forked from rutgers-db/SIGMOD2022-Programming-Contest-Public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOvlpJoin.cc
605 lines (502 loc) · 18.2 KB
/
OvlpJoin.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
#include "OvlpJoin.h"
double similarityx(vector<int> &v1, vector<int> &v2, double w1, double w2, const vector<double> &ww)
{
double ovlp = 0.0;
auto it1 = v1.begin();
auto it2 = v2.begin();
while (it1 != v1.end() && it2 != v2.end()) {
if (*it1 == *it2) {
ovlp += ww[*it1];
++it1, ++it2;
} else {
if (*it1 < *it2) ++it1;
else ++it2;
}
}
// jaccard
double jac = ovlp / (w1 + w2 - ovlp);
double olp = ovlp / min(w1, w2);
// return jac + olp;
// rank by L2-norm?
// return jac * jac + olp;
return olp;
}
double similarityy(vector<int> &v1, vector<int> &v2, double w1, double w2, const vector<double> &ww, double t1, double t2)
{
int common = 0;
double ovlp = 0.0;
auto it1 = v1.begin();
auto it2 = v2.begin();
while (it1 != v1.end() && it2 != v2.end()) {
if (*it1 == *it2) {
ovlp += ww[*it1];
++common;
++it1, ++it2;
} else {
if (*it1 < *it2) ++it1;
else ++it2;
}
}
// rank by MAX
double sim = 0;
// jaccard
if (ovlp / (w1 + w2 - ovlp) >= t1)
sim = sim + ovlp / (w1 + w2 - ovlp);
// overlap
if (common >= t2)
sim = sim + ovlp / min(w1, w2);
return sim;
}
int c;
vector<vector<int>> dataset;
vector<combination> combs;
int64_t nchoosek(int64_t n, int64_t k) {
if (k == 0) return 1;
return (n * nchoosek(n - 1, k - 1)) / k;
}
void OvlpJoin::small_case(int L, int R) {
if (L >= R) return;
--c;
timeval beg, mid, mid1, end;
gettimeofday(&beg, NULL);
cout << " number of small sets: " << R - L << endl;
list_cost = 0;
heap_cost = 0;
binary_cost = 0;
vector<vector<int>> res_lists;
gettimeofday(&mid, NULL);
for (auto idx = total_eles - 1; idx >= 0; idx--) {
if (ele_lists[idx].size() < 2) continue;
vector<pair<int,int>> & vec = ele_lists[idx];
int size = distance(vec.begin(), lower_bound(vec.begin(), vec.end(), L, comp_pair));
if (vec.size() <= size + 1) continue;
// initialize heap and combinations
heap.clear();
combs.clear();
int heap_size = 0;
for (auto i = size; i < vec.size(); i++) {
if ((int)(dataset[vec[i].first].size()) - 1 - vec[i].second < c) continue;
heap.push_back(heap_size++);
combs.push_back(combination(vec[i].first, vec[i].second));
}
if (heap_size < 2) continue;
make_heap(heap.begin(), heap.end(), comp_comb);
heap_cost += (3 * c * heap_size);
// cout << heap_size << " initial: " << heap_cost << endl;
// pop heaps
vector<int> inv_list;
while (heap_size > 1) {
inv_list.clear();
do {
heap_cost += (c * log2(heap_size) + c);
// cout << heap_size << " " << heap_cost << endl;
pop_heap(heap.begin(), heap.begin() + heap_size, comp_comb);
--heap_size;
inv_list.push_back(combs[heap[heap_size]].id);
} while (heap_size > 0 && is_equal(combs[heap[heap_size]], combs[heap.front()]));
if (inv_list.size() > 1) {
list_cost += ((inv_list.size() - 1) * (int64_t)inv_list.size() / 2);
res_lists.push_back(std::move(inv_list));
}
if (heap_size == 0) break;
for (auto i = heap_size; i < heap.size(); ++i) {
combs[heap[i]].binary(combs[heap.front()]);
binary_cost += (c * log2(dataset[combs[heap[i]].id].size()));
}
int comp_num = 0;
for (auto i = heap_size; i < heap.size(); ++i) {
if (combs[heap[i]].completed)
++comp_num;
else if (comp_num > 0)
heap[i - comp_num] = heap[i];
}
for (auto i = heap_size; i < (int)heap.size() - comp_num; i++) {
push_heap(heap.begin(), heap.begin() + i + 1, comp_comb);
heap_cost += (c * log2(i));
}
while (comp_num-- > 0)
heap.pop_back();
heap_size = heap.size();
}
}
cout << "Res lists num: " << res_lists.size() << endl;
gettimeofday(&mid1, NULL);
vector<vector<int>> id_lists(n);
for (auto i = 0; i < res_lists.size(); i++) {
for (auto j = 0; j < res_lists[i].size(); j++)
id_lists[res_lists[i][j]].push_back(i);
}
vector<int> results(n, -1);
for (auto i = n - 1; i >= 0; i--) {
if (id_lists[i].empty()) continue;
for (auto j = 0; j < id_lists[i].size(); j++) {
res_lists[id_lists[i][j]].pop_back();
for (auto k = 0; k < res_lists[id_lists[i][j]].size(); k++) {
if (results[res_lists[id_lists[i][j]][k]] != i) {
// cout << idmap[i].first << " " << idmap[res_lists[id_lists[i][j]][k]].first << endl;
results[res_lists[id_lists[i][j]][k]] = i;
int idd1 = idmap[i].first;
int idd2 = idmap[res_lists[id_lists[i][j]][k]].first;
if (has_limit)
{
double sim = similarityx(dataset[idd1], dataset[idd2], recordwt[idd1], recordwt[idd2], wordwt);
if (result_pairs_.size() > maxlimit)
result_pairs_.pop();
result_pairs_.emplace(idd1, idd2, sim);
} else {
result_pairs.emplace_back(idd1, idd2);
}
++result_num;
}
}
}
}
++c;
gettimeofday(&end, NULL);
cout << " small p1 : " << mid.tv_sec - beg.tv_sec + (mid.tv_usec - beg.tv_usec) / 1e6 << endl;
cout << " small p2 : " << mid1.tv_sec - mid.tv_sec + (mid1.tv_usec - mid.tv_usec) / 1e6 << endl;
cout << " small p3 : " << end.tv_sec - mid1.tv_sec + (end.tv_usec - mid1.tv_usec) / 1e6 << endl;
cout << " heap, binary, list costs : " << heap_cost << " " << binary_cost << " " << list_cost << endl;
}
void OvlpJoin::large_case(int L, int R) {
timeval beg, mid, end;
gettimeofday(&beg, NULL);
vector<vector<int>> ele(total_eles);
for (int i = n - 1; i >= R; --i)
for (auto x : dataset[i])
ele[x].push_back(i);
gettimeofday(&mid, NULL);
vector<int> bucket;
for (int i = R - 1; i >= L; --i) {
int count = 0;
for (auto x : dataset[i]) count += ele[x].size();
large_cost += count;
if (count > 0.2 * n) {
// n + count * value + count * if
bucket.assign(n, 0);
for (auto x : dataset[i]) {
for (auto id : ele[x]) {
if (++bucket[id] == c) {
// cout << idmap[i].first << " " << idmap[id].first << endl;
int idd1 = idmap[i].first;
int idd2= idmap[id].first;
if (has_limit)
{
double sim = similarityx(dataset[idd1], dataset[idd2], recordwt[idd1], recordwt[idd2], wordwt);
if (result_pairs_.size() > maxlimit)
result_pairs_.pop();
result_pairs_.emplace(idd1, idd2, sim);
} else {
result_pairs.emplace_back(idd1, idd2);
}
++result_num;
}
}
}
} else {
// count * if + count * value + count * if or value
alive_id++;
for (auto x : dataset[i]) {
for (auto id : ele[x]) {
if (buck[id].first != alive_id) {
buck[id].first = alive_id;
buck[id].second = 1;
} else {
if (++buck[id].second == c) {
// cout << idmap[i].first << " " << idmap[id].first << endl;
int idd1 = idmap[i].first;
int idd2 = idmap[id].first;
if (has_limit)
{
double sim = similarityx(dataset[idd1], dataset[idd2], recordwt[idd1], recordwt[idd2], wordwt);
if (result_pairs_.size() > maxlimit)
result_pairs_.pop();
result_pairs_.emplace(idd1, idd2, sim);
} else {
result_pairs.emplace_back(idd1, idd2);
}
++result_num;
}
}
}
}
}
for (auto x : dataset[i])
ele[x].push_back(i);
}
gettimeofday(&end, NULL);
cout << " large p1 : " << mid.tv_sec - beg.tv_sec + (mid.tv_usec - beg.tv_usec) / 1e6 << endl;
cout << " large p2 : " << end.tv_sec - mid.tv_sec + (end.tv_usec - mid.tv_usec) / 1e6 << endl;
}
// return the bound position
int OvlpJoin::estimate() {
// get random elements for sampling
while (random_ids.size() < total_eles * RATIO)
random_ids.insert(rand() % total_eles);
int64_t small, large;
int min_size = dataset.back().size();
int max_size = dataset.front().size();
auto bound = (min_size <= c ? c : min_size);
int pos = divide(bound);
int prev_pos = pos;
int64_t prev_large = large_estimate(0, pos);
int64_t prev_small = small_estimate(pos, n);
++bound;
for (; bound <= max_size; bound++) {
pos = divide(bound);
if (pos == prev_pos) continue;
cout << endl << "size boud: " << bound << endl;
cout << "larg numb: " << pos << endl;
cout << "smal numb: " << n - pos << endl;
large = large_estimate(0, pos);
small = small_estimate(pos, n);
cout << "heap cost: " << heap_cost * TIMES << endl;
cout << "biny cost: " << binary_cost * TIMES << endl;
cout << "list cost: " << list_cost << endl;
cout << "smal cost: " << small << endl;
cout << "larg cost: " << large << endl;
if (small - prev_small > 1.2 * (prev_large - large)) return prev_pos;
prev_pos = pos;
prev_large = large;
prev_small = small;
}
return prev_pos;
}
void OvlpJoin::overlapjoin(int overlap_threshold)
{
srand(time(NULL));
timeval starting, ending, s1, t1, s2, t2;
timeval time1, time2, time3, time4;
gettimeofday(&starting, NULL);
c = overlap_threshold; // get threshold
n = records.size(); // get number of records
buck.assign(n, make_pair(0, 0)); // for counting
vector<pair<int, int>> eles;
unordered_map<int, vector<int>> ele;
for (int i = 0; i < records.size(); i++) {
if (records[i].size() < c) continue; // remove records with size smaller than c
for (int j = 0; j < records[i].size(); j++) // build inverted index
ele[records[i][j]].push_back(i);
}
for (auto it = ele.begin(); it != ele.end(); it++)
eles.push_back(make_pair(it->first, it->second.size())); // build element frequency table
// get global order: frequency increasing order
sort(eles.begin(), eles.end(), [](const pair<int, int> &p1, const pair<int, int> &p2) {
return p1.second < p2.second;
});
// container initialize
dataset.resize(n);
// sort elements by its global order: frequence increasing order
// remove widow word
// encode elements in decreasing order
total_eles = eles.size();
for (auto i = 0; i < int(eles.size()); ++i) {
if (eles[i].second < 2) continue;
for (auto j = ele[eles[i].first].begin(); j != ele[eles[i].first].end(); j++)
dataset[*j].push_back(total_eles - i - 1);
}
gettimeofday(&time1, NULL);
cout << "Initial Time: " << time1.tv_sec - starting.tv_sec + (time1.tv_usec - starting.tv_usec) / 1e6 << endl;
// ****** cost model for prefix length selection ******
// remove short records
for (auto i = 0; i < n; i++)
if (dataset[i].size() < c) dataset[i].clear();
// create id mappings: from sorted to origin
for (auto i = 0; i < n; i++)
idmap.push_back(make_pair(i, dataset[i].size()));
// sort records by length in decreasing order
sort(idmap.begin(), idmap.end(), [] (const pair<int, int> & a, const pair<int, int> & b) {
return a.second > b.second;
});
sort(dataset.begin(), dataset.end(), [] (const vector<int>& a, const vector<int>& b) {
return a.size() > b.size();
});
cout << " largest set: " << dataset.front().size() << " smallest set: " << dataset.back().size() << endl;
// build real inverted index
ele_lists.resize(total_eles);
for (int i = 0; i < n; i++)
for (int j = 0; j < dataset[i].size(); j++)
ele_lists[dataset[i][j]].push_back(make_pair(i,j));
gettimeofday(&time3, NULL);
cout << "Transform Time: " << time3.tv_sec - time1.tv_sec + (time3.tv_usec - time1.tv_usec) / 1e6 << endl;
// ****** cost model for boundary selection ******
int nL = estimate();
int nP = nL;
cout << " large sets: " << nP << " small sets: " << n - nP << endl;
gettimeofday(&time4, NULL);
cout << "Estimation Time: " << time4.tv_sec - time3.tv_sec + (time4.tv_usec - time3.tv_usec) / 1e6 << endl;
// ****** conduct joining ******
result_num = 0;
candidate_num= 0;
gettimeofday(&s1, NULL);
large_case(0, nP);
gettimeofday(&t1, NULL);
gettimeofday(&s2, NULL);
small_case(nP, n);
gettimeofday(&t2, NULL);
gettimeofday(&ending, NULL);
cout << "Join Time: " << ending.tv_sec - time4.tv_sec + (ending.tv_usec - time4.tv_usec) / 1e6 << endl;
cout << " large Time: " << t1.tv_sec - s1.tv_sec + (t1.tv_usec - s1.tv_usec) / 1e6 << endl;
cout << " small Time: " << t2.tv_sec - s2.tv_sec + (t2.tv_usec - s2.tv_usec) / 1e6 << endl;
cout << "All Time: " << ending.tv_sec - starting.tv_sec + (ending.tv_usec - starting.tv_usec) / 1e6 << endl;
cout << "Result Num: " << result_num << endl;
cout << " large cost: " << large_cost << " small cost: " << heap_cost + list_cost + binary_cost << endl;
}
int64_t OvlpJoin::small_estimate(int L, int R) {
if (L >= R) return 0;
timeval beg, mid, mid1, end;
gettimeofday(&beg, NULL);
int total_num = R - L;
int sample_time = (R - L);
double ratio = (total_num - 1) * 1.0 / sample_time * total_num / 2;
// cout << "sample ratio: " << ratio << endl;
int r1, r2;
int64_t pair_num = 0;
for (auto i = 0; i < sample_time; i++) {
do {
r1 = rand() % (R - L) + L;
r2 = rand() % (R - L) + L;
} while (r1 == r2);
int start1 = 0;
int start2 = 0;
int overlap = 0;
while (start1 < dataset[r1].size() && start2 < dataset[r2].size()) {
if (dataset[r1][start1] == dataset[r2][start2]) {
++start1, ++start2;
overlap++;
} else {
if (dataset[r1][start1] > dataset[r2][start2]) ++start1;
else ++start2;
}
}
if (overlap >= c){
// cout << overlap << " " << c << endl;
pair_num += nchoosek(overlap, c);
// cout << pair_num << endl;
}
}
list_cost = pair_num * ratio;
--c;
heap_cost = 0;
binary_cost = 0;
gettimeofday(&mid, NULL);
for (auto sit = random_ids.begin(); sit != random_ids.end(); ++sit) {
auto idx = *sit;
vector<pair<int,int>> & vec = ele_lists[idx];
int size = distance(vec.begin(), lower_bound(vec.begin(), vec.end(), L, comp_pair));
if (vec.size() <= size + 1) continue;
heap.clear();
combs.clear();
int heap_size = 0;
for (auto i = size; i < vec.size(); i++) {
if ((int)(dataset[vec[i].first].size()) - 1 - vec[i].second < c) continue;
heap.push_back(heap_size++);
combs.push_back(combination(vec[i].first, vec[i].second));
}
if (heap_size < 2) continue;
make_heap(heap.begin(), heap.end(), comp_comb);
heap_cost += (3 * c * heap_size);
while (heap_size > 1) {
do {
++heap_op;
heap_cost += (c * log2(heap_size) + c);
pop_heap(heap.begin(), heap.begin() + heap_size, comp_comb);
--heap_size;
} while (heap_size > 0 && is_equal(combs[heap[heap_size]], combs[heap.front()]));
if (heap_size == 0) break;
for (auto i = heap_size; i < heap.size(); ++i) {
combs[heap[i]].binary(combs[heap.front()]);
binary_cost += (c * log2(dataset[combs[heap[i]].id].size()));
}
int comp_num = 0;
for (auto i = heap_size; i < heap.size(); ++i) {
if (combs[heap[i]].completed)
++comp_num;
else if (comp_num > 0)
heap[i - comp_num] = heap[i];
}
for (auto i = heap_size; i < (int)heap.size() - comp_num; i++) {
push_heap(heap.begin(), heap.begin() + i + 1, comp_comb);
heap_cost += (c * log2(i));
}
while (comp_num-- > 0)
heap.pop_back();
heap_size = heap.size();
}
}
++c;
gettimeofday(&end, NULL);
cout << " small est time p1 : " << mid.tv_sec - beg.tv_sec + (mid.tv_usec - beg.tv_usec) / 1e6 << endl;
cout << " small est time p2 : " << end.tv_sec - mid.tv_sec + (end.tv_usec - mid.tv_usec) / 1e6 << endl;
return binary_cost * TIMES + heap_cost * TIMES + list_cost;
}
/*
int64_t large_estimate(int L, int R) {
int64_t ret = 0;
for (int x = 0; x < ele_lists.size(); x++) {
int large_num = distance(ele_lists[x].begin(), lower_bound(ele_lists[x].begin(), ele_lists[x].end(), R, comp_pair));
int all_num = ele_lists[x].size();
ret += (large_num * all_num - large_num * (large_num - 1) / 2);
}
large_est_cost = ret;
return ret;
}
*/
int64_t OvlpJoin::large_estimate(int L, int R) {
timeval beg, end;
gettimeofday(&beg, NULL);
vector<int> count(total_eles);
for (int i = n - 1; i >= R; --i)
for (auto x : dataset[i])
++count[x];
int64_t ret = 0;
for (int i = R - 1; i >= L; --i) {
for (auto x : dataset[i]) {
++count[x];
ret += count[x];
}
}
large_est_cost = ret;
gettimeofday(&end, NULL);
cout << " large est time : " << end.tv_sec - beg.tv_sec + (end.tv_usec - beg.tv_usec) / 1e6 << endl;
return ret;
}
uint64_t OvlpJoin::getListCost() {
return (list_cost - list_sum) / 2 * TIMES;
// return (list_cost - (list_sum * 1.0 / list_sample_num) * (list_sum * 1.0 / list_sample_num) - list_sum) / 2 * TIMES;
// return (list_cost * list_sample_num * 1.0 / (list_sample_num - 1) - list_sum * 1.0 / list_sample_num * list_sum / (list_sample_num - 1) - list_sum) / 2 * TIMES;
}
// find first set with size smaller or equal to nL
int OvlpJoin::divide(int nL) {
int l = 0, r = n;
while (l < r) {
int m = (l + r) >> 1;
if (dataset[m].size() > nL) l = m + 1;
else r = m;
}
return r;
}
bool comp_pair(const pair<int, int> &p1, const int val) {
return p1.first < val;
}
bool comp_int(const int a, const int b) {
return a > b;
}
bool comp_comb(const int a, const int b) {
combination & c1 = combs[a];
combination & c2 = combs[b];
for (int i = 0; i < c; i++) {
if (dataset[c1.id][c1.curr[i]] > dataset[c2.id][c2.curr[i]])
return false;
else if (dataset[c1.id][c1.curr[i]] < dataset[c2.id][c2.curr[i]])
return true;
}
return c1.id > c2.id;
}
bool OvlpJoin::is_equal(const combination & c1, const combination & c2) {
for (int i = 0; i < c; i++) {
if (dataset[c1.id][c1.curr[i]] != dataset[c2.id][c2.curr[i]])
return false;
}
return true;
}