 0] +killocks -0.4 0.66332 [0, 0, 0, -2, -1, 0, -1, 0, 0, 0] +kills -2.5 0.92195 [-2, -3, -2, -3, -4, -1, -3, -3, -1, -3] +kind 2.4 0.66332 [2, 2, 3, 3, 2, 3, 3, 2, 1, 3] +kinder 2.2 0.6 [3, 3, 3, 2, 2, 2, 2, 1, 2, 2] +kindly 2.2 0.4 [2, 2, 2, 3, 2, 2, 2, 2, 2, 3] +kindness 2.0 0.63246 [2, 1, 3, 3, 2, 1, 2, 2, 2, 2] +kindnesses 2.3 0.64031 [3, 1, 3, 2, 3, 2, 3, 2, 2, 2] +kiss 1.8 1.6 [4, 0, 3, 3, 2, 0, 4, 2, 0, 0] +kissable 2.0 0.89443 [2, 2, 2, 2, 4, 2, 3, 1, 1, 1] +kissably 1.9 1.04403 [1, 3, 4, 1, 2, 1, 3, 2, 1, 1] +kissed 1.6 1.11355 [2, 4, 1, 1, 1, 2, 3, 0, 1, 1] +kisser 1.7 1.34536 [2, 4, 1, 2, -1, 2, 3, 0, 2, 2] +kissers 1.5 0.80623 [1, 1, 1, 0, 2, 2, 3, 2, 1, 2] +kisses 2.3 0.9 [2, 4, 2, 2, 1, 2, 4, 2, 2, 2] +kissing 2.7 0.78102 [3, 3, 4, 1, 3, 2, 2, 3, 3, 3] +kissy 1.8 0.6 [2, 2, 2, 3, 1, 1, 2, 2, 1, 2] +kudos 2.3 0.64031 [2, 4, 2, 3, 2, 2, 2, 2, 2, 2] +lack -1.3 0.45826 [-1, -1, -1, -1, -2, -1, -2, -1, -1, -2] +lackadaisical -1.6 0.66332 [-1, -1, -2, -1, -2, -2, -3, -1, -2, -1] +lag -1.4 0.66332 [-1, -1, -1, -1, -1, -3, -1, -2, -2, -1] +lagged -1.2 0.6 [-2, -2, -1, -2, -1, -1, 0, -1, -1, -1] +lagging -1.1 0.83066 [-2, -2, -2, -1, 0, 0, -1, 0, -1, -2] +lags -1.5 0.67082 [-2, -1, -1, -2, -1, -3, -1, -2, -1, -1] +laidback 0.5 1.28452 [1, -1, 1, -2, -1, 1, 2, 1, 1, 2] +lame -1.8 0.74833 [-1, -3, -1, -2, -2, -1, -2, -3, -1, -2] +lamebrain -1.6 0.91652 [-3, -2, -1, 0, -3, -1, -1, -2, -2, -1] +lamebrained -2.5 0.67082 [-3, -3, -2, -2, -2, -2, -4, -3, -2, -2] +lamebrains -1.2 1.46969 [-2, -1, -3, -1, 2, -2, 1, -2, -2, -2] +lamedh 0.1 0.53852 [0, 0, 0, 0, 0, 1, 1, -1, 0, 0] +lamella -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] +lamellae -0.1 0.3 [0, 0, 0, 0, 0, 0, -1, 0, 0, 0] +lamellas 0.1 0.53852 [0, 0, 0, 0, 0, 1, 0, 1, 0, -1] +lamellibranch 0.2 0.4 [0, 0, 0, 0, 0, 1, 0, 1, 0, 0] +lamellibranchs -0.1 0.3 [0, 0, -1, 0, 0, 0, 0, 0, 0, 0] +lamely -2.0 0.89443 [-2, -3, 0, -1, -2, -3, -2, -3, -2, -2] +lameness -0.8 1.07703 [-2, -2, -1, -1, -1, 0, 2, -1, -1, -1] +lament -2.0 1.26491 [-3, -3, 1, -1, -2, -2, -1, -3, -3, -3] +lamentable -1.5 1.0247 [-2, 0, -2, -1, 0, -2, -3, -1, -1, -3] +lamentableness -1.3 0.64031 [-2, -1, -1, 0, -2, -1, -1, -1, -2, -2] +lamentably -1.5 0.80623 [-2, 0, -3, -1, -1, -2, -2, -1, -1, -2] +lamentation -1.4 1.49666 [-3, -2, 0, -3, -1, -1, 2, -2, -1, -3] +lamentations -1.9 1.44568 [-2, -2, -2, -3, 2, -1, -3, -3, -2, -3] +lamented -1.4 0.91652 [-1, 0, -1, -2, -2, -1, -2, -3, -2, 0] +lamenter -1.2 0.87178 [-1, 0, -1, -1, -1, -1, -2, -3, -2, 0] +lamenters -0.5 0.67082 [-1, 0, 0, -1, -1, 0, 0, 0, -2, 0] +lamenting -2.0 1.09545 [0, -2, -1, -4, -1, -3, -2, -2, -3, -2] +laments -1.5 0.80623 [-1, -3, 0, -1, -2, -1, -2, -2, -2, -1] +lamer -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -1, -2, -2, -1] +lames -1.2 0.6 [-2, -1, -1, -2, 0, -1, -1, -2, -1, -1] +lamest -1.5 1.28452 [-3, -2, -1, -4, 1, -1, -1, -1, -1, -2] +landmark 0.3 0.64031 [2, 0, 0, 0, 0, 0, 0, 0, 1, 0] +laugh 2.6 0.66332 [3, 2, 3, 1, 3, 3, 3, 3, 2, 3] +laughable 0.2 1.72047 [-2, -1, 3, -1, 2, 2, -1, -1, -1, 2] +laughableness 1.2 1.6 [2, 0, 3, 2, 2, 1, 3, -2, 2, -1] +laughably 1.2 1.249 [2, 1, 2, 1, 1, 1, 2, 3, -2, 1] +laughed 2.0 0.63246 [2, 2, 3, 1, 2, 1, 2, 2, 3, 2] +laugher 1.7 0.45826 [2, 2, 1, 1, 2, 1, 2, 2, 2, 2] +laughers 1.7 0.9 [1, 2, 4, 1, 2, 1, 2, 1, 1, 2] +laughing 2.2 0.87178 [2, 4, 1, 1, 3, 2, 2, 2, 2, 3] +laughingly 2.3 1.1 [2, 4, 0, 2, 3, 1, 3, 2, 3, 3] +laughings 1.9 0.7 [2, 1, 1, 1, 2, 3, 2, 2, 3, 2] +laughingstocks -1.3 1.26886 [-3, -2, 1, -2, -1, -1, 1, -2, -2, -2] +laughs 2.2 0.6 [1, 2, 2, 3, 3, 2, 3, 2, 2, 2] +laughter 2.2 0.6 [2, 3, 2, 2, 2, 2, 3, 1, 3, 2] +laughters 2.2 0.6 [3, 1, 2, 2, 2, 3, 3, 2, 2, 2] +launched 0.5 0.80623 [2, 0, 0, 0, 0, 0, 0, 1, 2, 0] +lawl 1.4 1.42829 [0, 2, 2, 1, 3, -2, 3, 1, 2, 2] +lawsuit -0.9 1.22066 [-2, -2, -1, -3, -1, 1, 0, 1, -1, -1] +lawsuits -0.6 1.68523 [-2, -1, 0, 3, 2, -1, -1, -2, -2, -2] +lazier -2.3 0.64031 [-3, -2, -3, -2, -1, -2, -2, -3, -2, -3] +laziest -2.7 0.64031 [-2, -2, -3, -4, -3, -3, -2, -2, -3, -3] +lazy -1.5 1.36015 [-3, -1, -3, -2, 2, -1, -1, -2, -2, -2] +leak -1.4 0.66332 [-1, -2, -1, -1, -1, -1, -1, -2, -3, -1] +leaked -1.3 0.78102 [-2, -2, -1, -3, -1, 0, -1, -1, -1, -1] +leave -0.2 0.9798 [1, -1, -1, 0, 0, -1, 2, -1, 0, -1] +leet 1.3 1.48661 [2, 4, 2, 2, 0, 1, -2, 2, 1, 1] +legal 0.5 0.80623 [0, 0, 0, 2, 0, 1, 0, 0, 2, 0] +legally 0.4 0.8 [1, 0, 0, 0, 1, 0, 2, 1, 0, -1] +lenient 1.1 1.04403 [1, 3, 1, 2, 1, 1, 2, -1, 0, 1] +lethargic -1.2 0.74833 [-2, -1, -2, -2, 0, -1, -1, -2, 0, -1] +lethargy -1.4 0.91652 [-1, 0, -2, -1, -2, 0, -2, -1, -3, -2] +liabilities -0.8 0.9798 [-1, 2, -1, -1, -1, -1, -1, -1, -2, -1] +liability -0.8 1.83303 [-2, -3, -1, -1, 3, -3, -1, -1, 2, -1] +liar -2.3 0.78102 [-1, -2, -3, -3, -2, -2, -3, -1, -3, -3] +liards -0.4 0.91652 [-2, 0, -1, 0, 0, 1, 0, 0, -2, 0] +liars -2.4 0.66332 [-3, -2, -2, -3, -2, -1, -3, -3, -2, -3] +libelous -2.1 1.3 [-3, -1, -1, -2, 1, -3, -3, -3, -3, -3] +libertarian 0.9 0.9434 [1, 2, 0, 1, 0, 0, 0, 3, 1, 1] +libertarianism 0.4 0.8 [0, 0, 2, 0, 2, 0, 0, 0, 0, 0] +libertarianisms 0.1 1.13578 [0, 0, 0, 2, 2, 0, -2, 0, -1, 0] +libertarians 0.1 0.83066 [0, 0, 1, 0, 0, -1, -1, 0, 2, 0] +liberties 2.3 0.78102 [2, 4, 3, 2, 2, 1, 2, 3, 2, 2] +libertinage 0.2 1.53623 [-1, -1, 0, 0, 4, 0, -2, 1, 1, 0] +libertine -0.9 1.44568 [0, -1, 0, 0, -1, -3, 2, -2, -1, -3] +libertines 0.4 1.35647 [-1, 3, -1, -1, 1, 1, 1, 2, 0, -1] +libertinisms 1.2 1.249 [0, 0, 3, 1, 1, 1, 4, 0, 1, 1] +liberty 2.4 0.91652 [2, 2, 3, 3, 3, 3, 2, 4, 1, 1] +lied -1.6 1.2 [-3, 0, -3, 1, -2, -1, -2, -2, -2, -2] +lies -1.8 0.9798 [-1, -1, -1, 0, -2, -3, -3, -2, -3, -2] +lifesaver 2.8 0.74833 [3, 3, 4, 2, 3, 1, 3, 3, 3, 3] +lighthearted 1.8 0.4 [2, 2, 2, 2, 1, 2, 2, 1, 2, 2] +like 1.5 0.67082 [1, 2, 2, 2, 1, 3, 1, 1, 1, 1] +likeable 2.0 0.63246 [1, 3, 2, 2, 2, 3, 2, 1, 2, 2] +liked 1.8 0.6 [2, 2, 1, 2, 2, 1, 3, 1, 2, 2] +likes 1.8 0.6 [2, 2, 1, 2, 2, 2, 3, 1, 1, 2] +liking 1.7 0.78102 [3, 1, 2, 1, 1, 2, 3, 1, 2, 1] +limitation -1.2 0.6 [-2, -1, 0, -1, -1, -2, -1, -2, -1, -1] +limited -0.9 0.53852 [-1, -1, 0, -2, -1, 0, -1, -1, -1, -1] +litigation -0.8 0.6 [0, -2, -1, 0, -1, -1, -1, -1, 0, -1] +litigious -0.8 0.9798 [-2, -1, 0, -2, 0, -2, 1, -1, 0, -1] +livelier 1.7 0.78102 [2, 2, 1, 3, 1, 3, 2, 1, 1, 1] +liveliest 2.1 0.9434 [2, 1, 2, 3, 1, 1, 2, 4, 3, 2] +livelihood 0.8 1.07703 [0, 3, 1, 0, 2, 2, 0, 0, 0, 0] +livelihoods 0.9 1.13578 [0, 0, 0, 3, 2, 2, 0, 2, 0, 0] +livelily 1.8 0.6 [2, 2, 2, 3, 1, 2, 1, 2, 2, 1] +liveliness 1.6 0.8 [1, 3, 0, 2, 2, 2, 2, 2, 1, 1] +livelong 1.7 0.78102 [3, 0, 1, 1, 2, 2, 2, 2, 2, 2] +lively 1.9 0.7 [2, 2, 3, 1, 1, 2, 3, 1, 2, 2] +livid -2.5 0.92195 [-2, -3, -1, -2, -4, -3, -1, -3, -3, -3] +lmao 2.9 0.9434 [3, 4, 3, 1, 2, 4, 3, 3, 2, 4] +loathe -2.2 2.08806 [-1, -4, -3, -2, -4, 2, 1, -3, -4, -4] +loathed -2.1 1.44568 [-4, -3, -3, -3, -1, 1, -1, -1, -3, -3] +loathes -1.9 1.13578 [-1, -4, -1, -3, -3, -1, -1, -3, -1, -1] +loathing -2.7 0.78102 [-3, -3, -3, -1, -4, -2, -3, -3, -2, -3] +lobby 0.1 0.53852 [0, 0, 0, 1, 0, 1, 0, -1, 0, 0] +lobbying -0.3 0.45826 [0, -1, 0, 0, 0, 0, 0, -1, -1, 0] +lol 1.8 1.46969 [1, 3, 4, 1, 2, 4, 1, 2, -1, 1] +lone -1.1 0.3 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -1] +lonelier -1.4 0.66332 [-2, -1, -2, -2, 0, -2, -1, -1, -1, -2] +loneliest -2.4 0.8 [-3, -1, -2, -4, -2, -2, -3, -3, -2, -2] +loneliness -1.8 0.6 [-2, -2, -1, -3, -2, -2, -1, -2, -1, -2] +lonelinesses -1.5 1.36015 [-2, -2, -1, -1, 2, -1, -3, -2, -3, -2] +lonely -1.5 0.5 [-1, -2, -2, -1, -1, -1, -1, -2, -2, -2] +loneness -1.1 0.83066 [-1, -2, -1, -2, -1, -1, -2, 1, -1, -1] +loner -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -1, -2, -2, -1] +loners -0.9 0.53852 [-1, -1, -2, -1, -1, -1, 0, 0, -1, -1] +lonesome -1.5 0.67082 [-2, -1, -2, -1, -2, -1, -2, 0, -2, -2] +lonesomely -1.3 1.00499 [-2, -2, -2, -2, -1, -2, 0, -2, -1, 1] +lonesomeness -1.8 0.6 [-2, -2, -1, -3, -1, -2, -2, -2, -1, -2] +lonesomes -1.4 0.4899 [-2, -1, -1, -1, -1, -1, -2, -2, -2, -1] +longing -0.1 0.9434 [0, -1, 0, -1, -1, 0, 2, -1, 1, 0] +longingly 0.7 0.45826 [1, 0, 1, 0, 1, 1, 1, 0, 1, 1] +longings 0.4 1.2 [2, 0, -1, -1, 0, 1, 3, 0, 0, 0] +loom -0.9 0.53852 [-1, -1, -1, -1, -1, -2, 0, -1, -1, 0] +loomed -1.1 1.04403 [-2, -2, -1, -1, -1, -1, 0, -1, -3, 1] +looming -0.5 1.5 [-2, -1, -1, 0, -2, -2, 3, -1, 0, 1] +looms -0.6 1.0198 [-1, -2, -1, -1, 0, 0, 1, -2, 1, -1] +loose -1.3 1.18743 [-2, -1, 0, -2, 0, -1, 0, -2, -4, -1] +looses -0.6 0.91652 [0, -1, 0, -1, 0, 0, 0, 0, -3, -1] +lose -1.7 0.45826 [-1, -2, -1, -2, -1, -2, -2, -2, -2, -2] +loser -2.4 0.66332 [-3, -2, -2, -2, -2, -3, -3, -1, -3, -3] +losers -2.4 0.8 [-3, -1, -2, -2, -4, -2, -3, -3, -2, -2] +loses -1.3 1.00499 [0, -1, -1, -1, -1, -4, -1, -1, -2, -1] +losing -1.6 0.8 [-1, -1, -1, -2, -1, -2, -3, -3, -1, -1] +loss -1.3 0.45826 [-1, -2, -1, -1, -1, -2, -2, -1, -1, -1] +losses -1.7 0.9 [-2, -1, -2, -3, 0, -1, -3, -1, -2, -2] +lossy -1.2 0.87178 [-2, -2, -1, -2, 0, 0, 0, -1, -2, -2] +lost -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -2, -1, -1, -1] +louse -1.6 1.2 [-1, -1, -3, -4, 0, -3, -1, -1, -1, -1] +loused -1.0 0.7746 [-1, -1, -1, -1, 0, 0, -2, 0, -2, -2] +louses -1.3 0.78102 [-2, -1, -2, -1, -1, 0, -2, 0, -2, -2] +lousewort 0.1 1.3 [-2, -2, 1, 0, 0, 0, 0, 2, 2, 0] +louseworts -0.6 0.66332 [0, 0, 0, -2, 0, -1, 0, -1, -1, -1] +lousier -2.2 0.4 [-2, -3, -2, -2, -3, -2, -2, -2, -2, -2] +lousiest -2.6 0.8 [-4, -2, -3, -3, -1, -2, -3, -3, -2, -3] +lousily -1.2 0.9798 [-1, -1, -2, -2, -2, -2, 0, -1, 1, -2] +lousiness -1.7 0.64031 [-2, -2, -1, -1, -2, -2, -3, -2, -1, -1] +lousing -1.1 0.9434 [-3, 0, 0, 0, -1, -2, -1, -2, -1, -1] +lousy -2.5 0.67082 [-2, -4, -2, -3, -2, -3, -2, -2, -3, -2] +lovable 3.0 0.63246 [3, 3, 3, 4, 3, 2, 3, 3, 2, 4] +love 3.2 0.4 [3, 3, 3, 3, 3, 3, 3, 4, 4, 3] +loved 2.9 0.7 [3, 3, 4, 2, 2, 4, 3, 2, 3, 3] +lovelies 2.2 0.74833 [3, 3, 3, 1, 2, 2, 3, 2, 1, 2] +lovely 2.8 0.6 [2, 3, 3, 3, 2, 3, 4, 3, 2, 3] +lover 2.8 0.87178 [3, 1, 2, 3, 4, 3, 2, 3, 4, 3] +loverly 2.8 0.74833 [3, 2, 4, 3, 3, 2, 3, 2, 2, 4] +lovers 2.4 1.11355 [2, 3, 2, 4, 4, 1, 1, 3, 3, 1] +loves 2.7 0.9 [3, 3, 3, 2, 2, 4, 4, 2, 1, 3] +loving 2.9 0.53852 [3, 2, 3, 3, 3, 2, 4, 3, 3, 3] +lovingly 3.2 0.6 [3, 3, 3, 4, 4, 4, 2, 3, 3, 3] +lovingness 2.7 1.67631 [4, 4, 3, 3, 2, 3, -2, 4, 3, 3] +low -1.1 0.53852 [-1, -1, -1, -1, -1, -2, -1, -2, 0, -1] +lowball -0.8 0.87178 [-1, -2, 0, -2, -1, -1, 0, 1, -1, -1] +lowballed -1.5 0.67082 [-2, 0, -1, -1, -2, -2, -1, -2, -2, -2] +lowballing -0.7 0.78102 [-2, -1, -1, 1, 0, -1, -1, 0, -1, -1] +lowballs -1.2 0.74833 [-1, -1, -1, -1, -3, -1, -2, 0, -1, -1] +lowborn -0.7 1.1 [-1, 0, -1, 0, -2, -1, -2, -1, -1, 2] +lowboys -0.6 1.0198 [-1, 0, 0, 0, -3, -1, 1, 0, -1, -1] +lowbred -2.6 1.0198 [-2, -1, -2, -4, -2, -2, -4, -4, -3, -2] +lowbrow -1.9 0.7 [-1, -3, -1, -2, -2, -2, -1, -3, -2, -2] +lowbrows -0.6 0.66332 [0, 0, -1, 0, -2, -1, -1, 0, 0, -1] +lowdown -0.8 0.9798 [-1, -1, 0, 0, 0, -2, -3, 0, -1, 0] +lowdowns -0.2 0.4 [0, 0, 0, -1, 0, 0, 0, 0, -1, 0] +lowe 0.5 0.80623 [0, 0, 0, 0, 0, 1, 0, 0, 2, 2] +lowed -0.8 0.6 [0, -1, -1, -2, -1, 0, -1, 0, -1, -1] +lower -1.2 0.87178 [0, -2, -1, -1, -2, 0, -2, 0, -2, -2] +lowercase 0.3 0.45826 [0, 0, 0, 0, 1, 0, 1, 0, 1, 0] +lowercased -0.2 0.4 [0, -1, 0, 0, 0, 0, -1, 0, 0, 0] +lowerclassman -0.4 0.4899 [0, -1, -1, -1, 0, 0, 0, 0, 0, -1] +lowered -0.5 1.11803 [-1, -1, -2, -1, -1, 2, -1, -1, 1, 0] +lowering -1.0 0.7746 [0, -1, -1, -1, -1, 0, -3, -1, -1, -1] +lowermost -1.4 1.11355 [-1, -1, -3, -1, -1, -1, -2, -3, 1, -2] +lowers -0.5 0.5 [-1, -1, 0, -1, 0, 0, 0, -1, -1, 0] +lowery -1.8 0.87178 [-1, -1, -2, -3, -1, -2, -3, -3, -1, -1] +lowest -1.6 0.4899 [-2, -2, -2, -2, -1, -2, -1, -1, -1, -2] +lowing -0.5 0.67082 [0, 0, 0, -1, 0, 0, -1, -2, -1, 0] +lowish -0.9 0.53852 [-2, -1, -1, 0, -1, 0, -1, -1, -1, -1] +lowland -0.1 0.3 [0, 0, -1, 0, 0, 0, 0, 0, 0, 0] +lowlander -0.4 0.66332 [0, 0, 0, 0, 0, 0, -1, -1, -2, 0] +lowlanders -0.3 0.64031 [0, 0, 0, -2, 0, -1, 0, 0, 0, 0] +lowlands -0.1 0.7 [0, -1, -1, 0, -1, 1, 0, 1, 0, 0] +lowlier -1.7 0.78102 [-2, -2, -2, -3, -1, -2, -2, -1, 0, -2] +lowliest -1.8 1.6 [-1, -3, -3, -4, -2, -1, -1, 0, 1, -4] +lowlife -1.5 0.67082 [-2, -2, -2, -1, -1, -2, -1, 0, -2, -2] +lowlifes -2.2 1.249 [-3, -2, -3, -4, -2, 1, -2, -3, -2, -2] +lowlight -2.0 1.26491 [-3, -2, -1, -3, 1, -2, -1, -3, -3, -3] +lowlights -0.3 0.78102 [0, 0, -1, 1, -2, -1, 0, 0, 0, 0] +lowlihead -0.3 1.34536 [-1, -1, 1, -3, 0, 0, 1, -1, 2, -1] +lowliness -1.1 0.53852 [-1, -2, -1, -2, -1, -1, -1, 0, -1, -1] +lowlinesses -1.2 1.07703 [-3, -1, -2, -2, 0, -1, -1, -1, -2, 1] +lowlives -2.1 0.7 [-2, -3, -3, -2, -1, -2, -3, -2, -1, -2] +lowly -1.0 1.34164 [-1, -2, -1, -2, 2, -2, -1, 1, -2, -2] +lown 0.9 1.13578 [2, 2, 1, -1, 0, 1, 2, -1, 1, 2] +lowness -1.3 0.45826 [-1, -2, -2, -1, -1, -2, -1, -1, -1, -1] +lowrider -0.2 0.4 [0, 0, 0, -1, -1, 0, 0, 0, 0, 0] +lowriders 0.1 0.53852 [0, 0, 0, 0, 1, 0, -1, 0, 1, 0] +lows -0.8 0.9798 [0, -1, -1, -1, 0, 1, -3, -1, -1, -1] +lowse -0.7 0.78102 [0, -1, 1, -1, -1, -1, 0, -1, -2, -1] +loyal 2.1 0.7 [3, 2, 1, 1, 2, 2, 3, 2, 3, 2] +loyalism 1.0 0.89443 [1, 2, 1, -1, 0, 1, 2, 1, 1, 2] +loyalisms 0.9 0.83066 [2, 0, 0, 1, 1, 0, 2, 2, 1, 0] +loyalist 1.5 0.92195 [1, 0, 2, 2, 3, 0, 2, 2, 1, 2] +loyalists 1.1 0.83066 [1, 1, 1, 3, 0, 2, 1, 0, 1, 1] +loyally 2.1 0.7 [3, 2, 2, 2, 1, 3, 1, 2, 3, 2] +loyalties 1.9 0.7 [3, 1, 2, 2, 2, 3, 2, 1, 1, 2] +loyalty 2.5 0.67082 [1, 3, 3, 3, 3, 2, 2, 2, 3, 3] +luck 2.0 0.63246 [2, 2, 1, 3, 3, 2, 1, 2, 2, 2] +lucked 1.9 0.7 [2, 2, 2, 1, 1, 2, 3, 3, 1, 2] +luckie 1.6 0.66332 [1, 1, 1, 2, 2, 1, 1, 2, 2, 3] +luckier 1.9 0.7 [1, 3, 1, 2, 2, 1, 2, 3, 2, 2] +luckiest 2.9 0.7 [3, 3, 4, 2, 2, 4, 3, 3, 2, 3] +luckily 2.3 0.45826 [2, 2, 3, 2, 2, 3, 2, 2, 2, 3] +luckiness 1.0 1.61245 [2, 2, 1, -2, 3, 1, 1, 2, 2, -2] +lucking 1.2 0.6 [2, 1, 1, 0, 1, 1, 1, 2, 2, 1] +luckless -1.3 0.45826 [-2, -1, -2, -1, -1, -1, -2, -1, -1, -1] +lucks 1.6 0.91652 [0, 3, 1, 1, 3, 2, 2, 1, 2, 1] +lucky 1.8 0.74833 [2, 1, 1, 1, 3, 2, 1, 2, 2, 3] +ludicrous -1.5 1.36015 [2, -2, -2, -1, -1, -1, -3, -3, -2, -2] +ludicrously -0.2 1.83303 [3, -1, 0, -2, -1, 0, 3, -3, -1, 0] +ludicrousness -1.9 1.57797 [-1, 2, -2, -3, -2, -2, -3, -4, -1, -3] +lugubrious -2.1 1.37477 [-3, -2, -3, -3, -3, 1, -2, -3, 0, -3] +lulz 2.0 1.0 [2, 2, 2, 3, 4, 1, 3, 1, 1, 1] +lunatic -2.2 1.32665 [-2, -3, -4, -2, -3, -2, -1, -3, 1, -3] +lunatics -1.6 1.95959 [-4, -2, -3, -4, -2, 2, -1, -3, 1, 0] +lurk -0.8 0.87178 [-1, -1, 0, -3, -1, 0, -1, 0, -1, 0] +lurking -0.5 1.11803 [1, -1, -1, 0, -1, -2, 1, -2, 1, -1] +lurks -0.9 1.04403 [-1, -1, -1, -2, -2, -1, -1, -1, 2, -1] +lying -2.4 0.8 [-2, -4, -3, -1, -2, -2, -3, -2, -2, -3] +mad -2.2 0.74833 [-3, -3, -1, -1, -2, -3, -2, -2, -3, -2] +maddening -2.2 0.74833 [-3, -3, -1, -1, -3, -2, -2, -3, -2, -2] +madder -1.2 1.16619 [-2, 0, -3, 0, 0, -1, -3, -1, -2, 0] +maddest -2.8 1.16619 [-4, -4, -4, -4, -1, -3, -2, -1, -2, -3] +madly -1.7 1.1 [-2, 0, -2, -2, -2, -1, -4, -2, 0, -2] +madness -1.9 0.53852 [-1, -2, -1, -3, -2, -2, -2, -2, -2, -2] +magnific 2.3 1.1 [2, 2, 0, 2, 4, 4, 2, 2, 3, 2] +magnifical 2.4 1.28062 [1, 4, 1, 2, 4, 3, 1, 1, 4, 3] +magnifically 2.4 1.2 [3, 3, 3, 2, 4, 0, 1, 2, 2, 4] +magnification 1.0 0.89443 [2, 3, 1, 0, 0, 1, 1, 1, 0, 1] +magnifications 1.2 1.249 [-1, 0, 0, 2, 2, 2, 0, 2, 3, 2] +magnificence 2.4 1.0198 [3, 2, 1, 3, 2, 1, 4, 4, 2, 2] +magnificences 2.3 0.9 [3, 4, 3, 1, 3, 2, 1, 2, 2, 2] +magnificent 2.9 0.7 [2, 4, 2, 4, 3, 3, 3, 3, 2, 3] +magnificently 3.4 0.66332 [3, 3, 3, 4, 4, 2, 4, 4, 3, 4] +magnifico 1.8 0.87178 [2, 1, 1, 2, 1, 1, 3, 3, 3, 1] +magnificoes 1.4 0.8 [2, 2, 0, 2, 1, 1, 3, 1, 1, 1] +mandatory 0.3 0.9 [1, 0, -1, 0, -1, 0, 1, 2, 0, 1] +maniac -2.1 0.7 [-1, -2, -2, -2, -3, -3, -1, -2, -2, -3] +maniacal -0.3 1.73494 [2, -1, -3, -3, 0, 2, -1, 1, 1, -1] +maniacally -1.7 0.78102 [-1, -2, -1, -2, -3, -2, -1, -3, -1, -1] +maniacs -1.2 1.8868 [-3, 1, -2, 1, -3, -2, 0, 2, -3, -3] +manipulated -1.6 0.4899 [-2, -1, -1, -2, -1, -2, -2, -1, -2, -2] +manipulating -1.5 0.80623 [-1, -1, -1, -2, -2, -1, -2, -2, -3, 0] +manipulation -1.2 1.72047 [2, -3, -2, -3, -1, -1, -2, 2, -2, -2] +marvel 1.8 0.6 [2, 1, 1, 2, 1, 2, 3, 2, 2, 2] +marvelous 2.9 0.7 [2, 2, 3, 2, 3, 3, 4, 3, 4, 3] +marvels 2.0 0.89443 [3, 1, 1, 3, 1, 2, 1, 2, 3, 3] +masochism -1.6 1.11355 [-1, 0, -2, -2, -2, -2, 0, -4, -1, -2] +masochisms -1.1 1.57797 [3, -3, -2, -2, -1, -1, -2, -1, 0, -2] +masochist -1.7 0.9 [-1, 0, -3, -1, -2, -2, -2, -2, -1, -3] +masochistic -2.2 1.16619 [-1, -1, -1, -2, -3, -2, -4, -3, -4, -1] +masochistically -1.6 1.35647 [-1, -1, -3, -3, -3, -3, 0, -2, 1, -1] +masochists -1.2 1.07703 [1, -2, 0, -2, -3, -1, -2, -1, -1, -1] +masterpiece 3.1 0.83066 [3, 4, 4, 4, 2, 2, 2, 4, 3, 3] +masterpieces 2.5 0.67082 [2, 2, 3, 2, 2, 2, 4, 3, 3, 2] +matter 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] +matters 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] +mature 1.8 0.4 [2, 2, 2, 2, 2, 1, 2, 2, 1, 2] +meaningful 1.3 0.9 [0, 0, 2, 1, 1, 3, 1, 2, 2, 1] +meaningless -1.9 0.7 [-1, -2, -2, -2, -1, -1, -2, -3, -3, -2] +medal 2.1 1.22066 [2, 4, 3, 1, 0, 2, 2, 2, 1, 4] +mediocrity -0.3 1.1 [-1, 0, -2, 0, -1, 2, -1, -1, 0, 1] +meditative 1.4 0.66332 [2, 0, 1, 2, 2, 1, 2, 1, 2, 1] +meh -0.3 0.78102 [-1, 0, -1, 0, -1, -1, 1, 0, 1, -1] +melancholia -0.5 1.28452 [0, -2, -2, 0, 1, -1, 2, -2, 0, -1] +melancholiac -2.0 0.63246 [-2, -2, -3, -2, -2, -3, -1, -1, -2, -2] +melancholias -1.6 0.8 [-1, -2, -3, -2, 0, -2, -1, -1, -2, -2] +melancholic -0.3 1.18743 [0, 2, -2, 0, 1, -1, 0, -2, 0, -1] +melancholics -1.0 1.0 [0, -1, -3, 1, -1, -2, -1, -1, -1, -1] +melancholies -1.1 0.83066 [-1, 0, -1, 0, -3, -1, -2, -1, -1, -1] +melancholy -1.9 1.13578 [-3, -2, -3, -2, -3, -2, -2, 1, -1, -2] +menace -2.2 0.87178 [-3, -3, -2, -1, -1, -2, -3, -1, -3, -3] +menaced -1.7 1.48661 [-3, -2, -2, -3, -3, -1, 1, -3, 1, -2] +mercy 1.5 0.67082 [1, 2, 1, 1, 1, 3, 2, 2, 1, 1] +merit 1.8 0.74833 [2, 2, 2, 2, 0, 2, 3, 2, 2, 1] +merited 1.4 0.4899 [1, 2, 2, 1, 1, 1, 2, 1, 2, 1] +meriting 1.1 1.13578 [1, 2, 1, -2, 1, 1, 2, 2, 1, 2] +meritocracy 0.6 1.35647 [2, 4, 0, 0, 1, -1, 0, 0, 0, 0] +meritocrat 0.4 0.8 [0, 0, 0, 1, -1, 0, 0, 1, 2, 1] +meritocrats 1.1 1.13578 [2, 1, 1, 0, 0, 1, 1, 4, 0, 1] +meritorious 2.1 0.53852 [3, 2, 2, 2, 2, 2, 2, 2, 3, 1] +meritoriously 1.3 1.95192 [3, -1, 3, -2, 2, 0, -1, 3, 3, 3] +meritoriousness 1.7 1.18743 [4, 1, 2, 1, 2, 0, 3, 2, 2, 0] +merits 1.7 0.78102 [1, 3, 1, 1, 2, 2, 1, 1, 3, 2] +merrier 1.7 1.41774 [3, 2, 2, 3, 2, 2, -1, -1, 3, 2] +merriest 2.7 1.41774 [3, 4, 4, 4, 2, 3, -1, 2, 3, 3] +merrily 2.4 0.66332 [3, 3, 2, 2, 2, 3, 2, 3, 1, 3] +merriment 2.4 1.35647 [1, 3, 3, 4, 2, -1, 3, 3, 3, 3] +merriments 2.0 0.89443 [2, 2, 3, 3, 0, 2, 2, 1, 2, 3] +merriness 2.2 0.74833 [2, 1, 2, 3, 2, 2, 3, 3, 1, 3] +merry 2.5 0.80623 [2, 4, 2, 2, 3, 3, 3, 3, 2, 1] +merrymaker 2.2 1.4 [3, 1, 3, 3, 3, -1, 2, 1, 3, 4] +merrymakers 1.7 1.34536 [1, 4, 1, 3, 1, 3, -1, 2, 1, 2] +merrymaking 2.2 0.6 [3, 2, 2, 2, 2, 1, 3, 3, 2, 2] +merrymakings 2.4 1.11355 [3, 3, 2, 3, 4, 2, 0, 3, 1, 3] +merrythought 1.1 0.9434 [1, 1, 3, 0, 2, 0, 0, 1, 2, 1] +merrythoughts 1.6 1.11355 [1, 3, 2, 1, 2, 1, 0, 3, 3, 0] +mess -1.5 0.92195 [-1, -3, -1, -1, -3, -1, -2, -1, 0, -2] +messed -1.4 0.8 [-2, -1, -1, -3, 0, -2, -2, -1, -1, -1] +messy -1.5 0.80623 [-1, -2, -2, -2, -1, -1, -2, 0, -1, -3] +methodical 0.6 0.8 [0, 0, 0, 2, 2, 0, 1, 1, 0, 0] +mindless -1.9 0.7 [-2, -1, -2, -1, -1, -2, -3, -3, -2, -2] +miracle 2.8 0.87178 [4, 4, 3, 2, 3, 4, 2, 2, 2, 2] +mirth 2.6 0.66332 [3, 3, 3, 2, 3, 3, 3, 2, 1, 3] +mirthful 2.7 0.45826 [3, 3, 3, 2, 3, 3, 3, 2, 3, 2] +mirthfully 2.0 1.48324 [2, 3, 4, 3, 0, -1, 2, 1, 3, 3] +misbehave -1.9 0.7 [-3, -3, -1, -2, -2, -1, -1, -2, -2, -2] +misbehaved -1.6 0.4899 [-1, -2, -1, -2, -2, -2, -1, -2, -1, -2] +misbehaves -1.6 0.4899 [-1, -2, -2, -1, -2, -2, -1, -2, -1, -2] +misbehaving -1.7 0.64031 [-1, -2, -1, -2, -3, -2, -1, -2, -1, -2] +mischief -1.5 0.67082 [-2, -1, -1, -1, -1, -2, -3, -2, -1, -1] +mischiefs -0.8 1.72047 [-2, -1, -2, -2, 3, -1, -2, 2, -1, -2] +miser -1.8 0.87178 [-1, -2, 0, -3, -2, -2, -3, -2, -2, -1] +miserable -2.2 1.32665 [-2, -2, -3, -3, -4, -3, -1, -2, 1, -3] +miserableness -2.8 0.6 [-3, -3, -3, -3, -2, -2, -3, -4, -2, -3] +miserably -2.1 1.37477 [-2, -1, -3, -3, -4, -3, -1, -2, 1, -3] +miserere -0.8 1.07703 [-1, -1, 0, -3, 0, -1, 0, 1, -2, -1] +misericorde 0.1 1.64012 [1, 1, -1, 2, 1, 2, -3, -1, -2, 1] +misericordes -0.5 1.36015 [0, 0, -1, 0, 0, 1, -3, 0, 1, -3] +miseries -2.7 0.78102 [-3, -4, -1, -2, -3, -3, -2, -3, -3, -3] +miserliness -2.6 1.0198 [-3, -1, -3, -2, -2, -1, -3, -4, -4, -3] +miserly -1.4 0.91652 [0, -2, -2, 0, -1, -2, -2, -1, -3, -1] +misers -1.5 0.92195 [0, -1, -1, -3, -1, -1, -2, -3, -2, -1] +misery -2.7 0.45826 [-2, -2, -3, -3, -2, -3, -3, -3, -3, -3] +misgiving -1.4 0.4899 [-2, -2, -2, -1, -1, -1, -2, -1, -1, -1] +misinformation -1.3 0.64031 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -3] +misinformed -1.6 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -2, -2] +misinterpreted -1.3 0.64031 [-1, -2, -1, 0, -2, -1, -1, -1, -2, -2] +misleading -1.7 0.64031 [-2, -1, -3, -1, -1, -2, -2, -2, -1, -2] +misread -1.1 0.3 [-1, -1, -1, -2, -1, -1, -1, -1, -1, -1] +misreporting -1.5 0.5 [-2, -1, -1, -1, -2, -1, -2, -2, -1, -2] +misrepresentation -2.0 0.63246 [-2, -3, -2, -1, -1, -3, -2, -2, -2, -2] +miss -0.6 1.35647 [-1, -1, -1, -1, -2, -1, 2, 2, -2, -1] +missed -1.2 0.74833 [-2, -1, 0, -1, -1, -1, -3, -1, -1, -1] +misses -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] +missing -1.2 0.4 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -1] +mistakable -0.8 0.4 [-1, -1, -1, -1, -1, -1, -1, 0, 0, -1] +mistake -1.4 0.4899 [-1, -2, -1, -1, -1, -1, -2, -2, -2, -1] +mistaken -1.5 0.67082 [-2, -1, -2, -2, -1, -1, -1, -3, -1, -1] +mistakenly -1.2 0.4 [-1, -1, -2, -1, -1, -1, -1, -2, -1, -1] +mistaker -1.6 0.4899 [-2, -1, -2, -1, -2, -2, -1, -2, -1, -2] +mistakers -1.6 0.8 [-3, -1, -1, -1, -3, -1, -1, -2, -2, -1] +mistakes -1.5 0.67082 [-2, -1, -2, -1, -3, -2, -1, -1, -1, -1] +mistaking -1.1 0.53852 [-1, -1, -1, -1, 0, -1, -1, -1, -2, -2] +misunderstand -1.5 0.67082 [-3, -2, -1, -1, -1, -1, -1, -2, -2, -1] +misunderstanding -1.8 0.6 [-1, -1, -1, -3, -2, -2, -2, -2, -2, -2] +misunderstands -1.3 0.45826 [-1, -2, -1, -2, -1, -1, -2, -1, -1, -1] +misunderstood -1.4 0.66332 [-1, -1, -1, -3, -1, -1, -2, -1, -2, -1] +mlm -1.4 1.68523 [0, -2, -2, -3, -4, -2, 0, 1, 1, -3] +mmk 0.6 1.0198 [0, 0, 0, 0, 0, 3, 1, 0, 0, 2] +moan -0.6 1.62481 [-2, -1, 0, -3, 2, -2, 0, 0, -2, 2] +moaned -0.4 1.35647 [-2, 0, -3, 0, -1, -1, 2, 1, 0, 0] +moaning -0.4 1.28062 [-1, -1, 1, -1, 0, 0, 2, 0, -3, -1] +moans -0.6 0.8 [-2, 0, 0, -2, 0, -1, 0, 0, 0, -1] +mock -1.8 0.74833 [-3, -1, -1, -2, -2, -1, -3, -1, -2, -2] +mocked -1.3 1.26886 [-2, -2, -1, -2, -2, -3, -2, 1, 1, -1] +mocker -0.8 1.46969 [-1, -2, 2, -2, -2, -2, -2, 1, 1, -1] +mockeries -1.6 0.8 [-3, -1, -2, -2, -2, 0, -1, -2, -1, -2] +mockers -1.3 0.78102 [-2, -3, 0, -1, -1, -1, -2, -1, -1, -1] +mockery -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -2, -2, -1, -1] +mocking -1.7 0.64031 [-2, -1, -1, -2, -1, -1, -3, -2, -2, -2] +mocks -2.0 0.63246 [-1, -3, -2, -2, -2, -2, -2, -1, -3, -2] +molest -2.1 1.81384 [-4, -1, -2, -4, -3, 1, -3, 1, -2, -4] +molestation -1.9 1.57797 [-2, -2, -3, -2, -3, -2, -4, 1, 1, -3] +molestations -2.9 1.04403 [-3, -4, -4, -4, -3, -2, -2, -1, -2, -4] +molested -1.9 1.92094 [-4, 1, -1, -4, -2, -1, -4, -4, 1, -1] +molester -2.3 1.61555 [-4, -2, -1, -4, -2, -1, -4, -4, 1, -2] +molesters -2.2 1.66132 [-2, -4, -3, -3, -3, 1, 1, -3, -3, -3] +molesting -2.8 1.72047 [-4, -4, -4, -4, -3, -4, -1, -1, 1, -4] +molests -3.1 1.13578 [-3, -4, -4, -4, -3, -4, 0, -3, -3, -3] +mongering -0.8 1.16619 [-3, -2, 0, 0, -1, 1, -2, 0, -1, 0] +monopolize -0.8 1.6 [-1, -3, -2, -2, 0, -1, -1, -2, 2, 2] +monopolized -0.9 0.53852 [0, -2, -1, 0, -1, -1, -1, -1, -1, -1] +monopolizes -1.1 0.83066 [0, -3, -1, 0, -1, -1, -2, -1, -1, -1] +monopolizing -0.5 1.56525 [2, -1, -2, -1, -3, -1, -1, 2, 1, -1] +mooch -1.7 0.9 [-1, -1, -1, -3, -1, -3, -3, -2, -1, -1] +mooched -1.4 0.4899 [-2, -1, -2, -1, -1, -2, -1, -1, -2, -1] +moocher -1.5 0.67082 [-2, -1, -2, -1, -1, -2, -1, -1, -3, -1] +moochers -1.9 0.7 [-3, -2, -2, -3, -1, -1, -1, -2, -2, -2] +mooches -1.4 0.66332 [-2, -1, -2, -1, 0, -2, -1, -1, -2, -2] +mooching -1.7 0.64031 [-3, -2, -1, -1, -2, -2, -1, -2, -1, -2] +moodier -1.1 1.13578 [-2, -1, -1, -1, -2, -1, -2, 2, -1, -2] +moodiest -2.1 0.9434 [-1, -2, -2, -2, -1, -2, -4, -3, -1, -3] +moodily -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -2, -1, -2, -1] +moodiness -1.4 0.66332 [-2, -1, -2, -2, -1, 0, -2, -1, -1, -2] +moodinesses -1.4 0.4899 [-2, -1, -1, -2, -1, -1, -1, -2, -2, -1] +moody -1.5 0.67082 [-1, -1, -1, -2, -2, -3, -1, -1, -1, -2] +mope -1.9 0.53852 [-2, -2, -1, -2, -2, -2, -2, -3, -1, -2] +moping -1.0 1.48324 [-2, -2, -1, -1, 1, 2, -3, -2, 0, -2] +moron -2.2 0.6 [-2, -1, -2, -3, -3, -2, -2, -3, -2, -2] +moronic -2.7 0.64031 [-3, -3, -3, -3, -2, -4, -2, -3, -2, -2] +moronically -1.4 1.8 [-4, -2, -1, 2, -2, -2, -3, -3, 0, 1] +moronity -1.1 1.22066 [-2, -1, -2, -1, 0, -2, 2, -2, -2, -1] +morons -1.3 1.1 [-1, -1, -1, 0, -3, -2, 0, 0, -2, -3] +motherfucker -3.6 0.66332 [-3, -4, -4, -4, -4, -2, -4, -3, -4, -4] +motherfucking -2.8 1.249 [-3, -1, -4, 0, -3, -3, -4, -4, -3, -3] +motivate 1.6 0.4899 [1, 1, 1, 1, 2, 2, 2, 2, 2, 2] +motivated 2.0 0.63246 [3, 3, 1, 2, 1, 2, 2, 2, 2, 2] +motivating 2.2 0.6 [2, 2, 3, 3, 3, 2, 2, 2, 1, 2] +motivation 1.4 0.66332 [1, 1, 2, 0, 2, 1, 2, 1, 2, 2] +mourn -1.8 0.6 [-2, -2, -2, -2, -2, -1, -2, -3, -1, -1] +mourned -1.3 1.55242 [-1, -2, -3, -3, -2, -1, 1, -2, 2, -2] +mourner -1.6 1.35647 [-3, 0, -2, -1, -1, 0, -2, 0, -3, -4] +mourners -1.8 0.74833 [-1, -2, -3, -1, -2, -1, -2, -1, -2, -3] +mournful -1.6 1.62481 [-2, -3, -3, 2, -2, -3, -2, 1, -2, -2] +mournfuller -1.9 0.9434 [-2, -3, -3, -3, 0, -2, -1, -2, -2, -1] +mournfully -1.7 1.55242 [-4, -3, -2, -3, 1, -2, -2, -2, 1, -1] +mournfulness -1.8 1.4 [-4, -3, 1, -3, -1, -2, 0, -2, -2, -2] +mourning -1.9 1.04403 [-1, -1, -1, -1, -2, -3, -4, -3, -2, -1] +mourningly -2.3 1.18743 [-3, -3, -3, -3, -2, -3, -2, 1, -2, -3] +mourns -2.4 0.66332 [-2, -2, -3, -2, -3, -3, -3, -1, -2, -3] +muah 2.3 1.26886 [0, 3, 1, 2, 3, 1, 4, 4, 3, 2] +mumpish -1.4 0.66332 [-1, -1, -2, -2, 0, -1, -2, -2, -1, -2] +murder -3.7 0.64031 [-4, -4, -4, -4, -2, -4, -4, -4, -3, -4] +murdered -3.4 0.66332 [-4, -3, -2, -3, -4, -4, -3, -3, -4, -4] +murderee -3.2 0.6 [-3, -3, -2, -3, -4, -4, -3, -3, -4, -3] +murderees -3.1 0.7 [-2, -4, -3, -4, -3, -2, -3, -3, -4, -3] +murderer -3.6 0.4899 [-4, -3, -3, -3, -4, -4, -4, -3, -4, -4] +murderers -3.3 0.78102 [-3, -4, -4, -4, -4, -2, -4, -3, -3, -2] +murderess -2.2 1.72047 [-2, -2, -3, -4, -3, -3, -4, 1, 1, -3] +murderesses -2.6 0.8 [-2, -4, -3, -4, -2, -2, -2, -2, -3, -2] +murdering -3.3 0.78102 [-4, -2, -4, -3, -4, -3, -2, -4, -4, -3] +murderous -3.2 0.74833 [-3, -3, -4, -3, -4, -4, -4, -2, -2, -3] +murderously -3.1 0.9434 [-3, -4, -4, -4, -3, -4, -1, -2, -3, -3] +murderousness -2.9 0.7 [-3, -3, -4, -2, -2, -2, -4, -3, -3, -3] +murders -3.0 1.84391 [-4, -4, -4, 2, -4, -2, -4, -4, -2, -4] +n00b -1.6 0.8 [-1, -3, -1, -2, -2, -2, -2, -2, -1, 0] +nag -1.5 0.80623 [-1, -1, -3, -1, -3, -2, -1, -1, -1, -1] +nagana -1.7 0.9 [-2, -2, 0, 0, -2, -3, -2, -2, -2, -2] +nagged -1.7 0.45826 [-2, -1, -2, -1, -2, -2, -1, -2, -2, -2] +nagger -1.8 0.4 [-2, -1, -2, -2, -2, -2, -1, -2, -2, -2] +naggers -1.5 0.67082 [-1, -1, -2, -2, -2, -1, -1, -3, -1, -1] +naggier -1.4 1.11355 [-2, -3, -2, -2, 1, -1, -2, -1, 0, -2] +naggiest -2.4 0.91652 [-3, -2, -2, -1, -4, -2, -3, -3, -3, -1] +nagging -1.7 0.64031 [-1, -1, -1, -1, -2, -2, -2, -2, -3, -2] +naggingly -0.9 1.37477 [-2, 2, -1, -1, -1, -3, 1, -1, -1, -2] +naggy -1.7 0.64031 [-2, -2, -1, -1, -3, -2, -1, -2, -1, -2] +nags -1.1 0.53852 [-1, -1, -2, -1, -1, -2, -1, -1, 0, -1] +nah -0.4 1.28062 [0, 0, 1, -1, -3, -1, 0, 2, -1, -1] +naive -1.1 1.22066 [-2, -2, -1, 2, -1, -1, -1, -3, -1, -1] +nastic 0.2 0.6 [2, 0, 0, 0, 0, 0, 0, 0, 0, 0] +nastier -2.3 0.45826 [-2, -2, -2, -3, -3, -2, -3, -2, -2, -2] +nasties -2.1 0.3 [-2, -2, -2, -2, -3, -2, -2, -2, -2, -2] +nastiest -2.4 1.85472 [-4, -4, -4, -2, -3, -2, 1, 1, -3, -4] +nastily -1.9 0.7 [-2, -3, -1, -2, -2, -3, -1, -1, -2, -2] +nastiness -1.1 1.44568 [-2, -2, -3, -2, 1, -1, -1, -1, 2, -2] +nastinesses -2.6 0.66332 [-2, -3, -3, -2, -3, -3, -3, -1, -3, -3] +nasturtium 0.4 0.66332 [0, 0, 0, 0, 0, 1, 1, 0, 2, 0] +nasturtiums 0.1 0.3 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] +nasty -2.6 1.0198 [-3, -1, -2, -4, -3, -3, -1, -2, -4, -3] +natural 1.5 1.0247 [2, 0, 0, 1, 1, 3, 2, 2, 3, 1] +neat 2.0 0.89443 [2, 1, 1, 2, 3, 1, 2, 2, 2, 4] +neaten 1.2 0.4 [1, 1, 1, 1, 1, 2, 2, 1, 1, 1] +neatened 2.0 1.09545 [0, 2, 1, 3, 1, 2, 4, 3, 2, 2] +neatening 1.3 0.45826 [1, 1, 1, 1, 2, 2, 2, 1, 1, 1] +neatens 1.1 0.83066 [0, 1, 0, 1, 1, 1, 1, 3, 2, 1] +neater 1.0 0.44721 [1, 1, 1, 1, 1, 1, 2, 0, 1, 1] +neatest 1.7 0.64031 [1, 2, 2, 1, 2, 2, 1, 2, 1, 3] +neath 0.2 0.9798 [0, 0, -2, 0, 0, 2, 0, 1, 1, 0] +neatherd -0.4 0.8 [0, 0, 0, -2, 0, -1, 1, -1, -1, 0] +neatly 1.4 0.66332 [2, 1, 1, 2, 2, 2, 0, 1, 1, 2] +neatness 1.3 0.64031 [2, 1, 1, 0, 1, 1, 2, 2, 2, 1] +neats 1.1 0.53852 [2, 1, 2, 1, 0, 1, 1, 1, 1, 1] +needy -1.4 0.4899 [-1, -2, -2, -2, -1, -1, -1, -1, -2, -1] +negative -2.7 0.9 [-1, -3, -3, -2, -4, -2, -2, -4, -3, -3] +negativity -2.3 0.45826 [-2, -2, -2, -2, -3, -2, -3, -3, -2, -2] +neglect -2.0 0.63246 [-2, -2, -1, -1, -3, -2, -3, -2, -2, -2] +neglected -2.4 1.0198 [-1, -2, -4, -3, -2, -2, -1, -4, -3, -2] +neglecter -1.7 0.64031 [-2, -2, -1, -1, -1, -3, -2, -2, -1, -2] +neglecters -1.5 0.67082 [-2, -1, -1, -1, -2, -1, -1, -2, -3, -1] +neglectful -2.0 0.63246 [-3, -3, -1, -2, -2, -2, -1, -2, -2, -2] +neglectfully -2.1 0.9434 [-1, -3, -3, -1, -1, -2, -2, -2, -4, -2] +neglectfulness -2.0 0.63246 [-2, -2, -2, -2, -1, -3, -2, -2, -1, -3] +neglecting -1.7 0.78102 [-2, -1, -3, -2, -1, -3, -1, -1, -2, -1] +neglects -2.2 0.4 [-2, -2, -2, -2, -2, -3, -2, -3, -2, -2] +nerd -1.2 0.6 [-1, -2, -1, -2, -1, 0, -1, -1, -2, -1] +nerdier -0.2 0.87178 [0, 0, -1, -1, 0, -1, 2, 0, 0, -1] +nerdiest 0.6 1.28062 [2, 3, 0, -1, 1, 0, 0, -1, 2, 0] +nerdish -0.1 1.04403 [-1, -1, 2, 0, -1, -1, 1, 0, 1, -1] +nerdy -0.2 1.249 [-1, -1, -1, 3, 0, 0, 0, 0, -2, 0] +nerves -0.4 0.8 [0, -1, 0, 1, -2, -1, 0, -1, 0, 0] +nervous -1.1 0.53852 [-1, -1, -1, -2, -2, -1, -1, 0, -1, -1] +nervously -0.6 1.56205 [-1, -1, -1, -1, -1, -2, 4, -1, -1, -1] +nervousness -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] +neurotic -1.4 1.11355 [-3, -2, -2, -1, 1, -2, -2, -1, 0, -2] +neurotically -1.8 1.16619 [0, -2, -1, -3, -3, -1, 0, -2, -3, -3] +neuroticism -0.9 1.22066 [-2, -1, -1, -1, -2, 0, -3, 1, 1, -1] +neurotics -0.7 1.61555 [-2, 0, -1, -2, -1, -3, 0, 2, 2, -2] +nice 1.8 0.74833 [3, 1, 1, 2, 2, 1, 3, 1, 2, 2] +nicely 1.9 0.83066 [2, 1, 2, 2, 4, 2, 1, 1, 2, 2] +niceness 1.6 0.66332 [1, 1, 3, 2, 1, 1, 2, 2, 2, 1] +nicenesses 2.1 1.22066 [4, 0, 3, 1, 2, 1, 4, 2, 2, 2] +nicer 1.9 0.53852 [2, 2, 1, 2, 3, 2, 2, 2, 1, 2] +nicest 2.2 0.87178 [1, 4, 1, 2, 2, 2, 3, 3, 2, 2] +niceties 1.5 1.20416 [1, 4, 1, 1, 2, 1, 0, 3, 2, 0] +nicety 1.2 1.07703 [1, 0, 4, 1, 1, 0, 2, 1, 1, 1] +nifty 1.7 0.64031 [2, 2, 1, 1, 1, 2, 3, 2, 2, 1] +niggas -1.4 2.2 [-4, -3, 2, 1, -4, -2, 0, -1, 1, -4] +nigger -3.3 1.18743 [-4, -4, -4, -4, -4, -4, -1, -3, -1, -4] +no -1.2 0.74833 [-1, -1, -1, -1, -1, -1, 0, -1, -2, -3] +noble 2.0 0.89443 [2, 1, 2, 2, 3, 0, 2, 3, 2, 3] +noisy -0.7 0.64031 [-2, 0, -1, -1, 0, -1, -1, 0, 0, -1] +nonsense -1.7 0.64031 [-3, -1, -1, -1, -2, -1, -2, -2, -2, -2] +noob -0.2 1.16619 [-2, 0, -1, 0, -1, 2, 1, 1, -1, -1] +nosey -0.8 1.16619 [-2, -2, -2, 1, -1, -1, 0, 1, 0, -2] +notorious -1.9 1.3 [-2, -4, -3, -2, -2, -2, -1, -1, -3, 1] +novel 1.3 0.64031 [2, 0, 1, 1, 1, 1, 2, 2, 2, 1] +numb -1.4 0.66332 [-1, -1, -1, -1, -2, -1, -1, -3, -2, -1] +numbat 0.2 0.4 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0] +numbed -0.9 0.53852 [-1, -1, -1, -1, 0, 0, -2, -1, -1, -1] +number 0.3 0.64031 [0, 0, 1, 0, 0, 2, 0, 0, 0, 0] +numberable 0.6 0.91652 [0, 2, 0, 0, 0, 2, 2, 0, 0, 0] +numbest -1.0 0.89443 [-2, -1, 0, 0, -3, -1, -1, -1, 0, -1] +numbfish -0.4 0.66332 [-1, 0, 0, 0, -2, 0, 0, -1, 0, 0] +numbfishes -0.7 0.9 [0, -1, 0, -1, -1, 0, -1, 0, 0, -3] +numbing -1.1 0.83066 [-1, 0, -1, -1, -2, -1, -3, -1, 0, -1] +numbingly -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -2, -1, -2, -1] +numbles 0.4 0.66332 [0, 0, 0, 0, 1, 2, 0, 0, 1, 0] +numbly -1.4 1.0198 [-3, -2, 0, -1, -1, -3, -1, -2, -1, 0] +numbness -1.1 0.7 [-1, -1, -2, -1, -1, -2, -1, 0, -2, 0] +numbs -0.7 1.00499 [-1, 0, -1, 0, 1, 0, -3, -1, -1, -1] +numbskull -2.3 1.41774 [-2, -4, -3, 0, -2, -2, -4, -4, 0, -2] +numbskulls -2.2 1.07703 [-2, -2, -4, -2, -2, -1, -3, -3, 0, -3] +nurtural 1.5 0.80623 [2, 1, 2, 2, 1, 3, 0, 1, 2, 1] +nurturance 1.6 0.8 [1, 2, 1, 1, 3, 0, 2, 2, 2, 2] +nurturances 1.3 1.55242 [0, -2, 3, 1, 1, 2, 3, 0, 2, 3] +nurturant 1.7 0.78102 [2, 1, 3, 2, 2, 2, 2, 1, 0, 2] +nurture 1.4 0.8 [3, 1, 2, 2, 1, 2, 1, 0, 1, 1] +nurtured 1.9 0.9434 [2, 1, 3, 3, 3, 1, 2, 2, 0, 2] +nurturer 1.9 0.83066 [2, 1, 3, 3, 3, 1, 2, 2, 1, 1] +nurturers 0.8 1.66132 [2, -1, 2, 2, 1, -2, -2, 2, 2, 2] +nurtures 1.9 0.83066 [2, 1, 3, 3, 3, 1, 2, 2, 1, 1] +nurturing 2.0 0.63246 [3, 3, 2, 2, 1, 2, 2, 1, 2, 2] +nuts -1.3 1.26886 [-2, -1, -2, -3, 1, -1, 1, -2, -2, -2] +o.o -0.8 1.07703 [-1, -1, 0, -2, -1, -1, -2, 1, -2, 1] +o/\o 2.1 1.04403 [1, 2, 3, 1, 3, 4, 1, 2, 3, 1] +o_0 -0.1 0.53852 [-1, -1, 0, 0, 0, 0, 0, 0, 1, 0] +obliterate -2.9 0.83066 [-3, -4, -3, -3, -3, -3, -2, -1, -4, -3] +obliterated -2.1 1.3 [-3, 0, -1, -4, -3, -2, 0, -2, -3, -3] +obnoxious -2.0 0.44721 [-1, -2, -3, -2, -2, -2, -2, -2, -2, -2] +obnoxiously -2.3 0.64031 [-3, -2, -1, -2, -2, -3, -2, -3, -3, -2] +obnoxiousness -2.1 0.7 [-3, -1, -1, -2, -2, -3, -2, -2, -3, -2] +obscene -2.8 0.87178 [-3, -3, -2, -1, -3, -4, -3, -4, -2, -3] +obsess -1.0 0.89443 [-2, 0, -2, -1, 1, -1, -2, -1, -1, -1] +obsessed -0.7 0.78102 [0, 0, -1, 0, -1, 0, -1, -2, -2, 0] +obsesses -1.0 0.7746 [-2, -2, -1, -2, 0, -1, -1, -1, 0, 0] +obsessing -1.4 0.66332 [-1, -1, -1, -2, -1, -1, -1, -3, -2, -1] +obsession -1.4 0.8 [0, -2, -2, -1, -1, -1, -3, -1, -1, -2] +obsessional -1.5 0.92195 [0, -2, -1, -1, -3, -1, -2, -1, -3, -1] +obsessionally -1.3 0.9 [-1, -2, -2, -2, -2, -1, 1, -1, -1, -2] +obsessions -0.9 1.44568 [-1, -4, -2, -1, 1, -1, 0, 1, 0, -2] +obsessive -0.9 1.04403 [-2, 0, -1, 0, 1, -1, -3, -1, -1, -1] +obsessively -0.4 1.2 [-1, -1, -1, -1, -1, 1, 2, -2, 1, -1] +obsessiveness -1.2 1.32665 [0, -3, -1, -1, -1, 1, -4, -1, -1, -1] +obsessives -0.7 0.9 [-1, -1, -1, -1, -1, 1, -2, 1, -1, -1] +obsolete -1.2 0.74833 [-1, -1, -1, -1, -2, -1, -1, -3, -1, 0] +obstacle -1.5 1.0247 [-1, -3, -1, -2, -2, -2, 1, -1, -2, -2] +obstacles -1.6 0.8 [-3, -1, -2, -1, -2, -2, 0, -2, -1, -2] +obstinate -1.2 0.74833 [-2, -1, -1, -1, 0, 0, -2, -1, -2, -2] +odd -1.3 0.45826 [-1, -1, -2, -1, -1, -1, -2, -1, -2, -1] +offence -1.2 1.93907 [-2, -2, -3, 3, -2, -2, -3, 2, -1, -2] +offences -1.4 1.49666 [-2, -2, -4, -1, -2, -2, -1, 0, 2, -2] +offend -1.2 1.4 [-2, -2, -2, -2, -1, -2, -2, 1, 2, -2] +offended -1.0 1.41421 [-2, -2, -2, -2, -1, 0, -2, 2, 1, -2] +offender -1.5 1.28452 [-3, -2, -2, -2, -2, -2, -2, 1, 1, -2] +offenders -1.5 1.28452 [-2, -1, -2, -2, -2, -2, 2, -3, -2, -1] +offending -2.3 0.64031 [-2, -2, -3, -2, -2, -4, -2, -2, -2, -2] +offends -2.0 0.7746 [-3, -1, -1, -2, -2, -2, -3, -1, -2, -3] +offense -1.0 1.61245 [-2, 1, -1, -2, -2, -2, -3, 2, 1, -2] +offenseless 0.7 1.79165 [3, 1, 0, 2, 1, 2, 1, 0, -4, 1] +offenses -1.5 1.5 [-1, -2, -2, -4, -1, -2, 1, -3, 1, -2] +offensive -2.0 1.48324 [-3, -3, -3, -2, -1, -2, 2, -2, -3, -3] +offensively -2.8 0.87178 [-2, -4, -3, -3, -2, -4, -4, -2, -2, -2] +offensiveness -2.3 0.45826 [-2, -2, -2, -2, -2, -3, -2, -3, -3, -2] +offensives -0.8 1.249 [0, 0, -1, -2, 0, 2, -2, -1, -2, -2] +offline -0.5 0.92195 [0, 0, 0, 0, -3, 0, -1, 0, -1, 0] +ok 1.2 0.4 [1, 2, 1, 1, 1, 1, 2, 1, 1, 1] +okay 0.9 0.53852 [1, 1, 0, 0, 1, 1, 1, 2, 1, 1] +okays 2.1 1.13578 [1, 1, 1, 4, 3, 2, 2, 1, 2, 4] +ominous -1.4 1.49666 [-3, -2, -1, -2, -2, -1, -1, 1, 1, -4] +once-in-a-lifetime 1.8 1.4 [4, 2, 1, 0, 1, 1, 4, 3, 2, 0] +openness 1.4 0.8 [2, 1, 1, 2, 2, 1, 1, 1, 3, 0] +opportune 1.7 0.78102 [2, 2, 0, 1, 2, 3, 2, 2, 1, 2] +opportunely 1.5 1.0247 [1, 1, 4, 1, 2, 1, 1, 2, 2, 0] +opportuneness 1.2 1.249 [0, 1, 2, 2, 2, 2, 2, 2, -2, 1] +opportunism 0.4 1.11355 [-1, -1, 0, -1, 1, 2, 0, 1, 2, 1] +opportunisms 0.2 1.4 [2, -1, 0, -1, 1, -2, 2, 2, -1, 0] +opportunist 0.2 0.9798 [-1, -1, 0, -1, 0, 2, 0, 1, 1, 1] +opportunistic -0.1 2.11896 [-2, 1, -1, 0, -4, 2, -1, 4, 1, -1] +opportunistically 0.9 1.51327 [1, -3, 1, 3, 2, 2, 1, 0, 1, 1] +opportunists 0.3 1.34536 [0, -1, -1, 2, 1, 3, -1, -1, 1, 0] +opportunities 1.6 0.4899 [1, 1, 2, 2, 2, 1, 2, 2, 1, 2] +opportunity 1.8 0.6 [2, 2, 2, 2, 3, 1, 2, 1, 1, 2] +oppressed -2.1 0.53852 [-2, -2, -2, -1, -2, -2, -3, -2, -2, -3] +oppressive -1.7 1.34536 [-3, -2, -1, -2, -2, -2, -3, 2, -2, -2] +optimal 1.5 0.67082 [1, 2, 1, 3, 1, 1, 1, 2, 2, 1] +optimality 1.9 0.7 [3, 3, 2, 1, 2, 1, 2, 2, 1, 2] +optimally 1.3 0.9 [0, 3, 0, 1, 1, 2, 1, 1, 2, 2] +optimisation 1.6 0.8 [3, 1, 1, 1, 2, 1, 1, 3, 2, 1] +optimisations 1.8 0.6 [3, 1, 1, 2, 1, 2, 2, 2, 2, 2] +optimise 1.9 0.83066 [1, 2, 3, 2, 3, 3, 2, 1, 1, 1] +optimised 1.7 1.26886 [2, 4, 1, 2, 1, 2, 3, 2, 1, -1] +optimises 1.6 1.0198 [3, 1, 1, 1, 1, 3, 2, 0, 3, 1] +optimising 1.7 1.00499 [1, 2, 3, 3, 1, 2, 1, 3, 0, 1] +optimism 2.5 0.67082 [2, 2, 3, 3, 3, 4, 2, 2, 2, 2] +optimisms 2.0 0.63246 [2, 3, 1, 3, 1, 2, 2, 2, 2, 2] +optimist 2.4 0.4899 [3, 2, 3, 2, 3, 3, 2, 2, 2, 2] +optimistic 1.3 1.48661 [2, 2, -3, 2, 2, 2, 1, 2, 1, 2] +optimistically 2.1 0.53852 [3, 2, 2, 2, 3, 2, 1, 2, 2, 2] +optimists 1.6 0.66332 [3, 2, 2, 1, 2, 1, 2, 1, 1, 1] +optimization 1.6 0.8 [2, 3, 1, 1, 1, 2, 0, 2, 2, 2] +optimizations 0.9 1.04403 [0, 2, 0, 2, 1, 0, 3, 1, 0, 0] +optimize 2.2 0.87178 [2, 3, 3, 2, 1, 2, 4, 2, 2, 1] +optimized 2.0 0.44721 [1, 3, 2, 2, 2, 2, 2, 2, 2, 2] +optimizer 1.5 0.67082 [1, 3, 1, 1, 2, 2, 1, 2, 1, 1] +optimizers 2.1 0.7 [3, 3, 1, 3, 2, 2, 1, 2, 2, 2] +optimizes 1.8 0.6 [1, 3, 2, 1, 2, 2, 1, 2, 2, 2] +optimizing 2.0 0.7746 [1, 1, 2, 2, 1, 3, 3, 3, 2, 2] +optionless -1.7 0.64031 [-2, -1, -2, -3, -1, -2, -2, -2, -1, -1] +original 1.3 0.9 [0, 2, 0, 2, 2, 0, 2, 1, 2, 2] +outcry -2.3 0.64031 [-3, -2, -2, -3, -2, -1, -3, -2, -2, -3] +outgoing 1.2 1.16619 [1, 1, 1, 2, -1, 1, 3, 3, 0, 1] +outmaneuvered 0.5 1.36015 [-2, 2, 0, 0, 3, 1, 1, 0, 1, -1] +outrage -2.3 1.00499 [-2, -2, -4, -3, -1, -3, -3, -1, -1, -3] +outraged -2.5 0.92195 [-3, -2, -2, -1, -3, -3, -1, -4, -3, -3] +outrageous -2.0 1.34164 [-3, 0, -2, -1, -3, 0, -3, -3, -4, -1] +outrageously -1.2 1.32665 [-1, -1, -3, -3, -2, -1, 2, -1, -1, -1] +outrageousness -1.2 1.249 [-2, 0, 1, -2, -1, -1, -3, 0, -1, -3] +outrageousnesses -1.3 1.67631 [-1, -3, -2, 1, 0, 1, 0, -3, -2, -4] +outrages -2.3 1.00499 [-3, -2, -2, -1, -3, -3, -1, -4, -1, -3] +outraging -2.0 1.18322 [-4, -1, -2, -3, -1, 0, -1, -3, -3, -2] +outreach 1.1 0.7 [2, 1, 0, 0, 2, 1, 1, 1, 2, 1] +outstanding 3.0 0.89443 [3, 1, 3, 3, 4, 4, 2, 3, 4, 3] +overjoyed 2.7 0.78102 [4, 3, 3, 4, 2, 2, 2, 2, 3, 2] +overload -1.5 0.67082 [-2, 0, -1, -2, -2, -1, -1, -2, -2, -2] +overlooked -0.1 1.44568 [-1, -2, -1, -1, 2, 0, -1, 2, -1, 2] +overreact -1.0 1.73205 [-2, -2, -2, -2, 0, -3, 1, 3, -1, -2] +overreacted -1.7 0.64031 [-2, -2, -2, -1, -1, -1, -1, -3, -2, -2] +overreaction -0.7 1.34536 [-2, -1, 0, -1, -1, 3, -2, -1, -1, -1] +overreacts -2.2 0.87178 [-2, -2, -2, -3, -4, -1, -3, -1, -2, -2] +oversell -0.9 0.7 [0, -1, -1, 0, -2, -1, -1, -1, -2, 0] +overselling -0.8 1.16619 [0, -1, 0, -1, -2, -1, -1, -2, -2, 2] +oversells 0.3 1.26886 [-1, -1, 0, 0, 2, 2, 2, -1, 1, -1] +oversimplification 0.2 1.53623 [-1, 1, -1, -1, 1, -1, -2, 1, 2, 3] +oversimplifies 0.1 1.37477 [3, 0, 0, -1, 1, -1, 2, -1, -1, -1] +oversimplify -0.6 1.35647 [-3, -1, 0, -2, 0, 1, 2, -1, -1, -1] +overstatement -1.1 0.7 [-2, 0, -1, -2, -1, 0, -1, -1, -2, -1] +overstatements -0.7 1.34536 [-1, -1, -3, -1, 2, 0, -1, -1, -2, 1] +overweight -1.5 0.67082 [-3, -2, -1, -1, -1, -2, -1, -2, -1, -1] +overwhelm -0.7 1.26886 [-1, 2, -1, -1, -2, -2, 1, 0, -1, -2] +overwhelmed 0.2 1.53623 [-2, -1, 2, -2, 2, 1, -1, 2, 1, 0] +overwhelmingly -0.5 1.28452 [0, -2, -1, 0, -2, -1, -2, 0, 1, 2] +overwhelms -0.8 1.249 [-2, -2, -1, -1, -1, -2, 2, 1, -1, -1] +oxymoron -0.5 0.80623 [0, 0, -1, -1, -1, -2, 1, 0, 0, -1] +pain -2.3 0.64031 [-2, -3, -2, -2, -2, -2, -2, -2, -2, -4] +pained -1.8 0.6 [-1, -2, -3, -2, -2, -2, -2, -1, -1, -2] +painful -1.9 0.9434 [-2, -1, -1, -3, -4, -1, -1, -2, -2, -2] +painfuller -1.7 1.34536 [-2, -2, -2, 2, -1, -3, -2, -2, -3, -2] +painfully -2.4 0.4899 [-2, -3, -2, -3, -3, -2, -2, -2, -2, -3] +painfulness -2.7 0.64031 [-3, -4, -3, -2, -3, -3, -3, -2, -2, -2] +paining -1.7 0.45826 [-1, -2, -2, -2, -2, -2, -1, -2, -1, -2] +painless 1.2 0.87178 [1, 2, -1, 1, 2, 1, 2, 1, 2, 1] +painlessly 1.1 0.3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 2] +painlessness 0.4 1.0198 [1, 1, 1, 1, -1, 1, -2, 0, 1, 1] +pains -1.8 0.6 [-2, -2, -1, -1, -1, -2, -2, -2, -3, -2] +palatable 1.6 0.8 [2, 1, 2, 1, 2, 1, 3, 0, 2, 2] +palatableness 0.8 0.87178 [2, 1, 1, 0, -1, 2, 0, 1, 1, 1] +palatably 1.1 0.83066 [2, 1, 2, 1, 1, 1, 2, -1, 1, 1] +panic -2.3 0.64031 [-3, -2, -1, -2, -2, -2, -3, -3, -2, -3] +panicked -2.0 1.61245 [-2, -4, -3, -3, -3, 1, -2, -2, 1, -3] +panicking -1.9 0.53852 [-2, -2, -3, -2, -2, -2, -2, -2, -1, -1] +panicky -1.5 0.67082 [-2, -2, -1, -1, -1, -1, -1, -2, -3, -1] +panicle 0.5 0.67082 [2, 0, 0, 0, 0, 0, 0, 1, 1, 1] +panicled 0.1 0.83066 [2, 0, 0, 0, 0, -1, 0, -1, 1, 0] +panicles -0.2 0.6 [1, 0, 0, 0, 0, -1, 0, -1, -1, 0] +panics -1.9 1.3 [-2, -3, -2, -3, -1, -2, 1, -4, -1, -2] +paniculate 0.1 0.3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] +panicums -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] +paradise 3.2 0.9798 [4, 1, 4, 2, 4, 4, 3, 3, 3, 4] +paradox -0.4 0.66332 [-1, -1, 0, 0, -1, 0, -1, 0, 1, -1] +paranoia -1.0 1.48324 [1, -2, -2, -3, -1, 0, -2, -1, -2, 2] +paranoiac -1.3 1.61555 [-2, -3, -2, -2, 1, -3, 2, -2, 0, -2] +paranoiacs -0.7 1.18743 [-1, 0, -1, -1, -3, 1, -2, 0, 1, -1] +paranoias -1.5 1.0247 [-2, -3, -2, 0, -1, -3, 0, -1, -1, -2] +paranoid -1.0 1.41421 [0, -3, -3, -2, -1, -1, 0, 1, -2, 1] +paranoids -1.6 0.91652 [-2, -1, -1, -2, -2, -1, -1, -1, -4, -1] +pardon 1.3 0.45826 [1, 2, 1, 2, 1, 2, 1, 1, 1, 1] +pardoned 0.9 0.9434 [1, 1, 1, 1, 1, 1, 1, 0, 3, -1] +pardoning 1.7 0.78102 [3, 2, 2, 2, 1, 1, 2, 2, 0, 2] +pardons 1.2 0.6 [2, 1, 1, 1, 1, 2, 1, 2, 0, 1] +parley -0.4 0.66332 [0, -2, 0, 0, -1, -1, 0, 0, 0, 0] +partied 1.4 1.11355 [2, 3, 1, 1, 1, 2, 3, -1, 1, 1] +partier 1.4 0.8 [2, 2, 1, 1, 0, 2, 3, 1, 1, 1] +partiers 0.7 1.00499 [0, 0, 3, 0, 0, 0, 2, 1, 0, 1] +parties 1.7 0.78102 [2, 3, 1, 1, 1, 2, 3, 1, 2, 1] +party 1.7 0.78102 [3, 2, 2, 1, 3, 2, 1, 1, 1, 1] +partyer 1.2 1.07703 [1, 3, 1, 0, 1, 0, 2, 1, 3, 0] +partyers 1.1 0.83066 [1, 2, 0, 3, 1, 1, 1, 0, 1, 1] +partying 1.6 1.11355 [0, 3, 1, 0, 3, 2, 3, 1, 2, 1] +passion 2.0 0.44721 [2, 2, 1, 3, 2, 2, 2, 2, 2, 2] +passional 1.6 0.8 [2, 1, 3, 0, 2, 1, 1, 2, 2, 2] +passionate 2.4 1.35647 [0, 4, 3, 3, 4, 2, 0, 2, 3, 3] +passionately 2.4 0.91652 [3, 0, 3, 3, 2, 3, 2, 3, 2, 3] +passionateness 2.3 0.64031 [1, 3, 2, 3, 2, 3, 2, 3, 2, 2] +passionflower 0.3 0.45826 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0] +passionflowers 0.4 0.66332 [0, 0, 0, 0, 2, 1, 1, 0, 0, 0] +passionless -1.9 0.7 [-3, -2, -2, -2, -1, -1, -1, -3, -2, -2] +passions 2.2 0.6 [3, 3, 3, 2, 2, 1, 2, 2, 2, 2] +passive 0.8 1.46969 [4, 1, 1, 0, -2, 0, 1, 1, 2, 0] +passively -0.7 0.64031 [0, -1, 0, 0, -1, -2, 0, -1, -1, -1] +pathetic -2.7 1.48661 [-3, -4, -3, -4, -2, 1, -2, -2, -4, -4] +pathetical -1.2 1.249 [-2, -1, -2, -1, -2, 1, -3, 1, -1, -2] +pathetically -1.8 1.72047 [-3, -4, -2, 0, -3, -2, -3, -3, 1, 1] +pay -0.4 0.91652 [0, 0, -3, 0, 0, 0, 0, 0, -1, 0] +peace 2.5 1.0247 [3, 2, 1, 4, 2, 3, 4, 1, 3, 2] +peaceable 1.7 0.45826 [2, 2, 1, 2, 1, 2, 2, 1, 2, 2] +peaceableness 1.8 1.16619 [2, 2, 4, 2, 2, 2, 2, 1, 2, -1] +peaceably 2.0 0.63246 [2, 3, 2, 2, 1, 2, 3, 1, 2, 2] +peaceful 2.2 0.74833 [4, 2, 1, 2, 2, 2, 3, 2, 2, 2] +peacefuller 1.9 0.7 [2, 2, 2, 1, 3, 3, 2, 2, 1, 1] +peacefullest 3.1 0.7 [3, 3, 2, 3, 4, 2, 4, 3, 4, 3] +peacefully 2.4 0.66332 [3, 2, 2, 2, 4, 2, 2, 3, 2, 2] +peacefulness 2.1 0.83066 [3, 2, 1, 2, 3, 1, 3, 3, 1, 2] +peacekeeper 1.6 1.11355 [1, 1, 0, 2, 1, 1, 4, 3, 2, 1] +peacekeepers 1.6 1.11355 [4, 1, 1, 2, 1, 1, 2, 3, 0, 1] +peacekeeping 2.0 0.63246 [2, 1, 1, 2, 3, 3, 2, 2, 2, 2] +peacekeepings 1.6 0.8 [0, 1, 1, 2, 2, 3, 2, 2, 2, 1] +peacemaker 2.0 0.89443 [2, 1, 2, 4, 2, 2, 1, 3, 1, 2] +peacemakers 2.4 1.0198 [0, 3, 4, 2, 3, 2, 3, 3, 2, 2] +peacemaking 1.7 0.78102 [1, 1, 1, 3, 3, 1, 2, 2, 2, 1] +peacenik 0.8 0.87178 [1, 1, 0, 1, 2, 0, 1, 1, -1, 2] +peaceniks 0.7 1.00499 [2, 0, 0, 1, 0, 2, 1, -1, 2, 0] +peaces 2.1 0.83066 [2, 2, 2, 2, 3, 0, 3, 3, 2, 2] +peacetime 2.2 1.16619 [3, 1, 4, 2, 4, 3, 1, 1, 2, 1] +peacetimes 2.1 0.83066 [3, 2, 2, 4, 1, 2, 2, 2, 1, 2] +peculiar 0.6 1.2 [-1, 0, -1, 1, 2, -1, 2, 1, 2, 1] +peculiarities 0.1 1.37477 [-1, -1, 0, -1, -1, 1, 3, 2, -1, 0] +peculiarity 0.6 1.2 [-1, 1, -1, 0, 2, -1, 1, 2, 2, 1] +peculiarly -0.4 1.2 [-1, 2, -2, -1, 0, 0, -2, 1, -1, 0] +penalty -2.0 0.63246 [-2, -3, -2, -2, -1, -2, -3, -2, -2, -1] +pensive 0.3 1.1 [1, 0, 0, 1, 0, -1, 3, 0, -1, 0] +perfect 2.7 0.78102 [2, 4, 2, 3, 4, 2, 3, 2, 3, 2] +perfecta 1.4 1.42829 [1, 0, 0, 3, 1, 0, 0, 4, 3, 2] +perfectas 0.6 1.11355 [0, 0, -1, 1, 0, 2, 3, 0, 1, 0] +perfected 2.7 0.78102 [1, 3, 3, 4, 2, 3, 3, 2, 3, 3] +perfecter 1.8 0.9798 [2, 1, 3, 1, 2, 1, 2, 4, 1, 1] +perfecters 1.4 1.11355 [2, 1, 3, 0, 0, 3, 2, 0, 1, 2] +perfectest 3.1 1.04403 [2, 4, 4, 4, 3, 2, 1, 3, 4, 4] +perfectibilities 2.1 1.04403 [3, 2, 2, 3, 4, 1, 2, 2, 0, 2] +perfectibility 1.8 1.249 [4, 3, 3, 0, 1, 0, 1, 2, 2, 2] +perfectible 1.5 0.67082 [1, 2, 1, 1, 2, 1, 1, 3, 2, 1] +perfecting 2.3 0.9 [1, 2, 3, 3, 1, 2, 2, 4, 2, 3] +perfection 2.7 1.1 [3, 3, 3, 1, 2, 4, 4, 1, 2, 4] +perfectionism 1.3 1.26886 [3, -1, 2, 1, 2, 2, 2, -1, 1, 2] +perfectionist 1.5 1.20416 [3, -1, 3, 1, 2, 2, 2, 0, 1, 2] +perfectionistic 0.7 1.67631 [-1, 0, 2, 0, 1, 0, 3, -1, 4, -1] +perfectionists 0.1 1.22066 [1, -1, 1, -1, 0, 0, -1, 0, 3, -1] +perfections 2.5 1.43178 [2, 4, 4, 3, 3, 4, -1, 2, 2, 2] +perfective 1.2 0.87178 [1, 0, 1, 1, 3, 2, 2, 0, 1, 1] +perfectively 2.1 1.13578 [3, 3, 1, 4, 0, 2, 1, 2, 2, 3] +perfectiveness 0.9 1.51327 [-2, 3, -1, 0, 2, 0, 2, 2, 2, 1] +perfectives 0.9 0.83066 [0, 2, 1, 1, 1, 0, 2, 0, 2, 0] +perfectivity 2.2 0.9798 [3, 2, 0, 3, 1, 2, 3, 3, 2, 3] +perfectly 3.2 0.4 [3, 4, 4, 3, 3, 3, 3, 3, 3, 3] +perfectness 3.0 0.63246 [4, 3, 3, 3, 3, 2, 4, 2, 3, 3] +perfecto 1.3 1.34536 [1, 0, 0, 2, 0, 0, 1, 4, 3, 2] +perfects 1.6 1.11355 [1, 1, 1, 2, 1, 0, 1, 4, 3, 2] +peril -1.7 1.67631 [-3, -2, -2, 3, -3, -2, -3, -2, -1, -2] +perjury -1.9 0.9434 [-3, -2, -3, -2, -2, 0, -1, -2, -3, -1] +perpetrator -2.2 0.74833 [-2, -3, -2, -2, -2, -2, -4, -2, -1, -2] +perpetrators -1.0 1.67332 [-1, -2, -2, -2, -2, 2, 0, -4, 1, 0] +perplexed -1.3 0.64031 [-1, -1, -2, -1, -1, -1, 0, -2, -2, -2] +persecute -2.1 1.37477 [-2, -3, -2, 1, -1, -4, -2, -2, -2, -4] +persecuted -1.3 1.61555 [-2, -1, -2, -1, -2, 2, -4, 1, -2, -2] +persecutes -1.2 1.4 [-2, -1, -2, 0, -2, 1, -3, 1, -1, -3] +persecuting -1.5 1.62788 [-3, -2, -2, 0, -4, -3, -2, -1, 1, 1] +perturbed -1.4 0.8 [-2, -1, -1, 0, -2, -2, -2, 0, -2, -2] +perverse -1.8 1.8868 [-2, -4, -3, 1, -2, -4, 1, 0, -1, -4] +perversely -2.2 0.87178 [-1, -2, -2, -2, -1, -3, -2, -3, -4, -2] +perverseness -2.1 1.22066 [-3, -3, 1, -2, -3, -2, -3, -2, -1, -3] +perversenesses -0.5 1.74642 [-2, 3, -1, -2, 1, 0, 1, 0, -2, -3] +perversion -1.3 1.34536 [-3, -2, -2, 1, 1, -3, -1, -2, -1, -1] +perversions -1.2 1.83303 [-2, 0, -4, -2, -3, -3, 0, 1, -1, 2] +perversities -1.1 1.22066 [-2, -1, -2, 0, -2, -2, -2, 1, 1, -2] +perversity -2.6 0.8 [-2, -3, -2, -2, -4, -3, -3, -1, -3, -3] +perversive -2.1 0.7 [-3, -1, -3, -2, -2, -2, -2, -1, -3, -2] +pervert -2.3 0.9 [-2, -2, -1, -3, -4, -2, -3, -1, -3, -2] +perverted -2.5 1.56525 [-2, -4, -2, -4, -3, -4, 1, -2, -1, -4] +pervertedly -1.2 1.77764 [-3, -2, -1, -2, 2, -3, 1, -3, 1, -2] +pervertedness -1.2 1.46969 [1, -2, -3, -2, 0, -2, -3, 1, 0, -2] +perverter -1.7 1.48661 [-3, -4, -2, -2, -1, -1, 2, -2, -2, -2] +perverters -0.6 1.68523 [-2, -2, -1, 0, -1, 2, -3, 1, 2, -2] +perverting -1.0 2.09762 [4, -2, -2, -4, -2, 1, 0, -1, -2, -2] +perverts -2.8 0.6 [-3, -3, -2, -3, -3, -2, -2, -4, -3, -3] +pesky -1.2 0.4 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -1] +pessimism -1.5 1.36015 [-2, -3, 1, -2, -2, -1, 1, -3, -2, -2] +pessimisms -2.0 1.0 [-3, -1, -2, -2, -3, -1, 0, -2, -3, -3] +pessimist -1.5 1.36015 [-1, -3, 1, -2, -2, -2, 1, -3, -2, -2] +pessimistic -1.5 1.43178 [-3, -1, -1, 1, -3, -3, -2, -2, -2, 1] +pessimistically -2.0 1.0 [-1, -1, -3, -4, -2, -1, -1, -3, -2, -2] +pessimists -1.0 1.26491 [-1, 1, -1, 0, -2, -2, -2, -3, -1, 1] +petrifaction -1.9 1.3 [-3, -2, -1, -4, -3, 0, -1, 0, -2, -3] +petrifactions -0.3 1.00499 [0, -1, 0, 0, 0, 0, 0, 0, -3, 1] +petrification -0.1 1.44568 [-1, 2, -1, -1, 0, 2, 2, -2, -1, -1] +petrifications -0.4 0.8 [0, 0, -2, 0, 0, 0, 0, 0, -2, 0] +petrified -2.5 0.92195 [-4, -3, -2, -1, -2, -3, -2, -2, -2, -4] +petrifies -2.3 1.00499 [-4, -3, -2, -1, -2, -2, -1, -2, -2, -4] +petrify -1.7 0.9 [-2, -3, -1, -2, -1, -1, -2, -3, 0, -2] +petrifying -2.6 0.8 [-2, -3, -3, -2, -4, -2, -3, -1, -3, -3] +pettier -0.3 1.41774 [-1, -1, -1, -1, 2, 0, 2, -2, 1, -2] +pettiest -1.3 1.95192 [1, -3, -3, -3, -2, -1, 2, -1, 1, -4] +petty -0.8 1.32665 [1, -3, -2, -1, -1, -1, -1, -1, 2, -1] +phobia -1.6 1.0198 [-2, -2, 1, -2, -3, -1, -1, -2, -2, -2] +phobias -2.0 1.0 [-3, -2, -2, -3, -3, 0, -1, -2, -1, -3] +phobic -1.2 1.16619 [-2, -2, 1, -1, -2, -1, 1, -2, -2, -2] +phobics -1.3 0.64031 [-1, -1, -1, -2, -2, -1, 0, -2, -2, -1] +picturesque 1.6 1.11355 [4, 1, 1, 2, 1, 2, 1, 0, 3, 1] +pileup -1.1 1.13578 [-2, 1, 0, -1, 0, -1, -3, -2, -2, -1] +pique -1.1 1.13578 [-2, -2, -2, 0, 0, -1, 1, -1, -1, -3] +piqued 0.1 1.04403 [0, -2, 0, 1, 1, 1, -1, 1, -1, 1] +piss -1.7 0.9 [-2, -1, -1, -2, -1, -3, -3, 0, -2, -2] +pissant -1.5 1.5 [-1, -3, -3, 1, -3, -1, -1, -2, 1, -3] +pissants -2.5 0.80623 [-4, -3, -3, -2, -3, -1, -2, -3, -2, -2] +pissed -3.2 0.6 [-3, -3, -4, -3, -2, -4, -4, -3, -3, -3] +pisser -2.0 1.09545 [-2, -4, -1, -3, -2, -3, -1, -2, -2, 0] +pissers -1.4 2.00998 [-1, -1, -4, -2, -3, 4, -2, -1, -2, -2] +pisses -1.4 0.8 [-2, -2, -1, -3, -1, -1, -1, -2, -1, 0] +pissing -1.7 1.26886 [0, 0, -2, -2, -3, 0, -3, -1, -3, -3] +pissoir -0.8 1.4 [-2, 0, 0, -2, -1, -3, 0, -2, 0, 2] +piteous -1.2 1.46969 [-2, -1, -2, -2, -2, -1, 3, -1, -2, -2] +pitiable -1.1 1.22066 [-1, 0, -1, -1, 1, -2, -4, -1, -1, -1] +pitiableness -1.1 1.64012 [-2, -1, -1, -2, -4, 2, 1, 0, -2, -2] +pitiably -1.1 0.9434 [-1, 0, 0, -2, 0, -2, -3, -1, -1, -1] +pitied -1.3 1.1 [-2, -1, -3, -1, 1, 0, -2, -2, -1, -2] +pitier -1.2 1.32665 [-3, -1, -2, -3, -1, -1, 1, 1, -2, -1] +pitiers -1.3 0.9 [0, -1, -2, -2, -1, -1, -1, -3, -2, 0] +pities -1.2 1.249 [-2, -1, -2, -3, -1, -1, 1, 1, -2, -2] +pitiful -2.2 0.9798 [-3, -2, -1, -3, -2, -2, -3, -3, -3, 0] +pitifuller -1.8 1.07703 [-1, -1, -2, -3, -4, 0, -2, -2, -1, -2] +pitifullest -1.1 2.11896 [-2, 1, -1, -4, -4, -1, -3, -1, 2, 2] +pitifully -1.2 1.249 [-2, -1, -3, -2, -1, -1, -2, -1, 2, -1] +pitifulness -1.2 1.77764 [-3, -2, -1, -3, -2, -1, 3, 1, -2, -2] +pitiless -1.8 0.87178 [-2, 0, -2, -2, -2, -3, -1, -3, -1, -2] +pitilessly -2.1 0.7 [-2, -2, -1, -3, -3, -1, -3, -2, -2, -2] +pitilessness -0.5 1.62788 [1, 3, 1, -3, -2, -1, -1, -1, -1, -1] +pity -1.2 0.4 [-2, -2, -1, -1, -1, -1, -1, -1, -1, -1] +pitying -1.4 0.91652 [-1, -3, -1, -3, -2, -1, 0, -1, -1, -1] +pityingly -1.0 1.26491 [-2, -2, -1, -2, -2, 0, 0, -1, 2, -2] +pityriasis -0.8 0.87178 [-2, 0, 0, 0, -1, 0, -2, -1, -2, 0] +play 1.4 1.0198 [2, 0, 1, 1, 1, 2, 1, 4, 1, 1] +played 1.4 1.42829 [2, 1, 1, 1, 4, 0, 1, 0, 4, 0] +playful 1.9 0.83066 [4, 2, 2, 2, 1, 1, 1, 2, 2, 2] +playfully 1.6 0.4899 [2, 1, 1, 2, 1, 2, 2, 2, 1, 2] +playfulness 1.2 0.87178 [2, 1, 2, -1, 1, 2, 1, 2, 1, 1] +playing 0.8 0.87178 [0, 2, 2, 1, 0, 0, 2, 0, 0, 1] +plays 1.0 1.09545 [0, 2, 0, 2, 0, 1, 0, 2, 3, 0] +pleasant 2.3 0.64031 [2, 3, 3, 3, 2, 1, 2, 2, 3, 2] +pleasanter 1.5 0.67082 [2, 2, 2, 1, 0, 1, 1, 2, 2, 2] +pleasantest 2.6 0.8 [3, 3, 3, 1, 2, 4, 3, 2, 2, 3] +pleasantly 2.1 0.53852 [1, 2, 3, 2, 2, 2, 2, 2, 3, 2] +pleasantness 2.3 0.9 [3, 2, 3, 3, 3, 1, 1, 3, 1, 3] +pleasantnesses 2.3 0.78102 [3, 1, 2, 3, 1, 2, 3, 3, 2, 3] +pleasantries 1.3 0.45826 [1, 1, 1, 1, 1, 2, 1, 2, 2, 1] +pleasantry 2.0 0.7746 [2, 2, 1, 1, 4, 2, 2, 2, 2, 2] +please 1.3 0.78102 [2, 1, 2, 2, 2, 0, 2, 1, 0, 1] +pleased 1.9 0.53852 [2, 2, 2, 2, 1, 1, 2, 3, 2, 2] +pleaser 1.7 0.45826 [2, 2, 2, 2, 1, 1, 1, 2, 2, 2] +pleasers 1.0 1.0 [1, 1, 2, 0, 1, 3, 1, 1, -1, 1] +pleases 1.7 0.45826 [2, 1, 2, 2, 1, 1, 2, 2, 2, 2] +pleasing 2.4 0.91652 [2, 3, 2, 2, 2, 2, 4, 4, 1, 2] +pleasurability 1.9 0.83066 [1, 2, 2, 2, 2, 0, 2, 3, 3, 2] +pleasurable 2.4 0.4899 [2, 3, 3, 2, 3, 3, 2, 2, 2, 2] +pleasurableness 2.4 0.91652 [2, 3, 2, 1, 2, 3, 4, 3, 1, 3] +pleasurably 2.6 0.4899 [2, 2, 2, 3, 3, 3, 3, 2, 3, 3] +pleasure 2.7 0.9 [4, 4, 3, 2, 2, 3, 2, 1, 3, 3] +pleasured 2.3 0.64031 [3, 2, 3, 2, 3, 3, 1, 2, 2, 2] +pleasureless -1.6 0.8 [-1, -1, -1, -1, -2, -3, -3, -2, -1, -1] +pleasures 1.9 1.37477 [3, -2, 3, 2, 3, 2, 2, 2, 2, 2] +pleasuring 2.8 0.4 [3, 2, 3, 3, 3, 3, 3, 2, 3, 3] +poised 1.0 0.44721 [1, 1, 1, 1, 1, 1, 0, 1, 1, 2] +poison -2.5 0.92195 [-4, -3, -2, -4, -2, -2, -2, -3, -1, -2] +poisoned -2.2 0.9798 [-4, -1, -4, -1, -2, -2, -2, -2, -2, -2] +poisoner -2.7 0.78102 [-2, -3, -3, -4, -4, -2, -2, -2, -2, -3] +poisoners -3.1 0.83066 [-3, -4, -3, -4, -3, -4, -3, -3, -1, -3] +poisoning -2.8 1.249 [-4, -4, -2, 0, -2, -3, -4, -3, -2, -4] +poisonings -2.4 1.11355 [-2, 0, -2, -1, -4, -3, -3, -3, -3, -3] +poisonous -2.7 0.78102 [-3, -3, -4, -2, -1, -3, -3, -3, -3, -2] +poisonously -2.9 0.53852 [-3, -2, -3, -3, -2, -3, -3, -4, -3, -3] +poisons -2.7 0.9 [-3, -4, -3, -1, -2, -3, -3, -2, -2, -4] +poisonwood -1.0 0.89443 [0, -2, 0, 0, 0, -1, -2, -2, -2, -1] +pollute -2.3 0.64031 [-3, -2, -2, -2, -2, -3, -3, -1, -3, -2] +polluted -2.0 0.44721 [-2, -2, -1, -2, -2, -2, -2, -2, -3, -2] +polluter -1.8 0.6 [-2, -1, -2, -1, -2, -2, -3, -1, -2, -2] +polluters -2.0 0.44721 [-2, -2, -2, -2, -2, -3, -2, -1, -2, -2] +pollutes -2.2 0.87178 [-2, -1, -2, -1, -3, -1, -3, -3, -3, -3] +poor -2.1 1.13578 [-2, -2, -1, -4, -2, 0, -2, -4, -2, -2] +poorer -1.5 1.56525 [-2, -3, -2, -2, -2, -2, 3, -2, -1, -2] +poorest -2.5 0.80623 [-2, -3, -3, -1, -2, -3, -3, -4, -2, -2] +popular 1.8 0.74833 [2, 3, 1, 2, 2, 1, 3, 1, 2, 1] +popularise 1.6 0.66332 [1, 1, 2, 2, 3, 2, 1, 2, 1, 1] +popularised 1.1 0.9434 [1, 1, 0, 0, 3, 2, 1, 2, 1, 0] +popularises 0.5 0.67082 [1, 0, 0, 0, 0, 1, 1, 2, 0, 0] +popularising 1.2 0.6 [1, 0, 2, 2, 1, 1, 1, 2, 1, 1] +popularities 1.6 0.8 [2, 1, 1, 2, 0, 2, 1, 2, 3, 2] +popularity 2.1 1.04403 [2, 1, 1, 1, 3, 2, 3, 4, 3, 1] +popularization 1.3 0.78102 [1, 2, 1, 2, 1, 0, 1, 1, 3, 1] +popularizations 0.9 0.7 [1, 1, 1, 0, 2, 0, 1, 1, 2, 0] +popularize 1.3 0.64031 [2, 2, 0, 2, 1, 1, 1, 1, 2, 1] +popularized 1.9 0.83066 [3, 2, 3, 2, 1, 0, 2, 2, 2, 2] +popularizer 1.8 0.74833 [2, 2, 3, 2, 1, 0, 2, 2, 2, 2] +popularizers 1.0 0.89443 [0, 0, 1, 2, 1, 1, 1, 1, 3, 0] +popularizes 1.4 0.8 [2, 1, 3, 2, 1, 0, 1, 2, 1, 1] +popularizing 1.5 0.67082 [2, 2, 1, 1, 1, 2, 2, 0, 2, 2] +popularly 1.8 0.74833 [1, 3, 2, 1, 3, 1, 2, 1, 2, 2] +positive 2.6 0.91652 [2, 1, 2, 2, 3, 3, 4, 3, 4, 2] +positively 2.4 0.66332 [2, 2, 3, 3, 4, 2, 2, 2, 2, 2] +positiveness 2.3 1.18743 [2, 1, 4, 3, 4, 2, 0, 3, 2, 2] +positivenesses 2.2 0.74833 [3, 3, 2, 2, 2, 2, 1, 3, 1, 3] +positiver 2.3 0.78102 [1, 4, 2, 2, 2, 3, 2, 2, 2, 3] +positives 2.4 0.4899 [3, 3, 2, 2, 2, 2, 3, 2, 3, 2] +positivest 2.9 1.04403 [4, 3, 2, 1, 3, 4, 4, 4, 2, 2] +positivism 1.6 1.35647 [3, 0, 2, 1, 2, 0, 3, 4, 1, 0] +positivisms 1.8 0.9798 [4, 1, 2, 2, 2, 0, 2, 2, 1, 2] +positivist 2.0 1.0 [3, 1, 2, 2, 2, 0, 2, 4, 2, 2] +positivistic 1.9 0.83066 [2, 3, 1, 3, 1, 1, 3, 2, 1, 2] +positivists 1.7 1.1 [1, 2, 1, 4, 2, 1, 3, 0, 1, 2] +positivities 2.6 0.91652 [2, 2, 4, 3, 2, 3, 4, 3, 1, 2] +positivity 2.3 0.9 [2, 2, 2, 3, 3, 3, 3, 0, 3, 2] +possessive -0.9 1.22066 [-1, -1, -2, -2, 0, -1, 0, -2, 2, -2] +postpone -0.9 0.83066 [1, -1, -2, -1, -1, -2, -1, -1, 0, -1] +postponed -0.8 0.4 [-1, -1, 0, 0, -1, -1, -1, -1, -1, -1] +postpones -1.1 0.83066 [-1, -1, -1, 0, -1, 0, -2, -1, -3, -1] +postponing -0.5 0.5 [0, -1, 0, -1, 0, 0, 0, -1, -1, -1] +poverty -2.3 1.00499 [-2, -4, -2, -4, -3, -1, -2, -2, -1, -2] +powerful 1.8 0.9798 [4, 0, 2, 1, 2, 2, 2, 2, 1, 2] +powerless -2.2 0.6 [-2, -3, -2, -2, -3, -2, -3, -2, -1, -2] +praise 2.6 0.8 [2, 4, 3, 3, 2, 1, 3, 3, 2, 3] +praised 2.2 0.6 [3, 2, 2, 2, 2, 3, 1, 3, 2, 2] +praiser 2.0 0.89443 [3, 1, 3, 1, 1, 2, 1, 3, 2, 3] +praisers 2.0 0.63246 [2, 2, 1, 3, 3, 2, 1, 2, 2, 2] +praises 2.4 0.4899 [3, 2, 2, 3, 2, 3, 2, 3, 2, 2] +praiseworthily 1.9 0.7 [2, 1, 1, 3, 2, 2, 2, 3, 1, 2] +praiseworthiness 2.4 0.8 [1, 3, 2, 4, 2, 2, 3, 2, 3, 2] +praiseworthy 2.6 0.4899 [3, 3, 3, 3, 2, 2, 3, 2, 3, 2] +praising 2.5 0.67082 [2, 3, 3, 2, 2, 3, 3, 3, 1, 3] +pray 1.3 1.18743 [0, 3, 2, 1, 1, 1, -1, 3, 1, 2] +praying 1.5 0.92195 [2, 2, 0, 3, 1, 3, 1, 1, 1, 1] +prays 1.4 1.0198 [2, 0, 2, 0, 1, 1, 3, 1, 3, 1] +prblm -1.6 0.8 [-1, -1, -1, -1, -1, -3, -3, -2, -2, -1] +prblms -2.3 1.00499 [-2, -2, -2, -2, -4, -4, -3, -1, -2, -1] +precious 2.7 0.64031 [3, 3, 3, 3, 3, 1, 3, 3, 2, 3] +preciously 2.2 0.74833 [3, 3, 3, 2, 2, 1, 1, 3, 2, 2] +preciousness 1.9 0.83066 [2, 4, 2, 2, 2, 1, 1, 1, 2, 2] +prejudice -2.3 0.78102 [-2, -1, -2, -2, -3, -2, -2, -3, -4, -2] +prejudiced -1.9 0.53852 [-2, -3, -1, -2, -1, -2, -2, -2, -2, -2] +prejudices -1.8 0.74833 [-2, -3, -1, -2, -1, -3, -2, -1, -1, -2] +prejudicial -2.6 0.8 [-3, -3, -2, -2, -3, -4, -2, -1, -3, -3] +prejudicially -1.5 1.74642 [-3, -1, -1, -3, -3, -1, -3, 1, 2, -3] +prejudicialness -2.4 1.42829 [-2, -3, 1, -3, -2, -4, -4, -3, -1, -3] +prejudicing -1.8 1.07703 [-2, -2, -2, -3, -2, -1, 1, -3, -2, -2] +prepared 0.9 0.3 [1, 1, 1, 1, 1, 0, 1, 1, 1, 1] +pressure -1.2 0.6 [-1, -1, -1, -1, -2, -2, -1, -2, 0, -1] +pressured -0.9 1.04403 [-2, -1, -2, -1, 2, -1, -1, -1, -1, -1] +pressureless 1.0 1.26491 [2, 0, 1, -1, -1, 2, 1, 2, 1, 3] +pressures -1.3 0.64031 [-2, -1, -1, -1, -3, -1, -1, -1, -1, -1] +pressuring -1.4 0.91652 [-3, -1, -1, -1, -1, -1, -1, -3, -2, 0] +pressurise -0.6 1.0198 [0, -2, 0, 1, 0, -2, 0, -2, 0, -1] +pressurised -0.4 0.66332 [0, 0, 0, -1, 0, -1, 0, -2, 0, 0] +pressurises -0.8 0.6 [-1, -1, -1, 0, -1, -1, 0, -1, 0, -2] +pressurising -0.6 1.28062 [-1, 0, 0, 2, -1, -1, -3, 0, -2, 0] +pressurizations -0.3 1.00499 [0, 0, 1, -2, 0, 0, -1, -2, 0, 1] +pressurize -0.7 1.34536 [0, -2, -2, 0, 0, -1, -3, 2, -1, 0] +pressurized 0.1 0.83066 [0, 0, 0, 2, 0, 0, -1, -1, 0, 1] +pressurizer 0.1 0.83066 [0, 0, 0, 1, 0, 0, -1, -1, 0, 2] +pressurizers -0.7 0.9 [-1, 0, -2, -1, -2, -1, 0, 0, 1, -1] +pressurizes -0.2 0.87178 [0, 0, -1, 1, 0, 0, -1, -2, 0, 1] +pressurizing -0.2 0.9798 [1, 0, -1, -1, -1, 0, -1, 2, 0, -1] +pretend -0.4 0.91652 [0, 1, -1, -1, -2, 0, -1, -1, 1, 0] +pretending 0.4 1.49666 [2, 0, -1, -1, 0, 3, -2, 1, 0, 2] +pretends -0.4 0.66332 [0, -1, 0, -1, 1, 0, 0, -1, -1, -1] +prettied 1.6 0.66332 [2, 1, 1, 1, 1, 2, 3, 2, 1, 2] +prettier 2.1 0.53852 [2, 2, 2, 2, 2, 2, 3, 1, 2, 3] +pretties 1.7 0.78102 [2, 1, 1, 2, 1, 2, 3, 1, 1, 3] +prettiest 2.7 0.78102 [4, 3, 4, 2, 2, 2, 3, 2, 2, 3] +pretty 2.2 0.6 [3, 2, 2, 2, 3, 1, 2, 2, 2, 3] +prevent 0.1 1.22066 [-2, 1, 0, 0, -1, 2, -1, 2, 0, 0] +prevented 0.1 0.7 [0, -1, 0, 2, 0, 0, 0, 0, 0, 0] +preventing -0.1 1.51327 [-2, 0, -2, 3, 0, 0, -1, -1, 2, 0] +prevents 0.3 1.34536 [0, -2, 0, 0, 0, 2, 0, -1, 3, 1] +prick -1.4 1.42829 [-2, -2, -2, -1, 1, -1, -4, -2, 1, -2] +pricked -0.6 1.0198 [-1, -1, -2, 1, 0, -1, -2, -1, 1, 0] +pricker -0.3 0.9 [-1, -1, 0, 2, 0, -1, -1, -1, 0, 0] +prickers -0.2 0.87178 [1, -1, -1, 0, 1, -1, 0, 1, -1, -1] +pricket -0.5 0.67082 [0, -1, -1, -2, 0, 0, 0, 0, -1, 0] +prickets 0.3 0.64031 [0, 2, 0, 0, 0, 1, 0, 0, 0, 0] +pricking -0.9 1.22066 [-2, -1, -2, 2, -2, -2, -1, 0, -1, 0] +prickle -1.0 0.44721 [-1, -1, -1, -1, -1, -1, -2, 0, -1, -1] +prickled -0.2 1.53623 [-1, -1, 3, -1, -2, 2, 0, 0, 0, -2] +prickles -0.8 0.74833 [0, -1, -1, -1, -2, -1, 0, 0, 0, -2] +pricklier -1.6 0.8 [-1, -2, -2, -2, -2, -1, -2, -1, 0, -3] +prickliest -1.4 1.35647 [-4, -2, -1, 0, -3, -1, -1, 1, -2, -1] +prickliness -0.6 0.91652 [-2, -1, -1, -1, -1, 1, -1, 1, 0, -1] +prickling -0.8 0.6 [-2, -1, 0, -1, 0, 0, -1, -1, -1, -1] +prickly -0.9 1.04403 [-2, -1, -1, -2, -1, 1, -2, -1, 1, -1] +pricks -0.9 1.04403 [-2, 0, -1, -3, -1, 1, 0, -1, -1, -1] +pricky -0.6 1.2 [-2, 1, -1, -2, -1, 2, 0, -1, -1, -1] +pride 1.4 1.11355 [0, 2, 2, 2, 3, 1, -1, 2, 2, 1] +prison -2.3 0.64031 [-3, -3, -2, -2, -1, -2, -3, -3, -2, -2] +prisoner -2.5 1.0247 [-3, -1, -4, -4, -3, -2, -3, -2, -1, -2] +prisoners -2.3 0.78102 [-3, -2, -3, -3, -1, -3, -2, -1, -2, -3] +privilege 1.5 0.80623 [2, 1, 0, 1, 3, 1, 2, 2, 2, 1] +privileged 1.9 0.9434 [2, 3, 3, 2, 3, 1, 1, 2, 0, 2] +privileges 1.6 1.2 [2, 1, 3, 1, 2, 2, 0, 0, 4, 1] +privileging 0.7 1.1 [1, 1, 2, 2, -1, 2, 1, 0, 0, -1] +prize 2.3 1.1 [2, 2, 0, 4, 4, 3, 2, 2, 2, 2] +prized 2.4 0.8 [3, 3, 3, 2, 3, 2, 1, 3, 1, 3] +prizefight -0.1 1.13578 [-2, 2, 0, 0, 0, -2, 0, 1, 0, 0] +prizefighter 1.0 1.0 [0, 2, 0, 0, 0, 2, 0, 2, 2, 2] +prizefighters -0.1 1.04403 [0, 0, -3, 0, 0, 0, 0, 1, 1, 0] +prizefighting 0.4 0.91652 [0, 0, 0, 1, 0, 3, 0, 0, 0, 0] +prizefights 0.3 0.78102 [1, 2, 0, 0, -1, 0, 0, 1, 0, 0] +prizer 1.0 1.0 [0, 3, 0, 0, 2, 1, 2, 1, 0, 1] +prizers 0.8 0.9798 [2, 0, 0, 1, 3, 1, 0, 1, 0, 0] +prizes 2.0 1.09545 [3, 3, 2, 0, 2, 1, 2, 4, 1, 2] +prizewinner 2.3 1.00499 [3, 0, 3, 3, 2, 2, 2, 4, 2, 2] +prizewinners 2.4 1.11355 [4, 2, 2, 2, 0, 4, 2, 3, 3, 2] +prizewinning 3.0 0.7746 [3, 3, 3, 3, 3, 4, 3, 1, 3, 4] +proactive 1.8 0.87178 [2, 3, 3, 1, 1, 1, 1, 3, 1, 2] +problem -1.7 0.64031 [-2, -2, -1, -1, -1, -3, -1, -2, -2, -2] +problematic -1.9 0.53852 [-1, -2, -2, -2, -2, -3, -2, -1, -2, -2] +problematical -1.8 0.6 [-3, -1, -1, -2, -2, -2, -2, -2, -1, -2] +problematically -2.0 1.0 [-2, -1, -3, -1, -1, -2, -4, -3, -1, -2] +problematics -1.3 1.1 [0, -1, -1, 0, -2, -1, -4, -1, -2, -1] +problems -1.7 0.78102 [-2, -1, -1, -3, -2, -1, -3, -1, -1, -2] +profit 1.9 0.7 [2, 3, 2, 1, 2, 1, 3, 1, 2, 2] +profitabilities 1.1 0.7 [1, 1, 3, 1, 1, 1, 1, 0, 1, 1] +profitability 1.1 1.44568 [1, 1, -2, 2, 0, 3, 1, 3, 2, 0] +profitable 1.9 0.9434 [2, 3, 0, 3, 1, 2, 1, 3, 2, 2] +profitableness 2.4 1.11355 [1, 4, 2, 4, 2, 2, 4, 2, 1, 2] +profitably 1.6 0.91652 [1, 2, 0, 3, 1, 3, 1, 1, 2, 2] +profited 1.3 1.00499 [2, 2, 2, 1, 0, 0, 1, 3, 0, 2] +profiteer 0.8 1.6 [2, -2, -1, 3, -1, 2, 1, 2, 0, 2] +profiteered -0.5 1.9105 [0, 0, 2, -2, -3, -2, 3, 0, -3, 0] +profiteering -0.6 2.05913 [-1, 2, -2, -4, -2, 2, 1, -2, 2, -2] +profiteers 0.5 1.5 [-2, 1, -1, -1, 1, -1, 2, 2, 2, 2] +profiter 0.7 1.55242 [2, 2, 2, 1, -1, 1, -1, 3, 0, -2] +profiterole 0.4 0.66332 [0, 0, 0, 0, 0, 1, 0, 1, 2, 0] +profiteroles 0.5 0.92195 [0, 0, -1, 2, 2, 0, 0, 1, 0, 1] +profiting 1.6 0.91652 [1, 0, 3, 2, 1, 2, 3, 1, 1, 2] +profitless -1.5 0.92195 [-2, -2, -3, -1, -1, -1, 0, -1, -1, -3] +profits 1.9 1.04403 [2, 2, 1, 0, 2, 1, 2, 4, 3, 2] +profitwise 0.9 0.83066 [1, 2, 0, 0, 1, 2, 2, 0, 1, 0] +progress 1.8 0.74833 [3, 2, 1, 2, 3, 1, 1, 2, 2, 1] +prominent 1.3 0.45826 [2, 1, 1, 2, 1, 1, 1, 2, 1, 1] +promiscuities -0.8 1.32665 [-1, 0, -2, -2, -1, 2, -3, -1, 0, 0] +promiscuity -1.8 1.07703 [-1, -2, -4, -2, -3, -1, 0, -2, -1, -2] +promiscuous -0.3 1.34536 [2, -3, -1, -1, 0, -1, 0, -1, 1, 1] +promiscuously -1.5 1.28452 [-2, -1, -3, 2, -2, -2, -1, -2, -2, -2] +promiscuousness -0.9 1.37477 [-3, -1, 1, -2, -2, 1, 1, -1, -2, -1] +promise 1.3 0.64031 [1, 0, 1, 1, 2, 2, 1, 1, 2, 2] +promised 1.5 0.92195 [2, 1, 1, 0, 0, 2, 2, 3, 2, 2] +promisee 0.8 0.87178 [2, 1, 0, 0, 0, 2, 0, 2, 1, 0] +promisees 1.1 0.9434 [2, 0, 1, 0, 0, 0, 2, 2, 2, 2] +promiser 1.3 0.9 [2, 1, 1, 0, 0, 2, 2, 3, 1, 1] +promisers 1.6 0.4899 [2, 1, 2, 1, 2, 1, 2, 1, 2, 2] +promises 1.6 0.8 [2, 1, 1, 0, 2, 1, 3, 2, 2, 2] +promising 1.7 0.45826 [1, 2, 2, 1, 2, 2, 1, 2, 2, 2] +promisingly 1.2 0.6 [2, 2, 1, 1, 1, 2, 1, 0, 1, 1] +promisor 1.0 0.63246 [2, 2, 0, 1, 1, 1, 0, 1, 1, 1] +promisors 0.4 0.8 [0, 0, 0, 2, 0, 2, 0, 0, 0, 0] +promissory 0.9 1.13578 [2, 0, 0, 3, 0, 2, 2, 0, 0, 0] +promote 1.6 0.8 [2, 1, 2, 3, 0, 1, 2, 2, 1, 2] +promoted 1.8 0.74833 [2, 2, 1, 1, 1, 2, 2, 1, 3, 3] +promotes 1.4 0.91652 [1, 2, 0, 0, 1, 2, 2, 1, 3, 2] +promoting 1.5 0.67082 [1, 2, 2, 1, 2, 1, 2, 0, 2, 2] +propaganda -1.0 1.54919 [-2, -3, -2, -3, -2, 1, -1, 1, 0, 1] +prosecute -1.7 1.00499 [-2, -2, -2, -1, -1, -2, 0, -1, -4, -2] +prosecuted -1.6 1.95959 [-2, -2, -2, -3, -3, -3, -4, 2, 2, -1] +prosecutes -1.8 1.53623 [-2, -2, -2, -3, -2, -2, -4, 1, 1, -3] +prosecution -2.2 1.07703 [-4, -1, -2, -2, -3, -2, -1, -4, -1, -2] +prospect 1.2 0.87178 [1, 3, 1, 0, 2, 2, 1, 0, 1, 1] +prospects 1.2 0.6 [2, 1, 1, 1, 1, 0, 1, 2, 2, 1] +prosperous 2.1 1.86815 [-3, 3, 3, 2, 4, 2, 3, 3, 3, 1] +protect 1.6 0.8 [1, 3, 1, 1, 1, 1, 3, 2, 1, 2] +protected 1.9 0.7 [1, 1, 2, 3, 2, 2, 2, 1, 3, 2] +protects 1.3 0.78102 [2, 2, 0, 2, 1, 1, 0, 2, 2, 1] +protest -1.0 1.34164 [-2, -1, -1, -2, -1, -2, 1, -2, 2, -2] +protested -0.5 1.62788 [-2, -3, -1, -1, 0, 2, 2, -2, 1, -1] +protesters -0.9 0.7 [0, 0, 0, -1, -2, -2, -1, -1, -1, -1] +protesting -1.8 0.74833 [-2, -2, -1, -2, -1, -1, -2, -1, -3, -3] +protests -0.9 1.57797 [-2, -2, 2, 0, -1, -2, -2, -2, 2, -2] +proud 2.1 0.3 [2, 3, 2, 2, 2, 2, 2, 2, 2, 2] +prouder 2.2 1.16619 [2, 3, 3, 4, 0, 1, 1, 3, 2, 3] +proudest 2.6 0.66332 [4, 2, 2, 2, 2, 3, 2, 3, 3, 3] +proudful 1.9 1.51327 [3, 3, 0, 1, -1, 1, 4, 3, 2, 3] +proudhearted 1.4 0.91652 [2, -1, 1, 2, 2, 1, 2, 2, 2, 1] +proudly 2.6 0.4899 [2, 2, 3, 3, 2, 3, 3, 3, 2, 3] +provoke -1.7 0.64031 [-2, -2, -1, -1, -1, -2, -2, -1, -3, -2] +provoked -1.1 0.83066 [-1, -1, 0, -2, -2, -2, -2, 0, 0, -1] +provokes -1.3 0.78102 [-2, -2, -1, -2, -1, -2, -2, 0, 0, -1] +provoking -0.8 1.249 [-2, -2, -1, -2, 1, -1, 1, 1, -1, -2] +pseudoscience -1.2 1.32665 [-1, -1, -3, -4, 0, 0, -2, 0, 0, -1] +puke -2.4 1.0198 [-1, -3, -3, -2, -4, -4, -2, -1, -2, -2] +puked -1.8 0.6 [-1, -2, -2, -3, -1, -1, -2, -2, -2, -2] +pukes -1.9 0.7 [-1, -2, -3, -3, -1, -1, -2, -2, -2, -2] +puking -1.8 1.46969 [0, -2, -4, -3, -2, -3, 1, -1, -1, -3] +pukka 2.8 0.4 [3, 2, 3, 3, 3, 2, 3, 3, 3, 3] +punish -2.4 0.91652 [-1, -3, -3, -4, -3, -1, -2, -2, -2, -3] +punishabilities -1.7 0.78102 [0, -2, -3, -2, -1, -2, -2, -1, -2, -2] +punishability -1.6 1.49666 [-2, -2, -1, -1, -2, -2, -3, 2, -4, -1] +punishable -1.9 0.7 [-3, -1, -1, -2, -2, -1, -3, -2, -2, -2] +punished -2.0 0.44721 [-2, -2, -1, -2, -2, -2, -2, -2, -3, -2] +punisher -1.9 0.53852 [-3, -1, -2, -2, -2, -2, -2, -1, -2, -2] +punishers -2.6 0.8 [-3, -3, -3, -3, -2, -2, -4, -2, -1, -3] +punishes -2.1 0.7 [-3, -2, -3, -2, -1, -2, -2, -3, -1, -2] +punishing -2.6 0.8 [-2, -3, -3, -3, -4, -1, -3, -2, -2, -3] +punishment -2.2 0.6 [-2, -1, -2, -2, -3, -3, -2, -2, -2, -3] +punishments -1.8 0.6 [-2, -2, -2, -1, -1, -2, -2, -3, -1, -2] +punitive -2.3 0.78102 [-4, -2, -3, -1, -2, -2, -2, -2, -3, -2] +pushy -1.1 0.83066 [-2, -2, -1, -1, -1, 1, -1, -2, -1, -1] +puzzled -0.7 0.45826 [0, 0, -1, -1, 0, -1, -1, -1, -1, -1] +quaking -1.5 0.67082 [-1, -2, -2, -2, -1, 0, -2, -1, -2, -2] +questionable -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] +questioned -0.4 1.0198 [-2, 0, 0, -1, -1, 2, 0, 0, -1, -1] +questioning -0.4 0.66332 [0, -1, -1, 0, 0, 0, -2, 0, 0, 0] +racism -3.1 0.9434 [-4, -4, -4, -2, -3, -4, -2, -2, -2, -4] +racist -3.0 0.89443 [-1, -3, -3, -4, -3, -4, -4, -2, -3, -3] +racists -2.5 0.92195 [-3, 0, -3, -2, -2, -3, -3, -3, -3, -3] +radian 0.4 0.66332 [0, 0, 0, 0, 0, 0, 1, 2, 0, 1] +radiance 1.4 1.11355 [3, 1, 2, 3, 1, 1, -1, 1, 2, 1] +radiances 1.1 0.53852 [1, 2, 2, 1, 1, 1, 0, 1, 1, 1] +radiancies 0.8 1.16619 [-1, 0, 3, 1, 1, 1, 1, 2, -1, 1] +radiancy 1.4 0.66332 [2, 1, 1, 3, 1, 1, 1, 1, 2, 1] +radians 0.2 0.6 [0, 2, 0, 0, 0, 0, 0, 0, 0, 0] +radiant 2.1 0.83066 [4, 2, 2, 2, 2, 1, 1, 3, 2, 2] +radiantly 1.3 0.78102 [3, 2, 1, 1, 1, 1, 1, 0, 1, 2] +radiants 1.2 0.6 [2, 1, 0, 2, 1, 1, 1, 2, 1, 1] +rage -2.6 0.8 [-3, -2, -2, -3, -3, -4, -1, -2, -3, -3] +raged -2.0 0.63246 [-2, -1, -1, -3, -3, -2, -2, -2, -2, -2] +ragee -0.4 1.42829 [-2, -1, 0, 3, 0, -2, -2, 0, 0, 0] +rageful -2.8 0.6 [-3, -3, -3, -3, -2, -4, -2, -3, -2, -3] +rages -2.1 0.7 [-3, -1, -1, -3, -3, -2, -2, -2, -2, -2] +raging -2.4 1.0198 [-1, -3, -3, -1, -3, -3, -1, -4, -2, -3] +rainy -0.3 0.64031 [-1, 0, 1, 0, 0, 0, -1, 0, -1, -1] +rancid -2.5 1.11803 [-3, -3, -3, -2, -3, 0, -3, -1, -4, -3] +rancidity -2.6 0.8 [-4, -3, -3, -2, -2, -2, -2, -2, -2, -4] +rancidly -2.5 1.20416 [-2, -1, -4, -3, -4, -1, -2, -3, -4, -1] +rancidness -2.6 0.91652 [-3, -4, -2, -3, -4, -2, -3, -1, -2, -2] +rancidnesses -1.6 0.4899 [-2, -1, -2, -1, -1, -2, -2, -2, -1, -2] +rant -1.4 0.66332 [-1, -2, -2, -1, -2, -2, -2, -1, 0, -1] +ranter -1.2 1.16619 [-1, -2, -2, -2, -1, -1, -1, -2, 2, -2] +ranters -1.2 0.87178 [-1, -1, -1, 0, -1, -1, -3, -2, 0, -2] +rants -1.3 0.45826 [-1, -1, -1, -2, -1, -1, -1, -2, -2, -1] +rape -3.7 0.64031 [-4, -2, -4, -4, -4, -4, -4, -4, -3, -4] +raped -3.6 0.4899 [-3, -3, -4, -4, -3, -4, -4, -4, -3, -4] +raper -3.4 0.66332 [-3, -3, -4, -4, -3, -3, -4, -4, -2, -4] +rapers -3.6 0.66332 [-2, -4, -4, -3, -4, -3, -4, -4, -4, -4] +rapes -3.5 0.67082 [-4, -3, -4, -4, -3, -4, -4, -3, -2, -4] +rapeseeds -0.5 1.20416 [0, 0, 0, 0, 0, -4, 0, 0, -1, 0] +raping -3.8 0.4 [-3, -4, -4, -4, -4, -4, -4, -4, -3, -4] +rapist -3.9 0.3 [-4, -4, -4, -4, -4, -4, -3, -4, -4, -4] +rapists -3.3 0.64031 [-3, -3, -4, -3, -4, -3, -4, -2, -4, -3] +rapture 0.6 2.2891 [-2, 2, -2, 3, 3, 4, -1, -1, 2, -2] +raptured 0.9 1.97231 [0, -2, 0, 2, 4, -1, 4, -1, 1, 2] +raptures 0.7 2.05183 [0, -2, 0, 2, 4, -2, 4, -1, 1, 1] +rapturous 1.7 1.95192 [3, 4, 0, 3, 2, 2, 4, -2, -1, 2] +rash -1.7 0.78102 [-2, -1, -1, -3, -2, -2, -1, -1, -1, -3] +ratified 0.6 0.4899 [1, 0, 0, 1, 1, 0, 1, 1, 0, 1] +reach 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] +reached 0.4 0.4899 [1, 0, 0, 0, 1, 1, 0, 1, 0, 0] +reaches 0.2 0.4 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0] +reaching 0.8 0.6 [1, 0, 2, 0, 1, 0, 1, 1, 1, 1] +readiness 1.0 0.63246 [1, 1, 1, 1, 0, 1, 2, 1, 2, 0] +ready 1.5 1.0247 [2, 1, 1, 0, 2, 2, 1, 1, 1, 4] +reassurance 1.5 0.5 [1, 1, 1, 1, 2, 1, 2, 2, 2, 2] +reassurances 1.4 0.8 [0, 1, 1, 2, 1, 1, 1, 2, 3, 2] +reassure 1.4 0.4899 [2, 2, 1, 1, 2, 1, 2, 1, 1, 1] +reassured 1.7 0.45826 [2, 1, 1, 1, 2, 2, 2, 2, 2, 2] +reassures 1.5 0.92195 [2, 1, 1, 2, 2, 2, -1, 2, 2, 2] +reassuring 1.7 1.48661 [3, 3, 2, -2, 1, 3, 3, 2, 1, 1] +reassuringly 1.8 0.87178 [1, 3, 2, 1, 2, 3, 3, 1, 1, 1] +rebel -0.6 1.49666 [-2, -1, -1, 0, -2, -1, 2, 1, 1, -3] +rebeldom -1.5 1.0247 [-2, -2, -1, -3, -2, -2, -1, 1, -1, -2] +rebelled -1.0 1.26491 [-2, -2, 0, -2, 0, -2, -2, -1, -1, 2] +rebelling -1.1 1.51327 [-3, -1, -2, -1, -2, -1, -1, -3, 2, 1] +rebellion -0.5 1.80278 [-2, -2, -1, -1, 3, -1, 1, -3, 2, -1] +rebellions -1.1 1.57797 [-2, -4, -3, 0, 0, -1, 1, -2, -1, 1] +rebellious -1.2 1.249 [-2, -1, -3, -1, -2, -2, 1, -1, 1, -2] +rebelliously -1.8 0.87178 [-3, 0, -2, -2, -1, -2, -3, -1, -2, -2] +rebelliousness -1.2 1.16619 [0, -3, -1, -2, 1, -1, -2, 0, -2, -2] +rebels -0.8 1.07703 [-1, 0, 0, -2, 0, -3, 0, 0, 0, -2] +recession -1.8 1.07703 [-3, -1, -4, -2, -1, -1, -1, -1, -3, -1] +reckless -1.7 0.64031 [-2, -1, -1, -3, -1, -2, -1, -2, -2, -2] +recommend 1.5 0.67082 [1, 1, 1, 1, 2, 3, 2, 2, 1, 1] +recommended 0.8 1.07703 [1, 1, 0, -2, 1, 2, 1, 2, 1, 1] +recommends 0.9 0.9434 [1, 1, 2, 0, 0, 2, 1, -1, 2, 1] +redeemed 1.3 0.9 [2, 1, 2, 2, 1, -1, 2, 1, 2, 1] +reek -2.4 0.66332 [-3, -3, -2, -3, -3, -2, -2, -2, -1, -3] +reeked -2.0 1.09545 [-4, -3, -2, -3, -1, -2, 0, -1, -2, -2] +reeker -1.7 1.1 [0, -2, -1, 0, -3, -3, -2, -1, -3, -2] +reekers -1.5 1.0247 [-3, 0, 0, 0, -2, -2, -2, -2, -2, -2] +reeking -2.0 1.48324 [2, -2, -2, -3, -3, -3, -1, -3, -3, -2] +refuse -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] +refused -1.2 0.74833 [0, -1, -1, -1, -1, -1, -2, -1, -3, -1] +refusing -1.7 0.64031 [-1, -1, -1, -2, -2, -2, -3, -1, -2, -2] +regret -1.8 0.6 [-2, -2, -2, -2, -1, -3, -1, -1, -2, -2] +regretful -1.9 0.83066 [-1, -2, -1, -2, -1, -2, -1, -3, -3, -3] +regretfully -1.9 0.83066 [-1, -1, -1, -3, -2, -3, -1, -3, -2, -2] +regretfulness -1.6 0.66332 [-1, -3, -1, -1, -1, -2, -1, -2, -2, -2] +regrets -1.5 0.5 [-2, -2, -2, -1, -2, -1, -1, -2, -1, -1] +regrettable -2.3 0.78102 [-3, -1, -2, -1, -3, -2, -3, -3, -2, -3] +regrettably -2.0 0.63246 [-2, -3, -1, -3, -2, -1, -2, -2, -2, -2] +regretted -1.6 0.4899 [-2, -1, -2, -2, -2, -2, -1, -1, -1, -2] +regretter -1.6 0.66332 [-2, -1, -2, -2, -3, -2, -1, -1, -1, -1] +regretters -2.0 0.89443 [-1, -2, -2, -2, -4, -3, -1, -1, -2, -2] +regretting -1.7 0.78102 [-3, -2, -2, -1, -3, -1, -1, -1, -2, -1] +reinvigorate 2.3 0.78102 [3, 3, 3, 2, 3, 1, 2, 1, 2, 3] +reinvigorated 1.9 1.13578 [2, 2, 3, 1, 2, 3, 3, -1, 2, 2] +reinvigorates 1.8 0.9798 [2, 2, 3, 0, 2, 2, 3, 0, 2, 2] +reinvigorating 1.7 0.64031 [1, 2, 1, 1, 2, 2, 2, 1, 3, 2] +reinvigoration 2.2 0.4 [2, 2, 2, 3, 2, 3, 2, 2, 2, 2] +reject -1.7 0.64031 [-1, -2, -2, -2, -1, -3, -1, -1, -2, -2] +rejected -2.3 0.45826 [-3, -2, -3, -3, -2, -2, -2, -2, -2, -2] +rejectee -2.3 0.45826 [-3, -2, -2, -3, -2, -3, -2, -2, -2, -2] +rejectees -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -2, -2, -1] +rejecter -1.6 0.66332 [-2, -1, -1, -3, -2, -2, -1, -1, -1, -2] +rejecters -1.8 0.6 [-2, -3, -1, -1, -2, -1, -2, -2, -2, -2] +rejecting -2.0 0.7746 [-1, -2, -3, -1, -2, -3, -2, -1, -3, -2] +rejectingly -1.7 0.64031 [-1, -2, -2, -2, -1, -2, -2, -1, -3, -1] +rejection -2.5 0.67082 [-3, -3, -2, -4, -3, -2, -2, -2, -2, -2] +rejections -2.1 0.53852 [-3, -2, -2, -2, -1, -2, -3, -2, -2, -2] +rejective -1.8 0.6 [-3, -2, -2, -2, -1, -1, -2, -2, -1, -2] +rejector -1.8 0.74833 [-2, -1, -2, -3, -1, -2, -1, -2, -3, -1] +rejects -2.2 0.4 [-3, -2, -2, -2, -2, -3, -2, -2, -2, -2] +rejoice 1.9 0.9434 [2, 3, 1, 3, 1, 3, 1, 3, 1, 1] +rejoiced 2.0 0.63246 [2, 1, 2, 3, 2, 2, 3, 1, 2, 2] +rejoices 2.1 0.7 [2, 1, 2, 3, 2, 3, 3, 2, 2, 1] +rejoicing 2.8 0.4 [3, 3, 2, 3, 3, 3, 2, 3, 3, 3] +relax 1.9 1.13578 [2, 1, 1, 1, 4, 4, 2, 1, 1, 2] +relaxant 1.0 0.89443 [2, 1, 0, 0, 1, 0, 1, 3, 1, 1] +relaxants 0.7 0.9 [0, 1, 1, 0, -1, 2, 1, 2, 1, 0] +relaxation 2.4 0.4899 [3, 2, 3, 2, 2, 3, 3, 2, 2, 2] +relaxations 1.0 0.89443 [-1, 0, 2, 1, 1, 2, 1, 2, 1, 1] +relaxed 2.2 0.87178 [2, 3, 1, 3, 3, 3, 1, 2, 1, 3] +relaxedly 1.5 0.5 [2, 2, 1, 1, 2, 1, 2, 2, 1, 1] +relaxedness 2.0 0.63246 [2, 2, 3, 1, 3, 2, 2, 2, 1, 2] +relaxer 1.6 0.8 [0, 2, 1, 2, 1, 3, 1, 2, 2, 2] +relaxers 1.4 0.4899 [2, 1, 1, 1, 2, 2, 2, 1, 1, 1] +relaxes 1.5 0.5 [2, 1, 1, 1, 1, 2, 2, 2, 1, 2] +relaxin 1.7 0.64031 [2, 2, 1, 2, 0, 2, 2, 2, 2, 2] +relaxing 2.2 0.6 [1, 2, 2, 2, 2, 3, 3, 3, 2, 2] +relaxins 1.2 1.4 [1, 3, 2, 1, 0, 1, -2, 3, 2, 1] +relentless 0.2 1.07703 [3, -1, 0, -1, 0, 1, 0, 0, 0, 0] +reliant 0.5 1.20416 [0, 2, -1, 1, 0, 1, 2, -1, 2, -1] +relief 2.1 0.53852 [2, 2, 2, 3, 2, 3, 2, 1, 2, 2] +reliefs 1.3 0.78102 [1, 2, 2, 2, 2, 2, 0, 0, 1, 1] +relievable 1.1 1.22066 [1, -2, 1, 1, 1, 1, 3, 2, 1, 2] +relieve 1.5 0.5 [1, 2, 1, 2, 1, 1, 2, 2, 1, 2] +relieved 1.6 0.66332 [2, 1, 2, 1, 1, 3, 2, 1, 1, 2] +relievedly 1.4 0.4899 [1, 2, 1, 1, 1, 2, 2, 2, 1, 1] +reliever 1.5 0.80623 [2, 1, 2, 2, 1, 2, 0, 1, 1, 3] +relievers 1.0 0.63246 [1, 1, 1, 1, 2, 0, 2, 0, 1, 1] +relieves 1.5 0.80623 [2, 1, 2, 2, 1, 2, 0, 1, 1, 3] +relieving 1.5 1.0247 [2, 2, 1, 2, 3, -1, 2, 1, 1, 2] +relievo 1.3 1.00499 [0, 2, 1, 2, 2, -1, 2, 2, 2, 1] +relishing 1.6 0.8 [1, 2, 1, 3, 2, 3, 1, 1, 1, 1] +reluctance -1.4 0.4899 [-2, -2, -1, -1, -1, -1, -2, -1, -2, -1] +reluctancy -1.6 0.8 [-3, -2, -1, -1, -1, -1, -2, -1, -3, -1] +reluctant -1.0 0.7746 [0, -1, 0, -1, -1, 0, -1, -2, -2, -2] +reluctantly -0.4 1.42829 [-1, 2, -1, -2, -2, -1, 1, -1, 2, -1] +remarkable 2.6 1.0198 [3, 4, 3, 2, 2, 3, 3, 0, 3, 3] +remorse -1.1 1.51327 [-3, -1, -3, 1, 2, -2, -1, -1, -2, -1] +remorseful -0.9 2.07123 [-1, 1, -2, -3, 2, -1, -3, -2, 3, -3] +remorsefully -0.7 1.34536 [-1, -1, 0, -1, -2, -1, -1, 1, -3, 2] +remorsefulness -0.7 1.61555 [-1, -2, 2, -2, -2, -1, 0, -3, 2, 0] +remorseless -2.3 0.64031 [-4, -2, -2, -2, -3, -2, -2, -2, -2, -2] +remorselessly -2.0 1.09545 [-3, -3, -3, -2, -1, -1, -4, -1, -1, -1] +remorselessness -2.8 1.16619 [-3, -4, -2, -2, -3, -4, -1, -1, -4, -4] +repetitive -1.0 0.06325 [-1, -1, 0, -2, -1, -2, -1, -1, 0, -1] +repress -1.4 0.66332 [-1, -1, -3, -2, -1, -1, -2, -1, -1, -1] +repressed -1.3 0.78102 [-1, 0, -3, -1, -1, -2, -1, -1, -2, -1] +represses -1.3 1.00499 [-1, 0, -3, -1, 0, -3, -1, -1, -2, -1] +repressible -1.5 0.92195 [-1, -2, -3, -1, 0, -1, -3, -1, -2, -1] +repressing -1.8 0.6 [-1, -2, -2, -2, -1, -3, -2, -1, -2, -2] +repression -1.6 0.91652 [-2, -2, -1, -1, -1, -1, -4, -1, -2, -1] +repressions -1.7 1.00499 [-2, -3, -1, -2, -2, -3, -2, 0, 0, -2] +repressive -1.4 1.11355 [-3, -1, -1, -2, -1, -3, 1, -2, -1, -1] +repressively -1.7 0.45826 [-2, -1, -2, -2, -2, -2, -2, -2, -1, -1] +repressiveness -1.0 1.73205 [-2, -1, -2, -3, -1, -1, 1, -3, 3, -1] +repressor -1.4 1.28062 [-1, 0, -3, -1, -2, -4, 0, -1, 0, -2] +repressors -2.2 1.66132 [-2, -4, 0, -2, -1, -3, -4, -3, 1, -4] +repressurize -0.3 0.64031 [0, 0, 0, 0, 0, 0, -2, 0, -1, 0] +repressurized 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] +repressurizes 0.1 0.3 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] +repressurizing -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] +repulse -2.8 0.4 [-3, -3, -3, -3, -2, -3, -3, -3, -2, -3] +repulsed -2.2 0.9798 [0, -2, -2, -2, -3, -3, -1, -3, -3, -3] +rescue 2.3 0.78102 [1, 3, 1, 3, 2, 3, 3, 2, 2, 3] +rescued 1.8 1.53623 [3, 2, 2, -2, 3, 2, 1, 4, 1, 2] +rescues 1.3 0.78102 [3, 2, 0, 2, 1, 1, 1, 1, 1, 1] +resent -0.7 1.26886 [-2, -2, 0, -1, -1, -1, -2, 1, 2, -1] +resented -1.6 1.35647 [-2, -3, -2, -2, -1, -1, 2, -3, -2, -2] +resentence -1.0 0.7746 [-1, 0, -1, -1, 0, -2, -1, 0, -2, -2] +resentenced -0.8 0.9798 [0, -2, -1, 0, -1, 0, 0, 0, -3, -1] +resentences -0.6 0.8 [0, -2, -1, 0, -1, 0, 0, 0, -2, 0] +resentencing 0.2 0.87178 [-1, -1, 0, 1, 0, 0, 1, 2, 0, 0] +resentful -2.1 0.83066 [-3, -1, -2, -3, -1, -1, -3, -2, -2, -3] +resentfully -1.4 1.11355 [-1, -2, -1, -1, -3, 1, -1, -3, -1, -2] +resentfulness -2.0 0.7746 [-2, -2, -3, -3, -2, -3, -2, -1, -1, -1] +resenting -1.2 1.72047 [-2, -1, -2, -2, -1, -3, -3, 2, 2, -2] +resentment -1.9 0.83066 [-1, -3, -2, -3, -2, -3, -1, -1, -1, -2] +resentments -1.9 0.7 [-2, -1, -2, -3, -1, -2, -2, -2, -1, -3] +resents -1.2 1.32665 [-2, -1, -1, -3, 1, -1, 1, -3, -2, -1] +resign -1.4 0.66332 [-2, -1, -3, -1, -1, -1, -1, -2, -1, -1] +resignation -1.2 0.4 [-1, -1, -1, -2, -1, -1, -1, -1, -2, -1] +resignations -1.2 0.6 [0, -1, -1, -2, -2, -2, -1, -1, -1, -1] +resigned -1.0 0.63246 [-2, -1, 0, -1, -2, -1, -1, -1, 0, -1] +resignedly -0.7 1.26886 [-3, -1, -1, -1, -1, 1, 1, 1, -2, -1] +resignedness -0.8 1.07703 [-1, -2, 1, -2, -1, -1, 0, -2, -1, 1] +resigner -1.2 0.6 [-2, -1, 0, -1, -2, -2, -1, -1, -1, -1] +resigners -1.0 1.09545 [-1, 0, -1, -3, -1, 0, 0, -1, -3, 0] +resigning -0.9 1.22066 [-1, -1, -1, -1, -1, 0, -1, -3, -2, 2] +resigns -1.3 0.9 [0, -1, -1, 0, -2, -1, -3, -1, -2, -2] +resolute 1.1 0.53852 [2, 1, 0, 1, 1, 1, 2, 1, 1, 1] +resolvable 1.0 0.0 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] +resolve 1.6 0.66332 [2, 1, 1, 2, 2, 1, 3, 1, 1, 2] +resolved 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] +resolvent 0.7 0.78102 [1, 0, 1, 2, 0, -1, 1, 1, 1, 1] +resolvents 0.4 0.66332 [2, 0, 0, 1, 0, 0, 1, 0, 0, 0] +resolver 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] +resolvers 1.4 0.4899 [2, 1, 2, 1, 1, 1, 2, 1, 2, 1] +resolves 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] +resolving 1.6 0.4899 [2, 2, 1, 2, 2, 1, 1, 1, 2, 2] +respect 2.1 0.53852 [2, 2, 2, 2, 3, 3, 2, 2, 1, 2] +respectabilities 1.8 0.4 [2, 2, 2, 1, 2, 2, 2, 1, 2, 2] +respectability 2.4 0.8 [4, 1, 3, 2, 3, 3, 2, 2, 2, 2] +respectable 1.9 0.7 [2, 2, 2, 2, 1, 3, 3, 1, 1, 2] +respectableness 1.2 1.32665 [2, 1, 1, 0, 3, 2, -2, 2, 2, 1] +respectably 1.7 0.78102 [2, 2, 1, 3, 1, 3, 2, 1, 1, 1] +respected 2.1 0.7 [2, 2, 1, 2, 3, 1, 2, 3, 3, 2] +respecter 2.1 0.53852 [3, 2, 2, 2, 2, 2, 1, 3, 2, 2] +respecters 1.6 0.8 [2, 1, 2, 2, 3, 1, 2, 2, 0, 1] +respectful 2.0 0.7746 [1, 1, 3, 2, 2, 3, 1, 2, 3, 2] +respectfully 1.7 0.64031 [1, 2, 1, 2, 2, 2, 1, 3, 1, 2] +respectfulness 1.9 1.37477 [4, 2, 2, 1, 2, 4, -1, 1, 2, 2] +respectfulnesses 1.3 1.18743 [1, 1, 2, 2, 2, 2, 2, 1, -2, 2] +respecting 2.2 0.6 [1, 3, 2, 3, 2, 2, 3, 2, 2, 2] +respective 1.8 1.16619 [2, 2, 3, 0, 1, 3, 3, 1, 0, 3] +respectively 1.4 0.91652 [0, 0, 2, 2, 0, 2, 2, 2, 2, 2] +respectiveness 1.1 1.04403 [0, 2, 1, 0, 1, 0, 2, 2, 0, 3] +respects 1.3 1.00499 [2, 0, 0, 0, 2, 1, 2, 1, 2, 3] +responsible 1.3 1.1 [1, 1, 0, 4, 2, 2, 1, 0, 1, 1] +responsive 1.5 0.92195 [3, 1, 1, 0, 1, 1, 2, 3, 2, 1] +restful 1.5 0.67082 [1, 1, 1, 1, 2, 1, 2, 1, 2, 3] +restless -1.1 0.3 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -1] +restlessly -1.4 0.91652 [-1, -4, -1, -1, -1, -2, -1, -1, -1, -1] +restlessness -1.2 0.74833 [-3, -1, -1, 0, -1, -2, -1, -1, -1, -1] +restore 1.2 0.9798 [1, 1, 2, 2, 2, 2, 1, -1, 0, 2] +restored 1.4 0.91652 [2, 2, 1, 2, 1, 2, 2, 1, -1, 2] +restores 1.2 0.6 [2, 1, 1, 2, 1, 0, 1, 1, 2, 1] +restoring 1.2 0.4 [2, 1, 1, 1, 1, 2, 1, 1, 1, 1] +restrict -1.6 0.8 [-3, -1, -1, -1, -3, -1, -2, -1, -1, -2] +restricted -1.6 0.4899 [-1, -2, -1, -1, -1, -2, -2, -2, -2, -2] +restricting -1.6 0.4899 [-2, -2, -2, -2, -1, -2, -1, -1, -2, -1] +restriction -1.1 0.9434 [-1, -1, -1, -1, -3, 1, -2, -1, -1, -1] +restricts -1.3 1.1 [-2, -2, -3, -1, -1, -2, 1, -1, -2, 0] +retained 0.1 0.7 [-1, 1, 1, 1, 0, -1, 0, 0, 0, 0] +retard -2.4 0.8 [-2, -2, -2, -1, -3, -2, -4, -3, -3, -2] +retarded -2.7 1.26886 [-4, -1, -3, -3, -4, -4, -2, -1, -1, -4] +retreat 0.8 1.07703 [2, 2, 0, 0, -1, 1, 2, 0, 2, 0] +revenge -2.4 0.66332 [-2, -3, -2, -3, -3, -3, -2, -1, -2, -3] +revenged -0.9 1.37477 [-2, -3, -2, -1, -1, 2, -1, 1, -1, -1] +revengeful -2.4 0.4899 [-2, -2, -2, -3, -3, -2, -3, -3, -2, -2] +revengefully -1.4 2.00998 [-3, -2, -2, -2, 3, 2, -3, -3, -2, -2] +revengefulness -2.2 0.87178 [-2, -3, -3, -2, -2, -2, -1, -4, -1, -2] +revenger -2.1 0.83066 [-2, -3, -2, -1, -1, -2, -3, -3, -1, -3] +revengers -2.0 0.44721 [-2, -2, -3, -2, -2, -2, -1, -2, -2, -2] +revenges -1.9 0.7 [-2, -3, -2, -1, -1, -2, -3, -2, -1, -2] +revered 2.3 1.1 [3, 3, 1, 3, 3, 3, 0, 3, 3, 1] +revive 1.4 1.11355 [4, 0, 2, 1, 1, 0, 2, 2, 1, 1] +revives 1.6 0.4899 [1, 1, 2, 2, 1, 2, 2, 2, 1, 2] +reward 2.7 0.78102 [3, 4, 1, 2, 3, 3, 2, 3, 3, 3] +rewardable 2.0 1.0 [3, 1, 4, 3, 1, 2, 1, 2, 2, 1] +rewarded 2.2 0.74833 [1, 2, 3, 2, 2, 4, 2, 2, 2, 2] +rewarder 1.6 0.8 [1, 2, 3, 1, 1, 3, 2, 1, 1, 1] +rewarders 1.9 0.83066 [1, 2, 2, 1, 3, 3, 1, 2, 1, 3] +rewarding 2.4 0.8 [3, 4, 2, 2, 1, 3, 3, 2, 2, 2] +rewardingly 2.4 0.8 [3, 2, 3, 4, 3, 2, 2, 2, 1, 2] +rewards 2.1 0.83066 [2, 1, 3, 4, 2, 2, 2, 2, 1, 2] +rich 2.6 0.8 [2, 3, 2, 4, 4, 3, 2, 2, 2, 2] +richened 1.9 0.83066 [3, 2, 2, 1, 3, 1, 2, 3, 1, 1] +richening 1.0 1.34164 [2, 2, 0, 0, -1, 1, 2, 3, -1, 2] +richens 0.8 0.9798 [1, 0, 3, 0, 0, 0, 1, 2, 1, 0] +richer 2.4 1.2 [1, 4, 2, 1, 2, 4, 4, 1, 3, 2] +riches 2.4 1.0198 [2, 4, 1, 1, 2, 4, 3, 2, 3, 2] +richest 2.4 1.11355 [4, 4, 2, 2, 3, 0, 2, 2, 3, 2] +richly 1.9 0.53852 [2, 2, 2, 2, 3, 1, 2, 2, 1, 2] +richness 2.2 0.74833 [2, 3, 2, 2, 2, 2, 2, 1, 4, 2] +richnesses 2.1 0.9434 [2, 1, 2, 2, 3, 1, 3, 1, 4, 2] +richweed 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] +richweeds -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1] +ridicule -2.0 0.63246 [-2, -2, -2, -2, -3, -2, -1, -2, -1, -3] +ridiculed -1.5 0.5 [-1, -1, -1, -2, -2, -2, -1, -2, -1, -2] +ridiculer -1.6 0.91652 [-1, -1, -1, -2, -2, 0, -1, -3, -2, -3] +ridiculers -1.6 0.66332 [-2, -1, -1, -2, -3, -2, -1, -2, -1, -1] +ridicules -1.8 0.6 [-1, -1, -2, -2, -2, -2, -1, -2, -2, -3] +ridiculing -1.8 0.6 [-2, -3, -2, -1, -1, -2, -2, -1, -2, -2] +ridiculous -1.5 0.67082 [-3, -2, -1, -1, -2, -1, -2, -1, -1, -1] +ridiculously -1.4 0.8 [-1, -2, -1, 0, -2, -1, -1, -3, -1, -2] +ridiculousness -1.1 1.51327 [-1, -1, -1, -2, -1, 3, -3, -2, -1, -2] +ridiculousnesses -1.6 1.11355 [-3, 0, -2, -2, -1, -1, -1, -4, -1, -1] +rig -0.5 1.0247 [0, 0, 0, 0, -2, 0, 0, 0, -3, 0] +rigged -1.5 1.0247 [-2, -3, -2, -1, -1, -2, 1, -1, -2, -2] +rigid -0.5 0.67082 [-2, -1, 0, 0, 0, 0, 0, -1, -1, 0] +rigidification -1.1 0.9434 [-1, -2, 0, 0, 0, -2, -2, -2, 0, -2] +rigidifications -0.8 0.9798 [-2, -1, 0, 0, -2, -1, 0, 1, -2, -1] +rigidified -0.7 1.00499 [0, -1, 0, 0, 0, 0, -2, 0, -1, -3] +rigidifies -0.6 0.8 [0, -1, 0, 0, 0, 0, -2, 0, -1, -2] +rigidify -0.3 0.64031 [0, 0, 0, 0, -1, 0, 0, 0, -2, 0] +rigidities -0.7 0.78102 [0, -1, 0, 0, 0, 0, -2, -1, -1, -2] +rigidity -0.7 0.64031 [-1, 0, -1, 0, -1, 0, -2, 0, -1, -1] +rigidly -0.7 0.45826 [-1, -1, -1, -1, 0, 0, -1, 0, -1, -1] +rigidness -0.3 1.00499 [0, -1, -1, 0, 2, -1, -1, -1, 1, -1] +rigorous -1.1 1.51327 [-2, -3, 1, 0, 1, 0, -1, -1, -3, -3] +rigorously -0.4 1.28062 [0, 2, 1, 0, -1, 0, -1, -1, -3, -1] +riot -2.6 1.0198 [-3, 0, -3, -2, -3, -3, -3, -4, -3, -2] +riots -2.3 0.78102 [-2, -3, -3, -2, -1, -1, -3, -2, -3, -3] +risk -1.1 0.7 [-1, -1, 0, -2, -1, 0, -2, -2, -1, -1] +risked -0.9 0.7 [-1, -2, 0, 0, -1, 0, -2, -1, -1, -1] +risker -0.8 0.4 [-1, -1, -1, 0, -1, 0, -1, -1, -1, -1] +riskier -1.4 0.91652 [0, -3, -1, 0, -1, -2, -1, -2, -2, -2] +riskiest -1.5 1.0247 [-2, -3, -1, -1, -3, 0, -1, -2, 0, -2] +riskily -0.7 1.34536 [-1, -2, -1, -1, 3, 0, -1, -1, -1, -2] +riskiness -1.3 1.00499 [-3, -1, -1, 0, -1, 0, -1, -3, -2, -1] +riskinesses -1.6 0.91652 [-2, -1, -1, 0, -3, -1, -2, -1, -3, -2] +risking -1.3 1.1 [0, 0, -2, 0, -1, -3, -3, -1, -2, -1] +riskless 1.3 0.9 [2, 1, 0, 1, 1, 1, 2, 3, 0, 2] +risks -1.1 0.9434 [-1, 0, -1, -1, 0, 0, -2, -1, -3, -2] +risky -0.8 0.9798 [-1, 1, -1, -1, -1, 0, 0, -1, -3, -1] +rob -2.6 0.8 [-2, -4, -3, -2, -3, -4, -2, -2, -2, -2] +robber -2.6 1.0198 [-4, -1, -2, -3, -2, -1, -4, -3, -3, -3] +robed -0.7 0.9 [-2, 0, 0, 0, 0, -2, 0, -2, -1, 0] +robing -1.5 1.56525 [0, 0, 0, 0, -2, -3, -3, -4, -3, 0] +robs -2.0 1.0 [-2, -1, -3, -2, -2, -1, -4, -3, -1, -1] +robust 1.4 1.42829 [1, 0, 0, 1, 4, 0, 2, 3, 3, 0] +roflcopter 2.1 0.53852 [2, 2, 2, 1, 3, 2, 3, 2, 2, 2] +romance 2.6 0.66332 [2, 3, 4, 2, 3, 2, 3, 2, 3, 2] +romanced 2.2 0.87178 [2, 3, 2, 4, 2, 1, 2, 3, 1, 2] +romancer 1.3 1.1 [0, 0, 2, 2, 2, 2, 3, 2, 0, 0] +romancers 1.7 1.00499 [0, 2, 2, 2, 2, 2, 1, 3, 0, 3] +romances 1.3 0.9 [0, 1, 2, 2, 2, 2, 2, 2, 0, 0] +romancing 2.0 0.89443 [4, 1, 1, 2, 2, 2, 2, 1, 3, 2] +romantic 1.7 0.78102 [2, 2, 2, 1, 2, 3, 2, 2, 0, 1] +romantically 1.8 0.87178 [3, 1, 2, 0, 1, 2, 2, 2, 3, 2] +romanticise 1.7 1.61555 [-1, 4, 2, 1, 3, 1, 3, 3, 2, -1] +romanticised 1.7 0.9 [2, 2, 2, 2, 2, 2, 3, 0, 2, 0] +romanticises 1.3 1.1 [2, 2, 1, 1, 1, 2, 3, -1, 2, 0] +romanticising 2.7 0.78102 [3, 3, 3, 2, 1, 3, 2, 3, 4, 3] +romanticism 2.2 1.32665 [1, 4, 2, 1, 3, 1, 3, 3, 4, 0] +romanticisms 2.1 0.9434 [2, 3, 2, 1, 2, 3, 3, 2, 3, 0] +romanticist 1.9 1.3 [1, 4, 2, 0, 3, 1, 2, 3, 3, 0] +romanticists 1.3 1.00499 [2, 0, 0, 1, 3, 3, 1, 1, 1, 1] +romanticization 1.5 1.36015 [1, 3, 2, 2, -1, 2, 0, 1, 4, 1] +romanticizations 2.0 1.0 [4, 1, 3, 1, 2, 3, 1, 2, 2, 1] +romanticize 1.8 0.9798 [2, 2, 1, 1, 2, 1, 3, 3, 3, 0] +romanticized 0.9 1.22066 [0, 1, 1, 3, -1, 0, 1, 1, 3, 0] +romanticizes 1.8 0.87178 [2, 3, 2, 1, 2, 3, 0, 1, 2, 2] +romanticizing 1.2 1.07703 [0, 1, 2, 1, 3, 0, 1, 1, 0, 3] +romantics 1.9 0.83066 [2, 3, 2, 1, 0, 2, 3, 2, 2, 2] +rotten -2.3 0.78102 [-2, -3, -1, -3, -3, -1, -3, -2, -3, -2] +rude -2.0 0.44721 [-2, -1, -3, -2, -2, -2, -2, -2, -2, -2] +rudely -2.2 0.87178 [-3, -2, -3, -1, -2, -4, -2, -2, -1, -2] +rudeness -1.5 0.67082 [-2, -1, -1, -1, -1, -3, -2, -2, -1, -1] +ruder -2.1 0.83066 [-2, -1, -4, -2, -3, -1, -2, -2, -2, -2] +ruderal -0.8 1.46969 [-3, 0, -1, -2, 0, -1, -3, 0, 2, 0] +ruderals -0.4 0.66332 [0, -1, 0, -2, 0, -1, 0, 0, 0, 0] +rudesby -2.0 0.7746 [-2, -3, -2, -2, -1, -3, -1, -1, -2, -3] +rudest -2.5 0.5 [-3, -2, -3, -3, -2, -2, -2, -3, -2, -3] +ruin -2.8 0.87178 [-3, -3, -1, -4, -4, -3, -3, -2, -2, -3] +ruinable -1.6 0.8 [-1, -2, -1, -3, -1, -3, -1, -1, -2, -1] +ruinate -2.8 0.87178 [-4, -4, -3, -3, -1, -3, -3, -3, -2, -2] +ruinated -1.5 1.56525 [0, -4, 0, -4, -1, -2, 0, -1, -3, 0] +ruinates -1.5 1.56525 [0, -4, 0, -4, -1, -2, 0, -1, -3, 0] +ruinating -1.5 1.20416 [-2, -2, -2, -3, 0, -1, 1, -3, -1, -2] +ruination -2.7 1.00499 [-4, -4, -3, -3, -2, -1, -3, -3, -3, -1] +ruinations -1.6 1.35647 [-2, -2, -3, -4, 0, -1, 1, -2, -1, -2] +ruined -2.1 0.7 [-3, -2, -2, -1, -2, -2, -3, -3, -1, -2] +ruiner -2.0 0.63246 [-1, -3, -2, -2, -1, -2, -3, -2, -2, -2] +ruing -1.6 0.91652 [-2, -1, -2, -1, -1, -1, -3, 0, -3, -2] +ruining -1.0 1.94936 [-3, -3, 0, -2, 1, -3, 2, -2, 2, -2] +ruinous -2.7 0.78102 [-2, -3, -3, -3, -3, -4, -2, -3, -1, -3] +ruinously -2.6 0.8 [-3, -2, -2, -3, -1, -3, -4, -2, -3, -3] +ruinousness -1.0 1.09545 [-1, -2, -3, -1, -1, -2, 1, 0, -1, 0] +ruins -1.9 0.9434 [-1, -2, -1, -2, -1, -2, -4, -1, -3, -2] +sabotage -2.4 0.91652 [-3, -3, -3, -2, -2, -4, -2, -3, -1, -1] +sad -2.1 0.9434 [-1, -1, -2, -2, -3, -2, -3, -2, -4, -1] +sadden -2.6 0.4899 [-2, -3, -2, -3, -2, -3, -2, -3, -3, -3] +saddened -2.4 0.4899 [-3, -2, -3, -2, -3, -3, -2, -2, -2, -2] +saddening -2.2 0.4 [-3, -2, -2, -2, -2, -2, -3, -2, -2, -2] +saddens -1.9 0.7 [-3, -1, -1, -1, -2, -2, -2, -2, -3, -2] +sadder -2.4 0.91652 [-2, -2, -3, -4, -3, -1, -3, -1, -2, -3] +saddest -3.0 0.63246 [-4, -3, -2, -3, -3, -2, -3, -4, -3, -3] +sadly -1.8 0.6 [-2, -2, -2, -1, -2, -3, -2, -1, -1, -2] +sadness -1.9 0.3 [-2, -1, -2, -2, -2, -2, -2, -2, -2, -2] +safe 1.9 0.3 [2, 1, 2, 2, 2, 2, 2, 2, 2, 2] +safecracker -0.7 1.61555 [-3, -2, 0, -3, 0, -2, 0, 1, 2, 0] +safecrackers -0.9 1.04403 [-1, 0, -2, 0, -1, 0, 0, -3, 0, -2] +safecracking -0.9 0.9434 [0, 0, 0, 0, -2, 0, -1, -2, -2, -2] +safecrackings -0.7 1.67631 [-2, -1, -2, -4, 2, -1, -1, 0, 1, 1] +safeguard 1.6 0.4899 [2, 2, 1, 1, 1, 2, 2, 2, 2, 1] +safeguarded 1.5 0.92195 [1, 2, 2, 0, 2, 0, 3, 1, 2, 2] +safeguarding 1.1 0.7 [2, 1, 1, 0, 1, 0, 2, 1, 1, 2] +safeguards 1.4 0.66332 [1, 2, 1, 1, 0, 2, 2, 2, 2, 1] +safekeeping 1.4 0.66332 [3, 1, 1, 2, 1, 1, 2, 1, 1, 1] +safelight 1.1 1.22066 [0, 3, 0, 2, 0, 3, 0, 2, 1, 0] +safelights 0.8 1.07703 [0, 3, 1, 0, 0, 2, 0, 2, 0, 0] +safely 2.2 0.74833 [2, 2, 2, 3, 4, 2, 2, 1, 2, 2] +safeness 1.5 0.67082 [1, 1, 1, 1, 3, 1, 2, 2, 2, 1] +safer 1.8 0.6 [2, 1, 2, 3, 2, 2, 1, 1, 2, 2] +safes 0.4 0.8 [0, 0, 2, 0, 0, 0, 0, 0, 2, 0] +safest 1.7 1.61555 [2, 2, 2, 2, -3, 3, 3, 2, 2, 2] +safeties 1.5 1.0247 [2, 0, 1, 3, 2, 1, 3, 1, 0, 2] +safety 1.8 0.6 [2, 2, 2, 2, 1, 1, 2, 3, 1, 2] +safetyman 0.3 0.64031 [0, 0, 0, 0, 2, 0, 1, 0, 0, 0] +salient 1.1 1.22066 [1, 3, 0, -1, 0, 1, 2, 1, 1, 3] +sappy -1.0 1.18322 [-2, -1, 2, -2, -2, 0, -1, -1, -2, -1] +sarcasm -0.9 0.7 [0, -2, -1, -1, 0, 0, -1, -1, -2, -1] +sarcasms -0.9 0.7 [0, -1, 0, -1, -1, -2, 0, -1, -1, -2] +sarcastic -1.0 0.7746 [-1, -1, -1, -1, -1, -1, -1, -2, 1, -2] +sarcastically -1.1 1.37477 [-1, -4, 1, -1, -1, -2, 1, -2, -1, -1] +satisfaction 1.9 0.9434 [1, 3, 2, 4, 2, 1, 1, 1, 2, 2] +satisfactions 2.1 0.7 [3, 3, 3, 1, 2, 2, 1, 2, 2, 2] +satisfactorily 1.6 1.11355 [1, 2, 2, -1, 2, 1, 3, 3, 1, 2] +satisfactoriness 1.5 0.5 [1, 2, 1, 2, 2, 1, 2, 1, 2, 1] +satisfactory 1.5 0.67082 [2, 3, 1, 1, 1, 2, 2, 1, 1, 1] +satisfiable 1.9 0.83066 [3, 1, 2, 1, 2, 3, 1, 2, 3, 1] +satisfied 1.8 0.6 [2, 2, 2, 1, 1, 2, 3, 1, 2, 2] +satisfies 1.8 0.6 [3, 1, 2, 1, 1, 2, 2, 2, 2, 2] +satisfy 2.0 0.63246 [3, 2, 2, 2, 2, 1, 1, 2, 3, 2] +satisfying 2.0 1.48324 [2, 3, 2, 1, 3, 3, 3, 2, -2, 3] +satisfyingly 1.9 0.9434 [1, 2, 2, 1, 2, 1, 4, 1, 3, 2] +savage -2.0 1.73205 [-3, -4, -3, 1, -2, -1, -3, -4, -2, 1] +savaged -2.0 1.34164 [-1, 0, -4, -3, -3, -3, -2, 0, -1, -3] +savagely -2.2 0.74833 [-2, -1, -3, -2, -2, -1, -2, -3, -3, -3] +savageness -2.6 1.0198 [-3, -1, -2, -3, -2, -1, -4, -4, -3, -3] +savagenesses -0.9 1.86815 [-2, 3, -1, -3, -2, 2, -3, -1, -1, -1] +savageries -1.9 1.75784 [-3, 1, -3, -4, -3, 1, -2, -3, 0, -3] +savagery -2.5 1.62788 [-2, -3, -3, -3, 2, -3, -3, -4, -4, -2] +savages -2.4 1.0198 [-2, -2, -3, -4, -3, -3, -2, 0, -2, -3] +save 2.2 1.16619 [1, 3, 3, 1, 2, 1, 2, 4, 1, 4] +saved 1.8 0.6 [1, 2, 2, 2, 1, 3, 2, 2, 1, 2] +scam -2.7 0.64031 [-2, -3, -3, -3, -2, -2, -4, -3, -3, -2] +scams -2.8 0.87178 [-3, -1, -3, -4, -4, -3, -2, -2, -3, -3] +scandal -1.9 1.81384 [-3, -2, -2, -4, 3, -3, -3, -1, -2, -2] +scandalous -2.4 0.8 [-2, -1, -3, -2, -4, -2, -3, -3, -2, -2] +scandals -2.2 0.9798 [-2, -3, -3, -2, -1, 0, -3, -3, -2, -3] +scapegoat -1.7 0.64031 [-3, -2, -2, -2, -1, -1, -1, -2, -1, -2] +scapegoats -1.4 0.8 [-1, -2, -2, -1, 0, -2, -2, 0, -2, -2] +scare -2.2 0.87178 [-2, -2, -4, -2, -3, -1, -2, -1, -2, -3] +scarecrow -0.8 0.9798 [-1, 0, -1, 0, 0, 0, -2, -3, -1, 0] +scarecrows -0.7 1.1 [2, 0, -1, -1, -1, -2, -1, -2, 0, -1] +scared -1.9 0.7 [-1, -1, -2, -3, -2, -3, -1, -2, -2, -2] +scaremonger -2.1 0.53852 [-1, -2, -2, -3, -2, -2, -3, -2, -2, -2] +scaremongers -2.0 1.0 [-2, -2, 0, -4, -2, -2, -1, -2, -3, -2] +scarer -1.7 0.78102 [-2, -1, -1, -2, -3, -1, -3, -1, -2, -1] +scarers -1.3 0.9 [-1, -2, -1, 0, 0, -1, -3, -2, -1, -2] +scares -1.4 0.4899 [-1, -1, -2, -1, -1, -2, -1, -2, -2, -1] +scarey -1.7 0.64031 [-1, -1, -2, -2, -1, -2, -1, -2, -3, -2] +scaring -1.9 1.22066 [-3, -2, -1, -3, -1, -3, -2, -2, 1, -3] +scary -2.2 0.87178 [-2, -1, -4, -3, -3, -2, -2, -2, -2, -1] +sceptic -1.0 0.89443 [-3, 0, -1, -1, -1, 0, 0, -2, -1, -1] +sceptical -1.2 0.4 [-1, -1, -1, -1, -1, -1, -1, -2, -2, -1] +scepticism -0.8 0.87178 [-1, -2, -2, 0, 0, -1, 1, -1, -1, -1] +sceptics -0.7 0.78102 [0, 0, 0, -1, -2, 0, -1, -1, 0, -2] +scold -1.7 0.78102 [-2, -1, -1, -1, -3, -3, -2, -2, -1, -1] +scoop 0.6 0.8 [0, 0, 1, 0, 2, 0, 2, 0, 1, 0] +scorn -1.7 0.64031 [-2, -3, -2, -1, -1, -1, -1, -2, -2, -2] +scornful -1.8 1.16619 [-3, -3, -2, -1, -4, 0, -2, -1, -1, -1] +scream -1.7 0.78102 [0, -3, -1, -1, -2, -2, -2, -2, -2, -2] +screamed -1.3 1.1 [-2, -3, -2, -1, -1, -2, -2, -1, 1, 0] +screamers -1.5 0.92195 [-2, -1, -2, -2, -2, -2, -1, -2, 1, -2] +screaming -1.6 0.8 [0, -1, -1, -2, -3, -1, -2, -2, -2, -2] +screams -1.2 0.9798 [-1, -2, -2, -1, -1, -2, 1, -2, 0, -2] +screw -0.4 0.91652 [-1, -2, -1, 0, 0, 1, 0, -1, 1, -1] +screwball -0.2 0.87178 [0, -1, 0, 0, 1, 1, -1, 0, -2, 0] +screwballs -0.3 1.00499 [-2, 0, -2, -1, 0, 1, 0, 1, 0, 0] +screwbean 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 2, 0, 0] +screwdriver 0.3 0.45826 [1, 0, 0, 0, 0, 1, 0, 0, 1, 0] +screwdrivers 0.1 0.53852 [-1, 0, 0, 1, 0, 0, 0, 1, 0, 0] +screwed -2.2 0.4 [-2, -2, -2, -2, -2, -3, -3, -2, -2, -2] +screwed up -1.5 0.67082 [-2, -2, -2, -1, -1, 0, -2, -1, -2, -2] +screwer -1.2 0.87178 [-1, -2, -1, -2, 0, 0, -2, 0, -2, -2] +screwers -0.5 1.5 [-2, -2, 0, -2, 0, 2, 2, -1, 0, -2] +screwier -0.6 1.2 [0, -1, 2, -2, -1, -2, -1, -1, 1, -1] +screwiest -2.0 0.89443 [-3, -2, -2, -4, -1, -2, -1, -1, -2, -2] +screwiness -0.5 1.80278 [-2, 0, -2, 3, -2, -1, -2, 1, 2, -2] +screwing -0.9 0.9434 [-1, 0, 0, 0, -1, -1, -3, -2, 0, -1] +screwlike 0.1 1.04403 [2, -1, 0, 0, 0, 1, 0, 1, -2, 0] +screws -1.0 1.09545 [0, -3, 0, 0, -1, 0, -2, -2, -2, 0] +screwup -1.7 0.9 [-2, -2, -2, 1, -2, -2, -2, -2, -2, -2] +screwups -1.0 1.61245 [-2, -2, -2, -2, 0, 2, -2, -2, 2, -2] +screwworm -0.4 0.66332 [0, -1, 0, 0, 0, 0, -2, 0, -1, 0] +screwworms -0.1 1.22066 [-3, 0, -1, 0, 0, 0, 0, 2, 1, 0] +screwy -1.4 0.8 [-2, -2, -1, -1, -1, 0, -2, -1, -3, -1] +scrumptious 2.1 1.22066 [3, 3, 0, 3, 2, 3, 1, 3, 0, 3] +scrumptiously 1.5 1.43178 [2, 3, 3, -2, 1, 1, 2, 3, 1, 1] +scumbag -3.2 0.6 [-4, -3, -3, -2, -3, -4, -3, -3, -4, -3] +secure 1.4 0.4899 [1, 2, 1, 1, 2, 1, 1, 2, 2, 1] +secured 1.7 0.78102 [2, 2, 3, 1, 1, 2, 2, 0, 2, 2] +securely 1.4 0.8 [2, 0, 1, 2, 1, 1, 1, 3, 2, 1] +securement 1.1 0.7 [0, 2, 1, 1, 1, 0, 2, 2, 1, 1] +secureness 1.4 0.66332 [2, 1, 1, 3, 1, 1, 1, 1, 2, 1] +securer 1.5 0.67082 [1, 2, 2, 2, 1, 2, 1, 0, 2, 2] +securers 0.6 0.91652 [1, 3, 0, 0, 1, 0, 0, 0, 0, 1] +secures 1.3 0.64031 [1, 2, 2, 1, 1, 2, 1, 0, 2, 1] +securest 2.6 0.8 [3, 3, 2, 3, 1, 4, 3, 2, 2, 3] +securing 1.3 1.00499 [0, 3, 1, 1, 1, 3, 1, 1, 2, 0] +securities 1.2 0.6 [1, 2, 2, 2, 1, 1, 1, 0, 1, 1] +securitization 0.2 1.07703 [0, 0, 1, -1, 1, 0, -2, 0, 2, 1] +securitizations 0.1 0.9434 [0, 0, 0, 0, 2, 0, -2, 0, 1, 0] +securitize 0.3 1.34536 [2, 1, 0, 0, 2, 0, 1, 0, -3, 0] +securitized 1.4 1.0198 [3, 0, 2, 2, 0, 1, 2, 2, 0, 2] +securitizes 1.6 1.0198 [3, 0, 2, 2, 0, 1, 3, 2, 1, 2] +securitizing 0.7 0.9 [2, 0, 0, 1, 2, 0, 2, 0, 0, 0] +security 1.4 0.8 [1, 2, 3, 2, 1, 1, 2, 0, 1, 1] +sedition -1.8 1.249 [-3, -4, -2, -2, -2, -2, -1, -1, -2, 1] +seditious -1.7 0.64031 [-1, -2, -2, -1, -1, -1, -3, -2, -2, -2] +seduced -1.5 0.67082 [0, -1, -2, -2, -2, -2, -1, -1, -2, -2] +self-confident 2.5 0.80623 [1, 3, 3, 3, 2, 3, 1, 3, 3, 3] +selfish -2.1 0.7 [-1, -2, -2, -3, -1, -2, -2, -2, -3, -3] +selfishly -1.4 0.91652 [-3, 0, -1, -1, -1, -2, -3, -1, -1, -1] +selfishness -1.7 0.64031 [-1, -1, -1, -2, -2, -1, -2, -2, -3, -2] +selfishnesses -2.0 1.94936 [-4, -3, -1, -3, -2, -4, 2, 1, -3, -3] +sentence 0.3 0.64031 [0, 0, 0, 0, 1, 2, 0, 0, 0, 0] +sentenced -0.1 1.3 [0, -2, 2, -1, 0, -2, 2, 0, 0, 0] +sentences 0.2 1.07703 [0, 0, 2, 0, 0, -2, 2, 0, 0, 0] +sentencing -0.6 1.8 [-2, 0, -3, -2, 2, 3, 0, -1, -1, -2] +sentimental 1.3 0.64031 [2, 1, 1, 2, 1, 0, 1, 2, 2, 1] +sentimentalise 1.2 0.87178 [2, 1, 0, 3, 2, 1, 1, 0, 1, 1] +sentimentalised 0.8 1.16619 [2, 1, 1, 0, 0, 2, 3, -1, 0, 0] +sentimentalising 0.4 0.91652 [0, 2, 0, 0, 0, -1, 1, 0, 2, 0] +sentimentalism 1.0 0.63246 [2, 1, 0, 2, 1, 1, 1, 0, 1, 1] +sentimentalisms 0.4 0.8 [0, 1, 1, 0, 0, 2, 1, 0, 0, -1] +sentimentalist 0.8 0.87178 [2, 1, 0, 2, 0, 1, 2, 0, 0, 0] +sentimentalists 0.7 0.78102 [0, 0, 1, 0, 0, 1, 1, 2, 0, 2] +sentimentalities 0.9 0.83066 [2, 1, 1, 2, 1, 0, 0, 2, 0, 0] +sentimentality 1.2 1.46969 [-2, 1, 1, 2, 2, 0, 4, 2, 1, 1] +sentimentalization 1.2 0.87178 [0, 1, 2, 0, 1, 1, 3, 1, 2, 1] +sentimentalizations 0.4 0.8 [0, 1, 0, 1, 0, 0, 0, 2, -1, 1] +sentimentalize 0.8 1.07703 [2, 0, 0, 2, 0, 2, 1, -1, 2, 0] +sentimentalized 1.1 1.22066 [3, 0, 2, 0, 1, 3, 2, 0, 0, 0] +sentimentalizes 1.1 1.37477 [3, 0, 1, 0, 1, 4, 2, 0, 0, 0] +sentimentalizing 0.8 0.87178 [1, 1, 1, 1, 2, 0, -1, 1, 0, 2] +sentimentally 1.9 0.9434 [3, 2, 3, 1, 0, 2, 1, 2, 3, 2] +serene 2.0 1.0 [1, 1, 3, 2, 2, 4, 3, 2, 1, 1] +serious -0.3 0.45826 [0, -1, 0, -1, -1, 0, 0, 0, 0, 0] +seriously -0.7 1.34536 [-3, -2, 0, 0, -1, -2, 2, -1, 0, 0] +seriousness -0.2 1.16619 [0, 2, 0, 0, 0, 0, -3, -1, 0, 0] +severe -1.6 1.8 [-3, -2, -4, 1, -2, -3, 2, -1, -1, -3] +severed -1.5 0.5 [-1, -1, -2, -1, -2, -1, -1, -2, -2, -2] +severely -2.0 0.89443 [-2, -1, -1, -2, -2, -1, -3, -2, -4, -2] +severeness -1.0 1.73205 [0, 0, -1, -4, 1, -2, 0, 1, -1, -4] +severer -1.6 1.49666 [-2, -3, -2, -1, -2, 2, -4, -1, -1, -2] +severest -1.5 1.85742 [-4, -1, 2, -2, -2, -3, -4, -1, 1, -1] +sexy 2.4 0.8 [2, 3, 3, 4, 2, 2, 2, 2, 3, 1] +shake -0.7 0.9 [-2, 0, 0, -2, 1, -1, 0, -1, -1, -1] +shakeable -0.3 1.00499 [2, -1, 0, 0, -1, -2, 0, 0, -1, 0] +shakedown -1.2 0.4 [-2, -1, -1, -1, -2, -1, -1, -1, -1, -1] +shakedowns -1.4 0.8 [-2, -1, -1, -3, -1, -1, 0, -2, -2, -1] +shaken -0.3 0.9 [-1, -1, 1, -1, 1, 0, -1, 1, -1, -1] +shakeout -1.3 0.78102 [-1, -2, 0, -1, -1, -2, -2, -2, 0, -2] +shakeouts -0.8 1.16619 [-2, -1, 0, 0, -1, 2, -2, -1, -2, -1] +shakers 0.3 1.00499 [2, 0, 0, -1, 2, 0, 1, -1, 0, 0] +shakeup -0.6 0.4899 [-1, 0, -1, -1, -1, 0, 0, 0, -1, -1] +shakeups -0.5 0.92195 [2, -1, 0, 0, -1, -1, -1, -1, -1, -1] +shakier -0.9 0.3 [-1, -1, 0, -1, -1, -1, -1, -1, -1, -1] +shakiest -1.2 0.74833 [-1, 0, 0, -1, -1, -1, -2, -2, -2, -2] +shakily -0.7 0.45826 [-1, -1, -1, -1, -1, 0, 0, 0, -1, -1] +shakiness -0.7 1.1 [2, -1, -1, -1, -2, -1, -1, -2, 0, 0] +shaking -0.7 0.45826 [-1, -1, -1, 0, -1, -1, 0, 0, -1, -1] +shaky -0.9 0.3 [-1, -1, -1, 0, -1, -1, -1, -1, -1, -1] +shame -2.1 0.53852 [-2, -2, -2, -3, -3, -1, -2, -2, -2, -2] +shamed -2.6 0.4899 [-2, -3, -3, -2, -3, -3, -3, -2, -2, -3] +shamefaced -2.3 0.64031 [-2, -2, -2, -3, -3, -3, -3, -1, -2, -2] +shamefacedly -1.9 0.3 [-2, -2, -2, -2, -2, -2, -2, -1, -2, -2] +shamefacedness -2.0 0.89443 [-1, -1, -2, -2, -2, -1, -2, -4, -2, -3] +shamefast -1.0 0.44721 [-1, -1, 0, -1, -1, -1, -1, -2, -1, -1] +shameful -2.2 0.6 [-3, -3, -2, -2, -2, -3, -1, -2, -2, -2] +shamefully -1.9 0.7 [-2, -3, -1, -3, -1, -2, -2, -1, -2, -2] +shamefulness -2.4 0.4899 [-2, -3, -3, -2, -3, -2, -3, -2, -2, -2] +shamefulnesses -2.3 0.78102 [-4, -2, -2, -2, -3, -1, -2, -2, -3, -2] +shameless -1.4 1.0198 [-1, -1, 1, -2, -3, -1, -2, -2, -1, -2] +shamelessly -1.4 1.0198 [-1, 0, -1, -2, 0, -1, -3, -3, -1, -2] +shamelessness -1.4 1.0198 [-1, -3, -2, 1, -2, -1, -2, -2, -1, -1] +shamelessnesses -2.0 1.0 [-2, 0, -2, -4, -2, -1, -2, -3, -2, -2] +shames -1.7 0.9 [-3, -3, -3, -1, -1, -1, -1, -1, -1, -2] +share 1.2 0.74833 [0, 1, 1, 2, 2, 2, 1, 1, 0, 2] +shared 1.4 0.4899 [2, 2, 2, 1, 2, 1, 1, 1, 1, 1] +shares 1.2 0.87178 [0, 2, 1, 1, 0, 2, 2, 2, 2, 0] +sharing 1.8 0.6 [2, 2, 1, 2, 2, 3, 1, 1, 2, 2] +shattered -2.1 0.7 [-1, -3, -3, -2, -2, -2, -3, -2, -1, -2] +shit -2.6 1.0198 [-2, -1, -4, -3, -4, -4, -2, -2, -2, -2] +shitake -0.3 1.26886 [-4, 0, 0, 0, 0, 0, 0, 0, 1, 0] +shitakes -1.1 1.7 [0, -4, 0, 0, 0, 0, -3, 0, -4, 0] +shithead -3.1 0.83066 [-3, -4, -4, -3, -4, -3, -1, -3, -3, -3] +shitheads -2.6 1.35647 [-2, -3, -4, -3, -3, -3, -2, -4, 1, -3] +shits -2.1 1.22066 [-3, 0, -3, 0, -2, -4, -2, -2, -2, -3] +shittah 0.1 1.3 [-2, -2, 0, 2, 0, 0, 0, 0, 1, 2] +shitted -1.7 0.64031 [-2, -1, -2, -1, -2, -2, -3, -1, -2, -1] +shittier -2.1 0.83066 [-3, -3, -2, -1, -1, -1, -3, -2, -2, -3] +shittiest -3.4 0.66332 [-3, -4, -3, -4, -4, -4, -3, -3, -4, -2] +shittim -0.6 1.0198 [-3, 0, 0, 0, 0, -2, 0, 0, -1, 0] +shittimwood -0.3 0.9 [0, 0, -3, 0, 0, 0, 0, 0, 0, 0] +shitting -1.8 0.9798 [-1, -2, -2, -1, -3, -1, -1, -2, -4, -1] +shitty -2.6 0.8 [-3, -4, -2, -3, -3, -2, -3, -1, -2, -3] +shock -1.6 0.91652 [0, -3, -1, -2, -1, -2, -2, -1, -3, -1] +shockable -1.0 1.0 [-3, -1, -1, 0, 0, -2, -1, -2, 0, 0] +shocked -1.3 1.18743 [-2, -1, -1, 0, 0, -2, 0, -2, -1, -4] +shocker -0.6 1.49666 [-2, -1, 3, -1, 0, -3, -1, 0, -1, 0] +shockers -1.1 0.9434 [-1, -2, -2, -1, -1, 0, 0, -3, 0, -1] +shocking -1.7 1.34536 [-3, -3, 0, -1, 0, -3, 0, -1, -3, -3] +shockingly -0.7 1.48661 [-2, 0, -1, -3, -3, 0, 2, 0, 0, 0] +shockproof 1.3 0.64031 [1, 0, 1, 1, 2, 2, 1, 2, 1, 2] +shocks -1.6 0.91652 [-3, -1, 0, -1, -2, -2, -1, -3, -2, -1] +shook -0.4 0.66332 [-1, -2, 0, 0, 0, 0, 0, 0, 0, -1] +shoot -1.4 1.11355 [-1, -4, -1, -1, -2, 0, -2, 0, -1, -2] +short-sighted -1.2 0.6 [0, -1, -2, -2, -1, -1, -1, -2, -1, -1] +short-sightedness -1.1 1.37477 [-1, -2, -2, -2, -3, -1, 0, 2, 0, -2] +shortage -1.0 1.09545 [-2, -2, -1, -2, -1, -1, 2, -1, -1, -1] +shortages -0.6 1.0198 [0, -2, -1, -1, 0, -2, 1, 1, -1, -1] +shrew -0.9 1.04403 [-2, -1, -2, -2, 1, 0, 0, 0, -1, -2] +shy -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] +shyer -0.8 0.6 [-1, -1, -1, -1, 0, -1, 0, 0, -2, -1] +shying -0.9 0.83066 [-1, -2, -1, 0, -2, 0, 0, 0, -2, -1] +shylock -2.1 1.13578 [-2, -2, -2, 0, -3, -3, -3, -3, 0, -3] +shylocked -0.7 1.00499 [0, -3, -1, 0, 0, -2, 0, -1, 0, 0] +shylocking -1.5 1.11803 [0, -2, -3, 0, -1, -3, -2, 0, -2, -2] +shylocks -1.4 1.11355 [0, -2, -1, -2, -3, 0, -3, -1, -2, 0] +shyly -0.7 0.45826 [-1, -1, -1, -1, 0, 0, -1, 0, -1, -1] +shyness -1.3 1.00499 [-2, 0, -3, 0, -1, -2, -2, -1, -2, 0] +shynesses -1.2 0.6 [-2, -1, -1, -2, -1, -2, 0, -1, -1, -1] +shyster -1.6 0.66332 [-2, -1, -2, -3, -2, -1, -1, -1, -1, -2] +shysters -0.9 0.7 [0, -2, 0, 0, -2, -1, -1, -1, -1, -1] +sick -2.3 0.78102 [-1, -2, -3, -2, -2, -4, -3, -2, -2, -2] +sicken -1.9 0.7 [-2, -3, -1, -3, -1, -1, -2, -2, -2, -2] +sickened -2.5 0.92195 [-3, -2, -4, -3, -1, -1, -3, -3, -2, -3] +sickener -2.2 0.87178 [-3, -1, -2, -3, -1, -1, -3, -3, -2, -3] +sickeners -2.2 0.6 [-3, -1, -2, -3, -2, -3, -2, -2, -2, -2] +sickening -2.4 0.91652 [-3, -4, -1, -3, -2, -2, -1, -3, -2, -3] +sickeningly -2.1 0.7 [-3, -3, -1, -2, -2, -1, -3, -2, -2, -2] +sickens -2.0 0.63246 [-2, -1, -2, -2, -3, -2, -1, -2, -3, -2] +sigh 0.1 1.22066 [2, -1, -1, -1, 0, 2, 1, 1, -1, -1] +significance 1.1 1.22066 [0, 0, 0, 1, 3, 2, 3, 2, 0, 0] +significant 0.8 0.9798 [1, 0, 1, 3, 0, 1, 0, 0, 2, 0] +silencing -0.5 0.67082 [-2, -1, 0, 0, 0, 0, 0, -1, 0, -1] +sillibub -0.1 0.3 [0, 0, 0, 0, -1, 0, 0, 0, 0, 0] +sillier 1.0 0.7746 [1, 1, 0, 2, 0, 1, 1, 2, 2, 0] +sillies 0.8 0.74833 [2, 1, 0, 1, 0, 1, 0, 2, 1, 0] +silliest 0.8 0.9798 [0, 1, 1, 1, 1, 0, 3, 1, -1, 1] +sillily -0.1 1.04403 [1, -1, -1, -1, 2, 1, -1, 0, 0, -1] +sillimanite 0.1 0.3 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +sillimanites 0.2 0.6 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] +silliness -0.9 1.22066 [1, -3, -1, 0, 1, -1, -2, -1, -2, -1] +sillinesses -1.2 1.46969 [-3, -2, -3, 0, -2, 0, 1, -2, -2, 1] +silly 0.1 1.04403 [1, 1, 0, 0, 0, 2, -1, -2, 0, 0] +sin -2.6 0.8 [-2, -4, -3, -2, -2, -2, -4, -3, -2, -2] +sincere 1.7 0.78102 [1, 2, 3, 0, 2, 2, 2, 2, 1, 2] +sincerely 2.1 1.04403 [1, 3, 2, 4, 2, 3, 1, 1, 3, 1] +sincereness 1.8 0.74833 [3, 1, 1, 2, 2, 3, 1, 2, 2, 1] +sincerer 2.0 1.0 [1, 3, 3, 2, 3, 2, 1, 3, 0, 2] +sincerest 2.0 1.34164 [0, 3, 1, 1, 4, 2, 1, 4, 1, 3] +sincerities 1.5 0.67082 [2, 1, 1, 1, 1, 1, 3, 2, 2, 1] +sinful -2.6 0.8 [-4, -3, -3, -2, -1, -2, -3, -2, -3, -3] +singleminded 1.2 0.87178 [1, 2, 0, 0, 3, 2, 1, 1, 1, 1] +sinister -2.9 1.13578 [-4, -4, -1, -3, -1, -4, -3, -3, -2, -4] +sins -2.0 1.0 [-2, -1, -2, -3, -1, -4, -3, -2, -1, -1] +skeptic -0.9 1.13578 [0, 0, -1, -1, -1, 0, -2, -2, 1, -3] +skeptical -1.3 0.9 [0, -3, -2, -2, -1, -2, 0, -1, -1, -1] +skeptically -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -1, -2] +skepticism -1.0 0.89443 [0, 0, -1, -1, -1, -1, 0, -1, -3, -2] +skepticisms -1.2 0.9798 [1, -2, 0, -1, -2, -1, -2, -2, -1, -2] +skeptics -0.4 0.91652 [-2, 0, 0, -1, -1, 1, -1, 0, 1, -1] +slam -1.6 1.11355 [-2, -1, -3, -1, -3, -2, -1, -2, 1, -2] +slash -1.1 1.22066 [-2, -3, -2, 0, -2, 0, -1, -2, 0, 1] +slashed -0.9 0.83066 [-2, -1, -2, -1, -1, 0, 1, -1, -1, -1] +slashes -0.8 0.6 [0, -1, -2, -1, 0, 0, -1, -1, -1, -1] +slashing -1.1 1.86815 [-3, -2, -3, -3, 3, 1, 0, -1, -2, -1] +slavery -3.8 0.4 [-4, -3, -4, -3, -4, -4, -4, -4, -4, -4] +sleeplessness -1.6 1.49666 [-3, -4, -2, -1, -2, -2, -2, 2, -1, -1] +slicker 0.4 1.28062 [-2, 1, -1, 2, 0, 0, 2, 2, 0, 0] +slickest 0.3 1.00499 [1, 0, -1, 0, -1, 0, 0, 0, 2, 2] +sluggish -1.7 0.64031 [-1, -2, -1, -3, -2, -2, -1, -2, -1, -2] +slut -2.8 0.87178 [-4, -2, -2, -1, -3, -3, -3, -3, -4, -3] +sluts -2.7 1.48661 [-3, -3, -4, -4, -3, -4, -1, -3, 1, -3] +sluttier -2.7 1.18743 [-2, -2, -4, -3, -4, -4, -1, -1, -2, -4] +sluttiest -3.1 0.83066 [-3, -4, -3, -4, -3, -4, -2, -2, -4, -2] +sluttish -2.2 0.87178 [-2, -3, -3, -2, -2, -4, -2, -1, -1, -2] +sluttishly -2.1 1.13578 [-2, 0, -2, -3, -1, -2, -3, -1, -3, -4] +sluttishness -2.5 0.92195 [-2, -1, -3, -4, -2, -1, -3, -3, -3, -3] +sluttishnesses -2.0 1.09545 [0, -2, -1, -3, -3, -1, -3, -1, -3, -3] +slutty -2.3 0.9 [-3, -1, -3, -3, -3, -2, -1, -3, -1, -3] +smart 1.7 0.78102 [2, 2, 1, 2, 1, 3, 2, 0, 2, 2] +smartass -2.1 0.83066 [-1, -1, -2, -3, -2, -1, -2, -3, -3, -3] +smartasses -1.7 2.05183 [-1, -2, -3, -3, -3, -1, -2, -3, 4, -3] +smarted 0.7 1.41774 [2, 1, -2, 1, 1, 2, 2, 2, -1, -1] +smarten 1.9 0.7 [3, 1, 2, 1, 2, 2, 2, 3, 1, 2] +smartened 1.5 0.67082 [2, 2, 1, 3, 1, 1, 1, 1, 2, 1] +smartening 1.7 0.9 [1, 3, 3, 1, 1, 1, 2, 1, 1, 3] +smartens 1.5 0.5 [2, 2, 1, 1, 1, 1, 2, 2, 2, 1] +smarter 2.0 0.7746 [2, 2, 1, 1, 2, 2, 2, 2, 4, 2] +smartest 3.0 1.0 [4, 3, 4, 3, 2, 2, 4, 3, 1, 4] +smartie 1.3 0.9 [1, 4, 1, 1, 1, 1, 1, 1, 1, 1] +smarties 1.7 0.9 [1, 1, 2, 4, 2, 2, 1, 2, 1, 1] +smarting -0.7 1.9 [2, 3, -1, -2, 1, -2, -1, -3, -2, -2] +smartly 1.5 0.67082 [2, 1, 1, 1, 1, 2, 1, 3, 1, 2] +smartness 2.0 0.89443 [1, 3, 3, 1, 2, 1, 2, 3, 1, 3] +smartnesses 1.5 0.92195 [1, 0, 1, 1, 1, 2, 1, 2, 3, 3] +smarts 1.6 0.66332 [2, 1, 3, 1, 2, 1, 2, 1, 2, 1] +smartweed 0.2 0.6 [0, 0, 0, 0, 0, 2, 0, 0, 0, 0] +smartweeds 0.1 0.53852 [0, 0, -1, 0, 0, 0, 1, 0, 0, 1] +smarty 1.1 0.53852 [0, 2, 1, 2, 1, 1, 1, 1, 1, 1] +smear -1.5 1.20416 [-2, -1, -1, -2, -3, 0, 0, -4, -1, -1] +smilax 0.6 0.66332 [0, 2, 1, 0, 0, 0, 1, 1, 1, 0] +smilaxes 0.3 0.78102 [0, 0, 0, 0, 1, 2, 1, -1, 0, 0] +smile 1.5 0.67082 [2, 1, 1, 1, 2, 2, 3, 1, 1, 1] +smiled 2.5 0.80623 [3, 2, 3, 2, 1, 2, 3, 4, 3, 2] +smileless -1.4 0.4899 [-1, -1, -1, -1, -2, -1, -2, -1, -2, -2] +smiler 1.7 0.78102 [1, 1, 3, 1, 3, 2, 2, 2, 1, 1] +smiles 2.1 1.04403 [2, 4, 2, 1, 3, 1, 1, 3, 1, 3] +smiley 1.7 0.78102 [1, 2, 1, 2, 2, 0, 2, 3, 2, 2] +smileys 1.5 0.92195 [1, 2, 1, 3, 1, 0, 1, 3, 1, 2] +smiling 2.0 1.18322 [2, 1, 1, 1, 2, 3, 4, 1, 4, 1] +smilingly 2.3 0.64031 [3, 2, 3, 2, 3, 1, 2, 2, 2, 3] +smog -1.2 0.6 [-1, -1, -2, -1, -1, -2, -2, -1, 0, -1] +smother -1.8 0.87178 [-2, -2, -3, -1, -2, -1, -2, -2, -3, 0] +smothered -0.9 1.7 [2, -4, 0, -1, -3, -2, 0, -1, 1, -1] +smothering -1.4 1.56205 [-2, -3, -1, -4, 0, -2, -1, 2, -1, -2] +smothers -1.9 1.04403 [-1, -1, -3, -1, -2, -3, 0, -2, -3, -3] +smothery -1.1 0.7 [-2, 0, -2, -1, -2, -1, 0, -1, -1, -1] +smug 0.8 1.16619 [-1, 2, 0, 2, 1, -1, 2, 1, 0, 2] +smugger -1.0 0.89443 [1, -2, -1, -2, -1, -1, -1, 0, -2, -1] +smuggest -1.5 1.28452 [-1, -1, -1, 1, -1, -3, -4, -2, -1, -2] +smuggle -1.6 1.11355 [-2, -1, -1, -1, -2, 0, -1, -1, -3, -4] +smuggled -1.5 0.92195 [-1, -1, -2, -1, -1, -1, -2, -1, -1, -4] +smuggler -2.1 1.22066 [-1, -3, -3, -1, -1, -1, -4, -1, -2, -4] +smugglers -1.4 1.56205 [-2, -3, -4, 1, -2, 0, -2, 1, -1, -2] +smuggles -1.7 1.00499 [-1, -2, -2, -1, -1, -1, -3, -1, -1, -4] +smuggling -2.1 0.83066 [-3, -2, -2, -1, -2, -2, -1, -2, -4, -2] +smugly 0.2 1.249 [-1, 2, -1, -1, 1, 1, -1, 1, 2, -1] +smugness -1.4 1.11355 [-1, -1, -1, -3, -3, -2, 1, -1, -2, -1] +smugnesses -1.7 0.78102 [-1, -1, -2, -1, -3, -1, -2, -2, -3, -1] +sneaky -0.9 0.7 [-1, -1, -1, -2, -1, -1, -1, 1, -1, -1] +snob -2.0 0.63246 [-2, -2, -2, -2, -2, -1, -3, -1, -3, -2] +snobbery -2.0 0.63246 [-1, -2, -2, -2, -2, -3, -2, -1, -3, -2] +snobbier -0.7 1.00499 [-1, 2, -1, -1, -1, -1, -1, 0, -2, -1] +snobbiest -0.5 1.11803 [-2, -2, 1, -1, 1, -1, 0, -1, 1, -1] +snobbily -1.6 1.11355 [-1, -2, -2, -2, -1, -3, -3, -1, 1, -2] +snobbish -0.9 1.37477 [-2, -1, 1, -1, 1, -2, -3, -2, 1, -1] +snobbishly -1.2 1.249 [-2, 1, -2, -1, -2, -3, -1, -2, -1, 1] +snobbishness -1.1 1.22066 [-1, -2, -2, -1, -3, -1, -1, -1, 2, -1] +snobbishnesses -1.7 0.78102 [-2, -1, -3, -2, -1, -1, -2, -1, -3, -1] +snobbism -1.0 1.41421 [-2, -1, 1, -1, 1, -2, -3, -2, 1, -2] +snobbisms -0.3 1.18743 [1, -1, -1, 0, -1, -1, 1, -2, 2, -1] +snobby -1.7 1.00499 [-1, -1, -1, -3, -2, -2, 0, -3, -3, -1] +snobs -1.4 1.0198 [-2, -1, -1, -2, -2, -3, -1, -2, 1, -1] +snub -1.8 0.4 [-2, -2, -1, -2, -2, -2, -2, -2, -1, -2] +snubbed -2.0 0.7746 [-2, -2, 0, -2, -3, -2, -2, -2, -3, -2] +snubbing -0.9 1.13578 [-2, -1, -1, -1, 1, -1, -3, 1, -1, -1] +snubs -2.1 0.9434 [-2, -1, -1, -1, -3, -2, -4, -3, -2, -2] +sob -1.0 1.34164 [-1, -2, -2, -2, -1, -1, 2, 1, -2, -2] +sobbed -1.9 1.3 [-2, -4, 1, -1, -3, -1, -3, -2, -2, -2] +sobbing -1.6 1.49666 [1, -2, -3, -1, -1, -3, 1, -2, -3, -3] +sobering -0.8 1.32665 [2, -2, 0, -2, -1, -1, -2, 1, -1, -2] +sobs -2.5 0.67082 [-3, -3, -2, -2, -3, -3, -3, -1, -2, -3] +sociabilities 1.2 0.9798 [1, 3, 1, 2, 0, 1, 0, 2, 2, 0] +sociability 1.1 0.9434 [0, 1, 1, 1, 0, 2, 1, 0, 2, 3] +sociable 1.9 0.7 [1, 1, 2, 3, 1, 2, 2, 2, 3, 2] +sociableness 1.5 0.5 [1, 1, 1, 2, 2, 2, 1, 2, 1, 2] +sociably 1.6 0.91652 [3, 2, 0, 1, 3, 2, 1, 1, 2, 1] +sok 1.3 1.1 [0, 1, 2, 1, 1, 0, 1, 4, 2, 1] +solemn -0.3 1.1 [-1, -2, -1, 0, -1, 2, 0, -1, 1, 0] +solemnified -0.5 0.67082 [0, 0, 0, 0, -1, -1, -1, 0, -2, 0] +solemnifies -0.5 0.67082 [0, 0, 0, 0, -1, -2, -1, 0, -1, 0] +solemnify 0.3 1.18743 [2, 1, 2, 1, 0, 0, -2, -1, 0, 0] +solemnifying 0.1 1.3 [2, -1, 0, -3, 0, 1, 1, 1, 0, 0] +solemnities 0.3 0.78102 [0, 1, -1, 0, 0, 0, 2, 1, 0, 0] +solemnity -1.1 0.9434 [0, -2, 0, -2, -2, -1, -2, 0, 0, -2] +solemnization 0.7 1.34536 [-1, -1, 0, 2, 2, 0, 3, 2, 0, 0] +solemnize 0.3 0.78102 [1, -1, 0, 2, 0, 0, 1, 0, 0, 0] +solemnized -0.7 0.9 [0, 0, 0, -1, -1, -1, -1, 0, 0, -3] +solemnizes 0.6 0.91652 [0, 0, 0, 0, 0, 0, 2, 2, 2, 0] +solemnizing -0.6 0.8 [0, 0, -1, -1, 0, 0, -2, -2, 0, 0] +solemnly 0.8 0.9798 [0, 2, 0, 1, 1, 2, -1, 2, 1, 0] +solid 0.6 0.8 [0, 2, 1, 2, 0, 1, 0, 0, 0, 0] +solidarity 1.2 0.6 [1, 1, 1, 1, 2, 0, 1, 2, 2, 1] +solution 1.3 0.64031 [1, 2, 1, 2, 1, 1, 2, 2, 0, 1] +solutions 0.7 0.78102 [1, 1, 2, 0, 1, 0, 2, 0, 0, 0] +solve 0.8 0.4 [0, 1, 1, 1, 1, 0, 1, 1, 1, 1] +solved 1.1 0.53852 [1, 2, 1, 0, 1, 1, 1, 2, 1, 1] +solves 1.1 0.7 [2, 0, 1, 0, 1, 2, 1, 2, 1, 1] +solving 1.4 0.8 [0, 3, 1, 2, 1, 1, 2, 1, 2, 1] +somber -1.8 0.6 [-1, -2, -2, -3, -2, -1, -2, -1, -2, -2] +son-of-a-bitch -2.7 0.64031 [-3, -3, -3, -1, -2, -3, -3, -3, -3, -3] +soothe 1.5 0.92195 [3, 2, 2, 1, 2, 0, 2, 0, 2, 1] +soothed 0.5 1.43178 [2, -3, 1, 1, 0, 1, 1, 1, 2, -1] +soothing 1.3 0.64031 [2, 1, 2, 1, 1, 1, 2, 0, 2, 1] +sophisticated 2.6 0.91652 [3, 4, 3, 3, 3, 1, 2, 1, 3, 3] +sore -1.5 0.5 [-2, -2, -2, -1, -1, -1, -2, -1, -1, -2] +sorrow -2.4 0.8 [-2, -2, -2, -1, -2, -3, -2, -4, -3, -3] +sorrowed -2.4 0.8 [-1, -2, -3, -3, -2, -3, -2, -4, -2, -2] +sorrower -2.3 0.78102 [-1, -2, -1, -3, -3, -2, -2, -3, -3, -3] +sorrowful -2.2 0.6 [-3, -3, -2, -2, -2, -2, -3, -1, -2, -2] +sorrowfully -2.3 0.64031 [-3, -3, -2, -1, -2, -2, -3, -2, -2, -3] +sorrowfulness -2.5 0.67082 [-4, -3, -2, -3, -2, -3, -2, -2, -2, -2] +sorrowing -1.7 1.26886 [-2, -2, 1, -1, -1, -2, -4, -3, -2, -1] +sorrows -1.6 0.66332 [-1, -1, -2, -1, -2, -2, -1, -2, -1, -3] +sorry -0.3 1.61555 [-1, 0, -1, -2, -1, -1, 4, 1, -1, -1] +soulmate 2.9 0.83066 [4, 2, 2, 2, 3, 4, 3, 3, 2, 4] +spam -1.5 1.0247 [-1, -1, -1, -2, 1, -2, -3, -2, -2, -2] +spammer -2.2 0.6 [-3, -2, -2, -1, -2, -3, -2, -2, -3, -2] +spammers -1.6 1.11355 [-2, -1, -2, -3, -2, -1, -2, -1, 1, -3] +spamming -2.1 0.83066 [-3, -3, -1, -3, -2, -1, -2, -2, -1, -3] +spark 0.9 1.04403 [0, 2, 1, 1, 0, 1, 3, -1, 1, 1] +sparkle 1.8 0.74833 [0, 2, 2, 2, 1, 2, 3, 2, 2, 2] +sparkles 1.3 1.18743 [3, 2, 0, 0, 3, 0, 2, 0, 1, 2] +sparkling 1.2 0.4 [1, 1, 1, 2, 1, 1, 1, 2, 1, 1] +special 1.7 0.78102 [3, 1, 3, 2, 2, 1, 1, 2, 1, 1] +speculative 0.4 1.11355 [1, -1, 1, 0, -1, -1, 1, 2, 2, 0] +spirit 0.7 1.00499 [0, 0, 1, 2, 3, 1, 0, 0, 0, 0] +spirited 1.3 1.00499 [1, 1, 0, 1, 1, 3, 2, 3, 0, 1] +spiritless -1.3 0.64031 [-2, -1, -1, -2, -2, -1, 0, -1, -2, -1] +spite -2.4 0.8 [-2, -2, -3, -2, -3, -2, -4, -1, -3, -2] +spited -2.4 0.91652 [-2, -3, -3, -4, -2, -1, -2, -1, -3, -3] +spiteful -1.9 1.75784 [-2, 3, -2, -3, -2, -3, -2, -2, -4, -2] +spitefully -2.3 0.78102 [-2, -2, -1, -3, -3, -2, -2, -2, -4, -2] +spitefulness -1.5 1.74642 [-3, -2, 1, -3, -3, -3, -2, 2, 0, -2] +spitefulnesses -2.3 0.9 [-1, -4, -2, -3, -3, -2, -2, -3, -1, -2] +spites -1.4 1.28062 [0, -2, -2, -3, -2, -1, 1, 0, -3, -2] +splendent 2.7 0.78102 [3, 2, 1, 3, 2, 3, 4, 3, 3, 3] +splendid 2.8 0.9798 [4, 2, 3, 4, 2, 2, 3, 1, 3, 4] +splendidly 2.1 1.22066 [1, 4, 1, 3, 3, 4, 1, 2, 1, 1] +splendidness 2.3 0.9 [2, 1, 3, 3, 4, 2, 1, 3, 2, 2] +splendiferous 2.6 1.95959 [4, 4, 3, -3, 3, 3, 4, 2, 3, 3] +splendiferously 1.9 1.3 [2, 4, 4, 3, 0, 1, 1, 1, 2, 1] +splendiferousness 1.7 1.18743 [1, 2, 3, 1, 2, 3, 3, 2, -1, 1] +splendor 3.0 0.63246 [3, 3, 3, 3, 3, 2, 4, 4, 3, 2] +splendorous 2.2 0.87178 [4, 2, 1, 2, 2, 3, 3, 1, 2, 2] +splendors 2.0 0.44721 [2, 2, 2, 2, 3, 2, 2, 2, 1, 2] +splendour 2.2 0.6 [2, 2, 2, 3, 3, 1, 2, 3, 2, 2] +splendours 2.2 1.249 [3, 0, 2, 1, 4, 3, 2, 4, 1, 2] +splendrous 2.2 1.16619 [4, 4, 3, 2, 1, 1, 3, 1, 2, 1] +sprightly 2.0 0.89443 [0, 2, 3, 2, 2, 1, 2, 3, 3, 2] +squelched -1.0 0.63246 [-1, -1, -1, -1, 0, -2, -1, 0, -1, -2] +stab -2.8 0.6 [-3, -2, -2, -3, -3, -3, -3, -2, -4, -3] +stabbed -1.9 1.22066 [-2, -1, -3, -2, -2, 1, -3, -3, -1, -3] +stable 1.2 0.74833 [1, 2, 2, 0, 1, 2, 1, 1, 2, 0] +stabs -1.9 1.13578 [-3, -3, -4, 0, -1, -2, -2, -2, -1, -1] +stall -0.8 0.74833 [-1, 0, -1, 0, -1, 0, -2, 0, -2, -1] +stalled -0.8 0.87178 [-2, -1, 0, -1, -1, 0, 1, -2, -1, -1] +stalling -0.8 1.4 [-3, -2, -1, -1, 0, 2, 1, -2, -1, -1] +stamina 1.2 0.9798 [1, 0, 3, 0, 1, 2, 2, 1, 2, 0] +stammer -0.9 0.3 [-1, 0, -1, -1, -1, -1, -1, -1, -1, -1] +stammered -0.9 0.7 [-2, -1, -1, -1, 1, -1, -1, -1, -1, -1] +stammerer -1.1 0.3 [-1, -2, -1, -1, -1, -1, -1, -1, -1, -1] +stammerers -0.8 0.4 [-1, -1, -1, -1, -1, 0, 0, -1, -1, -1] +stammering -1.0 0.63246 [-2, -1, 0, -1, -1, -2, 0, -1, -1, -1] +stammers -0.8 0.4 [-1, -1, -1, 0, -1, -1, -1, 0, -1, -1] +stampede -1.8 1.07703 [-2, -3, -2, -3, 0, 0, -2, -1, -2, -3] +stank -1.9 1.04403 [-2, -2, -2, -1, -2, -4, -3, 0, -1, -2] +startle -1.3 0.64031 [-1, -1, -1, -1, -1, -2, -1, -1, -3, -1] +startled -0.7 0.78102 [-2, -1, -1, 0, 1, -1, -1, 0, -1, -1] +startlement -0.5 1.20416 [-1, 0, 0, 1, -1, -1, 2, -2, -1, -2] +startlements 0.2 1.32665 [2, 2, 0, 0, -1, 2, 0, -2, -1, 0] +startler -0.8 0.74833 [-2, -1, -1, 0, 1, -1, -1, -1, -1, -1] +startlers -0.5 0.80623 [0, 0, 0, 0, -1, -1, -1, 1, -1, -2] +startles -0.5 1.36015 [-2, 2, -1, 0, 2, -1, -1, -2, -1, -1] +startling 0.3 1.41774 [-2, 2, -1, 0, -1, 2, -1, 1, 1, 2] +startlingly -0.3 0.9 [-1, -1, 0, -2, 1, 0, 1, 0, -1, 0] +starve -1.9 2.02237 [2, -3, -4, -1, -3, -4, -1, -2, 1, -4] +starved -2.6 1.11355 [-3, -4, -1, -3, -3, -4, -1, -1, -3, -3] +starves -2.3 0.78102 [-3, -2, -2, -3, -2, -3, -1, -1, -3, -3] +starving -1.8 2.03961 [-2, -2, -4, -4, -3, -3, 2, 2, -2, -2] +steadfast 1.0 1.0 [0, 0, 2, 1, 1, 2, 3, 0, 1, 0] +steal -2.2 0.6 [-2, -2, -2, -3, -3, -3, -1, -2, -2, -2] +stealable -1.7 1.00499 [-3, -1, -2, -1, -2, -1, -1, -1, -4, -1] +stealer -1.7 0.78102 [-2, -2, -1, -2, -3, -1, -2, -2, -2, 0] +stealers -2.2 0.74833 [-2, -2, -2, -4, -2, -2, -3, -1, -2, -2] +stealing -2.7 0.9 [-3, -2, -2, -4, -4, -3, -1, -3, -2, -3] +stealings -1.9 0.9434 [-2, -2, -1, -1, -1, -3, -4, -2, -1, -2] +steals -2.3 0.64031 [-4, -2, -2, -3, -2, -2, -2, -2, -2, -2] +stealth -0.3 1.34536 [-2, 1, 1, -1, 0, -3, 0, 1, -1, 1] +stealthier -0.3 1.00499 [0, 0, -3, 0, 0, 1, 0, -1, 0, 0] +stealthiest 0.4 2.10713 [-1, 2, 1, 1, 3, 4, -1, 0, -2, -3] +stealthily 0.1 1.37477 [2, 0, 0, -1, 1, 0, -3, 2, 0, 0] +stealthiness 0.2 0.74833 [1, 0, 0, -1, 1, 0, -1, 0, 1, 1] +stealths -0.3 0.78102 [-2, 0, 0, -1, 0, 1, -1, 0, 0, 0] +stealthy -0.1 0.7 [0, 0, 0, -1, 1, -1, -1, 0, 1, 0] +stench -2.3 0.64031 [-3, -2, -2, -3, -3, -1, -3, -2, -2, -2] +stenches -1.5 1.11803 [-2, -2, -1, -3, 0, 0, -3, -2, 0, -2] +stenchful -2.4 0.91652 [-3, -1, -3, -1, -2, -2, -3, -4, -2, -3] +stenchy -2.3 1.00499 [-4, -1, -2, -3, -1, -1, -2, -3, -3, -3] +stereotype -1.3 0.78102 [-1, -1, -2, 0, -2, 0, -2, -1, -2, -2] +stereotyped -1.2 0.4 [-1, -1, -2, -1, -2, -1, -1, -1, -1, -1] +stifled -1.4 0.66332 [-1, -1, -1, -1, -3, -1, -2, -2, -1, -1] +stimulate 0.9 0.83066 [1, 0, 1, 1, 1, 2, -1, 2, 1, 1] +stimulated 0.9 0.7 [1, 0, 0, 0, 1, 1, 2, 1, 2, 1] +stimulates 1.0 0.89443 [1, 0, 0, 0, 1, 1, 2, 1, 3, 1] +stimulating 1.9 0.7 [2, 3, 2, 1, 3, 2, 1, 2, 1, 2] +stingy -1.6 0.8 [-1, 0, -2, -2, -1, -1, -2, -2, -3, -2] +stink -1.7 0.64031 [-2, -2, -1, -3, -2, -1, -1, -2, -1, -2] +stinkard -2.3 0.9 [-2, -3, -3, -2, -3, -2, -3, -3, 0, -2] +stinkards -1.0 1.26491 [-2, -1, 2, -2, -1, -1, 0, -3, -1, -1] +stinkbug -0.2 0.4 [-1, 0, 0, 0, 0, 0, 0, 0, -1, 0] +stinkbugs -1.0 1.26491 [0, 0, 0, -4, -1, -2, -1, 0, -2, 0] +stinker -1.5 0.80623 [-3, -1, -3, -1, -1, -2, -1, -1, -1, -1] +stinkers -1.2 1.07703 [-3, 1, -1, -2, -2, -1, -1, -2, 0, -1] +stinkhorn -0.2 1.16619 [-2, -2, 0, 0, -1, 0, 1, 2, 0, 0] +stinkhorns -0.8 0.9798 [0, -3, 0, -2, 0, 0, -1, -1, -1, 0] +stinkier -1.5 1.0247 [-2, -1, -2, -2, -1, 1, -2, -1, -3, -2] +stinkiest -2.1 1.57797 [-1, -2, -3, -4, -2, -1, 1, -4, -1, -4] +stinking -2.4 0.91652 [-2, -4, -2, -3, -3, -1, -2, -1, -3, -3] +stinkingly -1.3 1.55242 [-2, -3, -3, -2, -2, 1, -2, 2, -1, -1] +stinko -1.5 0.80623 [-1, -2, -2, -2, 0, -1, -2, -1, -1, -3] +stinkpot -2.5 0.92195 [-4, -1, -3, -4, -2, -2, -3, -2, -2, -2] +stinkpots -0.7 1.26886 [-1, -3, -2, -1, 0, 2, 0, -1, 0, -1] +stinks -1.0 1.34164 [-2, -2, -1, -2, 2, -1, -2, 1, -1, -2] +stinkweed -0.4 1.0198 [-2, 0, -1, 0, 2, 0, -1, -1, 0, -1] +stinkwood -0.1 1.13578 [0, -2, 0, 0, 0, -2, 1, 0, 2, 0] +stinky -1.5 0.5 [-2, -1, -1, -2, -1, -1, -2, -2, -1, -2] +stolen -2.2 0.9798 [-3, -2, -2, -1, -3, -2, -3, 0, -3, -3] +stop -1.2 0.87178 [-1, 0, -2, -2, 0, -1, -2, -2, 0, -2] +stopped -0.9 0.53852 [-1, -1, -1, -1, -2, -1, -1, -1, 0, 0] +stopping -0.6 0.66332 [-1, 0, 0, -1, 0, 0, 0, -1, -2, -1] +stops -0.6 0.8 [-1, -1, 0, 0, -2, 0, -2, 0, 0, 0] +stout 0.7 1.34536 [2, 0, 3, 1, 2, 1, 0, 0, -2, 0] +straight 0.9 1.04403 [2, 0, 1, 0, 0, 0, 1, 2, 3, 0] +strain -0.2 0.9798 [0, 0, -2, 0, -1, 2, 0, -1, 0, 0] +strained -1.7 0.78102 [0, -2, -1, -1, -2, -2, -2, -3, -2, -2] +strainer -0.8 1.249 [2, -2, -1, 0, -1, 0, -2, 0, -2, -2] +strainers -0.3 0.45826 [0, 0, 0, 0, -1, -1, 0, -1, 0, 0] +straining -1.3 0.78102 [0, -3, -2, -1, -1, -1, -1, -1, -2, -1] +strains -1.2 0.4 [-1, -1, -1, -2, -1, -2, -1, -1, -1, -1] +strange -0.8 0.74833 [0, -1, -1, 0, -2, 0, -1, -2, 0, -1] +strangely -1.2 0.87178 [0, -1, -2, -2, 0, -3, -1, -1, -1, -1] +strangled -2.5 1.0247 [-1, -1, -3, -3, -3, -3, -1, -4, -3, -3] +strength 2.2 0.6 [1, 2, 2, 3, 2, 3, 3, 2, 2, 2] +strengthen 1.3 0.64031 [1, 1, 2, 1, 2, 1, 2, 0, 2, 1] +strengthened 1.8 0.4 [2, 2, 2, 2, 1, 2, 2, 1, 2, 2] +strengthener 1.8 0.6 [2, 0, 2, 2, 2, 2, 2, 2, 2, 2] +strengtheners 1.4 0.91652 [1, 2, 1, 2, 3, 0, 2, 0, 2, 1] +strengthening 2.2 0.74833 [3, 3, 1, 1, 2, 2, 2, 2, 3, 3] +strengthens 2.0 0.63246 [3, 2, 1, 2, 2, 3, 2, 1, 2, 2] +strengths 1.7 0.64031 [2, 1, 3, 1, 2, 1, 2, 1, 2, 2] +stress -1.8 0.6 [-1, -2, -2, -1, -2, -1, -2, -3, -2, -2] +stressed -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -1] +stresses -2.0 1.0 [-3, -3, -2, -1, -2, 0, -2, -1, -3, -3] +stressful -2.3 0.45826 [-2, -2, -2, -2, -3, -3, -2, -3, -2, -2] +stressfully -2.6 0.66332 [-2, -3, -1, -3, -3, -3, -3, -2, -3, -3] +stressing -1.5 0.67082 [-1, -2, -1, -1, -3, -1, -2, -2, -1, -1] +stressless 1.6 0.4899 [1, 2, 1, 2, 1, 2, 1, 2, 2, 2] +stresslessness 1.6 0.8 [1, 3, 1, 3, 2, 1, 2, 1, 1, 1] +stressor -1.8 0.74833 [-2, -1, -1, -2, -3, -2, -1, -2, -3, -1] +stressors -2.1 0.83066 [-3, -2, -2, -2, -3, -1, -3, -1, -1, -3] +stricken -2.3 0.9 [0, -2, -2, -2, -2, -3, -3, -3, -3, -3] +strike -0.5 1.11803 [0, 0, 0, -2, -2, 1, 1, -2, -1, 0] +strikers -0.6 1.0198 [0, 0, -2, -3, 0, 0, -1, 0, 0, 0] +strikes -1.5 0.92195 [0, -2, -2, -2, -3, -1, -2, -1, 0, -2] +strong 2.3 0.78102 [3, 2, 3, 3, 1, 1, 3, 2, 2, 3] +strongbox 0.7 0.78102 [2, 1, 0, 0, 0, 1, 2, 1, 0, 0] +strongboxes 0.3 0.64031 [0, 0, 0, 0, 0, 1, 0, 2, 0, 0] +stronger 1.6 0.66332 [2, 1, 1, 1, 2, 3, 2, 1, 2, 1] +strongest 1.9 0.9434 [2, 3, 2, 1, 2, 2, 0, 3, 1, 3] +stronghold 0.5 0.80623 [0, 2, 0, 0, 2, 0, 0, 0, 0, 1] +strongholds 1.0 0.89443 [2, 2, 0, 1, 2, 2, 1, 0, 0, 0] +strongish 1.7 0.78102 [1, 1, 2, 3, 1, 2, 1, 3, 2, 1] +strongly 1.1 0.83066 [0, 0, 2, 2, 0, 1, 2, 2, 1, 1] +strongman 0.7 1.00499 [0, 1, 3, 0, 1, -1, 1, 1, 0, 1] +strongmen 0.5 1.11803 [-1, 0, 0, 3, 0, 1, 0, 2, 0, 0] +strongyl 0.6 1.0198 [0, 1, 0, 0, 0, 0, 0, 2, 3, 0] +strongyles 0.2 1.07703 [0, -2, 1, 1, -1, 1, 0, 0, 2, 0] +strongyloidosis -0.8 1.66132 [-2, -3, 0, 0, -2, -2, 2, -2, 2, -1] +strongyls 0.1 0.3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] +struck -1.0 0.89443 [-1, -2, -1, 0, -2, -2, -1, -1, 1, -1] +struggle -1.3 0.45826 [-2, -1, -2, -1, -2, -1, -1, -1, -1, -1] +struggled -1.4 0.66332 [-2, -2, -1, -1, -1, -1, -2, -2, 0, -2] +struggler -1.1 0.7 [-1, -1, -1, -1, 0, -1, -2, -2, 0, -2] +strugglers -1.4 0.4899 [-1, -2, -1, -1, -2, -1, -2, -2, -1, -1] +struggles -1.5 0.5 [-2, -2, -1, -1, -1, -1, -2, -2, -1, -2] +struggling -1.8 0.6 [-2, -2, -2, -2, -1, -1, -2, -2, -3, -1] +stubborn -1.7 1.00499 [0, -1, -2, -2, -2, -4, -1, -2, -1, -2] +stubborner -1.5 1.20416 [-2, -3, -1, -1, -2, 1, -3, -2, 0, -2] +stubbornest -0.6 1.62481 [-2, 4, -2, -1, -1, 0, -1, -1, -1, -1] +stubbornly -1.4 0.4899 [-2, -2, -1, -2, -1, -1, -2, -1, -1, -1] +stubbornness -1.1 0.53852 [-1, -1, 0, -2, -1, -1, -1, -2, -1, -1] +stubbornnesses -1.5 0.80623 [-1, -2, -3, -1, -1, -3, -1, -1, -1, -1] +stuck -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -1, -1, -1, -2] +stunk -1.6 1.68523 [-2, -2, -3, 2, -2, -3, -3, 1, -1, -3] +stunned -0.4 1.28062 [-1, -3, -1, 0, -1, -1, 0, 2, 1, 0] +stunning 1.6 1.42829 [0, 0, 3, 2, 2, 4, 3, 0, 2, 0] +stuns 0.1 1.04403 [1, 0, -1, -2, 0, 1, 1, -1, 1, 1] +stupid -2.4 0.66332 [-2, -3, -3, -2, -3, -3, -2, -1, -2, -3] +stupider -2.5 0.5 [-3, -2, -3, -3, -2, -2, -3, -2, -3, -2] +stupidest -2.4 0.66332 [-2, -3, -2, -3, -1, -3, -3, -2, -2, -3] +stupidities -2.0 0.7746 [-2, -3, -2, -1, -3, -1, -3, -1, -2, -2] +stupidity -1.9 0.3 [-2, -2, -2, -2, -2, -2, -1, -2, -2, -2] +stupidly -2.0 0.7746 [-1, -2, -3, -3, -1, -3, -2, -1, -2, -2] +stupidness -1.7 0.64031 [-3, -1, -2, -1, -2, -1, -2, -2, -1, -2] +stupidnesses -2.6 0.8 [-2, -2, -2, -4, -4, -3, -3, -2, -2, -2] +stupids -2.3 0.64031 [-2, -3, -1, -3, -2, -3, -3, -2, -2, -2] +stutter -1.0 0.0 [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] +stuttered -0.9 1.04403 [-1, -1, 2, -1, -1, -1, -2, -2, -1, -1] +stutterer -1.0 1.18322 [-1, -1, 2, -1, -1, -1, -3, -2, -1, -1] +stutterers -1.1 0.53852 [-1, -1, -1, 0, -1, -1, -2, -2, -1, -1] +stuttering -1.3 0.9 [-1, -1, -1, 0, -3, -1, -1, -1, -3, -1] +stutters -1.0 0.63246 [-1, -1, -1, -2, 0, -2, 0, -1, -1, -1] +suave 2.0 0.44721 [2, 3, 2, 2, 2, 1, 2, 2, 2, 2] +submissive -1.3 0.9 [-1, 0, -1, -3, -1, 0, -1, -2, -2, -2] +submissively -1.0 1.18322 [-1, -1, -1, -1, 2, -1, -1, -2, -3, -1] +submissiveness -0.7 0.78102 [-2, 0, -1, 0, -1, 0, -2, 0, -1, 0] +substantial 0.8 0.6 [2, 0, 1, 1, 0, 0, 1, 1, 1, 1] +subversive -0.9 1.81384 [-3, 0, -4, -1, -2, -1, 2, -1, 2, -1] +succeed 2.2 0.74833 [2, 3, 2, 2, 2, 1, 2, 4, 2, 2] +succeeded 1.8 0.87178 [2, 2, 1, 2, 2, 0, 2, 3, 3, 1] +succeeder 1.2 1.07703 [1, 0, 0, 2, 2, 0, 0, 3, 2, 2] +succeeders 1.3 0.64031 [2, 0, 2, 1, 2, 1, 1, 1, 1, 2] +succeeding 2.2 1.16619 [2, 3, 0, 3, 4, 3, 1, 1, 2, 3] +succeeds 2.2 0.9798 [4, 1, 4, 1, 2, 2, 2, 2, 2, 2] +success 2.7 0.64031 [4, 3, 2, 2, 3, 2, 3, 3, 2, 3] +successes 2.6 0.66332 [2, 4, 3, 3, 2, 3, 2, 2, 3, 2] +successful 2.8 0.6 [3, 3, 2, 3, 4, 3, 3, 3, 2, 2] +successfully 2.2 0.6 [2, 2, 1, 2, 2, 2, 3, 3, 2, 3] +successfulness 2.7 0.78102 [3, 3, 4, 3, 3, 2, 3, 2, 1, 3] +succession 0.8 0.87178 [2, 0, 1, 2, 0, 2, 1, 0, 0, 0] +successional 0.9 1.04403 [0, 1, 0, 2, 3, 0, 0, 1, 2, 0] +successionally 1.1 1.13578 [2, 2, 0, 0, 0, 0, 2, 3, 0, 2] +successions 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] +successive 1.1 1.13578 [3, 0, 0, 1, 3, 2, 1, 0, 1, 0] +successively 0.9 1.04403 [1, 0, 0, 1, 3, 0, 2, 0, 2, 0] +successiveness 1.0 1.0 [0, 1, 2, 0, 3, 1, 1, 2, 0, 0] +successor 0.9 0.83066 [0, 2, 0, 0, 1, 2, 2, 1, 1, 0] +successors 1.1 1.04403 [2, 0, 1, 2, 0, 1, 3, 0, 2, 0] +suck -1.9 1.04403 [-1, -1, -1, -2, -1, -1, -3, -4, -3, -2] +sucked -2.0 0.89443 [-2, -2, -1, -1, -1, -3, -4, -2, -2, -2] +sucker -2.4 1.2 [-3, -1, -1, -2, -1, -4, -4, -2, -4, -2] +suckered -2.0 1.0 [-2, -1, -1, -3, -3, -1, -1, -2, -2, -4] +suckering -2.1 0.7 [-2, -3, -2, -1, -2, -3, -3, -2, -1, -2] +suckers -2.3 1.00499 [-2, -1, -2, -4, -1, -2, -3, -2, -4, -2] +sucks -1.5 1.28452 [-1, -2, -2, -1, -3, -4, -1, 1, -1, -1] +sucky -1.9 0.9434 [-1, -2, -2, -1, -2, -4, -1, -1, -3, -2] +suffer -2.5 0.67082 [-3, -3, -2, -2, -3, -3, -3, -2, -1, -3] +suffered -2.2 0.74833 [-3, -2, -1, -3, -2, -3, -1, -3, -2, -2] +sufferer -2.0 0.63246 [-3, -2, -2, -2, -2, -3, -1, -2, -2, -1] +sufferers -2.4 0.8 [-1, -3, -3, -2, -1, -2, -3, -3, -3, -3] +suffering -2.1 0.83066 [-2, -1, -3, -2, -1, -2, -3, -3, -1, -3] +suffers -2.1 0.7 [-3, -2, -1, -2, -2, -2, -3, -1, -3, -2] +suicidal -3.5 0.67082 [-4, -4, -4, -4, -3, -4, -3, -3, -2, -4] +suicide -3.5 0.67082 [-4, -3, -4, -4, -4, -2, -3, -4, -4, -3] +suing -1.1 1.13578 [1, -1, -1, 0, -1, -3, -1, -1, -3, -1] +sulking -1.5 0.67082 [-2, -1, -3, -1, -1, -2, -1, -2, -1, -1] +sulky -0.8 1.77764 [-3, 3, -2, -3, 0, -2, 0, -1, 1, -1] +sullen -1.7 1.00499 [0, -2, -2, -1, -1, -4, -2, -1, -2, -2] +sunnier 2.3 0.64031 [3, 2, 3, 2, 3, 2, 2, 1, 3, 2] +sunniest 2.4 1.28062 [2, 0, 4, 2, 1, 3, 2, 4, 4, 2] +sunny 1.8 0.87178 [2, 2, 1, 2, 0, 2, 3, 3, 2, 1] +sunshine 2.2 0.6 [3, 1, 2, 2, 2, 2, 2, 3, 3, 2] +sunshiny 1.9 0.7 [2, 2, 3, 1, 2, 2, 1, 3, 1, 2] +super 2.9 0.7 [4, 2, 4, 3, 3, 3, 2, 3, 2, 3] +superb 3.1 0.9434 [3, 4, 2, 4, 3, 1, 3, 3, 4, 4] +superior 2.5 1.11803 [2, 3, 1, 3, 3, 0, 3, 3, 4, 3] +superiorities 0.8 1.6 [-1, 1, 3, -1, -1, 2, 2, 1, 3, -1] +superiority 1.4 1.2 [0, 1, -1, 3, 1, 2, 2, 2, 3, 1] +superiorly 2.2 1.4 [4, 3, 1, 2, 3, -1, 2, 4, 2, 2] +superiors 1.0 1.0 [3, 0, 0, 1, 2, 1, 1, 2, 0, 0] +support 1.7 0.9 [1, 1, 1, 2, 1, 3, 3, 3, 1, 1] +supported 1.3 0.45826 [2, 1, 2, 1, 1, 2, 1, 1, 1, 1] +supporter 1.1 0.3 [1, 1, 1, 1, 1, 2, 1, 1, 1, 1] +supporters 1.9 0.7 [1, 1, 1, 2, 2, 3, 2, 2, 3, 2] +supporting 1.9 0.9434 [3, 2, 1, 1, 3, 3, 1, 1, 3, 1] +supportive 1.2 0.4 [1, 1, 1, 1, 1, 2, 2, 1, 1, 1] +supportiveness 1.5 1.11803 [3, 1, 2, 1, 3, 2, 2, 1, -1, 1] +supports 1.5 0.67082 [2, 1, 2, 0, 2, 2, 2, 1, 1, 2] +supremacies 0.8 1.72047 [3, -2, 3, 0, 0, 2, -1, 3, 0, 0] +supremacist 0.5 2.15639 [3, 2, -3, 1, 2, 2, 2, -2, 1, -3] +supremacists -1.0 1.89737 [-4, -2, -1, -3, -2, 2, 2, 0, 0, -2] +supremacy 0.2 1.77764 [-1, -2, 0, 3, 2, 0, -3, 0, 1, 2] +suprematists 0.4 1.56205 [2, 1, 0, 0, 2, 2, 2, -2, -1, -2] +supreme 2.6 1.11355 [2, 3, 2, 1, 4, 2, 1, 3, 4, 4] +supremely 2.7 1.00499 [2, 4, 1, 4, 2, 4, 2, 3, 2, 3] +supremeness 2.3 0.64031 [1, 2, 2, 3, 3, 2, 2, 3, 3, 2] +supremer 2.3 1.1 [4, 3, 3, 0, 1, 2, 3, 2, 3, 2] +supremest 2.2 1.98997 [4, 3, 1, 0, 4, 4, -2, 3, 1, 4] +supremo 1.9 1.3 [1, 0, 3, 0, 4, 3, 1, 3, 2, 2] +supremos 1.3 0.78102 [0, 2, 2, 1, 0, 2, 2, 1, 2, 1] +sure 1.3 0.64031 [1, 1, 3, 1, 1, 2, 1, 1, 1, 1] +surefire 1.0 0.7746 [1, 1, 0, 2, 2, 1, 0, 1, 2, 0] +surefooted 1.9 0.83066 [0, 3, 2, 2, 2, 2, 1, 2, 3, 2] +surefootedly 1.6 0.91652 [1, 1, 2, 0, 2, 1, 3, 3, 1, 2] +surefootedness 1.5 1.20416 [2, 1, 4, 1, 0, 3, 2, 1, 1, 0] +surely 1.9 0.7 [2, 2, 2, 1, 1, 1, 3, 2, 3, 2] +sureness 2.0 0.7746 [2, 3, 2, 1, 2, 1, 3, 3, 2, 1] +surer 1.2 1.32665 [1, 1, 3, 1, 3, 2, 1, -2, 1, 1] +surest 1.3 0.78102 [2, 0, 2, 2, 2, 1, 0, 1, 1, 2] +sureties 1.3 0.9 [2, 0, 2, 0, 2, 2, 1, 2, 0, 2] +surety 1.0 0.44721 [1, 1, 1, 1, 1, 0, 1, 1, 2, 1] +suretyship -0.1 1.51327 [-1, 0, 0, -2, -1, 2, -2, 3, 0, 0] +suretyships 0.4 0.66332 [0, 0, 0, 1, 0, 0, 1, 0, 0, 2] +surprisal 1.5 0.80623 [3, 1, 1, 2, 1, 2, 2, 1, 2, 0] +surprisals 0.7 1.1 [0, 0, 0, 0, 0, 0, 0, 2, 2, 3] +surprise 1.1 1.04403 [0, 2, 0, 2, 3, 0, 1, 1, 2, 0] +surprised 0.9 0.9434 [2, 0, 0, 0, 0, 2, 2, 1, 2, 0] +surpriser 0.6 0.66332 [2, 0, 0, 0, 0, 1, 1, 1, 1, 0] +surprisers 0.3 1.00499 [2, 0, 1, 1, 0, 0, -2, 1, 0, 0] +surprises 0.9 0.7 [2, 0, 0, 0, 1, 1, 2, 1, 1, 1] +surprising 1.1 0.9434 [1, 1, 1, 0, 0, 2, 0, 1, 3, 2] +surprisingly 1.2 0.87178 [1, 0, 2, 0, 0, 2, 2, 1, 2, 2] +survived 2.3 0.78102 [3, 4, 2, 2, 2, 1, 2, 3, 2, 2] +surviving 1.2 0.87178 [1, 3, 1, 0, 2, 0, 1, 1, 1, 2] +survivor 1.5 1.0247 [1, 3, 2, 3, 1, 0, 0, 1, 2, 2] +suspect -1.2 0.9798 [0, -1, -1, -2, -2, -2, 1, -1, -2, -2] +suspected -0.9 1.13578 [-1, 0, -1, -2, -1, -1, -2, 2, -2, -1] +suspecting -0.7 1.34536 [-1, 2, -1, -1, -1, 1, -2, -1, -3, 0] +suspects -1.4 0.91652 [-2, -2, -2, -1, -2, -1, -2, -2, 1, -1] +suspend -1.3 0.64031 [0, -2, -1, -2, -1, -1, -2, -1, -2, -1] +suspended -2.1 0.83066 [-2, -1, -2, -3, -3, -1, -3, -1, -2, -3] +suspicion -1.6 0.91652 [-2, -2, -1, -2, 1, -2, -2, -2, -2, -2] +suspicions -1.5 0.67082 [-1, -2, -1, -2, -1, -1, -3, -1, -2, -1] +suspicious -1.5 0.67082 [-1, -2, -1, -1, -2, -1, -2, -1, -3, -1] +suspiciously -1.7 0.45826 [-2, -2, -1, -2, -1, -2, -2, -1, -2, -2] +suspiciousness -1.2 1.46969 [-2, -3, -2, -1, -1, 1, 2, -2, -2, -2] +sux -1.5 0.92195 [-1, -1, -2, -1, -2, -1, -3, 0, -3, -1] +swear -0.2 1.53623 [-2, 2, -1, 1, 1, 0, -1, -2, 2, -2] +swearing -1.0 1.09545 [0, -2, -1, -1, -2, 0, 1, -3, -1, -1] +swears 0.2 1.4 [1, -2, 2, 0, 1, -2, -1, 2, 1, 0] +sweet 2.0 0.63246 [1, 2, 2, 2, 3, 3, 2, 1, 2, 2] +sweet<3 3.0 0.44721 [3, 3, 3, 3, 4, 2, 3, 3, 3, 3] +sweetheart 3.3 1.00499 [4, 1, 3, 4, 4, 4, 2, 3, 4, 4] +sweethearts 2.8 0.87178 [2, 2, 2, 4, 3, 2, 4, 3, 4, 2] +sweetie 2.2 0.6 [2, 3, 3, 2, 1, 3, 2, 2, 2, 2] +sweeties 2.1 0.9434 [1, 2, 2, 3, 2, 1, 2, 4, 3, 1] +sweetly 2.1 0.7 [1, 2, 2, 2, 2, 2, 1, 3, 3, 3] +sweetness 2.2 0.74833 [3, 2, 3, 1, 2, 2, 3, 3, 2, 1] +sweets 2.2 0.6 [2, 1, 3, 2, 2, 2, 3, 2, 3, 2] +swift 0.8 0.6 [1, 0, 1, 1, 0, 2, 0, 1, 1, 1] +swiftly 1.2 0.9798 [0, 3, 1, 0, 1, 1, 1, 3, 1, 1] +swindle -2.4 1.0198 [-1, -4, -1, -3, -3, -2, -2, -2, -4, -2] +swindles -1.5 0.92195 [0, -2, -2, -3, -2, -1, -1, 0, -2, -2] +swindling -2.0 1.0 [-2, -2, -2, -4, -1, 0, -3, -2, -2, -2] +sympathetic 2.3 0.64031 [3, 3, 2, 2, 3, 3, 2, 2, 1, 2] +sympathy 1.5 1.11803 [-1, 2, 3, 2, 1, 1, 1, 2, 1, 3] +talent 1.8 1.07703 [3, 1, 2, 2, 0, 3, 3, 2, 2, 0] +talented 2.3 0.64031 [1, 2, 2, 3, 2, 3, 3, 2, 3, 2] +talentless -1.6 0.4899 [-2, -2, -2, -1, -2, -1, -1, -1, -2, -2] +talents 2.0 1.18322 [2, 4, 1, 2, 0, 2, 4, 2, 2, 1] +tantrum -1.8 1.16619 [-3, -2, -2, -3, -1, 0, -1, 0, -3, -3] +tantrums -1.5 1.36015 [-1, -2, -4, -2, -2, -1, -1, 0, 1, -3] +tard -2.5 0.92195 [-3, -3, -3, -2, -2, -3, -1, -4, -1, -3] +tears -0.9 1.13578 [0, -2, -2, -1, -1, -2, -2, 1, 1, -1] +teas 0.3 0.45826 [1, 0, 0, 0, 0, 1, 0, 1, 0, 0] +tease -1.3 0.9 [0, -1, -1, -2, -1, 0, -3, -2, -1, -2] +teased -1.2 0.87178 [0, -2, -2, -1, -1, -1, 0, -3, -1, -1] +teasel -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] +teaseled -0.8 0.74833 [-1, 0, -1, 0, 0, -1, -2, -1, -2, 0] +teaseler -0.8 0.87178 [0, 0, -2, 0, 0, -1, -2, -1, -2, 0] +teaselers -1.2 1.249 [0, -3, 0, 0, 0, -3, -2, -2, -2, 0] +teaseling -0.4 0.91652 [-1, 0, -3, 0, 0, 0, 0, 0, 0, 0] +teaselled -0.4 0.91652 [0, -3, 0, 0, 0, 0, -1, 0, 0, 0] +teaselling -0.2 0.4 [0, 0, 0, 0, -1, 0, -1, 0, 0, 0] +teasels -0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, -1, 0] +teaser -1.0 1.18322 [0, -1, -3, -1, -1, -1, 0, -3, -1, 1] +teasers -0.7 1.1 [-1, -2, -3, -1, 0, 0, -1, 1, 0, 0] +teases -1.2 0.74833 [-1, -1, 0, -1, -2, -1, -3, -1, -1, -1] +teashops 0.2 0.4 [0, 1, 0, 1, 0, 0, 0, 0, 0, 0] +teasing -0.3 1.1 [0, 0, 1, 1, -1, 0, 0, 0, -1, -3] +teasingly -0.4 1.11355 [0, 1, 1, 0, -2, 0, -2, 0, -2, 0] +teaspoon 0.2 0.4 [0, 0, 0, 0, 0, 0, 1, 0, 1, 0] +teaspoonful 0.2 0.4 [0, 0, 0, 1, 0, 0, 1, 0, 0, 0] +teaspoonfuls 0.4 0.8 [2, 0, 0, 0, 0, 0, 0, 0, 2, 0] +teaspoons 0.5 0.80623 [0, 0, 0, 2, 0, 0, 1, 2, 0, 0] +teaspoonsful 0.3 0.9 [2, 0, 0, 0, 0, 2, 0, -1, 0, 0] +temper -1.8 0.4 [-1, -2, -2, -2, -2, -2, -2, -2, -1, -2] +tempers -1.3 0.64031 [-1, -1, 0, -1, -1, -2, -2, -2, -1, -2] +tendered 0.5 0.92195 [0, 0, 2, 1, -1, -1, 1, 1, 1, 1] +tenderer 0.6 0.66332 [0, 1, 1, 0, 0, 0, 2, 1, 1, 0] +tenderers 1.2 0.9798 [2, 0, 0, 1, 0, 2, 3, 1, 1, 2] +tenderest 1.4 1.56205 [2, 1, 3, -1, 0, 2, 2, 2, -1, 4] +tenderfeet -0.4 0.91652 [-1, -1, 0, 0, -1, 0, -1, -2, 1, 1] +tenderfoot -0.1 0.53852 [-1, 1, 0, 0, 0, 0, 0, -1, 0, 0] +tenderfoots -0.5 1.11803 [1, -1, 0, 0, 0, -1, -1, 1, -3, -1] +tenderhearted 1.5 1.0247 [2, 2, 1, 2, 3, 1, 1, -1, 2, 2] +tenderheartedly 2.7 0.64031 [2, 2, 2, 3, 3, 3, 3, 4, 3, 2] +tenderheartedness 0.7 1.48661 [1, 3, 2, 2, -1, -1, 1, -2, 1, 1] +tenderheartednesses 2.8 0.74833 [2, 3, 3, 2, 3, 3, 4, 4, 2, 2] +tendering 0.6 0.66332 [0, 0, 1, 1, 1, 0, 0, 1, 2, 0] +tenderization 0.2 0.74833 [-1, 2, 0, 0, 0, 1, 0, 0, 0, 0] +tenderize 0.1 0.53852 [0, 0, 0, 0, 0, -1, 0, 1, 0, 1] +tenderized 0.1 0.53852 [0, 1, 0, 1, 0, 0, -1, 0, 0, 0] +tenderizer 0.4 0.66332 [0, 1, 0, 1, 0, 0, 2, 0, 0, 0] +tenderizes 0.3 0.45826 [0, 1, 0, 1, 0, 0, 1, 0, 0, 0] +tenderizing 0.3 0.45826 [1, 1, 0, 0, 0, 1, 0, 0, 0, 0] +tenderloin -0.2 0.74833 [0, 0, 0, 0, -2, 0, 1, 0, -1, 0] +tenderloins 0.4 0.66332 [1, 0, 0, 0, 2, 0, 0, 1, 0, 0] +tenderly 1.8 0.74833 [2, 1, 2, 1, 3, 2, 1, 2, 3, 1] +tenderness 1.8 0.4 [2, 2, 1, 2, 2, 2, 2, 1, 2, 2] +tendernesses 0.9 1.44568 [1, 2, 1, 1, 3, -1, -2, 2, 2, 0] +tenderometer 0.2 0.4 [1, 0, 0, 0, 0, 1, 0, 0, 0, 0] +tenderometers 0.2 0.4 [0, 0, 1, 0, 0, 0, 0, 0, 1, 0] +tenders 0.6 0.8 [0, 2, 0, 1, 1, 1, -1, 0, 1, 1] +tense -1.4 0.4899 [-1, -1, -1, -1, -1, -2, -1, -2, -2, -2] +tensed -1.0 0.44721 [-1, 0, -1, -1, -1, -1, -2, -1, -1, -1] +tensely -1.2 0.6 [-1, -2, -2, -2, -1, 0, -1, -1, -1, -1] +tenseness -1.5 0.67082 [-1, -1, -1, -1, -1, -2, -2, -1, -2, -3] +tenser -1.5 0.67082 [-2, -2, -1, -2, -1, -1, -3, -1, -1, -1] +tenses -0.9 1.04403 [-1, -3, 0, 0, 0, -1, 0, -2, -2, 0] +tensest -1.2 1.07703 [-2, 0, -2, -2, -2, 0, 1, -1, -2, -2] +tensing -1.0 0.44721 [-1, -2, -1, 0, -1, -1, -1, -1, -1, -1] +tension -1.3 1.00499 [-2, -1, -1, -1, -1, -2, -2, -3, 1, -1] +tensional -0.8 0.74833 [-1, 0, -1, -1, -1, -2, 1, -1, -1, -1] +tensioned -0.4 1.11355 [-2, 0, -1, 2, -1, 0, -1, -1, -1, 1] +tensioner -1.6 0.8 [-1, -3, -2, -2, -2, 0, -1, -2, -1, -2] +tensioners -0.9 1.04403 [-1, 0, -2, -2, -1, 1, -2, 0, 0, -2] +tensioning -1.4 1.0198 [-1, -1, -1, -1, 0, -2, -3, -3, 0, -2] +tensionless 0.6 0.8 [1, 1, 1, -1, 0, 0, 0, 2, 1, 1] +tensions -1.7 0.78102 [-1, -3, -1, -1, -2, -2, -3, -1, -2, -1] +terrible -2.1 0.9434 [-1, -3, -2, -1, -3, -1, -2, -2, -4, -2] +terribleness -1.9 1.81384 [3, -3, -3, -3, -3, -1, -2, -1, -3, -3] +terriblenesses -2.6 0.4899 [-2, -3, -3, -2, -3, -2, -2, -3, -3, -3] +terribly -2.6 0.4899 [-3, -3, -3, -2, -2, -3, -3, -2, -2, -3] +terrific 2.1 1.81384 [4, 3, 4, 1, -1, -1, 4, 2, 2, 3] +terrifically 1.7 1.95192 [2, 2, 4, 2, 3, 3, -2, 3, -2, 2] +terrified -3.0 0.63246 [-2, -3, -3, -3, -4, -3, -4, -2, -3, -3] +terrifies -2.6 1.0198 [-2, -4, -3, -3, -4, -1, -2, -3, -1, -3] +terrify -2.3 0.78102 [-3, -3, -2, -2, -1, -4, -2, -2, -2, -2] +terrifying -2.7 0.78102 [-4, -3, -3, -2, -2, -2, -4, -2, -3, -2] +terror -2.4 1.2 [-3, -4, -2, -1, 0, -4, -3, -2, -2, -3] +terrorise -3.1 0.83066 [-2, -3, -4, -4, -3, -3, -2, -4, -2, -4] +terrorised -3.3 0.64031 [-3, -3, -4, -3, -2, -4, -4, -3, -4, -3] +terrorises -3.3 0.45826 [-3, -3, -4, -3, -3, -4, -4, -3, -3, -3] +terrorising -3.0 0.44721 [-3, -3, -3, -3, -2, -3, -4, -3, -3, -3] +terrorism -3.6 0.4899 [-4, -3, -4, -4, -4, -3, -3, -4, -3, -4] +terrorisms -3.2 0.6 [-4, -4, -4, -3, -3, -3, -2, -3, -3, -3] +terrorist -3.7 0.45826 [-4, -3, -4, -4, -4, -3, -4, -4, -3, -4] +terroristic -3.3 0.78102 [-4, -3, -2, -3, -4, -3, -4, -2, -4, -4] +terrorists -3.1 0.9434 [-3, -4, -2, -2, -4, -2, -2, -4, -4, -4] +terrorization -2.7 0.9 [-4, -4, -3, -2, -2, -4, -2, -2, -2, -2] +terrorize -3.3 0.78102 [-4, -4, -3, -3, -4, -2, -2, -4, -3, -4] +terrorized -3.1 0.7 [-2, -3, -2, -4, -4, -4, -3, -3, -3, -3] +terrorizes -3.1 0.53852 [-2, -3, -3, -4, -3, -4, -3, -3, -3, -3] +terrorizing -3.0 1.0 [-3, -1, -4, -4, -4, -3, -2, -3, -2, -4] +terrorless 0.9 1.04403 [-2, 2, 1, 2, 1, 1, 1, 1, 1, 1] +terrors -2.6 0.4899 [-2, -3, -3, -3, -2, -2, -3, -2, -3, -3] +thank 1.5 0.92195 [3, 1, 1, 0, 1, 1, 2, 3, 1, 2] +thanked 1.9 1.22066 [1, 3, 1, 1, 1, 1, 4, 4, 2, 1] +thankful 2.7 0.78102 [4, 2, 2, 3, 2, 4, 3, 3, 2, 2] +thankfuller 1.9 0.53852 [2, 2, 1, 2, 2, 2, 1, 2, 3, 2] +thankfullest 2.0 1.0 [3, 1, 1, 4, 1, 2, 2, 2, 3, 1] +thankfully 1.8 0.6 [2, 1, 2, 1, 2, 3, 2, 2, 1, 2] +thankfulness 2.1 1.44568 [3, 3, 4, 2, 2, 1, -1, 1, 2, 4] +thanks 1.9 1.04403 [1, 1, 1, 1, 3, 2, 1, 4, 3, 2] +thief -2.4 0.66332 [-3, -2, -2, -2, -2, -4, -2, -2, -3, -2] +thieve -2.2 0.4 [-2, -2, -2, -3, -2, -2, -3, -2, -2, -2] +thieved -1.4 1.28062 [-1, -2, -3, -1, -2, 2, -2, -1, -2, -2] +thieveries -2.1 0.53852 [-2, -3, -2, -3, -1, -2, -2, -2, -2, -2] +thievery -2.0 0.89443 [-2, -2, -2, -1, -1, -3, -1, -2, -4, -2] +thieves -2.3 0.78102 [-3, -2, -2, -4, -1, -2, -2, -2, -3, -2] +thorny -1.1 0.83066 [1, -1, -1, -1, -1, -1, -1, -2, -2, -2] +thoughtful 1.6 0.4899 [2, 2, 1, 1, 1, 1, 2, 2, 2, 2] +thoughtfully 1.7 0.64031 [2, 1, 1, 3, 1, 2, 1, 2, 2, 2] +thoughtfulness 1.9 0.53852 [1, 2, 1, 2, 2, 3, 2, 2, 2, 2] +thoughtless -2.0 0.63246 [-2, -1, -3, -3, -2, -1, -2, -2, -2, -2] +threat -2.4 0.66332 [-2, -3, -2, -2, -2, -4, -3, -2, -2, -2] +threaten -1.6 1.56205 [-4, -1, -3, -2, 1, -3, -1, 1, -2, -2] +threatened -2.0 0.63246 [-2, -2, -3, -2, -2, -1, -2, -3, -1, -2] +threatener -1.4 1.68523 [-2, -2, -3, -2, 3, 0, -2, -3, -1, -2] +threateners -1.8 0.74833 [-3, -1, -2, -1, -1, -3, -2, -2, -2, -1] +threatening -2.4 0.8 [-3, -3, -2, -3, -2, -1, -3, -1, -3, -3] +threateningly -2.2 0.6 [-2, -2, -2, -2, -2, -2, -2, -2, -4, -2] +threatens -1.6 1.56205 [-2, -2, -2, 1, -4, -3, -3, -1, 1, -1] +threating -2.0 0.44721 [-3, -2, -2, -2, -1, -2, -2, -2, -2, -2] +threats -1.8 0.74833 [-1, -1, -1, -2, -2, -2, -3, -3, -2, -1] +thrill 1.5 1.11803 [2, 2, 2, 0, 1, -1, 2, 3, 2, 2] +thrilled 1.9 1.81384 [3, -1, 3, 3, 1, -2, 3, 3, 3, 3] +thriller 0.4 1.2 [0, 0, 3, 1, 1, -2, 0, 1, 0, 0] +thrillers 0.1 0.83066 [0, 2, 0, 0, 0, -1, 0, -1, 0, 1] +thrilling 2.1 1.04403 [3, 0, 2, 3, 1, 3, 3, 2, 1, 3] +thrillingly 2.0 0.7746 [0, 2, 2, 3, 3, 2, 2, 2, 2, 2] +thrills 1.5 0.92195 [2, 3, 1, 2, 0, 2, 1, 0, 2, 2] +thwarted -0.1 1.75784 [1, -2, -3, 0, 2, 0, 2, -2, -1, 2] +thwarting -0.7 0.78102 [0, 0, -1, -1, -1, -2, 1, -1, -1, -1] +thwarts -0.4 1.28062 [-2, 0, 0, -2, 0, 1, 2, 0, -1, -2] +ticked -1.8 0.6 [-2, -1, -1, -2, -2, -1, -2, -2, -3, -2] +timid -1.0 0.44721 [-1, -1, -1, -1, 0, -1, -2, -1, -1, -1] +timider -1.0 0.44721 [-1, -2, -1, -1, -1, 0, -1, -1, -1, -1] +timidest -0.9 0.7 [0, -1, 0, -1, 0, -1, -1, -2, -1, -2] +timidities -0.7 0.64031 [-1, -1, -1, 0, -2, 0, -1, 0, 0, -1] +timidity -1.3 0.45826 [-1, -2, -1, -1, -1, -1, -2, -2, -1, -1] +timidly -0.7 0.78102 [0, -1, -1, -1, -1, 1, 0, -1, -2, -1] +timidness -1.0 0.89443 [-1, -2, -1, 0, -1, -2, 1, -2, -1, -1] +timorous -0.8 0.9798 [-2, -1, -1, -1, -1, -2, -1, 1, 1, -1] +tired -1.9 0.7 [-2, -1, -2, -3, -2, -3, -1, -1, -2, -2] +tits -0.9 0.53852 [-1, -1, -2, -1, -1, -1, 0, -1, 0, -1] +tolerance 1.2 1.53623 [2, 3, 2, 2, -2, 1, 1, 3, -1, 1] +tolerances 0.3 0.9 [-1, 1, 0, 0, 1, 2, 0, -1, 1, 0] +tolerant 1.1 0.53852 [1, 2, 1, 1, 1, 1, 1, 1, 0, 2] +tolerantly 0.4 1.2 [0, 1, 1, 1, 0, -3, 1, 1, 1, 1] +toothless -1.4 1.0198 [-1, -4, -1, -2, -1, 0, -1, -2, -1, -1] +top 0.8 0.87178 [1, 3, 1, 1, 1, 0, 0, 1, 0, 0] +tops 2.3 1.00499 [3, 3, 3, 0, 2, 2, 3, 3, 1, 3] +torn -1.0 1.0 [-1, -1, -1, 0, -1, -1, -3, -2, 1, -1] +torture -2.9 1.51327 [-4, -4, -3, -4, 1, -2, -3, -2, -4, -4] +tortured -2.6 1.0198 [-4, -1, -2, -2, -4, -3, -2, -2, -4, -2] +torturer -2.3 1.18743 [-4, -1, -1, -2, -4, -1, -2, -2, -4, -2] +torturers -3.5 0.67082 [-4, -4, -3, -3, -4, -4, -4, -2, -3, -4] +tortures -2.5 0.92195 [-2, -3, -2, -4, -1, -3, -2, -4, -2, -2] +torturing -3.0 0.89443 [-4, -4, -4, -2, -3, -2, -4, -2, -2, -3] +torturous -2.7 0.78102 [-3, -3, -1, -3, -4, -2, -2, -3, -3, -3] +torturously -2.2 1.6 [2, -3, -3, -2, -3, -2, -4, -3, -1, -3] +totalitarian -2.1 1.3 [0, -4, -3, 0, -3, -2, -3, -1, -2, -3] +totalitarianism -2.7 1.18743 [-2, -3, 0, -4, -2, -4, -4, -2, -3, -3] +tough -0.5 1.43178 [0, -2, 0, 0, 1, 2, -1, -2, -3, 0] +toughed 0.7 0.64031 [1, 1, 0, 1, 1, 0, 2, 1, 0, 0] +toughen 0.1 1.04403 [0, 0, 1, 0, 1, 0, 2, 0, -2, -1] +toughened 0.1 0.53852 [1, 0, 0, 0, 0, -1, 1, 0, 0, 0] +toughening 0.9 0.83066 [0, 2, 2, 1, 1, 0, 1, 0, 0, 2] +toughens -0.2 1.16619 [1, -1, 0, 1, 0, -2, -2, 1, -1, 1] +tougher 0.7 1.00499 [1, 1, -1, 0, 2, 0, 2, 2, 0, 0] +toughest -0.3 1.84662 [2, 1, -1, -3, 0, -2, 2, -2, 2, -2] +toughie -0.7 0.64031 [-1, 1, 0, -1, -1, -1, -1, -1, -1, -1] +toughies -0.6 0.66332 [-1, -1, -1, 0, 0, -1, 1, -1, -1, -1] +toughing -0.5 1.20416 [-1, 0, -2, 0, 0, -2, 2, 0, -2, 0] +toughish -1.0 1.0 [0, -1, 0, -2, -2, -1, 1, -2, -2, -1] +toughly -1.1 0.83066 [-1, 0, 0, -1, 0, -1, -2, -2, -2, -2] +toughness -0.2 1.07703 [0, 0, -1, -2, 0, 1, 1, 1, -2, 0] +toughnesses 0.3 1.18743 [1, 2, -1, 0, 1, 1, -2, 1, -1, 1] +toughs -0.8 1.16619 [0, 0, -1, 0, -1, -3, -2, 1, 0, -2] +toughy -0.5 1.11803 [-1, -2, -1, 0, -1, -1, 1, -1, 2, -1] +tout -0.5 0.67082 [-1, 0, -2, -1, 0, 0, -1, 0, 0, 0] +touted -0.2 0.9798 [-1, 2, 0, -2, -1, 0, 0, 0, 0, 0] +touting -0.7 0.64031 [0, 0, -1, -1, -1, -1, 0, -2, 0, -1] +touts -0.1 0.7 [1, 1, 0, -1, 0, -1, -1, 0, 0, 0] +tragedian -0.5 0.67082 [-2, 0, -1, 0, 0, -1, 0, -1, 0, 0] +tragedians -1.0 1.18322 [-1, 0, -2, -1, 0, -3, 0, 0, 0, -3] +tragedienne -0.4 0.4899 [0, 0, -1, -1, 0, 0, -1, -1, 0, 0] +tragediennes -1.4 1.28062 [0, -3, 0, -1, -3, 0, -2, -3, 0, -2] +tragedies -1.9 1.86815 [-3, -4, -2, 2, -3, -4, -2, 1, -2, -2] +tragedy -3.4 1.0198 [-4, -4, -4, -4, -2, -3, -1, -4, -4, -4] +tragic -2.0 1.94936 [-1, -3, -4, -3, -3, -4, -2, 1, 2, -3] +tragical -2.4 1.11355 [-3, -3, -3, -2, -1, -3, -4, -3, 0, -2] +tragically -2.7 1.48661 [-4, -4, -4, -2, -1, -4, -1, 0, -3, -4] +tragicomedy 0.2 0.9798 [0, -2, 0, 0, 0, 2, 1, 1, 0, 0] +tragicomic -0.2 0.74833 [0, -1, 1, 0, 0, 0, -2, 0, 0, 0] +tragics -2.2 0.74833 [-3, -2, -4, -1, -2, -2, -2, -2, -2, -2] +tranquil 0.2 1.77764 [2, 1, -1, 2, -3, 3, -1, 1, -1, -1] +tranquiler 1.9 0.7 [2, 1, 2, 2, 3, 3, 2, 2, 1, 1] +tranquilest 1.6 1.35647 [1, 2, 2, 2, 0, 2, -1, 4, 3, 1] +tranquilities 1.5 1.36015 [3, 2, 4, -1, 1, 0, 2, 2, 1, 1] +tranquility 1.8 1.16619 [3, 2, 1, 2, 3, 4, 1, 1, 1, 0] +tranquilize 0.3 1.00499 [0, -2, 1, -1, 1, 1, 1, 0, 1, 1] +tranquilized -0.2 1.32665 [-2, 0, 1, 0, 1, 2, 0, -2, -2, 0] +tranquilizer -0.1 0.9434 [0, 1, -1, 0, -1, 0, -2, 1, 1, 0] +tranquilizers -0.4 0.8 [0, 0, 0, -2, -1, -1, -1, 1, 0, 0] +tranquilizes -0.1 0.9434 [-2, 0, 1, 0, 1, 1, 0, -1, -1, 0] +tranquilizing -0.5 0.67082 [-1, 0, 0, -1, -1, -1, 1, 0, -1, -1] +tranquillest 0.8 1.4 [1, 1, 2, 3, 1, 1, 0, -1, -2, 2] +tranquillities 0.5 1.20416 [-2, 1, 2, 0, 2, 1, 0, -1, 1, 1] +tranquillity 1.8 1.07703 [1, 2, 2, 2, 3, 3, 2, -1, 2, 2] +tranquillized -0.2 1.07703 [0, 1, 0, 0, -3, 0, 1, 0, -1, 0] +tranquillizer -0.1 0.7 [0, 1, 0, 0, -1, 0, 1, 0, -1, -1] +tranquillizers -0.2 0.74833 [0, 0, 0, -2, 1, 0, 0, 0, -1, 0] +tranquillizes 0.1 0.7 [-1, -1, 0, 0, 1, 1, 1, 0, 0, 0] +tranquillizing 0.8 0.87178 [1, 2, 0, 2, 0, 0, 2, 0, 0, 1] +tranquilly 1.2 0.87178 [2, 2, 1, 2, -1, 2, 1, 1, 1, 1] +tranquilness 1.5 1.20416 [3, 3, 1, 2, 2, 2, 0, -1, 1, 2] +trap -1.3 0.78102 [-1, -1, -2, 0, -1, -1, -2, -1, -1, -3] +trapped -2.4 0.91652 [-3, -2, -3, -1, -3, -1, -2, -2, -4, -3] +trauma -1.8 1.249 [-2, -2, -3, -1, -2, 1, -2, -4, -1, -2] +traumas -2.2 1.6 [-3, -3, -2, -4, 0, -1, -4, -3, 1, -3] +traumata -1.7 1.34536 [-2, -3, -2, 0, -2, 1, -4, -2, -1, -2] +traumatic -2.7 1.00499 [-2, -4, -2, -1, -4, -3, -2, -3, -4, -2] +traumatically -2.8 0.6 [-4, -2, -3, -2, -2, -3, -3, -3, -3, -3] +traumatise -2.8 0.6 [-4, -3, -3, -2, -2, -3, -2, -3, -3, -3] +traumatised -2.4 0.91652 [-4, -4, -2, -2, -1, -2, -3, -2, -2, -2] +traumatises -2.2 0.87178 [-3, -4, -2, -2, -1, -2, -3, -1, -2, -2] +traumatising -1.9 1.86815 [-3, -3, -3, -1, -3, 1, -4, -2, 2, -3] +traumatism -2.4 0.4899 [-3, -2, -3, -2, -2, -2, -2, -3, -3, -2] +traumatization -3.0 1.0 [-4, -4, -4, -2, -2, -2, -4, -4, -2, -2] +traumatizations -2.2 1.16619 [-3, -2, -4, 0, -1, -2, -4, -2, -2, -2] +traumatize -2.4 0.66332 [-3, -3, -2, -4, -2, -2, -2, -2, -2, -2] +traumatized -1.7 1.41774 [-1, -2, -2, -2, 2, -4, -2, -2, -2, -2] +traumatizes -1.4 1.42829 [-2, -1, -2, -2, 2, -4, -1, -2, -1, -1] +traumatizing -2.3 1.61555 [-4, -2, -2, -3, -2, -4, -4, 1, 0, -3] +travesty -2.7 1.48661 [-3, -4, 0, -2, -4, -3, -4, 0, -3, -4] +treason -1.9 1.75784 [-3, -3, -2, -3, -3, 1, -2, -3, -3, 2] +treasonous -2.7 1.34536 [-3, -3, -3, -4, -3, -4, -2, 1, -3, -3] +treasurable 2.5 0.67082 [2, 3, 3, 3, 2, 4, 2, 2, 2, 2] +treasure 1.2 1.16619 [3, 1, 3, 2, 0, 2, 1, 0, 0, 0] +treasured 2.6 0.66332 [3, 3, 2, 3, 3, 2, 1, 3, 3, 3] +treasurer 0.5 0.67082 [1, 0, 0, 0, 1, 0, 0, 0, 1, 2] +treasurers 0.4 0.66332 [0, 0, 0, 0, 1, 1, 2, 0, 0, 0] +treasurership 0.4 0.66332 [0, 0, 2, 0, 1, 0, 1, 0, 0, 0] +treasurerships 1.2 0.87178 [2, 0, 2, 0, 2, 1, 2, 2, 1, 0] +treasures 1.8 1.32665 [3, 3, 0, 1, 1, 4, 0, 3, 2, 1] +treasuries 0.9 1.04403 [0, 0, 1, 3, 2, 2, 0, 1, 0, 0] +treasuring 2.1 0.7 [2, 1, 3, 1, 3, 2, 2, 2, 2, 3] +treasury 0.8 1.07703 [2, 3, 0, 0, 0, 0, 0, 1, 2, 0] +treat 1.7 0.78102 [2, 2, 2, 0, 2, 1, 3, 2, 1, 2] +tremble -1.1 1.3 [-2, 0, -1, -2, -2, -2, 2, 0, -2, -2] +trembled -1.1 1.22066 [-1, 1, -1, -2, -2, -1, -3, -2, 1, -1] +trembler -0.6 1.28062 [-2, -2, -1, 0, -1, 2, 1, -2, -1, 0] +tremblers -1.0 0.63246 [-2, 0, -1, -1, 0, -2, -1, -1, -1, -1] +trembles -0.1 1.51327 [-1, -2, -1, 0, -1, 2, 2, -2, 2, 0] +trembling -1.5 0.92195 [-3, 0, -1, -3, -1, -1, -1, -2, -1, -2] +trembly -1.2 0.87178 [-2, 0, -1, -2, -2, -1, 0, 0, -2, -2] +tremulous -1.0 1.09545 [-1, -2, -1, -1, -1, -1, 2, -2, -2, -1] +trick -0.2 1.32665 [-1, 1, -2, -2, -1, 2, 0, 1, 1, -1] +tricked -0.6 0.91652 [-1, -1, -1, -1, 2, 0, -1, -1, -1, -1] +tricker -0.9 0.83066 [-2, 0, -1, -1, 1, -2, -1, -1, -1, -1] +trickeries -1.2 1.46969 [-2, -2, -1, -2, -1, 2, 1, -2, -3, -2] +trickers -1.4 0.66332 [-1, -3, -1, -2, -2, -1, -1, -1, -1, -1] +trickery -1.1 1.51327 [1, -1, -1, -2, -3, -2, -3, 2, -1, -1] +trickie -0.4 1.0198 [1, -1, 0, -1, -1, 1, -2, -1, 1, -1] +trickier -0.7 0.78102 [-1, -1, -1, 0, 1, -1, -1, -1, 0, -2] +trickiest -1.2 0.6 [-2, -2, 0, -1, -2, -1, -1, -1, -1, -1] +trickily -0.8 0.74833 [0, 1, -1, -1, -1, -1, -1, -1, -2, -1] +trickiness -1.2 0.9798 [-2, -1, -1, -2, -1, -2, 1, 0, -2, -2] +trickinesses -0.4 1.0198 [0, 2, 0, -2, -1, -1, 0, 0, -1, -1] +tricking 0.1 1.37477 [0, -2, 2, -1, 2, -2, 0, 1, 1, 0] +trickish -1.0 0.44721 [-1, -2, 0, -1, -1, -1, -1, -1, -1, -1] +trickishly -0.7 1.55242 [-3, -2, -1, 2, -1, 2, -2, -1, 0, -1] +trickishness -0.4 1.28062 [-1, 1, -2, -1, -1, -1, 0, -2, 1, 2] +trickled 0.1 0.3 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] +trickledown -0.7 0.64031 [0, -1, 0, -1, -2, 0, 0, -1, -1, -1] +trickles 0.2 0.4 [0, 0, 0, 1, 0, 0, 0, 0, 1, 0] +trickling -0.2 0.9798 [0, 0, -1, -2, -1, 2, 0, 0, 0, 0] +trickly -0.3 0.45826 [0, 0, -1, 0, 0, 0, 0, -1, 0, -1] +tricks -0.5 0.67082 [0, 0, -1, -1, 1, -1, -1, 0, -1, -1] +tricksier -0.5 0.67082 [-1, -1, 1, 0, -1, 0, 0, -1, -1, -1] +tricksiness -1.0 0.89443 [0, 0, -1, -1, -1, 0, -1, -2, -3, -1] +trickster -0.9 0.83066 [-1, -2, 0, -1, -2, -1, -1, 1, -1, -1] +tricksters -1.3 0.9 [-1, -2, -1, -2, 1, -2, -2, -1, -1, -2] +tricksy -0.8 0.9798 [-1, -1, -2, -1, 2, -1, -1, -1, -1, -1] +tricky -0.6 0.66332 [0, 0, -1, -1, 1, -1, -1, -1, -1, -1] +trite -0.8 0.4 [-1, -1, 0, 0, -1, -1, -1, -1, -1, -1] +triumph 2.1 1.04403 [2, 4, 3, 3, 1, 3, 1, 2, 1, 1] +triumphal 2.0 0.63246 [2, 3, 3, 2, 1, 2, 1, 2, 2, 2] +triumphalisms 1.9 0.9434 [2, 1, 2, 2, 2, 0, 2, 2, 4, 2] +triumphalist 0.5 1.20416 [1, 1, 2, 2, -1, -2, 0, 1, 0, 1] +triumphalists 0.9 1.64012 [1, -1, 0, 0, 1, 3, -2, 3, 1, 3] +triumphant 2.4 0.91652 [2, 3, 3, 3, 4, 1, 2, 1, 3, 2] +triumphantly 2.3 1.00499 [3, 3, 3, 3, 1, 0, 3, 2, 2, 3] +triumphed 2.2 1.4 [2, 3, 3, 3, 4, 3, 1, 1, -1, 3] +triumphing 2.3 0.64031 [2, 2, 3, 2, 2, 3, 2, 3, 1, 3] +triumphs 2.0 1.41421 [3, 2, 3, 3, 3, 1, -1, 1, 1, 4] +trivial -0.1 0.83066 [0, -1, -1, 0, 1, 0, 1, -1, 1, -1] +trivialise -0.8 1.16619 [-3, -1, -2, 0, 1, -1, -1, 1, -1, -1] +trivialised -0.8 1.6 [-2, 0, -2, 1, -1, 0, 1, 1, -4, -2] +trivialises -1.1 0.53852 [-1, -1, -1, 0, -1, -1, -1, -2, -2, -1] +trivialising -1.4 0.66332 [-2, -1, -2, -1, 0, -1, -2, -1, -2, -2] +trivialities -1.0 0.63246 [-2, -2, -1, -1, -1, 0, 0, -1, -1, -1] +triviality -0.5 1.11803 [-1, -1, -2, 0, -1, -1, 2, -1, 1, -1] +trivialization -0.9 1.04403 [-1, 2, -1, -1, -2, -2, -1, -1, -1, -1] +trivializations -0.7 1.18743 [-2, -1, -1, -2, 1, -1, -1, -1, 2, -1] +trivialize -1.1 0.53852 [0, -2, -2, -1, -1, -1, -1, -1, -1, -1] +trivialized -0.6 0.8 [-1, -1, 0, 0, -1, -1, 1, -1, 0, -2] +trivializes -1.0 0.7746 [-1, -1, -1, 0, -1, 0, -1, -1, -1, -3] +trivializing -0.6 1.95959 [-1, -1, -2, -1, -1, 2, -2, -4, 1, 3] +trivially 0.4 1.56205 [-1, -1, -1, -1, 0, 3, 0, 2, 3, 0] +trivium -0.3 0.64031 [0, 0, -2, 0, 0, 0, 0, -1, 0, 0] +trouble -1.7 0.64031 [-2, -2, -1, -1, -3, -2, -1, -2, -1, -2] +troubled -2.0 0.44721 [-2, -2, -2, -1, -2, -3, -2, -2, -2, -2] +troublemaker -2.0 0.63246 [-3, -2, -3, -2, -2, -1, -1, -2, -2, -2] +troublemakers -2.2 0.74833 [-3, -3, -3, -1, -3, -1, -2, -2, -2, -2] +troublemaking -1.8 0.6 [-2, -1, -1, -2, -2, -2, -3, -2, -1, -2] +troubler -1.4 0.4899 [-1, -1, -2, -1, -1, -1, -2, -2, -2, -1] +troublers -1.9 0.3 [-2, -2, -2, -2, -1, -2, -2, -2, -2, -2] +troubles -2.0 0.44721 [-2, -2, -2, -1, -2, -3, -2, -2, -2, -2] +troubleshoot 0.8 0.9798 [0, 0, 0, 2, 2, 2, 2, 0, 0, 0] +troubleshooter 1.0 0.89443 [0, 0, 0, 1, 2, 2, 0, 1, 2, 2] +troubleshooters 0.8 0.87178 [0, 0, 1, 2, 0, 1, 0, 2, 2, 0] +troubleshooting 0.7 1.34536 [0, 2, 1, 1, -1, 2, 0, 2, -2, 2] +troubleshoots 0.5 0.92195 [1, -1, 0, 0, 0, 0, 1, 0, 2, 2] +troublesome -2.3 0.78102 [-3, -2, -3, -2, -3, -3, -1, -2, -1, -3] +troublesomely -1.8 0.6 [-3, -1, -2, -2, -1, -2, -2, -2, -2, -1] +troublesomeness -1.9 0.7 [-2, -1, -2, -3, -2, -3, -1, -2, -1, -2] +troubling -2.5 0.67082 [-3, -3, -3, -3, -1, -2, -3, -2, -3, -2] +troublous -2.1 0.53852 [-2, -2, -2, -2, -2, -3, -2, -3, -1, -2] +troublously -2.1 1.22066 [-2, -3, -3, -3, -2, -1, 1, -2, -3, -3] +trueness 2.1 0.9434 [2, 1, 1, 3, 3, 4, 2, 1, 2, 2] +truer 1.5 0.67082 [1, 2, 1, 2, 1, 1, 2, 1, 3, 1] +truest 1.9 0.83066 [2, 2, 2, 3, 3, 0, 2, 1, 2, 2] +truly 1.9 0.9434 [4, 3, 1, 2, 2, 1, 1, 1, 2, 2] +trust 2.3 1.26886 [0, 4, 3, 3, 4, 1, 2, 2, 1, 3] +trustability 2.1 0.7 [1, 3, 3, 2, 2, 2, 1, 3, 2, 2] +trustable 2.3 0.45826 [2, 2, 3, 2, 2, 3, 3, 2, 2, 2] +trustbuster -0.5 1.28452 [-3, -1, 0, 0, 0, 0, -2, 0, 2, -1] +trusted 2.1 0.9434 [3, 2, 2, 1, 4, 1, 2, 2, 3, 1] +trustee 1.0 0.89443 [2, 2, 0, 1, 1, 0, 2, 0, 2, 0] +trustees 0.3 0.64031 [0, 1, 0, 0, 2, 0, 0, 0, 0, 0] +trusteeship 0.5 0.67082 [0, 1, 1, 0, 0, 1, 0, 0, 2, 0] +trusteeships 0.6 1.0198 [3, 0, 0, 0, 0, 0, 0, 2, 1, 0] +truster 1.9 1.3 [2, 2, 1, 1, 4, 0, 3, 1, 4, 1] +trustful 2.1 0.9434 [1, 2, 2, 1, 2, 2, 1, 3, 3, 4] +trustfully 1.5 0.67082 [2, 1, 2, 1, 1, 3, 1, 2, 1, 1] +trustfulness 2.1 0.83066 [3, 2, 3, 2, 3, 2, 2, 2, 0, 2] +trustier 1.3 1.1 [1, 1, 1, 2, 0, 0, 3, 0, 3, 2] +trusties 1.0 0.7746 [1, 1, 0, 2, 1, 0, 2, 0, 1, 2] +trustiest 2.2 0.87178 [3, 2, 2, 3, 2, 2, 4, 1, 1, 2] +trustily 1.6 0.91652 [2, 0, 3, 1, 2, 1, 1, 1, 2, 3] +trustiness 1.6 0.91652 [2, 3, 0, 1, 2, 2, 2, 2, 0, 2] +trusting 1.7 1.00499 [3, 0, 1, 2, 3, 0, 2, 2, 2, 2] +trustingly 1.6 0.91652 [3, 1, 2, 3, 2, 2, 0, 1, 1, 1] +trustingness 1.6 1.2 [1, 2, 1, 3, 2, 1, 4, 2, 0, 0] +trustless -2.3 0.78102 [-2, -4, -3, -2, -2, -3, -2, -2, -1, -2] +trustor 0.4 0.66332 [2, 0, 0, 1, 0, 0, 0, 1, 0, 0] +trustors 1.2 0.87178 [0, 0, 2, 1, 1, 2, 2, 2, 0, 2] +trusts 2.1 0.53852 [2, 2, 2, 2, 1, 2, 2, 3, 2, 3] +trustworthily 2.3 0.9 [3, 1, 2, 2, 2, 1, 3, 4, 3, 2] +trustworthiness 1.8 0.74833 [2, 1, 3, 1, 2, 2, 1, 2, 3, 1] +trustworthy 2.6 0.91652 [3, 2, 3, 4, 2, 4, 2, 3, 1, 2] +trusty 2.2 0.74833 [3, 2, 3, 1, 2, 2, 3, 2, 1, 3] +truth 1.3 1.00499 [2, 1, 0, 1, 1, 0, 3, 3, 1, 1] +truthful 2.0 0.63246 [2, 2, 1, 3, 3, 2, 1, 2, 2, 2] +truthfully 1.9 1.04403 [3, 1, 3, 0, 2, 1, 3, 2, 1, 3] +truthfulness 1.7 1.1 [3, 2, 2, 2, 1, -1, 3, 2, 2, 1] +truths 1.8 0.87178 [0, 1, 1, 3, 2, 2, 3, 2, 2, 2] +tumor -1.6 1.49666 [-3, -2, -2, -1, -2, 1, -4, 1, -2, -2] +turmoil -1.5 0.92195 [-1, -1, -3, -3, -2, -2, -1, -1, 0, -1] +twat -3.4 0.91652 [-3, -4, -4, -4, -3, -1, -4, -4, -3, -4] +ugh -1.8 0.9798 [-1, -1, -1, -1, -1, -2, -4, -2, -3, -2] +uglier -2.2 0.87178 [-2, -2, -1, -3, -4, -1, -3, -2, -2, -2] +uglies -2.0 0.89443 [-2, -2, -1, -3, -4, -1, -2, -2, -1, -2] +ugliest -2.8 0.74833 [-3, -3, -4, -3, -3, -3, -3, -3, -1, -2] +uglification -2.2 0.87178 [-3, -1, -2, -2, -1, -2, -4, -3, -2, -2] +uglified -1.5 0.67082 [-1, -1, -3, -2, -2, -1, -1, -1, -2, -1] +uglifies -1.8 0.74833 [-1, -1, -3, -2, -3, -1, -2, -2, -2, -1] +uglify -2.1 0.9434 [-3, -3, -1, -4, -2, -2, -1, -2, -1, -2] +uglifying -2.2 0.4 [-3, -2, -2, -2, -2, -2, -2, -2, -3, -2] +uglily -2.1 0.3 [-3, -2, -2, -2, -2, -2, -2, -2, -2, -2] +ugliness -2.7 0.9 [-4, -2, -3, -2, -4, -2, -4, -2, -2, -2] +uglinesses -2.5 1.0247 [-3, -3, -2, -1, -1, -3, -2, -2, -4, -4] +ugly -2.3 0.9 [-3, -2, -1, -2, -4, -1, -3, -2, -2, -3] +unacceptable -2.0 0.44721 [-2, -2, -1, -2, -2, -2, -2, -3, -2, -2] +unappreciated -1.7 0.78102 [-1, -3, -2, -1, -1, -1, -2, -1, -2, -3] +unapproved -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -1] +unattractive -1.9 0.53852 [-1, -2, -3, -2, -1, -2, -2, -2, -2, -2] +unaware -0.8 0.4 [-1, -1, -1, 0, -1, -1, 0, -1, -1, -1] +unbelievable 0.8 1.6 [0, 0, 1, -2, 1, 3, 1, 0, 4, 0] +unbelieving -0.8 0.4 [0, -1, -1, -1, -1, -1, -1, 0, -1, -1] +unbiased -0.1 1.22066 [-2, -1, 2, 1, 0, -1, -1, 1, 1, -1] +uncertain -1.2 0.6 [-2, -1, -2, -1, -1, -1, 0, -1, -2, -1] +uncertainly -1.4 0.4899 [-2, -1, -1, -1, -2, -1, -1, -2, -2, -1] +uncertainness -1.3 0.45826 [-2, -2, -1, -1, -1, -1, -1, -2, -1, -1] +uncertainties -1.4 0.66332 [-3, -2, -1, -1, -1, -1, -1, -2, -1, -1] +uncertainty -1.4 0.4899 [-1, -1, -2, -1, -2, -1, -2, -1, -2, -1] +unclear -1.0 0.44721 [-2, -1, 0, -1, -1, -1, -1, -1, -1, -1] +uncomfortable -1.6 0.4899 [-2, -1, -2, -1, -1, -2, -2, -1, -2, -2] +uncomfortably -1.7 0.64031 [-2, -1, -3, -1, -1, -2, -2, -1, -2, -2] +uncompelling -0.9 0.7 [0, -2, -1, 0, -1, -1, -1, 0, -1, -2] +unconcerned -0.9 0.83066 [-2, -2, -1, 1, -1, -1, -1, 0, -1, -1] +unconfirmed -0.5 0.67082 [0, -1, 0, -1, 0, -1, 0, 0, -2, 0] +uncontrollability -1.7 0.45826 [-1, -1, -2, -2, -2, -2, -1, -2, -2, -2] +uncontrollable -1.5 1.11803 [-2, -1, -1, -2, -1, -1, 1, -2, -3, -3] +uncontrollably -1.5 0.67082 [-2, -1, 0, -2, -1, -1, -2, -2, -2, -2] +uncontrolled -1.0 0.7746 [-1, 0, -1, -2, -1, 0, -1, -2, -2, 0] +unconvinced -1.6 0.8 [-2, -3, -1, -2, -1, 0, -2, -2, -1, -2] +uncredited -1.0 1.09545 [-1, -2, -2, 2, -1, -2, -1, -1, -1, -1] +undecided -0.9 0.9434 [-1, 0, -1, 0, -1, -1, -2, 0, -3, 0] +underestimate -1.2 0.4 [-1, -2, -1, -1, -1, -1, -1, -1, -2, -1] +underestimated -1.1 0.53852 [-1, -1, -1, -2, 0, -1, -2, -1, -1, -1] +underestimates -1.1 1.64012 [-2, -4, -1, -1, -1, -1, 3, -1, -2, -1] +undermine -1.2 1.16619 [-2, -2, -1, -1, -1, -1, 2, -2, -2, -2] +undermined -1.5 0.67082 [-1, -2, -1, -3, -1, -1, -1, -2, -2, -1] +undermines -1.4 0.4899 [-1, -2, -1, -2, -1, -1, -1, -2, -2, -1] +undermining -1.5 0.67082 [-1, -3, -1, -2, -2, -1, -1, -1, -2, -1] +undeserving -1.9 0.3 [-2, -2, -1, -2, -2, -2, -2, -2, -2, -2] +undesirable -1.9 0.7 [-1, -2, -3, -1, -3, -2, -1, -2, -2, -2] +unease -1.7 0.64031 [-2, -2, -2, -1, -1, -2, -1, -3, -1, -2] +uneasier -1.4 0.4899 [-1, -1, -1, -2, -2, -1, -2, -2, -1, -1] +uneasiest -2.1 0.83066 [-1, -4, -3, -2, -2, -2, -2, -2, -1, -2] +uneasily -1.4 1.0198 [-2, -2, -1, -1, -2, 1, -3, -1, -2, -1] +uneasiness -1.6 0.4899 [-2, -2, -1, -2, -1, -1, -2, -2, -1, -2] +uneasinesses -1.8 0.87178 [-2, -1, -4, -1, -1, -2, -2, -2, -1, -2] +uneasy -1.6 0.4899 [-1, -2, -2, -1, -1, -2, -2, -1, -2, -2] +unemployment -1.9 0.7 [-2, -1, -2, -3, -1, -2, -1, -2, -2, -3] +unequal -1.4 0.66332 [-1, -2, -2, -2, -1, -1, -2, 0, -2, -1] +unequaled 0.5 1.80278 [-2, 3, 0, 3, 3, 0, 0, 0, -2, 0] +unethical -2.3 0.78102 [-3, -3, -1, -2, -2, -2, -3, -1, -3, -3] +unfair -2.1 0.83066 [-1, -3, -3, -2, -3, -1, -2, -3, -1, -2] +unfocused -1.7 0.64031 [-2, -1, -2, -1, -1, -2, -3, -2, -1, -2] +unfortunate -2.0 0.63246 [-2, -2, -2, -3, -3, -1, -2, -1, -2, -2] +unfortunately -1.4 0.91652 [-2, -1, -2, -2, 1, -2, -1, -1, -2, -2] +unfortunates -1.9 0.7 [-2, -3, -1, -1, -2, -2, -2, -1, -3, -2] +unfriendly -1.5 0.5 [-1, -2, -1, -2, -1, -2, -2, -2, -1, -1] +unfulfilled -1.8 0.4 [-2, -2, -2, -2, -1, -2, -2, -1, -2, -2] +ungrateful -2.0 0.0 [-2, -2, -2, -2, -2, -2, -2, -2, -2, -2] +ungratefully -1.8 0.6 [-2, -2, -1, -2, -2, -1, -3, -1, -2, -2] +ungratefulness -1.6 0.4899 [-2, -2, -2, -2, -1, -1, -1, -2, -2, -1] +unhappier -2.4 0.8 [-2, -2, -1, -4, -3, -3, -2, -2, -2, -3] +unhappiest -2.5 0.80623 [-3, -4, -3, -2, -1, -3, -2, -2, -2, -3] +unhappily -1.9 0.53852 [-2, -1, -2, -2, -3, -2, -1, -2, -2, -2] +unhappiness -2.4 0.66332 [-3, -2, -2, -3, -2, -2, -3, -1, -3, -3] +unhappinesses -2.2 0.87178 [-3, -4, -2, -2, -2, -2, -1, -2, -1, -3] +unhappy -1.8 0.6 [-2, -2, -1, -3, -2, -2, -2, -1, -2, -1] +unhealthy -2.4 0.66332 [-1, -2, -3, -3, -2, -3, -3, -2, -2, -3] +unified 1.6 0.66332 [1, 2, 2, 1, 2, 1, 2, 1, 3, 1] +unimportant -1.3 0.45826 [-1, -1, -2, -1, -1, -2, -1, -1, -2, -1] +unimpressed -1.4 0.66332 [-1, -1, -1, -2, -1, -2, -1, -1, -3, -1] +unimpressive -1.4 0.4899 [-1, -2, -2, -1, -1, -2, -2, -1, -1, -1] +unintelligent -2.0 1.18322 [-1, -2, -3, -1, -1, -4, -1, -1, -4, -2] +uninvolved -2.2 0.9798 [-2, -1, -3, -2, -1, -3, -1, -2, -4, -3] +uninvolving -2.0 1.18322 [-4, -1, -3, -2, -1, -4, -1, -1, -2, -1] +united 1.8 0.6 [1, 2, 2, 2, 1, 2, 2, 1, 2, 3] +unjust -2.3 0.45826 [-3, -3, -2, -2, -2, -2, -3, -2, -2, -2] +unkind -1.6 0.66332 [-2, -2, -1, -1, -1, -2, -3, -1, -1, -2] +unlovable -2.7 0.9 [-4, -2, -1, -3, -3, -3, -4, -2, -3, -2] +unloved -1.9 0.53852 [-1, -2, -2, -1, -2, -2, -3, -2, -2, -2] +unlovelier -1.9 0.7 [-2, -2, -1, -3, -1, -2, -1, -3, -2, -2] +unloveliest -1.9 0.83066 [-2, -4, -2, -2, -1, -1, -1, -2, -2, -2] +unloveliness -2.0 0.89443 [-2, -3, -1, -1, -3, -1, -3, -2, -3, -1] +unlovely -2.1 0.53852 [-2, -3, -2, -3, -1, -2, -2, -2, -2, -2] +unloving -2.3 0.45826 [-2, -3, -2, -3, -2, -2, -2, -3, -2, -2] +unmatched -0.3 2.0025 [0, -1, 2, 3, 0, -1, -3, 0, -4, 1] +unmotivated -1.4 0.4899 [-2, -2, -1, -1, -1, -2, -2, -1, -1, -1] +unpleasant -2.1 0.53852 [-2, -2, -3, -3, -2, -2, -2, -2, -1, -2] +unprofessional -2.3 0.78102 [-2, -1, -3, -3, -2, -1, -3, -2, -3, -3] +unprotected -1.5 0.67082 [-2, -2, -1, -1, -3, -1, -1, -2, -1, -1] +unresearched -1.1 0.7 [-2, -1, -1, -1, -1, -2, -2, 0, 0, -1] +unsatisfied -1.7 0.64031 [-2, -1, -2, -1, -1, -2, -3, -1, -2, -2] +unsavory -1.9 0.53852 [-2, -1, -2, -2, -2, -3, -1, -2, -2, -2] +unsecured -1.6 0.4899 [-1, -2, -2, -1, -1, -2, -1, -2, -2, -2] +unsettled -1.3 0.45826 [-1, -1, -1, -2, -2, -1, -2, -1, -1, -1] +unsophisticated -1.2 0.87178 [-1, -1, -1, -2, -2, -2, -1, -2, 1, -1] +unstable -1.5 0.5 [-2, -2, -1, -2, -1, -1, -1, -2, -2, -1] +unstoppable -0.8 1.77764 [0, -4, 2, 0, 1, -2, -2, 0, -3, 0] +unsuccessful -1.5 0.5 [-2, -1, -1, -2, -2, -1, -1, -1, -2, -2] +unsuccessfully -1.7 0.78102 [-2, -2, -1, -1, -1, -2, -3, -3, -1, -1] +unsupported -1.7 0.78102 [-2, 0, -3, -2, -2, -1, -2, -2, -1, -2] +unsure -1.0 0.44721 [-1, -1, -1, -1, 0, -2, -1, -1, -1, -1] +unsurely -1.3 0.78102 [-1, 0, -1, -1, -1, -3, -1, -2, -2, -1] +untarnished 1.6 1.35647 [3, 2, 2, 1, 1, 2, -2, 3, 2, 2] +unwanted -0.9 1.3 [-1, -2, -2, -1, -2, 1, 2, -1, -2, -1] +unwelcome -1.7 0.45826 [-2, -2, -2, -1, -1, -2, -2, -1, -2, -2] +unworthy -2.0 0.44721 [-3, -2, -2, -2, -2, -2, -1, -2, -2, -2] +upset -1.6 0.4899 [-1, -1, -2, -2, -1, -1, -2, -2, -2, -2] +upsets -1.5 0.67082 [-2, -3, -1, -1, -1, -1, -2, -2, -1, -1] +upsetter -1.9 0.7 [-2, -2, -1, -1, -3, -2, -3, -1, -2, -2] +upsetters -2.0 0.63246 [-3, -3, -1, -2, -2, -2, -2, -2, -1, -2] +upsetting -2.1 0.53852 [-2, -3, -2, -3, -2, -1, -2, -2, -2, -2] +uptight -1.6 0.4899 [-2, -1, -2, -1, -1, -2, -2, -1, -2, -2] +uptightness -1.2 0.4 [-1, -2, -1, -2, -1, -1, -1, -1, -1, -1] +urgent 0.8 1.16619 [3, -1, 0, 1, 1, 0, 0, 0, 2, 2] +useful 1.9 0.83066 [2, 1, 1, 2, 2, 4, 2, 1, 2, 2] +usefully 1.8 0.6 [2, 2, 1, 3, 1, 2, 1, 2, 2, 2] +usefulness 1.2 1.32665 [3, 1, 3, -1, 2, 2, 1, 1, -1, 1] +useless -1.8 0.4 [-2, -1, -2, -2, -1, -2, -2, -2, -2, -2] +uselessly -1.5 0.67082 [-2, -3, -1, -1, -1, -1, -2, -2, -1, -1] +uselessness -1.6 0.8 [-3, -2, -2, -2, -1, -2, 0, -1, -1, -2] +v.v -2.9 0.9434 [-3, -3, -4, -3, -1, -3, -4, -2, -4, -2] +vague -0.4 0.8 [0, -1, -1, -1, 0, -1, 1, -1, 1, -1] +vain -1.8 0.6 [-2, -1, -2, -3, -2, -1, -1, -2, -2, -2] +validate 1.5 0.92195 [1, 2, 1, 1, 1, 3, 1, 3, 0, 2] +validated 0.9 0.83066 [2, 1, 0, 1, 1, 0, 2, 0, 0, 2] +validates 1.4 0.66332 [1, 1, 1, 2, 3, 1, 2, 1, 1, 1] +validating 1.4 0.8 [2, 2, 1, 3, 0, 2, 1, 1, 1, 1] +valuable 2.1 0.83066 [3, 2, 4, 2, 2, 2, 2, 1, 1, 2] +valuableness 1.7 0.78102 [2, 2, 1, 3, 3, 2, 1, 1, 1, 1] +valuables 2.1 0.83066 [4, 1, 2, 2, 3, 2, 1, 2, 2, 2] +valuably 2.3 1.00499 [3, 4, 4, 1, 2, 2, 2, 2, 1, 2] +value 1.4 1.11355 [2, 3, 0, 1, 1, 3, 0, 2, 0, 2] +valued 1.9 0.7 [3, 1, 2, 1, 2, 2, 2, 3, 2, 1] +values 1.7 1.18743 [2, 2, 2, 4, 0, 1, 0, 1, 3, 2] +valuing 1.4 0.91652 [1, 0, 3, 2, 2, 2, 2, 0, 1, 1] +vanity -0.9 1.7 [-2, -3, -3, 0, -2, -1, 2, 2, -1, -1] +verdict 0.6 0.91652 [0, 0, 0, 0, 0, 0, 0, 2, 2, 2] +verdicts 0.3 1.1 [0, 0, 0, 0, 2, 2, 0, -2, 1, 0] +vested 0.6 1.28062 [2, -2, 1, 3, 1, 0, 0, 1, 0, 0] +vexation -1.9 1.04403 [0, -2, -3, -3, -2, -2, -2, -3, 0, -2] +vexing -2.0 0.44721 [-2, -2, -2, -1, -2, -2, -2, -3, -2, -2] +vibrant 2.4 0.8 [2, 3, 1, 1, 3, 3, 3, 2, 3, 3] +vicious -1.5 1.5 [1, -2, -3, -1, -1, -3, 1, -3, -1, -3] +viciously -1.3 1.26886 [-2, -3, -1, -2, -2, -1, -1, 2, -1, -2] +viciousness -2.4 1.35647 [-3, -1, -4, -2, -3, -3, 1, -3, -3, -3] +viciousnesses -0.6 1.62481 [0, -1, -1, -3, 0, -3, 2, 1, 1, -2] +victim -1.1 1.92094 [-1, -2, 2, -3, -3, -2, -3, 1, 2, -2] +victimhood -2.0 0.44721 [-2, -2, -2, -2, -2, -1, -3, -2, -2, -2] +victimhoods -0.9 1.37477 [-1, 0, -1, 1, -2, -1, -4, 1, -1, -1] +victimise -1.1 1.92094 [-3, -3, -2, -2, -1, 2, -2, 1, -3, 2] +victimised -1.5 1.56525 [-2, -2, -2, 1, -3, 2, -2, -3, -2, -2] +victimises -1.2 2.31517 [-3, -3, -4, 2, -2, -2, 1, 2, 1, -4] +victimising -2.5 0.67082 [-3, -1, -3, -2, -2, -3, -3, -2, -3, -3] +victimization -2.3 0.78102 [-1, -3, -3, -2, -3, -1, -3, -2, -3, -2] +victimizations -1.5 1.85742 [-2, -3, -3, -1, -2, 2, 2, -2, -3, -3] +victimize -2.5 0.67082 [-3, -2, -4, -2, -2, -2, -2, -3, -3, -2] +victimized -1.8 1.53623 [-2, -1, -3, -3, -3, 1, 1, -2, -3, -3] +victimizer -1.8 1.72047 [-3, -2, -3, -3, -2, 2, 1, -2, -3, -3] +victimizers -1.6 1.68523 [-3, -2, -3, 1, -3, -1, -2, 2, -2, -3] +victimizes -1.5 1.9105 [-2, -1, -4, -3, -2, 2, 2, -2, -3, -2] +victimizing -2.6 0.4899 [-2, -3, -3, -3, -2, -3, -2, -3, -2, -3] +victimless 0.6 0.4899 [0, 1, 0, 1, 1, 0, 0, 1, 1, 1] +victimologies -0.6 1.35647 [-2, 0, -2, -1, 0, 2, 1, 0, -2, -2] +victimologist -0.5 0.67082 [0, -1, -1, 0, 0, 0, 0, -1, -2, 0] +victimologists -0.4 0.91652 [0, 1, 0, -2, -2, 0, 0, 0, -1, 0] +victimology 0.3 1.00499 [0, 0, 0, -1, 0, 1, 0, 0, 3, 0] +victims -1.3 2.05183 [-3, -1, -3, -3, -3, 2, 1, -2, 2, -3] +vigilant 0.7 0.9 [0, 2, 0, 2, 0, -1, 1, 1, 1, 1] +vigor 1.1 1.37477 [0, 3, 2, 1, 2, 2, 0, 1, -2, 2] +vigorish -0.4 1.2 [0, -3, -1, -1, 0, -1, 0, 0, 2, 0] +vigorishes 0.4 1.56205 [0, 0, 2, 1, 2, 0, -2, -2, 0, 3] +vigoroso 1.5 0.67082 [2, 0, 1, 2, 2, 1, 2, 1, 2, 2] +vigorously 0.5 0.92195 [0, 0, 0, 1, 2, 0, 2, -1, 1, 0] +vigorousness 0.4 1.11355 [0, 3, 0, -1, -1, 0, 0, 1, 1, 1] +vigors 1.0 1.0 [0, 1, 0, 1, 0, 0, 1, 3, 2, 2] +vigour 0.9 0.9434 [0, 2, 2, 2, 1, 1, 0, 1, -1, 1] +vigours 0.4 1.68523 [-4, 1, 1, 1, -1, 1, 2, 2, 0, 1] +vile -3.1 0.83066 [-4, -2, -4, -4, -2, -3, -3, -3, -2, -4] +villain -2.6 0.4899 [-3, -2, -2, -3, -2, -2, -3, -3, -3, -3] +villainess -2.9 0.53852 [-3, -2, -3, -4, -3, -2, -3, -3, -3, -3] +villainesses -2.0 1.18322 [-2, -3, -2, -2, -2, -3, 1, -3, -1, -3] +villainies -2.3 1.00499 [-3, -2, -3, -3, -3, -1, -3, -2, -3, 0] +villainous -2.0 0.63246 [-3, -2, -1, -2, -2, -2, -2, -1, -2, -3] +villainously -2.9 0.53852 [-3, -3, -3, -3, -3, -4, -2, -3, -2, -3] +villainousness -2.7 0.9 [-4, -3, -4, -3, -1, -3, -2, -2, -2, -3] +villains -3.4 0.91652 [-4, -3, -4, -3, -4, -3, -4, -4, -1, -4] +villainy -2.6 0.4899 [-3, -2, -3, -3, -2, -2, -2, -3, -3, -3] +vindicate 0.3 1.95192 [2, -1, -2, -3, -1, 3, 0, 3, 1, 1] +vindicated 1.8 1.16619 [1, 3, -1, 2, 2, 1, 3, 2, 2, 3] +vindicates 1.6 0.66332 [2, 3, 2, 2, 2, 1, 1, 1, 1, 1] +vindicating -1.1 1.97231 [-3, -2, 2, -3, -2, 1, 1, 1, -3, -3] +violate -2.2 0.6 [-3, -3, -2, -3, -2, -2, -1, -2, -2, -2] +violated -2.4 0.66332 [-3, -3, -3, -3, -2, -3, -1, -2, -2, -2] +violater -2.6 0.91652 [-3, -3, -4, -4, -2, -3, -2, -2, -2, -1] +violaters -2.4 0.8 [-1, -3, -1, -2, -3, -3, -3, -2, -3, -3] +violates -2.3 0.9 [-3, -2, -4, -3, -2, -3, -2, -2, -1, -1] +violating -2.5 0.92195 [-2, -3, -3, -1, -3, -2, -4, -1, -3, -3] +violation -2.2 0.9798 [-3, -1, -1, -3, -3, -2, -1, -2, -2, -4] +violations -2.4 0.66332 [-2, -2, -2, -3, -2, -4, -2, -2, -2, -3] +violative -2.4 0.66332 [-2, -3, -3, -3, -1, -3, -2, -2, -2, -3] +violator -2.4 1.0198 [-1, -4, -3, -2, -3, -2, -2, -1, -4, -2] +violators -1.9 1.51327 [-2, 2, -3, -4, -1, -2, -3, -2, -2, -2] +violence -3.1 0.53852 [-2, -3, -3, -3, -3, -4, -4, -3, -3, -3] +violent -2.9 0.53852 [-3, -3, -3, -3, -3, -4, -3, -2, -2, -3] +violently -2.8 0.74833 [-3, -3, -2, -3, -3, -3, -4, -1, -3, -3] +virtue 1.8 0.74833 [1, 2, 3, 2, 2, 2, 3, 1, 1, 1] +virtueless -1.4 1.0198 [-2, 0, -2, -3, -1, -3, -1, -1, -1, 0] +virtues 1.5 0.80623 [2, 2, 2, 1, 0, 1, 3, 1, 2, 1] +virtuosa 1.7 1.48661 [0, 4, 2, 3, 2, 3, 0, 2, -1, 2] +virtuosas 1.8 0.87178 [2, 3, 1, 2, 1, 0, 3, 2, 2, 2] +virtuose 1.0 1.41421 [2, 1, 0, 2, 1, -1, 1, 1, -1, 4] +virtuosi 0.9 1.37477 [2, 0, 0, 2, 1, 0, 0, 1, -1, 4] +virtuosic 2.2 1.07703 [2, 2, 4, 1, 0, 3, 3, 2, 2, 3] +virtuosity 2.1 0.83066 [3, 3, 3, 2, 1, 3, 2, 2, 1, 1] +virtuoso 2.0 1.0 [2, 2, 3, 2, 1, 0, 3, 3, 3, 1] +virtuosos 1.8 1.16619 [2, 3, 1, -1, 2, 1, 3, 3, 2, 2] +virtuous 2.4 1.2 [0, 3, 2, 1, 3, 4, 2, 2, 4, 3] +virtuously 1.8 1.16619 [3, 2, 3, 1, 3, 1, -1, 2, 2, 2] +virtuousness 2.0 1.09545 [3, 4, 2, 2, 0, 1, 2, 3, 2, 1] +virulent -2.7 0.64031 [-3, -2, -4, -2, -3, -3, -2, -3, -2, -3] +vision 1.0 1.0 [0, 0, 0, 2, 1, 3, 2, 1, 1, 0] +visionary 2.4 1.0198 [1, 3, 1, 2, 4, 1, 3, 3, 3, 3] +visioning 1.1 0.9434 [1, 2, 0, 0, 3, 0, 1, 1, 2, 1] +visions 0.9 0.9434 [2, 0, 0, 0, 0, 1, 2, 2, 0, 2] +vital 1.2 1.46969 [-3, 2, 1, 1, 2, 2, 1, 2, 2, 2] +vitalise 1.1 0.9434 [1, 2, 0, 2, 2, 0, 2, 0, 2, 0] +vitalised 0.6 1.49666 [1, -2, 2, 0, 2, 1, -2, 2, 0, 2] +vitalises 1.1 1.3 [1, 2, 2, 0, 2, 2, -2, 2, 0, 2] +vitalising 2.1 0.53852 [2, 2, 3, 2, 3, 2, 2, 1, 2, 2] +vitalism 0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, 2, 0] +vitalist 0.3 0.64031 [0, 0, 0, 0, 0, 0, 1, 0, 2, 0] +vitalists 0.3 1.34536 [2, -3, 1, 0, 0, 0, 1, 0, 2, 0] +vitalities 1.2 0.87178 [2, 1, 3, 1, 1, 0, 2, 1, 0, 1] +vitality 1.3 0.9 [3, 2, 0, 1, 1, 1, 2, 0, 2, 1] +vitalization 1.6 0.91652 [2, 3, 3, 1, 2, 1, 0, 2, 1, 1] +vitalizations 0.8 0.74833 [0, 1, 1, 2, 0, 0, 0, 2, 1, 1] +vitalize 1.6 0.66332 [3, 2, 2, 1, 2, 1, 1, 1, 2, 1] +vitalized 1.5 0.67082 [1, 1, 2, 2, 0, 2, 1, 2, 2, 2] +vitalizes 1.4 0.4899 [2, 1, 1, 2, 1, 2, 1, 2, 1, 1] +vitalizing 1.3 0.9 [3, 1, 0, 0, 1, 1, 2, 2, 2, 1] +vitally 1.1 0.53852 [0, 2, 1, 1, 1, 1, 2, 1, 1, 1] +vitals 1.1 0.7 [1, 0, 1, 2, 2, 0, 2, 1, 1, 1] +vitamin 1.2 0.87178 [3, 1, 0, 0, 1, 2, 1, 2, 1, 1] +vitriolic -2.1 0.83066 [-2, -2, -2, -4, -3, -2, -1, -1, -2, -2] +vivacious 1.8 0.9798 [0, 1, 3, 3, 3, 2, 2, 2, 1, 1] +vociferous -0.8 0.9798 [1, -2, -1, -2, -1, -1, 1, -1, -1, -1] +vulnerabilities -0.6 1.49666 [0, -3, -1, -1, -1, 2, -2, 2, -1, -1] +vulnerability -0.9 1.75784 [1, -1, -1, -2, 1, -3, -1, 2, -4, -1] +vulnerable -0.9 1.37477 [-2, -2, 2, -1, -3, -1, 1, -1, -1, -1] +vulnerableness -1.1 1.04403 [-1, -1, -2, -3, -1, 1, 0, -2, -1, -1] +vulnerably -1.2 1.46969 [-2, -2, 2, -1, -2, -3, 1, -1, -2, -2] +vulture -2.0 0.89443 [-2, -3, -1, -2, -1, -1, -1, -3, -3, -3] +vultures -1.3 1.55242 [-2, -3, -2, 2, -2, -2, -3, -1, -1, 1] +w00t 2.2 1.32665 [3, 2, 3, 2, 0, 4, 0, 4, 2, 2] +walkout -1.3 0.9 [-1, -2, -2, -1, -1, -2, -1, 1, -2, -2] +walkouts -0.7 1.00499 [-2, -2, -1, 0, -1, -1, -1, 1, -1, 1] +wanker -2.5 0.67082 [-2, -3, -3, -2, -3, -3, -2, -1, -3, -3] +want 0.3 1.18743 [0, -2, 0, 1, 2, -1, 2, 1, 0, 0] +war -2.9 1.13578 [-1, -3, -4, -4, -3, -1, -2, -3, -4, -4] +warfare -1.2 1.16619 [-2, 0, -1, -2, 0, -3, 1, -2, -2, -1] +warfares -1.8 0.87178 [-2, -1, -2, -2, -3, -1, -3, 0, -2, -2] +warm 0.9 0.7 [1, 0, 0, 1, 1, 2, 1, 2, 1, 0] +warmblooded 0.2 0.6 [0, 0, 2, 0, 0, 0, 0, 0, 0, 0] +warmed 1.1 0.53852 [2, 0, 1, 1, 1, 2, 1, 1, 1, 1] +warmer 1.2 0.9798 [2, 2, 2, 1, -1, 0, 2, 1, 1, 2] +warmers 1.0 0.44721 [1, 1, 1, 2, 1, 1, 1, 0, 1, 1] +warmest 1.7 1.34536 [3, 2, 1, 2, 3, 2, 2, 2, -2, 2] +warmhearted 1.8 0.6 [3, 2, 2, 2, 2, 1, 2, 1, 1, 2] +warmheartedness 2.7 0.64031 [2, 4, 3, 2, 3, 3, 3, 2, 2, 3] +warming 0.6 0.8 [0, 0, 2, 2, 1, 1, 0, 0, 0, 0] +warmish 1.4 0.66332 [1, 3, 2, 1, 1, 1, 1, 2, 1, 1] +warmly 1.7 0.64031 [2, 1, 2, 1, 2, 1, 2, 1, 2, 3] +warmness 1.5 0.92195 [3, 1, 2, 1, 0, 1, 3, 2, 1, 1] +warmonger -2.9 1.13578 [-3, 0, -4, -4, -2, -3, -4, -3, -3, -3] +warmongering -2.5 0.67082 [-2, -3, -3, -1, -2, -3, -3, -2, -3, -3] +warmongers -2.8 0.87178 [-2, -3, -4, -4, -3, -1, -2, -3, -3, -3] +warmouth 0.4 0.66332 [0, 0, 2, 0, 0, 0, 0, 1, 1, 0] +warmouths -0.8 1.32665 [-1, -1, -2, -1, -2, -2, 0, 2, 1, -2] +warms 1.1 0.7 [2, 2, 1, 2, 1, 0, 1, 1, 0, 1] +warmth 2.0 0.44721 [2, 2, 2, 2, 1, 2, 2, 3, 2, 2] +warmup 0.4 0.66332 [0, 2, 0, 1, 1, 0, 0, 0, 0, 0] +warmups 0.8 0.9798 [0, 2, 0, 0, 0, 2, 2, 0, 2, 0] +warn -0.4 1.35647 [0, -1, 0, -2, -1, 2, 1, -2, 1, -2] +warned -1.1 0.53852 [-1, -1, -2, 0, -1, -1, -1, -2, -1, -1] +warning -1.4 1.0198 [-2, -1, -1, -1, -2, 0, -4, -1, -1, -1] +warnings -1.2 0.9798 [-2, -1, 0, -1, -2, 0, 0, -1, -3, -2] +warns -0.4 1.0198 [1, -1, -1, 1, -1, -1, -2, 1, 0, -1] +warred -2.4 0.8 [-2, -2, -4, -1, -3, -2, -3, -2, -3, -2] +warring -1.9 1.04403 [-3, -3, 0, -1, -2, -2, -3, -1, -1, -3] +wars -2.6 0.8 [-2, -3, -1, -3, -2, -4, -3, -3, -2, -3] +warsaw -0.1 0.3 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0] +warsaws -0.2 0.4 [0, 0, 0, -1, 0, 0, 0, 0, -1, 0] +warship -0.7 0.9 [0, 0, 0, 0, 0, -2, -1, 0, -2, -2] +warships -0.5 0.80623 [0, -1, 0, 0, -2, 0, 0, -2, 0, 0] +warstle 0.1 0.7 [0, 0, 0, 0, 0, 0, 0, 0, 2, -1] +waste -1.8 0.9798 [-2, -2, -1, -3, -2, -1, -1, -4, -1, -1] +wasted -2.2 0.6 [-2, -3, -2, -3, -1, -3, -2, -2, -2, -2] +wasting -1.7 0.9 [-3, -1, -2, -2, -1, -2, -3, 0, -1, -2] +wavering -0.6 1.0198 [-1, -1, 0, 0, -1, -1, -1, 2, -1, -2] +weak -1.9 0.7 [-1, -3, -2, -2, -3, -2, -2, -1, -2, -1] +weaken -1.8 0.6 [-2, -2, -2, -1, -1, -3, -2, -2, -1, -2] +weakened -1.3 0.9 [-2, -1, -1, -1, -1, -2, -2, -2, 1, -2] +weakener -1.6 1.11355 [-2, -1, -1, -1, -2, -2, -3, -3, 1, -2] +weakeners -1.3 0.45826 [-1, -2, -1, -2, -1, -1, -2, -1, -1, -1] +weakening -1.3 0.45826 [-2, -1, -1, -1, -1, -1, -1, -2, -2, -1] +weakens -1.3 0.45826 [-1, -1, -1, -1, -1, -2, -1, -2, -1, -2] +weaker -1.9 0.83066 [-2, -2, -2, -2, -2, -1, -4, -1, -1, -2] +weakest -2.3 0.64031 [-2, -4, -2, -3, -2, -2, -2, -2, -2, -2] +weakfish -0.2 1.07703 [0, -2, 0, 0, 0, 0, -2, 0, 2, 0] +weakfishes -0.6 0.8 [0, -1, 0, -2, 0, 0, -1, 0, -2, 0] +weakhearted -1.6 0.8 [-1, -3, -1, -1, -2, -1, -3, -2, -1, -1] +weakish -1.2 0.4 [-1, -2, -1, -1, -1, -1, -2, -1, -1, -1] +weaklier -1.5 0.67082 [-1, -2, -1, -3, -2, -1, -1, -2, -1, -1] +weakliest -2.1 0.83066 [-2, -2, -2, -2, -3, -1, -2, -1, -4, -2] +weakling -1.3 1.00499 [-1, -2, -1, -3, -2, -2, -1, -1, 1, -1] +weaklings -1.4 0.66332 [-2, -1, -1, -1, -1, -2, -2, 0, -2, -2] +weakly -1.8 0.87178 [-2, -2, -2, -2, -4, -1, -1, -1, -1, -2] +weakness -1.8 0.6 [-2, -2, -2, -1, -1, -2, -1, -3, -2, -2] +weaknesses -1.5 0.5 [-2, -2, -1, -1, -2, -1, -1, -2, -1, -2] +weakside -1.1 1.37477 [-3, -2, -3, -1, -2, -1, 1, 1, -1, 0] +wealth 2.2 0.4 [2, 3, 2, 2, 2, 3, 2, 2, 2, 2] +wealthier 2.2 0.6 [3, 2, 1, 3, 2, 2, 2, 3, 2, 2] +wealthiest 2.2 0.9798 [2, 4, 4, 1, 2, 1, 2, 2, 2, 2] +wealthily 2.0 0.89443 [2, 3, 1, 4, 2, 1, 1, 2, 2, 2] +wealthiness 2.4 1.11355 [2, 4, 2, 4, 1, 2, 4, 1, 2, 2] +wealthy 1.5 1.0247 [1, 2, 1, 4, 1, 0, 2, 1, 2, 1] +weapon -1.2 0.87178 [0, -2, -2, -1, 0, -2, -1, -2, 0, -2] +weaponed -1.4 0.91652 [-2, -2, -3, -1, -1, 0, 0, -2, -1, -2] +weaponless 0.1 1.13578 [2, -1, 0, 0, -1, 1, -1, 0, 2, -1] +weaponry -0.9 0.7 [-2, -2, 0, -1, 0, -1, -1, -1, 0, -1] +weapons -1.9 0.9434 [-2, -1, -2, -2, -1, -3, -3, -3, -2, 0] +weary -1.1 1.13578 [-2, -1, -2, -3, 0, -1, -1, -2, 0, 1] +weep -2.7 0.9 [-2, -4, -4, -3, -3, -3, -3, -2, -1, -2] +weeper -1.9 0.53852 [-2, -2, -2, -3, -1, -1, -2, -2, -2, -2] +weepers -1.1 1.13578 [-2, -2, -1, -2, -1, 1, -2, 1, -1, -2] +weepie -0.4 0.91652 [0, 1, -1, 0, -1, -2, 0, -1, -1, 1] +weepier -1.8 0.87178 [-3, -3, -2, -1, -2, -2, -2, 0, -1, -2] +weepies -1.6 0.8 [-2, -3, -2, -1, -1, -2, -2, 0, -1, -2] +weepiest -2.4 0.91652 [-4, -2, -2, -2, -2, -1, -2, -2, -4, -3] +weeping -1.9 0.9434 [-2, -2, -1, -1, -1, -1, -4, -2, -2, -3] +weepings -1.9 0.9434 [-2, -2, -3, 0, -1, -2, -2, -3, -1, -3] +weeps -1.4 1.35647 [-2, -3, -1, -2, -1, -3, 1, -2, 1, -2] +weepy -1.3 1.55242 [-2, -3, -1, -2, 2, -3, -1, -2, 1, -2] +weird -0.7 0.64031 [-1, 0, 0, -1, -1, -1, 0, 0, -2, -1] +weirder -0.5 0.80623 [1, -1, -1, -1, -1, 1, -1, -1, 0, -1] +weirdest -0.9 1.22066 [-2, 0, -2, -1, -1, -1, -3, 1, 1, -1] +weirdie -1.3 0.45826 [-1, -2, -1, -2, -1, -1, -2, -1, -1, -1] +weirdies -1.0 0.63246 [0, -1, -1, -1, -1, 0, -2, -2, -1, -1] +weirdly -1.2 0.74833 [0, -1, -1, -2, -3, -1, -1, -1, -1, -1] +weirdness -0.9 1.64012 [-3, -2, -1, -1, 2, -1, 1, -3, 1, -2] +weirdnesses -0.7 1.00499 [-1, -2, 0, -1, -2, 1, -1, -1, -1, 1] +weirdo -1.8 0.6 [-2, -2, -2, -2, -2, -2, -1, -1, -3, -1] +weirdoes -1.3 0.64031 [-2, -1, -2, -1, -1, -2, -1, 0, -1, -2] +weirdos -1.1 0.9434 [-1, -1, -1, -2, 1, -3, -1, -1, -1, -1] +weirds -0.6 0.4899 [-1, -1, -1, 0, -1, 0, 0, -1, 0, -1] +weirdy -0.9 0.83066 [-1, -1, 0, 0, -1, 0, -2, -2, 0, -2] +welcome 2.0 0.63246 [1, 3, 2, 1, 2, 2, 2, 2, 3, 2] +welcomed 1.4 0.4899 [1, 1, 2, 2, 1, 2, 1, 2, 1, 1] +welcomely 1.9 0.53852 [2, 2, 2, 2, 1, 3, 2, 1, 2, 2] +welcomeness 2.0 0.89443 [2, 3, 1, 2, 3, 0, 2, 3, 2, 2] +welcomer 1.4 0.4899 [1, 1, 2, 2, 2, 2, 1, 1, 1, 1] +welcomers 1.9 0.7 [2, 2, 3, 2, 2, 1, 1, 3, 1, 2] +welcomes 1.7 0.78102 [1, 1, 2, 2, 3, 3, 1, 2, 1, 1] +welcoming 1.9 0.7 [2, 2, 1, 1, 2, 2, 2, 3, 3, 1] +well 1.1 1.04403 [0, 0, 2, 0, 2, 0, 1, 1, 3, 2] +welladay 0.3 1.18743 [2, -2, 0, 0, -1, 1, 0, 1, 2, 0] +wellaway -0.8 1.98997 [3, -2, -3, -3, -1, -2, 1, -2, -1, 2] +wellborn 1.8 0.74833 [2, 1, 2, 1, 2, 2, 1, 3, 1, 3] +welldoer 2.5 0.67082 [2, 2, 2, 3, 2, 3, 4, 3, 2, 2] +welldoers 1.6 0.8 [3, 1, 1, 0, 2, 1, 2, 2, 2, 2] +welled 0.4 0.8 [0, 0, 2, 0, 0, 0, 0, 0, 2, 0] +wellhead 0.1 0.3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] +wellheads 0.5 0.92195 [0, 2, 0, 2, -1, 0, 1, 1, 0, 0] +wellhole -0.1 0.3 [0, 0, 0, -1, 0, 0, 0, 0, 0, 0] +wellies 0.4 0.4899 [0, 1, 0, 0, 0, 1, 0, 0, 1, 1] +welling 1.6 0.8 [2, 0, 1, 2, 2, 1, 3, 2, 2, 1] +wellness 1.9 0.9434 [1, 2, 2, 1, 2, 1, 1, 3, 4, 2] +wells 1.0 1.0 [2, 0, 3, 0, 1, 0, 2, 1, 1, 0] +wellsite 0.5 0.67082 [0, 0, 1, 2, 0, 0, 0, 0, 1, 1] +wellspring 1.5 0.92195 [3, 1, 1, 1, 0, 2, 2, 3, 1, 1] +wellsprings 1.4 0.8 [1, 0, 0, 2, 2, 2, 1, 2, 2, 2] +welly 0.2 0.4 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0] +wept -2.0 1.09545 [-3, -2, -3, -3, -1, -3, 0, -1, -1, -3] +whimsical 0.3 1.61555 [2, 1, 1, 2, -1, 1, -3, -2, 1, 1] +whine -1.5 1.11803 [-1, -4, -1, -1, -1, -3, 0, -2, -1, -1] +whined -0.9 1.04403 [-2, -1, -2, -1, -1, -1, -2, 1, 1, -1] +whiner -1.2 0.4 [-1, -2, -1, -1, -1, -2, -1, -1, -1, -1] +whiners -0.6 1.95959 [-2, 0, -2, -2, 4, 1, 1, -2, -2, -2] +whines -1.8 0.6 [-2, -2, -2, -1, -2, -2, -3, -1, -2, -1] +whiney -1.3 0.45826 [-1, -2, -1, -1, -1, -2, -2, -1, -1, -1] +whining -0.9 1.51327 [-3, 0, -1, -1, -3, -1, 1, 2, -2, -1] +whitewash 0.1 0.7 [-1, 0, 1, -1, 0, 0, 0, 1, 1, 0] +whore -3.3 0.64031 [-4, -4, -3, -2, -3, -4, -3, -3, -4, -3] +whored -2.8 0.87178 [-2, -3, -4, -2, -2, -3, -4, -4, -2, -2] +whoredom -2.1 2.02237 [-4, -2, -4, -3, -3, -3, -4, -1, 2, 1] +whoredoms -2.4 1.11355 [-1, -3, 0, -3, -2, -3, -3, -4, -2, -3] +whorehouse -1.1 2.11896 [-2, -2, -2, 3, 3, -3, -3, -2, -1, -2] +whorehouses -1.9 1.92094 [-4, -3, -4, -3, 0, 0, -3, 2, -1, -3] +whoremaster -1.9 1.22066 [-1, -3, -3, -2, -1, -3, 0, 0, -3, -3] +whoremasters -1.5 1.85742 [-3, -1, -1, -4, -2, 2, -1, 1, -2, -4] +whoremonger -2.6 0.91652 [-3, -1, -3, -3, -3, -3, -3, -1, -4, -2] +whoremongers -2.0 1.78885 [-4, -3, 0, -3, -3, -3, -3, 1, 1, -3] +whores -3.0 1.0 [-3, -3, -4, -2, -1, -3, -4, -4, -2, -4] +whoreson -2.2 1.46969 [-2, -3, -4, -4, -3, -1, -1, 1, -3, -2] +whoresons -2.5 1.20416 [-3, -3, -2, -2, 0, -4, -3, -1, -3, -4] +wicked -2.4 0.8 [-3, -4, -3, -3, -2, -2, -2, -1, -2, -2] +wickeder -2.2 1.32665 [-2, -3, -1, -4, 1, -3, -3, -3, -2, -2] +wickedest -2.9 1.04403 [-3, -1, -3, -3, -3, -3, -1, -4, -4, -4] +wickedly -2.1 0.83066 [-2, -2, -1, -3, -2, -3, -1, -3, -1, -3] +wickedness -2.1 0.83066 [-2, -1, -2, -2, -3, -1, -2, -4, -2, -2] +wickednesses -2.2 1.16619 [-1, -2, -4, -2, -3, -1, -3, -4, -1, -1] +widowed -2.1 1.22066 [0, -4, -2, -4, -3, -2, -2, -2, -1, -1] +willingness 1.1 0.7 [0, 2, 1, 1, 2, 2, 1, 0, 1, 1] +wimp -1.4 1.28062 [-2, -3, -1, -2, -1, -2, -2, -1, 2, -2] +wimpier -1.0 1.18322 [-1, -2, -2, -1, -2, 0, 1, -2, 1, -2] +wimpiest -0.9 1.22066 [-3, -1, -2, -1, -2, -1, 1, 1, 0, -1] +wimpiness -1.2 0.9798 [1, -1, -3, -1, -2, -1, -1, -1, -2, -1] +wimpish -1.6 0.4899 [-2, -1, -2, -1, -2, -2, -1, -2, -2, -1] +wimpishness -0.2 1.249 [-3, -1, 0, -1, -1, 1, 1, 1, 1, 0] +wimple -0.2 0.74833 [0, -1, 0, 0, 0, 0, -2, 0, 0, 1] +wimples -0.3 0.78102 [-2, 0, 0, 0, 0, -1, 0, -1, 1, 0] +wimps -1.0 1.18322 [-2, -2, -1, -1, 0, -2, -2, 1, -2, 1] +wimpy -0.9 1.04403 [-2, -1, -1, -1, -1, -2, -1, 1, -2, 1] +win 2.8 0.87178 [3, 2, 4, 3, 2, 4, 3, 1, 3, 3] +winnable 1.8 0.6 [3, 2, 2, 2, 2, 1, 1, 1, 2, 2] +winned 1.8 0.6 [2, 2, 2, 2, 1, 2, 1, 1, 3, 2] +winner 2.8 0.87178 [2, 2, 2, 3, 4, 2, 3, 4, 2, 4] +winners 2.1 1.44568 [3, 3, 2, 3, 3, 2, 2, -2, 3, 2] +winning 2.4 0.4899 [2, 3, 3, 2, 2, 2, 3, 3, 2, 2] +winningly 2.3 1.48661 [1, 3, 4, 3, 3, 1, 2, 3, -1, 4] +winnings 2.5 0.92195 [3, 4, 3, 2, 2, 3, 1, 1, 3, 3] +winnow -0.3 1.00499 [0, -1, 0, -2, 1, 1, -2, 0, 0, 0] +winnower -0.1 0.3 [0, 0, 0, 0, 0, -1, 0, 0, 0, 0] +winnowers -0.2 0.6 [0, 0, 0, 0, 0, 0, 0, 0, -2, 0] +winnowing -0.1 0.53852 [0, 0, -1, 0, 0, 0, 0, 1, -1, 0] +winnows -0.2 0.4 [0, 0, -1, -1, 0, 0, 0, 0, 0, 0] +wins 2.7 0.78102 [2, 2, 3, 3, 4, 4, 3, 2, 2, 2] +wisdom 2.4 0.66332 [2, 3, 4, 2, 3, 2, 2, 2, 2, 2] +wise 2.1 0.83066 [2, 3, 1, 4, 2, 2, 1, 2, 2, 2] +wiseacre -1.2 1.16619 [-2, -1, -2, -2, -2, -1, -2, 1, 1, -2] +wiseacres -0.1 0.9434 [-2, 1, 0, -1, 0, 1, 1, -1, 0, 0] +wiseass -1.8 0.6 [-2, -2, -1, -1, -2, -2, -3, -2, -1, -2] +wiseasses -1.5 1.36015 [-1, -2, 2, -2, -1, -3, -2, -3, -1, -2] +wisecrack -0.1 1.22066 [-1, -1, -1, -2, 2, 1, -1, 1, 1, 0] +wisecracked -0.5 0.92195 [1, 1, -1, -1, 0, -1, -2, 0, -1, -1] +wisecracker -0.1 0.7 [-1, 1, -1, -1, 0, 0, 0, 0, 1, 0] +wisecrackers 0.1 1.04403 [-1, 0, 1, 1, 0, 2, 1, -1, -1, -1] +wisecracking -0.6 0.4899 [0, 0, -1, 0, -1, 0, -1, -1, -1, -1] +wisecracks -0.3 1.55242 [1, 2, -1, 2, -3, 0, 0, -2, -1, -1] +wised 1.5 0.67082 [2, 2, 2, 1, 1, 2, 0, 1, 2, 2] +wiseguys 0.3 1.9 [4, -1, 1, -1, 1, 2, 2, -2, -2, -1] +wiselier 0.9 1.3 [1, 2, 2, -2, 0, 1, 3, 1, 0, 1] +wiseliest 1.6 1.49666 [1, 4, 2, 2, 1, 2, 2, 3, -2, 1] +wisely 1.8 0.6 [1, 2, 3, 2, 1, 2, 2, 1, 2, 2] +wiseness 1.9 0.7 [2, 3, 2, 2, 3, 1, 1, 1, 2, 2] +wisenheimer -1.0 1.18322 [-1, 1, -1, -1, -1, 0, -1, -3, 0, -3] +wisenheimers -1.4 0.91652 [-3, -3, -2, -1, -1, -1, 0, -1, -1, -1] +wisents 0.4 0.91652 [0, 0, 0, 0, 1, 0, 0, 0, 3, 0] +wiser 1.2 0.87178 [1, 3, 0, 1, 1, 2, 0, 2, 1, 1] +wises 1.3 1.48661 [3, 3, 2, -2, 2, 0, 0, 2, 2, 1] +wisest 2.1 1.51327 [1, 3, 3, 3, 3, 2, 2, 3, -2, 3] +wisewomen 1.3 0.9 [2, 2, 0, 0, 2, 0, 1, 2, 2, 2] +wish 1.7 1.1 [2, 1, 1, 0, 2, 1, 3, 2, 4, 1] +wishes 0.6 0.8 [0, 0, 1, 0, 1, 0, 2, 0, 2, 0] +wishing 0.9 0.7 [2, 1, 1, 0, 0, 0, 1, 1, 2, 1] +witch -1.5 0.80623 [-1, -2, -2, -1, -3, 0, -2, -2, -1, -1] +withdrawal 0.1 1.57797 [1, -1, 0, -2, -2, 2, -1, 1, 0, 3] +woe -1.8 0.6 [-3, -2, -2, -2, -1, -1, -2, -1, -2, -2] +woebegone -2.6 0.66332 [-3, -2, -3, -2, -2, -4, -3, -2, -2, -3] +woebegoneness -1.1 1.37477 [-3, 0, -1, 1, -1, -4, 0, -1, -1, -1] +woeful -1.9 0.83066 [-1, -2, -2, -1, -3, -3, -1, -2, -1, -3] +woefully -1.7 1.48661 [-1, -3, -2, 1, -3, -3, -2, -2, 1, -3] +woefulness -2.1 0.7 [-3, -2, -2, -1, -2, -3, -3, -1, -2, -2] +woes -1.9 0.83066 [-2, -2, -2, -1, -2, -3, -3, 0, -2, -2] +woesome -1.2 1.6 [-2, -3, -2, -1, 0, 3, -2, -2, -1, -2] +won 2.7 0.9 [3, 4, 2, 2, 2, 4, 4, 2, 2, 2] +wonderful 2.7 0.78102 [2, 3, 3, 2, 4, 2, 2, 3, 4, 2] +wonderfully 2.9 0.83066 [1, 3, 3, 4, 3, 2, 3, 3, 4, 3] +wonderfulness 2.9 0.53852 [3, 2, 3, 3, 3, 3, 3, 2, 4, 3] +woo 2.1 1.37477 [4, 2, 1, 3, 2, 2, -1, 2, 2, 4] +woohoo 2.3 1.1 [3, 3, 1, 4, 4, 2, 1, 1, 2, 2] +woot 1.8 1.07703 [2, 0, 2, 2, 2, 2, 0, 4, 2, 2] +worn -1.2 0.4 [-1, -1, -1, -1, -1, -1, -2, -1, -2, -1] +worried -1.2 0.74833 [-1, -1, -1, -1, -1, -2, -3, 0, -1, -1] +worriedly -2.0 0.44721 [-2, -2, -3, -2, -2, -2, -2, -1, -2, -2] +worrier -1.8 0.6 [-2, -2, -1, -2, -1, -3, -2, -2, -1, -2] +worriers -1.7 0.45826 [-2, -1, -2, -2, -2, -2, -1, -2, -1, -2] +worries -1.8 0.6 [-2, -2, -1, -2, -1, -2, -2, -3, -1, -2] +worriment -1.5 0.67082 [-1, -2, -1, -1, -1, -2, -1, -3, -1, -2] +worriments -1.9 0.7 [-2, -1, -2, -3, -1, -2, -3, -1, -2, -2] +worrisome -1.7 0.64031 [-1, -1, -1, -2, -1, -2, -3, -2, -2, -2] +worrisomely -2.0 0.63246 [-1, -2, -1, -2, -2, -3, -2, -2, -3, -2] +worrisomeness -1.9 0.53852 [-2, -2, -3, -1, -2, -2, -2, -1, -2, -2] +worrit -2.1 0.53852 [-2, -2, -1, -2, -2, -3, -3, -2, -2, -2] +worrits -1.2 0.9798 [-1, -2, -2, -1, 0, 0, -1, -3, 0, -2] +worry -1.9 0.7 [-2, -3, -1, -3, -1, -2, -1, -2, -2, -2] +worrying -1.4 0.66332 [-2, -1, -2, -2, -1, 0, -1, -1, -2, -2] +worrywart -1.8 0.9798 [-2, -2, -2, -1, -1, -1, -1, -3, -1, -4] +worrywarts -1.5 0.5 [-2, -1, -2, -2, -2, -1, -1, -1, -2, -1] +worse -2.1 0.83066 [-2, -2, -1, -3, -4, -2, -1, -2, -2, -2] +worsen -2.3 0.78102 [-4, -3, -1, -2, -2, -2, -2, -3, -2, -2] +worsened -1.9 1.22066 [-2, -2, -2, -1, -2, -2, -4, 1, -3, -2] +worsening -2.0 0.44721 [-2, -3, -2, -2, -2, -2, -1, -2, -2, -2] +worsens -2.1 0.53852 [-2, -2, -2, -2, -1, -2, -2, -3, -3, -2] +worser -2.0 0.89443 [-2, -2, -4, -1, -2, -2, -2, -3, -1, -1] +worship 1.2 1.07703 [1, 0, 0, 1, 3, 0, 2, 3, 1, 1] +worshiped 2.4 1.0198 [1, 2, 4, 3, 4, 1, 2, 3, 2, 2] +worshiper 1.0 1.0 [0, 0, 2, 3, 0, 2, 1, 1, 1, 0] +worshipers 0.9 0.83066 [0, 0, 0, 2, 1, 1, 1, 2, 2, 0] +worshipful 0.7 1.00499 [1, -1, 3, 1, 1, 1, 0, 0, 0, 1] +worshipfully 1.1 1.3 [0, 0, 0, 1, 3, 0, 3, 3, 1, 0] +worshipfulness 1.6 0.8 [3, 1, 2, 2, 1, 1, 3, 1, 1, 1] +worshiping 1.0 1.18322 [0, 3, 0, 3, 0, 1, 1, 2, 0, 0] +worshipless -0.6 1.0198 [0, -1, -3, -1, -1, -1, 0, 0, 0, 1] +worshipped 2.7 0.78102 [3, 2, 3, 3, 1, 4, 2, 3, 3, 3] +worshipper 0.6 0.66332 [1, 1, 0, 0, 1, 0, 0, 2, 1, 0] +worshippers 0.8 0.87178 [0, 1, 0, 0, 3, 1, 1, 1, 0, 1] +worshipping 1.6 1.28062 [1, 3, 3, 3, 0, 3, 1, 0, 2, 0] +worships 1.4 1.11355 [2, 0, 1, 3, 2, 1, 0, 3, 2, 0] +worst -3.1 1.04403 [-4, -4, -3, -1, -3, -4, -2, -2, -4, -4] +worth 0.9 0.9434 [0, 0, 1, 1, 2, 1, 1, 3, 0, 0] +worthless -1.9 1.13578 [-3, -1, -3, -4, -1, -3, -1, -1, -1, -1] +worthwhile 1.4 0.4899 [1, 1, 1, 2, 1, 1, 2, 1, 2, 2] +worthy 1.9 0.53852 [2, 2, 2, 1, 1, 2, 2, 2, 3, 2] +wow 2.8 0.9798 [2, 3, 2, 4, 4, 3, 3, 2, 1, 4] +wowed 2.6 0.8 [3, 3, 4, 3, 2, 1, 3, 3, 2, 2] +wowing 2.5 0.67082 [2, 2, 3, 3, 2, 3, 4, 2, 2, 2] +wows 2.0 1.61245 [2, 3, 3, 3, 2, 1, -2, 1, 4, 3] +wowser -1.1 2.02237 [-3, 3, 0, 2, -2, -1, -3, -2, -2, -3] +wowsers 1.0 2.14476 [0, -2, 4, 2, 3, 0, 1, 2, -3, 3] +wrathful -2.7 0.64031 [-3, -2, -2, -3, -3, -2, -4, -2, -3, -3] +wreck -1.9 0.7 [-1, -2, -3, -3, -2, -2, -2, -1, -1, -2] +wrong -2.1 1.04403 [-2, -2, -2, -2, -4, -4, -1, -1, -1, -2] +wronged -1.9 0.53852 [-2, -2, -2, -2, -2, -1, -3, -2, -2, -1] +x-d 2.6 0.91652 [2, 3, 3, 4, 1, 2, 3, 4, 2, 2] +x-p 1.7 0.45826 [2, 2, 1, 2, 2, 1, 1, 2, 2, 2] +xd 2.8 0.87178 [3, 3, 4, 2, 3, 3, 1, 2, 4, 3] +xp 1.6 0.4899 [2, 2, 2, 1, 1, 1, 2, 2, 1, 2] +yay 2.4 1.0198 [1, 3, 3, 2, 2, 1, 4, 4, 2, 2] +yeah 1.2 0.6 [1, 1, 1, 2, 1, 1, 0, 2, 1, 2] +yearning 0.5 1.0247 [0, 1, 0, 1, 0, 3, 0, 1, -1, 0] +yeees 1.7 1.00499 [1, 3, 1, 2, 1, 1, 4, 2, 1, 1] +yep 1.2 0.4 [1, 1, 1, 1, 1, 1, 2, 2, 1, 1] +yes 1.7 0.78102 [1, 2, 2, 1, 1, 1, 3, 3, 1, 2] +youthful 1.3 0.45826 [1, 2, 1, 2, 1, 1, 1, 1, 2, 1] +yucky -1.8 0.6 [-2, -1, -1, -2, -2, -1, -2, -2, -3, -2] +yummy 2.4 1.0198 [1, 2, 4, 3, 2, 2, 3, 1, 4, 2] +zealot -1.9 1.04403 [-2, -3, -1, -2, -1, -3, -4, -1, -1, -1] +zealots -0.8 1.83303 [-1, -2, -1, -2, -2, 1, -2, 4, -1, -2] +zealous 0.5 1.43178 [2, -1, 2, 1, 0, 0, 3, 0, -2, 0] +{: 1.8 0.9798 [1, 3, 2, 2, 1, 1, 4, 2, 1, 1] +|-0 -1.2 0.74833 [0, -2, -1, -1, -1, -1, -1, -1, -1, -3] +|-: -0.8 0.74833 [-1, -2, 0, -1, 0, -2, -1, -1, 0, 0] +|-:> -1.6 0.4899 [-1, -2, -2, -2, -2, -1, -1, -2, -2, -1] +|-o -1.2 0.9798 [-1, 0, -1, -1, -1, -1, -1, -4, -1, -1] +|: -0.5 1.68819 [2, -3, -1, 0, -1, -1, -1, -2, -1, 3] +|;-) 2.2 1.32665 [4, 1, 1, 1, 3, 2, 4, 1, 4, 1] +|= -0.4 1.56205 [2, -2, -1, 0, -1, -1, -1, -2, -1, 3] +|^: -1.1 0.7 [-2, 0, -1, -1, 0, -1, -1, -2, -2, -1] +|o: -0.9 0.53852 [-1, 0, -1, -2, -1, 0, -1, -1, -1, -1] +||-: -2.3 0.45826 [-2, -2, -2, -3, -3, -3, -2, -2, -2, -2] +}: -2.1 0.83066 [-1, -1, -3, -2, -3, -2, -2, -1, -3, -3] +}:( -2.0 0.63246 [-3, -1, -2, -1, -3, -2, -2, -2, -2, -2] +}:) 0.4 1.42829 [1, 1, -2, 1, 2, -2, 1, -1, 2, 1] +}:-( -2.1 0.7 [-2, -1, -2, -2, -2, -4, -2, -2, -2, -2] +}:-) 0.3 1.61555 [1, 1, -2, 1, -1, -3, 2, 2, 1, 1] +bulls 1.9 1.86 +bull 1.8 1.682 +bullish 2.3 1.5798 +whales -1.1 1.9138 +support 1 1.9322 +resistance 0.3 2.1756 +bear -1.3 1.8797 +bearish -1.4 1.2042 +short -0.8 1.5213 +long 1.3 1.6375 +bounce 1.1 1.6854 +rekt -2.2 2.4404 +arbitrage 0.4 1.9633 +manipulation -2.7 1.2721 +bot -0.9 2.1833 +strategy 1.5 1.9679 +SEC 0 1.4142 +regulations -1.2 1.6865 +FUD -1.9 1.912 +ICO -0.4 2.1705 +CNBC -2.1 2.0276 +hodl 0 2.357 \ No newline at end of file