forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathu32-filterbank-accumulate.cc
86 lines (73 loc) · 3.24 KB
/
u32-filterbank-accumulate.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <numeric>
#include <vector>
#include "bench/utils.h"
#include <benchmark/benchmark.h>
#include <xnnpack.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/filterbank.h>
#include <xnnpack/microfnptr.h>
void filterbank_accumulate(
benchmark::State& state,
xnn_u32_filterbank_accumulate_ukernel_fn filterbank_accumulate,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t rows = state.range(0);
const size_t batch = state.range(1);
const size_t input_size = (rows + 1) * batch;
std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> input(input_size);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> weight_widths(rows + 1);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> weights(input_size * 2);
std::vector<uint64_t, AlignedAllocator<uint64_t, 64>> output(rows);
std::iota(input.begin(), input.end(), 0);
std::fill(weight_widths.begin(), weight_widths.end(), static_cast<uint8_t>(batch));
std::iota(weights.begin(), weights.end(), 0);
std::iota(output.begin(), output.end(), 0);
for (auto _ : state) {
filterbank_accumulate(rows, input.data(), weight_widths.data(), weights.data(), output.data());
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
}
static void BenchmarkKernelSize(benchmark::internal::Benchmark* b)
{
b->ArgNames({"rows", "batch"});
b->Args({1, 237});
b->Args({5, 1});
b->Args({10, 2});
b->Args({7, 3});
b->Args({5, 4});
b->Args({5, 5});
b->Args({3, 6});
b->Args({4, 7});
b->Args({2, 8});
b->Args({2, 9});
b->Args({2, 10});
b->Args({3, 11});
b->Args({1, 13});
}
#if XNN_ARCH_ARM && XNN_ENABLE_ASSEMBLY
BENCHMARK_CAPTURE(filterbank_accumulate, u32_aarch32_arm_x1, xnn_u32_filterbank_accumulate_ukernel__asm_aarch32_arm_x1)->Apply(BenchmarkKernelSize)->UseRealTime();
BENCHMARK_CAPTURE(filterbank_accumulate, u32_aarch32_neon_x1, xnn_u32_filterbank_accumulate_ukernel__asm_aarch32_neon_x1, benchmark::utils::CheckNEON)->Apply(BenchmarkKernelSize)->UseRealTime();
BENCHMARK_CAPTURE(filterbank_accumulate, u32_aarch32_neon_x2, xnn_u32_filterbank_accumulate_ukernel__asm_aarch32_neon_x2, benchmark::utils::CheckNEON)->Apply(BenchmarkKernelSize)->UseRealTime();
#endif // XNN_ARCH_ARM && XNN_ENABLE_ASSEMBLY
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
BENCHMARK_CAPTURE(filterbank_accumulate, u32_neon_x1, xnn_u32_filterbank_accumulate_ukernel__neon_x1, benchmark::utils::CheckNEON)->Apply(BenchmarkKernelSize)->UseRealTime();
BENCHMARK_CAPTURE(filterbank_accumulate, u32_neon_x2, xnn_u32_filterbank_accumulate_ukernel__neon_x2, benchmark::utils::CheckNEON)->Apply(BenchmarkKernelSize)->UseRealTime();
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
BENCHMARK_CAPTURE(filterbank_accumulate, u32_scalar_x1, xnn_u32_filterbank_accumulate_ukernel__scalar_x1)->Apply(BenchmarkKernelSize)->UseRealTime();
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif