-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcnn.py
90 lines (80 loc) · 4.07 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import tensorflow.keras as keras
import tensorflow_addons as tfa
def vgg(layer_in, n_filters, n_conv):
"""
VGG block
:param layer_in: input layer
:param n_filters: number of filters to use
:param n_conv: number of convolutional layers to use
:return: VGG block
"""
for _ in range(n_conv):
layer_in = keras.layers.Conv2D(n_filters, (3, 3), padding='same', activation='relu')(layer_in)
layer_in = keras.layers.MaxPool2D((2, 2), strides=(2, 2))(layer_in)
return layer_in
def vgg_block_avg(layer_in, n_filters, n_conv):
"""
VGG block with average pooling
:param layer_in: input layer
:param n_filters: number of filters to use
:param n_conv: number of convolutional layers to use
:return: VGG block
"""
# Add convolutional layers
for _ in range(n_conv):
layer_in = keras.layers.Conv2D(n_filters, (3, 3), padding='same', activation='relu')(layer_in)
# Add max pooling layer
layer_in = keras.layers.AveragePooling2D(pool_size=2)(layer_in)
return layer_in
def inception_naive(layer_in, f1, f2, f3):
"""
Naive inception module
:param layer_in: input layer
:param f1: number of 1x1 convolutions
:param f2: number of 3x3 convolutions
:param f3: number of 5x5 convolutions
:return: inception module
"""
conv1 = keras.layers.Conv2D(f1, (1, 1), padding='same', activation='relu')(layer_in)
conv3 = keras.layers.Conv2D(f2, (3, 3), padding='same', activation='relu')(layer_in)
conv5 = keras.layers.Conv2D(f3, (5, 5), padding='same', activation='relu')(layer_in)
pool = keras.layers.MaxPool2D((3, 3), strides=(1, 1), padding='same')(layer_in)
layer_out = keras.layers.concatenate([conv1, conv3, conv5, pool], axis=-1)
return layer_out
def inception(layer_in, f1, f2_in, f2_out, f3_in, f3_out, f4_out):
"""
Inception module
:param layer_in: input layer
:param f1: number of 1x1 convolutions
:param f2: number of 3x3 convolutions
:param f3: number of 5x5 convolutions
:return: inception module
"""
conv1 = keras.layers.Conv2D(f1, (1, 1), padding='same', activation='relu')(layer_in)
conv3 = keras.layers.Conv2D(f2_in, (1, 1), padding='same', activation='relu')(layer_in)
conv3 = keras.layers.Conv2D(f2_out, (3, 3), padding='same', activation='relu')(conv3)
conv5 = keras.layers.Conv2D(f3_in, (1, 1), padding='same', activation='relu')(layer_in)
conv5 = keras.layers.Conv2D(f3_out, (5, 5), padding='same', activation='relu')(conv5)
pool = keras.layers.MaxPool2D((3, 3), strides=(1, 1), padding='same')(layer_in)
pool = keras.layers.Conv2D(f4_out, (1, 1), padding='same', activation='relu')(pool)
layer_out = keras.layers.concatenate([conv1, conv3, conv5, pool], axis=-1)
return layer_out
# function for creating an identity or projection residual module
def residual_module(layer_in, n_filters, use_spectral_norm=True):
merge_input = layer_in
if layer_in.shape[-1] != n_filters:
merge_input = keras.layers.Conv2D(n_filters, (1, 1), padding='same', activation='swish',
kernel_initializer='he_normal')(layer_in)
if not use_spectral_norm:
conv1 = keras.layers.Conv2D(n_filters, (3, 3), padding='same', activation='swish',
kernel_initializer='he_normal', use_bias=False)(layer_in)
conv2 = keras.layers.Conv2D(n_filters, (3, 3), padding='same', activation='linear',
kernel_initializer='he_normal', use_bias=False)(conv1)
else:
conv1 = tfa.layers.SpectralNormalization(keras.layers.Conv2D(n_filters, (3, 3), padding='same', activation='swish',
kernel_initializer='he_normal', use_bias=False))(layer_in)
conv2 = tfa.layers.SpectralNormalization(keras.layers.Conv2D(n_filters, (3, 3), padding='same', activation='linear',
kernel_initializer='he_normal', use_bias=False))(conv1)
layer_out = keras.layers.add([conv2, merge_input])
layer_out = keras.layers.Activation('swish')(layer_out)
return layer_out