-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathalign_test.cpp
228 lines (191 loc) · 6.02 KB
/
align_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// Copyright 2013 Yangqing Jia
//
// This is a simple script that allows one to quickly test a network whose
// structure is specified by text format protocol buffers, and whose parameter
// are loaded from a pre-trained network.
// Usage:
// test_net net_proto pretrained_net_proto iterations [CPU/GPU]
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <string>
#include "caffe/caffe.hpp"
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#define CROP_WINSIZE 39
#define CROP_PADDING 2.5
using namespace caffe; // NOLINT(build/namespaces)
using namespace cv;
float getMean( float * p )
{
float ans;
for(int i = 0 ; i < CROP_WINSIZE * CROP_WINSIZE ; i++, p++)
ans += *p;
ans = ans/ float( CROP_WINSIZE * CROP_WINSIZE );
return ans;
}
float getStd( float * p , float mean)
{
float ans;
for(int i = 0 ; i < CROP_WINSIZE * CROP_WINSIZE ; i++, p++)
ans += ( (*p-mean) * (*p-mean) );
ans = ans/ float( CROP_WINSIZE * CROP_WINSIZE - 1);
ans = sqrt( ans );
return ans;
}
void getZscore( Mat & img, int left, int right, int top, int bottom, float * & score )
{
if( img.type()==CV_8UC3 )
{
std::cerr << "warning! a color image input" << std::endl;
cv::cvtColor( img , img , CV_RGB2GRAY );
}
double scale = (right - left) / double( CROP_WINSIZE );
left -= int( scale * CROP_PADDING );
right += int( scale * CROP_PADDING );
top -= int( scale * CROP_PADDING );
bottom+= int( scale * CROP_PADDING );
if( top<0 || left < 0 || right >= img.cols || bottom >= img.rows )
{
std::cerr << "warning! invalid bounding box " << std::endl;
return;
}
Mat patch = img( Range( top, bottom ), Range( left, right ) );
cv::resize( patch , patch, Size( CROP_WINSIZE, CROP_WINSIZE ) );
patch.convertTo( patch, CV_32F );
float mu = getMean( patch.ptr<float>() );
float sigma = getStd( patch.ptr<float>() , mu);
score = new( float[ CROP_WINSIZE * CROP_WINSIZE ] );
float * p_patch = patch.ptr<float>();
for(int i = 0 ; i < CROP_WINSIZE * CROP_WINSIZE ; i++)
score[i] = ( p_patch[i] - mu ) / sigma;
}
template <typename Dtype>
static void save_blob(const string& fn, Blob<Dtype> *b){
LOG(INFO) << "Saving " << fn;
FILE *f = fopen(fn.c_str(), "wb");
CHECK(f != NULL);
fwrite(b->cpu_data(), sizeof(Dtype), b->count(), f);
fclose(f);
}
static void draw(const float *buf, const float *pt){
const int ph = 39, pw = 39;
const float scale = 4.0f;
cv::Mat m = cv::Mat::zeros(ph, pw, CV_32FC1);
memcpy(m.data, buf, sizeof(float)*pw*ph);
cv::Mat dsp;
cv::normalize(m, dsp, 0, 255, cv::NORM_MINMAX, CV_8UC1);
cv::resize(dsp, dsp, cv::Size(), scale, scale);
cv::cvtColor(dsp, dsp, CV_GRAY2BGR);
#if 1
for(int i=0;i<5;i++){
const float *t = pt + 2*i;
cv::circle(dsp, cv::Point(t[0]*scale, t[1]*scale), 2, cv::Scalar(255,0,0), 2);
}
#endif
cv::imshow("A", dsp);
cv::waitKey(0);
}
int main(int argc, char** argv) {
if (argc < 3) {
LOG(ERROR) << "test_net net_proto pretrained_net_proto iterations inputbin output_dir"
<< " [CPU/GPU]";
return 0;
}
LogMessage::Enable(true);
Caffe::set_phase(Caffe::TEST);
Caffe::set_mode(Caffe::CPU);
NetParameter test_net_param;
ReadProtoFromTextFile(argv[1], &test_net_param);
Net<float> caffe_test_net(test_net_param);
NetParameter trained_net_param;
ReadProtoFromBinaryFile(argv[2], &trained_net_param);
caffe_test_net.CopyTrainedLayersFrom(trained_net_param);
#if 0
SolverState state;
std::string state_file = std::string(argv[2]) + ".solverstate";
ReadProtoFromBinaryFile(state_file, &state);
#endif
vector<Blob<float>*> dummy_blob_input_vec;
//save layer
int feature_layer_idx = -1;
int data_layer_idx = -1;
for(int i=0;i<caffe_test_net.layer_names().size();i++)
if(caffe_test_net.layer_names()[i] == "ip2"){
feature_layer_idx = i;
break;
}
for(int i=0;i<caffe_test_net.layer_names().size();i++)
if(caffe_test_net.layer_names()[i] == "image_input"){
data_layer_idx = i;
break;
}
CHECK_NE(feature_layer_idx, -1);
CHECK_NE(data_layer_idx, -1);
LOG(INFO) << "Data layer: " << data_layer_idx;
LOG(INFO) << "Feature layer: " << feature_layer_idx;
Blob<float>* output = caffe_test_net.top_vecs()[feature_layer_idx][0],
*data_blob = caffe_test_net.top_vecs()[data_layer_idx][0];
RawImageLayer<float> *data_layer = dynamic_cast<RawImageLayer<float>* >(caffe_test_net.layers()[data_layer_idx].get());
CHECK(data_layer != 0);
LOG(INFO) << "OUTPUT BLOB dim: " << output->num() << ' '
<< output->channels() << ' '
<< output->width() << ' '
<< output->height();
const int ih = data_blob->height(), iw = data_blob->width(), ic = data_blob->channels();
//double buf[ih*iw*ic];
FILE *finput = fopen(argv[3], "r");
CHECK(finput != NULL);
for (;;) {
char fn[1024];
int l,r,t,b;
int nread = fscanf(finput, "%s%d%d%d%d", fn, &l, &r, &t, &b);
if(nread != 5)
break;
cv::Mat mat = cv::imread(fn);
if(!mat.data){
printf("%s\n", fn);
continue;
}
cv::cvtColor(mat, mat, CV_BGR2GRAY);
float * p = 0;
getZscore( mat, l, r, t, b, p);
if(!p)
continue;
float *d = data_blob->mutable_cpu_data();
size_t len = ih * iw * ic;
for(int j = 0; j < data_blob->num(); j++){
memcpy(d, p, sizeof(float)*CROP_WINSIZE*CROP_WINSIZE);
/*
size_t nread = fread(buf, sizeof(double), len, finput);
CHECK_EQ(nread, len);
for(int k=0;k<len;k++){
d[k] = buf[k];
}
d += len;
*/
}
const vector<Blob<float>*>& result =
caffe_test_net.Forward(dummy_blob_input_vec);
printf("%s %d %d %d %d ", fn, l, r, t, b);
const float *pt = output->cpu_data();
for(int i=0;i<output->num();i++){
for(int j=0;j<output->channels();j++)
printf("%f\t", pt[j]);
printf("\n");
}
fflush(stdout);
//draw(p, pt);
delete [] p;
//sprintf(output_dir, "%s/feat_%05d", argv[4], i);
//save_blob(output_dir, output);
//test_accuracy += result[0]->cpu_data()[0];
//LOG(ERROR) << "Batch " << i << ", accuracy: " << result[0]->cpu_data()[0];
}
fclose(finput);
//test_accuracy /= total_iter;
//LOG(ERROR) << "Test accuracy:" << test_accuracy;
return 0;
}