-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMST.py
248 lines (216 loc) · 9.63 KB
/
MST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import copy
import numpy as np
import datetime
class Vertex:
def __init__(self, vertex_id, level=-1):
self.vertex_id = vertex_id
self.level = level
class Edge:
def __init__(self, edge_from, edge_to, edge_w):
self.edge_from = edge_from
self.edge_to = edge_to
self.edge_w = edge_w
class ListNode:
def __init__(self):
self.prev = None
self.next = None
self.is_head = False
def insert_node(self, node):
while(not self.is_head):
self = self.prev
node.prev = self
node.next = self.next
if self.next is None:
self.next = node
else:
self.next.prev = node
self.next = node
def delete_node(self):
if self.next is not None:
self.next.prev = self.prev
self.prev.next = self.next
else:
self.prev.next = None
class VertexToEdgeListNode(ListNode):
def __init__(self):
super(VertexToEdgeListNode, self).__init__()
self.edge = None
self.belong_to_vertex = None
def set_vertex(self, belong_to_vertex):
self.belong_to_vertex = belong_to_vertex
self.is_head = True
def insert_edge(self, edge):
tmp = VertexToEdgeListNode()
tmp.edge = edge
self.insert_node(tmp)
class WeightToEdgeListNode(ListNode):
def __init__(self):
super(WeightToEdgeListNode, self).__init__()
self.edge = None
self.weight = -1
def set_weight(self, weight):
self.weight = weight
self.is_head = True
def insert_edge(self, edge):
tmp = WeightToEdgeListNode()
tmp.edge = edge
self.insert_node(tmp)
class Graph:
def __init__(self, img):
self.img = img.astype(np.int32)
self.img_height, self.img_width = self.img.shape[0], self.img.shape[1]
self.vertex_num = self.img_height * self.img_width
self.create_vertices()
self.create_adj_edges()
def create_adj_edges(self):
print(datetime.datetime.now().strftime('%F %T') + ' Creating graph ...')
for i in range(self.vertex_num):
if (i - self.img_width >= 0):
self.insert_edge(i, i-self.img_width, self.get_weight_func(i, i-self.img_width))
if (i % self.img_width < self.img_width-1):
self.insert_edge(i, i+1, self.get_weight_func(i, i+1))
if (i + self.img_width < self.vertex_num):
self.insert_edge(i, i+self.img_width, self.get_weight_func(i, i+self.img_width))
if (i % self.img_width > 0):
self.insert_edge(i, i-1, self.get_weight_func(i, i-1))
def create_vertices(self):
self.vertex_pool = []
self.vertex_to_edge = []
for i in range(self.vertex_num):
self.vertex_pool.append(Vertex(i))
self.vertex_to_edge.append(VertexToEdgeListNode())
self.vertex_to_edge[i].set_vertex(self.vertex_pool[i])
def get_weight_func(self, i, j):
ax, ay = i // self.img_width, i % self.img_width
bx, by = j // self.img_width, j % self.img_width
return np.max(np.abs(self.img[ax, ay] - self.img[bx, by]), axis=-1)
def insert_edge(self, from_vertex_id, to_vertex_id, edge_weight=-1):
self.vertex_to_edge[from_vertex_id].insert_edge(Edge(from_vertex_id, to_vertex_id, edge_weight))
class MSTree(Graph):
def __init__(self, img):
super(MSTree, self).__init__(img)
self.parent_edge = []
self.has_chosen = []
self.weight_bset = []
self.weight_to_edge = []
self.child_edge = []
for i in range(self.vertex_num):
self.parent_edge.append(Edge(-1, -1, -1))
self.has_chosen.append(False)
self.child_edge.append(VertexToEdgeListNode())
self.child_edge[i].set_vertex(self.vertex_pool[i])
for i in range(256):
self.weight_bset.append(False)
self.weight_to_edge.append(WeightToEdgeListNode())
self.weight_to_edge[i].set_weight(i)
self.prime_algorithm()
def expand_front(self, cur_vertex_id):
self.has_chosen[cur_vertex_id] = True
cur_edge_list = self.vertex_to_edge[cur_vertex_id]
while cur_edge_list.next is not None:
cur_edge_list = cur_edge_list.next
vertex_id = cur_edge_list.edge.edge_to
if not self.has_chosen[vertex_id]:
edge_weight = cur_edge_list.edge.edge_w
self.weight_to_edge[edge_weight].insert_edge(cur_edge_list.edge)
self.weight_bset[edge_weight] = True
def prime_algorithm(self, root_id=0):
print(datetime.datetime.now().strftime('%F %T') + ' Prime algorithm ...')
self.expand_front(root_id)
while True:
if True in self.weight_bset:
firstOne = self.weight_bset.index(True)
pListNode = self.weight_to_edge[firstOne].next
else:
break
to_vertex_id = pListNode.edge.edge_to
if not self.has_chosen[to_vertex_id]:
from_vertex_id = pListNode.edge.edge_from
self.child_edge[from_vertex_id].insert_edge(pListNode.edge)
self.parent_edge[to_vertex_id] = pListNode.edge
self.weight_to_edge[firstOne].next.delete_node()
self.expand_front(to_vertex_id)
else:
self.weight_to_edge[firstOne].next.delete_node()
if self.weight_to_edge[firstOne].next is None:
self.weight_bset[firstOne] = False
class MBDMSTree(MSTree):
def __init__(self, img):
super(MBDMSTree, self).__init__(img)
self.has_visited = []
self.inque = []
self.min_barrier_dist = []
self.is_seed = []
self.vertex_value = copy.deepcopy(self.img).reshape(-1, 3)
self.max_value_along_path = copy.deepcopy(self.vertex_value)
self.min_value_along_path = copy.deepcopy(self.vertex_value)
for i in range(self.vertex_num):
self.has_visited.append(False)
self.inque.append(False)
self.min_barrier_dist.append(-1)
self.is_seed.append(False)
def computer_level(self, root_id=0):
que = [root_id]
while que:
u_id = que[-1]
que.pop()
pListNode = self.child_edge[u_id]
while pListNode.next is not None:
v_id = pListNode.next.edge.edge_to
if not self.has_visited[v_id]:
self.vertex_pool[v_id].level = self.vertex_pool[u_id].level + 1
self.has_visited[v_id] = True
que.insert(0, v_id)
pListNode = pListNode.next
def bottom_up(self):
self.computer_level()
vec = []
for i in range(self.vertex_num):
vec.append(self.vertex_pool[i].level)
vec_sorted_index = sorted(range(len(vec)), key=lambda k: vec[k], reverse=True)
for i in range(self.vertex_num):
v_id = vec_sorted_index[i]
u_id = self.parent_edge[v_id].edge_from
if u_id == -1:
break
if self.min_barrier_dist[v_id] != -1:
tmp_min = np.min(np.stack((self.vertex_value[u_id], self.min_value_along_path[v_id])), axis=0)
tmp_max = np.max(np.stack((self.vertex_value[u_id], self.max_value_along_path[v_id])), axis=0)
tmp_dist = np.min(tmp_max - tmp_min)
if self.min_barrier_dist[u_id] == -1 or tmp_dist < self.min_barrier_dist[u_id]:
self.min_barrier_dist[u_id] = tmp_dist
self.min_value_along_path[u_id] = tmp_min
self.max_value_along_path[u_id] = tmp_max
def top_down(self, root_id=0):
que = [root_id]
self.inque[root_id] = True
while que:
v_id = que[-1]
que.pop()
pListNode = self.child_edge[v_id].next
while pListNode is not None:
u_id = pListNode.edge.edge_to
if self.min_barrier_dist[v_id] != -1:
tmp_min = np.min(np.stack((self.vertex_value[u_id], self.min_value_along_path[v_id])), axis=0)
tmp_max = np.max(np.stack((self.vertex_value[u_id], self.max_value_along_path[v_id])), axis=0)
tmp_dist = np.min(tmp_max - tmp_min)
if self.min_barrier_dist[u_id] == -1 or tmp_dist < self.min_barrier_dist[u_id]:
self.min_barrier_dist[u_id] = tmp_dist
self.min_value_along_path[u_id] = tmp_min
self.max_value_along_path[u_id] = tmp_max
if not self.inque[u_id]:
que.insert(0, u_id)
self.inque[u_id] = True
pListNode = pListNode.next
def compute_MBD(self):
for i in range(self.vertex_num):
if self.is_seed[i]:
self.min_barrier_dist[i] = 0
print(datetime.datetime.now().strftime('%F %T') + ' Bottom to up ...')
self.bottom_up()
print(datetime.datetime.now().strftime('%F %T') + ' Top to down ...')
self.top_down()
result = np.array(self.min_barrier_dist)
result = result.reshape(self.img_height, self.img_width)
print(datetime.datetime.now().strftime('%F %T') + ' Done.')
return result