From abc1febe5c257fdad9669ea76b943d72f5562047 Mon Sep 17 00:00:00 2001 From: Choonghyun Ryu Date: Tue, 13 Feb 2024 07:32:30 +0900 Subject: [PATCH] edit packagedown docs --- README.Rmd | 955 +++++++ _pkgdown.yml | 52 + alookr.Rproj | 18 + docs/404.html | 12 +- docs/apple-touch-icon-120x120.png | Bin 0 -> 7525 bytes docs/apple-touch-icon-152x152.png | Bin 0 -> 9788 bytes docs/apple-touch-icon-180x180.png | Bin 0 -> 11632 bytes docs/apple-touch-icon-60x60.png | Bin 0 -> 3615 bytes docs/apple-touch-icon-76x76.png | Bin 0 -> 4533 bytes docs/apple-touch-icon.png | Bin 0 -> 11632 bytes docs/articles/cleansing.html | 14 +- docs/articles/index.html | 7 +- docs/articles/introduce.html | 24 +- docs/articles/modeling.html | 14 +- docs/articles/split.html | 14 +- docs/authors.html | 16 +- docs/favicon-16x16.png | Bin 0 -> 1005 bytes docs/favicon-32x32.png | Bin 0 -> 1801 bytes docs/favicon.ico | Bin 0 -> 15086 bytes docs/index.html | 2634 +++++++++---------- docs/logo.png | Bin 0 -> 36129 bytes docs/news/index.html | 188 ++ docs/pkgdown.css | 87 +- docs/pkgdown.js | 4 +- docs/pkgdown.yml | 7 +- docs/reference/Rplot002.png | Bin 11037 -> 25612 bytes docs/reference/Rplot003.png | Bin 11226 -> 24999 bytes docs/reference/Rplot004.png | Bin 26769 -> 26530 bytes docs/reference/Rplot005.png | Bin 28967 -> 27129 bytes docs/reference/Rplot006.png | Bin 26277 -> 26271 bytes docs/reference/cleanse.data.frame.html | 383 ++- docs/reference/cleanse.split_df.html | 261 +- docs/reference/compare_diag.html | 434 ++- docs/reference/compare_performance.html | 123 +- docs/reference/compare_plot.html | 57 +- docs/reference/compare_target_category.html | 292 +- docs/reference/compare_target_numeric.html | 214 +- docs/reference/extract_set.html | 187 +- docs/reference/figures/logo.png | Bin 0 -> 36129 bytes docs/reference/index.html | 10 +- docs/reference/matthews.html | 213 +- docs/reference/performance_metric.html | 152 +- docs/reference/plot_cutoff-4.png | Bin 73143 -> 73108 bytes docs/reference/plot_cutoff-5.png | Bin 75599 -> 75559 bytes docs/reference/plot_cutoff-6.png | Bin 72978 -> 72945 bytes docs/reference/plot_cutoff-9.png | Bin 67385 -> 67386 bytes docs/reference/plot_cutoff.html | 78 +- docs/reference/plot_performance-1.png | Bin 103869 -> 103415 bytes docs/reference/plot_performance.html | 80 +- docs/reference/run_models.html | 98 +- docs/reference/run_performance.html | 325 +-- docs/reference/run_predict.html | 110 +- docs/reference/sampling_target.html | 389 ++- docs/reference/split_by.data.frame.html | 255 +- docs/reference/summary.split_df.html | 240 +- docs/reference/treatment_corr.html | 84 +- docs/sitemap.xml | 93 + 57 files changed, 4313 insertions(+), 3811 deletions(-) create mode 100644 README.Rmd create mode 100644 _pkgdown.yml create mode 100644 alookr.Rproj create mode 100644 docs/apple-touch-icon-120x120.png create mode 100644 docs/apple-touch-icon-152x152.png create mode 100644 docs/apple-touch-icon-180x180.png create mode 100644 docs/apple-touch-icon-60x60.png create mode 100644 docs/apple-touch-icon-76x76.png create mode 100644 docs/apple-touch-icon.png create mode 100644 docs/favicon-16x16.png create mode 100644 docs/favicon-32x32.png create mode 100644 docs/favicon.ico create mode 100644 docs/logo.png create mode 100644 docs/news/index.html create mode 100644 docs/reference/figures/logo.png create mode 100644 docs/sitemap.xml diff --git a/README.Rmd b/README.Rmd new file mode 100644 index 0000000..5cf476a --- /dev/null +++ b/README.Rmd @@ -0,0 +1,955 @@ +--- +output: + github_document +--- + + + +```{r, echo = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>", + fig.path = "man/figures/README-" +) +``` + +# alookr + +[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/alookr)](https://cran.r-project.org/package=alookr) +[![Total +Downloads](https://cranlogs.r-pkg.org/badges/grand-total/alookr)](https://cran.r-project.org/package=alookr) + +## Overview + +Binary classification modeling with `alookr`. + +Features: + + - Clean and split data sets to train and test. + - Create several representative models. + - Evaluate the performance of the model to select the best model. + - Support the entire process of developing a binary classification model. + +The name `alookr` comes from `looking at the analytics process` in the data analysis process. + +## Install alookr + +The released version is available on CRAN. but not yet. + +```{r eval = FALSE} +install.packages("alookr") +``` + +Or you can get the development version without vignettes from GitHub: + +```{r eval = FALSE} +devtools::install_github("choonghyunryu/alookr") +``` + +Or you can get the development version with vignettes from GitHub: + +```{r eval = FALSE} +install.packages(c("ISLR", "spelling", "mlbench")) +devtools::install_github("choonghyunryu/alookr", build_vignettes = TRUE) +``` + +## Usage + +alookr includes several vignette files, which we use throughout the documentation. + +Provided vignettes is as follows. + +* Cleansing the dataset +* Split the data into a train set and a test set +* Modeling and Evaluate, Predict + +```{r vignettes, eval=FALSE} +browseVignettes(package = "alookr") +``` + +## Cleansing the dataset +### Data: create example dataset + +To illustrate basic use of the alookr package, create the `data_exam` with sample function. The `data_exam` dataset include 5 variables. + +variables are as follows.: + +* `id` : character +* `year`: character +* `count`: numeric +* `alpha` : character +* `flag` : character + +```{r create_data} +# create sample dataset +set.seed(123L) +id <- sapply(1:1000, function(x) + paste(c(sample(letters, 5), x), collapse = "")) + +year <- "2018" + +set.seed(123L) +count <- sample(1:10, size = 1000, replace = TRUE) + +set.seed(123L) +alpha <- sample(letters, size = 1000, replace = TRUE) + +set.seed(123L) +flag <- sample(c("Y", "N"), size = 1000, prob = c(0.1, 0.9), replace = TRUE) + +data_exam <- data.frame(id, year, count, alpha, flag, stringsAsFactors = FALSE) + +# structure of dataset +str(data_exam) + +# summary of dataset +summary(data_exam) +``` + +### Clean dataset +`cleanse()` cleans up the dataset before fitting the classification model. + +The function of cleanse() is as follows.: + +* remove variables whose unique value is one +* remove variables with high unique rate +* converts character variables to factor +* remove variables with missing value + +#### Cleanse dataset with `cleanse()` +For example, we can cleanse all variables in `data_exam`: + +```{r cleanse,} +library(alookr) + +# cleansing dataset +newDat <- cleanse(data_exam) + +# structure of cleansing dataset +str(newDat) +``` + +* `remove variables whose unique value is one` : The year variable has only one value, "2018". Not needed when fitting the model. So it was removed. +* `remove variables with high unique rate` : If the number of levels of categorical data is very large, it is not suitable for classification model. In this case, it is highly likely to be an identifier of the data. So, remove the categorical (or character) variable with a high value of the unique rate defined as "number of levels / number of observations". + + The unique rate of the id variable with the number of levels of 1000 is 1. This variable is the object of the removal by identifier. + + The unique rate of the alpha variable is 0.026 and this variable is also removed. +* `converts character variables to factor` : The character type flag variable is converted to a factor type. + +For example, we can not remove the categorical data that is removed by changing the threshold of the `unique rate`: + +```{r cleanse_2} +# cleansing dataset +newDat <- cleanse(data_exam, uniq_thres = 0.03) + +# structure of cleansing dataset +str(newDat) +``` + +The `alpha` variable was not removed. + +If you do not want to apply a unique rate, you can set the value of the `uniq` argument to FALSE.: + +```{r cleanse_3} +# cleansing dataset +newDat <- cleanse(data_exam, uniq = FALSE) + +# structure of cleansing dataset +str(newDat) +``` + +If you do not want to force type conversion of a character variable to factor, you can set the value of the `char` argument to FALSE.: + +```{r cleanse_4} +# cleansing dataset +newDat <- cleanse(data_exam, char = FALSE) + +# structure of cleansing dataset +str(newDat) +``` + +If you want to remove a variable that contains missing values, specify the value of the `missing` argument as TRUE. The following example **removes the flag variable** that contains the missing value. + +```{r cleanse_5} +data_exam$flag[1] <- NA + +# cleansing dataset +newDat <- cleanse(data_exam, missing = TRUE) + +# structure of cleansing dataset +str(newDat) +``` + +### Diagnosis and removal of highly correlated variables + +In the linear model, there is a multicollinearity if there is a strong correlation between independent variables. So it is better to remove one variable from a pair of variables where the correlation exists. + +Even if it is not a linear model, removing one variable from a strongly correlated pair of variables can also reduce the overhead of the operation. It is also easy to interpret the model. + +#### Cleanse dataset with `treatment_corr()` +`treatment_corr()` diagnose pairs of highly correlated variables or remove on of them. + +`treatment_corr()` calculates correlation coefficient of pearson for numerical variable, and correlation coefficient of spearman for categorical variable. + +For example, we can diagnosis and removal of highly correlated variables: + +```{r treatment_corr} +# numerical variable +x1 <- 1:100 +set.seed(12L) +x2 <- sample(1:3, size = 100, replace = TRUE) * x1 + rnorm(1) +set.seed(1234L) +x3 <- sample(1:2, size = 100, replace = TRUE) * x1 + rnorm(1) + +# categorical variable +x4 <- factor(rep(letters[1:20], time = 5)) +set.seed(100L) +x5 <- factor(rep(letters[1:20 + sample(1:6, size = 20, replace = TRUE)], time = 5)) +set.seed(200L) +x6 <- factor(rep(letters[1:20 + sample(1:3, size = 20, replace = TRUE)], time = 5)) +set.seed(300L) +x7 <- factor(sample(letters[1:5], size = 100, replace = TRUE)) + +exam <- data.frame(x1, x2, x3, x4, x5, x6, x7) +str(exam) +head(exam) + +# default case +exam_01 <- treatment_corr(exam) +head(exam_01) + +# not removing variables +treatment_corr(exam, treat = FALSE) + +# Set a threshold to detecting variables when correlation greater then 0.9 +treatment_corr(exam, corr_thres = 0.9, treat = FALSE) + +# not verbose mode +exam_02 <- treatment_corr(exam, verbose = FALSE) +head(exam_02) +``` + +* `remove variables whose strong correlation` : x1, x4, x5 are removed. + +## Split the data into a train set and a test set + +### Data: Credit Card Default Data + +`Default` of `ISLR package` is a simulated data set containing information on ten thousand customers. The aim here is to predict which customers will default on their credit card debt. + +A data frame with 10000 observations on the following 4 variables.: + +* `default` : factor. A factor with levels No and Yes indicating whether the customer defaulted on their debt +* `student`: factor. A factor with levels No and Yes indicating whether the customer is a student +* `balance`: numeric. The average balance that the customer has remaining on their credit card after making their monthly payment +* `income` : numeric. Income of customer + +```{r create_data_2} +# Credit Card Default Data +head(ISLR::Default) + +# structure of dataset +str(ISLR::Default) + +# summary of dataset +summary(ISLR::Default) +``` + +### Split dataset +`split_by()` splits the data.frame or tbl_df into a training set and a test set. + +#### Split dataset with `split_by()` +The `split_df` class is created, which contains the split information and criteria to separate the training and the test set. + +```{r splits, message=FALSE} +library(alookr) +library(dplyr) + +# Generate data for the example +sb <- ISLR::Default %>% + split_by(default, seed = 6534) + +sb +``` + +The attributes of the `split_df` class are as follows.: + +* split_seed : integer. random seed used for splitting +* target : character. the name of the target variable +* binary : logical. whether the target variable is binary class +* minority : character. the name of the minority class +* majority : character. the name of the majority class +* minority_rate : numeric. the rate of the minority class +* majority_rate : numeric. the rate of the majority class + +```{r attr} +attr_names <- names(attributes(sb)) +attr_names + +sb_attr <- attributes(sb) + +# The third property, row.names, is excluded from the output because its length is very long. +sb_attr[!attr_names %in% "row.names"] +``` + +`summary()` summarizes the information of two datasets splitted by `split_by()`. + +```{r summ} +summary(sb) +``` + + +### Compare dataset +Train data and test data should be similar. If the two datasets are not similar, the performance of the predictive model may be reduced. + +`alookr` provides a function to compare the similarity between train dataset and test dataset. + +If the two data sets are not similar, the train dataset and test dataset should be splitted again from the original data. + +#### Comparison of categorical variables with `compare_target_category()` + +Compare the statistics of the categorical variables of the train set and test set included in the "split_df" class. + +```{r compare_target_category} +sb %>% + compare_target_category() + +# compare variables that are character data types. +sb %>% + compare_target_category(add_character = TRUE) + +# display marginal +sb %>% + compare_target_category(margin = TRUE) + +# student variable only +sb %>% + compare_target_category(student) + +sb %>% + compare_target_category(student, margin = TRUE) +``` + +compare_target_category() returns tbl_df, where the variables have the following.: + +* variable : character. categorical variable name +* level : factor. level of categorical variables +* train : numeric. the relative frequency of the level in the train set +* test : numeric. the relative frequency of the level in the test set +* abs_diff : numeric. the absolute value of the difference between two relative frequencies + +#### Comparison of numeric variables with `compare_target_numeric()` + +Compare the statistics of the numerical variables of the train set and test set included in the "split_df" class. + +```{r compare_target_numeric} +sb %>% + compare_target_numeric() + +# balance variable only +sb %>% + compare_target_numeric(balance) +``` + +compare_target_numeric() returns tbl_df, where the variables have the following.: + +* variable : character. numeric variable name +* train_mean : numeric. arithmetic mean of train set +* test_mean : numeric. arithmetic mean of test set +* train_sd : numeric. standard deviation of train set +* test_sd : numeric. standard deviation of test set +* train_z : numeric. the arithmetic mean of the train set divided by the standard deviation +* test_z : numeric. the arithmetic mean of the test set divided by the standard deviation + +#### Comparison plot with `compare_plot()` + +Plot compare information of the train set and test set included in the "split_df" class. + +```{r compare_plot, fig.height=5, fig.width=6, message=FALSE} +# income variable only +sb %>% + compare_plot("income") + +# all varibales +sb %>% + compare_plot() +``` + +#### Diagnosis of train set and test set with `compare_diag()` + +Diagnosis of similarity between datasets splitted by train set and set included in the "split_df" class. + +```{r create_dataset} +defaults <- ISLR::Default +defaults$id <- seq(NROW(defaults)) + +set.seed(1) +defaults[sample(seq(NROW(defaults)), 3), "student"] <- NA +set.seed(2) +defaults[sample(seq(NROW(defaults)), 10), "balance"] <- NA + +sb_2 <- defaults %>% + split_by(default) + +sb_2 %>% + compare_diag() + +sb_2 %>% + compare_diag(add_character = TRUE) + +sb_2 %>% + compare_diag(uniq_thres = 0.0005) +``` + + +### Extract train/test dataset +If you compare the train set with the test set and find that the two datasets are similar, extract the data from the split_df object. + +#### Extract train set or test set with `extract_set()` + +Extract train set or test set from split_df class object. + +```{r extract_set} +train <- sb %>% + extract_set(set = "train") + +test <- sb %>% + extract_set(set = "test") + +dim(train) + +dim(test) +``` + +#### Extract the data to fit the model with `sampling_target()` +In a target class, the ratio of the majority class to the minority class is not similar and the ratio of the minority class is very small, which is called the `imbalanced class`. + +If target variable is an imbalanced class, the characteristics of the majority class are actively reflected in the model. This model implies an error in predicting the minority class as the majority class. So we have to make the train dataset a balanced class. + +`sampling_target()` performs sampling on the train set of split_df to resolve the imbalanced class. + +```{r sampling_target} +# under-sampling with random seed +under <- sb %>% + sampling_target(seed = 1234L) + +under %>% + count(default) + +# under-sampling with random seed, and minority class frequency is 40% +under40 <- sb %>% + sampling_target(seed = 1234L, perc = 40) + +under40 %>% + count(default) + +# over-sampling with random seed +over <- sb %>% + sampling_target(method = "ubOver", seed = 1234L) + +over %>% + count(default) + +# over-sampling with random seed, and k = 10 +over10 <- sb %>% + sampling_target(method = "ubOver", seed = 1234L, k = 10) + +over10 %>% + count(default) + +# SMOTE with random seed +smote <- sb %>% + sampling_target(method = "ubSMOTE", seed = 1234L) + +smote %>% + count(default) + +# SMOTE with random seed, and perc.under = 250 +smote250 <- sb %>% + sampling_target(method = "ubSMOTE", seed = 1234L, perc.under = 250) + +smote250 %>% + count(default) +``` + +The argument that specifies the sampling method in sampling_target () is method. "ubUnder" is under-sampling, and "ubOver" is over-sampling, "ubSMOTE" is SMOTE(Synthetic Minority Over-sampling TEchnique). + +## Modeling and Evaluate, Predict + +### Data: Wisconsin Breast Cancer Data +`BreastCancer` of `mlbench package` is a breast cancer data. The objective is to identify each of a number of benign or malignant classes. + +A data frame with 699 observations on 11 variables, one being a character variable, 9 being ordered or nominal, and 1 target class.: + +* `Id` : character. Sample code number +* `Cl.thickness` : ordered factor. Clump Thickness +* `Cell.size` : ordered factor. Uniformity of Cell Size +* `Cell.shape` : ordered factor. Uniformity of Cell Shape +* `Marg.adhesion` : ordered factor. Marginal Adhesion +* `Epith.c.size` : ordered factor. Single Epithelial Cell Size +* `Bare.nuclei` : factor. Bare Nuclei +* `Bl.cromatin` : factor. Bland Chromatin +* `Normal.nucleoli` : factor. Normal Nucleoli +* `Mitoses` : factor. Mitoses +* `Class` : factor. Class. level is `benign` and `malignant`. + +```{r load_data} +library(mlbench) +data(BreastCancer) + +# class of each variables +sapply(BreastCancer, function(x) class(x)[1]) +``` + +### Preperation the data +Perform data preprocessing as follows.: + +* Find and imputate variables that contain missing values. +* Split the data into a train set and a test set. +* To solve the imbalanced class, perform sampling in the train set of raw data. +* Cleansing the dataset for classification modeling. + +#### Fix the missing value with `dlookr::imputate_na()` +find the variables that include missing value. and imputate the missing value using imputate_na() in dlookr package. + +```{r imputate_data, message=FALSE, warning=FALSE} +library(dlookr) +library(dplyr) + +# variable that have a missing value +diagnose(BreastCancer) %>% + filter(missing_count > 0) + +# imputation of missing value +breastCancer <- BreastCancer %>% + mutate(Bare.nuclei = imputate_na(BreastCancer, Bare.nuclei, Class, + method = "mice", no_attrs = TRUE, print_flag = FALSE)) +``` + +### Split data set +#### Splits the dataset into a train set and a test set with `split_by()` + +`split_by()` in the alookr package splits the dataset into a train set and a test set. + +The ratio argument of the `split_by()` function specifies the ratio of the train set. + +`split_by()` creates a class object named split_df. + +```{r split_data, warning=FALSE} +library(alookr) + +# split the data into a train set and a test set by default arguments +sb <- breastCancer %>% + split_by(target = Class) + +# show the class name +class(sb) + +# split the data into a train set and a test set by ratio = 0.6 +tmp <- breastCancer %>% + split_by(Class, ratio = 0.6) +``` + +The `summary()` function displays the following useful information about the split_df object: + +* random seed : The random seed is the random seed used internally to separate the data +* split data : Information of splited data + + train set count : number of train set + + test set count : number of test set +* target variable : Target variable name + + minority class : name and ratio(In parentheses) of minority class + + majority class : name and ratio(In parentheses) of majority class + +```{r split_summary, warning=FALSE} +# summary() display the some information +summary(sb) + +# summary() display the some information +summary(tmp) +``` + +#### Check missing levels in the train set + +In the case of categorical variables, when a train set and a test set are separated, a specific level may be missing from the train set. + +In this case, there is no problem when fitting the model, but an error occurs when predicting with the model you created. Therefore, preprocessing is performed to avoid missing data preprocessing. + +In the following example, fortunately, there is no categorical variable that contains the missing levels in the train set. + +```{r split_check, warning=FALSE} +# list of categorical variables in the train set that contain missing levels +nolevel_in_train <- sb %>% + compare_target_category() %>% + filter(is.na(train)) %>% + select(variable) %>% + unique() %>% + pull + +nolevel_in_train + +# if any of the categorical variables in the train set contain a missing level, +# split them again. +while (length(nolevel_in_train) > 0) { + sb <- breastCancer %>% + split_by(Class) + + nolevel_in_train <- sb %>% + compare_target_category() %>% + filter(is.na(train)) %>% + select(variable) %>% + unique() %>% + pull +} +``` + +### Handling the imbalanced classes data with `sampling_target()` + +#### Issue of imbalanced classes data +Imbalanced classes(levels) data means that the number of one level of the frequency of the target variable is relatively small. +In general, the proportion of positive classes is relatively small. For example, in the model of predicting spam, the class of interest spam is less than non-spam. + +Imbalanced classes data is a common problem in machine learning classification. + +`table()` and `prop.table()` are traditionally useful functions for diagnosing imbalanced classes data. However, alookr's `summary()` is simpler and provides more information. + +```{r show_ratio, warning=FALSE} +# train set frequency table - imbalanced classes data +table(sb$Class) + +# train set relative frequency table - imbalanced classes data +prop.table(table(sb$Class)) + +# using summary function - imbalanced classes data +summary(sb) +``` + +#### Handling the imbalanced classes data + +Most machine learning algorithms work best when the number of samples in each class are about equal. And most algorithms are designed to maximize accuracy and reduce error. So, we requre handling an imbalanced class problem. + +sampling_target() performs sampling to solve an imbalanced classes data problem. + +#### Resampling - oversample minority class +Oversampling can be defined as adding more copies of the minority class. + +Oversampling is performed by specifying "ubOver" in the method argument of the `sampling_target()` function. + +```{r sampling_over, warning=FALSE} +# to balanced by over sampling +train_over <- sb %>% + sampling_target(method = "ubOver") + +# frequency table +table(train_over$Class) +``` + +#### Resampling - undersample majority class +Undersampling can be defined as removing some observations of the majority class. + +Undersampling is performed by specifying "ubUnder" in the method argument of the `sampling_target()` function. + +```{r sampling_under, warning=FALSE} +# to balanced by under sampling +train_under <- sb %>% + sampling_target(method = "ubUnder") + +# frequency table +table(train_under$Class) +``` + +#### Generate synthetic samples - SMOTE +SMOTE(Synthetic Minority Oversampling Technique) uses a nearest neighbors algorithm to generate new and synthetic data. + +SMOTE is performed by specifying "ubSMOTE" in the method argument of the `sampling_target()` function. + +```{r sampling_smote, warning=FALSE} +# to balanced by SMOTE +train_smote <- sb %>% + sampling_target(seed = 1234L, method = "ubSMOTE") + +# frequency table +table(train_smote$Class) +``` + +### Cleansing the dataset for classification modeling with `cleanse()` +The `cleanse()` cleanse the dataset for classification modeling. + +This function is useful when fit the classification model. This function does the following.: + +* Remove the variable with only one value. +* And remove variables that have a unique number of values relative to the number of observations for a character or categorical variable. + + In this case, it is a variable that corresponds to an identifier or an identifier. +* And converts the character to factor. + +In this example, The `cleanse()` function removed a variable ID with a high unique rate. + +```{r clean_data, warning=FALSE} +# clean the training set +train <- train_smote %>% + cleanse +``` + +### Extract test set for evaluation of the model with `extract_set()` + +```{r extract_test, warning=FALSE} +# extract test set +test <- sb %>% + extract_set(set = "test") +``` + +### Binary classification modeling with `run_models()` +`run_models()` performs some representative binary classification modeling using `split_df` object created by `split_by()`. + +`run_models()` executes the process in parallel when fitting the model. However, it is not supported in MS-Windows operating system and RStudio environment. + +Currently supported algorithms are as follows.: + +* logistic : logistic regression using `stats` package +* rpart : Recursive Partitioning Trees using `rpart` package +* ctree : Conditional Inference Trees using `party` package +* randomForest :Classification with Random Forest using `randomForest` package +* ranger : A Fast Implementation of Random Forests using `ranger` package + +`run_models()` returns a `model_df` class object. + +The `model_df` class object contains the following variables.: + +* step : character. The current stage in the classification modeling process. + + For objects created with `run_models()`, the value of the variable is "1.Fitted". +* model_id : model identifiers +* target : name of target variable +* positive : positive class in target variable +* fitted_model : list. Fitted model object by model_id's algorithms + + +```{r fit_model, message=FALSE, warning=FALSE} +result <- train %>% + run_models(target = "Class", positive = "malignant") +result +``` + +### Evaluate the model +Evaluate the predictive performance of fitted models. + +#### Predict test set using fitted model with `run_predict()` + +`run_predict()` predict the test set using `model_df` class fitted by `run_models()`. + +`run_predict ()` is executed in parallel when predicting by model. However, it is not supported in MS-Windows operating system and RStudio environment. + +The `model_df` class object contains the following variables.: + +* step : character. The current stage in the classification modeling process. + + For objects created with `run_predict()`, the value of the variable is "2.Predicted". +* model_id : character. Type of fit model. +* target : character. Name of target variable. +* positive : character. Level of positive class of binary classification. +* fitted_model : list. Fitted model object by model_id's algorithms. +* predicted : result of predcit by each models + +```{r predict} +pred <- result %>% + run_predict(test) +pred +``` + +#### Calculate the performance metric with `run_performance()` + +`run_performance()` calculate the performance metric of `model_df` class predicted by `run_predict()`. + +`run_performance ()` is performed in parallel when calculating the performance evaluation index. However, it is not supported in MS-Windows operating system and RStudio environment. + +The `model_df` class object contains the following variables.: + +* step : character. The current stage in the classification modeling process. + + For objects created with `run_performance()`, the value of the variable is "3.Performanced". +* model_id : character. Type of fit model. +* target : character. Name of target variable. +* positive : character. Level of positive class of binary classification. +* fitted_model : list. Fitted model object by model_id's algorithms +* predicted : list. Predicted value by individual model. Each value has a predict_class class object. +* performance : list. Calculate metrics by individual model. Each value has a numeric vector. + +```{r performance1} +# Calculate performace metrics. +perf <- run_performance(pred) +perf +``` + +The performance variable contains a list object, which contains 15 performance metrics: + +* ZeroOneLoss : Normalized Zero-One Loss(Classification Error Loss). +* Accuracy : Accuracy. +* Precision : Precision. +* Recall : Recall. +* Sensitivity : Sensitivity. +* Specificity : Specificity. +* F1_Score : F1 Score. +* Fbeta_Score : F-Beta Score. +* LogLoss : Log loss / Cross-Entropy Loss. +* AUC : Area Under the Receiver Operating Characteristic Curve (ROC AUC). +* Gini : Gini Coefficient. +* PRAUC : Area Under the Precision-Recall Curve (PR AUC). +* LiftAUC : Area Under the Lift Chart. +* GainAUC : Area Under the Gain Chart. +* KS_Stat : Kolmogorov-Smirnov Statistic. + +```{r performance2} +# Performance by analytics models +performance <- perf$performance +names(performance) <- perf$model_id +performance +``` + +If you change the list object to tidy format, you'll see the following at a glance: + +```{r performance3} +# Convert to matrix for compare performace. +sapply(performance, "c") +``` + +`compare_performance()` return a list object(results of compared model performance). and list has the following components: + +* recommend_model : character. The name of the model that is recommended as the best among the various models. +* top_count : numeric. The number of best performing performance metrics by model. +* mean_rank : numeric. Average of ranking individual performance metrics by model. +* top_metric : list. The name of the performance metric with the best performance on individual performance metrics by model. + +In this example, `compare_performance()` recommend the **"ranger"** model. + +```{r compare_performance} +# Compaire the Performance metrics of each model +comp_perf <- compare_performance(pred) +comp_perf +``` + +#### Plot the ROC curve with `plot_performance()` + +`compare_performance()` plot ROC curve. + +```{r ROC, fig.height=4, fig.width=7} +# Plot ROC curve +plot_performance(pred) +``` + + +#### Tunning the cut-off + +In general, if the prediction probability is greater than 0.5 in the binary classification model, it is predicted as `positive class`. +In other words, 0.5 is used for the cut-off value. +This applies to most model algorithms. However, in some cases, the performance can be tuned by changing the cut-off value. + +`plot_cutoff ()` visualizes a plot to select the cut-off value, and returns the cut-off value. + +```{r cutoff, warning=FALSE, fig.height=4, fig.width=7} +pred_best <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + select(predicted) %>% + pull %>% + .[[1]] %>% + attr("pred_prob") + +cutoff <- plot_cutoff(pred_best, test$Class, "malignant", type = "mcc") +cutoff + +cutoff2 <- plot_cutoff(pred_best, test$Class, "malignant", type = "density") +cutoff2 + +cutoff3 <- plot_cutoff(pred_best, test$Class, "malignant", type = "prob") +cutoff3 +``` + +#### Performance comparison between prediction and tuned cut-off with `performance_metric()` + +Compare the performance of the original prediction with that of the tuned cut-off. +Compare the cut-off with the non-cut model for the model with the best performance `comp_perf$recommend_model`. + +```{r predit_cutoff} +comp_perf$recommend_model + +# extract predicted probability +idx <- which(pred$model_id == comp_perf$recommend_model) +pred_prob <- attr(pred$predicted[[idx]], "pred_prob") + +# or, extract predicted probability using dplyr +pred_prob <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + select(predicted) %>% + pull %>% + "[["(1) %>% + attr("pred_prob") + +# predicted probability +pred_prob + +# compaire Accuracy +performance_metric(pred_prob, test$Class, "malignant", "Accuracy") +performance_metric(pred_prob, test$Class, "malignant", "Accuracy", + cutoff = cutoff) + +# compaire Confusion Matrix +performance_metric(pred_prob, test$Class, "malignant", "ConfusionMatrix") +performance_metric(pred_prob, test$Class, "malignant", "ConfusionMatrix", + cutoff = cutoff) + +# compaire F1 Score +performance_metric(pred_prob, test$Class, "malignant", "F1_Score") +performance_metric(pred_prob, test$Class, "malignant", "F1_Score", + cutoff = cutoff) +performance_metric(pred_prob, test$Class, "malignant", "F1_Score", + cutoff = cutoff2) +``` + +If the performance of the tuned cut-off is good, use it as a cut-off to predict positives. + +### Predict +If you have selected a good model from several models, then perform the prediction with that model. + +#### Create data set for predict +Create sample data for predicting by extracting 100 samples from the data set used in the previous under sampling example. + +```{r predit_data, warning=FALSE} +data_pred <- train_under %>% + cleanse + +set.seed(1234L) +data_pred <- data_pred %>% + nrow %>% + seq %>% + sample(size = 50) %>% + data_pred[., ] +``` + +#### Predict with alookr and dplyr +Do a predict using the `dplyr` package. The last `factor()` function eliminates unnecessary information. + +```{r predit_final, warning=FALSE} +pred_actual <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + run_predict(data_pred) %>% + select(predicted) %>% + pull %>% + "[["(1) %>% + factor() + +pred_actual +``` + +If you want to predict by cut-off, specify the `cutoff` argument in the `run_predict()` function as follows.: + +In the example, there is no difference between the results of using cut-off and not. + +```{r predit_final2, warning=FALSE} +pred_actual2 <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + run_predict(data_pred, cutoff) %>% + select(predicted) %>% + pull %>% + "[["(1) %>% + factor() + +pred_actual2 + +sum(pred_actual != pred_actual2) +``` + + diff --git a/_pkgdown.yml b/_pkgdown.yml new file mode 100644 index 0000000..21967d9 --- /dev/null +++ b/_pkgdown.yml @@ -0,0 +1,52 @@ +pandoc: '2.8' +pkgdown: 1.5.1 +pkgdown_sha: ~ + +title: alookr + +template: + params: + bootswatch: united + +reference: +- title: Model Classifier for Binary Classification + desc: A collection of tools that support data cleansing and splitting, predictive modeling, and model evaluation. +# contents: +# - alookr-package +- subtitle: Cleansing the dataset + contents: + - starts_with("cleanse") + - cleanse.split_df + - treatment_corr +- subtitle: Splitting the dataset + contents: + - split_by + - summary.split_df + - starts_with("compare_") + - extract_set + - sampling_target +- subtitle: Classification Modeling + contents: + - starts_with("run_") + - plot_performance + - plot_cutoff + - performance_metric + - matthews + +navbar: + title: dlookr + type: default + left: + - text: Cleansing the dataset + href: articles/cleansing.html + - text: Splitting the dataset + href: articles/split.html + - text: Classification Modeling + href: articles/modeling.html + right: + - text: Function reference + href: reference/index.html + - icon: fa-github fa-lg + href: https://github.com/choonghyunryu/alookr/ +last_built: 2020-08-02T11:20Z + diff --git a/alookr.Rproj b/alookr.Rproj new file mode 100644 index 0000000..9dbf13d --- /dev/null +++ b/alookr.Rproj @@ -0,0 +1,18 @@ +Version: 1.0 + +RestoreWorkspace: Default +SaveWorkspace: Default +AlwaysSaveHistory: Default + +EnableCodeIndexing: Yes +UseSpacesForTab: Yes +NumSpacesForTab: 2 +Encoding: UTF-8 + +RnwWeave: knitr +LaTeX: pdfLaTeX + +BuildType: Package +PackageUseDevtools: Yes +PackageInstallArgs: --no-multiarch --with-keep.source +PackageCheckArgs: --as-cran diff --git a/docs/404.html b/docs/404.html index 462e45c..69fc4d9 100644 --- a/docs/404.html +++ b/docs/404.html @@ -6,12 +6,19 @@ Page not found (404) • alookr + + + + + + + + + + + + @@ -13,6 +19,7 @@ + Articles • alookrArticles • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -74,8 +74,7 @@

All vignettes

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/articles/introduce.html b/docs/articles/introduce.html index 66e48b4..cae669c 100644 --- a/docs/articles/introduce.html +++ b/docs/articles/introduce.html @@ -6,6 +6,12 @@ Introduce alookr • alookr + + + + + + @@ -13,6 +19,7 @@ + + + + + + @@ -13,6 +19,7 @@ + + + + + + @@ -13,6 +19,7 @@ + Authors and Citation • alookrAuthors and Citation • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -67,15 +67,16 @@

Citation

-

Ryu C (2022). +

Ryu C (2024). alookr: Model Classifier for Binary Classification. -R package version 0.3.7. +R package version 0.3.9, https://choonghyunryu.github.io/alookr/.

@Manual{,
   title = {alookr: Model Classifier for Binary Classification},
   author = {Choonghyun Ryu},
-  year = {2022},
-  note = {R package version 0.3.7},
+  year = {2024},
+  note = {R package version 0.3.9},
+  url = {https://choonghyunryu.github.io/alookr/},
 }
@@ -89,8 +90,7 @@

Citation

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/favicon-16x16.png b/docs/favicon-16x16.png new file mode 100644 index 0000000000000000000000000000000000000000..82df84a774792a00db8fccdc847287a5b36a065a GIT binary patch literal 1005 zcmeAS@N?(olHy`uVBq!ia0vp^0wB!63?wyl`GbKJOS+@4BLl<6e(pbstU$g(vPY0F z14ES>14Ba#1H&(%P{RubhEf9thF1v;3|2E37{m+a>q% zwHNSm%cFR&t-&zfyn#`sp_VHc* zxl;^7nnY|03_}_xE!i`F{gF-kFT_;L5wgk`w#pAFn11roy^A*=U%vGux@@*_Xmd*4 z!sOZoMxjljR(ZnK`Tzg_7hZn(3NU<)N`m}AafJZP_WKk&o(pDO`JukYD2XLWUamn>CLl}JhHUArbX=WWhgS(&*#DX9`qp7_p*jk$Zr)@JXX z+8)s-5>G^WYHR-f`OCzl+uYMDdXVYZLA7Vk6c;8wD_~46-u$8Cghoq4Wl4{FPK-^6 z!@V08iiSp-ma3*_B~n)OOxjpj<(3u}R>l|L5ZUJF8tQASXs&O6f31RJtZ!&*V{@=` z@ahd3wtH6ucn3FkGry3|W6PC|RaTCb%~cR)s`&DSm*)#_r9%#bY>i&P3I9$OpvP59 zTq8k*=Xph@qL4shO3Lv9^JMm4SiS!$-L&8glbfGSez? zYe?S{brGl`yecH3Bq*_5p`a)~Ei)%op`@}PRUxyWB$Jc1ICAEQ%n|m}4IT@;^cY@=3zmFx SGMx&vg2B_(&t;ucLK6T9Nk&!x literal 0 HcmV?d00001 diff --git a/docs/favicon-32x32.png b/docs/favicon-32x32.png new file mode 100644 index 0000000000000000000000000000000000000000..4103f780248da7d8de89fea4ae3cf0e4d9c04327 GIT binary patch literal 1801 zcmah}X;f3!8ofXe88Q#d5XxXk77$1RAqim$LI@#YP{N=R!xV!gK$w+)6PPeO7osvK zXss0-01@yp)d#dy&}xw?MNo?mP~Nhy@Tx_u(nJ6CN7uXS-0$1x+_S&E?^)|R$HkGM za1$#N2!i1JFkUps#LaiB0f@Yd+HXLDr3VTFA*id?^mnP@=0{mrv=D-dT_C9J2n4Nz zrLtELlt+c2vBgLB^nBHAJl;~>OQ z;_==Y7>5Wnj)Soa$C7s9X(<4JDbmCPV-pIvIBGH&03%J@ffnX75zZ|MNC4YdvINga z2LNLqj@`Bc?J@(MgQ+*o|}F4eD?H+9oRuh4#VwDhPhr1dfux+K*=f ztirKXIF1U>$tJLs1iu_CTWRT^8z|LT2dZ&wC7z>VCsn$Hm*9OfsWIh2(yGH}x}Cy` z=sOSlCu^+&a!C;fLQ<+7wio2;+Ig~SN@OWTRO%x+Y7>-4;HW~=YENDoPAj`mda^56 zR(+)5X3;;cOAoY^p6tv%emSq|O8Kc95_LmqU1wqKH9KCuZE#-kiR+cky+yUxk_wuY z6<=!4_Ej|Xx;pVQwW>w|oxZE?E`mT)f&tp`lQZ?tD z!;38gaz6_#bmAAAb93;1+4~M(6v$7w2uhMm&i!lR$N0QP3;!Hu{IQ;q$-dD?UyV;+ z?i)AfX5Sv47G<6kD(b8P)ZMqguQ}h3^x1#4|DH3y_-g2@ux-W)wEw`qhFO7ZobmqmY`;UM6=Hcx8($56n%p7f7*YLwL zZMWO{#?N((+4J%V>@2*Gd}CvS@XOxKPRUV6N5+8se;)(x;DDb2v10KUD&vPw=|-;VH)Rxs14?SzmOL+2wk9)X1YsP~nBSU(@1A1vw_Q#g=8JB+jg08<+Jn}(=RsNXe zRQ>ujj5it#%ZM6W1(JGu1);pRA(Pfm!Nf?-7ls(U(l#&dx=y!byAide0quM?a83HZaIvh z#pIeIaPmk2MbR|5mr3gB>Fr)RBFN2VGgm<4Q5m>4)SGn2?- z4fK~3e^}oZ(M&HIk8PD)sr3<;cRZ&P2juHj4c%!E8raHDhmM+>yY0TAwtRR_UOKEY zoQS)c#L&ELJg#_hZO=cYFE8zAQs|=anen&sp1!jc6lBfxxx!7td$&4HWSVNPF>fsk7}p>5N-C(UZ)|64dXji35?IOpxyzwbVIx954y9321Xbnon~BE@fS z*tE`p^UGNuhiJdqa}NBvW}I)>BWm%}tgJ5R;yR-6g&)3ZD<>7MuH&_b8ht*szCvs@ zJ9P1}w(q~sG;3=sqaO;C6r$XRM3t142TFJzPPpc0)?DGP-UIJ%w6$2>Zu6(}M6qVg zy=7J4P{|*VaXgvcGT%X=S~+T zCoHPK)eAYRLnP`HsXCP<%Si?B1Bon9)R8SZlaDv}}%6uLd#d Pfds@4iR4`mNozO!KNLiXFC5S+1p-U(9-iv}jkPd=~bR^Oh z=^{l$MJ#~0i=vAzOUd2uyEA_nhkqtBNrvN|vpMJGy?O7p_uhTw-ur&T$Yf+ON|iE@ zM;dDi8%8<9Fd`#eze5exaIlcX+UiAVFaY5rMXiXqZfBB~s4tg63{f%o} z&~dhX$*|;}l>(F7vp?(yX|w|^&^!a$UC1M?@_EC9o@T=y7z4dcdgv$0if z|B_GlZ<7Vs=O?$XCIf2bm2oeYLn<%*s^`+PExw{n)=wX(`gIm_;qU&*u@Bbx_rdrN zu2)dUc7w4~@%MKaQ=vkTDvx!W2ISMj8;n)5jRQWMB zdOv`ClxOoBW8~YbLU6iGyS{PocB<>uIYVmFVOvmXI-Fk z@UZ2leC{%G4Nq(nB`1??oR@>|M+KJ}~iWWc&lT7L@pU3wrV_L>CEjSr5{#=i*!EPE@J3{*6-p2E{FZ7vrH=a%Xs^^AX5|OetS;scoD&|`5 zS1p(D&PQCr6Q3!yKBZTF^5;GI;D$u`Xwx!TJE@PJt-D|ot{Bq|drM{6v*vYeUp20W z_HXJd(ZW5GI7>&os(pEP_AnXKvJ7nFCQ5^L@`^Ftwg0~QkY4#Yj>mScmqqA9;?P(* zuzrzHzEAdSQhS{;vQNCXeY$U}%;-{2KHjoY_sU6atLQmAsa+M+t&+EfchvK2TE}Qv zHnOwY3*29WDL-kip3qAUyt7!2Y+ow}-(7+`b8R`ib+yg|`$1bKzJg6Y-1wHP9NR-q z?cFS6Ta{DYIlAL*d81ErIkaiHo&nnzPtrTy@=e%0i*v&J#Nn;0bl#RGbk=(k z?T7v~a(kTvfAz&Uh>ddKHopS}j_(Xx?UR1VrMToatL z#e>^Pf7k__yJ_g#TUZbC`?iGLSx-0@TNaF!p$&?rtaJCdpiI8(cbETUZ3p^K;2U^GE~_d2ejqmZ9t&3h5|qLh7% zdy>T&M%gJ-2gE=Sk6LTxKcPPbzM(Q`Uk`u&@BaAnDch)K&&l%9aVm!uZ_hf)yJB=# z#WVZp3FG;jvQQ?-wvIA-`hMJh!$+4Lv5}VWQygkjJnU`{AMq5EkGZd#zf;Tog(vSe zi0M!k$kYP9&Ft>7`YHo9C;B>|X(7i&&YKy}N=>%(wo_Nkco}$q1sVF+$z#vyOIB}f z(Yb7y;KP0zzU+C;i#mSlRK^)=Nw19F@TueE0bbX^b1rxni_R6ACjYs6pP*BJK}?|r ze2<%7e8%CoZ`YfgR`vAJk~VpOS9S2r@OZJyx84r=c*0-bx|OVE9d)Hg#hlW%xcbPC zLs!~@$K&o}7mPCE3Aqth7=if0w;J0(yn(Wqa;26NwwEhL(G)a5YdCZzcQ9o2Mw4+J z@GJp6UCek7<39fQ-3g;HqM{ljT1*;gjS+d1Es%QX=_AnBdWgI2N-eg>^Ru-xM)y8( zh#Ls6V8TLg8C&hlIB2^P_hYNn6^)Ui4sE9a(+RL4!IULEw4o0X(C2Yj8Gpm zmSIFNzhoHMn2*H!BIX<%`~w&O4dVuLXvrn!+5UHPvma)^%zmcy8y(bfFvlg?FcJWy zW2U(|j^?5VUzxQPB>x3l^a94sxnbM#Yh#Z*5 z2%HJyahJOK;JYnf@qs_K5tlSbi!@V{p~jQ8P@K1&ah9HeZItYJ-*Nh@BGitg--`Ao zla^se(!WI*Pdw5hP0}V0PdUnmgl58q(K{%zJX76zo&M((@&BJ zUrD0c-L&1=Mi{F%B&12&62uPihiiwtLLfD=HjP^<s$Nt1l&cYA;7bdAF^*2TnlDr4A;fvuU?+fx5beNOZE zW9~?UKAcUjkCO98_R8EIjg{}5?k~s$#MS%5_rsX9$;&EFFMrdoJ-&4X`0}=@9-Ke2 z2WxPRj)nTKU9tv+zl(M+=mUL>v${5bZ>@;>eLp|CPv<2V^KaP~$Ut87+o=BuzH+V) ztNq8sPxtuy7+a?-*6-)i#UK4M@$ctub(ZZ9?%~7@wEsL$hQt(By=IyIN}f4fZ|1lU zL0p}_N{yKyCk$cLf9Ww^f$%3CzG2z2V4N%()K=Fv-}`Y7dT(BW`dH~>XPNCx+#?u+ zWg6A26lDD4d<4Ru{oF8Xh-_Ol5j+RWM!ff7jDxWP>i+h{ll47cLet_3vvJOFIkb6& z%0+nY37%^q5dIur?z!~mGZw=4M)Zr*pS@w`U|BM(gUYl9u@#OJ6ZfVC{a=)gb4KVm z>03NE{jlQiI)9U_e5xG7sU2$Sp1*ni7{o&gX^d%dY&D(lVGWC^&wXH>0`m5hemX9E z%ffw`etYhh_jQ)%ufBs#azB504&uI8wM9|KR@k+-=)*DZ0h~XMA=fw8HuZ|@oBNMb zpPg@L2*(%(;~;G3*qQqPX^|#rlLvX3XRmu+{RvwR_~~NduRGbLZ1_D-zl}-Hy+7_{ z)it-VR{6l2v`7=Q+mnYoPpdNgK6&s?HUWO_@Az$iJC8uh#3c>VB26n^-s(zb56KMs zycB#4OYn`wuk@Ap%bT#k`GvTkQL;q#kd(WgH-6sgD~H*#;k%U>+}V=6-Azro%sVDw zfm0v28Rm!Ly&1Mu9PZI)t?uToJN8-JvAbB^vAy*#(0bSrk@((a0_=(_v@cvX#ue1j z#)u4*URvPGhJ9URQv4KtdJ;;9gl0udq9$z3{Y)&w*7OS-Heo^d4W`0w zzs5b8iDlNY4dPh-!QW@cw?aL!r<{+kbpQRJzNNxG$vUaTx6XV<~G5G0Hc3Hy7F<-+g{c)Atun zs~x~^3QRcQ93?Jf$%!>`%B&~-nswAVL;v*Kd(Ee& Model Classifier for Binary Classification • alookr + + + + + + @@ -17,6 +23,7 @@ Then compare the data distribution of the two datasets. Another feature is to support the development of predictive models and to compare the performance of several predictive models, helping to select the best model. "> +

Install alookr

The released version is available on CRAN. but not yet.

-install.packages("alookr")
-

Or you can get the development version without vignettes from -GitHub:

+install.packages("alookr")
+

Or you can get the development version without vignettes from GitHub:

-devtools::install_github("choonghyunryu/alookr")
-

Or you can get the development version with vignettes from -GitHub:

+devtools::install_github("choonghyunryu/alookr") +

Or you can get the development version with vignettes from GitHub:

-install.packages(c("ISLR", "spelling", "mlbench"))
-devtools::install_github("choonghyunryu/alookr", build_vignettes = TRUE)
+install.packages(c("ISLR", "spelling", "mlbench")) +devtools::install_github("choonghyunryu/alookr", build_vignettes = TRUE)

Usage

-

alookr includes several vignette files, which we use throughout the -documentation.

+

alookr includes several vignette files, which we use throughout the documentation.

Provided vignettes is as follows.

  • Cleansing the dataset
  • @@ -124,7 +125,7 @@

    Usage
  • Modeling and Evaluate, Predict
-browseVignettes(package = "alookr")
+browseVignettes(package = "alookr")

Cleansing the dataset @@ -132,9 +133,7 @@

Cleansing the dataset

Data: create example dataset

-

To illustrate basic use of the alookr package, create the -data_exam with sample function. The data_exam -dataset include 5 variables.

+

To illustrate basic use of the alookr package, create the data_exam with sample function. The data_exam dataset include 5 variables.

variables are as follows.:

  • @@ -149,55 +148,54 @@

    Data: create example dataset
    -# create sample dataset
    -set.seed(123L)
    -id <- sapply(1:1000, function(x)
    -  paste(c(sample(letters, 5), x), collapse = ""))
    -
    -year <- "2018"
    -
    -set.seed(123L)
    -count <- sample(1:10, size = 1000, replace = TRUE)
    -
    -set.seed(123L)
    -alpha <- sample(letters, size = 1000, replace = TRUE)
    -
    -set.seed(123L)
    -flag <- sample(c("Y", "N"), size = 1000, prob = c(0.1, 0.9), replace = TRUE)
    -
    -data_exam <- data.frame(id, year, count, alpha, flag, stringsAsFactors = FALSE)
    -
    -# structure of dataset
    -str(data_exam)
    -#> 'data.frame':    1000 obs. of  5 variables:
    -#>  $ id   : chr  "osncj1" "rvket2" "nvesi3" "chgji4" ...
    -#>  $ year : chr  "2018" "2018" "2018" "2018" ...
    -#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
    -#>  $ alpha: chr  "o" "s" "n" "c" ...
    -#>  $ flag : chr  "N" "N" "N" "N" ...
    -
    -# summary of dataset
    -summary(data_exam)
    -#>       id                year               count           alpha          
    -#>  Length:1000        Length:1000        Min.   : 1.000   Length:1000       
    -#>  Class :character   Class :character   1st Qu.: 3.000   Class :character  
    -#>  Mode  :character   Mode  :character   Median : 6.000   Mode  :character  
    -#>                                        Mean   : 5.698                     
    -#>                                        3rd Qu.: 8.000                     
    -#>                                        Max.   :10.000                     
    -#>      flag          
    -#>  Length:1000       
    -#>  Class :character  
    -#>  Mode  :character  
    -#>                    
    -#>                    
    -#> 

+# create sample dataset +set.seed(123L) +id <- sapply(1:1000, function(x) + paste(c(sample(letters, 5), x), collapse = "")) + +year <- "2018" + +set.seed(123L) +count <- sample(1:10, size = 1000, replace = TRUE) + +set.seed(123L) +alpha <- sample(letters, size = 1000, replace = TRUE) + +set.seed(123L) +flag <- sample(c("Y", "N"), size = 1000, prob = c(0.1, 0.9), replace = TRUE) + +data_exam <- data.frame(id, year, count, alpha, flag, stringsAsFactors = FALSE) + +# structure of dataset +str(data_exam) +#> 'data.frame': 1000 obs. of 5 variables: +#> $ id : chr "osncj1" "rvket2" "nvesi3" "chgji4" ... +#> $ year : chr "2018" "2018" "2018" "2018" ... +#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... +#> $ alpha: chr "o" "s" "n" "c" ... +#> $ flag : chr "N" "N" "N" "N" ... + +# summary of dataset +summary(data_exam) +#> id year count alpha +#> Length:1000 Length:1000 Min. : 1.000 Length:1000 +#> Class :character Class :character 1st Qu.: 3.000 Class :character +#> Mode :character Mode :character Median : 6.000 Mode :character +#> Mean : 5.698 +#> 3rd Qu.: 8.000 +#> Max. :10.000 +#> flag +#> Length:1000 +#> Class :character +#> Mode :character +#> +#> +#>

Clean dataset

-

cleanse() cleans up the dataset before fitting the -classification model.

+

cleanse() cleans up the dataset before fitting the classification model.

The function of cleanse() is as follows.:

  • remove variables whose unique value is one
  • @@ -209,265 +207,237 @@

    Clean datasetCleanse dataset with cleanse()

    -

    For example, we can cleanse all variables in -data_exam:

    +

    For example, we can cleanse all variables in data_exam:

    -library(alookr)
    -#> Loading required package: ggplot2
    -#> Loading required package: randomForest
    -#> randomForest 4.6-14
    -#> Type rfNews() to see new features/changes/bug fixes.
    -#> 
    -#> Attaching package: 'randomForest'
    -#> The following object is masked from 'package:ggplot2':
    -#> 
    -#>     margin
    -
    -# cleansing dataset
    -newDat <- cleanse(data_exam)
    -#> ── Checking unique value ─────────────────────────── unique value is one ──
    -#> remove variables that unique value is one
    -#> ● year
    -#> 
    -#> ── Checking unique rate ─────────────────────────────── high unique rate ──
    -#> remove variables with high unique rate
    -#> ● id = 1000(1)
    -#> 
    -#> ── Checking character variables ─────────────────────── categorical data ──
    -#> converts character variables to factor
    -#> ● alpha
    -#> ● flag
    -
    -# structure of cleansing dataset
    -str(newDat)
    -#> 'data.frame':    1000 obs. of  3 variables:
    -#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
    -#>  $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...
    -#>  $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
    +library(alookr) +#> Loading required package: ggplot2 +#> Loading required package: randomForest +#> randomForest 4.6-14 +#> Type rfNews() to see new features/changes/bug fixes. +#> +#> Attaching package: 'randomForest' +#> The following object is masked from 'package:ggplot2': +#> +#> margin + +# cleansing dataset +newDat <- cleanse(data_exam) +#> ── Checking unique value ─────────────────────────── unique value is one ── +#> remove variables that unique value is one +#> ● year +#> +#> ── Checking unique rate ─────────────────────────────── high unique rate ── +#> remove variables with high unique rate +#> ● id = 1000(1) +#> +#> ── Checking character variables ─────────────────────── categorical data ── +#> converts character variables to factor +#> ● alpha +#> ● flag + +# structure of cleansing dataset +str(newDat) +#> 'data.frame': 1000 obs. of 3 variables: +#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... +#> $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ... +#> $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
  • -remove variables whose unique value is one : The year -variable has only one value, “2018”. Not needed when fitting the model. -So it was removed.
  • +remove variables whose unique value is one : The year variable has only one value, “2018”. Not needed when fitting the model. So it was removed.
  • -remove variables with high unique rate : If the number -of levels of categorical data is very large, it is not suitable for -classification model. In this case, it is highly likely to be an -identifier of the data. So, remove the categorical (or character) -variable with a high value of the unique rate defined as “number of -levels / number of observations”. +remove variables with high unique rate : If the number of levels of categorical data is very large, it is not suitable for classification model. In this case, it is highly likely to be an identifier of the data. So, remove the categorical (or character) variable with a high value of the unique rate defined as “number of levels / number of observations”.
      -
    • The unique rate of the id variable with the number of levels of 1000 -is 1. This variable is the object of the removal by identifier.
    • -
    • The unique rate of the alpha variable is 0.026 and this variable is -also removed.
    • +
    • The unique rate of the id variable with the number of levels of 1000 is 1. This variable is the object of the removal by identifier.
    • +
    • The unique rate of the alpha variable is 0.026 and this variable is also removed.
  • -converts character variables to factor : The character -type flag variable is converted to a factor type.
  • +converts character variables to factor : The character type flag variable is converted to a factor type.
-

For example, we can not remove the categorical data that is removed -by changing the threshold of the unique rate:

+

For example, we can not remove the categorical data that is removed by changing the threshold of the unique rate:

-# cleansing dataset
-newDat <- cleanse(data_exam, uniq_thres = 0.03)
-#> ── Checking unique value ─────────────────────────── unique value is one ──
-#> remove variables that unique value is one
-#> ● year
-#> 
-#> ── Checking unique rate ─────────────────────────────── high unique rate ──
-#> remove variables with high unique rate
-#> ● id = 1000(1)
-#> 
-#> ── Checking character variables ─────────────────────── categorical data ──
-#> converts character variables to factor
-#> ● alpha
-#> ● flag
-
-# structure of cleansing dataset
-str(newDat)
-#> 'data.frame':    1000 obs. of  3 variables:
-#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
-#>  $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...
-#>  $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
+# cleansing dataset +newDat <- cleanse(data_exam, uniq_thres = 0.03) +#> ── Checking unique value ─────────────────────────── unique value is one ── +#> remove variables that unique value is one +#> ● year +#> +#> ── Checking unique rate ─────────────────────────────── high unique rate ── +#> remove variables with high unique rate +#> ● id = 1000(1) +#> +#> ── Checking character variables ─────────────────────── categorical data ── +#> converts character variables to factor +#> ● alpha +#> ● flag + +# structure of cleansing dataset +str(newDat) +#> 'data.frame': 1000 obs. of 3 variables: +#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... +#> $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ... +#> $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...

The alpha variable was not removed.

-

If you do not want to apply a unique rate, you can set the value of -the uniq argument to FALSE.:

+

If you do not want to apply a unique rate, you can set the value of the uniq argument to FALSE.:

-# cleansing dataset
-newDat <- cleanse(data_exam, uniq = FALSE)
-#> ── Checking character variables ─────────────────────── categorical data ──
-#> converts character variables to factor
-#> ● id
-#> ● year
-#> ● alpha
-#> ● flag
-
-# structure of cleansing dataset
-str(newDat)
-#> 'data.frame':    1000 obs. of  5 variables:
-#>  $ id   : Factor w/ 1000 levels "ablnc282","abqym54",..: 594 715 558 94 727 270 499 882 930 515 ...
-#>  $ year : Factor w/ 1 level "2018": 1 1 1 1 1 1 1 1 1 1 ...
-#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
-#>  $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...
-#>  $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
-

If you do not want to force type conversion of a character variable -to factor, you can set the value of the char argument to -FALSE.:

+# cleansing dataset +newDat <- cleanse(data_exam, uniq = FALSE) +#> ── Checking character variables ─────────────────────── categorical data ── +#> converts character variables to factor +#> ● id +#> ● year +#> ● alpha +#> ● flag + +# structure of cleansing dataset +str(newDat) +#> 'data.frame': 1000 obs. of 5 variables: +#> $ id : Factor w/ 1000 levels "ablnc282","abqym54",..: 594 715 558 94 727 270 499 882 930 515 ... +#> $ year : Factor w/ 1 level "2018": 1 1 1 1 1 1 1 1 1 1 ... +#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... +#> $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ... +#> $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ... +

If you do not want to force type conversion of a character variable to factor, you can set the value of the char argument to FALSE.:

-# cleansing dataset
-newDat <- cleanse(data_exam, char = FALSE)
-#> ── Checking unique value ─────────────────────────── unique value is one ──
-#> remove variables that unique value is one
-#> ● year
-#> 
-#> ── Checking unique rate ─────────────────────────────── high unique rate ──
-#> remove variables with high unique rate
-#> ● id = 1000(1)
-
-# structure of cleansing dataset
-str(newDat)
-#> 'data.frame':    1000 obs. of  3 variables:
-#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
-#>  $ alpha: chr  "o" "s" "n" "c" ...
-#>  $ flag : chr  "N" "N" "N" "N" ...
-

If you want to remove a variable that contains missing values, -specify the value of the missing argument as TRUE. The -following example removes the flag variable that -contains the missing value.

+# cleansing dataset +newDat <- cleanse(data_exam, char = FALSE) +#> ── Checking unique value ─────────────────────────── unique value is one ── +#> remove variables that unique value is one +#> ● year +#> +#> ── Checking unique rate ─────────────────────────────── high unique rate ── +#> remove variables with high unique rate +#> ● id = 1000(1) + +# structure of cleansing dataset +str(newDat) +#> 'data.frame': 1000 obs. of 3 variables: +#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... +#> $ alpha: chr "o" "s" "n" "c" ... +#> $ flag : chr "N" "N" "N" "N" ... +

If you want to remove a variable that contains missing values, specify the value of the missing argument as TRUE. The following example removes the flag variable that contains the missing value.

-data_exam$flag[1] <- NA 
-
-# cleansing dataset
-newDat <- cleanse(data_exam, missing = TRUE)
-#> ── Checking missing value ────────────────────────────────── included NA ──
-#> remove variables whose included NA
-#> ● flag
-#> 
-#> ── Checking unique value ─────────────────────────── unique value is one ──
-#> remove variables that unique value is one
-#> ● year
-#> 
-#> ── Checking unique rate ─────────────────────────────── high unique rate ──
-#> remove variables with high unique rate
-#> ● id = 1000(1)
-#> 
-#> ── Checking character variables ─────────────────────── categorical data ──
-#> converts character variables to factor
-#> ● alpha
-
-# structure of cleansing dataset
-str(newDat)
-#> 'data.frame':    1000 obs. of  2 variables:
-#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
-#>  $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...
+data_exam$flag[1] <- NA + +# cleansing dataset +newDat <- cleanse(data_exam, missing = TRUE) +#> ── Checking missing value ────────────────────────────────── included NA ── +#> remove variables whose included NA +#> ● flag +#> +#> ── Checking unique value ─────────────────────────── unique value is one ── +#> remove variables that unique value is one +#> ● year +#> +#> ── Checking unique rate ─────────────────────────────── high unique rate ── +#> remove variables with high unique rate +#> ● id = 1000(1) +#> +#> ── Checking character variables ─────────────────────── categorical data ── +#> converts character variables to factor +#> ● alpha + +# structure of cleansing dataset +str(newDat) +#> 'data.frame': 1000 obs. of 2 variables: +#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... +#> $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...

Diagnosis and removal of highly correlated variables

-

In the linear model, there is a multicollinearity if there is a -strong correlation between independent variables. So it is better to -remove one variable from a pair of variables where the correlation -exists.

-

Even if it is not a linear model, removing one variable from a -strongly correlated pair of variables can also reduce the overhead of -the operation. It is also easy to interpret the model.

+

In the linear model, there is a multicollinearity if there is a strong correlation between independent variables. So it is better to remove one variable from a pair of variables where the correlation exists.

+

Even if it is not a linear model, removing one variable from a strongly correlated pair of variables can also reduce the overhead of the operation. It is also easy to interpret the model.

Cleanse dataset with treatment_corr()

-

treatment_corr() diagnose pairs of highly correlated -variables or remove on of them.

-

treatment_corr() calculates correlation coefficient of -pearson for numerical variable, and correlation coefficient of spearman -for categorical variable.

-

For example, we can diagnosis and removal of highly correlated -variables:

+

treatment_corr() diagnose pairs of highly correlated variables or remove on of them.

+

treatment_corr() calculates correlation coefficient of pearson for numerical variable, and correlation coefficient of spearman for categorical variable.

+

For example, we can diagnosis and removal of highly correlated variables:

-# numerical variable
-x1 <- 1:100
-set.seed(12L)
-x2 <- sample(1:3, size = 100, replace = TRUE) * x1 + rnorm(1)
-set.seed(1234L)
-x3 <- sample(1:2, size = 100, replace = TRUE) * x1 + rnorm(1)
-
-# categorical variable
-x4 <- factor(rep(letters[1:20], time = 5))
-set.seed(100L)
-x5 <- factor(rep(letters[1:20 + sample(1:6, size = 20, replace = TRUE)], time = 5))
-set.seed(200L)
-x6 <- factor(rep(letters[1:20 + sample(1:3, size = 20, replace = TRUE)], time = 5))
-set.seed(300L)
-x7 <- factor(sample(letters[1:5], size = 100, replace = TRUE))
-
-exam <- data.frame(x1, x2, x3, x4, x5, x6, x7)
-str(exam)
-#> 'data.frame':    100 obs. of  7 variables:
-#>  $ x1: int  1 2 3 4 5 6 7 8 9 10 ...
-#>  $ x2: num  2.55 4.55 9.55 12.55 10.55 ...
-#>  $ x3: num  0.194 2.194 4.194 6.194 3.194 ...
-#>  $ x4: Factor w/ 20 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8 9 10 ...
-#>  $ x5: Factor w/ 13 levels "c","e","f","g",..: 1 5 3 2 4 7 6 8 9 8 ...
-#>  $ x6: Factor w/ 15 levels "c","d","f","g",..: 1 2 3 4 3 5 6 7 8 9 ...
-#>  $ x7: Factor w/ 5 levels "a","b","c","d",..: 2 2 1 4 5 1 4 3 1 5 ...
-head(exam)
-#>   x1        x2         x3 x4 x5 x6 x7
-#> 1  1  2.554297  0.1939687  a  c  c  b
-#> 2  2  4.554297  2.1939687  b  h  d  b
-#> 3  3  9.554297  4.1939687  c  f  f  a
-#> 4  4 12.554297  6.1939687  d  e  g  d
-#> 5  5 10.554297  3.1939687  e  g  f  e
-#> 6  6  6.554297 10.1939687  f  l  h  a
-
-# default case
-exam_01 <- treatment_corr(exam)
-#> * remove variables whose strong correlation (pearson >= 0.8)
-#>  - remove x1 : with x3 (0.825)
-#> * remove variables whose strong correlation (spearman >= 0.8)
-#>  - remove x4 : with x5 (0.9649)
-#>  - remove x4 : with x6 (0.9928)
-#>  - remove x5 : with x6 (0.9485)
-head(exam_01)
-#>          x2         x3 x6 x7
-#> 1  2.554297  0.1939687  c  b
-#> 2  4.554297  2.1939687  d  b
-#> 3  9.554297  4.1939687  f  a
-#> 4 12.554297  6.1939687  g  d
-#> 5 10.554297  3.1939687  f  e
-#> 6  6.554297 10.1939687  h  a
-
-# not removing variables
-treatment_corr(exam, treat = FALSE)
-#> * remove variables whose strong correlation (pearson >= 0.8)
-#>  - remove x1 : with x3 (0.825)
-#> * remove variables whose strong correlation (spearman >= 0.8)
-#>  - remove x4 : with x5 (0.9649)
-#>  - remove x4 : with x6 (0.9928)
-#>  - remove x5 : with x6 (0.9485)
-
-# Set a threshold to detecting variables when correlation greater then 0.9
-treatment_corr(exam, corr_thres = 0.9, treat = FALSE)
-#> * remove variables whose strong correlation (spearman >= 0.9)
-#>  - remove x4 : with x5 (0.9649)
-#>  - remove x4 : with x6 (0.9928)
-#>  - remove x5 : with x6 (0.9485)
-
-# not verbose mode
-exam_02 <- treatment_corr(exam, verbose = FALSE)
-head(exam_02)
-#>          x2         x3 x6 x7
-#> 1  2.554297  0.1939687  c  b
-#> 2  4.554297  2.1939687  d  b
-#> 3  9.554297  4.1939687  f  a
-#> 4 12.554297  6.1939687  g  d
-#> 5 10.554297  3.1939687  f  e
-#> 6  6.554297 10.1939687  h  a
+# numerical variable +x1 <- 1:100 +set.seed(12L) +x2 <- sample(1:3, size = 100, replace = TRUE) * x1 + rnorm(1) +set.seed(1234L) +x3 <- sample(1:2, size = 100, replace = TRUE) * x1 + rnorm(1) + +# categorical variable +x4 <- factor(rep(letters[1:20], time = 5)) +set.seed(100L) +x5 <- factor(rep(letters[1:20 + sample(1:6, size = 20, replace = TRUE)], time = 5)) +set.seed(200L) +x6 <- factor(rep(letters[1:20 + sample(1:3, size = 20, replace = TRUE)], time = 5)) +set.seed(300L) +x7 <- factor(sample(letters[1:5], size = 100, replace = TRUE)) + +exam <- data.frame(x1, x2, x3, x4, x5, x6, x7) +str(exam) +#> 'data.frame': 100 obs. of 7 variables: +#> $ x1: int 1 2 3 4 5 6 7 8 9 10 ... +#> $ x2: num 2.55 4.55 9.55 12.55 10.55 ... +#> $ x3: num 0.194 2.194 4.194 6.194 3.194 ... +#> $ x4: Factor w/ 20 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8 9 10 ... +#> $ x5: Factor w/ 13 levels "c","e","f","g",..: 1 5 3 2 4 7 6 8 9 8 ... +#> $ x6: Factor w/ 15 levels "c","d","f","g",..: 1 2 3 4 3 5 6 7 8 9 ... +#> $ x7: Factor w/ 5 levels "a","b","c","d",..: 2 2 1 4 5 1 4 3 1 5 ... +head(exam) +#> x1 x2 x3 x4 x5 x6 x7 +#> 1 1 2.554297 0.1939687 a c c b +#> 2 2 4.554297 2.1939687 b h d b +#> 3 3 9.554297 4.1939687 c f f a +#> 4 4 12.554297 6.1939687 d e g d +#> 5 5 10.554297 3.1939687 e g f e +#> 6 6 6.554297 10.1939687 f l h a + +# default case +exam_01 <- treatment_corr(exam) +#> * remove variables whose strong correlation (pearson >= 0.8) +#> - remove x1 : with x3 (0.825) +#> * remove variables whose strong correlation (spearman >= 0.8) +#> - remove x4 : with x5 (0.9649) +#> - remove x4 : with x6 (0.9928) +#> - remove x5 : with x6 (0.9485) +head(exam_01) +#> x2 x3 x6 x7 +#> 1 2.554297 0.1939687 c b +#> 2 4.554297 2.1939687 d b +#> 3 9.554297 4.1939687 f a +#> 4 12.554297 6.1939687 g d +#> 5 10.554297 3.1939687 f e +#> 6 6.554297 10.1939687 h a + +# not removing variables +treatment_corr(exam, treat = FALSE) +#> * remove variables whose strong correlation (pearson >= 0.8) +#> - remove x1 : with x3 (0.825) +#> * remove variables whose strong correlation (spearman >= 0.8) +#> - remove x4 : with x5 (0.9649) +#> - remove x4 : with x6 (0.9928) +#> - remove x5 : with x6 (0.9485) + +# Set a threshold to detecting variables when correlation greater then 0.9 +treatment_corr(exam, corr_thres = 0.9, treat = FALSE) +#> * remove variables whose strong correlation (spearman >= 0.9) +#> - remove x4 : with x5 (0.9649) +#> - remove x4 : with x6 (0.9928) +#> - remove x5 : with x6 (0.9485) + +# not verbose mode +exam_02 <- treatment_corr(exam, verbose = FALSE) +head(exam_02) +#> x2 x3 x6 x7 +#> 1 2.554297 0.1939687 c b +#> 2 4.554297 2.1939687 d b +#> 3 9.554297 4.1939687 f a +#> 4 12.554297 6.1939687 g d +#> 5 10.554297 3.1939687 f e +#> 6 6.554297 10.1939687 h a
  • -remove variables whose strong correlation : x1, x4, x5 -are removed.
  • +remove variables whose strong correlation : x1, x4, x5 are removed.
@@ -478,91 +448,81 @@

Split the data into a tr

Data: Credit Card Default Data

-

Default of ISLR package is a simulated data -set containing information on ten thousand customers. The aim here is to -predict which customers will default on their credit card debt.

-

A data frame with 10000 observations on the following 4 -variables.:

+

Default of ISLR package is a simulated data set containing information on ten thousand customers. The aim here is to predict which customers will default on their credit card debt.

+

A data frame with 10000 observations on the following 4 variables.:

  • -default : factor. A factor with levels No and Yes -indicating whether the customer defaulted on their debt
  • +default : factor. A factor with levels No and Yes indicating whether the customer defaulted on their debt
  • -student: factor. A factor with levels No and Yes -indicating whether the customer is a student
  • +student: factor. A factor with levels No and Yes indicating whether the customer is a student
  • -balance: numeric. The average balance that the customer -has remaining on their credit card after making their monthly -payment
  • +balance: numeric. The average balance that the customer has remaining on their credit card after making their monthly payment
  • income : numeric. Income of customer
-# Credit Card Default Data
-head(ISLR::Default)
-#>   default student   balance    income
-#> 1      No      No  729.5265 44361.625
-#> 2      No     Yes  817.1804 12106.135
-#> 3      No      No 1073.5492 31767.139
-#> 4      No      No  529.2506 35704.494
-#> 5      No      No  785.6559 38463.496
-#> 6      No     Yes  919.5885  7491.559
-
-# structure of dataset
-str(ISLR::Default)
-#> 'data.frame':    10000 obs. of  4 variables:
-#>  $ default: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
-#>  $ student: Factor w/ 2 levels "No","Yes": 1 2 1 1 1 2 1 2 1 1 ...
-#>  $ balance: num  730 817 1074 529 786 ...
-#>  $ income : num  44362 12106 31767 35704 38463 ...
-
-# summary of dataset
-summary(ISLR::Default)
-#>  default    student       balance           income     
-#>  No :9667   No :7056   Min.   :   0.0   Min.   :  772  
-#>  Yes: 333   Yes:2944   1st Qu.: 481.7   1st Qu.:21340  
-#>                        Median : 823.6   Median :34553  
-#>                        Mean   : 835.4   Mean   :33517  
-#>                        3rd Qu.:1166.3   3rd Qu.:43808  
-#>                        Max.   :2654.3   Max.   :73554
+# Credit Card Default Data +head(ISLR::Default) +#> default student balance income +#> 1 No No 729.5265 44361.625 +#> 2 No Yes 817.1804 12106.135 +#> 3 No No 1073.5492 31767.139 +#> 4 No No 529.2506 35704.494 +#> 5 No No 785.6559 38463.496 +#> 6 No Yes 919.5885 7491.559 + +# structure of dataset +str(ISLR::Default) +#> 'data.frame': 10000 obs. of 4 variables: +#> $ default: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... +#> $ student: Factor w/ 2 levels "No","Yes": 1 2 1 1 1 2 1 2 1 1 ... +#> $ balance: num 730 817 1074 529 786 ... +#> $ income : num 44362 12106 31767 35704 38463 ... + +# summary of dataset +summary(ISLR::Default) +#> default student balance income +#> No :9667 No :7056 Min. : 0.0 Min. : 772 +#> Yes: 333 Yes:2944 1st Qu.: 481.7 1st Qu.:21340 +#> Median : 823.6 Median :34553 +#> Mean : 835.4 Mean :33517 +#> 3rd Qu.:1166.3 3rd Qu.:43808 +#> Max. :2654.3 Max. :73554

Split dataset

-

split_by() splits the data.frame or tbl_df into a -training set and a test set.

+

split_by() splits the data.frame or tbl_df into a training set and a test set.

Split dataset with split_by()

-

The split_df class is created, which contains the split -information and criteria to separate the training and the test set.

+

The split_df class is created, which contains the split information and criteria to separate the training and the test set.

-library(alookr)
-library(dplyr)
-
-# Generate data for the example
-sb <- ISLR::Default %>%
-  split_by(default, seed = 6534)
-
-sb
-#> # A tibble: 10,000 x 5
-#> # Groups:   split_flag [2]
-#>    default student balance income split_flag
-#>    <fct>   <fct>     <dbl>  <dbl> <chr>     
-#>  1 No      No         730. 44362. train     
-#>  2 No      Yes        817. 12106. train     
-#>  3 No      No        1074. 31767. train     
-#>  4 No      No         529. 35704. train     
-#>  5 No      No         786. 38463. test      
-#>  6 No      Yes        920.  7492. train     
-#>  7 No      No         826. 24905. test      
-#>  8 No      Yes        809. 17600. train     
-#>  9 No      No        1161. 37469. train     
-#> 10 No      No           0  29275. train     
-#> # … with 9,990 more rows
-

The attributes of the split_df class are as -follows.:

+library(alookr) +library(dplyr) + +# Generate data for the example +sb <- ISLR::Default %>% + split_by(default, seed = 6534) + +sb +#> # A tibble: 10,000 x 5 +#> # Groups: split_flag [2] +#> default student balance income split_flag +#> <fct> <fct> <dbl> <dbl> <chr> +#> 1 No No 730. 44362. train +#> 2 No Yes 817. 12106. train +#> 3 No No 1074. 31767. train +#> 4 No No 529. 35704. train +#> 5 No No 786. 38463. test +#> 6 No Yes 920. 7492. train +#> 7 No No 826. 24905. test +#> 8 No Yes 809. 17600. train +#> 9 No No 1161. 37469. train +#> 10 No No 0 29275. train +#> # … with 9,990 more rows
+

The attributes of the split_df class are as follows.:

  • split_seed : integer. random seed used for splitting
  • target : character. the name of the target variable
  • @@ -573,435 +533,407 @@

    Split dataset with split_by()
  • majority_rate : numeric. the rate of the majority class
-attr_names <- names(attributes(sb))
-attr_names
-#>  [1] "names"         "row.names"     "groups"        "class"        
-#>  [5] "split_seed"    "target"        "binary"        "minority"     
-#>  [9] "majority"      "minority_rate" "majority_rate"
-
-sb_attr <- attributes(sb)
-
-# The third property, row.names, is excluded from the output because its length is very long.
-sb_attr[!attr_names %in% "row.names"]
-#> $names
-#> [1] "default"    "student"    "balance"    "income"     "split_flag"
-#> 
-#> $groups
-#> # A tibble: 2 x 2
-#>   split_flag       .rows
-#> * <chr>      <list<int>>
-#> 1 test           [3,000]
-#> 2 train          [7,000]
-#> 
-#> $class
-#> [1] "split_df"   "grouped_df" "tbl_df"     "tbl"        "data.frame"
-#> 
-#> $split_seed
-#> [1] 6534
-#> 
-#> $target
-#>   default 
-#> "default" 
-#> 
-#> $binary
-#> [1] TRUE
-#> 
-#> $minority
-#> [1] "Yes"
-#> 
-#> $majority
-#> [1] "No"
-#> 
-#> $minority_rate
-#>    Yes 
-#> 0.0333 
-#> 
-#> $majority_rate
-#>     No 
-#> 0.9667
-

summary() summarizes the information of two datasets -splitted by split_by().

+attr_names <- names(attributes(sb)) +attr_names +#> [1] "names" "row.names" "groups" "class" +#> [5] "split_seed" "target" "binary" "minority" +#> [9] "majority" "minority_rate" "majority_rate" + +sb_attr <- attributes(sb) + +# The third property, row.names, is excluded from the output because its length is very long. +sb_attr[!attr_names %in% "row.names"] +#> $names +#> [1] "default" "student" "balance" "income" "split_flag" +#> +#> $groups +#> # A tibble: 2 x 2 +#> split_flag .rows +#> * <chr> <list<int>> +#> 1 test [3,000] +#> 2 train [7,000] +#> +#> $class +#> [1] "split_df" "grouped_df" "tbl_df" "tbl" "data.frame" +#> +#> $split_seed +#> [1] 6534 +#> +#> $target +#> default +#> "default" +#> +#> $binary +#> [1] TRUE +#> +#> $minority +#> [1] "Yes" +#> +#> $majority +#> [1] "No" +#> +#> $minority_rate +#> Yes +#> 0.0333 +#> +#> $majority_rate +#> No +#> 0.9667
+

summary() summarizes the information of two datasets splitted by split_by().

-summary(sb)
-#> ** Split train/test set information **
-#>  + random seed        :  6534 
-#>  + split data            
-#>     - train set count :  7000 
-#>     - test set count  :  3000 
-#>  + target variable    :  default 
-#>     - minority class  :  Yes (0.033300)
-#>     - majority class  :  No (0.966700)
+summary(sb) +#> ** Split train/test set information ** +#> + random seed : 6534 +#> + split data +#> - train set count : 7000 +#> - test set count : 3000 +#> + target variable : default +#> - minority class : Yes (0.033300) +#> - majority class : No (0.966700)

Compare dataset

-

Train data and test data should be similar. If the two datasets are -not similar, the performance of the predictive model may be reduced.

-

alookr provides a function to compare the similarity -between train dataset and test dataset.

-

If the two data sets are not similar, the train dataset and test -dataset should be splitted again from the original data.

+

Train data and test data should be similar. If the two datasets are not similar, the performance of the predictive model may be reduced.

+

alookr provides a function to compare the similarity between train dataset and test dataset.

+

If the two data sets are not similar, the train dataset and test dataset should be splitted again from the original data.

-

Comparison of categorical variables with -compare_target_category() +

Comparison of categorical variables with compare_target_category()

-

Compare the statistics of the categorical variables of the train set -and test set included in the “split_df” class.

+

Compare the statistics of the categorical variables of the train set and test set included in the “split_df” class.

-sb %>%
-  compare_target_category()
-#> # A tibble: 4 x 5
-#>   variable level train  test abs_diff
-#>   <chr>    <fct> <dbl> <dbl>    <dbl>
-#> 1 default  No    96.7  96.7   0.00476
-#> 2 default  Yes    3.33  3.33  0.00476
-#> 3 student  No    70.0  71.8   1.77   
-#> 4 student  Yes   30.0  28.2   1.77
-
-# compare variables that are character data types.
-sb %>%
-  compare_target_category(add_character = TRUE)
-#> # A tibble: 4 x 5
-#>   variable level train  test abs_diff
-#>   <chr>    <fct> <dbl> <dbl>    <dbl>
-#> 1 default  No    96.7  96.7   0.00476
-#> 2 default  Yes    3.33  3.33  0.00476
-#> 3 student  No    70.0  71.8   1.77   
-#> 4 student  Yes   30.0  28.2   1.77
-
-# display marginal
-sb %>%
-  compare_target_category(margin = TRUE)
-#> # A tibble: 6 x 5
-#>   variable level    train   test abs_diff
-#>   <chr>    <fct>    <dbl>  <dbl>    <dbl>
-#> 1 default  No       96.7   96.7   0.00476
-#> 2 default  Yes       3.33   3.33  0.00476
-#> 3 default  <Total> 100    100     0.00952
-#> 4 student  No       70.0   71.8   1.77   
-#> 5 student  Yes      30.0   28.2   1.77   
-#> 6 student  <Total> 100    100     3.54
-
-# student variable only
-sb %>%
-  compare_target_category(student)
-#> # A tibble: 2 x 5
-#>   variable level train  test abs_diff
-#>   <chr>    <fct> <dbl> <dbl>    <dbl>
-#> 1 student  No     70.0  71.8     1.77
-#> 2 student  Yes    30.0  28.2     1.77
-
-sb %>%
-  compare_target_category(student, margin = TRUE)
-#> # A tibble: 3 x 5
-#>   variable level   train  test abs_diff
-#>   <chr>    <fct>   <dbl> <dbl>    <dbl>
-#> 1 student  No       70.0  71.8     1.77
-#> 2 student  Yes      30.0  28.2     1.77
-#> 3 student  <Total> 100   100       3.54
-

compare_target_category() returns tbl_df, where the variables have -the following.:

+sb %>% + compare_target_category() +#> # A tibble: 4 x 5 +#> variable level train test abs_diff +#> <chr> <fct> <dbl> <dbl> <dbl> +#> 1 default No 96.7 96.7 0.00476 +#> 2 default Yes 3.33 3.33 0.00476 +#> 3 student No 70.0 71.8 1.77 +#> 4 student Yes 30.0 28.2 1.77 + +# compare variables that are character data types. +sb %>% + compare_target_category(add_character = TRUE) +#> # A tibble: 4 x 5 +#> variable level train test abs_diff +#> <chr> <fct> <dbl> <dbl> <dbl> +#> 1 default No 96.7 96.7 0.00476 +#> 2 default Yes 3.33 3.33 0.00476 +#> 3 student No 70.0 71.8 1.77 +#> 4 student Yes 30.0 28.2 1.77 + +# display marginal +sb %>% + compare_target_category(margin = TRUE) +#> # A tibble: 6 x 5 +#> variable level train test abs_diff +#> <chr> <fct> <dbl> <dbl> <dbl> +#> 1 default No 96.7 96.7 0.00476 +#> 2 default Yes 3.33 3.33 0.00476 +#> 3 default <Total> 100 100 0.00952 +#> 4 student No 70.0 71.8 1.77 +#> 5 student Yes 30.0 28.2 1.77 +#> 6 student <Total> 100 100 3.54 + +# student variable only +sb %>% + compare_target_category(student) +#> # A tibble: 2 x 5 +#> variable level train test abs_diff +#> <chr> <fct> <dbl> <dbl> <dbl> +#> 1 student No 70.0 71.8 1.77 +#> 2 student Yes 30.0 28.2 1.77 + +sb %>% + compare_target_category(student, margin = TRUE) +#> # A tibble: 3 x 5 +#> variable level train test abs_diff +#> <chr> <fct> <dbl> <dbl> <dbl> +#> 1 student No 70.0 71.8 1.77 +#> 2 student Yes 30.0 28.2 1.77 +#> 3 student <Total> 100 100 3.54
+

compare_target_category() returns tbl_df, where the variables have the following.:

  • variable : character. categorical variable name
  • level : factor. level of categorical variables
  • -
  • train : numeric. the relative frequency of the level in the train -set
  • -
  • test : numeric. the relative frequency of the level in the test -set
  • -
  • abs_diff : numeric. the absolute value of the difference between two -relative frequencies
  • +
  • train : numeric. the relative frequency of the level in the train set
  • +
  • test : numeric. the relative frequency of the level in the test set
  • +
  • abs_diff : numeric. the absolute value of the difference between two relative frequencies
-

Comparison of numeric variables with -compare_target_numeric() +

Comparison of numeric variables with compare_target_numeric()

-

Compare the statistics of the numerical variables of the train set -and test set included in the “split_df” class.

+

Compare the statistics of the numerical variables of the train set and test set included in the “split_df” class.

-sb %>%
-  compare_target_numeric()
-#> # A tibble: 2 x 7
-#>   variable train_mean test_mean train_sd test_sd train_z test_z
-#>   <chr>         <dbl>     <dbl>    <dbl>   <dbl>   <dbl>  <dbl>
-#> 1 balance        836.      834.     487.    477.    1.72   1.75
-#> 2 income       33446.    33684.   13437.  13101.    2.49   2.57
-
-# balance variable only
-sb %>%
-  compare_target_numeric(balance)
-#> # A tibble: 1 x 7
-#>   variable train_mean test_mean train_sd test_sd train_z test_z
-#>   <chr>         <dbl>     <dbl>    <dbl>   <dbl>   <dbl>  <dbl>
-#> 1 balance        836.      834.     487.    477.    1.72   1.75
-

compare_target_numeric() returns tbl_df, where the variables have the -following.:

+sb %>% + compare_target_numeric() +#> # A tibble: 2 x 7 +#> variable train_mean test_mean train_sd test_sd train_z test_z +#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 balance 836. 834. 487. 477. 1.72 1.75 +#> 2 income 33446. 33684. 13437. 13101. 2.49 2.57 + +# balance variable only +sb %>% + compare_target_numeric(balance) +#> # A tibble: 1 x 7 +#> variable train_mean test_mean train_sd test_sd train_z test_z +#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 balance 836. 834. 487. 477. 1.72 1.75
+

compare_target_numeric() returns tbl_df, where the variables have the following.:

  • variable : character. numeric variable name
  • train_mean : numeric. arithmetic mean of train set
  • test_mean : numeric. arithmetic mean of test set
  • train_sd : numeric. standard deviation of train set
  • test_sd : numeric. standard deviation of test set
  • -
  • train_z : numeric. the arithmetic mean of the train set divided by -the standard deviation
  • -
  • test_z : numeric. the arithmetic mean of the test set divided by the -standard deviation
  • +
  • train_z : numeric. the arithmetic mean of the train set divided by the standard deviation
  • +
  • test_z : numeric. the arithmetic mean of the test set divided by the standard deviation

Comparison plot with compare_plot()

-

Plot compare information of the train set and test set included in -the “split_df” class.

+

Plot compare information of the train set and test set included in the “split_df” class.

-# income variable only
-sb %>%
-  compare_plot("income")
+# income variable only +sb %>% + compare_plot("income")

-# all varibales
-sb %>%
-  compare_plot()
+# all varibales +sb %>% + compare_plot()

-

Diagnosis of train set and test set with -compare_diag() +

Diagnosis of train set and test set with compare_diag()

-

Diagnosis of similarity between datasets splitted by train set and -set included in the “split_df” class.

+

Diagnosis of similarity between datasets splitted by train set and set included in the “split_df” class.

-defaults <- ISLR::Default
-defaults$id <- seq(NROW(defaults))
-
-set.seed(1)
-defaults[sample(seq(NROW(defaults)), 3), "student"] <- NA
-set.seed(2)
-defaults[sample(seq(NROW(defaults)), 10), "balance"] <- NA
-
-sb_2 <- defaults %>%
-  split_by(default)
-
-sb_2 %>%
-  compare_diag()
-#> * Detected diagnose missing value
-#>  - student
-#>  - balance
-#>  - balance
-#> 
-#> * Detected diagnose missing levels
-#>  - student
-#> $missing_value
-#> # A tibble: 3 x 4
-#>   variables train_misscount train_missrate test_missrate
-#>   <chr>               <int>          <dbl>         <dbl>
-#> 1 student                 3         0.0429       NA     
-#> 2 balance                 8         0.114        NA     
-#> 3 balance                 2        NA             0.0667
-#> 
-#> $single_value
-#> # A tibble: 0 x 3
-#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl>
-#> 
-#> $uniq_rate
-#> # A tibble: 0 x 5
-#> # … with 5 variables: variables <chr>, train_uniqcount <int>,
-#> #   train_uniqrate <dbl>, test_uniqcount <int>, test_uniqrate <dbl>
-#> 
-#> $missing_level
-#> # A tibble: 1 x 4
-#>   variables n_levels train_missing_nlevel test_missing_nlevel
-#>   <chr>        <int>                <int>               <int>
-#> 1 student          3                    0                   1
-
-sb_2 %>%
-  compare_diag(add_character = TRUE)
-#> * Detected diagnose missing value
-#>  - student
-#>  - balance
-#>  - balance
-#> 
-#> * Detected diagnose missing levels
-#>  - student
-#> $missing_value
-#> # A tibble: 3 x 4
-#>   variables train_misscount train_missrate test_missrate
-#>   <chr>               <int>          <dbl>         <dbl>
-#> 1 student                 3         0.0429       NA     
-#> 2 balance                 8         0.114        NA     
-#> 3 balance                 2        NA             0.0667
-#> 
-#> $single_value
-#> # A tibble: 0 x 3
-#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl>
-#> 
-#> $uniq_rate
-#> # A tibble: 0 x 5
-#> # … with 5 variables: variables <chr>, train_uniqcount <int>,
-#> #   train_uniqrate <dbl>, test_uniqcount <int>, test_uniqrate <dbl>
-#> 
-#> $missing_level
-#> # A tibble: 1 x 4
-#>   variables n_levels train_missing_nlevel test_missing_nlevel
-#>   <chr>        <int>                <int>               <int>
-#> 1 student          3                    0                   1
-
-sb_2 %>%
-  compare_diag(uniq_thres = 0.0005)
-#> * Detected diagnose missing value
-#>  - student
-#>  - balance
-#>  - balance
-#> 
-#> * Detected diagnose many unique value
-#>  - default
-#>  - student
-#> 
-#> * Detected diagnose missing levels
-#>  - student
-#> $missing_value
-#> # A tibble: 3 x 4
-#>   variables train_misscount train_missrate test_missrate
-#>   <chr>               <int>          <dbl>         <dbl>
-#> 1 student                 3         0.0429       NA     
-#> 2 balance                 8         0.114        NA     
-#> 3 balance                 2        NA             0.0667
-#> 
-#> $single_value
-#> # A tibble: 0 x 3
-#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl>
-#> 
-#> $uniq_rate
-#> # A tibble: 2 x 5
-#>   variables train_uniqcount train_uniqrate test_uniqcount test_uniqrate
-#>   <chr>               <int>          <dbl>          <int>         <dbl>
-#> 1 default                NA             NA              2      0.000667
-#> 2 student                NA             NA              2      0.000667
-#> 
-#> $missing_level
-#> # A tibble: 1 x 4
-#>   variables n_levels train_missing_nlevel test_missing_nlevel
-#>   <chr>        <int>                <int>               <int>
-#> 1 student          3                    0                   1
+defaults <- ISLR::Default +defaults$id <- seq(NROW(defaults)) + +set.seed(1) +defaults[sample(seq(NROW(defaults)), 3), "student"] <- NA +set.seed(2) +defaults[sample(seq(NROW(defaults)), 10), "balance"] <- NA + +sb_2 <- defaults %>% + split_by(default) + +sb_2 %>% + compare_diag() +#> * Detected diagnose missing value +#> - student +#> - balance +#> - balance +#> +#> * Detected diagnose missing levels +#> - student +#> $missing_value +#> # A tibble: 3 x 4 +#> variables train_misscount train_missrate test_missrate +#> <chr> <int> <dbl> <dbl> +#> 1 student 3 0.0429 NA +#> 2 balance 8 0.114 NA +#> 3 balance 2 NA 0.0667 +#> +#> $single_value +#> # A tibble: 0 x 3 +#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl> +#> +#> $uniq_rate +#> # A tibble: 0 x 5 +#> # … with 5 variables: variables <chr>, train_uniqcount <int>, +#> # train_uniqrate <dbl>, test_uniqcount <int>, test_uniqrate <dbl> +#> +#> $missing_level +#> # A tibble: 1 x 4 +#> variables n_levels train_missing_nlevel test_missing_nlevel +#> <chr> <int> <int> <int> +#> 1 student 3 0 1 + +sb_2 %>% + compare_diag(add_character = TRUE) +#> * Detected diagnose missing value +#> - student +#> - balance +#> - balance +#> +#> * Detected diagnose missing levels +#> - student +#> $missing_value +#> # A tibble: 3 x 4 +#> variables train_misscount train_missrate test_missrate +#> <chr> <int> <dbl> <dbl> +#> 1 student 3 0.0429 NA +#> 2 balance 8 0.114 NA +#> 3 balance 2 NA 0.0667 +#> +#> $single_value +#> # A tibble: 0 x 3 +#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl> +#> +#> $uniq_rate +#> # A tibble: 0 x 5 +#> # … with 5 variables: variables <chr>, train_uniqcount <int>, +#> # train_uniqrate <dbl>, test_uniqcount <int>, test_uniqrate <dbl> +#> +#> $missing_level +#> # A tibble: 1 x 4 +#> variables n_levels train_missing_nlevel test_missing_nlevel +#> <chr> <int> <int> <int> +#> 1 student 3 0 1 + +sb_2 %>% + compare_diag(uniq_thres = 0.0005) +#> * Detected diagnose missing value +#> - student +#> - balance +#> - balance +#> +#> * Detected diagnose many unique value +#> - default +#> - student +#> +#> * Detected diagnose missing levels +#> - student +#> $missing_value +#> # A tibble: 3 x 4 +#> variables train_misscount train_missrate test_missrate +#> <chr> <int> <dbl> <dbl> +#> 1 student 3 0.0429 NA +#> 2 balance 8 0.114 NA +#> 3 balance 2 NA 0.0667 +#> +#> $single_value +#> # A tibble: 0 x 3 +#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl> +#> +#> $uniq_rate +#> # A tibble: 2 x 5 +#> variables train_uniqcount train_uniqrate test_uniqcount test_uniqrate +#> <chr> <int> <dbl> <int> <dbl> +#> 1 default NA NA 2 0.000667 +#> 2 student NA NA 2 0.000667 +#> +#> $missing_level +#> # A tibble: 1 x 4 +#> variables n_levels train_missing_nlevel test_missing_nlevel +#> <chr> <int> <int> <int> +#> 1 student 3 0 1

Extract train/test dataset

-

If you compare the train set with the test set and find that the two -datasets are similar, extract the data from the split_df object.

+

If you compare the train set with the test set and find that the two datasets are similar, extract the data from the split_df object.

Extract train set or test set with extract_set()

Extract train set or test set from split_df class object.

-train <- sb %>%
-  extract_set(set = "train")
-
-test <- sb %>%
-  extract_set(set = "test")
-
-dim(train)
-#> [1] 7000    4
-
-dim(test)
-#> [1] 3000    4
+train <- sb %>% + extract_set(set = "train") + +test <- sb %>% + extract_set(set = "test") + +dim(train) +#> [1] 7000 4 + +dim(test) +#> [1] 3000 4
-

Extract the data to fit the model with -sampling_target() +

Extract the data to fit the model with sampling_target()

-

In a target class, the ratio of the majority class to the minority -class is not similar and the ratio of the minority class is very small, -which is called the imbalanced class.

-

If target variable is an imbalanced class, the characteristics of the -majority class are actively reflected in the model. This model implies -an error in predicting the minority class as the majority class. So we -have to make the train dataset a balanced class.

-

sampling_target() performs sampling on the train set of -split_df to resolve the imbalanced class.

+

In a target class, the ratio of the majority class to the minority class is not similar and the ratio of the minority class is very small, which is called the imbalanced class.

+

If target variable is an imbalanced class, the characteristics of the majority class are actively reflected in the model. This model implies an error in predicting the minority class as the majority class. So we have to make the train dataset a balanced class.

+

sampling_target() performs sampling on the train set of split_df to resolve the imbalanced class.

-# under-sampling with random seed
-under <- sb %>%
-  sampling_target(seed = 1234L)
-
-under %>%
-  count(default)
-#> # A tibble: 2 x 2
-#>   default     n
-#>   <fct>   <int>
-#> 1 No        233
-#> 2 Yes       233
-
-# under-sampling with random seed, and minority class frequency is 40%
-under40 <- sb %>%
-  sampling_target(seed = 1234L, perc = 40)
-
-under40 %>%
-  count(default)
-#> # A tibble: 2 x 2
-#>   default     n
-#>   <fct>   <int>
-#> 1 No        349
-#> 2 Yes       233
-
-# over-sampling with random seed
-over <- sb %>%
-  sampling_target(method = "ubOver", seed = 1234L)
-
-over %>%
-  count(default)
-#> # A tibble: 2 x 2
-#>   default     n
-#>   <fct>   <int>
-#> 1 No       6767
-#> 2 Yes      6767
-
-# over-sampling with random seed, and k = 10
-over10 <- sb %>%
-  sampling_target(method = "ubOver", seed = 1234L, k = 10)
-
-over10 %>%
-  count(default)
-#> # A tibble: 2 x 2
-#>   default     n
-#>   <fct>   <int>
-#> 1 No       6767
-#> 2 Yes      2330
-
-# SMOTE with random seed
-smote <- sb %>%
-  sampling_target(method = "ubSMOTE", seed = 1234L)
-
-smote %>%
-  count(default)
-#> # A tibble: 2 x 2
-#>   default     n
-#>   <fct>   <int>
-#> 1 No        932
-#> 2 Yes       699
-
-# SMOTE with random seed, and perc.under = 250
-smote250 <- sb %>%
-  sampling_target(method = "ubSMOTE", seed = 1234L, perc.under = 250)
-
-smote250 %>%
-  count(default)
-#> # A tibble: 2 x 2
-#>   default     n
-#>   <fct>   <int>
-#> 1 No       1165
-#> 2 Yes       699
-

The argument that specifies the sampling method in sampling_target () -is method. “ubUnder” is under-sampling, and “ubOver” is over-sampling, -“ubSMOTE” is SMOTE(Synthetic Minority Over-sampling TEchnique).

+# under-sampling with random seed +under <- sb %>% + sampling_target(seed = 1234L) + +under %>% + count(default) +#> # A tibble: 2 x 2 +#> default n +#> <fct> <int> +#> 1 No 233 +#> 2 Yes 233 + +# under-sampling with random seed, and minority class frequency is 40% +under40 <- sb %>% + sampling_target(seed = 1234L, perc = 40) + +under40 %>% + count(default) +#> # A tibble: 2 x 2 +#> default n +#> <fct> <int> +#> 1 No 349 +#> 2 Yes 233 + +# over-sampling with random seed +over <- sb %>% + sampling_target(method = "ubOver", seed = 1234L) + +over %>% + count(default) +#> # A tibble: 2 x 2 +#> default n +#> <fct> <int> +#> 1 No 6767 +#> 2 Yes 6767 + +# over-sampling with random seed, and k = 10 +over10 <- sb %>% + sampling_target(method = "ubOver", seed = 1234L, k = 10) + +over10 %>% + count(default) +#> # A tibble: 2 x 2 +#> default n +#> <fct> <int> +#> 1 No 6767 +#> 2 Yes 2330 + +# SMOTE with random seed +smote <- sb %>% + sampling_target(method = "ubSMOTE", seed = 1234L) + +smote %>% + count(default) +#> # A tibble: 2 x 2 +#> default n +#> <fct> <int> +#> 1 No 932 +#> 2 Yes 699 + +# SMOTE with random seed, and perc.under = 250 +smote250 <- sb %>% + sampling_target(method = "ubSMOTE", seed = 1234L, perc.under = 250) + +smote250 %>% + count(default) +#> # A tibble: 2 x 2 +#> default n +#> <fct> <int> +#> 1 No 1165 +#> 2 Yes 699
+

The argument that specifies the sampling method in sampling_target () is method. “ubUnder” is under-sampling, and “ubOver” is over-sampling, “ubSMOTE” is SMOTE(Synthetic Minority Over-sampling TEchnique).

@@ -1011,27 +943,21 @@

Modeling and Evaluate, Predict

Data: Wisconsin Breast Cancer Data

-

BreastCancer of mlbench package is a breast -cancer data. The objective is to identify each of a number of benign or -malignant classes.

-

A data frame with 699 observations on 11 variables, one being a -character variable, 9 being ordered or nominal, and 1 target class.:

+

BreastCancer of mlbench package is a breast cancer data. The objective is to identify each of a number of benign or malignant classes.

+

A data frame with 699 observations on 11 variables, one being a character variable, 9 being ordered or nominal, and 1 target class.:

  • Id : character. Sample code number
  • Cl.thickness : ordered factor. Clump Thickness
  • -Cell.size : ordered factor. Uniformity of Cell -Size
  • +Cell.size : ordered factor. Uniformity of Cell Size
  • -Cell.shape : ordered factor. Uniformity of Cell -Shape
  • +Cell.shape : ordered factor. Uniformity of Cell Shape
  • Marg.adhesion : ordered factor. Marginal Adhesion
  • -Epith.c.size : ordered factor. Single Epithelial Cell -Size
  • +Epith.c.size : ordered factor. Single Epithelial Cell Size
  • Bare.nuclei : factor. Bare Nuclei
  • @@ -1041,21 +967,20 @@

    Data: Wisconsin Breast Cancer Data Mitoses : factor. Mitoses

  • -Class : factor. Class. level is benign and -malignant.
  • +Class : factor. Class. level is benign and malignant.
-library(mlbench)
-data(BreastCancer)
-
-# class of each variables
-sapply(BreastCancer, function(x) class(x)[1])
-#>              Id    Cl.thickness       Cell.size      Cell.shape   Marg.adhesion 
-#>     "character"       "ordered"       "ordered"       "ordered"       "ordered" 
-#>    Epith.c.size     Bare.nuclei     Bl.cromatin Normal.nucleoli         Mitoses 
-#>       "ordered"        "factor"        "factor"        "factor"        "factor" 
-#>           Class 
-#>        "factor"
+library(mlbench) +data(BreastCancer) + +# class of each variables +sapply(BreastCancer, function(x) class(x)[1]) +#> Id Cl.thickness Cell.size Cell.shape Marg.adhesion +#> "character" "ordered" "ordered" "ordered" "ordered" +#> Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses +#> "ordered" "factor" "factor" "factor" "factor" +#> Class +#> "factor"

Preperation the data @@ -1064,66 +989,59 @@

Preperation the data

Fix the missing value with dlookr::imputate_na()

-

find the variables that include missing value. and imputate the -missing value using imputate_na() in dlookr package.

+

find the variables that include missing value. and imputate the missing value using imputate_na() in dlookr package.

-library(dlookr)
-library(dplyr)
-
-# variable that have a missing value
-diagnose(BreastCancer) %>%
-  filter(missing_count > 0)
-#> # A tibble: 1 x 6
-#>   variables   types  missing_count missing_percent unique_count unique_rate
-#>   <chr>       <chr>          <int>           <dbl>        <int>       <dbl>
-#> 1 Bare.nuclei factor            16            2.29           11      0.0157
-
-# imputation of missing value
-breastCancer <- BreastCancer %>%
-  mutate(Bare.nuclei = imputate_na(BreastCancer, Bare.nuclei, Class,
-                         method = "mice", no_attrs = TRUE, print_flag = FALSE))
+library(dlookr) +library(dplyr) + +# variable that have a missing value +diagnose(BreastCancer) %>% + filter(missing_count > 0) +#> # A tibble: 1 x 6 +#> variables types missing_count missing_percent unique_count unique_rate +#> <chr> <chr> <int> <dbl> <int> <dbl> +#> 1 Bare.nuclei factor 16 2.29 11 0.0157 + +# imputation of missing value +breastCancer <- BreastCancer %>% + mutate(Bare.nuclei = imputate_na(BreastCancer, Bare.nuclei, Class, + method = "mice", no_attrs = TRUE, print_flag = FALSE))

Split data set

-

Splits the dataset into a train set and a test set with -split_by() +

Splits the dataset into a train set and a test set with split_by()

-

split_by() in the alookr package splits the dataset into -a train set and a test set.

-

The ratio argument of the split_by() function specifies -the ratio of the train set.

+

split_by() in the alookr package splits the dataset into a train set and a test set.

+

The ratio argument of the split_by() function specifies the ratio of the train set.

split_by() creates a class object named split_df.

-library(alookr)
-
-# split the data into a train set and a test set by default arguments
-sb <- breastCancer %>%
-  split_by(target = Class)
-
-# show the class name
-class(sb)
-#> [1] "split_df"   "grouped_df" "tbl_df"     "tbl"        "data.frame"
-
-# split the data into a train set and a test set by ratio = 0.6
-tmp <- breastCancer %>%
-  split_by(Class, ratio = 0.6)
-

The summary() function displays the following useful -information about the split_df object:

+library(alookr) + +# split the data into a train set and a test set by default arguments +sb <- breastCancer %>% + split_by(target = Class) + +# show the class name +class(sb) +#> [1] "split_df" "grouped_df" "tbl_df" "tbl" "data.frame" + +# split the data into a train set and a test set by ratio = 0.6 +tmp <- breastCancer %>% + split_by(Class, ratio = 0.6)
+

The summary() function displays the following useful information about the split_df object:

    -
  • random seed : The random seed is the random seed used internally to -separate the data
  • +
  • random seed : The random seed is the random seed used internally to separate the data
  • split data : Information of splited data
    • train set count : number of train set
    • @@ -1132,376 +1050,309 @@

      Splits
    • target variable : Target variable name
        -
      • minority class : name and ratio(In parentheses) of minority -class
      • -
      • majority class : name and ratio(In parentheses) of majority -class
      • +
      • minority class : name and ratio(In parentheses) of minority class
      • +
      • majority class : name and ratio(In parentheses) of majority class
    -# summary() display the some information
    -summary(sb)
    -#> ** Split train/test set information **
    -#>  + random seed        :  2725 
    -#>  + split data            
    -#>     - train set count :  489 
    -#>     - test set count  :  210 
    -#>  + target variable    :  Class 
    -#>     - minority class  :  malignant (0.344778)
    -#>     - majority class  :  benign (0.655222)
    -
    -# summary() display the some information
    -summary(tmp)
    -#> ** Split train/test set information **
    -#>  + random seed        :  16653 
    -#>  + split data            
    -#>     - train set count :  419 
    -#>     - test set count  :  280 
    -#>  + target variable    :  Class 
    -#>     - minority class  :  malignant (0.344778)
    -#>     - majority class  :  benign (0.655222)
    +# summary() display the some information +summary(sb) +#> ** Split train/test set information ** +#> + random seed : 2725 +#> + split data +#> - train set count : 489 +#> - test set count : 210 +#> + target variable : Class +#> - minority class : malignant (0.344778) +#> - majority class : benign (0.655222) + +# summary() display the some information +summary(tmp) +#> ** Split train/test set information ** +#> + random seed : 16653 +#> + split data +#> - train set count : 419 +#> - test set count : 280 +#> + target variable : Class +#> - minority class : malignant (0.344778) +#> - majority class : benign (0.655222)

Check missing levels in the train set

-

In the case of categorical variables, when a train set and a test set -are separated, a specific level may be missing from the train set.

-

In this case, there is no problem when fitting the model, but an -error occurs when predicting with the model you created. Therefore, -preprocessing is performed to avoid missing data preprocessing.

-

In the following example, fortunately, there is no categorical -variable that contains the missing levels in the train set.

+

In the case of categorical variables, when a train set and a test set are separated, a specific level may be missing from the train set.

+

In this case, there is no problem when fitting the model, but an error occurs when predicting with the model you created. Therefore, preprocessing is performed to avoid missing data preprocessing.

+

In the following example, fortunately, there is no categorical variable that contains the missing levels in the train set.

-# list of categorical variables in the train set that contain missing levels
-nolevel_in_train <- sb %>%
-  compare_target_category() %>% 
-  filter(is.na(train)) %>% 
-  select(variable) %>% 
-  unique() %>% 
-  pull
-
-nolevel_in_train
-#> character(0)
-
-# if any of the categorical variables in the train set contain a missing level, 
-# split them again.
-while (length(nolevel_in_train) > 0) {
-  sb <- breastCancer %>%
-    split_by(Class)
-
-  nolevel_in_train <- sb %>%
-    compare_target_category() %>% 
-    filter(is.na(train)) %>% 
-    select(variable) %>% 
-    unique() %>% 
-    pull
-}
+# list of categorical variables in the train set that contain missing levels +nolevel_in_train <- sb %>% + compare_target_category() %>% + filter(is.na(train)) %>% + select(variable) %>% + unique() %>% + pull + +nolevel_in_train +#> character(0) + +# if any of the categorical variables in the train set contain a missing level, +# split them again. +while (length(nolevel_in_train) > 0) { + sb <- breastCancer %>% + split_by(Class) + + nolevel_in_train <- sb %>% + compare_target_category() %>% + filter(is.na(train)) %>% + select(variable) %>% + unique() %>% + pull +}
-

Handling the imbalanced classes data with -sampling_target() +

Handling the imbalanced classes data with sampling_target()

Issue of imbalanced classes data

-

Imbalanced classes(levels) data means that the number of one level of -the frequency of the target variable is relatively small. In general, -the proportion of positive classes is relatively small. For example, in -the model of predicting spam, the class of interest spam is less than -non-spam.

-

Imbalanced classes data is a common problem in machine learning -classification.

-

table() and prop.table() are traditionally -useful functions for diagnosing imbalanced classes data. However, -alookr’s summary() is simpler and provides more -information.

+

Imbalanced classes(levels) data means that the number of one level of the frequency of the target variable is relatively small. In general, the proportion of positive classes is relatively small. For example, in the model of predicting spam, the class of interest spam is less than non-spam.

+

Imbalanced classes data is a common problem in machine learning classification.

+

table() and prop.table() are traditionally useful functions for diagnosing imbalanced classes data. However, alookr’s summary() is simpler and provides more information.

-# train set frequency table - imbalanced classes data
-table(sb$Class)
-#> 
-#>    benign malignant 
-#>       458       241
-
-# train set relative frequency table - imbalanced classes data
-prop.table(table(sb$Class))
-#> 
-#>    benign malignant 
-#> 0.6552217 0.3447783
-
-# using summary function - imbalanced classes data
-summary(sb)
-#> ** Split train/test set information **
-#>  + random seed        :  2725 
-#>  + split data            
-#>     - train set count :  489 
-#>     - test set count  :  210 
-#>  + target variable    :  Class 
-#>     - minority class  :  malignant (0.344778)
-#>     - majority class  :  benign (0.655222)
+# train set frequency table - imbalanced classes data +table(sb$Class) +#> +#> benign malignant +#> 458 241 + +# train set relative frequency table - imbalanced classes data +prop.table(table(sb$Class)) +#> +#> benign malignant +#> 0.6552217 0.3447783 + +# using summary function - imbalanced classes data +summary(sb) +#> ** Split train/test set information ** +#> + random seed : 2725 +#> + split data +#> - train set count : 489 +#> - test set count : 210 +#> + target variable : Class +#> - minority class : malignant (0.344778) +#> - majority class : benign (0.655222)

Handling the imbalanced classes data

-

Most machine learning algorithms work best when the number of samples -in each class are about equal. And most algorithms are designed to -maximize accuracy and reduce error. So, we requre handling an imbalanced -class problem.

-

sampling_target() performs sampling to solve an imbalanced classes -data problem.

+

Most machine learning algorithms work best when the number of samples in each class are about equal. And most algorithms are designed to maximize accuracy and reduce error. So, we requre handling an imbalanced class problem.

+

sampling_target() performs sampling to solve an imbalanced classes data problem.

Resampling - oversample minority class

-

Oversampling can be defined as adding more copies of the minority -class.

-

Oversampling is performed by specifying “ubOver” in the method -argument of the sampling_target() function.

+

Oversampling can be defined as adding more copies of the minority class.

+

Oversampling is performed by specifying “ubOver” in the method argument of the sampling_target() function.

-# to balanced by over sampling
-train_over <- sb %>%
-  sampling_target(method = "ubOver")
-
-# frequency table 
-table(train_over$Class)
-#> 
-#>    benign malignant 
-#>       320       320
+# to balanced by over sampling +train_over <- sb %>% + sampling_target(method = "ubOver") + +# frequency table +table(train_over$Class) +#> +#> benign malignant +#> 320 320

Resampling - undersample majority class

-

Undersampling can be defined as removing some observations of the -majority class.

-

Undersampling is performed by specifying “ubUnder” in the method -argument of the sampling_target() function.

+

Undersampling can be defined as removing some observations of the majority class.

+

Undersampling is performed by specifying “ubUnder” in the method argument of the sampling_target() function.

-# to balanced by under sampling
-train_under <- sb %>%
-  sampling_target(method = "ubUnder")
-
-# frequency table 
-table(train_under$Class)
-#> 
-#>    benign malignant 
-#>       169       169
+# to balanced by under sampling +train_under <- sb %>% + sampling_target(method = "ubUnder") + +# frequency table +table(train_under$Class) +#> +#> benign malignant +#> 169 169

Generate synthetic samples - SMOTE

-

SMOTE(Synthetic Minority Oversampling Technique) uses a nearest -neighbors algorithm to generate new and synthetic data.

-

SMOTE is performed by specifying “ubSMOTE” in the method argument of -the sampling_target() function.

+

SMOTE(Synthetic Minority Oversampling Technique) uses a nearest neighbors algorithm to generate new and synthetic data.

+

SMOTE is performed by specifying “ubSMOTE” in the method argument of the sampling_target() function.

-# to balanced by SMOTE
-train_smote <- sb %>%
-  sampling_target(seed = 1234L, method = "ubSMOTE")
-
-# frequency table 
-table(train_smote$Class)
-#> 
-#>    benign malignant 
-#>       676       507
+# to balanced by SMOTE +train_smote <- sb %>% + sampling_target(seed = 1234L, method = "ubSMOTE") + +# frequency table +table(train_smote$Class) +#> +#> benign malignant +#> 676 507
-

Cleansing the dataset for classification modeling with -cleanse() +

Cleansing the dataset for classification modeling with cleanse()

-

The cleanse() cleanse the dataset for classification -modeling.

-

This function is useful when fit the classification model. This -function does the following.:

+

The cleanse() cleanse the dataset for classification modeling.

+

This function is useful when fit the classification model. This function does the following.:

  • Remove the variable with only one value.
  • -
  • And remove variables that have a unique number of values relative to -the number of observations for a character or categorical variable. +
  • And remove variables that have a unique number of values relative to the number of observations for a character or categorical variable.
      -
    • In this case, it is a variable that corresponds to an identifier or -an identifier.
    • +
    • In this case, it is a variable that corresponds to an identifier or an identifier.
  • And converts the character to factor.
-

In this example, The cleanse() function removed a -variable ID with a high unique rate.

+

In this example, The cleanse() function removed a variable ID with a high unique rate.

-# clean the training set
-train <- train_smote %>%
-  cleanse
-#> ── Checking unique value ─────────────────────────── unique value is one ──
-#> No variables that unique value is one.
-#> 
-#> ── Checking unique rate ─────────────────────────────── high unique rate ──
-#> remove variables with high unique rate
-#> ● Id = 425(0.359256128486898)
-#> 
-#> ── Checking character variables ─────────────────────── categorical data ──
-#> No character variables.
+# clean the training set +train <- train_smote %>% + cleanse +#> ── Checking unique value ─────────────────────────── unique value is one ── +#> No variables that unique value is one. +#> +#> ── Checking unique rate ─────────────────────────────── high unique rate ── +#> remove variables with high unique rate +#> ● Id = 425(0.359256128486898) +#> +#> ── Checking character variables ─────────────────────── categorical data ── +#> No character variables.
-

Extract test set for evaluation of the model with -extract_set() +

Extract test set for evaluation of the model with extract_set()

-# extract test set
-test <- sb %>%
-  extract_set(set = "test")
+# extract test set +test <- sb %>% + extract_set(set = "test")

Binary classification modeling with run_models()

-

run_models() performs some representative binary -classification modeling using split_df object created by -split_by().

-

run_models() executes the process in parallel when -fitting the model. However, it is not supported in MS-Windows operating -system and RStudio environment.

+

run_models() performs some representative binary classification modeling using split_df object created by split_by().

+

run_models() executes the process in parallel when fitting the model. However, it is not supported in MS-Windows operating system and RStudio environment.

Currently supported algorithms are as follows.:

  • logistic : logistic regression using stats package
  • -
  • rpart : Recursive Partitioning Trees using rpart -package
  • -
  • ctree : Conditional Inference Trees using party -package
  • -
  • randomForest :Classification with Random Forest using -randomForest package
  • -
  • ranger : A Fast Implementation of Random Forests using -ranger package
  • +
  • rpart : Recursive Partitioning Trees using rpart package
  • +
  • ctree : Conditional Inference Trees using party package
  • +
  • randomForest :Classification with Random Forest using randomForest package
  • +
  • ranger : A Fast Implementation of Random Forests using ranger package
-

run_models() returns a model_df class -object.

-

The model_df class object contains the following -variables.:

+

run_models() returns a model_df class object.

+

The model_df class object contains the following variables.:

    -
  • step : character. The current stage in the classification modeling -process. +
  • step : character. The current stage in the classification modeling process.
      -
    • For objects created with run_models(), the value of the -variable is “1.Fitted”.
    • +
    • For objects created with run_models(), the value of the variable is “1.Fitted”.
  • model_id : model identifiers
  • target : name of target variable
  • positive : positive class in target variable
  • -
  • fitted_model : list. Fitted model object by model_id’s -algorithms
  • +
  • fitted_model : list. Fitted model object by model_id’s algorithms
-result <- train %>% 
-  run_models(target = "Class", positive = "malignant")
-result
-#> # A tibble: 6 x 7
-#>   step     model_id     target is_factor positive  negative fitted_model
-#>   <chr>    <chr>        <chr>  <lgl>     <chr>     <chr>    <list>      
-#> 1 1.Fitted logistic     Class  TRUE      malignant benign   <glm>       
-#> 2 1.Fitted rpart        Class  TRUE      malignant benign   <rpart>     
-#> 3 1.Fitted ctree        Class  TRUE      malignant benign   <BinaryTr>  
-#> 4 1.Fitted randomForest Class  TRUE      malignant benign   <rndmFrs.>  
-#> 5 1.Fitted ranger       Class  TRUE      malignant benign   <ranger>    
-#> 6 1.Fitted xgboost      Class  TRUE      malignant benign   <xgb.Bstr>
+result <- train %>% + run_models(target = "Class", positive = "malignant") +result +#> # A tibble: 6 x 7 +#> step model_id target is_factor positive negative fitted_model +#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> +#> 1 1.Fitted logistic Class TRUE malignant benign <glm> +#> 2 1.Fitted rpart Class TRUE malignant benign <rpart> +#> 3 1.Fitted ctree Class TRUE malignant benign <BinaryTr> +#> 4 1.Fitted randomForest Class TRUE malignant benign <rndmFrs.> +#> 5 1.Fitted ranger Class TRUE malignant benign <ranger> +#> 6 1.Fitted xgboost Class TRUE malignant benign <xgb.Bstr>

Evaluate the model

Evaluate the predictive performance of fitted models.

-

Predict test set using fitted model with -run_predict() +

Predict test set using fitted model with run_predict()

-

run_predict() predict the test set using -model_df class fitted by run_models().

-

run_predict () is executed in parallel when predicting -by model. However, it is not supported in MS-Windows operating system -and RStudio environment.

-

The model_df class object contains the following -variables.:

+

run_predict() predict the test set using model_df class fitted by run_models().

+

run_predict () is executed in parallel when predicting by model. However, it is not supported in MS-Windows operating system and RStudio environment.

+

The model_df class object contains the following variables.:

    -
  • step : character. The current stage in the classification modeling -process. +
  • step : character. The current stage in the classification modeling process.
      -
    • For objects created with run_predict(), the value of -the variable is “2.Predicted”.
    • +
    • For objects created with run_predict(), the value of the variable is “2.Predicted”.
  • model_id : character. Type of fit model.
  • target : character. Name of target variable.
  • -
  • positive : character. Level of positive class of binary -classification.
  • -
  • fitted_model : list. Fitted model object by model_id’s -algorithms.
  • +
  • positive : character. Level of positive class of binary classification.
  • +
  • fitted_model : list. Fitted model object by model_id’s algorithms.
  • predicted : result of predcit by each models
-pred <- result %>%
-  run_predict(test)
-pred
-#> # A tibble: 6 x 8
-#>   step     model_id   target is_factor positive  negative fitted_model predicted
-#>   <chr>    <chr>      <chr>  <lgl>     <chr>     <chr>    <list>       <list>   
-#> 1 2.Predi… logistic   Class  TRUE      malignant benign   <glm>        <fct [21…
-#> 2 2.Predi… rpart      Class  TRUE      malignant benign   <rpart>      <fct [21…
-#> 3 2.Predi… ctree      Class  TRUE      malignant benign   <BinaryTr>   <fct [21…
-#> 4 2.Predi… randomFor… Class  TRUE      malignant benign   <rndmFrs.>   <fct [21…
-#> 5 2.Predi… ranger     Class  TRUE      malignant benign   <ranger>     <fct [21…
-#> 6 2.Predi… xgboost    Class  TRUE      malignant benign   <xgb.Bstr>   <fct [21…
+pred <- result %>% + run_predict(test) +pred +#> # A tibble: 6 x 8 +#> step model_id target is_factor positive negative fitted_model predicted +#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> +#> 1 2.Predi… logistic Class TRUE malignant benign <glm> <fct [21… +#> 2 2.Predi… rpart Class TRUE malignant benign <rpart> <fct [21… +#> 3 2.Predi… ctree Class TRUE malignant benign <BinaryTr> <fct [21… +#> 4 2.Predi… randomFor… Class TRUE malignant benign <rndmFrs.> <fct [21… +#> 5 2.Predi… ranger Class TRUE malignant benign <ranger> <fct [21… +#> 6 2.Predi… xgboost Class TRUE malignant benign <xgb.Bstr> <fct [21…
-

Calculate the performance metric with -run_performance() +

Calculate the performance metric with run_performance()

-

run_performance() calculate the performance metric of -model_df class predicted by run_predict().

-

run_performance () is performed in parallel when -calculating the performance evaluation index. However, it is not -supported in MS-Windows operating system and RStudio environment.

-

The model_df class object contains the following -variables.:

+

run_performance() calculate the performance metric of model_df class predicted by run_predict().

+

run_performance () is performed in parallel when calculating the performance evaluation index. However, it is not supported in MS-Windows operating system and RStudio environment.

+

The model_df class object contains the following variables.:

    -
  • step : character. The current stage in the classification modeling -process. +
  • step : character. The current stage in the classification modeling process.
      -
    • For objects created with run_performance(), the value -of the variable is “3.Performanced”.
    • +
    • For objects created with run_performance(), the value of the variable is “3.Performanced”.
  • model_id : character. Type of fit model.
  • target : character. Name of target variable.
  • -
  • positive : character. Level of positive class of binary -classification.
  • -
  • fitted_model : list. Fitted model object by model_id’s -algorithms
  • -
  • predicted : list. Predicted value by individual model. Each value -has a predict_class class object.
  • -
  • performance : list. Calculate metrics by individual model. Each -value has a numeric vector.
  • +
  • positive : character. Level of positive class of binary classification.
  • +
  • fitted_model : list. Fitted model object by model_id’s algorithms
  • +
  • predicted : list. Predicted value by individual model. Each value has a predict_class class object.
  • +
  • performance : list. Calculate metrics by individual model. Each value has a numeric vector.
-# Calculate performace metrics.
-perf <- run_performance(pred)
-perf
-#> # A tibble: 6 x 7
-#>   step          model_id     target positive fitted_model predicted  performance
-#>   <chr>         <chr>        <chr>  <chr>    <list>       <list>     <list>     
-#> 1 3.Performanc… logistic     Class  maligna… <glm>        <fct [210… <dbl [15]> 
-#> 2 3.Performanc… rpart        Class  maligna… <rpart>      <fct [210… <dbl [15]> 
-#> 3 3.Performanc… ctree        Class  maligna… <BinaryTr>   <fct [210… <dbl [15]> 
-#> 4 3.Performanc… randomForest Class  maligna… <rndmFrs.>   <fct [210… <dbl [15]> 
-#> 5 3.Performanc… ranger       Class  maligna… <ranger>     <fct [210… <dbl [15]> 
-#> 6 3.Performanc… xgboost      Class  maligna… <xgb.Bstr>   <fct [210… <dbl [15]>
-

The performance variable contains a list object, which contains 15 -performance metrics:

+# Calculate performace metrics. +perf <- run_performance(pred) +perf +#> # A tibble: 6 x 7 +#> step model_id target positive fitted_model predicted performance +#> <chr> <chr> <chr> <chr> <list> <list> <list> +#> 1 3.Performanc… logistic Class maligna… <glm> <fct [210… <dbl [15]> +#> 2 3.Performanc… rpart Class maligna… <rpart> <fct [210… <dbl [15]> +#> 3 3.Performanc… ctree Class maligna… <BinaryTr> <fct [210… <dbl [15]> +#> 4 3.Performanc… randomForest Class maligna… <rndmFrs.> <fct [210… <dbl [15]> +#> 5 3.Performanc… ranger Class maligna… <ranger> <fct [210… <dbl [15]> +#> 6 3.Performanc… xgboost Class maligna… <xgb.Bstr> <fct [210… <dbl [15]>
+

The performance variable contains a list object, which contains 15 performance metrics:

    -
  • ZeroOneLoss : Normalized Zero-One Loss(Classification Error -Loss).
  • +
  • ZeroOneLoss : Normalized Zero-One Loss(Classification Error Loss).
  • Accuracy : Accuracy.
  • Precision : Precision.
  • Recall : Recall.
  • @@ -1510,8 +1361,7 @@

    Calculate the per
  • F1_Score : F1 Score.
  • Fbeta_Score : F-Beta Score.
  • LogLoss : Log loss / Cross-Entropy Loss.
  • -
  • AUC : Area Under the Receiver Operating Characteristic Curve (ROC -AUC).
  • +
  • AUC : Area Under the Receiver Operating Characteristic Curve (ROC AUC).
  • Gini : Gini Coefficient.
  • PRAUC : Area Under the Precision-Recall Curve (PR AUC).
  • LiftAUC : Area Under the Lift Chart.
  • @@ -1519,143 +1369,136 @@

    Calculate the per
  • KS_Stat : Kolmogorov-Smirnov Statistic.
-# Performance by analytics models
-performance <- perf$performance
-names(performance) <- perf$model_id
-performance
-#> $logistic
-#> ZeroOneLoss    Accuracy   Precision      Recall Sensitivity Specificity 
-#>  0.08571429  0.91428571  0.86486486  0.88888889  0.88888889  0.92753623 
-#>    F1_Score Fbeta_Score     LogLoss         AUC        Gini       PRAUC 
-#>  0.87671233  0.87671233  2.76028551  0.91339573  0.86714976  0.10267867 
-#>     LiftAUC     GainAUC     KS_Stat 
-#>  1.14456141  0.77166005 83.03140097 
-#> 
-#> $rpart
-#> ZeroOneLoss    Accuracy   Precision      Recall Sensitivity Specificity 
-#>  0.08571429  0.91428571  0.85526316  0.90277778  0.90277778  0.92028986 
-#>    F1_Score Fbeta_Score     LogLoss         AUC        Gini       PRAUC 
-#>  0.87837838  0.87837838  0.76993613  0.92200081  0.86090982  0.76243464 
-#>     LiftAUC     GainAUC     KS_Stat 
-#>  1.91998633  0.77731481 83.63526570 
-#> 
-#> $ctree
-#> ZeroOneLoss    Accuracy   Precision      Recall Sensitivity Specificity 
-#>  0.08571429  0.91428571  0.83750000  0.93055556  0.93055556  0.90579710 
-#>    F1_Score Fbeta_Score     LogLoss         AUC        Gini       PRAUC 
-#>  0.88157895  0.88157895  0.99432388  0.94509863  0.90438808  0.71643789 
-#>     LiftAUC     GainAUC     KS_Stat 
-#>  1.85328656  0.79249339 86.35265700 
-#> 
-#> $randomForest
-#> ZeroOneLoss    Accuracy   Precision      Recall Sensitivity Specificity 
-#>  0.05238095  0.94761905  0.89610390  0.95833333  0.95833333  0.94202899 
-#>    F1_Score Fbeta_Score     LogLoss         AUC        Gini       PRAUC 
-#>  0.92617450  0.92617450  0.30364293  0.98077697  0.96095008  0.60833221 
-#>     LiftAUC     GainAUC     KS_Stat 
-#>  1.71155373  0.81593915 94.20289855 
-#> 
-#> $ranger
-#> ZeroOneLoss    Accuracy   Precision      Recall Sensitivity Specificity 
-#>  0.04285714  0.95714286  0.90909091  0.97222222  0.97222222  0.94927536 
-#>    F1_Score Fbeta_Score     LogLoss         AUC        Gini       PRAUC 
-#>  0.93959732  0.93959732  0.15156344  0.98379630  0.96759259  0.74675595 
-#>     LiftAUC     GainAUC     KS_Stat 
-#>  1.83371476  0.81792328 94.20289855 
-#> 
-#> $xgboost
-#> ZeroOneLoss    Accuracy   Precision      Recall Sensitivity Specificity 
-#>  0.06190476  0.93809524  0.89333333  0.93055556  0.93055556  0.94202899 
-#>    F1_Score Fbeta_Score     LogLoss         AUC        Gini       PRAUC 
-#>  0.91156463  0.91156463  0.20105329  0.97247383  0.95249597  0.42783593 
-#>     LiftAUC     GainAUC     KS_Stat 
-#>  1.57727936  0.81048280 89.31159420
-

If you change the list object to tidy format, you’ll see the -following at a glance:

+# Performance by analytics models +performance <- perf$performance +names(performance) <- perf$model_id +performance +#> $logistic +#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity +#> 0.08571429 0.91428571 0.86486486 0.88888889 0.88888889 0.92753623 +#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC +#> 0.87671233 0.87671233 2.76028551 0.91339573 0.86714976 0.10267867 +#> LiftAUC GainAUC KS_Stat +#> 1.14456141 0.77166005 83.03140097 +#> +#> $rpart +#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity +#> 0.08571429 0.91428571 0.85526316 0.90277778 0.90277778 0.92028986 +#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC +#> 0.87837838 0.87837838 0.76993613 0.92200081 0.86090982 0.76243464 +#> LiftAUC GainAUC KS_Stat +#> 1.91998633 0.77731481 83.63526570 +#> +#> $ctree +#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity +#> 0.08571429 0.91428571 0.83750000 0.93055556 0.93055556 0.90579710 +#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC +#> 0.88157895 0.88157895 0.99432388 0.94509863 0.90438808 0.71643789 +#> LiftAUC GainAUC KS_Stat +#> 1.85328656 0.79249339 86.35265700 +#> +#> $randomForest +#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity +#> 0.05238095 0.94761905 0.89610390 0.95833333 0.95833333 0.94202899 +#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC +#> 0.92617450 0.92617450 0.30364293 0.98077697 0.96095008 0.60833221 +#> LiftAUC GainAUC KS_Stat +#> 1.71155373 0.81593915 94.20289855 +#> +#> $ranger +#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity +#> 0.04285714 0.95714286 0.90909091 0.97222222 0.97222222 0.94927536 +#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC +#> 0.93959732 0.93959732 0.15156344 0.98379630 0.96759259 0.74675595 +#> LiftAUC GainAUC KS_Stat +#> 1.83371476 0.81792328 94.20289855 +#> +#> $xgboost +#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity +#> 0.06190476 0.93809524 0.89333333 0.93055556 0.93055556 0.94202899 +#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC +#> 0.91156463 0.91156463 0.20105329 0.97247383 0.95249597 0.42783593 +#> LiftAUC GainAUC KS_Stat +#> 1.57727936 0.81048280 89.31159420 +

If you change the list object to tidy format, you’ll see the following at a glance:

-# Convert to matrix for compare performace.
-sapply(performance, "c")
-#>                logistic       rpart       ctree randomForest      ranger
-#> ZeroOneLoss  0.08571429  0.08571429  0.08571429   0.05238095  0.04285714
-#> Accuracy     0.91428571  0.91428571  0.91428571   0.94761905  0.95714286
-#> Precision    0.86486486  0.85526316  0.83750000   0.89610390  0.90909091
-#> Recall       0.88888889  0.90277778  0.93055556   0.95833333  0.97222222
-#> Sensitivity  0.88888889  0.90277778  0.93055556   0.95833333  0.97222222
-#> Specificity  0.92753623  0.92028986  0.90579710   0.94202899  0.94927536
-#> F1_Score     0.87671233  0.87837838  0.88157895   0.92617450  0.93959732
-#> Fbeta_Score  0.87671233  0.87837838  0.88157895   0.92617450  0.93959732
-#> LogLoss      2.76028551  0.76993613  0.99432388   0.30364293  0.15156344
-#> AUC          0.91339573  0.92200081  0.94509863   0.98077697  0.98379630
-#> Gini         0.86714976  0.86090982  0.90438808   0.96095008  0.96759259
-#> PRAUC        0.10267867  0.76243464  0.71643789   0.60833221  0.74675595
-#> LiftAUC      1.14456141  1.91998633  1.85328656   1.71155373  1.83371476
-#> GainAUC      0.77166005  0.77731481  0.79249339   0.81593915  0.81792328
-#> KS_Stat     83.03140097 83.63526570 86.35265700  94.20289855 94.20289855
-#>                 xgboost
-#> ZeroOneLoss  0.06190476
-#> Accuracy     0.93809524
-#> Precision    0.89333333
-#> Recall       0.93055556
-#> Sensitivity  0.93055556
-#> Specificity  0.94202899
-#> F1_Score     0.91156463
-#> Fbeta_Score  0.91156463
-#> LogLoss      0.20105329
-#> AUC          0.97247383
-#> Gini         0.95249597
-#> PRAUC        0.42783593
-#> LiftAUC      1.57727936
-#> GainAUC      0.81048280
-#> KS_Stat     89.31159420
-

compare_performance() return a list object(results of -compared model performance). and list has the following components:

+# Convert to matrix for compare performace. +sapply(performance, "c") +#> logistic rpart ctree randomForest ranger +#> ZeroOneLoss 0.08571429 0.08571429 0.08571429 0.05238095 0.04285714 +#> Accuracy 0.91428571 0.91428571 0.91428571 0.94761905 0.95714286 +#> Precision 0.86486486 0.85526316 0.83750000 0.89610390 0.90909091 +#> Recall 0.88888889 0.90277778 0.93055556 0.95833333 0.97222222 +#> Sensitivity 0.88888889 0.90277778 0.93055556 0.95833333 0.97222222 +#> Specificity 0.92753623 0.92028986 0.90579710 0.94202899 0.94927536 +#> F1_Score 0.87671233 0.87837838 0.88157895 0.92617450 0.93959732 +#> Fbeta_Score 0.87671233 0.87837838 0.88157895 0.92617450 0.93959732 +#> LogLoss 2.76028551 0.76993613 0.99432388 0.30364293 0.15156344 +#> AUC 0.91339573 0.92200081 0.94509863 0.98077697 0.98379630 +#> Gini 0.86714976 0.86090982 0.90438808 0.96095008 0.96759259 +#> PRAUC 0.10267867 0.76243464 0.71643789 0.60833221 0.74675595 +#> LiftAUC 1.14456141 1.91998633 1.85328656 1.71155373 1.83371476 +#> GainAUC 0.77166005 0.77731481 0.79249339 0.81593915 0.81792328 +#> KS_Stat 83.03140097 83.63526570 86.35265700 94.20289855 94.20289855 +#> xgboost +#> ZeroOneLoss 0.06190476 +#> Accuracy 0.93809524 +#> Precision 0.89333333 +#> Recall 0.93055556 +#> Sensitivity 0.93055556 +#> Specificity 0.94202899 +#> F1_Score 0.91156463 +#> Fbeta_Score 0.91156463 +#> LogLoss 0.20105329 +#> AUC 0.97247383 +#> Gini 0.95249597 +#> PRAUC 0.42783593 +#> LiftAUC 1.57727936 +#> GainAUC 0.81048280 +#> KS_Stat 89.31159420 +

compare_performance() return a list object(results of compared model performance). and list has the following components:

    -
  • recommend_model : character. The name of the model that is -recommended as the best among the various models.
  • -
  • top_count : numeric. The number of best performing performance -metrics by model.
  • -
  • mean_rank : numeric. Average of ranking individual performance -metrics by model.
  • -
  • top_metric : list. The name of the performance metric with the best -performance on individual performance metrics by model.
  • +
  • recommend_model : character. The name of the model that is recommended as the best among the various models.
  • +
  • top_count : numeric. The number of best performing performance metrics by model.
  • +
  • mean_rank : numeric. Average of ranking individual performance metrics by model.
  • +
  • top_metric : list. The name of the performance metric with the best performance on individual performance metrics by model.
-

In this example, compare_performance() recommend the -“ranger” model.

+

In this example, compare_performance() recommend the “ranger” model.

-# Compaire the Performance metrics of each model
-comp_perf <- compare_performance(pred)
-comp_perf
-#> $recommend_model
-#> [1] "ranger"
-#> 
-#> $top_metric_count
-#>     logistic        rpart        ctree randomForest       ranger      xgboost 
-#>            0            2            0            1           11            0 
-#> 
-#> $mean_rank
-#>     logistic        rpart        ctree randomForest       ranger      xgboost 
-#>     5.461538     4.384615     4.269231     2.384615     1.269231     3.230769 
-#> 
-#> $top_metric
-#> $top_metric$logistic
-#> NULL
-#> 
-#> $top_metric$rpart
-#> [1] "PRAUC"   "LiftAUC"
-#> 
-#> $top_metric$ctree
-#> NULL
-#> 
-#> $top_metric$randomForest
-#> [1] "KS_Stat"
-#> 
-#> $top_metric$ranger
-#>  [1] "ZeroOneLoss" "Accuracy"    "Precision"   "Recall"      "Specificity"
-#>  [6] "F1_Score"    "LogLoss"     "AUC"         "Gini"        "GainAUC"    
-#> [11] "KS_Stat"    
-#> 
-#> $top_metric$xgboost
-#> NULL
+# Compaire the Performance metrics of each model +comp_perf <- compare_performance(pred) +comp_perf +#> $recommend_model +#> [1] "ranger" +#> +#> $top_metric_count +#> logistic rpart ctree randomForest ranger xgboost +#> 0 2 0 1 11 0 +#> +#> $mean_rank +#> logistic rpart ctree randomForest ranger xgboost +#> 5.461538 4.384615 4.269231 2.384615 1.269231 3.230769 +#> +#> $top_metric +#> $top_metric$logistic +#> NULL +#> +#> $top_metric$rpart +#> [1] "PRAUC" "LiftAUC" +#> +#> $top_metric$ctree +#> NULL +#> +#> $top_metric$randomForest +#> [1] "KS_Stat" +#> +#> $top_metric$ranger +#> [1] "ZeroOneLoss" "Accuracy" "Precision" "Recall" "Specificity" +#> [6] "F1_Score" "LogLoss" "AUC" "Gini" "GainAUC" +#> [11] "KS_Stat" +#> +#> $top_metric$xgboost +#> NULL

Plot the ROC curve with plot_performance() @@ -1663,228 +1506,214 @@

Plot the ROC curve with

compare_performance() plot ROC curve.

-# Plot ROC curve
-plot_performance(pred)
+# Plot ROC curve +plot_performance(pred)

Tunning the cut-off

-

In general, if the prediction probability is greater than 0.5 in the -binary classification model, it is predicted as -positive class. In other words, 0.5 is used for the cut-off -value. This applies to most model algorithms. However, in some cases, -the performance can be tuned by changing the cut-off value.

-

plot_cutoff () visualizes a plot to select the cut-off -value, and returns the cut-off value.

+

In general, if the prediction probability is greater than 0.5 in the binary classification model, it is predicted as positive class. In other words, 0.5 is used for the cut-off value. This applies to most model algorithms. However, in some cases, the performance can be tuned by changing the cut-off value.

+

plot_cutoff () visualizes a plot to select the cut-off value, and returns the cut-off value.

-pred_best <- pred %>% 
-  filter(model_id == comp_perf$recommend_model) %>% 
-  select(predicted) %>% 
-  pull %>% 
-  .[[1]] %>% 
-  attr("pred_prob")
-
-cutoff <- plot_cutoff(pred_best, test$Class, "malignant", type = "mcc")
+pred_best <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + select(predicted) %>% + pull %>% + .[[1]] %>% + attr("pred_prob") + +cutoff <- plot_cutoff(pred_best, test$Class, "malignant", type = "mcc")

-cutoff
-#> [1] 0.36
-
-cutoff2 <- plot_cutoff(pred_best, test$Class, "malignant", type = "density")
+cutoff +#> [1] 0.36 + +cutoff2 <- plot_cutoff(pred_best, test$Class, "malignant", type = "density")

-cutoff2
-#> [1] 0.8669
-
-cutoff3 <- plot_cutoff(pred_best, test$Class, "malignant", type = "prob")
+cutoff2 +#> [1] 0.8669 + +cutoff3 <- plot_cutoff(pred_best, test$Class, "malignant", type = "prob")

-cutoff3
-#> [1] 0.36
+cutoff3 +#> [1] 0.36
-

Performance comparison between prediction and tuned cut-off with -performance_metric() +

Performance comparison between prediction and tuned cut-off with performance_metric()

-

Compare the performance of the original prediction with that of the -tuned cut-off. Compare the cut-off with the non-cut model for the model -with the best performance comp_perf$recommend_model.

+

Compare the performance of the original prediction with that of the tuned cut-off. Compare the cut-off with the non-cut model for the model with the best performance comp_perf$recommend_model.

-comp_perf$recommend_model
-#> [1] "ranger"
-
-# extract predicted probability
-idx <- which(pred$model_id == comp_perf$recommend_model)
-pred_prob <- attr(pred$predicted[[idx]], "pred_prob")
-
-# or, extract predicted probability using dplyr
-pred_prob <- pred %>% 
-  filter(model_id == comp_perf$recommend_model) %>% 
-  select(predicted) %>% 
-  pull %>% 
-  "[["(1) %>% 
-  attr("pred_prob")
-
-# predicted probability
-pred_prob  
-#>   [1] 8.619087e-01 4.318254e-03 3.248235e-01 0.000000e+00 9.890222e-01
-#>   [6] 5.703044e-01 0.000000e+00 0.000000e+00 7.558754e-01 6.041921e-01
-#>  [11] 9.784675e-01 9.928103e-01 9.863167e-01 6.878302e-01 6.188595e-01
-#>  [16] 9.981000e-01 6.000000e-04 8.481627e-01 5.007690e-01 8.994254e-01
-#>  [21] 1.899524e-02 1.220667e-01 9.770968e-01 0.000000e+00 0.000000e+00
-#>  [26] 9.996000e-01 9.305024e-01 1.000000e-03 2.631698e-01 9.895690e-01
-#>  [31] 9.161913e-01 6.396825e-03 9.515587e-01 0.000000e+00 1.753000e-01
-#>  [36] 9.834079e-01 0.000000e+00 0.000000e+00 0.000000e+00 8.086889e-01
-#>  [41] 4.612595e-01 9.347826e-05 1.000000e+00 1.133260e-01 0.000000e+00
-#>  [46] 9.938452e-01 0.000000e+00 8.430500e-01 9.990000e-01 9.976667e-01
-#>  [51] 9.934905e-01 9.993333e-01 1.041349e-02 0.000000e+00 0.000000e+00
-#>  [56] 1.000000e+00 9.898603e-01 9.347826e-05 1.778951e-02 1.000000e+00
-#>  [61] 0.000000e+00 0.000000e+00 9.347826e-05 0.000000e+00 2.634778e-01
-#>  [66] 1.000000e+00 5.000000e-04 9.297103e-01 9.895294e-01 8.653397e-01
-#>  [71] 1.000000e+00 3.402460e-02 9.898278e-01 0.000000e+00 9.098643e-01
-#>  [76] 4.701206e-01 0.000000e+00 0.000000e+00 0.000000e+00 9.124984e-01
-#>  [81] 9.886984e-01 9.653143e-01 1.000000e+00 9.942127e-01 0.000000e+00
-#>  [86] 8.887706e-01 9.990000e-01 0.000000e+00 0.000000e+00 0.000000e+00
-#>  [91] 8.874833e-01 1.000000e+00 0.000000e+00 3.188889e-03 0.000000e+00
-#>  [96] 0.000000e+00 0.000000e+00 6.046397e-01 0.000000e+00 7.028357e-01
-#> [101] 8.783000e-01 0.000000e+00 1.000000e+00 1.000000e+00 9.347826e-05
-#> [106] 0.000000e+00 0.000000e+00 9.347826e-05 2.824214e-01 1.000000e+00
-#> [111] 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00
-#> [116] 9.868159e-01 0.000000e+00 0.000000e+00 0.000000e+00 9.347826e-05
-#> [121] 9.970667e-01 9.990000e-01 1.270381e-01 0.000000e+00 9.966952e-01
-#> [126] 5.000000e-04 9.973500e-01 9.800881e-01 0.000000e+00 9.781325e-01
-#> [131] 9.347826e-05 1.000000e+00 8.466014e-02 0.000000e+00 2.876190e-03
-#> [136] 0.000000e+00 9.988000e-01 9.993333e-01 1.285618e-02 0.000000e+00
-#> [141] 0.000000e+00 5.000000e-04 9.673270e-01 1.485618e-02 1.000000e+00
-#> [146] 0.000000e+00 7.958554e-02 8.228008e-01 3.602444e-01 0.000000e+00
-#> [151] 2.978951e-02 9.347826e-05 9.347826e-05 5.000000e-04 2.340476e-03
-#> [156] 0.000000e+00 0.000000e+00 8.836643e-01 9.347826e-05 9.347826e-05
-#> [161] 1.000000e+00 2.978951e-02 0.000000e+00 9.347826e-05 0.000000e+00
-#> [166] 2.498333e-02 0.000000e+00 0.000000e+00 0.000000e+00 1.401849e-01
-#> [171] 0.000000e+00 0.000000e+00 9.963373e-01 0.000000e+00 0.000000e+00
-#> [176] 0.000000e+00 9.773810e-01 0.000000e+00 0.000000e+00 9.347826e-05
-#> [181] 7.927944e-01 1.000000e+00 0.000000e+00 0.000000e+00 2.709524e-03
-#> [186] 9.347826e-05 8.845437e-01 1.098856e-02 0.000000e+00 4.488889e-03
-#> [191] 0.000000e+00 0.000000e+00 9.629365e-03 0.000000e+00 0.000000e+00
-#> [196] 0.000000e+00 5.000000e-04 0.000000e+00 0.000000e+00 0.000000e+00
-#> [201] 0.000000e+00 9.984127e-01 9.728571e-03 0.000000e+00 0.000000e+00
-#> [206] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 9.812944e-01
-
-# compaire Accuracy
-performance_metric(pred_prob, test$Class, "malignant", "Accuracy")
-#> [1] 0.9571429
-performance_metric(pred_prob, test$Class, "malignant", "Accuracy",
-                   cutoff = cutoff)
-#> [1] 0.9619048
-
-# compaire Confusion Matrix
-performance_metric(pred_prob, test$Class, "malignant", "ConfusionMatrix")
-#>            actual
-#> predict     benign malignant
-#>   benign       131         2
-#>   malignant      7        70
-performance_metric(pred_prob, test$Class, "malignant", "ConfusionMatrix", 
-                   cutoff = cutoff)
-#>            actual
-#> predict     benign malignant
-#>   benign       130         0
-#>   malignant      8        72
-
-# compaire F1 Score
-performance_metric(pred_prob, test$Class, "malignant", "F1_Score")
-#> [1] 0.9395973
-performance_metric(pred_prob, test$Class,  "malignant", "F1_Score", 
-                   cutoff = cutoff)
-#> [1] 0.9473684
-performance_metric(pred_prob, test$Class,  "malignant", "F1_Score", 
-                   cutoff = cutoff2)
-#> [1] 0.880597
-

If the performance of the tuned cut-off is good, use it as a cut-off -to predict positives.

+comp_perf$recommend_model +#> [1] "ranger" + +# extract predicted probability +idx <- which(pred$model_id == comp_perf$recommend_model) +pred_prob <- attr(pred$predicted[[idx]], "pred_prob") + +# or, extract predicted probability using dplyr +pred_prob <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + select(predicted) %>% + pull %>% + "[["(1) %>% + attr("pred_prob") + +# predicted probability +pred_prob +#> [1] 8.619087e-01 4.318254e-03 3.248235e-01 0.000000e+00 9.890222e-01 +#> [6] 5.703044e-01 0.000000e+00 0.000000e+00 7.558754e-01 6.041921e-01 +#> [11] 9.784675e-01 9.928103e-01 9.863167e-01 6.878302e-01 6.188595e-01 +#> [16] 9.981000e-01 6.000000e-04 8.481627e-01 5.007690e-01 8.994254e-01 +#> [21] 1.899524e-02 1.220667e-01 9.770968e-01 0.000000e+00 0.000000e+00 +#> [26] 9.996000e-01 9.305024e-01 1.000000e-03 2.631698e-01 9.895690e-01 +#> [31] 9.161913e-01 6.396825e-03 9.515587e-01 0.000000e+00 1.753000e-01 +#> [36] 9.834079e-01 0.000000e+00 0.000000e+00 0.000000e+00 8.086889e-01 +#> [41] 4.612595e-01 9.347826e-05 1.000000e+00 1.133260e-01 0.000000e+00 +#> [46] 9.938452e-01 0.000000e+00 8.430500e-01 9.990000e-01 9.976667e-01 +#> [51] 9.934905e-01 9.993333e-01 1.041349e-02 0.000000e+00 0.000000e+00 +#> [56] 1.000000e+00 9.898603e-01 9.347826e-05 1.778951e-02 1.000000e+00 +#> [61] 0.000000e+00 0.000000e+00 9.347826e-05 0.000000e+00 2.634778e-01 +#> [66] 1.000000e+00 5.000000e-04 9.297103e-01 9.895294e-01 8.653397e-01 +#> [71] 1.000000e+00 3.402460e-02 9.898278e-01 0.000000e+00 9.098643e-01 +#> [76] 4.701206e-01 0.000000e+00 0.000000e+00 0.000000e+00 9.124984e-01 +#> [81] 9.886984e-01 9.653143e-01 1.000000e+00 9.942127e-01 0.000000e+00 +#> [86] 8.887706e-01 9.990000e-01 0.000000e+00 0.000000e+00 0.000000e+00 +#> [91] 8.874833e-01 1.000000e+00 0.000000e+00 3.188889e-03 0.000000e+00 +#> [96] 0.000000e+00 0.000000e+00 6.046397e-01 0.000000e+00 7.028357e-01 +#> [101] 8.783000e-01 0.000000e+00 1.000000e+00 1.000000e+00 9.347826e-05 +#> [106] 0.000000e+00 0.000000e+00 9.347826e-05 2.824214e-01 1.000000e+00 +#> [111] 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 +#> [116] 9.868159e-01 0.000000e+00 0.000000e+00 0.000000e+00 9.347826e-05 +#> [121] 9.970667e-01 9.990000e-01 1.270381e-01 0.000000e+00 9.966952e-01 +#> [126] 5.000000e-04 9.973500e-01 9.800881e-01 0.000000e+00 9.781325e-01 +#> [131] 9.347826e-05 1.000000e+00 8.466014e-02 0.000000e+00 2.876190e-03 +#> [136] 0.000000e+00 9.988000e-01 9.993333e-01 1.285618e-02 0.000000e+00 +#> [141] 0.000000e+00 5.000000e-04 9.673270e-01 1.485618e-02 1.000000e+00 +#> [146] 0.000000e+00 7.958554e-02 8.228008e-01 3.602444e-01 0.000000e+00 +#> [151] 2.978951e-02 9.347826e-05 9.347826e-05 5.000000e-04 2.340476e-03 +#> [156] 0.000000e+00 0.000000e+00 8.836643e-01 9.347826e-05 9.347826e-05 +#> [161] 1.000000e+00 2.978951e-02 0.000000e+00 9.347826e-05 0.000000e+00 +#> [166] 2.498333e-02 0.000000e+00 0.000000e+00 0.000000e+00 1.401849e-01 +#> [171] 0.000000e+00 0.000000e+00 9.963373e-01 0.000000e+00 0.000000e+00 +#> [176] 0.000000e+00 9.773810e-01 0.000000e+00 0.000000e+00 9.347826e-05 +#> [181] 7.927944e-01 1.000000e+00 0.000000e+00 0.000000e+00 2.709524e-03 +#> [186] 9.347826e-05 8.845437e-01 1.098856e-02 0.000000e+00 4.488889e-03 +#> [191] 0.000000e+00 0.000000e+00 9.629365e-03 0.000000e+00 0.000000e+00 +#> [196] 0.000000e+00 5.000000e-04 0.000000e+00 0.000000e+00 0.000000e+00 +#> [201] 0.000000e+00 9.984127e-01 9.728571e-03 0.000000e+00 0.000000e+00 +#> [206] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 9.812944e-01 + +# compaire Accuracy +performance_metric(pred_prob, test$Class, "malignant", "Accuracy") +#> [1] 0.9571429 +performance_metric(pred_prob, test$Class, "malignant", "Accuracy", + cutoff = cutoff) +#> [1] 0.9619048 + +# compaire Confusion Matrix +performance_metric(pred_prob, test$Class, "malignant", "ConfusionMatrix") +#> actual +#> predict benign malignant +#> benign 131 2 +#> malignant 7 70 +performance_metric(pred_prob, test$Class, "malignant", "ConfusionMatrix", + cutoff = cutoff) +#> actual +#> predict benign malignant +#> benign 130 0 +#> malignant 8 72 + +# compaire F1 Score +performance_metric(pred_prob, test$Class, "malignant", "F1_Score") +#> [1] 0.9395973 +performance_metric(pred_prob, test$Class, "malignant", "F1_Score", + cutoff = cutoff) +#> [1] 0.9473684 +performance_metric(pred_prob, test$Class, "malignant", "F1_Score", + cutoff = cutoff2) +#> [1] 0.880597
+

If the performance of the tuned cut-off is good, use it as a cut-off to predict positives.

Predict

-

If you have selected a good model from several models, then perform -the prediction with that model.

+

If you have selected a good model from several models, then perform the prediction with that model.

Create data set for predict

-

Create sample data for predicting by extracting 100 samples from the -data set used in the previous under sampling example.

+

Create sample data for predicting by extracting 100 samples from the data set used in the previous under sampling example.

-data_pred <- train_under %>% 
-  cleanse 
-#> ── Checking unique value ─────────────────────────── unique value is one ──
-#> No variables that unique value is one.
-#> 
-#> ── Checking unique rate ─────────────────────────────── high unique rate ──
-#> remove variables with high unique rate
-#> ● Id = 325(0.961538461538462)
-#> 
-#> ── Checking character variables ─────────────────────── categorical data ──
-#> No character variables.
-
-set.seed(1234L)
-data_pred <- data_pred %>% 
-  nrow %>% 
-  seq %>% 
-  sample(size = 50) %>% 
-  data_pred[., ]
+data_pred <- train_under %>% + cleanse +#> ── Checking unique value ─────────────────────────── unique value is one ── +#> No variables that unique value is one. +#> +#> ── Checking unique rate ─────────────────────────────── high unique rate ── +#> remove variables with high unique rate +#> ● Id = 325(0.961538461538462) +#> +#> ── Checking character variables ─────────────────────── categorical data ── +#> No character variables. + +set.seed(1234L) +data_pred <- data_pred %>% + nrow %>% + seq %>% + sample(size = 50) %>% + data_pred[., ]

Predict with alookr and dplyr

-

Do a predict using the dplyr package. The last -factor() function eliminates unnecessary information.

+

Do a predict using the dplyr package. The last factor() function eliminates unnecessary information.

-pred_actual <- pred %>%
-  filter(model_id == comp_perf$recommend_model) %>% 
-  run_predict(data_pred) %>% 
-  select(predicted) %>% 
-  pull %>% 
-  "[["(1) %>% 
-  factor()
-
-pred_actual
-#>  [1] malignant malignant benign    malignant malignant malignant benign   
-#>  [8] benign    benign    benign    malignant malignant malignant benign   
-#> [15] malignant benign    benign    malignant malignant malignant malignant
-#> [22] benign    malignant malignant benign    benign    malignant malignant
-#> [29] benign    malignant malignant malignant malignant benign    benign   
-#> [36] benign    malignant benign    malignant malignant benign    malignant
-#> [43] malignant malignant benign    benign    benign    malignant malignant
-#> [50] benign   
-#> Levels: benign malignant
-

If you want to predict by cut-off, specify the cutoff -argument in the run_predict() function as follows.:

-

In the example, there is no difference between the results of using -cut-off and not.

+pred_actual <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + run_predict(data_pred) %>% + select(predicted) %>% + pull %>% + "[["(1) %>% + factor() + +pred_actual +#> [1] malignant malignant benign malignant malignant malignant benign +#> [8] benign benign benign malignant malignant malignant benign +#> [15] malignant benign benign malignant malignant malignant malignant +#> [22] benign malignant malignant benign benign malignant malignant +#> [29] benign malignant malignant malignant malignant benign benign +#> [36] benign malignant benign malignant malignant benign malignant +#> [43] malignant malignant benign benign benign malignant malignant +#> [50] benign +#> Levels: benign malignant
+

If you want to predict by cut-off, specify the cutoff argument in the run_predict() function as follows.:

+

In the example, there is no difference between the results of using cut-off and not.

-pred_actual2 <- pred %>%
-  filter(model_id == comp_perf$recommend_model) %>% 
-  run_predict(data_pred, cutoff) %>% 
-  select(predicted) %>% 
-  pull %>% 
-  "[["(1) %>% 
-  factor()
-
-pred_actual2
-#>  [1] malignant malignant benign    malignant malignant malignant benign   
-#>  [8] benign    benign    benign    malignant malignant malignant benign   
-#> [15] malignant benign    benign    malignant malignant malignant malignant
-#> [22] benign    malignant malignant benign    benign    malignant malignant
-#> [29] benign    malignant malignant malignant malignant benign    benign   
-#> [36] benign    malignant benign    malignant malignant benign    malignant
-#> [43] malignant malignant benign    benign    benign    malignant malignant
-#> [50] benign   
-#> Levels: benign malignant
-
-sum(pred_actual != pred_actual2)
-#> [1] 0
+pred_actual2 <- pred %>% + filter(model_id == comp_perf$recommend_model) %>% + run_predict(data_pred, cutoff) %>% + select(predicted) %>% + pull %>% + "[["(1) %>% + factor() + +pred_actual2 +#> [1] malignant malignant benign malignant malignant malignant benign +#> [8] benign benign benign malignant malignant malignant benign +#> [15] malignant benign benign malignant malignant malignant malignant +#> [22] benign malignant malignant benign benign malignant malignant +#> [29] benign malignant malignant malignant malignant benign benign +#> [36] benign malignant benign malignant malignant benign malignant +#> [43] malignant malignant benign benign benign malignant malignant +#> [50] benign +#> Levels: benign malignant + +sum(pred_actual != pred_actual2) +#> [1] 0 @@ -1904,9 +1733,7 @@

Links

License

@@ -1944,8 +1771,7 @@

Dev status

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/logo.png b/docs/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..0284e22d20dc7625b408fc553fe5a73c3b4872b0 GIT binary patch literal 36129 zcmYJa1ymeO*ENc}OM){v!7XTTC%6Xp0Kwhe-QC?G!QEX01lQp1uD8kae*ayoXI3wm z>Z()6_SvU8R9;pb837Lg3=9leQbI%#3=9GW_k^eb&QD!6ia_V)O>aK z{_^|bMMtSTtf^)#zt)UTJ+3m(vfNLbP0pbAo6Ei>#bSYfNUNg%$g*i4938?-8xs(m z^ARRjO@WYByHpy2T@KN?UUOZz$6a@EcJ(#8vQdl>8)QptP`g`#7!nPBUaT_e1n%}2 zOU!?$L3C@d-^eV`$LQAd*Koeqp3f`N?E5y|=1d5*iqemeWVGn9{(CW`C+44Xx;ZjG zj>`6T@(j`)S95;Zoaw)2TXvfUURm}QPo`$`1)S+?J<)!q*!!!{_q8l8TkIKb)7;Xt zfnZ}fDLodQA0}pHEv>o;{Y*rwVi~rqBfFroK8(a`FM$1uZj(M_l4EZ~se7TkEWSUZ z+o`Ydv&Q8m4^&rZi)Pxzpxu+DQr6|(&f({@QFm97=f^fziCa&*Y_5|7kNvBFBzoBA z!sG;h>^}bx?_4p#+r7=#Un^2*khnkab|k$S;_^{68Mm}8i}okKB7NleL;Ur_(W9?o z&YMVWxSdb6I!w7jM5Npjee>bbgF^qrM~`feK=yK9?+)ZzcxdVrrr>r2nQxHjM$`f@ z>mL?OOZ`z`Sg-uuZU6(rE-O-cqIy9u~|Ijp1M`IMs=l7uo?>VaC z!;JAod7zddCchUQ2LwMQE(l}Me^Q4<@;26%1)S71?2F88JV6bn(b?mIl!d6y7mm4? zwg^_mqIA(!uDaG7y*E}GX)UGs3ObaAAhOXhGh5Uq9&{g$ zo>^{bpMMl=cyFs+G};YnjJ4KC_a0k(vv*d(vxM3Da6XmVAKFiNWqYx$hAQTjG@QCu zeXadP-I@VKtRflu@yCNIu56@8#kK!+a2;Jcl_&MfK>N7oi08QHglD%lL@du}=2pjF z1{-2~-GSR5S9luh?jKxn8chz8%qyfw$SkmlKG^lJ|5eauxuimZGZa!-@J*^bdis#f zn8izoVo1DO{G`>vpb8%P^b6uz=2b;S`M@UO6QQcL3}=TRW(2vgQA7f}@?DeKRW50w z+>W9dni7u^X6dg#f~di@MNT=E5Kqs9v!zxwiigvNYn~A5Gu&23$m7_~U#H^@@T%Eq zlF|cEl+e0&GV ztZ*hrVAr5IuL728mb(dKB|H!}{@fkkc0RJWc)k2NSn0E`*rWHU=itfgTt9P|;}du* z2Q!KE2G7a%P=VA!JOg3{r|~z*?=muAG{8L^7gz<4|2c<9?b#*YUXIQd3pZi3ft`Mtdh>Yp=wO3cDm}8 zBRg8%%z1Y_{VZf=W-R?KL|y<4>VKCWJvbyeaR2-@$3kQ$3kxaZ2VR}OzTyJ;<8LJV zI}V1l3*9%x?jgahbtpZYd-qpnw`>e*LOv@pGM+sR|A;Mi5j{H+meaFuGfuN*JN8Ky z_XKBxU{EaSU`YOBS-KG@P;*pFb#?;ORGj@xV_zRe`K@1q@!MF(=R)+g=DsP}qfYrn zA!lvU!}$mVVfg6BF`*sCENr|Zv5+VI2H2OV+oPBeXm5kcKN*Y^xcvNO`tAaWS zteM6CeU23I2nZ-Q3VAJN+j+V?{&@Z8ws|Qj)UkOPR+hqCr@3OOSp|3~fv$L9{VsM( zIc#v(ayfdx1O7Hc43<4WebUv%pidjW!7|gqy%GFffaFfzfq4*?F;iFaC@e!t0s|!= zfC*mTiIT?ckAnv0+W{XSM!*^7w>W=(cYEPEUw8NCk_;{1C(>Ue3>T&Lt(%2KGabWh z%@CiRdx4MX?8x-2<;QHzysH_+yNZy3MK$Sv$bp25z)?a&KuI%@-%y<6#9%BIwE+9w|KQ)Mt+PMFD7=r|lP=@9yFryU`fkp8IWQo@;%FzKBy=ySO~sGYw)nzc-mgd2$I z!}EN+H1pRp@PZ0OnLu*BxELrjx}@=|>M4hf`*jf&GUeu}G_E!7i|t?r&jpG}1-8g& zx6MGgiu|Xg>_Lgbl*5pS=#ui-c(L9h6N{Z)eWNVz(GJiS|Aa& zh-%M!VaIhYfJT;%j>pY_Px|i4jKxpUefWxh2@tdCUK?ts~bEY;TzxH+Rj@Fe@c|mzR z{~j8jp=3$)BR})o@&3J7Rl7{l#$szFtbMaZr@UShAd5_b2=zq*EXWs@3Yn%gUcgLr zr-LA8pNJjKGY@-yt2rcoXC@l_xg3IWh(KrsbDtZu_}5Mm{5hd6u$HngbbB@Ma8dv;$SZprqk z2x}T%wMeOZqC#Wc;HxW`+gYcg2~utC3@vZ27;q{7fPqh<`RH$?mipycfza@ny%@=8 z!@VP?aV#GtxVJGTJiZlVp{Q%FGoTwi5KFl2QOcf;XG)RVvgy%}b@r~5~CgLx==_O8FPxK`Pxmufu zZy(MT*1G%)3OS6xK0fC8n}Fmy#J#BHSr(ZhM>%CpeHlPC+GsIM18LJFN7JM9cG4*2 zbjyg}pMF@1X+ zO3X}&F?@!^-X~AME0;Ysm5#cmY>~S=hqaxR*!r2qB7o}i?3ml<_(gpSPz*I7O=z5O zYXpTni$TwXZw_;2q+feIvf?z!M|(I!c;n+~rh%n_GWD1O=MU?U@t$ZQnJ^C6x8^0M z2;xO`bZIw%45=}Y5UB!SL4uTHqys?s{rh`_WRYtiQ3PBzSbE71wt$wf<^weYhC!g3 z)y4_*>Om%Q%c_Nry{F+;hS*2sk7YgrOMrDq;JY~-6G3F4G`DR!yefDji=$J|6(;Y9 zcP*ku5?BW@&-Dv75|~W$%pmB5r_6oh**dFWoaQ;oVjH@8Pq|rX4AkZ60_y#J@D@lb z!%>0h=JE6gF<)Vo^nBRyh0}kek`8gNEi7RnS66&)uYCx`WiDo8sPH0F`le3+(n|)y zM{A!vKN%br3ct-!MnwgWOK+#*vX9Z5;4_?5U$nroYykTWi$aY3LFPCWDPe4QdeX!r zA7-<@H0bw7U;&;}-L(;9@+?2ji^Gfl7L7oJ-e|z}<&#B^aTubilnMSKuSs>xuNTO?TQ@{~ zK&4lu-hYtE6%;#nJ+W)Rhs0c;>$DsHMaXlIbUGRl&qpBoJ${8ibFhXA3=fUi`U=EE z6HhxW4I~O4#MCp}hUS>M?FE^-7*A}MRHp2Dw~P&OjXTz^%~N9f33LSlgPUv=bK-~~ zDDqKO$o0Ojc4@+hAI4HEauV9vQl~A0dI8Hc+(wa9bu)plUMV}nBE=`nXq)l~*<#UY zXt|vgJ;nJ{_y4D2D-e^5g}%Di=>sKn(FN=mwPYzT$>56cWX&%cRW zzo%)|behU?t;RDY&W@8(gNRxHbNDTaVYeax*tOh!B|4MUU)|f@`cK<44ns@#%_8z_ z?N^Gjfc|A5_H^%kk)dSIzFa{kBVqpV5ts%9A&*3ZSP{sv*zV)yRQ>C~N7Yo$?iquk zjxW^+SM!WYAbDmnp^pEyVb~af?dBtp_dY}l z!H1EQwp=EX`_m;I55_6dvS(T^X=1r(&=66WfTeI6IOK#291LCX zvqGq2MC<8lvxEwNgq3=iQVtc-j;@_Gwc5dP>Q9m=Yv(l+QOPM85O_S;7Ig@J{QX(h zy|}oG?J>Q9RCy2sn_z>p)oo<+lN1Xr1l@)l80mr4(-x`G!@V8(G9nSc*MXd>O0MD!&@Q< z#pu4vF)H0^lTo;XIatHoHHaEXSXcTH=`smCn~j?8@BYxei}@CUpe+;~kcTw@gb~vl zBE~N?;}M2DyFxCjByqN1McgJJ!w^2a z*DShn-Xk#90W_3E{lpELuAbfj4LV%ezI|kH+sMBuG5iET>JYKB^vB*mrS08J9;2ea z%36KnJSsH05q3x0j|SY}74EOAB2?HYt@9*{Uj|C5lbn?N-GC~$5sIM}mLIX8GlRP-^mRZj@tKH` z6bmOY4M+qZM}-D`@Wcoya@G;sE!*WgT68r{!(vCeI-RiDo25t8)io=oKlJlK0Jrr1 zslqKx$d6Vsf}EJX_w$nt^jpS!!+`a+B#vQ$@NF*@HRhmc10V<2S_wzHJ!C3nv9nI^ zLFV4RG-7I~k`MFZdrpR-Q$9%-FzfFVUH~=uPr_QPILqM6aWN@?*b*S11KII%Y2cdT zeOM1N53X!Dzm%H&tynxI_*{312RNBdI`hXve46YgNN75LJ#WiH62cnx1hj1i2vwJz zqC^6n=B!?vgK)#XI2{D>mLm4~_Q(2GF(k`2F#zJte;*Tl{1A!5Lrt6F4P8!t5aZvX z%nHPWk5WUn%-}%w#2mC>w>JM~xgv1Gdd+RZV zU?*&Ov+T7U#!LlBAZW1SF<)l74X$YfU2APP*rRKT|K*JT+d)h?7o{L5M}`i{*GCOL z#R5xYuF!do10jCQTTyMkA30p7e2NM?jwKN=DCtafnJt7s6uR8J4N;&HOza%^FA?9@ zy@!f4%8+3uh^PW*_ELJGSbV%*TB}0QtIq?L6HNCwD1-UJ;J#V#Hr(6rR6m)!4q_s^ zdDSF07^X?6z>sC0rMgnDC%zND?PP1{vR;{W+VwX*0r4%zny1LKy{`~@xMV)p?mj_L1eLyna#Cu3W!isK4XyYz$(!oB zi|e?rJsy-)KY%zw#XJuMG2mPRe3XF9FLa>Gv$VvZTkkP}5uM|chVq^VnDpdAh?$FW z*qFB41iG+vAuLUxBcH)l{|Ev0+E)xF#brS-ztIr=e3p!4w!IA|5&({xiJZ0;RfQ;SYN~pl7(p zu4r-41|0a{G*7yN+DFkUtE%$vqmcdo%e|#EjTL?qySm_U0D3PIB6GIn-pGE!wZ5o$ia)Jd9Dru-w@+%1(i-BtTX=**UX3mHvPE3Gsn9387GBstYd{Ovi7=2 zm?0{NdAC5E8Ys=zKzfDFReM{JmX%9b>|7toQysnvYhGoW_Vds$K?%pu0$IbRpKV`J zXqsg2#n%&#oX}1pSvk&Oh(tCxqny6amwgrl2QU|rK8b6o$WVtCYUVkr=AXpnwgELo z+c`FTlxOjMcZ(EJB4J5U731Gb)_a!zmUYPR05Hr2N=zF_@FN#P^Zdka1rs+DqGgZT za&x=hJhgS(Ud~)$yLWgr$aqp2K1yYgWQ@acLDOAb|A`Fn$q`P&Sq|p!`b`uy7f@s!|(FYrrtH$w^?LR^+;*&gfoY z%~cPS<_c!pifugo7hUjY+n0;vn8*vmfJH0E&dmc!?oZ!3G$$cTI6;{V-5|-&XShp* zx=>){VBpqhAwLZb3cPR?k~`SoizGkC!euVk*$i~H34&`30DBh_d*1b#?Z@U?MNt6r zntFPRL~sQ%1rSD(;lI7Y(jyb-xI&|Q=O59~Ia`ri$XaPAzvKc%%@!RHj3+KvXvx!1Qtj~p$Cj;#friNXXWJ2DbCi}_8?%rNY-6z8Jfz8u44M63 zF{!QIq0e|NuvPy46FYxIKH5f%cxacA64o%py_Zd2yN0?pgciP&bMO2D|v7zP3 zDgcAmCQ*rOG3qeCVJ9RahLrrBK<#8`v@Uh;Jh0GtDFAa#ZGv&0@v&BexYp- zlg*+4LA2G~I!nsJ|4<1W)U!m_cESW@u~QUV^)?}Rq-}(>y{fp{e8OCRwdbjL zl@%c?Fxl9c4+$*N`0!|R5WN{tx`Au|zzrXGW)`omd=i6*WBqR@& z)5XWBO#S?uw4$_TWWZ46d*1CNLRPKU(td=7hSJt2k5)aeK{*hHmI>>e5C?rWv@y5tyH({(m;#{q#k`ik!> z3S|5>5ZGJRFg#quv%pQ1of1H#p?(lEIz+we{fr0jbYM`5f}pfDSLoF78pNEbH=i-@ zz*2J!rE&B1LIZ;REh-?fc^Uk@r=2jDPZISVmFWe5Yf!^VKTI_Wl#uWcutS4;XoLWX zdoA4sly?}s3ifV$PAp`NY!zm2nDp8CjMfg5!d@TUmQ38$_$oabn56Tw|?*1P%81MIB+Vl%*NqsXa<4&e{=8}AgzzY)O_lfh=VzJu< z2Oo|0Y51x-*K#Wn+=c?J^Ufhh`|Nmch`5=|Jo^|@%T~RUH+PZT_H2Io8^5)Zl$9;< z$d#r^h>I!_--`?Yn}I=PP`wXe=XUAua&d@U^s?1lJr10R?(yaYYB1hC|63Y_osYUh zQGt8RTAl|nSBRfL%P<~?VE^{5O{DACBKncoROZa0ie!b>JggIX@a8XTy12mJIdX+f|L*+FKg7aQ5`p8-J9}RIN>oAi@2z-kpAsGK7;u>VElYWP2*~_iw{tnOIv%8 zS!+p|ZaSZhp62S1-p60(lpHg79V)wQ%lUK=6a7^P=*|@gM+y7k12Gp@tZO?*0)s%( z8-S!=O{lcjT8v=Cb%Z1V7SUg%B=Ibkm_@3Xr7hewF$aW>&RfrX2_y0X$B9Ua00(UJ zy{}J!Gs;(&om+OxUgLFt%2#Jm!|^cpkX`2=n8%ocOh^{84#PubyaP-|FNcp#(s^@SH%nN9CN@M+h!%0GJrjAhJI!UvOYv^ymmQ zxX5{^Y(8hF^Qu^LZ^zXG<|Qh2YC`UU1o2H}O z6}bkAC8F2IxgPP9b~5YVkOcRyGRhZt&#gdFeAVFF{Wn4ZFdN`#;_oPQ_G+_|<3^hHWCLZ-jYX+oE_PCfYz_Zd4+8yWxFrU7L z_L{$Mx`dz4;_yKx{&kV_uEbaKAvUY3Gq`n$uO^jJLhTWzht9nq9K6pLch9~}N!|;n z)9m^G%N1Y%JuC-Bn&C{M*clOW#biob)I7w74A2f+%t;5!*ApF|k)*_B7uMmR?(az~ zt51aM*$HbZus{*N*vkN_4%l?wcXQRi<7&G^a3cEyaK@C~Puf8EwqLEdb3f+nwSJsn zqQ=!|wq@e5!OUjk)LLJ$li%J%gO&nvtT?|AIAHUD1cd)k#>Z_kg5-}Y2|87G>Vb|si6fV#~jJ;znM}@~8H z_L`QGp-rVc5*a+s>!y_q-wiqeINR-4@c?ZVkGdf1kK1 z8Q3Y-L4LTSXCjVHpwZwxmT*0h#eu|0)Ey<(1+a5ZW>3^o0B;NwsC4=fywMW)AO4F; z(jd^^#PMCXuz!ix(>CJU^jGb_QTCc2I$jf#xm<5Gt8Ko`ZX8=|It*RIzMjr~_|ioU zkOz$3Ik`OVbCUuv;8aMc=67gh03WC5;QXn#t^%s@s#~+j zaFe%vC)p}?B%xf$uVXzGqYpgK7HjN7bI>!?)VnGW@5~XV-Fr*{&A@Rct)-5oAGWHl zNQCd2M=Vz)cW5H}gIVKe7~l;!deG?oY#<@~R}lYmDlZV4+1B+0K$X=BuiMDfM$MBl zn3iNdH1Xv=k~aemMPI!%$t2C?)s)|$595zTy@TxsPQmF_f=u(Ce|&uS;hq!zu}%-@ zm+(Q(y_7OmRhbXI=@KmiOw@$zwho{{DF=rDK7lrHUx%Sb8zGE$E#0U1;G!rMg!a-l zvi->K5`(3(W+SrFopHK&@2;C-W(4G1*$pAj(vD7sr z#=U*hwSoNpC?5eusIe#~b9X^=H

%YdV0v^--Nor>}8k27wm~S8)dsB3hICi&1|5 zx{7bl2YGa_-_f89zgoEU`QLajxNlIT1UR2aFHq}>oQuw+Sy}3TH9S5z=*x!d%WLuJ zH`4V2Cd)t1e(n>%{GHz~Pw^hz)E_|X|CH^C4umE0HWp%Aa;5Aya76b^UH;kx2bBk^Ywl1VFP;1kz_7x@rYi2tag5 z68{m_z_`~jTRDOp$?|5J;sF1a!Fb$S^$6r&Rg=K9|0bTmWLloLaWUpwTUaZqWPN2` z?J6c=ur4w0WW+wmBm}&T@UnWoNOB6P& zHjg{bu5&WeoB(z`1PSvUx(2`}ws`L7rpwpK8zQPWhO%w}Ku`bQPU(=m=ete$h~4WT z)h&&(?5T?QK(Ssu3sp1MwN$aLrntbMx=*11ohkp`YkybmBb>+#PwgA{py2OsNn+A1 zO~0H5dg+u#f5FiQ3BGqKj+I?_XzS}6y5D^_;eXO?pg_!B49ro6u^q~uS$GYRWvs}v z+FR9-$&4^jGZ1&WGQ~LJBXV)7i_X>Wy}$xV&K4J!ApJi`2KW(6WS1OJQ@jZn>i2HJ zlMyuMcuiF-iS$!`$4OAZ4u(ldw(aW~cAFvjs9ubW#OLVqe-ft3zQf>8sTutWn#`s2 z25B7ZiZe3GcU33$@lME)lEEG<&=E%q%{Czof)d#zemIw&2M4%0d*P z56Usg!h$*qhx>eD)+enb$dt?7t{9j|gW=1gE z5fVst0S-f+EIq>EUB|%_`Ia1nQ;d=BMBe^YEqDE1N4XGi*CKlP=#U2|;zbHpvg^g! zq#j6?m)Ti4#os56B#};i1%v>u)&E13@t-;&fY)=Q68by*PSBK7&)pSgQ~a<0&+!Z0 zGa*c1mK){?4N3~8hS;|OGqOxOKMNKfX=qYqx<%kuRveS^C82MHUXE_QKn|2kJ&pH? zl;0UhzbgtoW|ro`Dq-tkGsCpuQ1Wby7R()bY{PqmhVsi8t?tKajazQw$o=-~(^U=w zX~D%3cs1PaV@3x&=r|NEPJ{UUIq(R-H4_-Q|A3c=q`>7X6f8>q#(8AD<*%zd7a#A? z?2Po}7nKr^%?FX?-D{XealjdvFB*-zyLD@{J-B#qcJJmE=3b5o5Rgi9He&2p?mz#7 zvj6P#3@Rc+3ju{t)VG@~w2o^Bzn{Q*zerxR-)}lBH2C_@lba?y1@@LRJdWT6*+Omc z2>j|61qXoXLJ08Q!|3}3&B+)O%kLvhTYbaN#8s&n7uZP8zC|CjH%e2cbFyFXsq*W0 zj}Mq;xG;gjw87ikP;W+YuB7J z95RJEjNpH$33wR5=WLX8bqn?mZxgTm4KmgMxSB&>I*g3*i_o$j=q=O{gM6P!C$lg~ zU=eQLi2#cI9pnn+ph5&~qZ_p~8+QWjQ z^xph|ZiyWV%xvCw9GiWEUwi;hj7@v^KZOcB!b|Yw=`G6ht>NUIZ=Nl3{PNxtsn33; z!x0mFq{6}br*$C6kwR4{LwWeg7naN_#s+ZzCmHaaMFnslS4tt^|NEg2A5ceM{|X@g zpL)-~00c``wh+>P3j>3?20EZQ(G=wWTY%3Va5(7v8Os3de~-)ongx)abR@t*v42Cp z$O+JQ#qI@%g7?7%gdv&&er~q?8x5IQSqSngY|IKR-BA7t!Nk?L0)1-_`r-a@-tHWG znYE4#Vlw;h=y26(lXZrofuvbxg{CFYPumC3l3V;=Hn(jM9{bM}sc-~pe#UeN0tIE4 z#wx4g$0C(F8+9^IwbqCa9^n4;}C7h40q zsn1MF(pQ?Bs(T{N(&bY98OI3SJ;zQUYQkh z%_Z}_@rC=E$(Pop9kxAx#)F+kzFg|esSZ@7`mp0rE);dTfx zC-hQPW@iPcd@sH_?su$iuaVKF7nel|D3U!xMdcQwVt*J1PbGFN>QGUz70~e&T$>fP zn8yYTm(x(#$Cgb+4a1EEUT<`*l_2p?okoU(PsXoU;>3{P6+$9sj*mg1$4M&YrUxV6 zAFHgmRv#8DG*;(w$yL3Kj$2kum+Y>Y@c0S>!eF`?p~#%Fo&C&Qt*t2M?f#wN<>kS9=Etj_jZ!S*jPUJxtSrAB z|B`EZWSpW*2izTQZS&1p7^}Brb^9IH>dQU;_1fS%1%+C@ZA%2>L&X<|6Un(BSz%SP zXLLU;u|ifPpBEEmdpg2!^3S|4J*!oW>W}V)?{f0XoeE`WgRV8?i0IU(pn7xUgibx+ zdb={O;(n^edpmQ}{mByXNBVocz42<4(# zZZ~OJ>3wPJ*snb~^KqT=7g-OhBO}+z#}P4K3$9G}E2XGN%kapcTT`46aF@fsPrsq5 zsO?N1|m6M-W2)OV1q}*<*_bwSj zx=T;_PF`LfeKPkmy>%o8iEDz%#02laQE2E3(kFN`zOQhkvTwCNIbdI4H|^CJ9+Yaz zIrmX7*k~C#ug2-TEjP2BB!ot>uKlzwUO(&T9dJOXMkq}(YkUb$s?`lrGLFBze+%wM zJs8%M%Qv5RO{`Hsn_-N#tox>^H6sjg>26Itb4La`Enn4QUv^UO)ld#iu>ho*77p{frV;&5jf-LS*V2BI9D?C6-TIqup-(_ol1|q9qGldn{`f%xn+g z6R)2$<4vh~Y`zN(j{*c?5ur?32l8b5tFGJM$Y?^sN9tRdL!CY~Nu((eHPWkvQrvz` zfW>n$?|7WOrM*3tHTlFaR!n8};J@RNB+Hv|+WHeT|5)#F+|BRYQm(Tz+Hu{UOf2sG z#ml4G(Se_HV^4Di(K%D5rarccbi&HO$Eri&QB~R@@})%3<f zIrEecZd2?2Sv%fzi%1n+ndiW0PYlcY{h&zY!=c*pL-xypHDNJri1;fRM}`IAuzgFl z!%*@CujleX-QXmo$_+H#d=(VTX*4iD~V)-fOGdxYXTb$}91-f!ztGSrX&fFDPFhb?s#gjjH_783a z2;co7EvF)>alGi79lTPg)02y~T#YBI(#DHw4(sg4Y|Iez9}Tm(ISU%8LH_)bmoG^` zr!ult-6mIiA7Vojh68oU<-Jk1WyV&GL$1`PP!k!Qljjl+#_rwrSyyU_@9NNlJ3gAi z@>`$Y{qeHsH5Y8`L(=5XJiYnPjFhzdwqF^sDB{v1oA!Hz~kD zO=OKYjiO^ZKA7gwX?~4B=E|eCB|aWljA4EAZheG$oaJ(^&E0wBL}m8cT&#Y4OMt>@ zJ)YPzlp*ZgH8Pn}Udvi?-y4rV{TfA^=klHp&&Jg|@!oDy8xQV0DkNU1JGstiAMeE1 zr@y?`#DG!K7>gQ~&#HFlWuwjCF?dw$EnQar&0QRmJxSz;t<>;B78Ghrru|eP*sgey#?dtf66~?eDa{rW`zgaxn;QtxEQe|CV#%4 zz3bR+A$fVqx89GDbe<*}ToX`ReIjii(KO=4h0b%aSRQip_Yv|08n?fxh`t<$cFprM zFwf6wX&dwr+V{`Bz(rwuEQiH7-vE z-Nbm7Up!{~ggFn^PDl3kQY=*zZLiIw**H6?FGo8YDJSD)gFmJ@q^%y4&$h$vwL%CGmM=~*e1cb^^>M&A_H__2by8Iv&| zJ~s84$kTsZd1Ry=j{M=7=(c&JzxVOF+67S{>Y74>{9)=qJW|E#74oT8i{(Xq=aB|` z=eh@1jdw)ngpg*olDo|PZUo}9N&>|V|J4V-5sY?+PqM9V54vX$2yCT=bl8S&&bR2JQ1c?tU04Md29dH=Q};Y+~vIJ`nz<)6Kf@-to$Wa`bN=*k?^q{mU_B`w*)FWdawlU81!TLS z@(H8hSk5~$SMf82d4h&z`Gw@bZ@(g2nk_-(@sj8z&yCyI~H=s6S;`wx>J+ zYF}5B$(5VRk~{mHQyf-!sjcMDEah7*H_dA}cJn$$8UF6|SRr|*SX;yEp%nLlvr zT+w~`Di*ar{&J2luJVXaESmUYl1Ta~y^+9@|24p9BECShO!UiMCY{~&@0SeL=s9L$9u`Z6u#O`G4ns?Zs|u+HzGEHN8OMrB?>H zjjb(P+pN`PmX+kaxlWRh?RUe@Bcv$XOao4%d;|+(H{sIHU|HEG7K+4EZ>6ck)ToBh zgdC3JbF=CMrqZ({icwJOyEWgCP`|veXA4Mq4yf)7i;0TABT%Sv;1m;ek?X{k9+eI) zcCS!F1A5tmv@^{Jt#v8m@>%QXhX$3Jc*sppc11i*)#cM(D}U&9Iz=a^#FK#Rv!>8h zhPwIWFDQH2YzmT9P_StZtAYHSR2>b=&ALSN4tBP zl6UybAt3=XiyHIJ`8cYIX70!nfpQpe2k#qg+~nu5H@K2Or7Pl(x=~GaB|b1oD4<2d z57kcopCq0ioL)bZHDi&ND0p7|h-2M#3ja}q(`uJl(Fvr9gnsX9*GRinBU-Ovoue8> zva3J3pMZjDTnw2qls8v#8__adW_IvJAEDNDLie2PL^dtgJm?k1R}5l3JP6OT5C zaZ*v&1TuuTVs=ZpTreu-NfecZkca|HteG9?O+s@RM+!%n8zfv^4Hp_;BlYT!%P;l;AesRiUA#E36xv8@}^;@tX zo|cgremgtU&;#B%X&@+HyewGYwaQ9V>T}|@a9L1ykq5V6{eomIZTW{ypR_UqDpWs@ zj{Yw7ap3(;h8b5x!OxgGj(45MOV22}1*Yb7vseDFk3h+r<1Lm|Me?;b4qXAFqTos` z;Uh^DP6ZK{4SMlUS!4C4I)!E)9{tGR<&Y%m;TA=8)keo}gL^{#KfojUY+k~mV~T2? zUpbzr@h#%)H+;R@Go@}4p5nA{H;%3PX0$?NB|!B$Ou3l}nzGD74f zeOU9Dv@n{WrJ`gS<V#mf(m-pjh2np+g_pXt#%e9avkY&t#;hAcgE78I(NL@69Qp zk0pX(;Btv9M?EVePQjC1?XVxrmq`KC?dlz7u?*!L%$ugcxF549anRQJ%x>8E#bUSepQ3%o<2cN~W$GbgKTip24 zHSjGilV@0@nFBUR@e@Y#<%`@(JgAf^Q|ZO^R1$XOD=~Nt3>;Y2niLzXa6%{dw3jN~Z;jOo-yyprA7}adQY&Mtr;g+lu!RXO!CezOT>1s03 z*Erj$%0e<^`yX*STP8}^Z&Medl(qC_l#_yt|3b}uDi_`;G2X%o!(De8 zdX($p>|r63(`A^*>DZ$Fxh9s^8QzDDTG^DV_MJT?Tl9Y^=)G0sOH0H+OXL1^HLBbq zeN)X3FHopq6r~cL+2W+8qU^X|o|VbR)AC16o;06G#x(C3*=^pMo`dhBlKW3)ESb6ZSDv(}p8vgLeSG|PR372dPASboY*V7-1H43`#&N`Q)S2Ipx0l)49Z3CN;@nOz zm8`~k=jj7Aeks<|bRim;2#ZfEj>F7#Z<38MnOurf(2fEiT!;lJiJ+{nOIhC2PSf$u41R0zYK}|~m(rR2#t-GoZgK-=5 zFpT(}dLPQ9Ih+`(R(S4+@l`CWP4$E8{Fxa?X+WnHfR*LSuhuy3!~eM@VnW5|S5^f` zHnVq$HJB7~;Dw66Vm_r%FWg2FCH2bn|Q2d zwUrk?;WVSH1<}#81lZ3#VtoR}xt_{(GufHcq2bBp;;eO;xHZwa)ckSzO$Kn~N!<8T zBr3*bbMaUsP6psBZm+RMg9}QtkT(J#bRaxpBqXg z`pb;WUZI!VuB)|=)BGV=5g7>bBJmu4(VrUWAgaErD4@=US-Q{DskVi%X8#p?rN20` zTX(w5s6Hj4WbGm4nqYAL{Lr&bGcPWRX7m11Bh^8X!0p7cMZurZy$rOSUaTS*RmG8= z#E#wTfwF$tG6R)V&)MZPR)ew+Ji|6WlK;dTJuA^WUCSpfYPMT);7={*H$7#0caop# zlvxj<4~Xk3^Y=9I<3CUlH#nEgig<(2-jBZ#V4ST`e-GxE<(+RPE<1B|3-+l^^ZG%S zcqyBaOsXPULoqU?kVv|As%uXv2A~n;&U@LHuZ~o*%b8^?VpDJ*Joz4K*j0YqEKUN( zKDmfF`=IMJ&^IZ5x8*ka$(9?-i#s$rtl#EwcS$m@rjKLreAEmON zc4-nXXHIlx3PPD3M+KFjKfB6xc??MAt${fR`Dyy)HNN`Lf>3|Ob`*j8Z9BAO*5?bF zJa9xz05|c81_t8r!u$o}a1I4C5jXSY^&`z}1$QS=W4zs}2yNKj;~GzSaJ$#Z>ZGMJ z#X!IhD3RgG*sy%3V6`X(qQR%Pr>y9-GFV5&4;dn&t>QS7eBTL9T2}YT-9(hoBr<>; z*tb~NUMQlWL|@3Rcvd#zV92{Vb+40g6?(};@!CG)ehQE|RHZ?}N!Zbo9ohvI-W7RJ zTtLO5_N(zlM~>5B((8y^iG+$rV(`_#*%+O5;b1bde*%2~6ikvV^0o9^q%9fkeu565 zjOkJS(lvYw3sj3LoKD_Pff*JRE@O($Ik_Bro|1Og()H4OrvkHO4M*6>L-|Um>*CF; ztkn~0RjvB{R3>A~=c?6bJIR&Xa5iPn0IE30eKVlAsF}W4IgU;^ENY2!47i}YA&bDk zz5oht+4{77R4BM0-(Y^I%V4qDQnOC&#_My5&?W2{BRDo+-B z3(4DcN|ZF&VsQ3e;e$F}y2c^AbFL4SauNpMB}wHI+zCjqx8>U&Z$ObMui{^}t}bv8 z=2DWkO>4c#)8le2*g7TnWKm6u=O`e64Ql3{3UgF+qETYHAm~)KhZ^J zL@Jq7;wZ>dC4Y@Q5o;f=yG{0{Y4F|WoV8rohO6B(jk7a3ij^!fY`qW0Uk5-+!6|iVjqn%tP>)XVaV|WcRX|YY z);{6pQVRg8{p$G)fw)MyLJ?B*mYcsn63aa2TmdfD^Z?;T1@gi8jW!YmXcrF1tNSX@ zTmQ`8Za>Tr3T_tZx; z;ieaX)GDsK6tc9C?sp08H2%VPbIWs3`@H@pwu(wB3%4GV(9cnW&J)Uer4oMs zLCbX#v1}H2138LmO^*z5t7)~dDBi1GZRsWm;`QB!x31_WY@IrOZm&F4z`mLu4W;9w zjccC!*Wmqs?R`~LRbTWjagdM_r0dWrjS|uwf`SqvT_PYT-QA6Jr*x-ugGfks2uLH{ zb=UES_deYFe4qY~GaQ36&fa^iS?inMnrm*Hj=S%gw<1ZF*{MqD!oLn_9dC=3&eSZL z)*JT9PzNrqkZjPM$AaU&rBLyqbRO&o4DA>E>jj`woA%L+QEQp?-5J3N+tIC!Q@s=U zz{L>Qi_<)N*X>BQeRDpLI})4aU(!%|DORJfdgQoVx|3p47tBTM_REXCw_qjODe81i zF*%TV@S3*gvy6ozrof8md_QGG44?SHx=iQLQY!sIy4ldHGwoOrj-k0vbT{Gd)s4LC z2A3XjI=|n~26d}O*>sTLU(l*^L*pLA;1B0LGNPd;t(i5a37xj1CgztJ&~y<`uv={D z(WI*w5*Fde8?7l?Ov2L9z4>)>ebx1Pu_~y3ijpmSXg*jx$&fy}$UAQSBDsPI2Y1PG zsPRSa)VbvIfH+UfG`q(sU?IPpEV`ii^hoHoAQs@)&J%%X!M(1ImY|dY%mqv2z7=yX zyC7cDzR0>Y)f1axro*A;UmS@yOOB0~udt&lU${)FdAEW2+ygG`7(UoLVjBZE4(<*&kh|i^3#RZ&=(qos2BnP zN%TnTFoD)f`rS?xT>m~yAqz?u|7bjB62Ybu=aVM3kvXiE&D~G!XK}^m87i#K@oH>? zWkOg5UaMSOu}U4i!i<~~v^$m1LblHy8F|p~PQr?Y#E~ZV15e%rTimRnU|Kt$S1!u0 zgCr!MhllnH-`M)e*^a?``k+i{E-K_bi|LO*Jj+MgGYlst|%M zR|`mTHC3tC)Q4R&$F^ibbz^S@Hwp*+hE^YL_ykjAgWPm(KeG6&A___`+1Wc4uky68 z#OHY8d(%#+WshjZGrp#I_q#89n<0gFdPE^j9Qh|}V+AOZP=ty9@$};#G0}a1YAJnumN@gLxl~gW zYhSr}Fse7TSmMER^TQ?@`KgZ#?zcVLHoxZw1s1+P>QyOq$?nwDRTXh4u z`Ojg_5i*fFg@;|ofFPn9c_&XYt)1XB`en!byaL~mNle>#WvPtuY>K}-k7`np>>xCs ze-~4`x}4(Aw4!i+k=Yr_%6lOkPyo}C`8o{A)iDi5uMYikqK>Fs2lU!AGc4yOWTHc< zX7q5rJJ0O6Lj&F@R8s11Of)$qE_}5m6WjX)qouWlt0H;)H<*{}@`2LNc3#-IpV6we z-qO!2a4p|BX5)~R3`SF7Hnt8)!H$f8OvjmFyaO43K4Hx zY0DYkuIpUd#@^7K=60$JXP!-oe!$8?o5{Sa(%?CiD5j{Uir`>@Td20nMes!WI!5=T2s4@Foh$y@e39vLh2| zle*dusV(k9xYhuhG@f`-SNH7fKbJs5*?(5{8;0JZZ%nH28#s%WPkVz%?5 zYtwDLG12$@_{6T0*BmU_$vb&$3FRjGhD}|J>1@lp<=eN1Xiusm8z|{I{=5mRC?J=P z89MIKnV8XT|xQjX8p$w4phu#LUaTBX}|$w*?#WpQhbzk=zVu1Qh9fT6e!#w zMlwvddpxSCbhh?}^o55egYlp}(Ui7whwi;~?Z;OP95B>9eWA_irW^zuFT}!)E-SbP5n~NCBe!G^~0)id-H?BY4}Mi@})onRgq=`o{wzU!cCbK5{bIJ z3_2Sd0jdQ{IgjCqMDlawSj@8aPbMakp}wbKiXYb4-hTIE5JJ?cq&yZ3pMUruB5ob2 z{t9*s{BBTC3iG}~;}hgH1|ly-cSZ-szp@23;GMTA&LO1tWeCdvf(86nRt_svSki$} zTmol=eD~#foggq``$L}nE5K+09L~A@ACAxWHw=IsVZ=m*wVHu_JltVr4|{V4tM_FO z_c_$ue?>8H@OOZCUt0Xu(+iqj!0rhR1K^&QrVjpo$S|siG)iOSsB91>Re!EA$;34w$QEQOs*8zs^f8}1X*x(DC{hyD4 z(^{jv-fbdF0d*i|A_g@?Mp}rTC+-50RF4wxG(t~yN_w(| zOz-Jdd}c6PrMpoTM}pbnKALCpPI}JP?r2y|3E%-_WlnNU1}bM>G#$upZJ^WBAcl%S z@jw`Ep$j^`Bhp$VRrEF9_!kF6TB{*tF-tS~p86otDB{!s);9KBLJdv7p6t~(`5oF9 z^{3^wr3VO*Mmad<2ihro8yNQ?1`|xg6Y(V_4rp@J1i=LR-}2x7v>e;MXFk+UJSwL} z!wlpP5R21`Z7tPn!qrIp_fM%Y}gFiDEILT-V(^!vv%#_ zj29dVjcB^Qdce~V<9MICy00A5cpZI3Ch8mk;yxtgP!BvrECrm`ko&mz8m6BDnJfx$ zn5YVu9i5t%KYq+T`y!gbOHl+0kD$&W14o?rugvW$4osVaEZs;5fYuUGq~+D1xyp>L zr^QgTL!5>#!CI+=E&Eyl#XQ62{jATO*7jtbY%`C)Ji6bC-{vuwkAMQ4CMqVPpToa6 zf&*W4-@?no1IJSYx@G8akdLf!G9>hrIPzuwC!Cl+*X!G|RZ=S0R>N|UEz9;3@!h-4wtcNaT7uz# z&4{SD{rL!mR}yISZ=5DsU{%50REh>)G|y+;a14wsps-a#V#N&++W2qZn{jI+IM^S%$pF5~$&@9zdm5e(#GNZwtIL|A{W8G$AZVo7RdS|^T zuNv%}mW(@DVQbr9yH{yR&?N}qNUsgB(B5OB?(=`h;sJQ_l!tEtbcq(>OV}q?^s=2j z`Ud^7p0K31yz~?V`^)OUMPxn7=#eK6bGsT7d?XmeV=QpB&gIi=-k`5{)rGQ4HO^4Mbc@K5+YF~mh2 zt_RPRYn+e)rAP@Hd)4}#?HwO6p+GxfLwD82G9j|gZQYpD)$j~T5QRGt5Bbyl04bX1 zH@!Fd<77>PZo*qoqFJGUE=H>=6%Y`@aa&crdg!sY?y--DB7&9Bm@ICENGlR#mB5)_ zUR5=sX5PjpM{LIl)MzQ?%Y`@Ymy9p^)(RVF87PJ@zClRw^pFPgZq33)uD*v@t*AiM zR$feoULwS(EE?0v-3z0WwxF(Q{F~2Hw-3hLD|(kzqC?OnE%3YjKXan6-gdChPetHo zGm&CYaMZC?iaHb3oxJ`}_Ax`mnzmBos;Ip8^d7a`~n}UpREI`MkjuR4YJOBDn#41Wl2{qQmikD3`i&`0U_D&F|ZcHF&lmM`@2Pu zf-h)#u!=>YIS^2sUwqq{wgeIwS&c<3L4nDw?M#8x>XNS)qoqfpIldE3Q)umBnz5r{ zno?@GZZ&pq^rq5rdTc@^sA6|!XivgU;M<@}^soVrni~||KjSABc*ZdzO1Nk%2Bc=5 zg;@W*%`8j$k#wnG;(N7PaAKgCj>7$oe1m06;K^GYDqFV0hu0~0Zf5iK+XvGVwuA1? zJK9D~lgz}L#b>201TWMdH`tYOU$t2m*Uo-?T5)CZq;%a~)!@77d+lOLavu+mMbx4@ zg0?+wcDH{~mk$i#{2I~YS3?r$^kTq*WGS?Vvi&w9?n^{FtX63z#pb*C#0j%v@H_Pg zv!*a4sUXzYCa3w$z&%I(FxuNc@>%8h`mURG3nx?C{GB2IH@CuiU+lkv^L&iMz)Ylj zf-kU4ux50X*!3#+8>odXGMP?JdD%Dq1vBRh*6gfP%7(i(D7a7^tt@r!udgYYmy38- zKKZa&!%)!rQ1~v9XA#GJ-%a4{WPxjqe0@W1Vb%q<@t{^j6$|KFihUjkSA*lG@2U3B z3Y-z7rt=EY2FXtRsG0pMq&|+!s?34Kal=<+d|_Cp8$|NK0uJM(R}aQ=JZ<>pqeUniYtuROv|7xf@aRTsMCv}D~u*6i_!&6 z-^L0F-WgJ+uNzMA;ohO)P}sr!mki(#5>e-DH#uTEshRADS-zQky1ObEbh0`$!qS|a zV)RcnYdHIu$D7FN1eoZ@M_&Sb`K0!#&IU=ik1*lK@eoPXjt7&)RN`=X->2<9!B8>6 z?hJ!VwLel(ZL!!*VWl6dbt-4O^IJ=7W?p6lXe0}=qjwlsGC08&pm#{J zDtezO0?4V=wcdeEHJd3<0fBk4uFnrTso?n+DEYxq_Md>Tb8ffA0mC-1PXN6Kp0@*C z9U{Uf$Y<-!yTW9*Rkw-C?=1p9>oI$WLJPM$L)Got)TeamFFh1sS73vYwXXk{uY&(| z$$%1z#61b1Ke;^n1Zy+Q1}~~ltd0Xb1=T*E|4F%Xng2x&C5I)fnLz&@N(lGz^JwJ< zcT)F9VB?JO@L^%4AjS}j#tWGNj>}r|xkJvX{0qH5{v_b{5NUxFoGuI&SWj@Q6cw(rPq8!U?VK-e@41R%JwJ+l zv*$5iTT=oyL2GRX2GQP5+T5&fY8<`a3RQYLZ*Su_njdR4EArdnOC$v<~9MKW=cN}oAdb2?~SX$|wiQUmx%01Ky_EGzt#So%4< z2#Py?PX)(kWf+hZ;WgfU)a08-TJ`oYfGim-5xzwM$GZR8)*cMYpRJ)2+f!Tp6q?oC z3(K3!nblg?Njy|Z`w?s{^tJGh)94R({lbS7?i!Qw7;|<}BAL=SyIZfh zq2*cOc2}aV*j8S!P3}A~<35z+i`g5Mi8!0%w!7xq%ZB5@^`dQQow2uS*T^s{BmWo?dw;1FmFEew;TZ?5Y088$+DzY;nXb6qn600Mtuo-1xo!OVp6V;4zjW@#}vx z&jra+D`Q1O5(fmq@7MQonRX~WCkh(+cd7t%uheUG5mRs=3dDpi;jEH=|_W#>W6mfP)-znbi!p((5L`_$PRkK z4#ayM3&29UKmJyISZn{chb$?nsXXB}M(Qs0PN}q9bhEbJf21?wvvh^WqufH!y=19< z;IOS|LBOc{{5JjZeIUs82cj71AZz+S$9~dHKPjtV^IJrfEL)*zlU`%nXZdfMbPnqY zo2Fp%6{|9fOW{k2Yd`UtytPnG$(Jy`)_S=I-54vRo%)Y^BRk{2WT@3*a=L!x5CX~I z7*4CI*ayd~XZOZn#RGe~lT-RTDu{l|wZSAf?)V0sSySmXOJc?(Fzsh3jeifCA;WYC zpNEZlpC@b60s)l{k{+wlK?@PoiC%X9mg!Qz^;54iMs1JYDDRsXH)A1NOg@XTjZp|! zj@TV;_qc<#Fa##WEe2ccVIR+aN)T`R6XZi6kayD18f9n#dCrE+&SOo}jnvIohSalJ zFGb)zR{?J*lS)YgLjSQCw8l2Q1G>?6ij4OjbthgCqnG9kcdJL@v=P>QHM zs2#UoE&(lzJirFZdZ0k%_xD5{7%hx-5FwE5J$M37`u%8k%wP!`5eb`W}gFB!%`fQUqQZ^jPMKsL|$ zKe?$10LgG=>6zzb0==x5KB2bgujR z@k#(*SzMPA|2_~lg7UNfxxxQ`8Hfz9Z)|1DSPLc?cT(~||EWU+B(cUcVv*f=5|L$5 z=PaP6P&r$V=#@MoQXl9e-tw}T=)=8tfMy}S9;S(gB_Dt7?d3@5@nnfSe#4DE5hkmO z89N@CpxOGM9h>v>;RvU?4cdLEgZ>nNuWSl!KQYI)DcWpOW>eZBdSK=ozgx)Ic#h18 zCeQeiKR!gajNqW|ABzZ$U_$tM?P2*&5p-qrX;A284>&Qdd8!;QfaNpAt4rO+9x_G! z7uo&=j>-}uE^sdv{?xjlIy|IIh>F(Jwe9bdF#MJYx`z6--a!+lMKtdtc9|@+UHB(8 z#*gXn^iksWe(Zv(ogs7Y(dknUq;o2c6L+dAzSxe1&3gV62Bw-vwBrJs7O6~ zfFU4$&BD`f#;7G1w z`thT&;aELKI4bC#Nm#cg^}a|svE};uQq6%)D27)_8kwrYT-%fgC31o;%spbx&7U;| z`WJzKyEV#*G|N-(NMmcCr~Fn*HzQ>^eZn=u^R?M{Erx}wVz38xj^F(#bY2YaO>QOD zuiw{Bgm>~KR_wmLeO){5FO@{Y+;vy+Xy`!-{~y$D^@mV35?fvz9n>_HvOu z{`Wjo;Pl)`?*Z1i!-|K#^S~>T`#8fH?Sa=l#qZW@it^Z+ zgdu}{0Ly`1_w!AA!rrM`i&6)4qAvgIC68N^fku}PBOMVzrRPh0=h*$2CZ^v3zBDGF zA@JuTTzp@@ds_f!bJvK&m{>k}g8t|R8tp{5CFY=|2tjPV4Nm%cu}>-w+T^6_BJtCK z0gXe%ovysp$P5$5;RY8>uKsoQ4(7Q1gYJ^%56eXNanXsL|v7GaCU4 z)W)XfVv8fc#Dp_0ZrUu7C8lCRn>63G`Yk87JAcr6{%g|LPi&>+JEJ#_nWdAyYOLV> z1+P$k#o!`sez60Yil%`t(jfiehmX5g$z@44k(){}LN}jeb67{>3WPqM_XjjHK%vcc zbft;XiK?9FzxQ_C+77VJh#qBGE3539EuLt8^GB<}@Qx3;Ox!}cc3OlT^SAQznVk}u z;yz{hRp_H8<+Sc|aFPEjiNeJQ%rF_B=mur_QiJ9s0W$@Ow2N=_@A?Tzc) ze!?TySJy9~pk?F@3U^6#rRcsXXu~!KYr|%^F*7ZU(UluL!Co2ehfO1}k?G$wFCZinyKmEX6=eybG}kD?fwJ zNg{9Sc=OnmEG>I8C;KhIEAclJ^mQ_K?NW6zuf`>}_%oEw9F>RZ-=rnn+C;81+*0b= zm3K6ej;|MW)}xU?w634r>iWE8GcQP(O_%@Ju8AthSoUFhTmC|6vz#`I$@1Y#D}K!f z&L^*j{s_v_5^0Z1c#cpeFMNaCBHO`d3jH+&k++~72<5Xw4%b1qUb7o;UnEOAJKL1u z`t#}`@P>u&!>5HpbY)jDH&}|Rm?djn-a&uPzBr|%bo7w;Q#O89#^%aB*l(kq&@D-| zVc2b%Rh`(*gb(DSsVNHL=Wf1ei;GP*yF09~-Q6ZAf1|hSUcXIME0HE)8+n?klvyw1 zJS<%&^T{ieiC|NQo`il))<(gmq<-7rjEnjv(~#9uMss_Hy_=Z&Hu1RH^yfDW9xiR0 zpyUZWZ;TkwfWhCiGd@?$vn{Ut6MI73^C&FUR>qXBv({d=Dg+uLbB6TuI1v+*N1Wv5sgT2f8|%;K0V> zK+CT-e^P#x5b5@cGu$Iv9ADZgP(Hmhe!vB1|Eu3jVp1T!#GU#kZgVP)v>JN-+3Tm7 z747H`?)p=aTejSUrzfSpi=aJ@i+qGa$Bedn9{{0x2*&Za$UzkFmhRh3jaS%|9WF(c zf}cNbk7&4rv|U7Tc0iv-|I7) z-8fh5N4SUqIW$(_8O~GsXHN=l*<&87d?YL)dk5NWfX=o$ZOGJq?@6q{t4q2>M4U`4 zWI+E@*h-OZkFb{bhV)w;FzY^-UafM`muAFkIiWn`;l~S=)=DErgc8!PVQn(GON~~R zxK(M&Lw}J^_4bLT+prU9Obb5mdUC(G$%J`)zx@c_h2q3TA;)jXnfomM#pKKR23P-g zFBETtG;=4})eGN#x;P)G3|Z1@#CkcMTVqFl_}K^VN~E0`IVx<$FxO-Z>2Gq;`x3Yt z-^lBsj1bz8@^1aaJLzA&(U+2ync8E-lCyZf(K?`CZT>b5O&2)7nJ9Ob)$!JN%s?XN z>6Mu+DSFQ|38SjJK@_va=@N(9!s(u|IGvEyM%c#aVf%7EEi9sPM@t)RjE{L}ir8hE z;+>IUxJqZ&t(8Rnui*_N0%nf5c3)dKXf zIB;Hkzi1p-D?<(MTgJU({7{dhb7JIaj^NLqRU%61$@pk8f%z$TWutX8ZJ3^LzK;`Q zD{88&-Vf{3^J3^>!M7_;RdtmQutXKPF6`blm6vDsRv522XPqrvFY*bE^gHjlw_G() zZ;v*dxw&g5HSg>%Wk9hp74#$gr&UPg6PceBFNBey>$eP~)Fa1M-ll(jiek`BDC+@{ z@qqZC#(&d@={OZf(lpFRe2A~|Ho-MNQq<&?YqMKJbe%sxygd3L4e?W(6iv<2vz76* ztdR_L3L9$#P12!^rb>SbUb!!Ds1Y7%DDk8_5nLm7AobDpPp;f$=CFu3RB@lg37%pb zujZz6eIf6BW?kMi%vkE;8UOSH`OgK75ISEl1ew-2$lR{~KDSjAf{}SSVTN<~#M+De zUu_gYfw3A4KLgtsRm)FHe(Y~wI~l&W$X#H*V17rEvWZmKTyDsS76Bd)hkEYsK>(hO z;^tZ4E5JqVt+TJB6dX+RIM8$UWTF`3py0(`r_12%OMQ(Zbx$chn%YLr-IU-fp95AL zC_K(SDm<5P9Gd~l2mc~E3xmaEBBG{YGlA95dgw~}R#ECZb8*5_YU6W3Imo3E-T~i( z7$zvHbZ_8)F#piY!GS$L+SB8iUGG#+-Z=fbiSeS_^3*SCqYbI)L=-K3tDtv9O-Hnf zH;6X-39#W88tf%|I2$1DrpO!1!v7sWyhlTrE>o~AL^>v_N?diVu;%-Tu{5UJ>*ngFo1##~ClDa1jX{pEnB@Bo^F>nj$)zJXz~1BFVZy3#zg|{Ux1583~8_n#!}0 z?C{kTrP6oX#XO?tu5~;X6b;&;i_f0W?v@UnI*s1IekFi8zG#KpJw@J zis*;$lQe5B^1{a27p6b&q;#zzyx-e7k&e3rl8cdRB@r;J^w0^QkbAMY{klMB(1g#! z`}IL!TRulHJvad_n6G%_{h#3hl}X9`RT-}&)Y3nMvs)uKq@3@>Zc`_e=q>lRT7?ku zYsXFfHZ@)SGIR8m-T62wQIDodx19==t`?i!l-jb!&j%1kdejIJU)-`>`j`~2D@uiM zNH_&`TitUWPIiVoA_qpg2h5niYU(AV=VSWnP6zdkQR_=MbfEc(r-RJ;>q#(`mxXxH z+x5!jRKF?{PxT}_)EibX&^Y&W`QE7;qi6PharkXv0p?P|IBmQ>wn2`j;*3C66xF?= zq;dEAFp1pw?OCQCHqiI{iJqT4-(ZEDl9lV&dD52owQ5GC43&yG8Yyr*cgKh;-Nngm z{A`{z^5WH)@Dh6w25~7BJPwKgy!}-MvR&_zU0gZAS2Gj2V4i*7rY? z(p59Ti>t+EExRmg`fu9~bjsKVTD@UmhbaLz_`Yj7lB{R6~E8TQ=6o1mbG$=}JueOeN6&-)q8SKsVpCISv?+XC?j=;8> zeB_|(A5!eEqa#7I5;)vu=?59FxA6}2L_d{bnLaY6K`FCWB{8JQ5OX%+h<*&jw2ut$ zyyjDp!r2`!ge?$4Tp5EQu-Yb&&ZvGN!_qE-`l%(k-zs4`5V=Legw|4x=gpG{7yMLc zw6->p?{oBu54qR5D^2O&nqC=K<%uECytG3oA^W@)z?ooR1?@$xwloeMK^{5!CY(e@ zv8;kXS>U1%g?!Feur^!&Qdn3tTPAXlnX?ynEJ!Y?K8ztZy6}xAq%i>^limnP=IlO& zOgu77v4wng?>FFIerPOuVibmcUEe5(=5D5d{+x8hL35Jg!w-IsOJt?TW^~FaiwglK z$j|>q?NZ2`Eo2n;!qhu?3>Tq?s?BAHa6X9$K+#fHET?zia?nw8{2=Uw+R_TTvk6(u z2gS*!t3Q}W7c|fqZDDH=Pai{_0f_hu0CdJSzSjXjslp9)T!YO%#G+8 z%fwZY2|lkCe_25k)-qsdRPcbqMT8INlIi@S<(|Rv@N{sCqie2ZS?~={y!MoW^E%$I z{TCqgv7tB^_?x>0Ne0K|O8Z|n1tcUE;sXEYrwAWvU-;H^`+>Ux_u*rbY~swWV3E?@%JVxB-(gK8(` z#G2w$W;8)qlQro!7P0BxJ2a^Ud4w3n)_J!LPclxMy{9#s10fi0r6WXFId=-^*PJ-H zD?bAbCrQd~mz)}_e;?1%y7`;>qD)Y1@Rt(>;~*~Yf&e5+xfIJ`S3|)%80;Hj>aCNt zF#KjS(o-ooP+7(Y$n8-Gd4T!c#N)z3cLF=MMkH?XUyg5*00rP@k zCqk*$_D4Lfy2?rF*#1sK4F7XxdIefW1O@bL8K-RA-KksW*n(y}#1rYyFL-~)42e4a zhFlYL$}#o&O49PYU7oof9FiZxfaRx))D- zq`LH^X4UYd9&!hteg?2xbXs2-XdWba)9anw6sAUk|L2-|RssHf4y#D(muO6@9-RZ7 zP$*(GcmMmI;N@7;MtG#i#Q=zC5q`zTAbnu6gaw^6aef1P0DQT~wCajxqzHZOKh9RS z>4jU1KyG9cM2Ul!EOO3)^5^N73e0aKD@!Cmx|ypY}(3b zkscJVY46*#DjLi{YZ>sPIJV$vNE8LV*nsBVYoUM}5bS7kJGs4R%yOlFa4e_5Q6*Eo zG$v^Ezg<^%9%k@GVbqLMz~Aqn{IQy~gXMZ0KxdsVFU9jdjY=k&nH5_4G##0xXu#*^ z*;rp^H(5)_Mezf}F``-uB&*;UT=Bz7`aW&OmC%vEY3n->?FlTGQ$#zQF0)u`sD_I8 zbnsGAe>ZE*6R%^rlWs;Jm?H-p)j_6}OTf_RPqL1>%l4SKzuS)9d9*e?c=80Q%eTZ( z`UV|uCWEU8XjO2v?0pC>MX9sv9pv|t6#XKW<>qG#QOoXma5q_4m)~#;i6<<&BXpn; zJ@mTt32R@_(4n;4L%;LgBHp`d#RoxZLZY=?yyjJSYyXSV&C6;nLppZBZ)}1t$8ft5 zlTs|bY8)IWhZ}f=&Y9JfT5mMY+a^kx_9x!3`ovnR#RtjNjFmsuQv{>w z`J3NbxGgLQp6p|j3-9Maz{r{OqT^0D7V1~T9&^;=Sz2n@6`aRa*|VmS?a_GRpn!FY zt8Xwpq`X}IrPFHh&!(PL8%yKHyIbkhUxj5L&S0ND60*Lt$;?_0Jj|p4#fiV58^AYg$eFg;MHb#T%GES~2yWS6PO|JwQotNi79Gh{4e~7kxjSf%u z0FP^|(7uXx`ot%|cQ;h-u5C*V-)e#}`==NfLBN4Bj(Q9Xo-2CCKRw?mDz+aCISDTz zhEr07z%J(KH`_C;%Ch!1D$?AC{JO4Qw2fs}ni0?p)kh*48i6W(5vhaOtfHY-CAHB* zd;;#RS*Ez{7ok|LJnuTEl9YkXGWcr0-q?ndVpZV;f7-l(GVbd?gt#_4ToX^p3yc#%s$+R4w@LhPsDp zz?Z-6EorJ$5q+eD16yf|6k4Acgdj+^+w~qzd7a<(_ji)pUW3;g{f=p9wMPW8MpOj3 zBw3H1zn;A~eKFX5wrgfw(b1?#_`M>-^BC+ezrfu{?Q}3nZ*Pu<4tPBZ6Z}=D4-lqs znZ;-v8A%;i-aA5jN8tAiYPN?GVlej?9-=W`R!bzTeoK;rQvByodX?~!D-6mD_aYyYIJ4 zCo}v;0$@3##~D!s=CWCsgKT-t`P4VUXmAhwHdKJ!yYRD%K4hMlIC=Y{9rHo)7ya^% z>R|vn3!7glM2XRqEkMAE+^yn;%wbXXaP+}l)549xRU6E1&kZ)x$g4hD1V}&C^2Qqf zU1nbrho&(3j8b$;!r6o|eN2M@!Pt#er<>3g6%sC+)i3^)JPsfU{g_lJU zK7)ACTb@0_iEwaQLSXQrO~ZY^$S60+eRD=&WfQ)S`C*A8ixByOEP@FXERU)Drv4!_ z5M|`8M{{O{?=0;cHiQ^oY(=yxgXzbPES+g%mo1acTXrI2oDMpDQAgylWhf1SWR!@) z1OSx;p~LSg!|P$@n5Tq+1Q7s^w@Nam%Ki{ls@6_jS|%5zRFTYF+Tr(m9B=Q)QlSBk z90E$1EV;1c_IFQ65E3qcMp+>T{jb~3QV$+v>3W)<<|^1x>_!a91kyu*(O~0x)D4@2v=Se!#&tXYFM@`P8DMJ7PWET0Q zxqvHEWpA$++4|)DCZm2aKs8{2oR9+9*b)F1cEm2okB-0kBR5yn$T;Ak_CC_phxSCt zA>mG`#=I|eCizNG(t*sOy1#2u-&Ss~2o`tKJr_C&mlhiUaVsjr;AXLruuux@v;D5_ zh;)9dvYk-%avRiT)RLecJNlH3#O3`uMg{*2)ZCZnReVao_F^pbyP`9n<5bJcPo# z15qxO9_VuaK;bsu;IFL_6*wJqmvvq@vN|8(LRgrhEF?u}b{$S_vHQHE*e|^gF2Mnp z41Lmj{R5?nrXf|$_pr~wY2OQGyWqOzY2RZ-`>S7ua??a6WS*;E;jHP4Vy{N1#f4EA z`R$k`z=VC?voohN^G^)l@c-B#Sz4H)o6u2U=KT{2;siCZ45hPEpRMrg;D`DL27OC$ zH5Pk)VVG`;3ejRTOB}#p$PvFbB14|qKkYUvGApY-_0c1D7?Z?90VA)h4C#Ug=d668WT17#w5tKxJRI;d$(643eNkFyKc&FB=|-jYUx+N zNRCrDGi+|TCrA6jo}+fXrVwVeZbJREN`f^zWAgg#XScbnD6;A7AeNx5bQK~>K~r~j z+Ni{)1h(k|eHCHoM;kUhMFrifU#}b<^V|9wVrJtn^3Y8t5fNPq6G;|Cc-(=-bAK_O zo$3>UW+Cn_3E&B~^WvZHrgXiOL;DR&%=(9dzEchJ`UOsIk8~i`iodQnj8qQ+dDDLw zUAgBBl2~(WUR1zwRW)2{Z;X_UF!7?wK2~2ND9p@18AO8A$1-Gjl4a?k7aj?HP0T4m z(J>=An5gFoAWaYs$22(d5h*I(CYl);y!4I>;t_$3+!xK!*x&rMunWfJlG%Qxn8ET1 z4Ynbes@HR;kR}?0z_1eem!WG?JK7HBvSRX-85fPO5JeVQrV5@8sq%`Mj$k&Ro=$ zd%0wXeRCHdjbIp@Xr*5})mOyz@VA9+{VAQfX~Sa`bbVohdcH8UAd;8be4k@c9Gsp& z4(*~OoqXWnP)uYcL|^yz#EAYD%SV(9v6f2;XJsAK=HhcZuLD^fEQ9F0MMP(U>wbYC zk6KlA(wN@I8P;@k6x*ybawdaTG$oajlo|0m{2d3&{I35O(<#c8vzm0kd=R)1Iimxn z1#yv$j&(sCL64^OE~lNhU`Hh%VpG&~RmxI)nsM9qEhp&akK2@hG|s+G9&S?kd5TSZ zOSy@z|BeDlzzk)Q&NN>Wv%th%nx1h_bEF6d%+|$2&t5<944q9}KB=B$GCKK%oTFL* zGG%L0CG4`7kv$2h@xFXC5b0MA=bZ^`OvmUu5wCofy20*Zf?cm~`^rg-7yv*yA>3CQ z+@2e2gFPBNk%;j~=U*}<$!)1m#UucL0ch~|`#C^_aI(kqM}QN`zosbN^#@n&l)_0# z<6tJ?6A6+4_AsWaRaE#fVF#i<=B!&!r$lu`fTK)qL=EJ-N`(Oj1Ms}MG*rEt5Fd3> z{Vx%dVHprg0+O>%SfFySn&weLkyzfH2TQwidBi?xIX=_e!gRNdCznM!yDJnhq#wh)+zF-TV2D$xoFwgZTPS3H}CZ9irDZf$3?v7W*!!PW4J2HOVaGeTY=i_(x9)t)aTSNqaJHN0E+`K>k<-rFrp3LKCN zc5AK+&hAXRUNmOBae)!)8;UlyZwl1C=|lpk(K0}{lF zzSuER2+ z@3E7DAx9u!hLT(jK^wZr!Bmh&XIPswCE~A6Cz=qU)77N3mg+ zfK3M^*3O-{6TF8yR(nFT&ElPle5w3h*A}owJ;{fC+bW5j)B=VivSZQ&YvVjB(w7J4 zp2&b>!06O*!U4bcKz`{ z!~w=@i5}`K}wDUB=-`VRa*gJ;ZZ=%+4BYE2O#?n?|R#&iZV}Su(y*y zRxy&6$Yb4LEVW0ByZsEdZxaNT*7WzF*)OD#5_@-J<|EO=+lO2EfTB1ZJP7Uk5Q5K= zP%A!|8B(4-{HUFMO|wt6DZkva6p!?=C2Y?n1VsO#pUUwNIV$Wx`i2DvL5`qE-~^j6l-#rVEh)$j^+(D?;n}xj6SrQC^fB4v)AUI)gc9!ZIFWGD{lxJyZZ_a2{Fg zw(SkINP4}b9nb9kg1C2oY+L(#;sBUBrt>k#iK%9|MZl%i4vf92A8?8<3rpv|l@N$Kt|~ z*eq1Bv*v;)ef_;!XHYs;*5i&=_6Il&9v*DBT#Qg{Z8_NPfe6UB3v;Mym;Eo=jdJ_0 zM&dIry1JV4{V{Lq8Zjz)0Iw+v#z$kS91NL=6lrXlY5qd8o4brJ8k`V-HS^#BpMJL=R3ksH})n7i#rb1N-;|(hcalmG27?t%;}-v(EfaLIF!6XubJDDxtKXYp&$@ zyv;eTc?d=eGI;~h^bwkzMnMK;pfk;gDi0%bnJmmL*8eDllRGVi5F9~3%-BG^7B-Yt Vu;;n{BnAim$x13pl!)ni{Vz;7YJUI# literal 0 HcmV?d00001 diff --git a/docs/news/index.html b/docs/news/index.html new file mode 100644 index 0000000..275fbd1 --- /dev/null +++ b/docs/news/index.html @@ -0,0 +1,188 @@ + +Changelog • alookr + + +

+
+ + + +
+
+ + +
+ +
+

MINOR CHANGES

+
  • Fix error in treatment_corr() that is “All columns in a tibble must be vectors.” error. +
    • (#6, thanks to Cathy Tomson)
    • +
  • +
+
+
+ +
+

BUG FIXES

+
  • Fix error in treatment_corr() that is “All columns in a tibble must be vectors.” error. +
    • (#6, thanks to Cathy Tomson)
    • +
  • +
+
+
+ +
+

MAJOR CHANGES

+
  • Removed plan(multiprocess) from logic for parallel processing. +
    • Because, plan(multiprocess) of future is deprecated. (#2, thanks to Henrik Bengtsson)
    • +
  • +
+
+

MINOR CHANGES

+
  • Remove the warning of “UNRELIABLE VALUE” with seed = TRUE in future function.
  • +
+
+

BUG FIXES

+
  • Fix error in run_performance() that is “replacement has length zero” error. +
    • (#5, thanks to Muhammad Fawad)
    • +
  • +
+
+
+ +
+

MINOR CHANGES

+
  • Implemented a function to replace the unbalanced package used in the process of performing split data. +
    • This is because unbalanced packages have been removed from CRAN. (#3)
    • +
  • +
+
+
+ +
+

BUG FIXES

+
  • Fix error in glmnet when run_predict() is performed with test data that has more variables than train data.
  • +
+
+
+ +
+

MAJOR CHANGES

+
  • add xgboosting methodlogy for binary classifier.
  • +
  • add lasso regression model for binary classifier.
  • +
+
+
+ +
+

BUG FIXES

+
+
+

MINOR CHANGES

+
+
+
+ +
+

BUG FIXES

+
  • Fixed explanation errors in Classification Modeling vignettes for debian linux.
  • +
+
+

MINOR CHANGES

+
+
+
+ +
+

BUG FIXES

+
  • Fixed explanation errors in Cleansing the dataset vignettes.
  • +
  • Fixed explanation errors in Classification Modeling vignettes.
  • +
  • Modified explanation errors in Splitting the dataset vignettes.
  • +
+
+
+ + + +
+ + +
+ +
+

Site built with pkgdown 2.0.7.

+
+ +
+ + + + + + + + diff --git a/docs/pkgdown.css b/docs/pkgdown.css index c01e592..80ea5b8 100644 --- a/docs/pkgdown.css +++ b/docs/pkgdown.css @@ -56,8 +56,10 @@ img.icon { float: right; } -img { +/* Ensure in-page images don't run outside their container */ +.contents img { max-width: 100%; + height: auto; } /* Fix bug in bootstrap (only seen in firefox) */ @@ -78,11 +80,10 @@ dd { /* Section anchors ---------------------------------*/ a.anchor { - margin-left: -30px; - display:inline-block; - width: 30px; - height: 30px; - visibility: hidden; + display: none; + margin-left: 5px; + width: 20px; + height: 20px; background-image: url(./link.svg); background-repeat: no-repeat; @@ -90,17 +91,15 @@ a.anchor { background-position: center center; } -.hasAnchor:hover a.anchor { - visibility: visible; -} - -@media (max-width: 767px) { - .hasAnchor:hover a.anchor { - visibility: hidden; - } +h1:hover .anchor, +h2:hover .anchor, +h3:hover .anchor, +h4:hover .anchor, +h5:hover .anchor, +h6:hover .anchor { + display: inline-block; } - /* Fixes for fixed navbar --------------------------*/ .contents h1, .contents h2, .contents h3, .contents h4 { @@ -244,14 +243,14 @@ nav[data-toggle='toc'] .nav .nav > .active:focus > a { .ref-index th {font-weight: normal;} -.ref-index td {vertical-align: top;} +.ref-index td {vertical-align: top; min-width: 100px} .ref-index .icon {width: 40px;} .ref-index .alias {width: 40%;} .ref-index-icons .alias {width: calc(40% - 40px);} .ref-index .title {width: 60%;} .ref-arguments th {text-align: right; padding-right: 10px;} -.ref-arguments th, .ref-arguments td {vertical-align: top;} +.ref-arguments th, .ref-arguments td {vertical-align: top; min-width: 100px} .ref-arguments .name {width: 20%;} .ref-arguments .desc {width: 80%;} @@ -264,31 +263,26 @@ table { /* Syntax highlighting ---------------------------------------------------- */ -pre { - word-wrap: normal; - word-break: normal; - border: 1px solid #eee; -} - -pre, code { +pre, code, pre code { background-color: #f8f8f8; color: #333; } +pre, pre code { + white-space: pre-wrap; + word-break: break-all; + overflow-wrap: break-word; +} -pre code { - overflow: auto; - word-wrap: normal; - white-space: pre; +pre { + border: 1px solid #eee; } -pre .img { +pre .img, pre .r-plt { margin: 5px 0; } -pre .img img { +pre .img img, pre .r-plt img { background-color: #fff; - display: block; - height: auto; } code a, pre a { @@ -305,9 +299,8 @@ a.sourceLine:hover { .kw {color: #264D66;} /* keyword */ .co {color: #888888;} /* comment */ -.message { color: black; font-weight: bolder;} -.error { color: orange; font-weight: bolder;} -.warning { color: #6A0366; font-weight: bolder;} +.error {font-weight: bolder;} +.warning {font-weight: bolder;} /* Clipboard --------------------------*/ @@ -365,3 +358,27 @@ mark { content: ""; } } + +/* Section anchors --------------------------------- + Added in pandoc 2.11: https://github.com/jgm/pandoc-templates/commit/9904bf71 +*/ + +div.csl-bib-body { } +div.csl-entry { + clear: both; +} +.hanging-indent div.csl-entry { + margin-left:2em; + text-indent:-2em; +} +div.csl-left-margin { + min-width:2em; + float:left; +} +div.csl-right-inline { + margin-left:2em; + padding-left:1em; +} +div.csl-indent { + margin-left: 2em; +} diff --git a/docs/pkgdown.js b/docs/pkgdown.js index 7e7048f..6f0eee4 100644 --- a/docs/pkgdown.js +++ b/docs/pkgdown.js @@ -80,7 +80,7 @@ $(document).ready(function() { var copyButton = ""; - $(".examples, div.sourceCode").addClass("hasCopyButton"); + $("div.sourceCode").addClass("hasCopyButton"); // Insert copy buttons: $(copyButton).prependTo(".hasCopyButton"); @@ -91,7 +91,7 @@ // Initialize clipboard: var clipboardBtnCopies = new ClipboardJS('[data-clipboard-copy]', { text: function(trigger) { - return trigger.parentNode.textContent; + return trigger.parentNode.textContent.replace(/\n#>[^\n]*/g, ""); } }); diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 09be140..682d4bb 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -1,9 +1,10 @@ -pandoc: '2.8' -pkgdown: 1.5.1 +pandoc: 3.1.1 +pkgdown: 2.0.7 pkgdown_sha: ~ articles: cleansing: cleansing.html + introduce: introduce.html modeling: modeling.html split: split.html -last_built: 2020-08-07T10:02Z +last_built: 2024-02-12T22:27Z diff --git a/docs/reference/Rplot002.png b/docs/reference/Rplot002.png index c48c7096d9288cb917612b9898a23cca851fde27..a778c8584aeb12952c7df487403b5bfbbcf302e7 100644 GIT binary patch literal 25612 zcmbTebyStn*Dkv0E@`A&LO|&T2@wHNLJ$cNDd|>HQc@5E=@0}->1KlpNFycEjna+e zo!j5{jqjX0?md4ThYoP>x7J#7&H2nZpXYsjPg9i$pAH{^KoF_jR=STspv|KG;bOxl zKEurk@B{max~dZVgg<|8HTb~~JjdGxE(ip{71TepA5*?(2m~`iO-Vt=Gj)B+%bVQo zLT-Dkhuu24GMD1{waQAYm$Ovex=7aN2E>nvNl05UloGL|<)U+=1k*a8x^;==%M(!O;i@DA3y z+0u(UX8zUc3E16rUOjkG$}nS+{Bm>HXTxVlmQ-<)tpOqW{_f8TOA!rd1UL;8(wG4Sy@?vG=!rqQ7So8-6LzLmZChVq9d9;l4K#Q-Y)KDZer~)7 z_)xc^IW;z|zlFi_mFVuX&HAc z#H6K<#(W)qU5`~|G<(sMPDC&M=6ttXAX2CuA0PkWSjpq@AGzuVDWY}{otu))!*rsu?G&gl`n_@; z?i;^GX2tzZhBAIWa%fr_-S|T%?J0=9836E;guWe<7zDGyc;pQYf_4!@`2&bb;xz6CTnaL)Pc# z&O*o4_?pkoiEwI~rlre7WF+CcloVT+%~UCmzD=jJgr-f~nL_bR^DrV zG!G6AzDuE;H?}q&OhBE)u2z(vANKp;h2Db)UueuVw_ffoYuK)ilFZh(*s`**8E9*h zO*H#RT@^I-KiD1ms8#Xxt5QR0YkSny@i#2Diu^JpTtcRNj;4w}dT zkXUzrzh$I^U&eYC(kFU?O>4aGBWxNYwUaR2?(ZmJk-=)A9N%u_ovGg zE7(YQtXmhYADEohUvdU@2CifLG!-m^jTNAgDjqB3&b$6+^z3kJrXO~NY|26-%0z~= z#44#TJo5sD-I^{e9nke^vWkYU-pFt|59YOd}X>pW#AR zU*EGYp(K_P5)z|`=>`u0bxlq87t$W~`X-6jA3s!3Kr`?8d-`|LOjVu6l!BOQ4CA-i z)oS z9znsuS?Y<`M{oEXj$6`*K2MsO2nh+v*2<6-_u6Ggn8J3Xk#yz$@#6<68Cd{alXGnk+#+FNWkvV*8vYGSU>Cix+N|Mpd46R6Eu2!^c@a0= zdsi(b*$v!*2h%$Nljz3{?&Cpx9ZnEx+A=QBEK{Yut}uCT2Ml%Gg-^im?SLQ8hNDEQ zl#tRR95-%U2_<2&cbqwzeo3Mwa}fXN-@1N(fBkX&>_FD7(H0F(az#bOdygJXEOxl& zN*@|;fd$SrY&F|f_CzJ5tazmiPQI-&Ni?N0%N@(%{394tzlXX6)kF--~& z-9|PXs`5)po|&1MjhgNBjGojdrpGtDyH zy}hu>VTnZ#VX;sSi&O2&M59+luPHx)I#Zd2eBb`>Ap=)e;YXjJV3|jb@1xyp|4AZu zhWu4&{Y5iFwwGP)33gyW@B5pf2fv3p@-8PvCPs8?wg$)lZToI#lWubX!^*HICb@K> zXHvV9sHnaU)1=8XH15`C?9h$KNBK$!zo=kvsRIfG^3Ty8?Fi{nsF zV#Xca%iXM7SgnojGQO<(C~K;?$i(??-yI*Bm zvVVh!m}DpE>JR$UPEr%ngz#Y|qRk_#+4ggLQ^d^S&JSxHvsxk)aaq2`JRQfO4@;`6 zLbDw!`KB(=w74~o!jd=fO_}~4jG1JO*pN|EhY~YL9yf@iux4a(=6|3kogfO5;!q&r z(=euc2y(cbuRPjaz^BJ(SpWGloOpI`rGH^W-{inU2nAtl28G#Cwwj}SrJy}l}8+~`U6An$JL11*_g-9kMH@1hfx7)HA( zvDy-dXsp+-6EjG;e}!;(m7Ym(i)8Y%x$4)Bjz^aC_GbiNLFZnuI=d#lYO6 z%;h}9PU7y3RcBaBjhtN%wA9a)(H?(>@%)azFp*xl^6GT6f#gy3b8E*5t_<%hFwKab z(@n#}gDD6lc^WApnVHO(SXgFV@z>m$)&^CXly!6{5X?M0__sodgPCzx2Xk=jryF0} zO;pdl)sk%ur{qN>1@1uvKz7Em33+T9o$X~@1{s&CnwhbDDlB}=<1)2kb?p``F1T#_ zqt8ZFP75k9dEND7XYX%XzRAdNkdZ|^|5=81dE|F#+0+a3Uj|<7ZnE%q`?|+IvS7qU zY=v}!rdMxsaBv`c0+JxwvD^wVg;2aY)gboAnXCi=T8pSJRxwU=u`(_;LM*N&8TW<5CH%%_TEv3 zJPlD-R|lAd2Ah~Z?D*L8`BXh+Hn${SMb64 z$>pP#OPOikQ#+a{mEqCRCl_ab0pa9-aTZ&VVGbhw@umn}oRbrKs=-6`_HA6_7r!}R zR`LAntleSm27bG)PB%&E6+J{#AT^R)&Qu5_y?Ql*ir>(5IA0s}EIK?#kEY+o#RY1!aQOCju8dg-zg&zj*M&kY-1q4pd-1(oCu*w) z-1a6tJz8qB76bh6*VC;Qhar4Kl3&vP#soD4JyhI=g?JMeH(xf{>qP=?NSI=K=nXNW zbQmSCp6Sl~H`LnsqhXZ!oVo+N``cgz)?ja5{t4~nEkN4fPy)8M9Z@^wcw**4WlkL& z*cN&-HpC_A|9dVDPWPXmtD>;5vnzI62wa{QC+11OSIHS<>)7K`Abma> zqsQ9)=Slhtzw_V)aYy=($I7>Lcyt5Zz9-x!#k?K&;aGQk*hWN2Tj$J+5_d)ykvV8( zDoiKiZd@?(2isN%af84#u+<-8atytC?tK<+Zd@^k>HW@~Gq@ap#+>^4Uo*+LGp3z-&&Xe_+bYs?6gu+Py{6>(|ya(f6-*TvqE9&%Lv&3 zqg1JQbj4NVFs8=;>eT;_9{>O9%N?5LGSXlDvVn&SF)WLV!fOu&TF!24wp?CdU)qQJ zoE~NYUS9>I-h8?#)ll;nlJ3C@OD%RTt_8?)KiiKSwO@5$77`+xs&_*<^T}D?LcQX) zwqSx{zfyw=YyfA4gZ`BW^nlqwlfV{@NJH&d!boj}!}gnKn_9@I;=LobsQ=@3ljwNEL)B;doq7 z%jH4oJq8(k#4)(z=+snt)U^!^3~1zhr4h4hr7hK?nk^@PcoE1jGB!uZqzD7+2g46gU>KW_1|Z2Z`P};o zq?p^%Bx#yB2tm3ilw*S}{8T2|qF*b0rFE~-O~6tS_j9NX@`FKnMa2%}58~Z42xbN( zGlI~+(+T%iHBsK?6iYZOjrlQTltNYm%&3sq`TaY}xtDot89UO4!d526!^3-6W6$v7 z;7_na%Q;mxx8da!#Y%sM>Wdfk2U|fwnCmkwGs~hrC;JLecR(cB&Y+@N{Iv%~V*(G$ z5Pp}ZGdtkJSOMZAwtv}{n!!AC^Yd3tgFAB%3lCR>7=b|f9#IiHElD54URuekdf;<^V{M9NT`z9LlJ(5~QtRhm;OpEuN=uL&u5kD`{=@6dN-oNa?b^2ZG zWsuR+6Bg@5K-P^0=@@#4)9A$TxyR!aF$WdM->;ro3er5c=L*m6J*PFlSFnD$*#jdk zGyAd)&zKF6YqZ~L7wVp<912YJ$&)9~H~qF}72*>UbIQs{!A8JI*^?fo z@9uOMKA&L>YEwiD4o0tjj@K4WX;>;v#qw1uANy`{?x#=qibtD>evG)ME(~wkX>Qy^ zL+0f@JZh$kYCrMN(1@yfT_f}*gy;gx^FcdF(Wfm5uKy25voD=1!L@9pMOv@ax*#S5*3$VY|bB7fidw|^eZ!J<~GDum(#Hbl0 zU6D{_h=K@@K!QOz9&ejHefqR^KXp>usKx$;nF6E2IhqKN4a zJ}|?tsuMK}?Y5;^aSH>K^86hNB&H5J6gDS^%24;H@}m~SDP3w-f5#UvXcg3IiUdH8 zvZF-Cu@O2)NZUUH8Xq1W&V;}UxJns5v9otM*|#>TbH)O=Un1g-mI);W6wrZ?2$`|$ z$tv6a)(jH?6(6#+7dA_SVZ?;N8qBcj9W z4+6QaYbyCR&n9%R26^J3?B&D9k8F^VJ6#^*{Hk<_Au+75l^fV#nyl6!Zs z6c8Ow2!B8csWLCAAWnx4TA={w^OFpjg4!h26w#XGg9WJU)*=IiT)O30lrF^eYFzsI zySlrzA3a)&H80TN34$U=QBe=XF6!>vhU&%Io3E&^2RY86^Gy4UEjvSysWOa$60lrC z&&~ftntMZs9NL(_s_mjGEY-=#SPTRrqU@rIita0^h+bfDva@5xv0qzmbXF=H0i030 zpQF*&_T`JVuI|#-t)(i&upjaMeeApL)`oAD%mh)3*jiNEk1sm6f@JJ z`;iIpE5z6K`!|JI?kJ+&4Qr#I-V2M2rxO-QISu&DrV)03;9~-5aDg16n^o3085|XTQ=|y7K?Y%BL(ryZ*G3E(nJUHyLs320i3*u0u$Nz)`x+U< zjmm297r6buw9&MEp~c5vHP;BcGQb6wccMTdL~fC1vqSjf#x;+^5sV7rRH9vddnfFb zQA=N|6{cZLH4{?!N;2sZ)a;cM!XvyY?fF|<-?gJg^9r)3Z05e?3^c>YKvIq@Egly9 z9}f|ak~5boI%rwGlA)gK!)Jv3gr1THQE2&%6Dx97kNs;LN(yuYrd4!SW6{Z3c-rVE z@mI2$qp$?!+2DWpsFS`XAo5}dg19kIk3MgMct9@9va6bLA1?QA;rl|xQ6F_d-WH~) zqvxDov`9*;rZEtNiH%24-Lx)HE2L+SH7=STR$v+?h31^H2=qg6+_Xi)Yr^DJc4v zrUYBilrgNzLY!dVp}bj^-P`A`l|i$nTLQ^FG}{X? zHtd|q$!_!>=$=2z42ukNzX`M?W$XnLNUKB(n~oNBJxd56otL0ME>>?(zm()Nq##V| zJM+*W5_EpbKkZY~wic82mMya~-uAF_asCNonp6YTJe%t1lf_QMwHYQKipX1`s|%W8 zshxkw3+@+WI#&)BqJ3jnPvc6LEIbg8q(gu=X({1V$(NVVkj2ml#Ifxtf-Q?eimPPve+b(;CJfe}0LG z{Hj^W9BY`VNlD^1JwJK06>%pQ-TdxO21&OE_JiX?E$RMSg(LND#@}NNi}lVVEV71v zOS>EIG@kbt6`}updLyg4x_akoJ#x3Ts7S~C?bQw^Tw-DsUEPG1i1|3vK(trihiBbt zyz7n^&bj%Qoc`zt{ut`kHn6^sS5__D?iMh!Pwdz=@0@L?&zNes1!*CzX%zGM>J$i0&{J_d1AL3hH#8bo)-o2>Nj3`7uh36A$yurQt=Z8u;{4O3MpkE9 z%!Z5=758jDlpOD-O!T(+^L~l_@9&=IMhvv9JX3tmMu= zyy8apn3;0icl2&teT%5>Ik)TM#Ot;8t+tvm{`xIqKbA}B`co0y2vV(^W4=*kVz`6U zXpIgT_~sp>2&-vMymUNMJZgci9PHE#f!U84sfoE-OcTB@714=MH<0qM**;znaW9RC zp>|qNI+8^X4wf!4nj6fGs5`W?e)X)U(ddJeG#T>qXI9@cZN?#^i(P7&z6|PtPYLHM z@hQBs->3_PoSsz0sH=o+-9xp{<274d1?VL&E4% zTy|QTTMh8)1)t#D zL{G8tb)VyvGH8~FpXZlIZNACWyGcRm^-=Gk2jZRb0~N)a*z}Sg6koj98;y&ON^snu zi}}QJ*@t!g+MJoNv(?0?QHA;4QZzz32d+V?2gJfr3TEeS! zk5YY6zh`lk{~URKBI1)GkDQ!IP4nT^h8d2!{y37z{ZV)XxzkDIOQwb|p}MQnQ;Wi7 zMwHZCS()5+qud?#PR25$(O8&+}72&SDX+GBr%(`{ej-i+kE^CP;mHIt>)nHjHp zqPch{11yx!dUt#B@SKwfQZxD&`lPOs=&Iio1~bzc{;r6wsY@Bkeq$VR=_hBRC5J1a zGo?+j&pw|iX`O8?*(m%~k{0&IhB!A@TXM#DAhZl8l8WY;r24I3(-$MwC92d zW#zsV#G`@RR##S6*E!LGgT+hzT9yCs<=Mt2hsg{|8(98EZ9ZnKr`#SUOP1?{$T|v5l zlE;rpikJD+-h&MlMcx`K*~E5SV3KK$sEcN3~$}9IL24A1@hGQnG>4 zW_pOm!v4Rx0MZQ2f7_dW^VI}yOo-43cdm}6jxQ5_{Z-M?IQijMRKReFsKUxJKHP2b zX@4|&bi~^?8Cw|$_o_?k+7ZmD)C(`g#Ypsr0nrd5_N^)L3A|_sFCOdNv+qG$H{7dG z2LD!r=UQ_)mex_hhct8G{k9wyMd>v6%C9daf*R{^Pd zI=?Y}9?v|U4wYYw{#hs$(N;r8=Ozl9lRg4?K%@nNbtC>E&ru+ zd|q^kemt){cKTlz!YX@Z)X=`rEfBc9Ua>3^a?RgCh{k`aVQT9V%l{4O-aO5wJ$bEV z%xP~wRa8`vtoz+ysV$1Z?BEqu<|+q)zqusGCvL=I_Ksn%otm)euc~VdusaSK4&d(& zsu~i~TgiJj)?q_PnqSqnXb!fppg-I^nB?A^G(wAwy&~!U{8yNn`c2o5nk7>+R+xud z`U|~cyeVg%1XM|4j%6!9I9hqnTm0+vyv`*cl`%6Bfah`_!)R^`AZbZq(l^Xe6H<;H_|#1T|jQcVmU?^Emx z3j^l9*tUv%=BR;3W>Xm!-RNT^rS5Q?dsT|@^FUdg&x(`^?7zy=zczpbw zOv;goc=vg41uK$q3jJtCV9vp>VcgV>E4pEXaKj$q@RKxXq%iR83i45nji6(uf}Tk} z9nqWk;bYr;y}em+V(h^3qx^Hf%l@FIml8CD%gEkt^6lMjmgBk58>I&XD=P%6Bi&8@ zBt#at1m@g4^HZ`Nc(GFWrtiD@sJ4+9b4fRH>4x&&r$}$8-6oAq>CW-za4P+k8Ba)SwOfM&r1iM92T=2EEks#Ehwa$+ozYVsHS)(%_ML zk0)c2P!9gy%35Q2V*xih7S^Vi0!HOE4A`)G-OxL;p_lp89)B$==8wkhH)kBi~_McT-Tl{)!1{=OXcm3 zyE`l`Esx}Ewqzt{EPXPOV*|7F-j5y4>2UMF>#B#+20A5HS>)}wy2H~hUfltk$Linm zx$&g?9sicEIV{Dp@$9dfwWWE4zhQTITPfgu${*9Pd1bJ=*!klYrerk6v))f_*~*fW zjlb&*%cL5ZM^KR9-XOOX(>4C3GQSq=FCh~4zEh17P(yXLk5Vj_qWqrVRWLF_-AG5JjnAo@2JZ>T6^Aw;6pb0nA`C~7TEV<`pOktZhxP} zuXvPQUE--yAIls3)(?bmVF;m)CH(K@RxQYx7#H zTmn8M%BuPSC~ptRG8?OOi`)&C3q`bbHUk5mN~>0wmS6UWt;vGcfviK@jwmqr&n_Qr zr3e_nyqb=t=`cr%Q}8}&6*e{x&x8>1fQ1dIv|jlEF~0bb2>12sbN~Di^t+rQh>+=~ zsDZVDkh}4L=s$4?v1fZ|(cW^6na;>ka^AJ_OqpsJd01O!?elbJ2SN;;mVLWFpfAtg zxjbtY+S*q(Yj3r^zxk?Hg(RIl9GR!V<9(3eJ?hKZb>nFmT8bEs+1T|7reyk#03i`) z7q6aFgW!+p*+SS#5->N+Qjdb)@zbhA=6~yqH6y})ySPG7`yv4f${GaR>g2BGfjZ&g zo{*%Apf z`XoBS-9Mwfiz8SPqV~hHtvDLPXLlPpB@LZzc^Fxo<>7*<;#rD@$#~KZ(@%XaeJ9E$ znjQsSoTp4n^Ww@I87*LZj%KW4fSBFX@ZHu{Q9aJ<#mFs^!CBgQ8M}!)#|Qd`MS5Tn}2!!z>sfW8K~fj z^5vW+XW$0_+T0gbK0v!>fgR{I7f~rZfvD!YOiIXAbQE;47BIBro46u*J+zJ!+M8dJ ztBw2L#6MNkd$(fSidu_f$G{FMSLUybHm^AECE-p_JEpIswhPSBCp|7ha@o6um;Xz_W=qKV?Guru$YY7y7=$+M!??YYXsn>$g}cGk>P z+EmbF(mqFfNaZnO*A{h^Uax3C)b=EnOIhU(DW(f~I&TBdh`w>3*_N@0uZw2z0I#%Y z$-w-H8zU|4uBR{iwzBFF%mLrN%V31>i5il@<2I3dfOcVkaZ`^^NpG6(;x&3pgCFJA zCZ@Jy*mDW`ijJ#q@K^c@%6xrDjlBoY)6#IQKf$B03;%nR*rp4Uh)6=V!;J@79u9x` z?#=a8ha6B+;L^y{Q!N;d%Ga98w>OA2-cwYhkBENfIFIR*OSY6*F%nT;PA4k&h>*#c zAP{Z9X6dFyTbdow8ZX~sZ%!Joj1jk@k&;Wm>mLK-f0Vg2#Y@mU*14fVS-5VzA^^DZ zx{;L)fJ#-+e2CR6wu8k5wD_Qy3Gfq##M*{^nEisjp)vQMDNMtSk zff3OX$~y_gxNlfpaO`AI@zcC|MH3#8A{v)LYEqGs4SbL+NK4bt&CNmA34_sV zkqihgmkMrG8|5KDCshWnC8`|)w4QMv!JNS`ECQ-oAf=@Hao&J?{j$9}`7*-d(JhbD z00R7;-u}uNfgQ0udA?+VyYa2|+%at5ob_U)?@-ttk__vJE`Zua z$TKt5cp=6U2s~&Afu{W{sO}-B zw9Khzx+=7frQN0Vr)tp_mv>jkv|`H2mYHG}#I1zWr?^{V<0*)hl_B1dt?&8(f*bhE zHUJb9M??P1LHWm9ZZ)a?7oKv`-*=^H9=N+SEO~kU!6|KlmVdFH?YR_7z%8}cbo_=^ zX_M-{p6Q{+r6gf{UHUV+(^PbHe?FVPCLTSmx{54q+{HKcoWnxVQAWF=Iv=8uB8s9} zJgl_R4m_=Nm|+B}HZ;q*d3h`FO#ZP6(q&!(Z-Jzp2E`eKDS-|i4XhTnX$eu{yLY00 z)qY6}CEx>f8qV44+?o9BQA+1AO^g1vfUws`lD>mQT%1N%xA}cJ1w-+-)n&LXTy4Nlmf2l#X$MkW@rtes)avs$_z0}T z{PjzXqkyI>TI&twO(SNXI)z{qG)15~M@dOE`+r6V{JoI6PEJCS9-EQPKBwpipl2hr zDKM7x<7B|nD8?>r2eSf$L~JK*73*EqtG7q?*Aqv#NmewUyTXFIGTL#9+1@VTF^@-lk=8%r&_0T!qjSTC$ zLu_GDk}F`otStWIi50Qnj@(}KZE1?>ggf@+?u8XYc^Y4Ck;nw?@4H6QOQ3ijsHP^3 z`KW@y*Jf1h^M2bxNkcp>k}gUjXm1x&NlEyE{>~lGFxJp~?oVjsml2V|{T2ee3uI&p zE9|ji4QNGrg*(8Qe|9tmNp7h(SFRY%yxac45nzK<(&K}^ zL}%Jm#qbT1T3O3I|L?_E;_=N7%#Bime%uGbLKI2uO)UlBVeBes3@BZbmLxfLr^dx7 zL&z6eghjtI`bGJ@5jV8l_Kdx3Ao{k_H7mw491DvAA&c)EjrLcYd+%3DWzN!&v-7|PS4cIY{xt6fH>hOgo} zwH*a-d5V8o>Xw#t|FHMAGjR&BIZ{Xs4PZf7qJ{=4ZG@QX4r}T0V80s&XZX+R-oM75 zD{*mRdH)soVsAE}dCz~v10o$ZNDw-JE%iEWU-R{pY@@n1wi`Db+wyJo$u-j{ zOa+m1<;gl2oX!^0@7|mQylxzqxh3WHCuq#Xj{(IV06q?|Bv8~J6wRlzyL-=#mNKhW zybN7j(onHbkI=GTGTmK8#FSM(D~phlQrI}SGi4|vjK0I*izm>1j)9s{z_~7;IpU9& z`ACdBn!$w%SxLwd%as-lQ-q!bMfgmDE6C>$e7Q1uqSRkC2KIJe5uEiYafxunp02#T{-NdNp7AcKk6@JmmUGzZXe#a$zqBhpuXJY;l;o;toiIv~7&;A)f z63mtfhD0+cqY{9c(haJJ#Ov>IOb6@vl%gSBjYrxeRF#zc9iFP9X;ZM^R!;LEAj?po z2nY*9;+rB?M|&qpjO6_HcCE;?Bo{MEoM)sczHqO(Zi}l{GVGBc>-k}nBl@G zKFJx#S8CTv8W0HR-zx&R*;!6;c+!(3B+H+liuL5O6pBQgd=E1#>WXTUIyR?l8jp;F zGwvvdxh&HOVhP5Ig}U6m|KP!Aw>7<_yPWay@%};~dc}qc#r6-c)=yzMBRu{*RaC<5FFtzj7m_jPbSpYKn#yTi5zl8z>P#C#7+2X)LJvJFTazM`ueU#- z`I>@rdD!C9Kc^gB3TSs1`+jq;0wW>2w)UsKh4u&e42-*B_q7q^buNZgL_ie+qY(lP z!>X&K<7MIUpbB9P<_UsNF+SW~iPd>U*uNv{YABq4@`*2830le0zYk#N?Jig1Ndlu` ze0=<8r8PMOt9!=A(ed#VCJ7p3&_Ismf)o*THe5Y|O*PsSh`tE_rS8N9V94&PwZ>=H zif?~pCd*cWxV4#zy`8NbAqW)fHHr^_C!V0f%eAEY_lS~6y|N*EPf8HYqRcYRJ~)Cq ze88s4SRg(QI_v+u0O~eCq>a4xAWxn`x#&?1aUeEP+u7eeA6-#pR7*Y`>|s)Z0W0nO z``4gy*k2vQP*zq(aYcyQKILS;x&=Ly&fCd2cf%%ET?un@D;IcTOH~qUZN^F%E{;3o zPO|yJU7#Mi?T8%}0@Q)J!QV9a_-Bvt73qOO2UOd(R0$VB+flx-CtsFuV8m+&udbnq z$dR*}EC-82(H7E|wrhTt7oZWVKKM#IejIJgi<%5VmhvZJ{xdJu_){+5hIDoHOs()gx{n%|WLllur~2eu zw{fd<$o_to!nFm?muaNg*Dx|*f!S;`35m(gIE7-Szf0y&dM8XLUz}HmRBB!y^_OyA z59{o_ZPegS1fs+8_u-iS%V-$f5c3%{s!X6;gZ+d|0@f4=*rD9vtDyU9zPxzpNS}s0 zu&^Y!eaEI&Qye$Qv`MuG-jfk0t9|aKVXd7e9L%1 zC7ISY=e1OFLTkfP$Y}*K%zxz3Zr~5>xAmK-q4%YauwE~@l8`WM7qTo)+}hfj|LN22 zp9Rl5Wvz(Tr#9R5kD84dcYKfImO9?Fnr?e&Cv*J2cs%lP>o|Z_6|JrLd3cx3ec{f) z$>RQ(B!pi^VwCx=NJ^GY<_`T{H{L8e;lxD;y-oy}6CF^ru45`7!HwkO(IIoy(P=QA zJjo|XB9+LIHD$HboY4AT{X~z*0?14TxUk+*Mj4u=+HF6Zh*f)eFsc@ zD4;)pG;_50QK&*7wi&>oW}cMiX;NIw9Kk>q>P+*Zy8?#K_0h!_Qqb6>q%cOA7n%9_ zxG3(~ojc*BU7YH1n2U?|fM0Vbb4bXjMH6;Y!JwH^qJT*|s0olXIb;KwWWdhB1C)un ztBLmx*0lGY#?xodvO$G~5eOmQ(LkA+OarI4{>PZ~H}O}bRd|Ly}!H8`7S)@yIs40eOK z<17MTY6xhU%n#ScVR(FlxK@f#qfP33Kg7AJ%IJj&4hB{J0Qr}o^$&KSRFCOfyk$U5 zRr!BS6;R4=YiKBg@T$DL{LQ;}c}b7G8Us}1$+P)h$k?ggUhIY%1SIxAO%DaKo1ws? z@~3zpkGrR>Jy+58od`870|@JjJ@)a9yIs7VbHUVQ<{iXqQ19UX0#4I@tt!(R6G%!x z+=7D;;K%5|8(BI2g;vMT-<6D)P4}FY*)s98sQ_fwCkKXByK#KYfpWsbhe=aWSsZGw z?krVKh-dyAoN}qyWlLU&O{Fq6ytf#oAZ{rB(RZ)<8E>KZ(aLQUFTlt)%Rkf45Vi$pz0ZWhFR zWwiC|3_m@{NJz0Dzj0owgcd_chTjFPnEhl~owSV1RAF%3)pq*>G;(0BRkO1@FA4i+ zyxf#nTv{^Qo^2(?Y<=-}g9-_)ejD3>!;Nb|-=f=N=EFB-mD9xV9QmXR9NDH~>KQ~& z)eQ7Xol;r|gSfANUDi4O!jX1ge+cr)(@%Wm32$?#o&_Q`Z8h@sPNlr_I0xzzNN&uxU(O3&Ix^#d5)F$2mAc!UhS?KCy-OW7BwD6Ha z{Zj}r_aLQiCt_rf{I}the2_{daM}J;3G$Cx86lb?$D8?Zr_#xD>_LJgkm$c@x{BKgv&MN$WJ|t^xt=Y1b5Bq@%z2#St zU~35fG2@p+wxdO#>+Hb?fK;mZNSzZyLZT8!kmZi$`;f0RNNr+rTBn~llkm;}U|Tc6 z4hNTE`n#*^4k!nXiySXhUIJm!Tap38Tpl8E@jJtcFmG|f*)%DSY$#ZQ*grA(_nB(Kp9lT>~#9o{EFQzo2o;%*(@usw&vuH(1Ho_wRpyng2`O zi^i$+S3Ek8mCVaolE@mgnaA5-NSuEE;Mm`sx;jzg&;jC**~0R_x{$8FLPvZ38bzf1 zF(}W+s;a5q_F|)ItPB*|XG;Qpt&ly1z2(wk6%gpxx7aI8rALFFQd?X8_i)l&)M70P z`*WzFBcPU*RbNjBVkLlc7jti4{hcUzOgH&bU<2*$ZDzoTr~_emQBbO2m62fp5B&{l zErU%jJxmgMORJv`ns$=X`77UM9#{+Lx&vEFK=ag}>u!=i8Jh|-@X;a2N$&3Mg8Y&b zPH?zxvb-~-g?@4bsGgk^K;_yP4)AZX)Q(oXW41P*joQsQ{cn_fHU_^i8x&j`e zBZjF1RErBEihqG#PPe~isdO9n;1b$^>E7koFONPs%_$C{dyZWvVrAoyKCvneRaddM zbjLV`cLOvPCuUC8i{O3<9m0uvBfqo#rONYoF3&HIOOx zKgfep;gt((qs354V7Pbx{wtIQus%}OZ2>#f=TxV5OV-AhGbpLbs`Z}nrfVl5i@nPW z6;NeUt47neLRN)_0D#m1yrWf^$!?&Gym|Lb@hSVk0jXk-VWnxUQ=kpX+WYiHX~h<)HDbs?I69vgBMw6-%Mw> zr#ytu!$_a-@{5A*&GMBIfcNyQu>Tlj@TC#TQdIRDcf@a5nA`kMS0vTl?Th)j^*g@uJ#wGY)PlVU=}J4$8Y z$A*CMFtZTZ^_l5JzS4p#psjb5p2=(kWm98XcS5_f@im72J$oP7Md)8a_EK6pIaV)X zDu{^tppaG{)&W;Z==weOnU(u@!zZD1=~8+hOL3nL5)d@P+&1hZK*EH1+43hx^CKwV zM7eZ8$b-rnL3DE^M>VE;T9k_mhskH33^7~qFtZV)o$u$dJ_|mhqAZtT*iI&zKC}=mS{uKbF0RfxWsAh z6`}|$>81yF&RG7LcVUnO+f1PP-vd&R@ zTb{DSByo(}3Z|W&J`!Ge;79$9qjhA2ln`5I_~lfUAwTfw;p}sr8~yhR;XNLGbK*F; zxOjL0>}uf>rSyX~Rq)aj;+9$IYkYh_9$msEK0Fit_Po zPZ+}66DAF1*7W7iva|nFWdFrZK}-7@awY^4DjCTJI$J=hfNENn&r4vDhxxn46cnw7s^FPA{qnwNKaVhG({ZOB7Yh#B7mvomk`98!)Cy;rp-6xK5EL{;xku$fUr#T0*sR zROXNY7~<~hH0?1=F(BLmU?F=8%Fb`vp~U@l2mpoLZYLWm*@yko}ZXOZxMP#pkJ=66b561fZO~gMg74WT$ZStVhRtyY0)=W z4)K;YzCy{4AYCmph9$d!f(bXD^=uo=c?TqC0C!rDqzwcQa4=fqivycT8lmjgC2;27 zz=docDE^J}!W4$2DM(yZW8mx1f5BztRt`1%F#d`^D5=C(N;5Oaadx-?TLAiRyu3Ii zx^7bE%)zOZz7AJ_@BSS_2sD{U6=)k^;x~+p!`lVsvO*bw-z%vSP5&B%K&Wy{q)>{l zS#HH$g=_$HZ`xN62&GBl6QS3iY0vw^+a2R!vEBm6)>PcxMK#l<@uC;XU`QW6e83zQ z{!o5{F(E-1>ow^Q@${A|mRm|eE$X+>1BQsF78jp_3J`#)Y+}mkZvr3@;m@EbY<&^zVQ|mkUPu(_)HL!fh~2j z7H`K0ScU~DsqHY)zyd=D8Mo#`l2LJUk)N~?SR_NmsmRu^$esHpwfAN%*eefEu}rg{5WY3fp{mF^wg-R+Qc=KnKN z7aqV?N{XPGBI`n^KkvsXC;LKkhG}Q3UjWnlZPKj^~9CZvJZ)~Bj zJlYl>vQ5K<@U^U@L|8d3zKYL zL$#Ti{6ubVKfzS`E6(t*+XvZx54fke&JNcN)Si)njLJKYT z;lq82yi1q;wl2b=W=Uzk1aVXr4BWZ*aGUy93cr5MQ1m8zZ45u8RLyGL4b6wdJSL(D zs75b9RydfhN=SDORrZ3OfMpR$Ty}?{2KE35 zAyCNi?i+>m_2njX=s>du%L= z?IkNmDXEDJ$D5SIg4L=jV(+^uo?8*-8dz0eI6zFJ8HQLuCl`B~$lT>lh)B>U%eBIS zgR178|EwI_vu6(@V6N)^dz%4{!{kCYQMDb0KXw6M;5;yl`V@s;RcyIQwYr}90w#@7 z&)u0K+hV>eM&rSCY7vXxN+)XhbaPZIBbUDR-C{3@Ux~QNDtEUxNYT{Fw1@44l@*Ig zl6*nV`r?CI9C_6i3c6cmQB!zOQ)qHbm>?_|h&NG=IY&KisY0F?Nb3K3=sqo;18@Ey z4k%fuQSaYVWV!k5`R+@6eiUX4ysFU)b2=!qkMEDBPq4MM00=>|JG;#5D<%Ma({lGf5b88@{7t8(Z z&yS>AJ_IA*&wTj)pt=)@e?E5SlzT=dxucRhaE1igJb##(mPPALGIlm|79FiUWjwcF z<$WzIQ3BajfY|=e79JM@YN$a2e|h%~r%UV;3yo_T4fsQUyTkQMj}VFe#g_DS(XZiz z3f!m00hQ+MCX9?F96Nc&b!Ab_D8;;dN35r04V;G1OoxM)J0vR)0N)5{BVaunN=e-< zP$&r#CVRNGwUsKU1lamr0P2)?K!Co2pp{=%L`O%5p0%}g&7aws8gVWTTdoeKhomi{ zGcX~C{8@R-+G#`tfkCR{Ib@)AGn)P$?30pE;7qwQ5i~_d01LK=VjfXoI*L?Yno)kaW^rpC9*jYh-QF z`?l)>c|GT4Zd|pG+or``dc?(MJLj-hLrh zj4-QiiD*XZR<@in>bJAnb);)t%`dHE%R>D~07k7lI;43#NRN;0ZA$;6K|gAn+x-KQ zkkKs2BWvV$^Lpn80|i0#wR5sbg=>vkbb^TJmG7&m;Cju-5Na#iS+4nO+NCPRF;T76|);b2_cU;invtK$uKSVST5~GXsVj0C;ZTKdJ>j%0h=siVN^r;?EnHu*3F` z-+r{-yfy6+PXt^e?3f`fxAfUNc#Fng5t$v0XWZR{+Bc-)clI-^AD<-aFQx)VuY zVL%PWm|J#-fEBuXAf{HBeIw-4ABnXV0ZT-F-ohWG4Iw3m_FV32EPM^G{Dil>s_M}x z(jH4^)#gv`EHKY$A@ro4;Y)wlOA95-yEJkqQakK_s&gba1RLt@;aQx0#jl1>OUs+G zx#p8jVa4L>>URAOB*+j5>eLW_R`X)Et{N#kYQm3L^DMR#&Z-rxLijXnoAYx9o8R%J zr3Ki*U^Qh>l*@82!Y)ZR`X|(kN~Q$a&lx|uuE9;>Du&H$v^qkQs*<;GM9Z%bMp#%k)U`ll*i|;^b1@TiYrde!aTtQ;+ zyq5Ws7I}}18PD!eGK8>obxNrDmRgOe(#rfnQc{em>-L}_g<>`Z z7Mr6_8f8-F&hZslg1RC+b&{%^6hU1hCBdJO(F!L%^7H5X6^3WH`0;6#X9&1tUvFkH z7kv7%wWWhil#X+&9@)dAB(_?ik$REZF)+a0d3U3I8r4`w!Hr>guIRlf$>^fljREdt zSg%kbw(JC6noG|dx6za&Rrd-=I@6mQ-9^n9vnCL}Ppndu3vw^Qc1yi{m0qDl-S{m9 zep6VNBg%mplKCF-%-r6tW!o-3{B}t*hEVIqZ#hHC(qbIVu1{s&T>T)Rw(<3!Lfd0t zmk@dX4f@_iUWq`sca}8qC*OMSqYnZ>PuRNP808W2D_4lvGTM`gqV8BlU&XC455IEMKSO>paF1W2RpwvqN^v?+;MuTX_5y15{b&K>QZX1n?H>C2Z@x%v51Q^Cst+P=QMX1(m}40>3-U_+Ufc6pL4vM6$m zty4<`kt@vsHDPs68XG0R1Bb=@T#E)Kh)r5}JnuFOOX+9hK?+qmPq|_-S+Bfqt)*tD zuoKcmC;V5RX?8}3+@BE%_!Hz~bXUQE))f=;NQdvZGP++_tdLlYTPQ}T}YolW%QaE3EeF4!t z_VT63op;|&K^`F@Qnn-1>HO2tyqujG6o>*`1wkux3(yilV+ec;h<*ZzMc&DrOz!>Y zrR8dSEcx@;fg*=*eKa?2((c^?Df_>15oU@c;mDQ@%EZw6+f-`7t5=6xEuECzn0jaX z!yj2LZogY9qhHjSNL7d$>9V=DcdrIoiUis7`}qx|rTD)@iX%ft75o_5enGtRdTepA z;c&2-O>wGC8>}&MJTnLr+7PL&hE_e*=C$onZ##VfJibsWo06`YOr`+gbmQ~#$5U)XKO7( z*llg#bwBT*%~uz&)r6M$i1Zq)W9izqjhC!v8q$yHw+mF9dmr;}t*L)&xgPiD;zw69 zGDpvGd8L0_W?Z&q!1Q1$X5*_<|BldqhzjHpYO*%I{Fd1}j^SP+^W|1-&2aO^ed?_22h&PO9K!#3Xc8u?)cugsPMkgqrePEdj?l;WxbVG;jZxLBT;gBESB*b9*8Dymc^p^qQ7R zgpaSU0ZGir$S8g^cabW^1#!Q{Pxo?jv3C`kKLmdfH%)m&-=xpCh|53Z>+8!5Z5R(C z!Hf2;=s*kty`^2hodqY=u0{V)k<|| z-walMTFaHFbH4y*=o7U;(hGA)_yo)t%-oi}bloTsfa5fbpDhheC^Tcpo8N|8g8*n^ zkVrAK?r=cV*L`)9j<&Y!n422@BH2+tjvLeB!071<8V;Xn7YDCMg@m-D-Ld|ND);Wy zgE~&)L&&EGS1u&3)cwh11%UST<@h9nTt0vcd-{z&`4#W!@DXP%&jgyKJMdP~-As$_ z4T_Ejy9#S&GZlWS5mKd9-IQCq&e1 zRfA=Ps}C?|NeCLVvJx>Wsu-+AuLXex4Y#{TJ?y3ywnj&m1vaUfpj zzancxXGDM@83$)dP)Yss@#6##cC`?&4?M^VoX+}APE#+g>df&j4R=*;NoYX?AeepU z1HJF~ThXU{GPMuW|9dZxI+^cPGvs;WMd?u;`LIaVix|)tTmsmTI|O7f6niC(oNmq= zoqw&bt$sgb^gn7YEh#~K8qECY>-3Demfo-dh$mT|Jc(->OMz_~!+=@24WY|DlN(aM4W%7UE3c83K{9*ZJ|}K=0eWUl>SE z#oYmp4kkSCvtG)u>&h7hocH+?iS&be2i5DA3P06fh;*+MCYn^W{;o87+gE2CI(w(E>Y;!ZkeXsK3W|!&5WSCn`Hu-+@CHlFPVN3Wv@PCqndOdi1F%dI!*K7a_#0Tsh*sCn@E? zx-i_CNoOY5kkX~6$BONezL-`B7t*SoE`OR~zYMPGW>6epTOYjM^q0Z>uSj}ynBwXg z&{QKG8w&O#YA`U%CLt>jLqXyLsIeBvM^`0ul91E1HuwV%IN)PMHGfZXjSIRC z)_C~hn?sdwgTpXDpSa6~fx#f<-9nFv7I043rXO92LIwEh_FL+Z8Pw=uA%uhxe^}xOiEo{ zJz&62N$67lR2v-0ErFtn*pD@1(b`E#Nwnvq)zM+KBLSC1HF5Be?XVE%O9P{d9b=Aq z5Mh;V$e93~85=~p3?eL~BGoL}?f!f-3Q{O5D^tk?`^Lz9qcMM?kf$E8^Z9TIX8^nl z17HizT9PTZK2ZAQq07Q`3PR!pHgUrL7$N)rl%XM2UCte^cshO zBEz11`t(kepLSukjuTT6y%qt7SFkoNfGk9@!i6sna@@c`BC=jQPCN-vmc*j;^wOB! zuv`G34H>mH6EI??*Lo7WsN6Rd*vEc8*HnvHk3wYrB$7CUu~{sWQs7hY=iE(|p8qA_QS$Lv-JC)l3O=jRnh#j(-2=d25~5 Xe@6`|>}#bU2L72Cnv=^6Tw?zV<*#Hf literal 11037 zcmeHtcTiM&m+e6mBcc}-M1o3EkR(yE0%DUTDw4TM&PkeRKn#Q{h)B*kG)R)rw1|Sl zCWAl=k~5N_NpGL~>eZ`n=9{VcW2S2U_$Vl7y3aYkwAWs1?fptaO_BN-!!ZOws4;is zH4%hj82vdy1^@Bss*ZqPRA$PG^6(qJw&W`P;MY;dJNI1>ksc-zjWL?{MRm) znI$SpaMF8n?6bsVbJUFxfx06I605^IK#3s32J-$CNP#~>iI`AOP$8e6QZWr1;js;~ zYr2~bKdU@T1A9!y#>TF&vn$N@;%F-U#=gIe$d|zN=FH*<)wi2Ae+9CPtzm71r3pj0 zdKN!}IB_@4a1K@1`I6q5-Hjoc`N=Y?&fCU*yKZ^!4dciLikxqRCSFuYBe90e1C%en zE^f?{Jce}k_jc`Q(rU;}#(T+SKe5Vq?Ao!){Rlmyqq|%1h?CoXs={{t+R_O)U1Hqz zhp*YDM?+D(A%@!h-$6Yr>8tj;Me z7BY0KIfPv(pZqeh0&}~{&8@5&E!6%&z#P4JcA;{y=joy2w>md>eZSS$bIZsOzRWfg ziM>R>Jr`lC4tcp3C)(qsyl#b3Ul37wP-d@_Ann67N0HDx?%Xg=?hUQ@=*Efh^z^J4 zdCmRq!-vc!-bxjl-h66&E3Mb(jFo70{yNLLp!3l}R$(KfqvOuyUF9woQhS@DjSUS) zRrR{bE#JSl{i+RgYgeF~E+R_j@b9;$D55KPgmm)Y0dyVSB_!Ym2MyMy+T}19OvUc{ zfR47d_Bc7qmPvsjGL>tR#j4o?>w{SSsY2<#^o=ftMrNm=qyF`qH^FRzRvm1kD_bi3 z^g=RwOQ9{;W%~VLz;3V118CHa&j`} z!-o$ATgKSwv_~5Yq|=jLbA1A=4Jse_Yc{>5U49SW9Cfc$_4Tb5sQa+I?A%%5HrwW$ z;In>T(6a4fcub5RX#HQpjMrkvKLL<=lV=rW%j+b zG&D{{b4W>%ykWmj_l_1@bvDCKwt+_-J?)W$DrRQMTO)7y&?y9-WV-(9)vI*a)>ZLf zf$r)FtrB}ue{+l|@!)|cN-UwpzQF?N3UAI$v?a+!NPGPF`0&x@?_Ws+3Es=EFzV`} zTU%S{=Jg@z1qE%e;euZ4wt}W#o-^d7+!@Wb-+No<&Cz?ujaNoFd6imO(k4L|l zzix;7azH>p9lg2q_MD*L9^$mbpqdg>>P9nvRi?{rUpQrpgGn1?$L7?Wlv> z(oXQ(E8kiQ^|OV4pBH=-1$h{XvXJJ;oQ#>$|(MW*8eag2<#eG=M~Yl9FBCr%#U^_V$& zh4Unn1F1p>J>e2>A9bW+#2ttIdvL}$zx@qA8n2%ZBMr|vmDiXQ^l!zVqNAfDyJ%{L zH8wS|V`4-ddd}(@oW`P&Gr2PT^f<4^;!k{u&$c_J!-Xi7ahmnEHhpcnYK)NUR9nF| zd3Bl=Yh)OQ?epo*)=^Sc)(T~oTHPMnH{$pbnX0oEtsW5_o$WT;Gu>Bc9xY-QZNM8z zMa_^3=T}J_zxE&k?!?8)DmPGS7tSWNyV_YXlbzF*qsPb2$vOMwIA2#+mR8BbruQ## zY1iM@=|pZNG^|l1I$5=GnqqVahrP4mOp~0Oc(4;u7F?1d=5;4LC4cdiRD|D$z{-hR zgdj_V6T&rlS6@H-`Sa&WEZf~U-?X#bx|skI5As}H}Bi#(jdW#T?aqu;f$`=O?B%TN3bzTVYQzfrs;vhECdLH z-y_eG$HLWbb;gR--VbY)Sd{d{8`%whx?A_5fOuXp+QIGm_3Q6qVlL<}RC%tft|aVB z7H_yrwOs=I$C%dzWvy=M88`*#=H5Fk{$P8BDAQ|$!>2d#5vqD-v$(Rdvh?xT64+}U zUETDnTIt%G-%`^n+~>Ixh#492Sfz&#ABLr}DuzsLAGxGv&1X8LV#5p27=i+;U4WrLR!h@9p@(woDS)GX3fx6MO^@@FQDyFU=?AlM$u ztNN4d%S0T0=0f=E8sYSI$!nd@kJ7p}ut#QM!a4dY+;SGGR@B(p*{y0{P@C?XR2cB) z-7mVmzr?bibeykBV`*tAsh+i^Ox(%I38JnO=ex$u&chdRr!b6de#H(S_14r650>MYVq{)#4OQrAZ7<@Mmv|nOKKCJw z9fe_{Yj2Gogpu07PMpptht%6m@Y~mKA>@xzB0`LCVQZYkY+*ff&a#tv(19nPt%m$6 zp4OOrZR$Am>?V(4h0xrsQ^HPW-qH!g8PUfS$V`3>)n+7N=V70lgP@>b1f=$W<8;}u z^47iihErj7=wm-QjS9KX-QzK;60@cG^l_Tq3i2<*4d>Lb@bHMZI72J3A+JTLw2X`# zogCe0X&>wqLrt%-pU)ISagha4S4rvhixcOQ)n#^tMqF@J%Sva@oSEuS<_i`pB}#9r zXl1BTlYD_I)>dze0zh66weR}=meq#vlmgKe?n8#$2ki7e{`rax1=i&)@8!pmz*X88 zNR=fnlWIH$pEMwgUaz~t$*K6`$Bzow8#%AnilNMTu2_tIwRiahF#!k3#s+{_ztY{V zZy9B8<3L-1v2AZG>haT`Fie_Ai!{>2Vk@M{Q>=OS3U9$1y&Y-FYmMAEdGCd2VVkZ( zbH(xTaRtVKEU%F#vKQy*o^K5K8Bb47Cyi4e3<*>hhJ%7mzzMxmN1tbe*Qe!F(}q;@ zv8YJcW5EC(Hw6Tg>+03FY{AS@`g!^#$6^#yr#V$VB))rh27p2}R_tzhdATXku*5pz z+_ig&Xu7y`>1L?p@|^(gwkklEXrQ*h*&^TqtY2yNq<9Ez#ezd>Vcbj?ekFX860wYB zm?MlZhbrE`f1eB#MaXZ@8$IP0L~Pr}8p6BrULI*_X;)cUS%rMOy}biG<)iohtTE9z zdi1F22HbY)8=dhx;v^(jt&6AH-d)w=QgLxUqRyBs9XF{fS{k0>Wk#e&PDwG?`m;~> zJaFhHTF6xCm~&+mcpX9jofnTdA*KzaHDz7Iv9X zF?4AWHYK(+H+MBh3F_$UbAc{c8m-q8tM&Z)@-!JBF&DDj*>mTt0emxd2k)3GtEhAV zkvntb;OczY(2RrM_Je@lI)xvQ8Ex7q7Jd|E7tt-%Yta9U`%ixn7cw0Mz=io-{E|a9+ce?egrvp$^_oKh{pYJp_G5)yU56<$(0|>R16m* zo7l?+@?i1SKcza#>K($VxBVi zwt)fTz}!`}-I*bmvw?~KAlCjbl>D=2|5MEQXCFidDfrDHs4=)u>O@zOEdP~52e^(> z+0h(YYj$G%c0+Bdlz4}tbJMT2MpjmUSFg*qXo+`yU`Dx%>T%8613WxpkG$wJEqEhY zVR{4^6R#_o7Dq#rac-8h6+Rm^xYabGg_HbR?YQ%pSjd4VSB@0CHJWa_t@_dt|FR#c z9KZ7Yq+^%B&4xQWwkdzPG!mxm6&i>?#GI4IhFCMm7!ArD21wf6&sh(p|u4J2M6**qw1MXN0U1VDBZlkhyh3u}Q@1@@FUe zviT(W0IbaM3YW=Na(k%nnTj|dc+a073}%whwJ&>sCc`p&Qn5`hFMemasbZmGmJI{c zscY^>5jzHMXu8PRdmCncfI>R^4?DFTxjLcOHYq)_(qAe znRI*k*M~4&AiESjYC%&@1VqT}no<~Kdse~_U%k`V1V0rr%;;7}cvux1?Kc}=>;a$gmnJ=D_%%0{|T)bCHrOtE-Zd~;<4iv_8h0^|U zEjWGev6SNER&}et=p3W({LOn_+rS`q#BA@0f&$PUz{j)IgNH0L zM@B}@(9))WqOV!kUgdL zI*Mh?^_M6EE%S>Ab@=g70n&Yr<9@Zzwh)*q*b9fj!;IAu_gKiSXZFf%tPd6daLw@X zvpa2q$fm4-yQn!(=0HPgZEn^E8wu5hB6j_mK*dqb&Biq3!X#=RTNlEV0}MQHoFmny?}P!o zbAa*+txt)KWkhcw;jz&5CEz&FZ$9%NXJ_YkadCN&aRiDvy;i5%l`sGS)t z=9C;37KYxp++~srxH4F68i3_&R`38At4^QfWmOr|F9*|7Q@_uyS&w{u1rmqaYXKa( zVw0K!sKE+2h}xa2KP(cur-bECIP%kXfzz9hTDxJ80`*d&C=o}F$CAvb{CdMz-L|u} zBK+s~Q+9m?H^VvAbwM^nynmk_6cp693excG#Az#XI1C#k;d7Fnre-povG-ljXYl<* zR#q!rC9B=$CH?T+oGqG_!8s0d-MP1=r7oqDatI)wV-P!=2YRDIQ&aN{3ky!lYuyrf zWFzb!$d(f4@y3^&stVD24V($uckjO4@g+QJjm@&jFXxymhs+s$!zCSjoN?f$zB`Ze zjKQ)V4W%FEOz_sEky`z0(7ue#swek;w4|qV@Hqte9Mx82p$^7^O~q_}B^w4vwtl&D z8mub1J}q$)dZ>tB-g=wPB5eKcb`X8iL`#g#@aHEpq)LxImrB>^WT(-(EJ(iA?a2WZ z@N#c=yVr6jBx|lK-*2WpB@k8G9IDaZCs(p^b5)qcUBNXBv@ZTDnv0iL7Zh~d#4l1T zC$av)td+dw6~_9vP2<_Up$8J5{I1L1d=VojI{Kb)x%aL28_H}J(AFWN^4~;k*dhiU zi^hWUI=z9=a@0G`SZD;_`zkfOzdN+w4g43S*2_(NHsAlcl(g}T0+F5fyeuUKh6ZHi znW4S;A#lGgwIs+GlPcUK9+*=i7p-*|hPM|9gpOKv&~(LYR^S?1xN8I7Emxx4i5c2S z?{L^f5M(W-1M!$@yV9C?amxH~U@;y26wrlJp+ z0k4Cld>gk=&+Z(LK5%S*;XNO(vzyy7ZZVk2{AGh(mNmgd{nwiUsZS^mXBQOkyAHq- zTM*+dyft9dl}a1_`(SHv(VyTF7S^GpI??8{K>}X{@_QPPyZCv51IQ^iE^0@d5uOe6 zw;M*-Be(4yr{k5BNI8I9Y=jl@-6aR?d5?WR4JTYF?7$O$`>Lhe_?1=(3kz3xNY=|m z3O-PW=;X;8i#V@^az!|=T{yqp*&<;P1ZmBNm(Q8zeYWSzb0F-N zGJF5N8O$PM1QNCrtUBU%Sp+GVhtTVxRhLWxfWm}HZ;jDzc~`fMDkvz31C7OB<2Lhu zR+E@Is>cbk^DcO8t5YeVJx!phEnmiaFJnOC^K^Zt1=~C6e$gYV$<{dR@RP$cRk1HA ze5aBEUAuMkvWyA7jjgQ^1VvqC4nyL6XAu7v+2H(O;RCB+DF%}En+1teg#B%TFdP|R zEPzGgJe+3!4wdsF_|*<&27VKNX5URya5-(jA9T~d2*oi&c-R_Wv%s!`{7pn*=~1&I8P)&J3Jg>!E6&sdWe6l?zgv!_Q`V@?t7H z7I`DNN2F~_xTt@FeY%Fav0x|Ut$utCR)CxS6?j&=KLzD2zjZ8L+;vK0%H7&Jo7r>h z^w#cPo1RdwLK+2d&=_{i)vH&@KZw4%lK}{FiW(gXjZ}h$m477|Y?%Hk&m!NYH^x&> zkIxywS@5@{U6L9e8~YQ~^z@4h_8K6jr}n_;mXDnVH+^lXo`qXbP%Eq$ykykpG{TiJ zzc_)&j?xKy-WYTVtqWx_9*sJ8=8Pp21ZIBXEA>mP(|oqqvtaB=NaXwX*_oMlQ1(p9 zgv}beO!W!)a!LFW2$(DsA!#{Oj#T=A6V_i~`V2M4KyJ^Z$Jhfp4k-TgUfEn@;;Y^? z14E`4`y*`Z^^%gCq#QMM=%|=8V@9h5OEQIXC0JgkDyEkoCyy)^jEaSwVH(ICW!yjS zIqQ2s)9~OZ?VsZ5Jyy(W$G08wbhiak`;CGw@$#wx!nOC8*wiiW5`w5nXC*~DCDdy4jF?P5-n)aYDKI9Qwa<3f#MKabkp2C9M#m= zc+2mXewlqx7ImrHtj(Z|5E z+~DqS7x0;#|EA5XS*e+KxHfvNq}_IpguWfi86~e?*e3jpTY4j4;6ZXDL$ur~^II=U zmO2AV#*cpmpdQrOBL_h$ zXhjx+tg*abPXDZF{Bkwo@1hUT3$B6{luDJ<)Ou=ZWODId8_ohyBA&Sk?}3Q{)~6d5 zbZmE-gE8uJE2*eRqQE2Bh_Qcd#1*q`ADl0MKTD3fAY#>8Ejt^V{2Ekir(n zdrq7OH3o&n+@9lMyr}}J|GVj~^(ROgXZbh;h5Pb2FA!>O|@6n#7l=LCHQZtHapd=~whD%q5 zdcxGExG;iTo*F2_feb%iLBbi!tW9^K1|ZmjXh^}0(!YGUB?a49qJR5qQKGT;(l`AU z05D4@K-gKBj|MSb$_;9WsQgB&K@eJ(fRX`_cUxC?`_h3iFd02JH`kWHS21<@p@jvk z-c<;KFd^GM{w;6m8zEY=izTR?qYV~Dz=+o^L!1-wLd8GYx{DN)2t!1Ih(kJeI1$$= zX+S-!`3WUxnV*;x?bSz#bpN4oV-zn2hVijNv=`vt8c6?=5&vT{;$K4f|NE5x%a7Ub zKIYF+BMt*bHDBciYGtKX9-EE5TFXw&{JyTCF=X&-n{qE6pZf8-^0O=%=*w{Sl3b2> z*T<|BcO!&NJ!sxkJ{T+){wzqU zIzu;jb<_+(S4LdWHX5jMLOCMoc4+ruv}SlB@Yvn7e%nsX`7)l;hN=2Xma%vDfe)k{ zW_~Oi2AYBm1Jx3!R%%&UWhp^h4RioBIWYoif+Kg{9Q}K}Yv!QCIj{e)% zuiBeO1`5sV$J{GxrKv_Xwsr2^%Y;Ixaab`__<&bu1L?6aFG)Nt;Ta?CCK1ME@1SG% zAVaNQ#B<>n%pkfYMif=aTvx83JuD^G-CRE4lVX1b(A^4UfqE@8#-Oz$5MII-t+CcD z0|Y;Uk?>7)Ji+5kJL|rFMN6XO26f+LaC())oLyYHq2N?*zzbb4%AkcIHx)twb$0&{ ztF=xklTImKr_?S^oCJwg6rO#`>$6x6G;^?Fa`bReJE#EW4L+-$X$5WITXjaWkk!71 z&NFm$fvP~(9_)_L5j0?5jC{Ao+jgO{JkymG4!%ZHS$l(`$7*w!`T!6vtWDX`pH-?u7SS?O)6E33$a@s zl=E+&g6X5)eV7o4At+GaXFiQ+hyLBl#%T&Q+y58A+Ga3|2w$r5q`oqT1P+xCCSLT& z4D`H39HDyl+7$7**x!oYdp#7-xe;%M#blH7}_PIVb-62bA; ztrF;FgAMBxBucVk8ljO29DQNuvF}_NM-LugknybovjFWPn}u3nl4mtIMM~=GdO5mz zLO^j2J*zpkBKaeXT^V)B(Ku~-&y(|ebD9^rUy#^`RQ^Ap-hN)%`xB555kQD^Af6M? zXr%e!??-KkH`8--o8Lu5L_r-AZ7qxH=+F$0kGBsJ&`~RLpVwajy7oa9`kWR9tzdVc z-3RSTnkXHx7X%%XUR5B zWY--Wo*RuRKrlGMUPZb}6j}p>wvxb~#;Qt6n(pqUX!-5yS9vBeM_E{X6wC~G^}bql zbac4R=9Qrul0n4w12j8an%?x#5Mzbk_H zLjfsD&_XE;g+vH}DOhu!!ome_76$W zM(dU^dX<#h!5vHepzKY9Hl)O1*yXQ=GkKo>FdQ-U22Nf>BVD&%b5z^#1@hWgeLT diff --git a/docs/reference/Rplot003.png b/docs/reference/Rplot003.png index 7d991cd4bf99734c7b46ee9580cf203555f23781..b5f803209a149cbcc7cdcb3e33de379e5550a1a7 100644 GIT binary patch literal 24999 zcmaHT1yq$$*X9MJLy&F>5d;YdX#`0H5s{D<1e9)&F6l->LJ$z?F3C%aNQlx6A|)l= zv#;O$GxN`^HLS%#;okQ>?>Rf3z4!Cn(8rGy2=Qp}5C{aJlA`Pr1Ojai^^JoCzw!Fn zoB%(tj2|kiL_LU6Gw6)N+q` zvhL`SqmiIVKYoVq|D=P0J^bS!`t*;q-HVGatO5cm@j|^K^QW&F7$$zPzK&1(HR+lZ zNQ^EkD@&&7kb{3uR@O<-7(q%xB8R|84hdmLr$WNtNHRYoHb;tSznN8@8hUz)zjs@} zefspNz{sRK`!?|HTQcQjUbHuF-c;LcZP|18Ch;ij{_fk^ zsGSwM2p#^AlXFEV_4bQHMvh1cSBvI@c{j!ocHR_xqu_SGV%^#{o7#4p+U&A2VxnM- zXsHXgfK62#wBUA5)&Ki7Z(@j8(p}%lw{bIWau60eSY%hcj!g%`hGOq z|6GYXtOOxrQqr&~TJE^~D7rU_UX1Or`9Z;MS|V9!R_} z_1SS@vtf%uC{=}kL0tRnY7*Gx7oU%YOTBL_EG~Ak zM2j;&c=*tA+CYsA?VkAGFD%AAaW@!7B~JfTE=2pBW!G)iuLly#x5*WrZ+$A4#*av4!DNa)+Fqd7|C>mM*6CR7)#7 zTOk^+aQN1v_u?F6awKp{bYd>b@Vt*QByU>@rREhCk;&j>)HXS-#)&zV63nIejI!Rm z8UEvwYB(XSP>8P0=T5KV)&OidclY|y(Ybh4Ns{})M9!DqD}zk-=li4KyUPRNMD(H| zLqkvI?SwnB#4-I1r^ znZ)LUQA3|5Vehj#; zJ{L#X3V1HX@$qq+MKzwB+SF)YGT(hJy}H50qqQ}Q*rcSJ5KGv(xc=?r{#{>Puz2s| zB})691vxY%{U%TIQPxqn)W!V1pxv~BhDHLhOvq=)<*>UmZukF;S1LHI{mh>scEa2~ z-d&a})GVG7EJ;hF<1_BSvH$gj#1&yXS)&54=~+I|wgCeoPXN$`@HN z8+b2Kw?CpQQL;5&d9(TQ!UKVfygP&QtoiKe>Hc~!*ajM6q|`9FKV2*vd^%aeL#Trs zKj66D`Z{>z_a+Zl*LO3om+1)@C8yTQ!E0Mp?oJ0{U=tw_iCoY8pSK5n(5Tvk%-F4>n&~kSbCMONg_?(xj%mUweC-4B+1x4ej24fAvJV-wsuz6`)391u$hUHaM;N zTTj-!);k#1GW=}G;BmOQpU1H|R*unfv0qy5bLl$>Xl~<>{=)&!SSNN$c9@t3w~hAS5b$c@P&E5kYXas_N6`hk=cHren`< z@EbVWtFxZFgpf~`)E-_*Q`e7+k1w|zEzzm6Z_>xeyg1+T!DkArvzzz- z0wDnol`wBAEDNV{oXcfn;s)FyoZ|L1tbkUp=AYuOYxT4BU%i(s2PBP{H$uY@6fz;O z6?{fW#Pd7vI&RlaEf5t$g0YA54W%^nRO{&O4lmJf2-|A8obhV#Ia_2zWyQ_uhHyYK zVdItN;hM!d!ydXm7;f`zZ)6fp51+>EEOz4uw9YX^EcN*JA0}BddaF!_#zP;l| z?FK5xH=k~j%E`%9+qjw{%+1a55u0cdT3BW4$sg_qss5EX|HRm*`*m z%5zaa^XUX#8^`?1-sZHfHWvlo^R_E$nwo5Z+w{n0hRWu3&!!m^L~xz559WQR%q$_H z?|HV72*68i)yun2X~B=Uf8ktIYan ztj5aFAnQdtsR5?+7Z}H;iwvx+MuQa0^xl0fUy(96B!oEvjgGD5>@PkS1^z^hH7Y~O z)(ZnLeQxE?#>^as81W5-SNWnT!|%}G`pj84M*k;Nb)rWqL^E_&4oK3j8o%rZtb+=M zEzwf;3s>HIpS(gKv!f-$PzbKzrL628W0xXjCLe$pRAP~@r%GW7+^)A&^Xe`v2m{=K z13SsYMNdM4MpKBk{Ogz7&#Ctwnf0Tps@FL;)aX`XOm=56!;bi_~y;Q-%;?{egi`R!HT>AB7U>Wk0HP$=7Q*F`jrJI(li@X=M zM_12PZVk9983K^5w7>J)1fAb21yDcf~PNrw2FsxDhAzlw{vYo{FW0f73_ z+SIj1yM~8^(A-x?^EB;KQ6s})Dzk>z+ufaAS4U;ra$e)1{(5vr1_u>R!F373!ouv< zesUbv*aQ>Nw?RY=A-(x%ZrXLWQ*5hoao>K{>rnq&G9SjxM`=imtKz<3z8?TZ3DC>OAn{!=#0?z6LJtRon|e-Ro?L$46RCjRZ1!Y<#@B`7?bXo2d{m z7q@ALn2-?vhd)#XOLTO>Zc!Nz4a$wWjhe|a@LZkli;Ke+h4qnQG~vT(=Z*CS$Ti}- z-}pm9L#36K338R+E$o+XeqLtC$;m+=P)BDq#!E$j1@1wc#I4_UvcJAFqHFscLN_9< z^%#)5${k=*E{8pcH?!R&ZbmBQKa)ta5z)eDo)T+33lJ&HHhzh1%Wv$850=*E++H0zs^q9wpW=)$$=I^Zy<3rAO99>)EfANJFRaJsv zQAxN91YKn$%I4cnJcP8U{O%4Wy_k!vgTo#88Z0%GI@@$@X|H!)kBN!#t(|elzdT!( zLRsqY|GfW_ihe*@V}9Yk9Z+kb9de!Z3O4Ocd=4=eP7n!k+aKUOIFaO#91C++VREho z@`D`|U?|584GpckI9cC0Y`ILIe+U&a<-Q<9B<9;;Cp5eyB(W5H|8KAw{Q2aqhK9yw z9Gt z4nDEWO4k6?NsL&Hu!MJ_KTCAJ6jx>=WmWQ@wt;|5a|5=$pkVFd98yTxOdZz#o$BFsnyNJ!MK@czHg_uqo?fBFVU#J|Xm1zYm} zf6K}(lcUv}R1`cx_N!0693M0JG=9qPrm3Cv_9)JvH9kGqSeb6P>wfSjl&9rvXq~S; zi10pG#q=c}K0fW4o9u_2{0*E?_A2AcW7V1wKM36k zvh0irlUHs%|JEO5{ag8-Mmib+Vt6>j1xBwc2r3Z=R#YT}^f|n^95e<9n!)1_A5^8x za3~ODJD`^!9>u}Qc^~2(76Fy7&2;@d)Lk}%CM0h#ERnLJPTQFzw0Bd)xoJgzMnw>O z?4L{?Eyj33{a8FY_K!>QU0eC3I{Pm@J*^N@r(1=~uLu7&6_--s<8-lh^41 z#P?6#e9*N4gxl7z)r{XT9R=}=nS})d5EZQQ+M8>rRqp*xrLY(52qB4PsT=G_knQ`;j7ODSl$5fBEN(sSWTlvn8 z(0;=gQ7ey#MuU5iCNQEAc&nTg|5sKj$D#LI$lqmF(^9 zovww#nWUhw@OkZIx!t@BoMlJp@`5d4onec&c9{{{Ely6rb3w2s4Cr(n3jc;~L~G;g z-OPep@U;!6YP>zy>YWh4KJ{OFaa%{PB%#K-aBhr`TE@-R)P*Be5dUD(=Kk621y*c~ z??Zkw&YxAMPE+V+=k#B1w|k+!bm9fd(kug z2zoJ!t;SuVgRR+UZvA?sMYSKJHGls{! z&8g?HoURwCs0@!u)ALyoOqZm$DAcSIe(jJKPWuF^R%j!ZW{y^LbjU)_Kw+;D4-3*J zG+GoXv%f>Ge7vvAlli6AvI)am!xYicZv!K&3I9_#?Lm(%qZW-pnCh_HBL z`^m_@C_d7(6ciLY^*fGb8^ZV2f!BXU)8^io$S*=8UB$sjRy1G3n-j85!zd3?WITFx zV~84TC=261e=zd-jZPZt0%6#xOAC=9!jfI^wOiJRd58dY`Jd#-ogMVhQ1s*DGi}mU zG^u=9QFSc@hE)*T5GlMM3P;Tc;m9fwE4dy2AcuvLTQRQ$E9LGX1CkC`C5I8fH9ZG= z%=gC6cqa6dd1bgMic%2JMHdQ>sppL8WZm0TZ^cIaq(qjmz1;X?FE8u-96`FO=!G^_ z@zMY51KiHevzMf==%qf&ias$!q$(JC#A%6UZV%p%r&Y+bH| zb=JC=pC0v;O}0PfWws!O2Yht&;}RbM8z7X5%vUeMBz;AVk<3oed_EFLFQyz>f7J&= zJ5HE5T=D9f_E36=|LXpz2?^!R!4@CqfUWjf1QzW2NJ*shtJNjq&CybtQN6|4jZpSI zDx{M}*`#0mO^MVO>gpODT|wU8UoiRFHuEt_On=Wi#bxykzFOMmvGr_wcc6dS^G|Yw zTK1o0zU(43)9YDt&k;W~<`cAvw9BqjXcq1setlr{Gw)X8-ji2f7*D^DV1$L`$VV%4 z!`4?9`Y=gaJSCTpEO5BIDD~+yUVh{~6xP9# zYn;>-R`;!}?pPdwv`#)<~0}Jz0Jzdtri5|2bLJ6QOIfQzY2ci7Q~4 z8{}EgUv7f+_O0T|#IT>s22Ha}!Zi1XI&BL(M0Y1H>kZsr%eyS9Ipk*oPoAo482w-) z#Ud=2t{QFjTC~WyIQmUXYE$=tM&4xc_iqX^#WEetg$0_Ko5S_h{%4-t{n9z)1V&*N zQfEeiS%^_XLytYX2A2og=wpJ1wS1|p0=dWIA5~~EZ$8>a-6Mr2P>#&1f5KLWlCeYA?hGZJ$U|e4vO!*zI^ynCx%>KHl2ncsi&w5%CG}g~<;8>2 z(Q3<2Mq4w3URNHye`|kG6tOv-UTv#IT1DKy#Ed}_fv}m@X}vr9(j=wV@WQzLdp4GU znYFKQMp0!GgyKmnF{F^T)blvn}-kvw<21B$b@R`+2hJ=8K8I2m*!lb;erD zWxBUH0#-UUO)h`z9!WXyQKg-i5xxq#*im2^`a!GpxELBi^LjLu)|2%asyZoQ@i$ov zHM1TsP(M<$-2FZABif?=Hw`&kJaYBNhkWu8I^U(CnAkxXgqSPM_fM*eBXRI}ou3`= zeC=fsqdbDhJv@9(r>3YuJ|i*LK};^p9S%ds(0kSEBsSb~vbnKw&WE7?eS-a29a@w7 z>malH@-nc!_e?(qe*4yiSvI_uc1pLJJ8jbaqROTiIk#x~a`?e>!sIN5Q(ul-OH0&t zn`se}UY_v4dkl`Uh|Blj#E@PMZ$3;6s&goQrOPhB?1tfnW9@Xq4R-9`Yvk5~b0?pk+Fz%T69d~yFV7*4*y5zTlvvrbzkn!yjt?wnDA$zKee2Ej$)XIY}ArbAQJK%nTwX*Ary_A<;x zyusOGQ;$>fQoL-HODlko_8Zlm9MMdX%1G*vYUe`7&r0eDjQn$J|NcI~%zB!YpB#1B zzLPZ?aGiI&IKi)RtZ?~7q+Xgyj2 zmWefSN&98-GsWC?O@grr*mGvb=>-{+>p~#f#>8=LzU+grur&)*+E2+^>EPE5rr?g~ z48$dWIq`Jv$iDdv_nS9&h!_NzIXSlxHj0d81)>V~u!k=3-E1DNJS@XD`dsxYTb|1| znm+z}ZlsT(Q8tO9iYdQ<9MAi4(fA~DWUh*t_+P~v6SZ0~N!`-7xDCBu$~Fcx#}AQ(#xshVPHQ&Q6rPsf- zq=<0K{1+GC!nAd+)uqaExkwsPlhFW!SM!_B&TBQ+_%rOAQ+gP2@fvy_*6s2H4JjYQ zTo1MmhKG?+^laZ!G)CsSJ&sM6v502UL``v&E_vpPG&T#-A=x<`I*Z!30q)gE?z^~D z`(B`7H?qby#O&qmVfg0jSJuXTO)kxn#+7E}0l~RZgG%Fli%LUF^i#{fza|>49&--n zD~^xLv$BO@*^=>^J`g$C+o9)zt}2_aiSd;p&AA0R+{74he^)=dt@vbE1eaYM#N)$jES+A@2cT28yQx2@A$8>K7?1V;zDq+OBtj$*9789qXDKRG_Po`3ql z``SSS;+hn3q&y3&l8m#n^F6P3I;51?R?`+p%4h+5!-HU{rwd)Q_YdD6HQ+x{dG+d6 z|9j_t*Q+_JDT-IAkTfoPd1xkGtaAsG8fWKQNfyPMtV&6#A20~#qNSo*!^rtaaOa%Y zzd_h5$>(`mN&V$Z-ld?xyBCUaR~qzT{&TSMfw|;~TxVZDvagqaZuQgR_Wo!mZ_tYF z{E?;mpw;r@P`~AQz%TUTdLl7$rio3!`c|2%tsAX0c1TS6x&iyTAy{?p-Sr{}vF zz0b>!lEOGRZoPOm_l^2;_Um**5zo%m=;9F1}Vek53kA5c73YhXc4M~cWtv}_A*~u@DuYf zKTma*Ok1>+DCKdIX{N$e^V@YF9tvYYFN=^$RN(B#dv;#0lc$Saw1u&;-??6TkciO% zt|FX7Ya70D`wC6tHZH0!+5Td>p6U!vn1EhqY5!s0Ji@@OH7sAf7sFt<;6C>9JuV-L znz5GI5Fu+a)*B+0V@%=mmmeZmPMw z;DL;N`7cS^&@40zVdaCZyIFPGs0?0u+HEst6vTz$I!*3&5AzOrk07G=qxpbEP+=iefAM=gifx1CjNG6Vn#RBr|t zZa>%nhU^-Mm8hN`;0am(wKe|$M_70KyEh=y{lIB%PTJ&4(#h$O35)k(Lr|pu4U6Fi zt@X}kWMppM_mtT%=!i%We%|K=&nwG=luud_L>LY9!cJd&mEv!edo_?mi$6I{zOAdA zEY&3XGpZbCgEe z0Z=65NcTet*tS3?=_pl6zD3s-$Fk#hGHikxgfDL~#8PZW z5C)u|My`zXp*?f4sc1F{HXpMdH}1-mCIq*q0tmX!7*cH>y^P>WGH9Y>(k0c=NdHl| z*%%*S&hDgB^K_?|N3SSg?+qFqRtXJICAPMxkzwdolV)wDKGSu>AI_+8H*|a#A3*md z2Gac-{MOPeSXp2J`rRqy_W?4|{Cr^F{2rx7Jsff6WIDc~)B0~}WXTd^Wo2YYB)Rv7 z-16tM9rXJ`DZyz#-6!T)NnYRk--a*Ojd>AX zr=pgv{RpAwXGdMC=~TR#G^uw}cYH3j4mBO(*@l~%o)5ey^4yWbQ1Bame(BBfwKx5I zhQJ8#V=|Rr4(oEt%IfN$&Ffx9h+yr$3qwjR{=F};8ezf`_w@w|Z`3%#MfVebA}-rTB7)63Y(f z_4=jr>TCSMjU8u;b=kB^($bo@i;=q}i?>z2$Z=?oc`^ z_W*)O6usq3#NDFR6n5<=>f~6wt9bCj{DL^UBfDuqquUmv{f8Dh&1vEs+0K?whCH$; z2y2s}9<~Z$O3$mr)xq(zZ9c|AjdKq+r}3X9ey=oFC7=}|c=qgB%;%a+RfrTZaamc< z_|F65S|(`>dTg+v(y6lOJWe7L!No=A<3k6kByEo>nT>(^-u8TZ-RWin(4>N;E_R}i zjuxZK-S;h&ftdwUY1E&9S#qIME9SI93MTh;o+3ke1Gr0J=oySQn>1M z&at^w6Qm{T*o8<{xh`oSc0TU3AIlmQ$mX@tlVCuaClPe~f z_3N9{mL2DZleFhYajepbOJx$#2OAo6VrH_J7Z-Qu(2!lD3nwQGLiM)mrh)JnfTD9Cd_TQ+ z$3xAoFy6m+t>9u|Vq$uExC|UKzbQRx4D1PF#@VCOcvf69N4vWZ@*bMy2LAXIsi+vT ze=4-xuT*!SbL3g9f71xMWkwDXSDE&vr?_beVj{cp+@yd`b$WQPaU)I27A6aw-NjW3 ziKb&#Lem*q^JgV^)ody$S2mj8ijExZ(;$5=b~ARscou=VU~gFSqUW0D$?B(MA!`~6 zF73zbLcoTUhVgNcCMOJ~CE6$vFcT?U^!h_NE;h710BoR$6(w_=xxHP58rzjJ1n-n!Qb31D2K;THb}(W zqd{_N79n9wVyQ0)!x=ts$ZxO$$hRD-+e6Fjhk#gkAnn zk;#Row8S-zH;m>rTo@)1(LXKHqt+%Jg8H3+F0T~LoGd*}j9G5W6>zuEKHK{-Vrzh5k#wZ~HM)S?oKMhTC#O02ZR z+{_|n09Zb&oPmxcQB?x{Xt`e;H$zzOFYD(!C2Z@Yd;NZAZnvE7nx&c{NhN4O2D7s= zi{V>1Oj7|BUm6U(W9=^*Bi2iPm?KjA`ic8{`LA>2Uo6{QG!n?g#>BPJ@X8rDR5)^b z*q2A-u)dGau{OXMdvRwT*fjSaJt88a6GkY-m4OAlFf+rl)^@3ys2vF5)~6eEq;w4? zx)nvwpQ%-Pf^qaqi8?JUXrf&;h0fFd&IK1Q9;IgD2nw? z(N6HAcJTH2)3++lCRTz^dHiWi-Q$ ztmg;{gfc&f_wPcO%V^l4)3EDCAz?JUbB0peJ@I$q;-I|d7L%QbO(|G_Dtl?^+JMTC zKq*?I?X2WsjrOR4$8E&2jXX@tF%Wxy#`%>ye?+$jM=CzJ27ye}BH-d1=I?87bL7g) zQL`cQ{x1+}-e=_K8(`GIj92mD!*)RWO`AF$h?0#C+-HZ`8I})JwaUD`A_h$AaIjw` z6jG<4DeL?e^aZAQbONWA@&4NI5s>Ag)w1P*WJWa4om!G6!O0>b;@+00a21<~ju&a8 zklt%ifu*doG?f^0js(LR7zC>8;^*b}_g!3sP=i8X0s-lo0jAXqfB*h%)0fw0XAdbs zJW|p4Ui1zbEj1#s5g}+aRKTWk<-tP{gEv)u%NZeYte@N67P}&k)(T6tNlWfm4f~>H znyX?TZ0?gI^@8H6dMwD}Xv#l$ z;1pT+=X>^qIl__p!O*Q#LI6(UrL!f4TBTh;xQj_n4gqbz0?He#tgPyKb2b zDCly3i3_VSx-IQG^6;4oMn+9pp6(OyoLxWNUppvEA@lujR2@GYuwDCUO{62PN zx;Pa>A)4kfU`8dkCYS3raO#B0~2fvB^S z_Rm5nDSanLA_glzRWcrZMfCSBvJvFyYZl&n_AKY2^sm&>x98B)_lE<`f^p`EGtfHS zF3%5lfZr6{Xy=X^2K?^RkX@W*K~>1M8Tlhi8J^byqysFrlI3zR!A}_6iqU}QOpAS$ zp+nzw`VD9bs7Li(=@D~~#T9`1#Rv1+DPaCTznzyTXL4Ek5O%KdtYUbv0>3_Xtj|~kh$eS^gSfvpKIo zKXy=FuaSK|UKIu`-a=CGHGIBGSJ#TVQM^U0=|nKQ0=4F zVF*w9*MIfRG!YrOk{UhIw~`vFP*VAbxjD`u$?WeU{uwBbueASN-pz2|z<>b-1)@!F zQX`Yn#csA6lT-_Fh6uS%YrJvUc-qk=f4G~o(&}wAB$|PCHsi7NAukU{-X-g2&+r-D zM(Q=EwVX`#n+NA{-n_m_>z+~m3}P-^(DQH8pwJIH5JAeicOuw|cb`?OC@agNtOiKB zzyVXd%>QlA64aaJg`kKvuvcJ3U0&Q~N*GuLLVBj(Z@|P?Xxs|yu;$px|BrY#K?=RqU;i;S|bejwF2R@A9t3t(?V@DvcnDwPdYw!dE;RNVY zOgwMj|GNnUD_CJ8FfvfYw6H9r;Q|e+J1=kmtx%R!tfIpVKNYOTSyDmT+|-mwLV_MR z_+6_%KJ9eT+S(Co5`O%64bF}ArXvGy?1*+Tx}4mUeL_{?%#9Kte!l_okN}s zApx)n5cJ)q>g+c!IXO8=NJ%jec_k%5JumPKR|TTblymg|V8B64NCW!0i9iCE7JBA~ z%>4YMu$OLge%RoW$7K|cVRRrn(fLXd9_7?G17u-z!gk2>Q=l!OP!^r26ZR%?7ZkQ%|*6gWhWyOV3oBWko#RQhn#J{trMuP6E9mxOXz)AfxQH>uh z{uc-E>t|kamD7KBLs`i96)#xNf>z53x#aOL(zkEl&H>fG3;4KnB^9q2V1FA>`@7$d zu?Y~b9)`0~6)XMYm3N*z5ynnd46kE^^BqNa1K%G-=$wZ)2er@VIiCYf>b?PQvARZP zSqw1xiYs(53kq1-@wPM0UxWyBS|VCN=EQKRZr$10zqy;MLXDKwc~LE@`{~v#){f5d zk6~5a>(`55zwYDsp_ouNZhRb(auAX-bd1D%_ptBUtGIE3WaTt`<%y+gEYFSVQDy*( zKvlgD-x9gZXmjF5h?}ZkVg9j^q}U4#g{p6s2p(VngAvUk{ZPs7x{|nG>Dzddd-C!d z&K04GV(_G<2DFbM+pd)C(?rSxVKv(4%CBEk-}BWs&@5zg=z-Otlbg@>5|{(oljm{r|CCc#83ZXF&>f{e z^NeCwa$WJcD7dw~7)?=StqYu)L81E(;{wOVw1G(zyk{@dx4(2P?2rX`Hw5Dw2a1#* z)xOEx)6kf1Vf@Ftp)XjIFuF~_5*AkQSTlFyuotL26%|homlOKTew>S7BG1!xM_-e( z7Y?uO{}nB?#R@WI-5ADS@o#wM0uO|JT8e!2?c zo-&U^8|8FSa^Fg`Mz@`XGBV{}2M2)-yuH3k{1!tbhyv3UazYVmdU!C|_XtK%*-W;?p6JEr9PU1H@zSf`9yU zsE%;7#s#1c8_ojYHu_(D$90EHAndlC>2b~e^5Q%eq>s>M;Ng1ngLxG8U`X=OedgQv zc?>su0rWnQfp|TK^OE`82psyGIbtAPj1mxB7u3Ar5Xp?sj&@+D{wp zAW&@Y-r?up+39A?uBswK5gdKdFaU)0&BMjKo+JJ(8N?G#t3#NO{-psQ0s_cA)qhPB z0BharG+T5DgwU0m3FJ3EySaNH8g2C&2eryzvF=?^4Fwh3>9msoX9x5*Y@KaEid-ESK3w#`uua4Av0x{4H>izo$?8OVH6+uu1zrONH zS1T*?FAZ?2b`0(YfmB95d%$KfuM2e}<4Tds(xMl)ldHNd5vpmzB&E$KP!J~Z7)C)o z_@?o(P6z5`CUOkOiRD0Vq#n2;_i!6alAtxuNU;0 z2itslls=fR{>d&u?uRgXied)f(PCq-epSF#3in7?2?1P%q5T1J?H$16IrjnQ-hz{n z!8wC4Q0KOj)xG3(vWNTXLzR3;uNP7_hi57-rs}IXLJBzGUwV7nLEec6N|fd^3;a2N zZWgQD+i4~T4h*AyuOLTHcx_HUblHFm>r753nU4 zy4P!FLMreoegNSO5ElhYUznPHfZM`o>1LU6XP8}r3Tb~vlKoCr1QGq%6_p$XR4V*C zenrCT#EDMajaajg905czpBFD)%z@+v|KWVq9B{W_I&CDRP|qs+lNj)%4*B2%?Fz1J zARIn5{mx1RPXH89r9y}UAjRc#-+So^8nCejSDvnD#^`ta=0Sy4DaZ>$W-k-eW?1>d zl^Z}O5DIE$s*fK(CJWm$L#KimvRhj$i~N*_t!YlUv@Br<62}R}A+o3ET%UBsr*rTMaM%Qlg|j!gg~A zRACBl0F(87OGdu4V^zUC1ca1Vu>%MQ2#Ci922o*Qcqn(TMkVb%N&Z%b_p7(D?`xc`tB+IW4>umxYiLU1Xn$-D> zmgRqO0YHn5B8-C~eH+9=OgubSGk`8#_mu*qGGC6M+m1yD(tSCMLJgz+H7YtutCxct zrqp#?&9{K8hV}V{li)55azOI5X!HgbA^8_+b>1P7SI0u?OgzLS4}|Zi|_>{gYnKn=W`D29M9vA)TlX8 z+P7u~W`_rg#C2}5f<}1U0JlNa_bp9?6f2-|_65LG=yU35<56%}j;8EP&Q=^elm%UD zAxu^PnomJ3c?ik#F-nelXM2#^pvyLnQh0gl|Rh!`)ZZwg@Q0`?z;jbq1J0=c@00{1!y;)J;@1|k)>(> zcP;B%mLo;d($apjt}dV&w;Hbi^6{b0uZ#239Z;e!E_841#T>6lLEp zEJD*reek#l4SE0{9GCl{LiHe_rCo2HntY%wb#cV<_3Kv@D(8AuaRqc?2X)?%=n=ls z0a(vx8ebaEy>4t?X0m{J`2iRa4%crBD8$6vkrQZZb_ zG7HRp=7nF0gtyapdDE}U2zY9JzOvg`urAiVEY=JkybwXn-&KlT=d^n5*X2{jVogpm zxgFsTpb7|r5rQYo@j!7LaXJQ_zd6Ip6H3G!h?He@bW#kXwHQY!BT!8Kqs4B*l^+U6 zUY^1|6@T7`7i(2;VefgrOjr-dIpm>MiZkM+%33%F84iWspoRoi;vZ-hh=UI=vlht0nJ zPwd0a$rmNO^au+9&H0j8Il}ZT zW?YyjPE-MpJl3_uPg}NiVb{uHwpjwShh+{+4~m{uVufWLO%ZbFo%6LOCYj$`AHj3d zc4EdOg*I^OZ+>5tGVmLm1x(yfU47I?l(>>Q2=w%s?(&lyQ!th~aPwj&46v<0mAwdx zv`sZ@$Q}yv@>tLTZZ0F^)^l(qgnlT>mz<$Kz|_4*PXnjvO;&jK^=mAr6(k6|h9kX@ zWLA;`xgZ%e-dp*8bTDaK?z&|V!6?PRZ{80Wqb&#+>rWZ~Evgdt1g%Q!C|Ni#Fg0wQXKG_bh1*u;%jQeg4a>YWBDRPVo{ zkK7W_l%m4^g33<3~(bxar#jd%SBT!>WlqwqIi2lC2Is7T6yDFbRze_(TW}JyYBU zn8I04*ujgAgU^v<%3Aw5LPAocYS-)NZeXh4Ln|uyKD^b6rY%c`WAo)+>#tp9_%IeS zl-y8G4J9qCvYw;>nG2!TxJ(ovN_Ju>=Uc(kw;Hx28$l@rWz==}loW0{Nlz-Malk5M zqTs0U0xgLt)OZ0QgW<72&xcmX3Tf+estX-1_=piMWjXxYoBp!0eqqsCnhO90J|VawAfOmg*GFA~qai5N?Gy;^pe*@sdVoTi zs1LVr+L$1Boq2r|0xt!mzMnv;PPq#SHRP-tQX3njX_!U8$Br;Ix$gtfP7q|dZ$LF* zmvB1=4<8zNB$)rX=s*rA$QGbZY0Fc~=7mxZ;5KL;gA1*gI>8e$!yc+V;e`ShBx@fs zGZ9y%&UjH9AYeT~HeK(G4^JNk6^B zphO8yH{l~BQ1=JZmi4n3k_A|rBP%0=e(C$E3w#nKftHV=3+)W2WDyh;)HB7y2ZXJb z86p2a8oTmvDBE!Vj}0j*&Bgz4MGMO z1dxeVIL=!vs?EuetKX}AMFMscuK@6s@$hiYgECDJ+k@lx`PKQ5Y5Bw1vf&3u}rKNegO2 zgih}qg52~eRw+9z0|_x}E9~TFA135fUzJlDa>mppIrshhb4N6|*Nm|HEC0Hiwyz5b zOPrNVJ$`{1vTNc4&t2Oep2e;fpJw2|MD`7nu5nt|y#k0VdUS4VtS?JZDJO5~`Mq0D zPI?n7$#c?#sxjCh<)fwIN6TS_syS070*^}(w2{olDL4oEcuoknIX9N~# ze_A0c=fRmFx13YHLr}0+3up3Hri>Z!(W#Y9lk^M=7Lt-T~CbA=E}$r zajk;hKrs|VZAC`uaAe3OMYDDBM^a0)5B2jHBL#Bgg}1v{n1o>1x_S4RZfb8(L3M}! zd4yWqE_Z~`T5A~ott*M%MzK`kCTtOdp02(rSL%ElPsiwV!2~W{9Ivu zqhjU~pBHc`5n5HlBQ2-4HK=2K4k4s>OLCR(&u1EH!1Mu(r0)MEW_WlQ`}7GrYAwDE z))e4b|0RKU=0H%UUc{`9W`~?1h1Z+4rA$u+W2sJe+qjQB`0$$YZeE!;Wi3K@`&V1E z&+C^C&j0Yzc;8%z^6?(5)`3X6K}bjld?_piOlH{ER6`C}iFfohODnwV$pVOo*W$+j zqQ;v2htVpK)T*fPzT0|5E!^xl9Nnc5gSSPk&6Q~x6og9N?{H<5th~r!7*|n#5+k7~ z)pLDia=0<13IZOhXU`{D2~7xIF7JMcd+jeak}LPPi$cFG45`#zsTAVR*-Yw|D>~Jy z80Kh7Op8RcTp&2qvyh6mHZe&aD8EoJ2I2=~DAh$b%N_j&9sy(l%d5~oU=x9POyc=< zPh+tQLP)Fg=ks9Y&35JKg@ND@jOXz+Z)M(Oq0-X)-9pHM1bk)KGf0X<&KaT6XvO0H z9Kyx(h}%f=qGA!NfY5j}$LwZ3j+ceKlAfMrpwcIbEXWARe9#(C!f5(`(YLm>y$0cd z;L>J?Eg~G}KYFT-@Ok-$)>@>A$q^8inp#lgcq5pK7M6u zh=fE^9~?7Ma=(B5r(ouVL$z0a%xn)iguhjR^?v&s9i|-c4_(Q<2B-^ zpgxgot107KZ*s9}ks1+NIb1D%TMVL3ua!bp;MTIdiDiwQ452N~l9dV5dgafy99uE7 zrPof3$dnI{YdY8TJUmKZ6od%c*hsA*p{7+(7ke?68 zJcDxL=L;~wIvZXuAy@+8$Hl+pK((wXLxD$1qePQ&)nbi@6sPKAL`Od| zfB`@`6x*&0`xbw?FIvL`(3wCrj$2xIq+0ywml=?ID(#w-yi;^EMf&(|xcJ~o_T8Q# zm2A4ULKX-9cek5c1nd|4r1TPEl<)``wBPqUcV|-Fzx*s;qNMYv0uwT*U-J{gZ;kxm z#Uj-?S43GIlrSIrT;vf>#7mMc&&D)JA`&f3x)3Bhk8R<4M~9LQbF?Vy?V>OKC6rHd zX}mVwEPmK4VEPeZ4mQj5f-7aL{3eJcd=6g;J3`Gtf-8!SqNA{FRTZ|`$12}z&J^vy zH$iDKIMCG5A!cpU!@`XOTP3}?%x8iaN_=GJLV~T6>LvIL5W|AF;bAUoE3|bD>3`T2 zc;T8vT=QkcQ?N1ca(&Sb()~L|KNOKcYw73;S%b^)rQ$Q%mYb|dV?Nu0h2|X$vT%Yo zpJy-~PAz01S*Y5`A4DDpg%9{QSOqAiNU$Ip&eG>HJw3nZa3Od%C7niIo+~g|=e-$5 z=g~nF@C-hEhT4U0mT$TVF@axLZdW5s9|U41b&E|yT?8yb)nIn;wwg(AVkP$JF|%PO z{TUfd(E-bvcz#cxt3W;(6un(-e+OfS;G?*jujlnWxDQe})i3<);FGY}-w5*4kb5xp z#$IM*&`I9Cl;Ys&TTjNuPHZ4WfN}ri=PG(#oLC|_Ovi{M$nWAr7CuZHF>H-Hx+;0b zt+@X}*pSBKb&+@)yPqeo655%N5~PmI8*9me`S*|v;>YCKB-=AgoHNTso3r)mWC;#} zd9+aVDl(+O1SJYpCl(TOc00kXOoImZ#Q7OiWPC65F7>SbM`kW$j}G_m%jk5)-hIA5HgiWO;g%;F%M1$US|57*@n|A4e9<$%%X7ZhH?Rss^gYAQz>i zEXdW&gv9S+n`I8>_R(WPrgM23c%Tfu3g|K>HFo8;?Ez9*4~fJXnEPTpZ=js0s-O0W z6DNqO{`n9^CWy&(k{%qhWUqPk_^3PLcgxStKzUdDqcRonWHJFZE(g=K&WOw^l4_AB zJ8V;T7-rzyWnhyR@0_*-a|ZUZ zuuwnl^4kgj;3bo`ld6mxzaq2*mF!AsoA~u@Mm1hzry)=xfbN+kt12dX`p(C_O^#Kx zWz0v~wO8f;7Sz=(ETtNsOXOz{Y(IfpXHd4El}k$(5`~;bJIfxkeh20%U-B8gJ@F{3 z?MJi9$O;g-+~J5xD+K2cMXA)JQfTwmK|xujkKcA|UTBr)iq-vtq#og-D=+Y{bGm(K znRL!Dxoq!*z{+e|B;%p+(f+yb6Z^Q>_!3(m8motw8-|9y%S z-m({N?aw34L^P&SJ=m;lY2^_N$CA=gi+~?PZ~%bH;>0{m5V%JdAm}m&O-vA(k;H-c z(_f&^QCj2NcGZ3lq8*~fACofCkh2a1K4;YAvcV@r{3lsW%QVv-MpM5cmF3mef=4q&@(eLlasYM(eRALf9@WMl$O+Irw z>2ODMa*S>fnYb}(Qhx{sO*EZ(-VtZOEr3L8z8hfqRumq61pUV0A-2n?Dp85cRpM}-xWxA}%0o$XMSYc|Gar$x{1g#Udf=1lV4OLqBNhhRK)D_weS z<+8du5EmfPtmuo7(S||eG0;DRb1#g^E*kpZ#Dq3;5dBIu0zLVE-WpAtV+x#FzF}oy zk@jHiZrg;XyF1jhUx5AU`Epp!#>2zoe0X>xXtY+yp34!4`=do(BubO`=+Wfz4c=WW z^-KV)a#15 z-8#iY)vlu&9~O|oPCtvS1^6CUB73{6>hy62sBWHh<^PgjWb>JUL{8Se_DK>OxH`|giP<9MNk?|Qv%rU6u?{xCYF%c zy5Ba@O`qd+*d6-iYOadW%)pJTh^;85W|@z1-Zwc~qty;U+X zkl056%61rF2@pif$h_PP45@S*Ub7cp@BQ?eI~Gzrax_2%NI-vupx58~YwFk%&Aa|n z#`4Jm-K+5h%ncK^`B)H=`C-~;-2S{G<#l^q6i|MGelA=%1<=;TYWz)b+JOtX`c#g9 zgCm3ni2JYR&b-ABbmPq@^M|8kua4E#*Utm!3L)*puw?W-T#&5Q?}6}$YuR_ZTUnIi zI_BwD|LX+_C+I_p?Bt0H&-DRndw@Oi0B3DuBMq?~Xw5{t`)VFC9aco>q^F+df8jen zKd%fkjI$TEk#-4I-QZ|kpL#^P+`@(i9&m`H6+&siEbvkVGhM^DUj}^M{-$~mF7>y| zQ6Ddcq!yxCa*%}GXc6De1?voFojQZ_03q|+uz*Ie*FV3X^GTEk7Y5S1)|Qrs;YkOp zB{W2$#35w>`%7@zyrWiTWMiiB$>Nxcf>f`P!=F**p8`W<6uyO5rfhv4_PeL+8b84d zyZcza1M~mh_79nf&ddWAjr+u-HJ&sYa`6Ec6nZZmO`WX+Ai@ z{#6*mWmoQ8I}aSEAb_AlUOLJgG#V@F`9zMz6R)Nm#m;y#K8*C#m`>BweO1PfvdDMo z(dl#`ex-xnE0ou<&D>-cyYE5Vm?=o9^%_zj%wHPo0m(OjZ$cLP0LE1UnWqXz%Efms z7HO*^W7{C~YfS{^3KR-C;HGITki{s6>9ejB^ z)GkmYL}k%X9}Z~Hy#Q2$KSJ+}+O~vvuNMdfIgV>+>gm1p2_zB3XK z#GB?oBDn@`gdfzSHJ8M;$ZM$_Mqei?I^L^9uctCh);c8Bl>%Ha2a-`Zvx!U(#$w>;;=2dO z=0m8P+1Od2Bz1xO9V1coV)UtfP1&@(l5#_*G% zuM2QwRetwOs7~1BUOywFM5dcf2I(#HbWdO^sz>~Sx}rHH;3t&le0ub)p;{B{3gldJ z!mC^qO8ivI0Y&xzg>drE;cGz<%0H{CJLx>6F|d??mwyI6<_z?*8}`5|2$_=%qj&~) z!vbq|PB~R%S!`NDp*R4;qaPqbt@;n}Kfv_rBoawVEae*HZNla&>Xm>9!q}iuZQyK$ zN~*G;`GM@U5U2I`wySRsr$~yWls$cF07nQ7kRR;R=I^>db!xP!a;$);IM6ScK13P1 z2S=R&kLLI2;gOLb!1XE|8f~C>rVKlq7cXW31OBqy057t*itz2)#`hK;*fuh#EH-%N zU7(!R)A25AfGUt(zX_lc4fN?MAPY&Iy{JB}4;FyaY1@xE68>NS<}ms<0#-7Wfjj`O z%mb)aWMGY+uKxgea?~0mi>O(ExOESFL{nY;0|TCbp~EWgLp9)mBl2V0XXWd=(vp&H zSmi+=Xb8$wK^!bhE1L`VDNlk z`_F<-a4%TpBRD{s`vIO)f)u?;wz@T>AF`o|3J~)^*D9#H7O#Sx@&s8$hsv>R&iZhW zp}qL>`s6fm5mS6w);%|VG;-7X8;INkT2xP#Bz)=n26+^)J7GUMRC-OOq7Q&`IxYZP v&l+6+fl3FXU(L%9AcK>DI*|Xz*=pLsY~pj|HBPu;5cr2PFx9Wr#ozi5$PFC; literal 11226 zcmd^l2{e^$+xCs9l++`VM1_P*8OrP_(I)d$#w3}^JP!>L8J@Ozo-^B&d8~wxA-0IL zWgary=FNZJ&-=drv%c?N@A}rizV}<}`~KfzVY}V?zOL&$kMlT=^9)i`QJ|q_qDBye z26IbJ13}0}(62*O@QM$#h@m9Qh6XBI_CU-9?ad z2uALAE%(IvVGnmLV%q+4S6tlDZ|6i095*|B-T%`?M|GRb4^d4QUQpi5)$t6ldO1O^ zyLQ3KtjboCS9|F~FeSSU@jdBPvPa zt#icWRl-aDdJ8WL5qTY*XblaGQoG^m;+=yuOj@($tDbe$b44|6WnmGVs%>*bBmCyB zZ$q-jz+KR->h{1X0^OT*KaW`d1(6sH)J;la`-FJiL$`BbFhG z7atcl=AP0@t5w(y+t6k;d#-;oCoa@1=4ocDm~1pGH=jwvajGOTuJ5np=~onaOA~HN zxqf(d7@O(0JH`rEg{}YkmXR#wW%VWf=IoEU9S_#UjU9fgx>M;_D!#;B2(7wkPmA>B z%d?UxVTb1Vhm>tvRS>C9{2S2 z_T{Lvb)?A1*oYB)Hj=20G3R{zC`WTvT#MkhU&rD(eZC`3h*LP6u&8Tbkm%^>*y)ih zCMH(B+9?qg8=Lc^&da(hSt`xaXJ@@HnpfX>zN|ml>45jen0AhsIb(ho%OMr)SDY~} z!LAx}`0(NCz3sWOhaK_VtCBtkyw7)S37dwzR!PcR9&6#@<5S^_Q7Y6c>k;ab%qS=* z==L_VC4__=JuBs@rEBDoRlhm<(kWWz!KdTAdZm|~C5|7;F{<-yYi(6`buAyPu*YR) zvXe$nHK_Ue`o;}qm)f4RG{CkQ_+|>~64w#6_E@H0v-vpD6yI&j++J#G>JWAz-(B~y z)venCjKVUzKWRJKqIi_g9Tzb6Ax2>^7{P+5 z+1H&m9$YMolxOU(Up7vw9ajUt62tv=8#A-Al2(~Xz73XN3*tN$>o#t~LrA#(5{NN$ zjce`bpy}u>F;!UY(>1>NJq+UD3Vd-p4V^YcuY+BENT~O@$aplqF_1Rl*|P(hT3RPP zlbd5#rKjGCSoVCZg?)o(j}({cSr=)JeNJ-*y)tHdAWJDG-j}o;U}sOLA9nsV@MU~_ zJT||mx@~-7;&cPS{^93Xljg9q`bFqYPU)i?IRP74gWp7I4EX5aV;g7E_`EsR?TwQKq4U`gv?Tw9PbXuEMXKOu4Pk-7pBu?BVZ)=Qo-@S8ne{(Ec8P?gj z;I;Nep@Rok`&+e7he&@c#ld5dWrsrr%?@s^l}qSjFhSpH+;GdDb(2H(4ZI@n%%rB? z`fN?aOa{vAroqb(r@PZ0zJEfA{+UKOywoRDaB`)c|EfYb3$M$!>=q3J1Dg=R$(igF z(YFsfuAI4QCu}=dD(KrFGwLeV`)%k_Pi1Gt?k&@zwt2Et*WBgoRGIB*wk_}aZa?z| zvWd0aF<$+03kVkz`^?iazO~0#By(KmzRnQ#NrXlgHxjX5!N6XCQF75y^<`)%jZac! zWF{8-8>Z*Aa)NWO^3{OXRR(-p-qL8^_Zv8cmfH?p#Kg<^)o*Vs`gJmj+I`PK_jA|{ zQtdg5uDW@Ot8tZM7MjZSK3=5tiiW75rSq2Pva_+zXKhU(370i&*5xl-yfr-SKf=Wi&`x3AMq5_i#XbbM1(IZ7?Hw>dUg>*4fqN+bT( zSl*|Vd`AF6L#wrf;>tel-#@ykYySd4W9hWI7DW?nF6{kuLK7NpJZhWAmTuW@%$W}QE%i-eXRqi+Ts}pxyD3DmFWE)+tJKnH6!B6az zSj@Tkl7adFdG%;84|~$~d)ukbB)xK*IJ=s8(P7si+jv3KW=j4I@3Fk;m3%8$h?Ldt ziKPHVRn`8Q#d`hOQc>GMi?QZVlMNDS(T~<=-m&UK*vOOj_okKkUPXIJqh}#aTI=n$ zZ6M$PBk50_nv2%A`%>$%T58frHSD!mH&sh^3yT6#nRWm3;f=kW#lW-Ly3t+IJGUzc zzFwE=eH)Ccs;cPqCd1B3;Nf7M7I07$R#sLXgyeRwN2%1EuwD3GrT6w>s4r>GIB>y@ zS)owB;%g(VOaXkK4LD_Vso$~dYSGKPzAiSjNSOluKqb_kE6vj#R|%2qXJvd1;4JWy z9SMCI3bb`l)dnFZERuT{A4O++5@(@MS~WhWxzhZMl;n^(k*q2&|NPC{w>Rc|mYYtw zOeMKJ5A!|7DqR3@Yz=9WCB64L!LDazqW#9=*F8uQ;#Yn9ndUS0wbS!j(WRxr0M?3d z*4%u2U!NVO>)d*uSvy#2$(GWU9b@E)X=-Z1W}3Ey&7=jg^n7~7HgT=fqrx5n>_Yw1 zs^6bd1&4?Cqf3KCG{mk|G?0`x2!0LT(kUT=+mP*jIO7J#P^mxD?M<`6*&zzq`4b{! zt~JB(9uYh6FNd0NytoDhXVK+h{fY$W$Gj^9&m-WkS zzQ8kH#`WjFVpFg}9*`f>qaDO7qpCV_kYuW!et7a7(Vtz8+mt0=emmOfnL zmT%S`jh20?ql~GKDGtt7O(h@cptIbOUirkPsHF6A)BGx})Y>1gWDQMC4oscbh7Mp( zWPE(y=B7KZL8aOehRc^W2HKhWx1x=|#^zf?*q&w9{Na`@7nF7*aJFG@u7UexY_KOB zU1U;H;Y@F~{uv77U09A7d6DwxT$%kIEQgZt!_SOEjbz9jS%2PZo@+VxO-=hCtqooJ zw95l2km3=n6eSJfugpyL4_-x1eiZSiJirM2?~nk3FvywtyUh<~DX{vKex3o$KDJZY z+Pl6;z?GP`=uC9Cl|K4;9Rjqot(pw!BPZD8En2Z0*i5MVpQct@ z$CfYg@F)Ql_}ZByA>y`RFfl&PzxGd+m|z`+EY;0r9%VKH9K2{9u{2HqJ;2e!PvVT?u|p z%gTq@UTUQ6171)EymN|K`ye^lY16fD<|&q2D-+_6M*NMu=0(uIo#?j?`J%*Mm#M(w zA&0WMV`s%P`Rg|?*cc-IgBi_K*MJJ}N~iaAZ@0P#jMd%QKGtBPFN z)3cg^S1;2%*+bsL!vh8XOwIma-udl%>~)1f`vy|^#oMu|m6g{xI5+})H<&H!Hhy^F z;zez_!&@@+?W%49V4mowL~^REe!1DfYmi4)zyr|z^W0b{RF&S63zu4tg&oRXTXQyh z@Zi~G_{*0P=BHmx%4iBOYI%Em5BLNG1nAYemq4PyC;4N4c+caasu}X3YZEcXdBzRC zdUc*<)ldj$bAJgfO86Wwx^st-p|dx;g01lC`Sa(6Wxi1Q4;IS%onn>tu0&HkGV&zg znkA$GyQ^J1GBU;h_z=&%wiUw+>jMzvmH=Jc+}v2g zV*m7)j4qFumEEn?GRU4Xdx8<0LKyxk!JCeHX6EH&K>`crB$cWzBytPWpB6)|jv!VNxiUwcjI%}4joX~PZBw*itVXISm5e*b=YbI9q8gRI_a zJ-M2{004DK+e8ufrF&9K?82a+2cuNdNOaTwp&u>~RaB0M~1>{@xC ziD4+s(oB~PRp&U-6Szm?-eWyBQPF6h^~>gdYl~UIn%)1n`ClUP--F%1dy41839oIhbX~MB}k#>NEn)`0;SdTt${Bt`Q=jj*qD_fVtavUoS z!kAms&mE^E6YV*}8_)gfkZy1eO|gF16J|u=EL~*CN9!{IiErz(Yv?&}Zym{Ur5)azGv3d;CvfNP%Y(?dJS{!{ z-rimmpfPAIL17go+$7(L$;sy(UZWomPfShee$698a$F>%%FaRMM-@BJCcPThLNvY; z6PeA-&GSL>qIK69^qLhU`O20z_vOoYz>^}tAxsajU*gtOiV_wZ5fO#OYNRb!4%>-^ zY5trFh@V)qZnHk)!z>mY6m)plwJLp%@JLwlRLdop7}5FERwC3;+BDNaR`uE9q8lZf;r&iZIuC*O2f)g>FOEL5b2FDz^n<%U1^)zIrT7f*pf$)AXA!*)b^JPb}xdfn7mK z{+ODVLZoYEb7fFI<+r$EzYXaWer_Xka0FT$(nqTfaG*5xG4-B+dV?>i?X()N?hKi< zW{R{=sq>76i2V-(xEmNG0j`Tb3hnE+t2`^=y|LfQ#A{CEQzEJI`J_cK!crM7{BMN$ zpBUNy6fXbyV%%+LQ}asKnx~_ygUSORD^5Dr06uDK-Fe`3Ddz!S%laYzS^6@vg;%ku zEJ26=yaM2pl@<5>yTQ;6GJooyCxuZKIDev;oJ@?YVO~8ID|Q7t#L=Q_gWjR}R-R_d zx`4kGT^U)}w>Q5F4pj`Ipf+}my3!!{$N?K#%Bauob=l;{EI@n)7+!-c)K-kXkz~j_@-Tlg{O$VtT#Ths!HV}D>~d(Rr_Dds3KK8E zHlCT}rXZtIV{0lhxVTZWXiJ;%fw|??*fqr$PgpO8jOC0h?6C9u;S5h767Y|2b!e4) z|0;US5fjE{8Zw`zb!Xm>O5{ib1=x=Nxr*`M5- zS$0Q>)%;L}Dm<~q;*UBa6oToJ78Xs=C6UR=MIj*}-MbDB4pW!edUnmJsh$Gormevh z7puKI#UI@@711@N3EUB6c^i@W0@XDkAYmLu;T>y_LOz+$n&=AF!_-~i*4cXj#IB&(!*F*sg0P-{8hTvt!VTYq2~s&=ss zWfD;Y-$4V=zYl%|Ypu{=%{mZLQDkiFCGa3dNAH(ee7PP7VyR!TEk89? z7Agz9-gCEJPmjHlEUf&q_zw=uRR%?hBuxZ={D(Mq*}=J+ZXEx43Tw^%<(MCpde3Apg1-p8^myt;)p@ zfCqzGaD=^ig7fB*3Di&}+oAHpq7pLXc$p&267YMy*%@q%vF}~1u*)ny?<_rns2Aap z{aM`xZlb0Pg2+x>5_t!9_aDx)PW&L=eCl=2e6Mz+-3gywwmyu0|u=AKX0|9>$~GVA5Uv{^%)-$M}iUroukk&Y-w+s#^{rvUo0$ zcVGZv*y(VgC_a+=cV%0ZA9j#*Td*8N3kxbU+QXiQ;H?IX4EJp*-xJmn7} zvXQ}?5+eX5Ghjn$Lk|WuHe9B=e@DepzO@ZRb3WK#&ywbSfRkPCKU8FMf?_v;uqzM0 zCMSEZV9*!^yQUA?7Wog(A;`cwvEO(OT$x^QZrCwH74|V*Q%97$y1M#7D{-3{o}gep zO2v^>Ev{~2k_MtQ4{Z}fy}1umBpqx5BQWBrMV3lIms@PF&7csJ>^>Sqje~tn@toxv z_M9u69W2YgA|xaN+W_Jz>jMu^k=Kg1Z{s09vM7%*JR6qrTDKu>`0ZDCu1%kBaRBp5 zBaJ9`bm_$jwl!#2%z_iu{V|9xDlxGD{3LCQ00hB1qkWQkpB=Q#)$L<$#Fhr(ZC6oq zeeT63<_WIr(nN2)Tr#`f*P-m7RF$`9RQ>YgLw^|w zk|X{WbjxnYM#oPB+Z+?JB3c<%d8 zbtL?0M?$D-K+vE**(oFUwCZN4%cbu$8KL!ofxbdGd1s?gEoFqBRwMVH7m1D<9M4X>?44)w?2Ds0k|MTXu zWvHo84<>B)Jh)4dp32YKjtjm+`))tn$7n!hH^nK@j;v4jn+f4ylJhBjD7vXnlsV-O;B(@|uI zT0~QG^DG=jFF3Zu?@nEopZ+*6?mYd6??w&5vL)=S=V%ZoJH~Hkh_D9DPAhPspw5T$ zSwWcBnzkHMPL{k2I%2z#buZO;f4g7Y_1D17!b4yZjX)S5rd??1B9GL5NSK4R4 zSG|>F35RwBV>R8X2^A|bMk{&#Y^TH*{7Z6G_)y^~N z&}xu$u7OmqULUlMii_g{SI2dJ(6T2J)7IWzGcD5!Og5&>AsH*C-dtKkx(C5k>6w z`aDlc7iWvZNjf?w^*NM)B?7inH*E;x`t?i9bf&*Rb2k|W^?P%0FfHW&7+jr9C?b` zVnFTAxbB0owgx042euZi$qRKGMi`XCNpFr&U^HGb@Z$5dC2djCaKsLs1<0o^B%GyV zYiT;YZZR=h7Anmb1C;#6RVllQla#o(W7n|hrYRylx&5E?Th`UmuSZc{6BX5gGwcKJ z?!$s{nN`%@n9SadurUj$;ZQ*xYlg)=Rxvkj_;?Z;wWyS9%TvLgJSA&vfm(AY2{BnmzYP8!k|2iNC&SVjqMYR_5p9J4Vuq z1wTDI#a9ojrKXk&azV#p_{ZpdkG~1kaFC2u2GmP~@~jQUl;*oN;k;b0c&Lr0dI@9c zCMhCV>eUr?V@yD_=0DWx#FQMG@;=b~PaBfiTMjR~_nsWcq&(F3mw72i$&gAlZN~%O z0bl(J-;JRSqU#kn=%=A<6qfljI{`r|pJ~l-O~0u$D9UlaL5?7&UQ(0)eW>C8VReBp z{1@c{n$mwW4gXcy_5bG`|K?_1RnitX|9)LStyMCa(PP$KJ2u50biPf|(ioXvpo)e= zN!EL($Ew)GYeI(VNHo}VM#K)HQlmu(|_xpSJ zXjHdLmXtW&zdtVH(X+0m*7%5;>0j+n!lcfnP@wKZ^W~^*eDmhbwvG<%;c6FKTFT0E z(1lppAt~OvRV;N9FAyf!Jiv0`QJOUL@JU-;eqX;=IsJK=QuO67&_^ZK5J;VWJ*U+; zmqqGjAna8z_>R*0+ncOee6Fb%W6tAiXd8_(@d;`XsQjLxco_sI+HisH33Q9I z;dc2jWpIM^t$7!Vq3_lN@Ob|I(zcP+tp_1Lwa&LW3+|LUFYhqyJXjk$DV&Gj-|gC; z4&qGygPoF`45I;F7XYlbmR2VCY=*Ai%p92&q*GK`!WEhs#lkYctRamYl)1JjjDd!1 zw4gkgiBr3WhoJjE?po8hcNC_Vc=-8M(V-G{OPCviMg&TT@=V{RGDtY3NPEd(JBJBv zgB6|0;XW%pja(L5322@DT5uOOun(2ZjuVPLpmX#}Ez~Wxp-Wr_-73)EGtjm7{26en zQ(_+d2_{?09LD5HlUEzW%#&b{r5oTk&u?!v1)B--9M$g!k1=;Yp*+Hl0ZRE5Do>uZ z<~i!fa@MHwhNyD;Bq`RN@vI=t?i`(`2WfRc>d_xMfCuI11Gff7(=E12!zdsNTC5+K zN2i4CL|YV-;QeRJEnh$reV7dWx6UXw6XtEub|)Y`^oe4i0aR4KZ50(6skKKZkLR|P z;kNbTu_cIm)uU44S47OYFn{$zC_(HPusT2kRxeb~ojh~KtJ6DMl`TcOiP>^6ZuR8J zlg~Pa3hoM#*0N=^)zx1a`H_g-Brq$1T4jNXYR)eDnVwX~8dcViR9Lz-z{xMgOx74Y zKK_6NZD%}a4%Eef&@f(mgKFJ?Bd35o{tis-NJ6>Sh8?tc!54^A8CWYDmuKl(e98~oI!0Gf?iAXY+T6ybnVd$7i@{OpM)1|iS&A_5-pj0 zp)R~DY$HYkT3)bo4?N_MN4|gBM(%VBz?A=v?6O=8d14*^8G!vS3g*Ou5RJMMpiU5_lUL(IqXx)=|32RQ0$w7wT_w)sMi7ZLEu7)gj*3R zxgc$g!YG*SKrsvs&~Q5?%brVxfaKxg!l1MnhHM!1CgE(+hNy_$_dA-eZ>z(Q zjd`58-kS$O@mKAOU^>kT^w-qwhHjz)6P>@+LnIa)p;+)-;+{Mqk4Q+ch9LlJ>Ag); z^k>jwCNM0Z?BGz+`stGZIvmHv&3y%wo^W&Qm8rWhqu~K``p-!%w*?TnYl6*;PC!0T zhYBXJ9>9Kn2G!PKjjLlQ|14w+BUWp(eeL5@Qwh7f-cH0m-2^aIzK1Z0_bQH6~ z4$BhR-ubKeB(J6Ht#LvST>>})Wf;Le|Lv^;+L6Q=)uGc5^gKGxe(Xl3q_8?9Z>>&Q z|NIaDJ>NR{Fy>seBLIN}{$fw5Wv`Z&7CVgNKqLhIaPaYrGoS6pr5L&Yq(u8UAh00N z;d#<#Chq#_=;-8{lBaac-C2Ur#^+S3J zeeb>T{=YH)4jtgVcb~KOK6}kI*Ie^PsjDjBVo_p25QO_!5vB=2NQ;PnnCRdY|Iz06 z;0L;yvH}eJ1b@!u8Un$OJ1&aP+#v{?2=Nc;=Ul)Q1kpo}VKUlYY1?z&ek8}&Qu`Cu zR@QqKFWm{^r0WQO(5n-K-H+BSt~!|s(9b<7Ki)8HYQC9{KD#VD)>n2cnbs|NegG?} zsjeOmo%Vt5=STK12r(Ia`}+7K?fmK{G78nrv2rST%3p#GpYHA4r{q(=%BhK=0c%M* zhTKGYM#ikyngd)xk&$fVyg^Zskx$?d3nL>R63WNO$R5-Wn2W`w^;q`fU+$J4N3@#? ze;PW;h`^_dYmdOsuZm+$_d=GJm-pIhI{j&A)ZikFlQAr0vL&QtJl#0>!!aXj0fkV5 zMR7i|o=Rm_maG!HrMY=FDt%eYjnCcqZc9tcTx}hl@zK$qloU!4pFcKJqoYjk zdUG20nlFDHPZ%$leiIBu$9;=|NByS%1LwP=wL$wpzmYr@x7j+^PveG0MqH=6a}RP8 z`I4XX5#D>$BedYBwOP+4lanZ@@t}*!Qk-`0#jUck@+y^cBLkRM zyu``JG_jXX5u(m@OXzoFI)4SDVC0PaPW15bm~;A?pHgq1nm*kqR6Q{|s;Dv|+UVK! z`mWph(5LQdZ)>0F+U%K|jX+|;sb^g%XW;C-CpU1BiRflgNnv_gX2e8_f&!o8=k2WW21&Me@54u3Y#h` zE4v{l`=iq7oCbff`knY2A;N@DmRBTy8uprFz7B~Nx0{14M}ZtB%aNQL575(8tuF(G z=DqISzkgq}ael|M_EwAllRiPwOt>BybMjXJo`{sfwV{ z1)MQJi@mHF9arZ^zOxY?TjNXa8J7kT-Fd2?rkiOYL(jbDEddfk!Yi*&GDziR#AzeC zSAMHMO|99QkZ}Cku-;&wI$z`cvYPJt(&k;C$Mt*_E1^bBuNTz4;)=;2Dn33g!CC~YlHeka>5RkvWWztr0BazMeYAA!)8N-!e7$9xIw!FJwk~hbSO4+{ z2zOEctLh0Od;AN4NkvaDAHfo1`Do$qSk=0sNgs%cpX>$RQb9bf%N-|yr>_W*SGwc7 zafN1sVyT3dZ!Y)tT$905#E+M{5gso!jB)l`p;AvwPyLniPPOfDwO>s9WL)3bLs)dX zk3ByvWUTn>bPv0wY)U-V+wNqmvqVaL23jbkgUF<$AQ7f^r2Ogi% zm?|vsJ)i%O7*SNu)z#IB>eIl>nT4F9BDdqsv7Jw@Hy0Bv;D8}w1aUaFCd!gDYmE9O zPM)tMwOm;u0{MKixU6r_Z(WR!Eaq`L&o8iDOv6&QS0}4+^JC!foNT?TFIBFc;Z&12 z);{l|a(?mb^v48k{5%G`epz<7EW_O>*mN1vY1M72pyS(c)1HOv-Is?ymAQA^ZkzXC zarb~#y=)jvx7#dr^szgdA1&RgelY1khkXyq5(ftd4R?+8p_jG) ztR`o>8F5NxoLe{%h_l!ly84z``4>4@HD0iWygTFaMtRYCG=_cBiWaM)Pz+1a> z;HCaoWd_D9YSXCCY=eyY!_eaSdPcX$grT*k2n?1e=O!A2Pa}$2I}=-3$@iL8VtU&R zq{@hW5`IF$ggb5*n20pVfn&nR$VkldKjcsRMH(^BMOLZvs3}VVLc&~9XF2duKAEog zAOKk5@-bx9w|-kCwPrIlj^90KCX9SJk%OVNf#eZMI>#Bp{Wuyimz7wd&xb3l22=26W-H7wN}Dh24BQ6=5Mg&TEERvb+klUT zhITeR(L63m!w7L0H&d^!u2S$>U^=y2pPV>~Uu3{#^95d32VS1+ zw2wVCjs^QOqgVgJwsuBzTAti63`Ek2cVK$pjd$Yv_of3MdA$xg$s7D$M@I5JSV7{* z4J+N+k=m-qV`u)rZ5(%XC(%bWHMQ9T2NFZOHW{vVYUYz zuh()EYq`}R<@Q1gUAXDuD{>=gIXRScujM=2v)_nkYMr~Y<0Yd3&Zye&+TG?P{{6hy zfti6@FSDW3mR{h+NQSzR(R}{(RHOGpTAvLDhpEcHxQQSb$6FJ0r+Q38zi+ueL`G^Z z^E3q2JX|DZRqX&PL2p@z2XRjhfb7t$Q2cWrYs?E~E}@c6(h^Ev}A z@YlfqcYy8`DtvvX zb|J3JZ}ov*qZco&*CNuHpQN_7Ha$_)i|0otJ2PT)Ej5(kICp>U)c6z&T^=pRaGU+e zlHd1ff`Z~DFEC@sxg~db85#S;wM0#6Xp{s51fb_~zgFUznpD+%jd1yVN@d}KDAe%niA@16$k4tr`zf-JR($@A0 zo7eUy6M|a-wz6BZHgtjyiPNgZ&uo^=Z>zbxKQ!Qa8nG(si#QV8D@fZ%=jCpzN*ncY zMMd|;FSox!L97{mM9N8AosU^Rh0)#YM+m$9Qp}%##d}QK<}ZDYpbaVADkv-Kb`Cg7 zm7MTAnX+D)_uZ4{r8ht? zwKGcj;PBIdj4$=JmnkJRl@|b4n){GQw**;C=g)dWM#fD*BI>HDNC347UD!hee8isr zo-g!Vt+4s#Vhil%M?ptQ+Q2K*47l<_ zJYotlPY!fk$}j}S1HoIj--dkvV2Yjq(**Hk7lSd%O2|UF`7s*Etx5EG9U`{QUeM4VC(~C+Ac0T36kw;};ysWih?PX=kcyXLiE# zY-@`3NBA)rI8HnDFk7KrjP#KIs}#X8$>N`>kn8;P(r1t>G?F6@=}Dqh1pWiB-^@nj z_p)~XpX!Be5DObO%{%XUcZ)e|zzibJow~!iQMXewijl^UHQV-oS2>7FD>DUkJu>yY z3$t)V{8zu}dHdBl(${`^#u$({2nmye{-4dW74&u^!k3~JY`|fxtV_c+soum)+j=Tj zB5LNzo@jX$5Os(6#ozJ$z0i1#L&*AXX7!W3SL?|NO9r)l+iyW0=@#Z|k|`59_SPho z5AI$GHl?_pZx;5$TsFQ9JBaPijH9@tO%r~UaQQiw;?8U8xxHgLl@b0kzvimahg#cu zwKOyO8YFDdW)1bP2-J1PJUzsy@$_qIv)Bk^rAPR`D*u+&a66>nas-bB(DFB$c~!4R ze#4lEWcZS|Pfwb-uSqXnPeqcFp$rZNP2lf*wU)VD$F?~?IfW9Mkx2X`=~7a61X#)m zkZI$)Jv~syZTBR6wHq&rh!<`Ha=It%QqVz77*((J<3!Td)|R&+F|lsW$tK0B;bfd2 zR~EBl#TCpUlN&?(Phr}{MHY2I*mJ{IXH{Ba;^}M|SP6=0umX*`896HKZfQM<s1&ecCsVm_N&0C zNtaH7EN)H=y$&S)J`Zr!&H1_S5vN>1@3OmOCG_qP#^Ac>B$nuwj=Eg@mPm7C$Vy8( zM&dBzEl|Ldp)(pUo=}d*@G<2bjc!6QxJyX5TKNUvWK|mNbsM8%eEvlL#=S?fa}B;w zF{tGYz{oGUyAhHOFr~k5luQaqlM;eK(vTS5wt}0Dtx`Wz#0S|DQ5@5X;Nf0cRdL>^ zhTUa>|-2d^17rI|lCWk;;oV zrt0{*ZU#0=&*Wc)Sf{(D8ln?EGw{UNUy|cdLO->AmR(MvxT#LLIbuL++0f*xBfbv- z9il#|35kO_u}JRwB?X)SxoeR@9iK+g*%07Y&oV@|^oYK&9rK0ct+Vq+XoReYUUFAa zWMt%XOGl_!C&H8jA33pkFN@cUZL}R@M2~b8IYZ6t%4=?$FS2L3QaC8S3f)C&gE{mw zwa7r6UgBFV)yK>6fjIxnZ5+M4KolptF2{I_Cj>3%vz)DiqLvQ0aY?0M&{)d-4f)P% z{U`#SXywd(en1IxpLwE}m&z5E1Z#}8XnluFa42zdH(e;B!Lz^6)_=eWG zWg-{?fV_VEV^WXBJnbabQ;YDmunchj8o8K<@ z!V>2y`GVf3*ipQaw|$mGt&N;pfy79r+C`ZTh`U&9b*c|<`lJIl1Y~=+1hMQ z#nIf~Z5%QG8-G*eaL4@2kpZ^*;Rv+O;_q#SO3SD|LR=gnZTbly%v65T!WH7EW#mF1 zkDNZfqw#b`G}a{LH=4XSa-NZ^C^I_#8ud?buE7&#On@WgCcAe|Q-mrd?=qDGjix6! zv12mF`GN|qNAg(@X5G`|QX=cu71#TW{0`*(fS@C_dw@af1%X-$8M-=5Y67q9^8%@y7m*LowMKEHH?h|XWbD* z?IW)_1oc|*ts18cugifty>x4?SyjXjQ;8?ci$CS(g>QdyQp9AiQctU#&#_NZ|ErIK zEUteO01Tr57vn9syN(XPWsn#E_=`K05w`HFgccRm*#FJr(tOGM4T*T$Cujq9Kgr;L zV>q{53!d!GVY4%r)^FYymJ-oSwuXt+{v#^0xDlu$uSsEwRNg3=VUQw#!74{!w5cHwq+L; zO)*bCpGH0d)gA|AGMp~)-J?mu@8RRZvQSBfv!Id%HjWSz1&+c92NWX=osFaCpgCq zh}+^GzeyHFwt}>T?CeMykI57;8MAi58!_QN6z6w^k@3JytRbz58Yi8Dz}vFne*%*w z=)DWdFK8ZRwhNO~y08od#~fZO4}(oTcz~?ekwx%>&0-!-hooGFuc?vg$9K#CR%vV@ z4^|ob=0?2d2@Vby>T44uR9{&wa&6LmpTW|Q$S+)AEdMC(2Bu!OodoXS7JT$u@; zJ9GBl@j8}6t0)Bz+j_7HTWikP7X~s4`7dKXDH#@k@DSCyt3V^NeX{?z_&^DN9DI!;Jd2s!i>H@i zBZW4IK%xSC@G-{Ok3VFDrzyOVBE4`J`?O+5HRM9!;kbDJkiZbgiD#9PN1ODKk)%RL z){4XQFSx+O**|kQLHZKj{)UAb38fJaaCCp`Er_g_iNKZ@jDRSR=A%K%@i*Ut@PuUR z=ia1@B<@hP(mTt8j4xRc2&KOGgT44}iA{u(%!A)v7y0%^Xn`CyDxv>!jAZGNyQqnO z8)o?AotU_6wvt;yLXYloI%2Ci#F0VOw}$=n7_kF=0N=`&kkG3^3ACLP>3RcoN~$Nt z!Jua79Y^A5i%tF%UQWDyN2PnZaVj|DD(n>LpRM8J9v-E9Elm(I5&WCY!vlG*$$D#- z6qblogJ;4#i`j1N1l68|SpkBeVYf{Mug5c8rl)p%Z9<@g;w%Dmmr;u=@#H*PcJ6y& zL3y_7arL!w{DRU&csAbNK?J`!c$t+gBWK zkQi>&lOi%iIZ_UrDM*fL4KzI{c59sQBs&(ZMoqdB+8t z9bF-l;S==d3k#mbAO`@p+)%Hh^D2w2rkKjc(Y<(VF6m*)ANCm|6fzZ43YOC#bg1CI zg^^_9BO?ru^5(xfLlIOAD%9bJHjU&T%I%Zv{-(zh+{HYWkv$}*cHiLNHdKPb zF28ffy_|^>Jf;LeBs@}V5s>_4!PD^!ktvyLa7})YgztXsatVAy-}5&|6ZxW-ClZ*t zvziH~&|=Dt9w0QW<8)3Gy$*ANUep}9mZU2Y=y%Ajw0fCAs5Yn(+M1w<+1MY%yZ0cc9Y8wxS+aJ&($vS5HXpRU{ZZNeH zH*8I+dl`sW(%72Z}|PUx%t5h<@K19I)`3 zH9{9H3R$(2E3-bk&QA0p2_aC}f>Q4U+k~Cd8&|L1;0-N4OfD2Gw6`mMqQXWa=5H}F z1&9wn76p1vx4kEOw`~(?)L$I8uE93R6`2)9%{6QKiTgJ?n=G10wt`n5wTedLl;0ym zI;fM@dB1a070K4_aLR7liKplIS{e#LN;?|=;=1_2xMEzI7iJ-WxKOW8EqygFG6S19 znhFfovTEW%t?*n1yKYOzzj>KEZ;n4QGK#Z-m-X?fN_%+ywPKVc^{!v6j0$TBEfwT z8Iu+KW`Zh9fU}rpNg*xH^-qFu1X^Q9kxudc#a3B%ZZ5N7aW(VZ<*Kl6+jB1k()>N) zf0H9%GtN!NWa#*`uSML~7J;^;G-2o1+k;;-AD;N+)+$icpz6c)W z>afsE1N0Y~^qD%>dxFmMIM7G2mt3IjqqIc^YWS)Xq0clu>I{h&K6TOP$%aZ9lRGF_ z<*Ja_C#5nu9Zb`H2>r{*d|~+!IW0q&Kb~yC)1Mz~oSV;C)`mXCOntRp0V*g^)OMUd z^mDf~UV8vFF!E70dx;nc*5_~E?)K*RqYJsLugdAt$&6&SS|ze^;U>C6To?f!0$F51Dpb7K~6N2sGAsgD^A; z-b^5ls}{~;u(o=S)^`9n?CAT@+s_0rcVg6hW+uigbDkiKwtF55I*1U*^~nZxrEhJt z@80oW{!5J_jPhC?i3CCYXkH=v$ zd3`@F2}RW!PZbr2%1<{ddx;2nVU(N+jKYGyYnGRQ1a`fqA-7D#`oks7#S2PUbk zt;6CMMHmb<2q}&C=T7*G`saHXd0zxQzr;~FJMjLCW_g%M&(z@~-$gQWI^gH)-T!Kg zX)=H>!YtDLFHe>L*f`&|Oi{q^T7+SJ9@Rx0j|9ig71t*jl1*y;O6;Gvd@gSXyPzTZ z?94Z($m>Bx_tDB)cKN|AX1xCVP~i1Da{-N$r33|9+rTTJ#w$E~b{F)xL&=T(2q7Nd z6NfK`4P?eQhe;KVGlCq?s|v1r?bq1B4K0PZpK{E1MLW87*sUP|KOGL-SJgnS{d+o5wX5_p{_ar(C zzH$IBpK_1|YVP`x|3#2H1x)#&UlCT_+#2aPHqB;D)XMY>lT$6SyoQfXOxB;9YF);# zAW(P~&n&r2RyG06lK?p-51<-G^v_%KI%)c#&KUBQU<}$IQ0dCcqcJ96B1&<@Mo2uA zyx6!0mE>nOOqV8B&UkoQjemJ|wkFgPrSIHC`rv74M|{Aa?0`KjXG`%Q{pZi8sS0b; zR9V3#-uC{2bOd<*s+p-`;%meG3RP}We_G{Kii&&@`g8iqW=-hO^bF3A0`zuuU!9md zTNh#K4+UbRj(hJukonFzt$H?mwoTcY{wq%t#OoKo^f$&Uh^w|6yU$@zM<6u!f>@ju z-)cA=7XsFj@cz|J*YoV7oE^5>Vh_)*9Z&Pk(ZYg)0{G8dWmjMqIB}2niO*O-#K9Jz}$^wpVvs1RnQj4`ZBasi>&*xWT|JX-+ zvJv)v>vdb!_!1i~ilQ7oK)lU{!$UXFfN<}Pyz|EN=T_(oo3uoRn5Nril!bHE^uKHm z;DriiPa7kfK=NJNSA1o;@+Rx5V}AjZ0?zUsdlHZ&wuuAE@;k5F%n)ppQ8sH6(?ZH8 z7dweK?sG1IY)(bdfC-ce2bz`njMdlvOe8+HoH)9h@*~r|$PFz`r441;pzj`v)%Zz{ zO!S*}CbRVvMco0la=bw*CM0CF=^-D8%9m;dH|NVu(Ycz1tpKo}WNs-291~Ia-%Wq2 zBpevvzGcWP*kKQ6;W)?XoW(EI-d|CqZYrAAQknY@;p32@Q`o|opxDwSwfT#bm0|(!aE125JUfPacm=ZH{M^IdTl6fj*|L_K>wF-+jicvE8RcPP;u>f%4SQgVe}(N8pQI1@i4#w-ln82uWL7GVcNlg2Q~{ zUEn`@2rXvZUa>mW|7Jn7aHY;#@gWG&0A3sPZ^^BifdYU%ZGSD*IV&dzb;9r^4Y0sO z=Vt^^M!~X%sd9Arq#(8sb6IQlp|3I)&A`;OIPh?|11txCaLq|KqEWp3`r#0~+_XKD z4GT0QB@&a8%mMm9K@oHT6k2&tg4>ti^&VT(`E5;WDfT?h^NlCZ-hnn?C}=t64<8?& z@g@LY4mMXE^m5LFoU49=5z&PfJ|5LN0G5+u@9eN~-p?`0UNpkkgXy2(sm_NnqzO|W zIG!Ohpso#P;I}L++<56{cA4>}`5pFx9@fnF(a|tOp4cf%mh=}zEC?WH`;rX}U-r)J zZ%U8inP6c-$LTO~BQK=Ds}(v|&@Ep+?B`Z6G^7Fkf{@lsTPthZdINJ z62`1A4_|DkBj99fyhILovV0>7#dhmZ-m$32+S;;9o-LwmPkqI}i$DR;fB_+VbalWV z=K>6N*`SXNY&g3wu3JqAY8L{0FWm}>G(G(Z4-x*L=9}X(bKtbw_Y$W`*9Wd6FyE9z zbbC9y?}IF2q*$*A@FHefswZCo)OUAxPa3vIw9zIbHpp+qLUlaUFoWCLWVN5p?9r~K zPtQaH@p54gEacNvZVn6+DZYE8j5gECrD5(nKkib%YY7K*l@anR1AZs=naW~F4 z<0G->!nVn4rT5kq_2O<{VrXZyj3jlKRh(#bDbRfb8w*Ob`ausQMFK&w%KTkNAoEmDc-}asMHb+qOu~My1pisDxTpKU)`r0A)_=%d7B;t% zAJ+S4nTSm%;`8b11qPu88Np1g%uYKTR(Qf%Nr_(G`$vXZJ&qbtc`<7B6h6!x)kgC0 zr}F-BHc%M!^=PY6w;K{n=D3U8U9SVEpRM+DyT#OnUw&{{lj}_;q2Atu?W4oShsKHKEuV_e%Xi=U`d%2g%69;yb1;3%A043(3y(@q_ob%me*^!eqEGmc z3FV_EV3t9NpgCiLiao#;5y`d^Zb#WC`i-=JHN1%%=_`5F@30_V8=ld2goKr-OaUj$ zOu`9ngN7)V%Hbb4#lQWfg8D&5e5jjCp@?Z#x@My+T+(7J(<9oqoNya#lhlO~VCyOd zK-6cR{Sdsy#uoO3B{Pg_kn2?>n>`cJ9j14Wsl~na>$-ur1FBN(a5>vwI$19U#hdYh ztLP7N<9CWonOmZG)WT3Z4+J6X7@%RUSrm`tfEN98nsDno($@zJjD3_KU2-@z9qT&G z)ZhYFgaot*>;->qFTmWIU0F%=a@G|Clw_}gdGl^r(+Q>S7rkIaFzJ1BV}__tDWS7< zsoN-oHA26}0oYadQ6M-lXjA~VVdADaq#q{f#YTeeq6-2Y)hHm@-IDlOE5c|1(qtCs z_*dv{K_XJuztupFr4YZ`Z~w?=iA9Zv0en#y5$(YUp98S!d=#)J12;>lv2`u`wnjOS zDpcmrl8dNkfuZ4Xp&)v>JO$`_N%TNN=y({5r$;`L3Gb__s-$&vAewx}wEqJS*?{8J z&UsQHym$S^H29ZH+wG-swqLZUqvi&5&`7-HaJSzvn03-NI`X^r0N)=KQ=I>x4Y$U*AMIZ}bb@O2R6;9;@ z2X;av2((c=GXhLoO?V7*trELOE`@Zm9GH-o&}xWThVo6qa^M$r$*~d8%2yR=2y@Ei3<5ED05UPg!uilk(J<~Hyanp4 zA2t~*8Xq*L-40i^?NsqNUtPuqJ~NXlQI|8;`@CCoYInaH{M4R0aIP#d8h7M8eoRyS zSYmY*XR<*8=r;(jDA@XR@3p%SJOm9p4%=)qoi~R>$x#5tk2MuDLIZ<&3Mr24ckVP? zH2O6c!E-0SuGoRLlK#SlZoTgNuQ~l_O_`XRtx8M^vAhk`o7t_QxCUOIt5r#fo+S_< z7w37*7YmOaPZH)kR8VBUKuzrPhfpSKx?cZqZO1*S7gVzNU?8cL(%|c)aZ$eHqP;7G z0AWfK9Fv&GAL4@CGLgS)?Y)tP!A@GC8j55($S)uc+tK_-fwU#_ZB=A}?^R+sebWn6 zYEoZNQeN21iDHm(^dK$*G_-Ow=7{((b19%qu%!Y7ROF^Yv%Hl=Xuo}CI40P9hbV81 zxJN_Z|D|{+VMq=d7d=1JPj`XoWHZ!u92&bn zSF((KwqT-4A7aCOHXs;>9cZAz_#ptz%o4O4ptrm`Xa2um`ams!4txqgVbiQKkBBzD z?n@^gBi2~s3F71s@i72w?KgGi)aJe^+U;4y$iJ+Z%nIi&dcqUnCjhP&(D=2&F?pax z!qojb)O=kKfwNis00|A;2D}Pp?!rAa^=tsUB1R}WWZh6r-LC>(b-N;ZN~!^_S3bYP zh+oWl>VN&0i*u^lscu+if8IHp+|~pdb}R*4@C}6&VVomfGN`->a|ux<(f_y-XHttp zgm|fjSjV!ANMY@5|ISR1-q2|yyGwdSqnz`LQOQyWHu8VBjrtYE+Fo%khuFC+ep6@$ z2IdDcwz^$0BF#kp3_@}s{<$RW))w_$(2*Z-BSs|@^zv9H)pTUX5p?*X!B^eC?jMN` zJa-^OgSR&1lo>v84ZX2&4QS~AMx+03Ma=N#qd4hwc(oNm6}|3&YLd?$zx%v9gPr?% z9~mj47L@sEE7<$gVe^rLC9K@$03M5_aI zK6G>(pVqc7m0S8ghz6{dU*#bnXNmj)YrnEyW4I_QV_QV$Kl$`ez5dwO@F`FpK_yK) z8T*O?pZ0`Tpf5aZ(Um+$h<8We7 zr`w3MK^-`W^^f63=HJb*4*pd~47Jdy#u2K(EPw#*K#!VborW^e(9e*i@wFJ7WFr&E z`VI)?x4HM8J1YZ6M?X-u5+?5+Wj3{Zc*vZ*-9h}WZi~y;* z(xioc;k?g`$NIKFiRFh0MI;50>y)ThEDMPjX|SJsD}4lt96v^y>_-D$4JUBN&#-fC zo4vAECrg)#PtvVCMMUzmWLu+2RSo?9U``-D+V zM?I$qv*>KtnIAhclTW+RrXQH&kod)*3)Hkcf6_sIA zuaVMXNzf|1*V~SkGZNBx?)=;lY{*Khd|4KKx%U#JrIqlG6yPNg5HPoNN2SWrz;P3H ziSCYlH_Mgw`_%Mxf7DV6%8gO_fz2rHc2xI)D@R;>7O%L`Opv`k-e;KmB1a2;M*q>u ziEk2buWi^)GLzQI@xt`M#L?u^F?7FUg;5FndJ?mJmS^x z;SKt#=ddfXFL{B%#G)3ep>E?TG8!7ma9~$=C$P}DgGyykxO1fo?L1&sya3bOUXFHZ;m}m&=yCzdc4Nx6y2@qfkOXak6VptF4WhdwCCEiX5stYVOi!eh*M7X# zLU4ZAX_fTup`T=w>xz#MS1oG!{n;>#`}j-FxTdc?L=MJGBm*R>P(uaWZ^hMI8p?Zi z+SD*em#bZfX-f;cx#LF{D?{j;jkTfp!ZE@rIuzmlPV1rIz4(@hdTa7O3E6{OtgLBn zN<{JEM7t*frgL!jV_dJsQY3-!;Ih^ArD|SFij3fUbJ`+daI|ypI(jMmJ%y~g{35au z$@!>ajHJcGpq7b=Pf-Q;ZdNTse!ErAfB3V;2e&$6x6b}lAxuUq9&+d?cA#la>_n{@ zA~BM`{Gqk;1I~iE%0b=1S>)%lnF2z+vC*)*bbD=D9=PAN(##Sgfj-ILddNblENS zpCnj<(ZdRX438`?v;D{0rQ{4B#%Jp(AaakL`DUD;OGNB+`SKFqEPNsscST|4shl!T z>keN-W7Ws4)1_Em%QH86eB=4AbV79EA!O;c44b6rE^&%+v>5mFFdgT7LGR;O_luiJ z*Si15Z~j67hB~4B*m8POru?OxT(F+cDTYSVwz7*6@@QW61Bwpuovs&g5?*D@W}eSr zAG)C-QdxSR3vuD6EhvPm5i8Olbgr7~$rh$O2qHFvZfV3Zo#XFD#e|-V@Md(Z%Qi}&?8aboe>=6yAWUd4rI zx7O+mk3Hk3xx0?5{9O~StGMvb$R*N)F% z-y%i(hst4c+-L9N$RL+05RN=fpdiD$AC`iWzY^sW3UaCjdxa30f+b(ny(qQ(RAr?* z3=k{oRZ$4Cjywon9+h_WL8Ov*_zh>a*6_=-&`32YT;MPWYpTensSw^RDQaDyYCkKJ zmYk>15C1W=vNy+hpO44cXf_P1JGO)wWdnNFQ1U6bqNmL|(OVMn?T#y50!chgg z&Ge>bLj*Vp9bUsKSkt8yb$DkBP2a4H{9dD$l}3)FL{E8v;t?Kq?=j8$15`#$v#>Qd zYAyCV1Fl40gOAGxCW-}6?;X~*Y9HpTqoIesFFBq4l}TEP3p=Tnto$Sr<6m~iw(-P{ zoaCC-t-+-fl9s0XLWP|tBsn;##(yV~XBo6XHIX@qdh??p(bb11Qa2U`nXROs5MC#w8Q-u&)ECsb_0$xNg*t4QZysdk*16x3~C`J!AIF%wIU%c z@zn7d+SIa33D47#*W1Ng@U4HHzv(|>k;jRW65?ORAFGa}Ko3yYj?A@e*Gxg$0Q}H? zT$m?NQcaFd8LInSM_`_&YEW5*+(P?2gd5{dsIsdTux2d-CTDXsY@%7EvZVMj+-E`L6^fB(lz*bnV?B_VrLWQpvT_`etasJL8| zh5S{Su@7{x!yRM0T)GqNzBo9wzQhjE6AHkIR-vQ;U#tt`^Wjiks6xt54Z*tG6j;3ymO!47P#V zlYump;fL|}Bv<$qYpFs7FiP1tIs$F)GlqAhstkJN^1hBa(T3+@rX^)W935VL+&P-` ze38FXA$+5~5Gge#1b;x{S4<|}s3e7W_{52BreJc%Ts!*d?=L6` zG@yU^ks&zu7`N`)g>>!QAJ_&+!c)Y5T>Jo1)JD6~(rh_dMY6l7___wFWX4|i`qB0G z+>U8QlCoE+P?x-Gl4{{Z1*>y^K-Q0+$w7lfZv}NPqfB~VhwtqX0b-&Do z*vQ$gOH756V%5#8bU0?@T5{lz&zpR!fHwje!x5l!0tIm~3qCSGds=s=Oi<8NK|Ide zJHU@!3V(g=a;c^Vqw#NZyP&uju+v0LhQ$M~??2x*BPpcdpd@XVgegPu@ocZGp&^Ba zf8>QpqkHbQDd-HS%dYmv;FLD)`;?r2v%&zKTY4mM!-=5VmvvYRcxd}0GV(6ZexbBz zX||mXm`7%K@x9f`JG~ziPsYnMZ)@9{x@5)S?9^JLM~&b|7muyW3TcHN30EUE1*E+p z@(l~AwX>_J{D!ty1zQY)KMUX<>OWn1(t93CS*auE$+uH)XP%&u z7^GRLaY<(zIo$fVtq1s~a!k=Jv2-!-N=}ml#Tf`vT`3KmIpo|9s}jji*^rN}O7gRU z$9wPSR>R6giCVL(J?bQh0GOw3crK$RVXw?_y&mPqnV_av8(maelB=2GQBPJhGZqj2 zbRb+KZw~lmyFvm*2p&eB?;M~+%iW>TJU@2&id4J7Uo{S z&pZ}AEA^sIHRpAR?JBSTh87sjS}v6?9b4L-jY%R(-9wBlsq;z;vjF)!^P4y5&vBw2 zwM(mLD#Vy(O6%~p6(UII0T=5~?@{*bN?V-?0jHp?^Ja<`rnsgk$x~hGj){})?u@?h zRJX^WHkrT|^K1Ax_N=$HT~D}xB8hz3#e$uIAVU&+NMH~8y7uSlf`knjaAUJC{ZZU& zFR6V+xtNRIJ|5jfr}Us13=ghjFvXM(4q}1g2`~%p18@!HS4he~D*3s#H7)|A9s}o)HXr`;0x&&!7Kt>g7LFPakVC09F}Cu%Qgh(X z^h=wjUpa1dA6k&i_nhDv$v>jfWKBNind*_no)X4lZ7&R$Z*Z$%it{%fE1qRZlrW_2 z+PA^1mK(m&0UUXGN(XPDY}XU49~fW4hBQ6sc|An`)ZQYr0PtP0vsP0%^$qodoQHtcoX zUJc*A@Vbg(O@{-?6bZs6=L&n+=`9VaNTMiM-zh$R7$+xTTFa`rpRYQh(_P6gGjUSD zlOuS_MK?G#8Fc2nhw7w<>b312pYivLG@z91pIexsvZ{I+i8VTZ^_v zQ%8p_It0eZD@}@rv-*zvJlyo7LGOV9R}yeB>pmAVy~98+dLBw4;lnSUKE9P5Zklto zHo=cuUn)0oTs1oNbWf;uv84t~`Ys=))P43xl@ZtFD|Gb)$fe6NJbjN)_DaGetxKnv zk5m5IwF`>u8tP|m#vdBiqA#9TWb*{h;2AXglhaa*WT_DgPnI+R7a>8Ln=ua!-pR^N z{OhXuG?9$?aZN3)cZaD9D+lysG07Ke`ZGkWAx-b=EM0h;347%DDR*4&>gf0$i#{Nf zg|8nmh&rN+-=00l(#k^-OwNJF?Ergrnrc4qPGXxp-1LOJtj>7+Y=;938hp8Tsh__+ z3}=KGW&>ygYm_!ra>(JHWF5Yt1-~QOR%`GHUVnMIt$vV{kb9W(dbyFdpXyG;Rf7uK5Y<+HuH%L*5D zLaw2){cD)nA%DU9%S>%L-UgBxbsf0*p3D!2byzL7T0BMgD~$NX_gyTA!KCQ>yx`2A z^`&3e)z?7_?3gKraldnBVmo@Z77hA?MSSen22hQF?{u5bZOFQjmgBA@$x|KLj>Eh^ zLt0Px2`JzSg-V-NYX52G;Az}fK=C$(aQ#1dV zCMSWc*>>m#mhH5dC2{FmzYvqEbRk6NRKt6Sq8LYmzkV?WbcfOG^I-8SKgBy_+r{t? zHUr?x&GjA7qph^6h54sZ397g;5jd3tjg`7@Ke|#@;o38B2ogXV)?9dNE4Q^T*AFzt zPTRVrtcN&~AIo}HayuYdXpmSCzj}blMi$dR%Kp4UvrehHDSrC0e!ghtE4ik17;$Dsvs`6|inp3D%gV!USlGCCruKpnz)!pTsF|>*5-H7U)bZZt6OU$gb zPkL{B!}oKWr@l$Vm3JUI)~f6D74;F?1X-M{w2&GceZOIawddI9Swcdz;alggo7{9U z*E1z-EPK5)+eO8sC%d?@J7Nv>5x!l#)e5LWtK@D_WD}@qb>#KKsgqghACHZ)&;s#IL@U8!P6Z z_xQn+@e(4JLgSU1E5^0%PB*#40ZqpT#69;M2An7A)Q3c z@#H5bQMnU*Hp?uFgX|{5p^A{887UMh-$|-iq$~cS-SfYyI`60^gJutdfQs}gQi7l$ zNN6IxNs}f>K&rIRqI3{KFG{ab6p)S}(xeGWuK_}lCLjoeYNR*m{ciled+xdC@COHy zH~a3+&dyBc_q^S2q5@i>8v4d>QyywNu{FygFLk%Jkz+Xt<=t{Zr+fu_f9O^8n9Q`4 z8*P~j6Q2CJAThS^N!o0xycZN0`U@V(*lwc#bHB&Z!HEsUD$T2IOMZWT~aX z;9}ElGV@?(k0p5SD*D?hyIlmQa$5US{hxMu+dgq=GwQUA8J{%~A1_MWb`GOx4G^Ca z>?>2)w8wIJMo?Li);o(ldta6tuWHGb82q%&tE}kkYt{tsDd^>%JI1?C`r|YapCFEO$iet$WP}EB3>#1-2arF6s!(NC z3&;D?^m^-92i(lL)*nb{9aC}7r1A2*=geM=^f12qrYM3{+LV<_d+`gm)7!-&dZ0u- zoA#WZWZ>g!`NjpMsQlR4vqyU7rRBCUYoVhI%0-OR-!(8rJX7y1)WRI4Ze8N}O}EwL zD|o;t3Kg$YPGU*vkBt2oIR8~*tT{s05P_6Xta|!Br(EV%BD6kZwOR1@`vDiET29Q> zWn%xS#l>%@ih+E+aj&9XT5g^iH6oY@K|}oVtD;y>}Gmk1G|GzD+Z)=$_q!V4Bj?dGra}zxkH-JEiLV*7Aw1 z?==)-J$X!S+lQAa#iT#l@rsTb?Yw}Ik(HiyK zYn>_Hq(Wtt7z)N6?c|*_7T3wkh1;YhN|VL^edNw5u5us*J~Bs9fRLrdCHk>W;c7$X zo9MgX&XXVvT3CwedDD~2b;D6fqnNeV{W&9b73Z-cpLGVbok!|Ex+@5mZlsIrbVlwg^4=@&+SIYm>tA8lDa5MrZEu z+i$?DK2INpquOTj*~9w+&lh>Gh4VGQH&kAYqh3%$ELNHOJdUfRMVY)M@9|FsF&J@l6UnJ$GrkW_!pn< z9%hc9(gwG#1arCWP*Fq>ZH^ajQLu$CY_eBwF7H7P=PBi8m`%FXtF)*_+pn8Sl$=u^!Wt5whq<-{^(R(t(E)P*r>my8|l7Y+&-2@RCzrs5F%~s(sdrnx9 zJ<^C%&C~bNH731ihoMLf|zKDbdumH#zHvO}PE|5&)A%Aq20bL(pf8?iN$ zif`sxkjuO3MouZG)DTEKWrQYUjUA1T7D%t&S^FiJT53yJH~u;0)n9gfQEr$-a!f-7%i zM&>z3-rmu<%cmprb@m{n=+!N9S(!_>#3=bWX!s==WO+#zA`EPV#;Wrg$QLJ?v-ck5 z1g`9M3V5ZEU~8qU7(F!i{Z?wrmY85gVI76tAFJoWh3}EoIV2EIy?iCfk&a3st!aGK z*u;RkvUtTM1fzs~?9y=+^_qC9`@32TfjN5iB9q5f--qiW|jby*H9TXBTl>D#{GzEyMd#Kc(>0OZ`UmpX<86_fpuBgi>x> za$H)QRY=UwyykMO5JNIBs#m}+%)H3bTfsUpQ`<_a7w0Z{l;gs9#!6ZGy>Bs5kKvg+ zrrcSRww#*KK-X$+0hPwSxMSuknYrrHzJETslqUCfQVe-ZASNt7!SAn~9W!4~PfDuc z18p>+XpKlo27oj-<-JD77k#Fj!DhWvOpZka$>jrwm>Z~)uPKK=CNy! z;MfB%PEw<*bj#ba6;sUwnkth0%}|$`&GIEN$LO|(LnE=hz8uqGCeK5^q$K^>w~#l^ z3iy#Fz0MZ#`5QK1px=frY&_E5ZMSJN6zI_PuOiB&YvmcWvwrS-jZZ|^r!ptOEdsDx zikQ{WW@-4@fJ#4IsKA)i%BbpZKT6j)8z-%qHVJcD6u&1hMG@yAc~s-YO?9VzdlREs zBUTnHi2d+&MAKA4y+x6jX6ChKLH(Y<+N2oW{+!gin@& z-=gf{m*ZKJTKbc3eLt8tI@hAxGK67{8%@%H!6-t?C`U^OFk zvWvVi<||WB0jn z5V*ZLVOdsDw&FKwio5ug5=!pPHY|$|$`#@Cn@tH6@f^0Zys#rH)$c85pW zO7BTSX>OY`l2vyqZzBzuEf5EPev}I_CcWDZipB+w*j1*o1ygep0B5`fJG@NMQL!x2 zW)VO$6DjO1$Q}Yuw0JRev%}6dP!YOAXO&07O8k)osvL~N70Mi>55F4|OBawCGgSq1 z4kP9ZHB7K z@|wjf64NcG(dHEE(x3h!8am!ZHwEzZi<_f^hIC{MW3S}*t}TTw?c+c8I-q5p3TTGJH93ESnoAo>wC@DzV6ot z(jlBWnNcLcu;&)C<@|t*5o+1#SXMvngV8<<5Ud|KmS4&_J_kvOYONC zy_b^s@ycki55QXz;DJnP>gpVlk||3|&vbQl@dTuaAorY|?g`gn-teJX`7pp!GdW2R z78ZVDXt;22Wu`spPiREM0Kkp5Kw=$EZpo%bCUV1CSlkG#^BLIC2P!i`Fa2{rNq@~l8A}HZZ4;L0SSj6;r1O*X*j|h6D?-&8DO5?r>=+;)U zvf?DrC}F`YvQ$7O23kKiJvzfKd~Z5&hWKx_c3Ok_-te-`bb}9Qu|&nj#u{MY;pOE* z;ItbZW%I6#rL+X6BRz?W1L&Oe9Qi^E#YDq2wJmuCl?p#A7kcJ;uWnN`(hq!em}E%q z#kB$aoRbq5za@thkPtp4XAz499pyVis_cZIVHKX~yHePB4_^`m4VP9x@&=$~Z$aX>{(=j&g79BHv@pI7$^p)BHRiCDZ2hi!#OnJ=&IAZI*Zo8ow z;t?y43sT)!F7_iX?3PE0VZ9pt&xM_4nlh#v{URRyU8j6kq~R#t+*-R)rrfXv?H4zM z%lZ>w=UV)RsAcp@^Y{Dx3XX6gAhoqY)?hPZ@t!a&?4+>3J1pR&>5}D-kLt1P@({Gp z;K2LeAD=Ua!?!xFTL=MxmpNdOQbJ_9K*!^+s^@gkIYM3=roMYC9e~8w2Sk*=%HcrE zCmJ}-2&l1k?U6Kb76&V%F=b81E9vei{=ldUlRZQc(m&)lS^Vn7j)Qk;YGhK<%hFYu ztrnus7R^ms!jUboqPrDr<1zR=gzL`Gy~?eF4b?M!!(2@JOGn8Y|M6oML5-P*hpMhp zEc+qnpwm4K>gCG=I+dVF;r#^w=e9GbL?tTc1=jcUY%>S}aB^|B{m`IKpy?H_^Gx44 z1Gu_1q~F3=>Zgo7f3#5f`BFHAMc@$^5N8QLUtV6jD~J)dx(})pu1!0JyC3Q0U>Q@O zop;>v8(Haf8i{C3$lk2EqaPA3X&(Etp1p}Ccl%&D0$y3|Pe4Qe&y&ddj%*DoX$dY$ zzBpI%@i~%2js5(YnFy7I43MBIw9>@l=I7@bduH-lb!pt3X@>pnY2W?rBxK?;&8e|F4~g!Q7b4}_T52|l;=ysU*z^&zphNiG(JR`b6#K_rFTEAg0=428*vzhpHU1rkfW0!P6imjO@Dm>7g6Yj^QP1K0pJ9_YXpj$ezmkF(!9L9pw+3v#?I~@=u`%HHIiVg^Bv$yQbZ76fOf>)-JMCs zTSy=|1}Ng*1)d#eh$8*vu1{RjR#Te=KvD$oZsU$(c-@I&CDJ;5}m&c**3rb5$>n?oS`}nZYgOHyFMuQ z`O1FIq5o1y_-s8+TgHu4x6CXOsSZ&9XCZb{ni)O;Z6T95JkLVku*hj5(dawF5Oe7^3{RUY*(gSlq$(nw_e4N3RgK;(-vY(Cb{rsP*v%!u7&BOCP(}Pk&c>yT#9_s0CTlk2Y*r&$gkV=G_EdV2l$LY zLb080xw3xyt}7$F1VH@l|MT!i81UR_eLsKyh_OW02`F|iXBiiCP_*jJh@~;abhs;2 zq(dwy!fT!?!QPRTZMNT5d!z`${fzJpgS_7oJ>7Ihy&5pe4VA)z;GS#r%~a@RVnYcD zGbT8k33+9l&9d5h+>ytCCA>)N_6oZkxe8&&E31n8RjdQ2&#p3|v$q3oe{MR@qWC_n zWEDPi2xpR7y1XQH?een;D)vBnE%err&gpr$tZL&P&$KT+>dJ~e%LY{6@JbQGtuI#| zqIe?XR5nv01Ba+Vpch-P)Hx2Vl404$ENr!Mj!eG|(Q2V}1!B+zDm2dh!*i2`i8jFL z`~oyp1fV}(l9f`mIKG7E8tB{}wZ_=#>3?;TMHG;B)P&?Utt0c?Vyn2K-REpWx|hFp zIr$PHr8vYGk1ag*4=9LMR$I;D=8(A~qgEq7UsXd^WM_9oZ#UGL44%%83GK4e=9cC% zU1mC#rz>`9Wza&lSD zC0s*4NMtZ+U)S&^4vkQHFJg)9%3qZn|7jL6;pbjXYILc;t1BCnM3Q?|fS)ubJGt1i zxcIug1A+$d{hDWAM|-=Dp5CpuPCr)iFOe`>|1qb7-JG&5@kFw_$D*7xO@Av zPVwd^Za7KoC?yOT8BKclLE4EnX>4qZ=BCpGSsh)CY3b|LMpABIL53CqqP@w2cli0^ z-rQ2Xyi%?hn*KrQtl`kgweJgqB5@Wl^sX+oz@uJ^`Gb>?(lq6(9HCdm2-y_mWsNn! z@6>&7c^wtOFQorm{nKyb?`0$>)`UW-6}0iG*QZsA-UngSIg%hQqgK31r*?@Ey!z2i z5cm_YNa!pS=6|1|R=!Fz^*iuC!C-%l8~;qR;nkr=;O@Y6gzS=Mt z4Ulpci|!g|6@vQ6)e+0&# zj)b~uTd=h1%#^_N^nm{Aj*QIInvO|_)$?b3Bu@h(=KYj~V6i{#l;}=(^W||s6k;=& ztpHX92Q-4hfDHW2@fT-x(i*X(q@>Kz@3)_gD?8V8>cW72?`?WID~N}9K^a=HE*n2N zBB9Dz8}E4aBBP>&rDL5H^!0(b?^CCM;7|oPAZvie?mK1f{H94QQwG$IBd0J)0C!6WM%J20tyf+jyr&v3tgyMhx598W4wp3tX$st7ni z5&&PnG}GLCgCnA9XY}A`#h`R^U((_Xx48J?^l-bg3{Skz;c*Wj(<4?P!?WlC^Z>|n zyMdnfssHENzd5#jqZZoQlmv9#kMJnk79ny_=&LY-k~80rjEyB1QKWp{H|nM5$v5V8 za^Em0Dk_ScNhlbwZT|x3I?(Q#&a~ZEc!Ng*cjDE%!^`c?)mdM)YYNlI|J)%UxB|gH zBjA5;0aPW0fl?0~cR-tg76RCL+<1jGUJa=={3urDzNq1h)@X_8%=)nDnPi4`PHrv$ zK~Mo+D+q^bo5G&I;v_WG*B9-t^Q<*RoYCIjGkSqj=}j$euBnj#j4va=%EznD8Dql6 z$BjyB=C5%-df$?x5_6lQO83Pc_6fFU4=cw%nl-Sv07O1>2?SfFJYoiGViC&CLyb*Pf7&@SCD2F%|65e-r+^@Eo}| z-Wp0u$K0H>`t&^)PZEc|p3!Sq_K~rGYsEA!t~ptluRepT9ODXe!CRQNTWv$#=#bJ7=+vS=iZe-_cID z?0U^XfQQn`><%i$P4YnG{EbRo;L+J?EraD(DrPoa+)vP-AP%Js&x{>bACGyGFSPB8 zGcMYfHl-Ckt!3ogleFX87}pzM za(D6uIr`b?W!An#`2e~6-gKWpL}oR0&I|QRj0(1(Lqq2LaN&EVY})(xOql`u#^mVi z?Cjv9okbCcpHPD`bBdNvT4_vD9z5OM-FP~{QXOT>d`CKAxm3QLSGOpvw0| zL;#kS3g~7b)|hx45Wv9!rT~$cA^C#4-fPp@e;P=*c=`CGHyx^RGNAiHHA^m_tEb2Q z6!O5?SpcwXZ;FW}0gY{)TSz2eTI0hga82WHj>a*#ApZ?SV89=rffSK^H$m56zOn{j z3JGFotYOsrZ;7F=fTIE`;ZXV0IjT685dZU|MW%4j#Lnk^yqtgZYap<*!Wv^#VMPKo zzWL?l)MjJG)y{0dubi&C1m%{OzXrw|1BCQqkOL1gx6SEB{KY_!QsH;t4DtC*1D@xA z$L1RYh_JD3&~}Uk9wVI%k5MWciy2#W`ula#9RdK@3y*`2>A=m}f$iP^!14IVI2a&> zv$!;q@E!!YKG6YW`VWB^8E6b|ii;^4vmJH8P+&z7h{GdaIR*FK)Weafb{&+ z<1B4JHU|P*I55J+fc0h0Lbd?^n1W{*Z^2I zkgovL02RQCKCO1Pov3<#3Yg^Wi#y>-D5CWDBx25Z2+KW?x`G*iy2tVZEDKI=R8=?F+x1l9F#M*PtE|qA~Ngr z_nqH399}@lt(~rBV894`qRX1LbJ1y-#7+ZV@D85j(gCviv2l&-iXP7dAOQ9I7EnlNMnmZcMu2zL|I-&+b4T((bq?Nb5ZKya@IzT zPZ=}fDF+q-W|{O1xlENbVYR)RX{nQOspMqPx4;|i_zRU#W8t8%^3f4SWE?(2!dUb|H3 z%ZlFYaberJ{?LvnJUJsHnlx_Hq{^0u-~HQ{UHlG&1Ft>4O7ljao-#y4kZbKi!er8{ zNk~b}C%$NzB@}%9iiIzA$D>)0;qZ-Ajh{Cz-o`=ni^rYB8W0GSRur|#B)PQo$v~Dc{$UGT(q=Goa_2hm zc)$Sll+yT#=D_NmI40vN%M<%nNbBifUAr3%CmGIExqi4>mQX=`Jq2XNL)7iC>GBaH zBNG4XA$cvWw{WAZ!6@^NDD&Hk{XhNva`yI5mI5!0;ScTYvK!mm9TwFqx&8;C9jixq z(=Xh!c`eb0vPHrf<)T)$vRt|iU79wfOtnZT5)~$7pDupa|2H~5>L*~rV+nfaQE5H@xJTvJlo?Av{6i= zv3vP|C%h1Hxg5L<_tw#Qo01Z8b8`cgO0AGAl6FI)4c-d1IN05m!HnhO#Aaq;sU8~} z6PiE#y~}m6S2N6)H{A1CBX3B^dEt+?j&)BGt>xp#kM}luQxkZ*Gcz+OAQyj_l6fkp z`_*$qyHI7!&d<-wo11g3U%%#WSR5jGW{%j`K|0@!x4PT46g*~-vaeswBO@anAMUOn z_M@S+7QcS|a$0*y68Wj5q{eCfC$ElN2hu4#=&E$yCam7 zlM|lTLo{F$8ym$J{12P1uGW+1-_H`muk+wo%J1$rXZF3UtgNJUbbQ3={(Q&H8k{=# zwJ#BW;W+yp?Xd9_nxMes{CkJB@p8%kOIg|J;o;sa#_txykWPoCE`^hWFJ@o+tb}6x zKL6;!tZ9_ zvPHFYnsoxTFtoR~mqOf!C+MlFuf3VjjSVYK z!=JeL;z!aY)6MHiVn^58c^%GmMdjtV2wO}#_7VR^L<^~3bf!q`c3!gER?mioQoA$~ zBJKdCmrM|JnEIhS@>JB1EcEZW-^SLK#b)0JJz!G@&9}~wzhgD{8{{olXj7G@$u~EC zUrOWJ!Z9wd_RRY_|rt6t| zdw+Xrd3~~}q^^!Wau-mp>rmOp`S@|$pSMi&j$lQq=J(AK&TnS94Sry{wA>3JHv0+I z#ReGJYq#^_J5BNbM%IVA2fQKhB8X}I`SYh0c;8lv4n_JvREVvkV`ro9X_d=zvwHsx zFycEwvTlmz`wK%(lg9c*%X7b`;2)08&Rq8P_D8^mEx|4J>7;;d2RvMF&(u1QL-N5o z(+A)2+6-mSrp`mzg@wtpgq*_0cOrV$+lV#9k#e`i91RZQ2$>XGchA=jgW(M=Ee!<) zNWg_j9W)$Dy3$PV)U=#^tSt$KKk$51y*jT9PTcHINBO(-dhD&V8#u&@ywPijL#*^C zI`BNSxR|;7R6LbA7AvfkkB@H#M3e=4W_x2}TEm}?l;HQ9TU*~XB(FPLD!+b>Rem>7 zIzY;yTSXsq6$)I-!%?(Ul}tD~Z+KfP2vog8c~XZ`hhvIYVBz_4w`W&7qJa-ubnBs2 zB|zQsY7k3kDlLs0%oL1Qe%HA*oHtxrT57OQFBK#%=C&r^dV6R~a<=(!lHP)FQ{Bn* z!#`b?hjM+lD21&4qzDz|i}{i5+c`Q~B}-gTQ1e+~j_-Ilb|+BoeXCoth%3BG#sZ!_ z*k<2%^TVr|)=-p>!`qe#)ggJxuky6=>qR-FGzSWN5a+s;SD~Nq;=}pwbWv3m0e8#Y z_o)Jq7+~>h&7yu2?53cwyjlszKLSD3ffmXbk-{U7Rga%7;*O3UjzmdG`DbWoN|Xj9 z4(2hL`TvtR;AMcnABFrsrW4Xw|Gg=#%C-_0hkdst+=AsZ&>VPs1YB?3Y|!16oA}8e zCgb1giq@!OIVa$T^0^u6ts){KKEN}f&~;FRmzEkYE#>fq1tLcChwvEdYRb^XsW#{! z3=K!q)HJznIf&ZM&JJObSuV|3`M-3p!35SW=3RP#$DIC*zOW<$(bU(E1)IkpB0^dA zs?xbeXb+qc9WReS3cxJWSz`ix~`D(tv&K zci?IHl6yMD>F~2aDo|EdW;r=I$;rqViik(u6dW8JmhfYGcpHT!ZEnr$VY;-`)Q+JX zu^#XThQHph+@ADv>w9_%`X9An=&PyW-OdgNbuTyzr&@oMxZX(J1ODJu8HLyrrV&rW zzC+t!eSJzqgzQPCfBl`arYoMj=G{9YT_d9bGETi#8YqT4jK&e9SOYsAUXKwYFCab^ zT%qK*G25T3HA^rb|E%V7HmYb|tykrDZr^w@=YYr>Tu(NX>y5Y|t%!sHSbXhcwh@tJ z@e|A!FJ9!2?;QOtN-nIb8VO$NPNY5td&4LxNynOs6@0f&@3!&htmmIz-`&J_lN3e+1qp7ti62&f+SAj# zIz+5;S~?GXg|j{NL1HS9@KWka3$NwA}BzfH$GhD8#I)AwBCmZ?Zwg zEz9(T=qQ8N^60pSe!cnj00m;?J}5X-WsU-J(Ivm#r-*IP`}M}Ul@B?`ebIB;d}r*_ z-{lr5kj+Md2zxtBEg1l#3pkS5*w`>@4MCy+KYmuv!OlNtC{OD9%Qg;ft{^e)YHWltBkQ&qT{AU7+WsHOfBaVrq;sJ#KksUh{G2-WZR8>sI2-^@M#BU3c zp0|R*#-RW2n*_DceBl5|(=t2ihWKq?%rJ<4S~!Ky)jA9+KHRfluM)-pkseqS9zHco zsMVKeo>P8@s-t7+JW41-(Ed-%S%B)E|NQOLBT*#&Zody9EXrZCjt4rFZ)3K7L74$! z>^C{A$Em%jN$VB|r&GJLuZv{YQRH2GK+>RxkJm&3J5SWoHUaRlrdH z?;7TRozDNONBTc+%4oDE@a`=(kY@?IM2+w4o%n*>Z|0|yVOIK zp-CW-lac}pGv6Bccy+rBKUl6{#|F`~Vf%erTKlSNettg0VXFMtCEc2myZP$TzkmP2 zXju`9_cdSR*~jul(?S2CpqG%2@ zf!CEL8gW8CXF1!uCxU|v5J2rnUy8Dn26kHFk}cU4w?Jdn;K(wyEznEvlM1J$;P0GiQSfFk@JM#ceCqtE0KtMp6ndzN)pewf*Z>{xqJ~V?u!Ln?)cmdUQvDCp#l)Sv;>E zCt1BwMTSuVV|Mepva+&4G{MiX+z|4o1`&v)bZ2KLCOJ8p0aLHum2v8uVKi{f1uKZDT!@?`&g)5)sap>qq@bABf#1jyqffG8IbJpimzr|VFXd*7efX2aj>}22Y ziH`fhz%bcvQ?c4_1X5nbY)kT#F#;8X#jNn_Q!k7lw-W*9AIvL@XN){2`@;O&JDykm za}17kVy?@*{4<-b=9BqI1Yh+t35W_T9PDX`beAMux+K`_kH%I)^#pCDqkAu3)T|F& z@v)&a7&|Wnt_d{q!rD+7nMF16G9qYDjslz{5Pu??3QhHLL=XN4^J&0KSZ^ar&4<$9 z3W{O$RT=SApZ~qm*6LK$x2wONdA#7hCa|PREiY&;tJDdWK{gJ_=f;s%(z$A_ztmzw z`$LDAIiL7?C8UNKS(4so*Egm_U3%^s@60p++j>IJhfO_{`&V8|HY~U2mQt>&@CKFc zn@Bu)G%o5VGg&3(ozz&EY$WU2U&?Q+Yi5uKpDh~68lghhZ8BV%6zt&-@vUc3(BakL zN!eFFs4b3z*!4wHN`|B6q$XS7jinY^o4gB|R&A9xm%CLoA*^fpu`ml1wN65jFZdY| z@+yOuFCCb$TjnDs2#Z#l{q$Qma3IYOC@anOyfjk5n9UnOJP)VzJOMW@M~QAO@_lS}94C0LB|4(~&h^DH5`B8Jf#sTUK`jq z!+#1{G=(bax)B@Q7olrBX8r?wHopecL%rNFJ79ix4d{clF#n*t$BML8K6zt z>`1ASqkJp>m>h_wtZ|X&=^Nu+X*Q~fR~oOKmAY=tulJZ5C1Iq)(^EwQ z#D*v?n2c|uiFmL?(N``@9FFx<@piwDrx+Wdejb+@qF-j4K0Q|nJ>6<(6QjxavC6cN zmmL$WkyG&5R#r)`2vs#K4(V!fr)I{{+ss&3H0mZ`B)ASG*B7Tj@Nen-v>?UGO|KdR zeH4X;q#%d)OFT0YR_RMol^~!AS;!@%0L~gsr8&Ot647^5GV%TIT>RtH|J<5gZeu~ z26LP5eqx4iF@*{V{)5kFA**TDh?D~mV8hnvx4-#Z1~5quJnvxm>Kpaa4(|K~C0d#m z1}m=SNu{i?mTH6F`w>gJd^fM;|G^(bD68}eKy^(&7Y|xXYqpPu2MUzZxj3`)OGoyv zk(R=CGCPZ*RAHT1sYhAsAFl2{8jQGd$|}`^)8n`Ko^w5yxa4>&MTWw1aOr zWBzArd$KI=K99Ta4+2B5y{q!k&-yeG1Y>m1TZ?S9}uowIbv4cxuML_;n zh^qQ~L&AZHthiMq@Z`O3bRJ<2CFop#O7q2#qAYq{H|1o6d`@^iN}Qnli)9`i_?Ds(%gV+B3rf+^IsUL1 zOV8E`ZYv&u`TXEdRgT|xj`yRMM>X#PuUhBi!>chF84-(STQnFNtAK+3e4kmbJ5y0= zdoxPb9(XYQsLWhaFaV7~>hO67 zha);T-l#LA|6ll zE61BWLo9=)ki#bzWB9b`$^WL444AUfJ&xrr(#^dw3l}C*C)cg?k3$bj>SPk~U$ZF> zGX0tlShC?Cc>MT^aQLWtJW>$@e}dt6GZQ8ZlAsK5;cv{!WmlMX5h+?)bM{) zU4d0B`j2fUbq@A$97lZV;O0EWgtM^xR^bBv^>ri_UN3ZddeZbvW9xMYVq zO5JkKXl_Qr=JyYb$z_#~nNHnKtKS4n%%E0s|GZHFyQYYh@uS_97pYDWVO;IHlK-BF zcr&x6kruVITEBr{j>Z!4*nMhWf7VoLQ93(gL%;1M^QGK2=$;+B`pTyY3B|2w zIugHJ%^(__n>WB{IURW@fA zM8?rykhz`@jj3R{5iPpVKuh(wid}1qP86U5iEse8l!}D(c9Cv?H*0P$HSSV)I;hBY zvxsXI#@=yS_1BhCy_fH~M0IU3Eo1Sa7BcJ1KUcHHwvgg}6REXqD5fF@qvFoOaE?~g zHeE3(iUJ zG7-v##S*zDyrk?%_fnjHF#XSeBu}$exwf8azEQMr_C(v0q>nRl{>JnuLLRIcuXANT zoDhX{{bxOj%db$0|N=eSzMZK4x0XPw+efjrSlC5g zAnyaqn`CY(FkAii`*iZvjp)(#kSwK$LD83XeBx&ybc8VG22;@WM?{UW6l9f!RFb?u4MhGJ}ndYT^U&{m_p#JZ3kvJT{z3}nu1QG z#}~|#`q()%vd{1LjE-twSIcgI43*Y|3arEq3s?#Jrdq6cZt8nZ9hy*XE+qSZ42gx< zrm7|3nS!{MWgI-xBuAuza>TNJVDE6>QFfq%D9hGaH^;TVJZ^NGSQ|hJW1`mN=ARMe8OIt2T9CShf#u_s zL=UicYCmD_?@9zmq*c zSaj1uKdKJ)AHEIY5|YEYYTpWpS3t}!2H56x@o3a$EY=FQU2qz7FH$@W-PH4$3crW* zB;m$CPmrS9A|5Xb9?$s1Qg7O}qXY+{wd1$7 zTDz{8jD&Gu<*uhz!$Q}2My<|VQlX?Wy@M$HR4CcXT%R@)Ag}z<`+d!77LiJZOFWe# zQZVJQU{QAs)mYQ4tVT5Vd#8exw_-_TCV!!zqUas!s_J`@FtMv;TVw-F=@JZv(4_mw zE){QDpG&=&QTG)%W)lUJR0?DtCmI7{K6UBY#P+Zy{*OzRejj2fUoaRdpe&m!bGXb( zJA>gnfJzlGiSpcw3sj{>9afG%MON|=w-!d+8a~Vvcf+T z-t}6XCttCb70?iK6D^;_#^QKv%`a^x%d}24vW%Q zu)ck-->xQFRXh)Cb1h?Sfto$)5TBbXe-%mzvKMx|K{WKy=LlB8;s~2mD94j0N3*Z< z3cy$YHVHYo<@`@40N{Q5IXyL1SpC+9`rlXYA;W6E$An{%Z-=sbP*z=eXCjoT6v=2O zCS=UenbPLVuL^si+)uTXFn0>`*;X<$sj^{i$gfNT1p#EU{r?4pvr(-oeIjZ1ef6hG zW?mN)ix~<=ILrAs&v*8AH%*0P8IzqL+%)+;S6FRQ3;_{iry2QG2fmaUK(A+-1I2X9 z^^hQ6Dk~Mu%^6QlPpgCO{TANzKm9f|`^%lpx#?UNz@Itl7~K@Gq>kU7yRPGE!nMD; z5xs+`D0Bqo8hq73{~v4ykUg^aPp9EbBXgPj8P>|JGY^j+oXXD_czmfm6qwHZ0z+zw zk{K`|5G~x3>1H$Z0B))1-Or}6vgsHcQMgd&>!!|AaSBT_UR^QrXM{F2l-(3rHaY|m zE5SX=d6+jP04&ES8IQFa|GWy?mp!0w779>CtJkl?w|%v>wLzo!eR_J)_wPifTZ3{h zUlL#8+`s+*f%_UAXZZjC3tE@}IYS_g7M1;&uO!hMgKju;>G(#1gBPwvl}a4)q4ZdJ zoON~w$zFa0qu53JDZQ;cbWx%a>AY$e+Q%$X=`V{kmnS z3_(h2YWTo_Di~LBNlC}%8-TDGe<2w+@c!>rEWyy2g z>P%6Qky!anEyD(yXF%TLrb*HTcj46qgbH@vD~WXG$K?kfiClXClDIwaF&w~=^az>@ zXi0P9v0pM_2))(CrB+o*bm5rO#T^w59F}FDidBb3wFKEyEG7Pm63s+~Ah_Y@a zBL6+7z?KSM&&6mn{p)~VVpFOKkXHcZLKT-)sqOUOgg@~qVodeW&4y#lG1C=nL60C+ z&@8?SIlZ4$x3*1_Cu=b9g7z>LbWY({IAaERjZvL$Mp-ftnjWL+pKp%f`dO|nEzEGC zq4iKbFN)_6Fg&LCAbSNeW}Pls=!`TX6A+aFUZ?T3QzxkclY+_jy?i|rY}0?zSDdlH z`=R*IEsa`MpABF+I)b7V6Dxtpl|+lOgW7ZZ_*BKd1;Rip3i)W?!dS48+*26dptW|f z@`J{(vV}nQcQm+k*0x5j=d_;hV67^+;w$0ZPO4^9@)*zenN^kNQ6eH}H5p-Qh^!YY z1YCUWABYmP#Eo^wvR>}Nf>D4=4YlF1CD%)M+mq1q?qyHaThK3IhCFZ8TFajgC#oYC z2JvR$4@DAK%j+OSeHc zk}+ElVldc|6hpm-4S9u!63$fE_>Qj`KG21ElL$&V$k1jcl~M0j_s(J3N3cfx0Mm~E zx#L`v!or6D{ryWl(hL*)<@_T9DsCHB8de*t_D`h(9Au2e#_vOz7Hk?&{E|BM`gLgt z?Q)e_FJ-9PPlY{LpuvB41nFYL3(AgLJhgh3 z-Z6Wz?J7B#7M}HnZQ>)Qbc@26GMHKa#~MWGkHrt>GXaez7N_`}rTXosN_2dI4HShx zQxujOF}J`NUj320?F(fl!5b_vpMSyM)UNE_eVSb1fDou~B?PgWTkee%933I|J>mEP zjU*sa087pQitgdey?VxK&r|;3X1aht+V|P3RL>OVn2yA^+M=B%@KrH?f%F&i3_$rs zxPDguigo9^-i2!_ZiL3Zz<5pcZ9qk>i&Y)fNd21}V?+ev(SPO2Knk*E=wgNYq8G{M z^rRLm4ppEoSSlcW0e`8Z>%YkmgUJl|>U4qmOzUy^UtXR)c8x<8lu#-9qr~vFFvcjU z!<$XrmKK|lSrz03Jb8k%ypxWyaG}Eox{&O2{G+qCQDwiBm1mw%w&s-}fB|sBq2CJB zX)K+!OJ7O}l1bz!CDgO>mC^@PV&qoy1!7n*{+l;w2P&qZKkKSfXG>%LaR4Vx)(!c% zUT{I5uVq!t@i|is#`w?mcOi}04<$y%YQ#Q12Dnq?Xvq715Qo=L264DY`V`I8hTSsA zUbm-pT44&ZA#lM$P_`0Ug%5^yrB4Ql)Ztj@_`1WnvHVZh)~X&mQ53%mM@)Q_0xagL zIj-S8)QEQZH~f|O3+&|;fhtrLjMwj6`Gl7eoD}%$nOGp8a92_-LZxAB_JY0roI0o4 z%t(3|E$&yYp!N2E>g%-38X5^61!nc{7l_;vAYU|$*iKN+1mU{5ZbRzUJP8zQpIpSX zYmk9NeoOZu_88z0{<|d-MTiIlugzyD0XQ-E`nH4MAWF=nlF%nulqlD=r z7!xrF8wq)nOrBU8*UQ?`m6#wS{)7I6-99KuzR5!ix5$^+eUz;nz8UU zOPWPJem9*E@sh3eTKfy7z`0d1C420jvE8HdFVzHg&bG1^WMC1hx@>wrq$dWY8Q8ag zYvePXge=_qq(Obz_G=LV8;nBk&!Fyf-A6eck-uzGgQ-jY5cEH17@tTbba2k5oNwX_ z03bIaL$x4cS>d@1?}%g+#ggOpy;tHC!!><_9dQ3bAR*zbTObuHTEZlIs6W~x0+dIw z&)$c0EO??;5{kR&*1;!F6DYDk!*O-VX5+A zB5pPT*4~J64Y!A*gVjl0_vjho=I$`Ux4>?e_ z6I?%L1Ju8UN5b7{=h-0y83P4dhV&Im^21^GDdFG^D*l-)cuq}_d|GmwY;)Y zIXHJw;t2(R_7y_EUK^Y4m=V5zdu{gUd{@3`){Qk_*R?J6JuX=uWOYXCn;d{TK?%>J zz468}h5eBZ36hReuHTzI)NdV+0-05&?<&0C_TvFeqw}Q0AX@%E+|Jy#q$3vjrTb}( zwi~LXyEv#Xs1%>wU}Ko2&Bo9|*(Mg=5^y9zB=e@s31x49bKyA)A5VPDiUN@qufp%E zkA)=KC)n4lsm_>t3&9InjtGV(5XEb8vKBIwAGeh&9p|O0f@`8KCR?)15OtBKUUBju zU)FK>IGQlTdImFQ^M?Wt<0x>08DCF)3V5Oj{UnOzZVNV&Q2EE&aYmg}m>(IltztwI zKR>{XAqDY5=?6GCHeSCL>f5bQhXY1vpM;5f6;3g}CHQD9BzTEZVjWg9-0b(9dvfU@UY&_y4mcx*0-V}J=aw~H3QwCiT|z?G0t%0lM$_| z`*oobUTM+okxGbREft# zXm1Q(GWmHawzVEt=fCG6WUm>RpMYg2#vK$~d8}i7w3Uou;dtyZ#+kIuyYvOXJZu5V z_pJlR1nSxjv>=1QAJMqxaWl|0)6q%bp2d$`x=*yL8L)AzGqsJPOT(%DZnPeQ$ru<4 zHfLtn!@N-=iia7m88se&ad?BxJlp~hc99NXu$1GlC$dUah)4SybE#HH$nl#Js`62~ zJx>F#0;oF5w%2&MUW7a&a3U6YwOFacd6D9d^`KFcxFZ66IncdjP{knKJMejQr-Z$zN%G%vM=-*DYkN0FkJ1qy_5j#sEzUO;l;D6 zHH7o~P#%cA7c?R>b!7pOq>X~0K>>69f&HpJ$4vPi1n7v^V+9m|=_dI#nJEwld<|!y z6Dvh*76UK<^b0`&GmC)6Df1MbM{j68*PfxEXnuG9N|~9$E{COO**-fyQ^s$xFv198 zZTrCHAqvii%`;IVMy&{H6Axb@!{JiK!1N;` zYS(*`*WW7AAwfXpxgy+ht(HFA1SA2PnwlYi>$V06x&O)t?%9zXVov?st|pYv$kA{K zo`LvhZu8y*zZ)r9f-YnoWML^>W(hJ)Ji&hI>d@T43w@s^6V+UCkriLbJbb_rZ3l!o zBuHH0nQ!^~5JBcNn%0T}$_(jR(=li+icLlW`71?G7FfJ5E%o_Z5N%ei$K$@Gnl0{2 z1d7IvR1L{kvBO4UK+m}9H+?|%(kE9_!Seyk%9$pAVNm&xt_mV*H_M)++N>|jLAOrD zpFS}%F`>9LUw;n11q{PzK+NYf{!KD0ev0e0KR5a9wh*;IcvwzrsM!gn7D;x~W}O5ViYk&FgBH zWyyf^$yeWo9KPZO-=9xYhD%Fzs4w)ErWTMG!NsVG~h0C7cMUtg8av4!JOBjw8ybu>#{ z*3{nMgwj$l0-2Tzu=B_B%MWBlipdIqD-8(YNDx;T&9@3~-&1eUCvT2e-0pDGKRDfW zh$asQ$R zWmv&hakmyBk*M&3D~gcI5^id51V=?Zvcq%*+VClYujE|6ie6k?Y}Ouul_BBp)v&$m zA&Nkorj6Xy>M8>V1*gpbDp94!>9hN-?g(s(IbdDa|0^v^NlQbI?+V+kY@q|J{K%QX zI(-;f{*t)oKW%Wd#E)80^uAkRy?FVufi}SOg$^km9-f4x={sh?UDNxfYvg~1imj@! zkZsl0*k^gg;BLFjteA)I=3o-)u=--*F%@r@RcF)vyRhIKh)-@bVC(@;wc}Z9!}qb( z%_upTc&hKQzJkoGmUdEKWbV4zOd}FN#$R9DaphD_?-sDf!6y^+00njB&99Ynzghqk z0g-@SU{C71cMNAT9Lq~h{y_Kv6+au1TNF)RulK4G%TWiEe6Dl^f3DoPfvmFm=7|v( zIpWv?@Qaz5+2dD2h~Ns40MP;P5h2;33%W8_&4v*oR6!dA0^?C*LFv@d3v_p-!F*#L zLzGLwLWOp|}W?chXAO#s2nXJ{N zw|naf)Vj>9tsds63;VsXGdAuk+VppY1@os8jju@Zm$p0Xo^?_9p~ZT%?ZL*orr(b7 zw+UxsymkOdl7ek~b(r}5*|@E}y{xr03mKQu%swA7>k1GHA;b;{ZuFw} zaw3od0cT@2oGYRC(@{Se1z(uj$;*h=+l?6~yrKbi}X zMbI4Y7?E+uWK7Q_eSLC?!mkyUnTB+18wre4){n^yIcPPKoX2TS03nD06xmkKY2#?H z0)V{u&9E-&Nw=hD-+Gr@Wx|fzXWjX9w$Alb1~xOhY44OCQzTa9ncX*|5Y91c{y|od zJbx+=3La$sg&rq5?=3aolvB))6wPkgb2g0#`qKqp%cE&eA94$vdMbEDJ5RI%=qn!Tt8)V8gV zJ@&jEZpJsjU9|Ks~zij8%jm2ler~9>HZpkdoi-9<6>s6Dhd!EQ!nN*Bv zG$E%$rpS=eCO&b=D5F3R36-%rkTV}m>=?k8Ka|tN=#YX|u=Yz0n()Iz?r@fiJx?_N zp}8ngxn6RI)94@8W`zU;Mb7HS*ST$DpHz+~UTW0Nw)ma@lf>sF3BZM|xLWMxUpN%H z53q_G8sdN8#cZPB`~-K#c;6Us#W@%okX-W%4yuiJGyIcQ@}D@@vkMDb*rf-DB7=6x zj|Q5a?~Y*Z@T=+o1|Q?{rBd?HHa@8gyClKJm$0Hm)PQ-Xx@-7+>h)8mXCHb{-ma&x zD(@fAJCAhyafhv3ocXkpENkLdpApb_8{h3aB#%cbPry}v_YRz9*z&A604T#?t>CkD zh{KOC@Y45NRs*ojH!tF&7(yn4`?|k;~K(V(yl+$sxGj1s8 z?p>FCP=$%C3z93vb4}=Akw%Lf%s)Hid|pT{mxq#b)#A>7(OEoutWt6F?TnDvP=b>e zMn!F>u*TnaxoF3r6LXyU1DXi>E=V;yUtg9~dF;FZnjP@JMM02G6d9867?X_ zs-iBxSvGcRiX)@xks;~&a-iUVKYU7fPm9lz-al!h-(g0#{4oT}2mWvm5dJQpL`$Z> z|EmbFXh5xn>a83sHt>Q8=+-X&zx6Is;nCr}R$-;3KrCthQa!$I$qxs}3=v{Npuqe^ zx8PNih6X~G`z=QOBE?HX6ei0r9u2&VET0_E_|cbd@I%j3DOfeoxRe*3O|hzKsQ$gm zWCRhaq{T&g+f4+%NBgq9s!h}R$fcq!onhJ-Jin@xq1KR{L$IC zh9wYP_-wpY{789ue3zI2aY`Qd|=If$YoXQ!w64>)nT(Y@Z zVcuKfaNDhgvhn{c}7}aCpto&}09gdT~`wGEO{xF6#J2B6=5Z z5KedYakjPXkDoW)K+y8dq{U zI)MAnX;e=Dlr?e+3h3GDY~R0sXNW5d-tW9V-A1ezg{TKRI9sBeY}ye;A9w;Duok3D zkXSe{Qg^AV0*?q5{Lgq)U0R@r#a~l!Y(k7p!mV(B(>F&tPuICFd9Y;^cuH}j9EFd^ zn&Rgp=@oAya^HTI%AUviB0P>u5Wx8bXFer{4^#+1Q3+|y6m;M*Z%2(OjFIrakk%pr z-6zMz-=rL`DmsB?gMgm?Pzo_Ov)t{sxw!~!%GumVR{-dcJ?&RI{EI3em&}QU1-SGCAX=lH{AgTxeT2c zVU$zkNYgRjM(oRctL@g;ap9V;a2D~G!)gTEf1Rjby_*+$^~&G6J^;B-NVE2Lbe{2Pc4F!vZC>{jIG& zokgFr2_vv}JGco&ycY@=o1O&`=-o4FJb@6;wxuiHM1-?I)jr+Kv(kmhm5Mrduq4#0Mlb?Lcc-<$Y*^uo9AI z;DTS1$87{WNG(9u3JZQ{Z21bCb1Ox*yYzN7xgFOU*S1Xuy4iB8O=*}3p88wCq=b||?Zz)=*L;`q$Y1m1{~s6Zf6G)j#HdLstuvMoPfjN_&sH+Q|!_K?D7x-7~>r5ETTqt8L@l zXWH^ap_`d`KN{fJsf0aEeDqod%0XdGsxo{eQ{tkeq0x7w5~F9nQc zr3lOnW#E*KcS`aKfn*aQM+8+b>5rjpSEe+2KuMh4nk*ngPwD_5@Uob(UfRgRNn~ii zzN>|e*e;ZK?4|qqfX|jAZLa*Oy$M))Txvv-hC;*OuMp|6^I5I&`3!SCp{$qrJs&Llvx1w#Vt6BA} z9M)nnn+&xtM}FK~8ZaMrSRGD4hws(99be%FiSK-KMv-o^NMs?$w&6Y`{_JuaUQ6>0n|}D8{)GGPNgtM6C;|RBH4pj z6d{>8I6Fs-K5S}}Fh1F^A`>mMEs+2r3!mg6_>TfC)7gEQq$e=oXaO^V6kqa+L0hM* z1%B^>(4{pQ+%Xu%vXvHm_HHhH0m|$~t>nsmbtB6iKmIea1{C-8FYt8KXP8Q7W5?orepi79+>wXkWJpX|V%}W940!Fvm?tJCRuBR` zpeL3iHT;9grqP;}zWmAZbygO+{GmOvE=7k>191!GNY{t=m^)F`=n{=)u)X6)8kH#g zJ*#k+!=d$}QvBLbsg|0dv;iwqC0PcntoQMc@{x53YM<0L*EXg7cCDS7dSSP}|M};n zp`pX=+_Zy3t^MTlZ#cEzo;^v4!;TAclS7lo{GJ-I_p#S;d%zd26r&j?ZNv9EZTt56 z=sKk%yO%#(Iag%j1qxq@P)br9~|fykQ9yO@ga-NRuJI{%!12-IILmCmHgfRsGY&8j1K* zy^LZz@TtU0{)ZBGK!4n2oo*ZjNFe2gbaP2EfADEmaI`Q9=YE@2xtjugxp z^|W9;i_p?n179+ASES-QD^;8bov_JSu=w*V-rvwZ#rY7{DbVlkU#Z^S2kkAl(Cfl6<^i14 zwtmb&mDnzzwl`mQSk({_wMLAC5d3z1N;g61MG=$_kYum`+Rapbvw3Ot#X+dPL6Ge3 zz`4(nGfzaI);cl$WnBebz*JVp4u;*#pjSiHzmy`rt-qq|Zn#F$@9}`XJq~=p2NDGF z`637qWN>g0Az%k!S8}rC4JOE-aUf=0aiq3(c5T2TXe@Y)tIag}@&mx~cYQOQ%>=Cp zgaZ(nP!O13`zjB3Llh7?I4WE+Uf`nG+J))A@RKdu>?7LRs6S4wpfh>}yF&dNWxcvH z0hF->qPPd{{w% zs%vkyrW#-y;6oiYW6sHdb`6N&S3p@8yL(H2ivIQS%g>0K(k(Dmo29l+wqByj=z!Sd zGG3DV!Q~Vwpozz21gBir<90QbCA)7nnH_8BsJ@DWs4G{AgftVoeSKrA?VO#o&C3Q^T@ww&%htW9bJY`B^cwHgh zd@XTl0LyYuS>EHv9*jI4`|a_e9hFgOz7&~%zXV9qgX-mv%#;59{%Ws% z1M!=`MYc{(5(hZ7>hG({&zfGf38;B^c;Na5>gcR`HH^;AiWHw8I@)za{a>AZc{tS3 z_y5>;W^4QaigO=yG|M6wgvx3Xo=PWB~?NJz4bC8=a9`<^Ark}TO86v`fN z^ZDcV{r>rV9?#=3*S+W7JLjJ5p7Xl;)c49S9ib|+jz};wqcL*5c-{9us6fSNsS9;1 z{%GsLd&WT*BsKRTX`|n+t%b-qWiXX)NFUWrVz8?eN^XW)fIZqJ=c0&?`0I%zz}{B{ z?E^B3eVS%PfAb6t3`B>Ls_maNWldwfe#fT-t`_U%VV0fqTsPm1BA=Q`1#Qus#SC!z z>0RVzR9oc@J2!WEw&?xO%f!Gip|9~1A<<@wrw1Q-sxdRoZ4}BFQJwd{Nw1?QanDzszn8CGih*~Tw!-M-#e?oAPhU&&p3M_>XV8Qvnw!<$ zR@OFQ%lgyo-&=%{xjFGbv<+TjZ9sMx&C3BPhLi5xo%0pmO#IdE|@#-KOd_mPM{I}9D6|cZj zQvm`CL`UEEvPU!LN~|(F8O%&q0hUsF zh>WF#95hg3<$6=ttY*n8Z_!KPzC;099fJegwoU;|f2q1vUlzbKHzJxn z>smSz5#Us9lM1ZKnEi)8z zmM>RM>LVN;jlm;%t|IS%JwO5Saaft&6sxqA_A;|fOjlXOytQQ7N3(X^*+G6SdF(_q zTRdaGflSELmr#O87w4!{);^6sdgmD`^k9pL0uPH9CY*6SN-z8N!TN7JeZobc>cf-Y|JyL}@ z$#jX<#Dssq$8snQFZdq;pz5!wC6+Zn!H*li<7qYFovGFnvf@ zQ^oJ-nY*sMBCGlpG^?s0a}`$Guwiy1BRJJ9=T<;WMz`89&YaIC&AWUw@voZjZAsT& zl_fi8)HK+Y>UR_kJeW}s3mo}+kK-ma#~X)2_i1~e{4m{s0Z=>53TFN*b}P{o?&e^B`*kt41dNXz zp6d7IaNOV9w=}O-3I=wE8&W@%HK+=UQ6A=p4`XlwCsS3S^^yK$LK> z?5x#}ns}W-+wqjxsXoAg?|T3h=`%sT+m@-k8mB=vMU9k%1{xGmxhDsgaTTH_Gg2s^ znZD&(uqjzvvYKFGvLkuHARX{}bu!E=O^)gsQv>Ivn=+LB<4kLG>KU;Rr4`=>1+($7 zoo&07sj3G78xeig-VYPk-T`8&4|5p<9ckQ{c;W`%tG_Jc00xV@u13aXsNYps{p6FR zd))rAyYhY9Y)NPr=+mF}o{X7DX|!goKPIE+Rc>x1TI=8Eg7J7#^PZfOuHmXERWtE3 z|2fzhLQtbN?4Vih%)Qm08#a8lpHt!+AH^3Yrbhy9?pE6T*x@@HP7bC}!8IL#Wfr;3 z$LSBP)wIa1Y*hB;%8w=ydDDxeaME8VEf+-u`a_|{eRUi0ybZ-&$z6Fgug66zsv z;`5WFst@I^310ADk?c<%BAmq8B@raBrRAV)fCFw>;^sdBrFIR z(Kw4m$-HOhG6_t@Z;iZ+*ZrHFGr_KtR2T&dQ!}#8Tkdv1hMjSEY*NJ6+02>aTo2gD zxxFOF`sFrNrG)FQ6~kqJ(hR0RjvQxss7WOfv)F9O#IyO84v)|8>l(&&0Xc??H-E6) zm4E4yof-QF#G?qd=;naB*{TF-MlgFunbE~4qx8SxJ$$|4)etpjdQDq)_OAZ-ku&vUP|sM>~s>uQ2#0s{A;b%@LZ{FIPM(SBLzs_fTavsstlr!nIcrTOk_WQZ01Np8-O-HW1DkZ^Cxfpvok3cjUE;@A70#~5!Qx- zF_B}IsZ{sjW^?QD23Yp$wsd4pZOY?G6Q;2hD+{<-Jj1>oKK759kaM4e!N3LJMJTRjcATHi z(4}(w_Hw~0bY~i=0wqHCMl&hNS1NL*KzHt{0M>%wz&t|JSRu(Yba$U9AQQLp4NRtC zZsRJ><+|1`i>a|OpRzKqD)mYu<3RQB+#DVNRzde=0PCa+L>a>;FRf0z?q$1SNn)N^ z=)#E^h=P-XtHkcCwxjO?t-S%QJILC)x*`y7Zae6fh|4vhCecbK?)-^6;{KscO%mT_ z7m!?>UfeqLq`Z78SFj-lPR1LvI8RntFpwJ36ui~`xCYU*v+QLi#V4T*G%3It11aes zpx9I-_()LepH85WAVx)z?(XhFH*594$K}^z{<*p;6};w6=sk%YIYA~c;V&DL(WyJY2 zq_rTEjXL(9rZF+G%MrG(GMgECQzpsu%;N}tYGoXe^H8|MvW2#%;fye!(?Y|nM@*L; zN1PpGX3BE|Gc%xR)?f3gIhgVIxM}lNCmnPPOR3EU0}vtLniJe`k@i(5Pfgu~;#(7U zje(Nmpa*H~g+)bV_X&I)^!5NZY7!J1UgJAJW6mdiZ^QxltQIZg9vOyYs(lO&!~8~R>Ps-BN!YK z;yoW5f6sp7$Bzz&)XQ-I)(OC$FtTD`05FfN)P+!5x|FcV=1KCRoVIQ{?6dFaW9@W7 z=bTK#{Pc$%-+iu7N2>7Ig01;<_p%)YJuC!e@L}>TnZ$&N!FK3|da ziB)w;4xQ)H+LU$EPYpM>0pL$xwR=EvM#dJY66ZiQa3QJo?5Pd|x+Ha1W+>x z?+l2ZWwvUEZ5@Ywr0xc8tbNCyEM)<&b(C3SUgfeLIlGsuEeWsHrwuZ8Rqi*TOea_g zZa!_Mui|3u%8kd9IW`Gq<_e$dxYqEv41akz72;{7k4Xnxko8e{2}9xNP|RMB8+^VJ z$iYvvKvKkgn^vbV`?B79NYO2MO;cqttOF+k2~Rb{vc3b?NG4@Z5A|;!6!gEEQ6WB5 zSo}>`=m0W=|L~R_31`%m=B4dUV56^($@*)ew7D?0D9&n2^UgZjo$b+5GU}lmvfnKM ze0OWVAd}GNfv84{Pq2Qo)BD^`t94};9NMPe#D?2?dutSm zgGIPw+r9F5(yZxv@!Qr6jMihwBx`HS%nV*x~V3M<9MPfC){Au`tU{?eQW% z7eY#%@5}$0!BbUf*d1yG3Xl-vt4*pbCfa%aIu*Qs8zmhk%>8=+Hc*Y_H0TGqeWbGf z-4nWe)O_KdF0M3>5r+bj-396leJghSG{oB_-3PxTFV>P!KlSC`&9aGEVVFdw{Iigq zCw1;BNC8tEn`2>TYTWS>N!IJCJFY?w>Co)s`eL|VfWLzgI(hinvg+JhieIgl{d-Z> zNU)^1F=~_U&dyNCOO(puN;_Lqc)F^<$6kZwOnU_>u(ek6j8xO%efz7fweVF zi85DUo@&ejy3vsf+Ur=DSBN=HxNiZ&A%U_pKacMBQ#t;-AeS|zj~y_ac1|KAGV8!+ zdvu8`;m7mFft+c;tNkNMm)=P^MBLYw+XW5fbp!ZsP2Ay4nN^RThvVgMt%+!oZ)vL zUf=SPqpq%&FiWZ`GZc05ON?>wiaBHlyv_dMZ&x}HYs2FlEp=j4=}7VO5FAMLj0<4C z)gMnY*yo?)#og&O;eU3&3{SL@+i`%c(xwHg{ZguGR8>|6Q=XhicD~DCAM{86>rGE+ zy5QSSd&SPaRM;)K<#&TgwPs1h;#4fYtoS8R>L?2rRpMSX^URbV>}iRBt*P-9w?N1) z>B2+vdGchjhc%0=&DBLcaNNDjvy~CCHH}PiHiM3j&{6YC@_QRAorgRU$yJMmudVI` z2omgowNJ>czfY zqG%F8FhJi~2`D!?Dt}3?d`Btb_*ovK(*)zyT;Nx;LcRJisdTqPW)8Hnc+*C2b#8xZ zlQ$r9671f9Z5x{0?OPSQPs)$`uZx5kFyC)1 z%Ivb8^kC33gFL5lj6(PV&ET6V|`8=evv@`b#5Xi z@5{1kke!e%4l=#;UD~L)Q+oE*T+B^phSEHMPXT+4OuM*<#I_D&V^>XNYlYT>DlLOkZS~t4Ttv>0EY{|2~ z@~rgVdcMIj8>m7YT=HI(C?}xpZF8Gxd`N*8fA2CCA`#+44~YAN-ZaK>U8D7WwGh)* z&-ypV1dMo}3+(f!PT4;}Xalw*=YAdZldtj34oyJRE9JQu!|GX1HW3b^KIhta=g97 zgXpRErjSW1kUxNaHEU^^0Q|}uKXs!FZZe*^mi>twT6PYGoaZG*(?Re)@6%9D`)(mG zwDH(qIJrNqlIP$&&f*355Bz;_T+SA%8f|~> zqdlrFVbIf2AhZAZL!Y;W_g4kdUsHfH!#)6pBH$hqhqss01SIb*^L*1&Ji8p?LkwLK zjk*2tir=s25paJ^LC$u-5B=y-OWmU?AM)1fyVyL@7phy==nCYTDVOh;z%@Q^1megb zzVN;kWEmK2iEOR%mCO5Vxn<+cK-};8GpY9AlDsWd2_;|KmrL5w*{7T!A2_oE# zQty!|5;J(_mfdoP%DRd?xNXacV^O&C_oSNs+*jKGT)(Q~o+{4#3JYmKW)|^67R!x| zsiYS>VFz=yXT5-;X;^zL>A#6P$lb9MEuS?Iz2?P~olxC>CbYrK#3^gV&b2xW5Kmy?Ja~G>Z_W zgP7r*s4DRh{)F&__te%$`NKC}ML3MnQjgYRg`Fg!^}M-h)upUq zGC$o-QSZMWZYgxZz2)e|gPS?T&?CgvSu20dVtPpUy%d3c*#B;CHH-c>AU!xaot&S4 zY))S8MhxC1L0c$SVo^?fU_661MfIN7{nxhER>Yc#Ot#wIY!3SQr2wBv+^ zgIwFcaxBP8nfQv%S5DmriK2FU4OztV_uzxd$0UYsNweE%HL#EbN`9DS#*^rYp5&g} zznTwbvb7F=eUqu&-@H~J+f4b+9*lOO7aEPc5q@yXPRaT;SM0A(hPnPd4F{%t$$QUu z<3l4tx-R&E!$(+r@Vf87#YM^*DMNc}-7HtpPOSBG+``$qg%-tHi{&Zd2lF4H;V3LW zxX0!c=;Y2oaM0_lJ@N_lU4Jq8sge=$3wcTq(0{>=%V{@WR=jKUzKiBmpgpsqP+vdK zpjfvd%VE_Vkd21|2(0naCLMaNnv1iEi{9G_h=Y=ip5k?^_w>)KN~bQYO1ozOPTL@t zAu$0>GLs%dF(%;cB)esLTO@Dlyo0q)!M9^3FYg;z@y~2J7_m4LQ+&1r6TEYy&rt^2 zXHpuNQK*v6_Mfeq?AWZP#_ge{Tb9hS{3zkU@SXFajmNNCeWU`HJyb%_>Q>uk7p7iS75 zr^e{7`>UN7i!-;pZ|0(4|A#`vxZk4=TQau@u%V&&A%|#UNIMRv#YbaXJsSC5m#Wpo z7&cm6Da74@?SRkGnJmodbMR8CIoIhJXA5f_Mspl5S(MT45k3_bVdSVvV%5>2yd)pj zs}8^GlM2>G$a%~p0QhKPvdmyasf+h(E|8;yD3La&*6~`&CJr-M%(>)D^5E??FGN|* zqm^jMx3mk+gy@ikL{kPUO(lg2MEx?OcdCvtj3*QFkh^aso*_zG&QDC?L>oGy6?30{ zVm56DsFE6d@OF@rwhcgO?dLmVVX!Vq;{M_M&L75*W+!v_u_wM`{PGka?IfL#+5D5X z27^&EKyL&rvSuY45m#&sy(ZhJ2#5=^vPC7oVL44xBelv2$5M2!6|5#V_X@Op3$-#4 z?4+@z=uDxEerau13ia~)_9j=V$_e@=`ekTzhTwrCO*tHfAr3!GS8ZRIU$lEzNow5| zez~H4fffW?uaDZAvrkP=8vszsL>3WyaOG1EP#>vy+Cb_x#;lT9w#xW+&DO3BHLqtpX~YsP1KFV$7rV_WS`F!D5Dy?pdE({N%uN8U2yGGxqEZ zKhE?-Rp}tO=1$19bn=1f2R#!OjERC;!*`J&Sb-E$nDHneRBuKDSC?7^5s?_L)KmRe zI8FY5Dh%8FRElL?gC1EL$tVyfKB{s96X*3Is;-t}5OZjihM_q}1kVwWM_&Pv4Ct~e z!wIB@flOt9&I|BU3(>T|-@b4?8em>y2BIrMYM03(pxOkLg^H++{%QlaKsLXhmi#&N z&9s+fE24BW3oR+mlc34<(c}gFVfX%aABDf$;gXh+kifr@vFM~d07(5kMX5^nfsd|} zuY`nofe?{BfRFvJBQNFp84abBiHJ}M2??PkB$R(PMxPfzq54^AT9_uQF&uH;ll;8@ zJnht=xpn8&lf!DYZ6#viJdfmlL=DM)gb~>$nNnj6p5lCrJOPusPsl2I^+a~rGa&)} z!b_SGg+g&bQaQmLvawOsP)IbPj}pk%|5JmYyOM3wJDHCrg3MQL+&BZkLYcGCkPHIR z|LchHu`!B)YVc&kIuJ&x)K?An!p1#ZU85>i%@vAnzCCt-_9AAGD%XRPlhbR$DqtP} z?$%*xg*pI~c*ySF-U9aPAN;HVng#+LwgfoZ@;e`7*72$r%GM6eba1!~(oZLFKSh92 z43ZNqn;i7hb+RQ%pb!y9h9HP0u>%HM!(Z_;HV>oD0jm^OB)^WsIYz$}C#G=8Er9#$ ze^(E*LVa)VOfwz^SKbM29zegjGg(Oj(#dc)ZcMaGdw6P#m|OfWsWF9&UtmqdZGl%U zh@hP2tl7oMi%N4&8B-VkN8~TFd;PkLh#OrX$T7*5cKQ!5k?F-gle<2;RU#2aLqS17 zHb6Pu)7zA6XrZo7A$&at2=9W`zchC&0AV&jcy@M{ESd#yXLhNJFY104oK!U-@-@|e z`&_v~aulx26THH28T_N|US7cJ=Drlba(E#dvQZ&pA#;QZfD z`TqM2MamIhB7j!KIg)`(tlT+JyK{81-=@6Ly9qE|iQ0Ei{np?XK;As_u4=SG?#f~! zS_YWS%mr0di2T!|<+S|#RP08*gKc1!CQlIgqeqXRa|4!Ncx3{)CIw0fx|r@As9^wX zKESZ82QbZuq;44O-k$**NuO_5L0XJ0IBR4>I{-h|;Zv~|`rNs$J9V=cw*pbx*8yR2 z2;zLZos6jfymzwMdMIukx~&cZz;@dU-B3OP05{nNuV@s!dbM8p8^6afPz|MoE{1$P zm}3Z%n9uRK5nP-IMs5g(t(Edq%0E|7_n0B*S<%ztPcXXkd1P75ZswcmC+TYAcX zy2QgBoq{HTsz+Ga*-2rohqIgZAcP7%CbCh#$T$N^U;vEuBq-5phbK@4wagVMErBKQ za@^XM$^SzSG=CL92cHSu`3O=_VSh`<$Rb4YLz$tR0q6k?ScFSXJxFm)|2389>|9T! zlL1Pu=z(zng^Z!uJ=DEK1N294@>v;t;F`$go^^kwqhsPX5)iCztl-^N?68IFDQ=U4 z_#^ny8GUzMZuSEGYkUGThz(@GAQ)`~HMuPZB~&nF={KSdVYDoLd=d}9)(MS`oC8@B z$_ooG7K1(%iq{iKp?5QYF#-k$vy=we8cTyulbSYLxeE2E=2p$EzdjV3oV?h$_a=jTce2%$RhChfXX8-16)f5QsDeus8o< rPUsKd#^7)lL6GAA=US-YMEUyV8%z!bx=+B1LNG0LU0j8#ZPfn*i85hg diff --git a/docs/reference/Rplot005.png b/docs/reference/Rplot005.png index 0223a8671853b030bcf8aaef08a0a6752d58007a..e748e85b9dd737bc3450af889b6373dcfd69517a 100644 GIT binary patch literal 27129 zcma&O1z1(z*EM=*q)WOLI0(`u-Q7wk-QC>>sRIZIBHbk--O_@9N=SF}1Efnz>RZR( z|NZX0?|Z-J`Fun;hkf>5YwfwloO6t^jn-6Gz{R4(feD+E1A|1@a=)C;!6(*1e*x)g*3Jpd;@{dLzHBtUifD1E&64VOfGU9 zZN2b16X#v5R8$ z3=?WAKVW2JRA%elLx#iQ?u005aQHV=98>TnF&8Wv4p)6kh!nWrFm1j+*T6a-LQeo& zbUwTZu(D#pqZ7{>5hvv|ezUe_UjC}#$?S#~7Ao?QuPEz$XFB@WCQZEKwdaip0bz02 z&>k|Ri|bADfdnTf{-|yJ>EW@j=xWeHz+t=ZdYm9v@Xe)ViuW6R_LQ;POe=b)rPXhZ z_pA6JX(=HXj0G=vi!s`K4vh!XxKV;T=}xzPDtLH!YAu~kLcAu@3Mb#8nuvo$a2R5e_SVZ^ccu-yq%{~ESH@I0d%GjBMVb=&*IhpwmR40AY9IP-Wk=ys37D>Zjm{RU`t!%%&~sGo z$iH3aV!@-vV@n+(2_=z!`I5po zv`27T^qC&5eDOV>wGp8^+)lgo>-f;P{b}g>d4P;e54YIG_V@>j=}M#i`m3o5gVseC zjRv~e^XDJb#Wt5i;ooX4GkVRrUm6;+r#>}c_A*N4Y&&|5N{I6F7@ zWc|1~@aPN12Cm@3h*c|IadGiUS15}6_E@p|RQb#71eb+ot$13omid-XWo7^5hy@fS zYxk|YJ@fpfc{OF=qGU9^QKFVv^mFT-nwnZ|MTHvj+olEg*f;WpiyikdF<4idnJ&uU zp!Ea^4x8bu+2Ua;mo_bVMnb=pE+o6Ac`FMGi>m&;PbEupB~=248vAEwXWHZS997vo zRxt}T7X92#OW7Su^NCI&|Kvu)%h~slZk7TLzt7g$`1m<4G`qPEW$?T2PF0-j)%`p; zS$K_x{SV#!r2^~57Scnk2;tmZeutEsl`#B&{+#V@M6={T*N-o``$dIe7`T*=@o9t~ zXJ%$HK`8K|ij%eP4tzS_ft#z*hy0BXOM`cyrt@ zg3{d3&@g}7c74!lv{YERt3A#)J2f@+(gqQnr@S`9$y5T4zs}NvCMOK$e@|}Ser#`P zY555`uszM0D{8v%ww$NCvSDOoQ@LjSb+HtHZ}Mj>wMA6GVTv8n6^ToA1eUGaxyk3w zXW(g*>HXcUk@2CYu*kikrY20EJ@R3mf~mp(+Sh;_f)%x_s+ofU|#q zv-8c=ly2ak?GNN){+_w>vW$rq(k#??J`YB7!h6h`7Y}H254Ug6yatzY4lA7gjBnmn z+$w?%zbJk;=TPN^e%ml@JYRJoFPj_(2DILv&>!=Vtwr>_kIDrC0Xu*GYAcjL+7v)W z^Kl>5@u&jbYJL>$jz{L{PYF5=(PLDw#i9l{T5)2=eBNcb|6m0p^-Jwv3clXwXz$6% z0=Hhj&RT72dHqUDZ~AeWvVO+lM)e8vWGK`ADUF{F$u!!S68j+kddbeg~|p{psCAGxxL9R#35uW+s9H)E`plR_N`&FYyQoSUgsQ>Yl8D>;o12Tc^3$n@MOdI zqviWM!4wXo81VhVI#pU$_8H@&k^;V1M+p?zR!#ukv`I+&>;?g$7T))5h`8r3f-H3w zuqh)GA1P!Q;SmyU5ahgOW@O}%Qolgt$-!<2;uX^WPXawgY74sdzS*;p;BCcWWGpCJ zb5fL*m1R~8!1o29)x6(0FMJ;ihHVaBjd;;WTz%Kj1bZChG|x(f`B9Xmjvx`|&l{wM zV0(T0`Llmg&t&oQ<{ns!IFR24(|IvEZ#FnQAu?>hpue*bh1WSm3o~Q-9#j#}BUaPEBTq zOYP0S$5gm2zY$DKO%>$j<#|N612i;0UhCCw^?rK3KabJFb<~Z`nfLiKMJyR7Kn0O% zr+ESPSM``6!~C7(JMF)RSDPYnwErHXP4KGkyxn&xEi2nOnE^TN=vQHa`RV4+B^WAq z$X#H#biPG=jo+!Y=*hQ7h&K^G-+(pyx-rBqi>M+} zO@gn|rj5O4txC(wQAaxBU7kND)-Bf$&2(;gfER@V{(>v*o(m!Fla{V7It0qb*0VQT zmtXcoUER6Z*?0C`G$J{Jy8>Q9!^SBTUO3KD~zYu@}G*KqrSMrJx&Yn3MK^(4MSbpO~_ z_`V#vUyKnZHM4*2d=d1xb9vcnK7K!fAUh#SnnCn*kT)Broxe97)iO|r{ntv6hluSFSi%V%T5WGgSwC2W1 z5pmauHADes`$FtSFA0#BCq}^Mm`2brwFMB!3 zJ7i^(kJ*<|05H}v4*Z45ayXKztgIz6Iu{{f;sb!j2pqhAk^IG!Yt@NQO-7WqX<<;c ztjs%|Z0^aPw@ATg>8#b`!I=H0;jkfV8Fo_M*5vS)HSIb&5d;MT$n3f!+#V(+YVn13 zuTs-7S-I`-S6qd%T;GBmQQy$;@*t{j{g|EvE8R$5I-CGRldZF}z`tkUR}1S|{gsul z@Fbi7)IBK*ANLwzDSumiYTnZhL@clm{HHBdRW$L{4bU_G zP{LUO=+sKt=*S(UWXo8P_4WUq1Vr!CdelXpM*jFQ*i!Wt4%Op=dCWZ23m@VLg+pzQ z|NDteHR*{6ty86Bli!hdJ=;q$Xw$F%X6H=-GE?;bT(p%SaEy(FL)duw%-kSYXzFKF zUG`466G5%{dU#RB+V&-Qi&Z{ zNu@=b7X2D$w#KFcs3u9TyB9V?URl}3PUEa&ild917JWFZ#A@o#VocJzpync_07z3q zgVc|&l_GQd-r>>=U)PV<#XGK-f6C~OU_?ZBFUaGmw?M) zqK7HXo7A>n7NA&Jp_iz~d5JTJ!v;2f{AvkE+TLHJQ5!d{n`PJY>E9}`d;NCT>F|>8O&8r=O@UKOrM&RHIX@())Ca zSsoDq$8WP{5LwxhA0Hv!fz5cMWzlaHa{IJMWIw2eH9Eh47C}g;HT*ptLOKeac$!J@ zDPv^+^w>>DbH_e!VzTHn4Pw$))w*E*R=3h<8m~=ZWzcn<_LwEm+ z2NWpQ z6lf{7ipjlCKU9#g51Y=Ux)22gbjIERlFEaP5hU`ksK<@j1GqgVm>XSp6BF+l`r;?G zUVcxn2KCn4Nu+YV2^8tBqle6G72?fAjbXDi08cD)_V89@FideMMf3QB&ln!Q{0l&* zmR^ugU^b~K__hY^ftV9vlP|?Mf7e=h2OddH;iG`vtO!0Ih5rRg#h2$42O_dk#?D#U zT_=6LmyAZg{nhSu1el)ZELE4b^hYt&AQ%!3gDK9FDF0uQ?z>=u(xe#GnDr1h8hNRU z-TU(>aa*qBut}xz7&yGtXbQdhRRFoX5^EmL%~Q%SbQ!Tgu4o;rlo%|U-rhFcX!tjr zmm@6kJ}g_I?0hfXyMGtKgjLO;YXpT+}KXDh`dZ zibqlzxVC+215)|av@|EjvyN;`q{1Q`WzyV8fV&=+HjrK6&RkBpAB(@!J#bRpij77Be5~> zcwCh^IU=+@pbvDcavB9f6(3)trxFsrl+s17);7T?EEQtCPAaz2e3ik#m{_!z0Ec6K z8-tMIdU0XBBk9VZkq<_aHS*5+cUT)iUCKc;Yb?1L^|usER+_sGW;h>J=fruxY@|kM zYQAlcRU;s@s@=mjWt~@$Wci4J1MzoL(v1(#;bV3FcQtm^rD9Fl!t;B+4QR}XTe-1L zw6qlMgUdp9k@f8yVXK^?mCy1LtVvR(SNQ>>rCh*{v*J&FS5R~?4rPCh*?^S4mmzYs z=)>>0loh1M0Ed^;Un4i?ceG<<$!hDEU1H@=*-YF0LLmNr6aT+Ea+a)%=0o1QK`2LP zk`)4$H@|m4ob6TBAY>0^K31vy366$C1)0QP4)*pV3yxzaLE6%M0`;7a(k%VW+@{W8 zx4|gJoQEJM^2lhT2$9CF0wzN)Td8ReJ_UhD`ky9sxV(IU)4PZ|4ekd0@y&I9-elcY!^VCv{8!NCQ z{Ct^Ho#l-rHkKhrm-FE?b6Hupb=@X({q<|)Iu*sVhw}!QNOD^2vr91rlH=w4a1AXI zOa}JprM0>UD?^Ud@9#Y)rw=W6jK+cuDh!(N0H-1Q{P{TdPc=|_6w1dTLja72-;avY z;unlUJ&g{}ynd|8Xa)w$_I%u)oIO1u0C@YXw9TZ-M~E7(??{NjfC`elkepMRvaX|x zj?Sv5@YC5P?^c>o+lf6Mq5?b07dj1w0iVjS7*N-a2Q%7-?M=FP)W(p7NU&D3eU`oe z@`=9qE9m{PuWiJ79}qKpc2stBh_B)&&hN|fQSN()1QF8`=ts14D;1bU3_LYK$`tmrh)C zwslXi_#@%5+xqjykiu$A<+G0DeThYThlj~2l>gqy+8uGzhR+Y=pP-ut^?^7X)6A{C z1=a1rw+skrA|`=-7`vhsgiOY+97E^?M05PRhJ)E(5o2RG+sD#n9|Ke(1@XCX;8VKa z+WuK~$Z{q#B9Yf3>{KNnOlNRF*5?!KRx~>#gXBTq-Z4VsyhiHiVLyf0{tH3WrPzkl zxUgK&EwRs8WC_{$KQ$y($)Ki zVy2^GIAWX%eTwzB8_#ptErQe*=6FfiRZvVJANMc^X23d+W&mIp*dD^F62BN~@?EQZ_gS==8o?J~A_IF(%gslQe zQ7z1~=;B4$>Zy#Kz49(MK#2hTJ8@G&Tf5FXHrZDR^R!)4v~d0aZ&W6xEbVt7Axz<~ zq%e~&@#O^Hy#XIvY+~8(S1URFnUGRt1dV)t?eWL(_e@kM&pVvdp zQ2UIIqZ5&s>atBy6MP>an8Lm)OD!vFT^$Jd6bdPNAZ7}i4vmJ}uCUW|G16j4JCzus zphF6~{``BLa+8b(_ zaf<@(h!`3FyxBmRNk-DogyXjEXw~40t(dw{12|Zc8uAWb5Pbn+2 zZ%VL<@fhaTH0EfTfQmZ|s8+VJq%SQkYUw$q0c|$>$4u#tA0i!?P6mXMu^+9>+R*$9f9zCU$`05?g1pH3e{M80e6cbRr>aF_ ze}yt4W?VM_8CgQv{F|=B`BC(h;jqux+|){(M^b#R4iPO=dVi9KRIDv3BW>8=TiWX1 zSNW(JNIeje-M|l58=MB8nYjoPmCE0dDiDB}okuAxn=OVQeqcqFb?5@^K~gT~s`qJM zFe4+cJ}=Awg^Q=?0vke5&`vh^EI%4vnhOS)?vAaE@hCTz2he}_FL_|^P3bL|SAWq5 z1!Kml^&NjDR&P6wY+x>CVf;awf@3;L2}@+SfcS7>1!_K>LNRVq?`d>OccaOML#Orm zUAgmuaStp~_D;0oww2U8AsS&qaVAof8i#A0G zpPYD1fP?jKd6R;(qDlpu`~ro-sx=|^x%cb6?=*z}tppLLni_0H`xvIR64m{DL{@eJ zKZOd7hK?IcdwPhY&|qvUYRo*F7PR*1{q9KRsqZt5q!TPb)%O^g5Kl_j$U0R<%2`5FMO(0UF;IlQzd@!`kOnC;m%K}<#K87tcjx_L=tH*u-IPCmcPBkyh!TA5BqHGa zkB}(1*Icl7gWoP1Oi)s&7Z99<1%%~gKf6&u!{k58pkjQ-4ST1C`3*Uj$@;7CMzT;O z-q7I7UXa*nI3XpVy^6AR>`Fk2xuTB)?;omsji?5n0`6SD-Jd_@sX=68W25E%R8rA0ydo_b5 zeBdxDaM&^!G7cplCa?8iS7Cy9M)~5aq{KsqPFz-6-c}OOUur5*p@{*eMJQW+VsbLS zxw(13!(pmiN=*$HV%qnHLQ{u7KM0$_v}vArX_yZWW5rzxx4tV;&(xb=Oq&EvAQKnx zYp2`{s1Q%T!6%4fYq6|M8c_j75cCInmv>p$NokR&OyLIJou;#rMCfrRD2yS`?0Y|= zj5D8abOP;So&O?Dr z>oI7*IhuyU`Z_*3C8}Qj*@(oAtpcAFec} zY@t@2%69j@H_JkP!B21tfFv0HAvc(kiHQly&OUhMVn4QpLAe9sTdz>wjg*~{vF`Cx zn1=B7<2STol#ynVg&| zb9CbE=m1g2O)ZVX^eY=c1ZWAEK|a7&hfvns;3G0ZM*rmn(A>n+2DBc=RMpl7^55`% zE~f=C$!F4)L(~)&kPq5s3=^A!xk*WI_*eo`mh_lj+UO_7IP(0$^1)yKwyM;j@026t zH1YNXTVrT%e}7012+Dv%=W8&slG3`-4@yh9qQmM+M&Vc=qS zd1+xBLC?s8f+B>AlPmFPEBvlsB1`|XHbQSfkaFrMfI?tGL1;6BJ>b>fl&=65F?5yl z^;nu;6XW~$6h~LSbRc(72qClJ&TWM`BjccG@@$Fx+;778mqfEtr?liol&w!(5H~>` zXT_5MIa0#I=5Lt?&KAAO`QsY`2EI|_tnhK)L}>DqV+3CB(~4ddjsGnoiBN>p<`krD zbn%-%zm(#F4*qSixnbk7q}H2%u^A8DHG>=!?oWpd5$gy!5?`rLRA(t#L@EY7gIVJ2 z1_Z*<&WDrx6A^BICr8FWkByzrH)W#=(a5Ic{aX+BJ|D45jz*~gP}RHC9^lr4E9iN* z>Bm=Yh55$899I?RyJ!zpcQXW zZ%g=ujg8xJhU@0)XUIX|&F8J0o@%omF8c{6`^#EX2v^V_&vMWpE?@QuR(tL0E_ly7 zWmk2c4vW-y?M@kA_|<=^>Y$_xzBJof{wci64g?$K>!;qaNLljoW^VFmM{B(tAf+yX zMS@203kq5Q@_eSo0s}}Gk#e!5`5hg!nF3DT01{({G6mOxwvCVx2(con&3mzcp<(rE zD_5d~Wq!1E-!6ACUBrjO*mo5TB1umm2}BlUW#zGxrEzi00kF;6;tHUE@8!aAh?|+@ z!=+8wI>p$Np`UwwRQhCvF9iKb<`84rA*2#_Se<)k%h8mU|!WDravHK^S&=wnfO2+wc|5kH8f$DQ} zbAudA4C)_@yJ}ik59Huf;7JiSzZupDAnjYX=Ts zHphpvMYw@%kp;9Aa`8YRggo)9B_5lj8G<7 zw`a|p84mu7HX7E$Sl3bEV zo`8sOv`a@vC;#*3*<=e|q%qYNv9|)a${z1#i&ykI-PdPru4%16areC+qAtil9~+ZD z@xi9#{SviMUO|2+9TLbPM@>}^es>R2JWvCy)e65UF}WO*CT||1?rPL`!u`kXjWQXY zh+`NVeYm2z&h{6GK&X}>^8A#Vb!uo;h}i1_MhCS+CD~aSHMpZ7HS$9nR2xZv5Mmn z?P;;Lg995Lt?0~W%n=Zuqhn*QflX_;AN(^iG2!LiZOaz}bU&XvG16G6X)kIaS4f{t zSO-F$EmldzYi=|~@jc(0O%rlsB;_!iDJBpO_SXWU#s?qnCjftjRT$<2ki5g>(?OP|C#QrcHdBjAQbL{j%#Pfx%vl9%fTX$mEu(6 z?uw?Rzvvbval-&H1;y4(z1>Pv@;PPKC*6u}go6yI{fJmajN%S>dFV-FaW7#L>YHSc z7%o3`Tf0poO<7r1e&EZ>3Ob(^3cTb3I{Mtz<&fa=8_wY4SaKdqOcJ>-WjdcUfq(`! z2oeO8pb}<4%&eYu)b9)q+R|>GHu9md9?F>fY(Msfg4Y%3k$BA=;#EjnTU!=j2`(28 zgQI}MgFMyPpLJMh9jEQ~d>%y{njfV8D~acM6$<9s%Ruq*6xSc5{#p+v<|w~v2#q4bsCIbeOIQt9 z<#LlwS}!lJY?KnjQoo@R#C!Pg;U&Q5nt%)E8Ak!t98n4g!V9?CaedJ9@k35bN($*4 zI*E??+v`B_1+QtN?0F_-#o1H2Z*(^+7zpAu3^??9fFkU702I{zuhGQB;-)|v_kU*D zbQ3Ir94fihMEdDp(Mn9bs=X6^=dK+yWZ%H9yv#=$ljPyU{K{ef3+TnH z0f7u7Wgtx=z?&a=0_QJIGq_TF;Acwxt6y19?RhyjQ8{09eSjrvGoE}B$)np+)o%m@ z&5MMl`BdPX8h+lVaBlc05tBOpd_%u*6dF!2!dG$X*TV(mFF>(g2jZjb6JE@r7&p6` zCH%yF9Qct9NCfBjQ|U(Ngj!QOn6pc?hnT+}vBr$qTq5`T2xnX%WqyNlM2zXs{8yeCiS?)dr{9lqfTnwdK@} zXP?xbou_tE%h`S8pB{Z&u;(hZt=V?SN_ljCRfcN-@lDdxp5ub4m87P8(F$k|QvSiG zp>j4^#cU((4g~8t3cPiVN0DomddrXE6RZ_YZ~C6X$&-*&qj|AzV9A;pRDjqY;)sGn z_t70FBfUJ>G)-_EOprIBw&M?w3OxxXdfM<*Ws_CNyC@_%*`my)A&0Yt1tpRH!B7|U zk%1riwBl*!>q{O9R6iwLhDO6=Wp(=@!w`7|h`~(`f_nnCL!un2Y@{rtH{Fcid~uZj z#kg8|c2b~m_kRh)NboBM;V*eDjT41WcM#Z7S&65nW;AUl@rS=gAE%{q9au2A-kcje z)B6{Lm|xJL2oXb-fhr_}F<2Q6hdSH6X~#v6{%u=p^JT!P1A=x*q< zrYwjEi^tEVO%l?1Z3;jhO;o&Izz|#x`J{_5 z1B{obp};JR$7|RRz^;mVS!eB4S;S}2hm#d>@cF@HA7q%IFYk*ceu*H=h~q(P_H=eM z^cr|8rF3*4MyZThqJBKg>RE6!Y*L^wV*y9q&(XQL7!v@eiyeK|4!Pom>-YV2)MnZ& zYl!{r_G^Rz;f(+mith_vQ{w{|JvDn)&k=0w4_#oPA_Gp0a8NA_kL>;T?Vsh^{Q$xF zgDHT*cwyh6FM)1(-z`v_?x1D2a(Mrb%(ur+S&mnu=#UX6!&rn>r}=EkK%|qx)368~ z78w~Ce(`UuAl!PVyL#+PfP;R0Va~c5v_e}y)J`q$reu%38}XmA;S+B~WT?|$h)a`8sgEwA`8k<&+Rks*(fu5%DC=r$6PF4$~b9E zB(-t>KsA>`mPA^&G5;=rjiB8PCqM@LfC_`)lJBDwP7^$cFDOsZf8%eSUM1<+zxr%= zd#~9WiK`%$N3o-1@mzm&3s^$P#i`SHw`R6tVq?d(WontmmeRkL?FWf=1`bV(b6O~? zB3v8c#=wn;=iJmf9Rkb&EvTQ`Gg-M4g4HyL#AveXAskPhNYfK^)%_HYMdX&4ldFvl zliM9VV26{uZr9G&1o;J^a(!dtt4fSL?^fa+hM8EEe8>6MN8d(S%Xd83^!!IBNc!vT za`C?sN#_B(+u0e40p*}-bfXV5NN#`z=wCR0yIsD30vrn2O?moqCFdaA^ip%oOVWkh z3TBypKe0nH)YFT)zuA(wyu0XJW(q{|yxIhgB#e4^ZSq)BEGLV$2T-oFTsm^jFJ>2y z%V(w_yXq`#cdFhK11-EN&kYr13^ja3P^O#{iqMV_E>}=j0BbfngbTQGEMBMi+a&8r z+LeZ3MloEwwSXRMN0}ejWWLd(Ykun!7Ih3iMkVu8Sm*WPA+v+tGZkU#5$xD}+H(28 zucgU!E`NSQe+cT7I3NFRu+e7mWfA93(+ zWiu$lnt!SjtM@4`e>>i4y|AR0$OR|1L`QdxjKQaRa5jPjS8P5c10=-;7mPRA^K%|q zs`O&r{NHn<0i%5E2!K)k~>ww9AS$m|=gy9-91pyXr+)P0a zYFg0bgO3bC>5vH%WGX7S5zLx054tP!bCRzLagk2_x^-*}j0KOuG@36-TdrjDR4< zM2IqjY;Mul-FQZfU{4Ajn?np>;(uhJ82FN?$V!VY2APtN8IxKx7#Vly(5ulDqlo{& zwMLQ_usg1-IZ2B6DrJ?{;Yaod`p>Vk}9M1WY>y$x*5%`gvZ^4U#Oox8b$ltrzgvR5N{i z0&PBnjphqyCI|ZqDbOw+a!cHONqA3f3N}L#Xj=4ba6U ze*YSE!=dPguz(2UguHrB0MFs3IoDw$pbEgECo-A*)v_zi3I+a@KVf2~*s<9{cq3l6 zxxny+xWAhJ&F56Jo1IbeW&OD5oZcoEd+S8dOu~sM@A2XFiyyn{q4o7XNvtu*2rUF~ zn`LFMDxEWjtiPY@lAuXr+P<=06exXs?4!=1{I9P`IekRnf3)l5s{2y%Zz8v{@9Aru z`PbIV;sZbx2%L@+)7i*&c88DuZ`<@3@%}1K-49T>YVL#n7(pZ>4cl?Q)03lqi5Be_ zz+_IbrE%sXWYFT(h*{H)~^_USmUfX7D3^I z!uXX;AqqEN-QKF(G;szT%VG4z#qz><4JY2}Q(>*{Ptoh5%ghkq6;4?9*m1C^y9v8C zPKRmXi9F$_YP%I(A1$Dop@~}?2LlR!#H&NCFr=_hvSorjXYQe1(J!;KuaQM``ayjZFEg5;Q?Dt;Cuz6zoR(Jca z1bAF7YGL)aJ@-<42AQ= zUUD~vKe|-#fao1cz(nP~;9~`)?Q+7R*0JD8uaUBPf#PCL%-nN4wTl_Fo@9|j$0Mtt zMd%{K^A5FIcqAt36aH%M5K`7k^*W=8_yL7sq*TUdi5!+^G|fZXT|>okzE4MDBqjw{ zr}@vC3r3>ubqq0w8Pz=l$-7>12z#N6CWt}2F4TYZD0urFq!^SpB&i8J_=TS1WZy>| zH&iN!6DT5qUlm6g$!+&*oB0Pbs`b{EnRhU)IA(;Ki4zKQPz%Z_`uo)%$S$2#BE(vH zH{ZXzkFDBvKHaV;hV@Q8AC?zk)Ebn~4=bw>IXXN<>{Trc@k@&*M1v zXTqA3eZBtCY~v~*BKvb9;_|RI3EV8s9A9MGGH5^DE|uHTaQh6wnl!y^G%$}M%SruH z{?fJl5??l}iMm+DQ2D0r8O+0H@5}w155e;Vbw_euqD~saNaAd~x&f7#bYuJ_YJQw$ z=(iq0@57#b42O|E-lwv+-H>6zeft95aKIo>5#^mQFqEv?0g z?BHWX|9iRMwvaW&o1!Aj;7ogOKcx>3Lg^lot?g^|)I25XeL3%Ap=0oEuNKZjiz1|l z8G7`x&eY_TL$>)g)q)F35Uqds+or^xA4gOZJOpCkv*x1q^fDw&`FOZ=wfSpmE-~?| z7jyhKUcP9~P}c6^fb;dr9xpg$n}F&BF}f=rH#&Z(xTnyb!xC`qmXDE7A7^F=tIo6# zyEHYfj{b0O6Lp6U|Gemao$8Yi3vvC}3318cqCP|mORIC>JeRewPL)ee1YTHXo*?G> zi)l$zgCUOI6Z4exTYVoKX|TaUWNU%S;rJynU#+w9u*Ew}>-PgY-fFIrZMCZUk|{L0mRoPXO4QP(u~ z$?@ic92-f8~V|7a5$Z#e?n{{<6o5O&G$Gr$saOI)MRC&A} zjWYbTo9uw&-_;B^C(_S=!o;wqZSLnll~Rv-^eXRRB&xOVV%nbfY8j)1y88_A4!${(rT4xivSUdi~khZz{W-Pgtyo-6BEY8f$g7$OO&ra-bUP#k1^w{@1z?=nEZ^79CaZkl-qpiMN+f>b`(41hg(&VDWkdwi%s1-SLsGNHkI=;w}b>O`^e(~ez zY|2OTtSefdbo_WeL)h^1A;kKRgKJ|?{OL(sY5i8;$El!Ea#|P1zISnILSHIZH*3ue z-)=?3p+su0bz+@pR?Z$RwoeL?$F9$P{&Y@s34LgBe|WxdcS8k6rAYd4~tWroA$!a6jm zME7>MYtfO`?D*)%lQ)4kPWouf%|asj!da`{t0sUmnQy%)WUgF~uT9Eob;)q20&3Nc z7fq+IVN?iT!^#gviC_s!fDU*2bA>*?fd3|7}f3NXYi^nk#E3A#OB)y%jGfQglQ(;6 z@KYoEn%klovI^1dBOLIQ$Vd)DgT;1~;RN8xPV3aMi241<`Rw%0>2erS7BW$n31#MS z2>$e1z#Z~};VT@4$eZrNl;k7PQ=tNu+?dPo@3&Yhk0NlQedgzmbm`$6Uj!WEWVwg8 zyC`yT&oh3xo0l4?*lF-GGkIg9xl9Wp0P3(Y!ZfTawaqyz_po=?7=M96C@CFjLFe1s z=0F#IM(q;I-_KBlK9hI#v(){hdZk%cxgNO#YAdYuTnqKCkLed8_xjTGJR7P)ONKF* zmr4&@4zy9N{pK~~Q1)Yq%bl^!)S%&VxN*%4B%x}US$p;CkE2j5vhZ-G`Cixy;M6!A zF(0W2*pipV_tpqf_Qczg81xVZ5=F1P(?k`|#C^A@4vHPO=XTtE!Zf1oj@%q_E8opz zTzflEntd;VK^~Kn&c$bBGlQ^<_PL^_9#-`Eejs+q=0e`^%grSk@&qpY72f~~$N5GG z6H|W!XQx{4)s-=rEZRsgO`r{5j9MZlsH60W9eb7wxc6fFG^=)9S&`)gs7}IR3OZ(F z$Yl`E2VaXq1!M|(xismfN3F>LaN#sKkZ)95yy=PeIBhF+f5tVprG$)U|6g7JnM}F4 zOn+-K@Nmm-lj0X)kxkI*&|$ z+tPS!MItc}WQ*dSHyk35TmNo%LnirKq@e(YJ0pf?NMf_;qAxDT5iN zWGIXol1c#8)FCN*qRelQ@Zq##WOG8oTW&?;{YJC@GLm7NjYN)>Mp`Wacs_=L=+a7! z24He{C(fs?7foIzQ=ckyG+)_!-ie7Y#pv=qdh@YBmsNJaP5BIPW&=--)xvG|t(km4(>8iXnaxB*n+wAZheoMd5)oiJ0Xjt(cXJ0CyRU_;&4zI2B@F%rL|F@=FJ7T!#S{V zNWil?Y|!cai<=-{rWB0%qga^+uKP6-t+gcDF2My?nOYyavIfLB>*%n5 zs2n?)oQHElM9fyQ9Cm2rixw>aPQD#gCPF0tL0djLyO5yo;{~45n z-fJf_#5B=1iZ4?*#fYCU2a(W!4^P=`y^Zat9mx%T3CHhDt+Ix2^*UYV|{KXOn)h3 z!7CU9bpoIJ?t${(C}eG8sTG9?VqZf*TL=%NYE8;rU_?FaX(>kw|4>iM^OWj7bZkU*& z=dohH`?UPVQ-EV9p{kzc)IZ0>w_|O4$&HI2gKC&C;CWN`l-iisaCh8&7T3Ij`m{|74R(xdVcMS4u77y`2i% zjbTXZTnaBZ%~+5&EK`{8^DxR(bQae9s`S}e?(KtJRMCsCO1i0fC*IbSTK4*Sy-dee zjr}eOUz<-w+GPmWlAvABS)I0Bnz*+mxi>mi=G7F#tEz{DRR)HS)}r6Fy-Sy`Rr3Db z{5a-yz{>lyQvqoL=U8T0Cz6#bZzaogHPrDFU_igIsSejx9aloe^qtf@l^it-xosm%9fCsLWBsJ zWhL2rrn1T2vUk}eL`KMn?3qnS%E&l4MmBM9%=>-5zu)6=-}hfU&bhAZeD-@>pV#xl zQ!QAm`lpJlw$$jx7YbIrF!HKRy(eH*Rt{@8nm=asCNy&7!|ki;+iRsCAj{*4-g z{3Ag|Y8v<6PULu9V-aq=QLF58^W;EvPrqsJoV3+l=V@~0d=D|!fzf=4qti6^?Vl3V ztZQA?0y{F}k280UkL-8NeG@`Lj;X)WRj>?B~^uwGf!QcAt2Uc0He8 zFC_Dk_A@1G-jkVY{<<#It&3(K5-T1-9~N9qCASyYxv=^W8|ZhUrL4^0e#NuF9lveA zdH-_s530|_O{wYKHN5z((!SJv?XqO%Zv(T%y)(~li|&nT3WiM@AsW7?TRvavS22u0 z-p9k)y7|y-_9)=`-c1F9D4}9L`|S1tUVI@kmc$!;21X_7ZS`F0d$X%Te0>S^Eoy_K z^*1xRqE;In_em8Z@RS6K`399O{S-I?65w*ZlA%Wzx*B~{596!Egp#!qmA0J>SQOgt z`ckLFu4@>5`P)pOW*@7V@+^N(3GPXOd!Cf2wIL*or!`&E>Ob-9*XW~23xEH6R^5}D z5QQ#@^$ur~59W9m!#Aw_+}MjFAW6!6MAqOLw$v8N*=L^h8rqpzPot66gd3O$OtDgN zwnr~iO#?zdY`9X%bA(7Gs441HtFMek@vc(Q+{*pUVHR$RjQeJxsHo^<>RUQHk9#+d zLhI{p&u$Ob-0BSNKA5#D^h=c6o~w%^r# zVD>6vS`4aEKF}qpz)_da!t$L8cV^YuF8H=TikpF$~t~jYNgs%#p(k$(dFztdYS3U8TxR4v2kMz zHI0Z2mlKIX`@LgYx>iJxw^_g_vo67V`A>MWgUUTc+|#Z(5u;!J#=MYa%?{i%cG%)6 z%W`n7R~7yFp5|((?JqsM65U)e2I+4G1kL(aLod^RvPvH`x{#v?mqbm=s74SGtm681 zBA3Q+6i!VF7%yK{AK&t<5;r@0k#48YZE!g;cgMwskezMQNcTyvLm}UNb_RYcDyLAy zuswb>{Wxco&$9-NU}Bc7g6G4_XpwCONt*mq;^o-&cS}cuk4K*{krEfGTZp+)=6{iO z_a}UXcR5SdVZd*<(kLJ&f}gi!pHwMCEN}LbaLB{ax{`_z)v9!^L@E?1mz7%PgfC*@ zZr+uZ5W`A-Uy@r=m(**o4IY@N$$aAO@iddR(O?bBjW zm!ojO7D3^7@>p7m|63oLxs$6fL(Z%qk@&U`pG;%U zeNS%+SKs5oFT-ArIpfE)?@E|TH{JvdUQhL{*vo%5$K-=kle~?ro2T)m*FVPl__7F} zNWk%g!RadUTv(G?^9%Lm!D|}L2X2Z!M!{j`+!C=br$i@ajU)IuNDj60 zb~tM6>t9hcG<=yazT`pq4NOev^$!f}dY7Es zl*|a@!8K^1pr8Oq#~O3@<>Vx~3Io>LTZJuZ3K|jd@hh+sMeW$6KoYGtR@!;*0I%tN zgYasl?JsRaR8O$;ipY1Eu?r}ee`FrR10{y_u^;P<(rWC!H7%($rJ}yw-M0~5&yVdD zO;?pyRCHPU^+~a3Bmp)GSyzE}#o#PQr{rp4pS+isS0eLX%se!m4zq8eNYczZnCK~eiT}7Em&^<@X=-4=& zp(Jzk1{Ir$-zCj+QX{#CPn?Hcjd05C5*CSmmju>_8!0R~7RYFGP&l@{t~7H@WHQ8U z6)6r1uqwF2_id=?41bb4xT=$bu-@pFqelby|nmfQ3Tiatcdg)?}Vt4sw9X?6dC|BXj1TBSo%eTDJ zY8(}u>zxkQRF--L)y94{Yh`UXcuwV;8-8V)%0-LyAY!CN$`mZgkLv`*qsnN6G^3S| ziu?OAf8EG^XE7i+!u!<|TZADNwS@z(nC{~8TLiZU3Pu=8N9AVH=KVu%o>|9Ez3B9r z;om*nie62;n2n}sOJ!Ux$MdXE<8WJMrkP02nYFt#&NDo|d;Aj-9r0iH z-<_QcEpCL}vFnxm-ps=&suIiN^o(`!wDQD1zuY%Nu(h={sPpxaTl6m%M>pb5%j!ZP z%Cz#gW;kPK7+3#8=`0$;HWL*4b0N5b;m#2&8yj}vXe58*^!qb^-Go2X@UL;D=zn?ySHYCDaEgT_kl^H|Qc zQe8#`4S{r38By-P7OI?7#l;}`e|Od_Jog!ye_DAY5dX1y$wMiUBuhj;G0+w-7mp~h zF9b!2&lI&6y2$pXoUm5!c1-Q}v4JE^=%{~cv7rX6L!I(77i6WQS4JD1WJ^V&gwP>}H0qQ#@3uKY+~ zq&Nty>_<_v4m$eFGvZ3v4vOuW~ z4M&gGN2vJ3wYvkjxLkbfT$}M;z^(6PT^JI`KRl{3_>|$qc%G!iMl<+O(q9YKNg~0U zgz7iAzHkdA)5fK`3Q~o2cU2S4^$N%WBb`Yw~9+ zAd_ypKo@?ox1_6NBtGTHzqM^$@Yc{fYMqd9a{0x%j5*uUBWxO3uGs_T-Dxi}gIUE= zTWR?#l^W-{&c{>szCU@QO%)$HBZJudO zHNS9$2>~8LGS1FjuR^}ZXkX&#L!9#DtZsG>`ERdp%n76=+F-_d(-kukTpt%B{ge%L5s)38N&dYi-{ zQzQge>^qM~?j&7*cgT~GEfe(4;!nk=S3aEbwewlIlx2t$98)daZ6=QqfrP+Nf;-^w z7Z*%NFQ6<;1;|j3B4=5zFsEG&^;xhy5^u!G`y(${pYw(h{Qs&b<@&ob%8#Jw3)OFG z>GWHywLhx*;}p|M?{RSnV>h0S;_aNENLBu}ISA}Ld5S&d<2wJR=uyE{mia$t_~?~% z!gM*Ng&UW`E2S^)C4>?^V@2iUb9){yK5;v7eB!aqX3=K|mUxXh`A6i8*<4VFUd!sw zAPJY8Z5we=p^preGZG ze!S@=o_~uaIeFCf(Er@?i0;Jrj`j5<=zTWoBHk@l-T68{-tL*k3VvU;*JoC(z%|19e) zz7N&ixKk3kqM3*;Q^D`9j6ys(l7lH@1v^m!j4dY~SsnGjZbH6^NZkn9gaodRT+T*lSneFt^=g-t7 z#eWxLbXC^zCpJxP@~9SjS&;5i^t+d!hq)KvfN~H2l958*kU--^w>~?gq8O&WEg(-c z0&NNF37BU-mh$fX8J*0$vJS*;we24v1S$zo__M;i!uQ ztiImZ=Wo?#hMDX=y*382)mSetg$u^xGgLJlz@}z8A#2sS;jlk-&g?+TDs)7&z|LZ> zuPOSi{*oBwfpLTDJV;#RMulPLpSmQ98jy4aaMkJAc0f7mE3m|tyJ$^`PtS)Wwtp0= zvv?nFsW~_}1S1{Pd|%RQsnydu9-2&~-fpk)zO4K#bk;m_`NpdbH?CWA0tY)C8m`-0 zl7;->E+r-=b^thR-S;zMdj;@aR)~c$-$np#bF9J<0eGLSR_x*7jJwf(CkKM=8+tW%li$h%&TO%yj{oL8Sl@?T)MQE7 zux0ewvuCbrzan9Ods+Q*242@!XQU!9s}xmLiQm3`JMDq+gRSzbnRgo9Hy5DBoFXDL zRg>RA)-mzr84)Bmt)M~ZVimQtyUYa0!BO^n--9%V&zb-b7t{m(shxX6jEf)fg?XH5H4nX!p}s z&$KKngk`Fz?!u!kEPhO4x&qUg6|j@s<<%?nLNq@Xa4dz(TaI}%4o0bOWDi3N0~0q2 zI&cRNsg=)%uhH=7wE_PzE|**Nok%Ru=|;;)!pA`Un*`sySi+=F@BV%Jp?w@C0ptHY2 zODA%v<6ToxQ{&*_iA+kO#&T#uFTXOFTHtC~bk~}Zx(drcn)Dg%@}TKLlMQuCHF2{X z)pHGS#{V=EArB=4nWV$`g@_!(hw920BBe!Ix@wB3QUBG|dXT~Tds@(-b%%9TrFjP) zAI-qMXG61jlV(LNd^+VOgY5D5U&FUHU;hDc@ZV}-HumpZeHk=XYUu2f73m8l=)9qm zdp_!#*~1<~>vz>UJc9;tKvB?9=ZvJ2_P_6Uynp4s6pVOyZw6fj1Dqxh(7QhxJsf}j z9D0w;NKJj{<#n&CtBabJ7U?85q;j;t7xlW()}wgKpB%#DiImphv$HNbocLkRU!__58V}o?dT`OfVKVH+POo>g|@ISek=GJ$_*KaoyEHi{BFBBUmsEaRAG*0D6zkb<|UB?XCz4cJPz|NEcaS zFPW5*@&#T=JV5vN_qVNMG*Ugt_D%OaAhHU1@8=&f8Y>fd&b0+$W(^2sLGqUld&zO| zN$;%C7}jv5gL zuTJ2zVdzr+q~3Wm%`L&meuQe?+L*-dev?sxBS9jVmfpU;`64a6Sv@9D>v#-6nDnh7db{1 z6_rohhTYxWPfbkXY6TN@+%QYs3$-vnHvDfEz&re@;|DziXJTY;Z?8ck)@%L2zq`f7 z#ch^h$R2^sBN~Xc1sHZ+x1wq_MOxff$#0CNmFnDt>;L_8X_mVezTjlWCmv`}L1rm~ zN|J({u4jX5M`}uBpM{J@(yOg&mvI_rOv)X2oXa@vFKtiPCjxmFGj0t|m=v7!oBya< z&*5>8tqDXVI?gvTp(1Q%oVL_ZKZD=$a5+HZX+ORN!D*uxy zgvjp?3PSo{`(+QeOqAMkU(yr*z9K3~H2&LCAX6&T;0VXYnYF;Nwfl)bUVt4_%aQ!) zZsd`r#fXK)$RBxRd<1dEm`mP~?{6ZLq-+^U&9M1>o+QnDI%Rb;F=t|8-t&*tO`A`5 zNf{&g@2VZUbUaDqm}_df56Xa;;^MSHYhg8_{l?AddLaSYDlpAOs8jp`ZbHt))z_oO zueH^Tac>5a zL&21+2a{DqOZzV&Z?u5QnY1&D$9l&+Xrmxx*k*UBihj^aRxqPjcUgS>p(gbcVs1P+ zw}IV_?6trVVeD*noz(S0JZrVow1Uh2!h>Y~B&Yt=!aHdH)7{)7-xt@&qQ;3FMC**X z9cZIQuf*|EKfEf&l*0giSmoR`EF?Y$Vqs>KHrajc z1$~q|p!vWKpoeX)*~7GH!)RFSb~bAf*gIhTvPAJw7GP#ADt|R@>p2z|{=qDp|!4o83!k=pkX2tmW+#@&cBCwFBo2&XH$MM#S#87*K?sIUB;bx@>S;2Qjavr zb1p|YHw#g^2ih9MymZuFX}_4^Et39v zeax@Oj}!kL3@mzjdNC$aSQiQ(zZZWl70Esw^5$K7Fjm^)^mBll^TUjkE zF)||6-)|JuV}oa&oSeK$r{D2k$6Ax?6#e$F53b0F86h6Aj)-gaobbUL5#=J{`&IA{Cq*Pw!i}M(ie(k($mB&S+WGIx0PU&6%}!BwO;r) znK=HK;oS74#({GK+%RVZP{0+h)e;YK#)(rX;eYuVD}s0AvIHM+l-kTU=EK>&&QL!X z{BDMje+~sNe|eWXWTMT5HRQ$J8<&V!L&(M7;DX3Q_V0rlc4EuJY2}i$KG!s#V{Ly=no_L;#vfk%TU5i|CIm=6hdmy zgahhA;m`iB)T5)LE2lQ;Vn2+V0t0)N)#%C71Vy`zdO@2EMH!h(f`WqFQMs0`Bvju~ z#*DR7gCFF=!H)ivNb>$vFCzQ7{rg%UthwXn2Ak+Sm@75A%&&QRAaab)QF`rZdpYb<0mV_{&Je>Fgn z$`M?b|DV?R94q_^T9SYncktFLrOQxmO)jb1?6AOJU;57Fj zH!p7&?Q1vNL>~xNqrr7G_hB#VrYy?uLqqa6OzoMj0E<^rL3P+d zTC;O9_ zks#sIRq`jRq@<~?u3>E({NPfP=8R98g$Y?%q=ATSE-9&N(Ot4GE?;~f{QiF**$QI0 zI~JW0ZQIbo&A45{AHnp|+%k|iFktBG>jTHzX=6eVjyq7+(HZj^{;gwT)X=czg8_BV zIDjq;t9Hhn5u|0lKvb``pP~tbZqXUuk$Y^6vagyP`mfDbR#2(w>3!gBtWH*OVGT>2 z@WtQ%_sERC3j(1&)Gb#E>ML}`!l3 z$XGn4`EdQke^ZR&@#|bNJ(yzzqL8e?j6F=|jeynl`W3xu8;DA+L20)!RU40Cny2n( z94Fb|23K?mc;WU5|L(3}99W2cUoV`7kS7Ex+|(6n_zH0$gbnMjm!=&&%o>Kf`fG62 zM%TV#Jv3gj9V#sNKDpv?;6=o0kaEL}LJQQy{Qv@P|Mf`|qK>7>=h+IQ!r%a>!zmiT z6*dQI1D5YOdIiQ#Gz1?Q0YB(sv0kkVaj>!mL38Xu#D}v|YlHCFmc+Pg6P4@`Hd;Y+ z1Ab{J;QTT*-N9P};k4vVgGQdBhJk^1`=LXx7oTBG4B)#Hl9R7`5@YBJs%Zk4p_Apc zoZf~F?+DPGtE;P4*4B3d&QGILF3|PaXD5>@e%sB5cw^Z3bRu?iJ@G7#KM;B33y>{~ z&H>aQ(6*5feW zE>d4#zkz7YhP1#x2rr&u8s(p~^kMczi+M*_n->CT8$o;A{QN86n%>~#6d6ENk;_t6 z5Xh3<-@$Trb_QSNn%}+#9Oi-32C(TzN=lc^;K+<7I2l1+K>-LpUXcEn1l{9JozgjQ z+k335D43ZCVXO>EocAZ+L?c-)B4!+V9BQio#=qh2V|F%IMM8fk1S83O$pCYMs8e$a zQ!Nn8w`ZU4bAd4xc^BJr%_ruo?Krjo1a*{@l-T7LkwMJcu|6O6Zeyk3q|0U3a6a4Jc3iwVJq6O7g$U`c{54$;0rXGXRuJ-AL{ zOn@G_@q-P8_Pu|8gcM_ndqufA>_~!xLD^U8-R7am8|gjTMc#9o!-B511oaTD?{-*b z&#ShPJ?qbAACCsN_3k&UayGGz1-^a|!W|!MsyI6fViG=3 zsB++IlB3wK=;6NCHT6q|Yz1uGta?6d{i{f0C7B*b_^+0~x39V`puD~Qeh9}XZ;{=x zNMMunAa|c=XkZq&A)ieMqtH``^Dv<5e)*Ch<#!BnPe8(#-py*Ni8yTWioDaMZpt=R)Ds8 zD$HDdFYcBLwhLljAuwHGpt<_-K`t^r{y9)UFlY9xG`s)Ek%6W1OVR@tL+{0%71cdY0r~JS3rnfJ*T6>C@h!p=C&jV8S*mQ2f7jMs~l2 zhrsje;S>mZNCQAH#VIbH0TR?;T@$a+DPY#WUgGbz6Ulxx3y22H1p7MMKr1VJOP|O9 zHyNgW*s%0PX81MlN83*rIJAZ#ZRg_Ras+NEcJ232@EG31<@@2ASum2C^p;C_k literal 28967 zcmbTeWmME(*fvTd5+c$mNJ>jLf=GijD2wI|EnYCt3@890{zI$KS1btGF#C%Tt91ac+Q(EeSG8`QI8tncI1-#=q)fx*PPz+@y zKY&MYyAf~l1`lYqQd$mhaOgO&JN(45*F7BEYdGl-?^Rt=4ws!>w6_zlACCD`S@Xr1ycV;VgesicjQa8_w@9*2&RpAN7Kr0{6HmduRStovH9|a zgghb-3JDH=9!@TlH0EBc+mh7TDK=B8v$%a~QQD9@Xd!&DipjIY_QyTtksqbAlIdUD zlNYUGnw+{izJ{JBmrdJ)Q`;y-_&WiHNaOE?t%eHQXV_xd_!^anQb?1W^OeTv9Ht{5 z7$ht#7*}s+>NIP<;k7+I90we=&d<+xZ=Q~%GY`sK3whmdQa}e7%h;U%EwMyAokn;c z-aj3CT{Y=E3Vh0I3;$7nP}&4{ebV*f)UAb-*VYG}wfQ$)xo>2D)y0G_^LXSfae7J3GlXv~+XPai#NWqtKa6d}sXpYSmk$NTckZU};^YNX?Mb@yhbi?W~@+ zkfQL-SIB6sRdjT;IJlJ^OM4IIm(~Bdx@s;<2xt=Y#m)*PMm~c=r$U8qaTE~fy1bvSEh#K4R5dWjC@d*alVO-%SSW;ZT(qhya1kus-`|fhAS}$t zc+bVjnJ*npTX1>lWULi;+r#RWVcm38%K}N|bUM^j)6*-PDb~tjY23{m=@Yp>5$AH; zpRzvHip%MZpeWPzesDBitX-%u3IOX@86F-^?HfwukW^DsySTYMZh(+GjtX6Ue*&q}v zp{VP5p{8D@8@753;Yh#1P!v2xqEkrO^>~ysUY$K?0&{Zt*8t&9?t8kOZ9BUt^Y#=y zmbSSKK9HL|X53k4dO_K}`>yb5!cnIW0y?F=4pRqTF?jzlI zpi-3Eu8YY{ZprH1;+(oPL(`RmkG-GnQv1@18PZ1BFjib4WGik5%+H@cuRj}Lya5vN z>UH;CN7q|xfTU%$w4@5TU$Vh;vaj2)f+Yy+HF4O+)g9`!%xH0Lu0M%&{SRPr0Xj`i zr@-|%%Z|}qsN;JA&5%pwk5wyDKON#2wVjmbfj=)gygREY^9(ah_lyJfZ@HLTUHyIR zxWC{wnDON-MJe!#q2yWI@L%G3%Df*egda~MIE;ERbX~V&-|NXva^}h>_li70MPQ45 zgo0K;TPp+eJA z_T}s_cW&P(!Svrqm3GaRcZi_vT0*_#vxKoRjRRyvf}tn<@th9s^XJd?C!Of?&8|?Q zvWtxnR;L-w80F@>e@)t6H`_ww2N!Mvl7k9BDz~?8FiiqOOmCio843dvCOw!fL)9Nm z6B2wlpDfm_Fl1wGQdG%P*v^U9r6R?8719H9?_-WFv$@-kya&Zqfqk3zz*zPVkFCFb z+em-hORwLK`!dFP6l(1KE%72dKR;0PbvsO64j0oJh=}frZj&0?rj1@U>=7S;|Nj{I zlH!sJ1Gu=@(u08`C&n%|Rb%6v+dW0^1!L;{pjUKLu^PGsOV)Ks{EmgU(DbLJ8*K}V zBKxLgol@6fuGxHGqda1;>NLeD z%Xk8X`s8nrZ^pS`afpgV`U#TioCe0)&kSKv2CsL|?t$P`<>lqm%i8Lc#`5lfs^^Wr~Z?G-v3GfRi0r!+_qlu?y#y@tI8kjVqQO% z#52kd!9=n0WBs`?VhlYhib6egtrsO<1K#*zQz1(ukfTV3lXgI$N?Ka|+0xNbWZ@u> zz@?TS69YfQk;2pjX@(Snbo>9jM8F4+QKJ9vq~q@{QnSsfaO=a7&6VrW&T#V0Hmmpi z(dqvFH&|rwU6uqxne^`>2^tUJdY$~DICl+Ie!f_H_i(L$44Xz(wkN{l5=3~`_-QGG zwKV})6S?QP(%ZLh^NWkO+Me#(euRHMD5+Z+fQUS~rnzhcS#wRMjlj>fd5g?yJ75BT zwdB0&xqRvG3BHxUVTwgVL*wyux7ue%3TIuvj#6v2II}H$cX_l4T+kND>NN@r#<}ma5vxN%o-tl zOOJ_(NuQ(H;>HC$D+SMri&6Y%OIcaj2ngIgkl1=g0Qtt>$TyaYwPCZm?j_L2fEN@d z7yHx2dTnV*NyMamdrNye&TV&OuyAHik%QZIJ6%@487^REX_;MG8ou1*TxHaUMeeps z>GW@@AC>nM%yhOg~tgz>^X=$Cd-YE^f}kVHeOxJ&a3i{j$B|u zZ;XwNNkzO;K>oDi{q!Jg^a|vb+UDs#@vM3yMiD~(%E9rvZb6GSZK>cZ|C)}4$vsZq zgH_5~SusaSA^9AXwWUQxMOn}89i%K;H-&-JQjq*b-Kv*>#Z2*@;ISWp?pmZIIVEuS zz?!dGuY_PZjOkGN!=Y(Get!G5z1_TV{P@xm@UnvcP3$%HYwTy`o_9|7ULr6Pyn#ha zgdcETZRrC4>VFaFc~n4aa0v*aV`C-k?ASH5?U4NqU@-!00xDiIQ0BAAOgzG;L5k(p%lxg-)MGY_877mVgpRZAL4k;?y9XiNyfO!cZCr@W^wq>Hr;z-irv@)2SGxZ7+8|7%LUcS%d%z13O5!j>E&SE{9UiSFrz0P|uI+fe5${KcH+VPWQ=r2L zUw|f4FP+GZwAXbPg<%qHg=Xm8aa%fLX?>>Nteh%LM{#Uasn@DTg_HBry^_9IHz4~I zl{N+gf1L(PmtD7B{OW<ACo6X`17S9`Macz0Setu74~^(~C-t zbm&vM!8gSzVc(SdW#!Pfo^@YX?E9{+sn19_Hda-R#cxNrZ$^y$OVTfy~r5^OYENFc6UP-$%`qCoAi1y^uSNyq1>w zz^Z$%RyAiNuAvGvN*q}bsTj8U=!hHGMdFp6pWFgC*CNfM=W&868!KF0et}V9V54*! zOl~B`sXrE!>x)9R8!^aB>9^Ce`sVS%Fjc;b1%8M|V)_v5Qe2TZSXp(eb0;*-=S8vl zmT7G#$<0uPILl886%^o7@Nvrbxdnc#Vf_^6T&=pi{_HFSSEPJ#?SFl-yCh&!S&O~I z=JOwk^6?&<9pk!|a7BAsoakjd%0T)^=Szt7-ylzuO9O??OO$1&+WStYSy6_qy6y>^ zajCz7N9hs=qe#zKE;dgsjMTUWX{p;ATXV-7o7!0%8IbN_;Zqq)Bj8i@KQ1hcWcql2 z`c>xUVAHQzC?6d_oQ&fnPx-;{zt7XG%{TX#4t;ew{u~HuD-Apex&5??G!rXh_Laf_ z!Jb+v%NT0SJA}sa3Hd%-JVPAkbAG^I=$uEPlHBh z35Tb)vj&Mt)E^2XfwXXhW*4}bYF48;*YdVET^g9X^*%2K90`jB{(uQH>H}%dffXgo zU_bH9T_`(-m%4EH;z5LMceVe8u2|sXf8S}wd(J+-nM?H}E8QJ>TKrlAvSa(DclcLwWrBpniZPy(17BYN)aEvnY-Y|GV&a2v7MFj!;=&OzIf(5cd1n} zTR2${3v*WrA1cO;zDTstIH6T-7eZSZl%1Kh^XdF}JoDuSgsHQi;@8Sjp!>l`!QBs66DCV1I1sEYoWehfJfzLJ z5*VgcnMqwe)@@M5{S*4@fBy_Up#0_+wxL<}3r&oHFIJSLt7q`(N!$UmrH`ByIgHP| zFKJWm*{{I|DBAodkv^5qOxg{N6{mF+rx=xE3X4SPXzN8#CY@iv%C-;6NxclH_HR= z0tu_Q6u#GP|H7w)Q*s_-Yo5=%zE>r)f!dc0F@v7H4ynx^owJ@;$BoXm#|y%{gn~)E zPaL(s@4|WX84FO+BQc_UdVKEh#$VmH5N#t2b|>)?`3yQ#-h5ENzakgH@)0V<%^mjP z(UUjHXE+%ClmPujR-<>^WMin9=C7hYehf`z_wy}lB|lCw9pC?kO4hdu+16+5sj3u< z!CtiVE+J&(XhPd@fFM%cX`t7sjgMF{=u5(y`2a z@)bcETJ?ydN1r(BaPIOIm6)}{-3L*KUU~*Qiy7=(dv1NE{b!XN$jt97HOnF5MPx?Y zI;%%KbwjSRIf#67f0o6n0P-;qaIa*V#kQc(v zhVgZ}>+@k^7x_!*jq81FfnU9xG>&06@H3|8Uc6#y84j2Kj!floQ+^NOn&5!-w3_R_6JQ@6ZzQQ$61t(*+! zGA8c*(L&Tj-{-#mZ15=D{`+l0Z!BBV$E~v>yQBFai_sCU^vnLk*U6nqSji7%eCU)Y zlE7pqfwRJs$DG591y{OHvE=p@^A(Y)zf7Pyabd%n#gt57u(9GD3O1_IoXm}w6H;Rf z+1=LI`~qeAEHWE1!i6CmhqqRyjE-+O*APY4{^{o75uU8>+M&zi=#Xl=PDpq<&fM;%3g0PdnvqycarYvQ{J<$U$QV)q5p9$*Eo1 z{Uq&cnf!u^UAWdA^>%fcZEbbF6{Oa=<}G>-JC>@$ls{STk?$OM-ivr0moboby#lFK zO*5x~UE0XDJxw*~$Dg_8*B-*E#KW-)efA^NpmsE>nDYt0auH0(l@<)c_x~hgu*iM+ zEJDGvj=5V)_XVHYU6AfIS_*tjP3b{OeDv^v{BQ~c3b$665_oqs8^qkEpFl;P6sXK=)2IOIXNmFT%0 zFK%vo>|DbD9g%FXgZoD0-A3l?5rVGzlSp4*3jZH#`vrB0NOox|eBAm-QzLdxwsW-&dI2jzDaw`z*L z4a+f&+Ll2d1SqQL7X}k>c8F2a$%)Kd1aL2Nvsi(4IJ@fB%qlSrm3AuquM$~@D z9IBE_S@M{|{>aYq{9215eC$T4>|hS>72CUPA~#R^p|dw!bFcEK1!5FVw;@I;y#5w? zs{*PzF?d_kP9Vv}AOPV_a*>LC1g*v}f@DE^tg2a84j0wXJNeQ$EZwK*b`1NC+>3)n zaVB%~PL{U{PV}iUi{gi!vL~&#hUpd(te7bI9P;13sxeXe`vIR5hEOY!H6-AKl;^Va zyEMn5y#3hJhIX>YiEr>#dN0c zqhZWhjol>%d_*pbHBJRt?yQG!FLbNW1THL9C`_OTaM=b_=cJw#w>dfhOtjVIwoBZ^32S*^nLu` zMMyfmi{P`&HSuBzvzm$A#Oa47j3mpI+2JSIUymelVvf4oT)GV*YrS8=@T>UfYT<|7 z4~p0CRYLeiwMLs;TUh3BGt!W2&%?mpz_c^Um3a)IU@J>=13ST=1LSGb**KJ5D}MDN zb3a!GO)ynj$bUAD%&6?xqf_F55@y%LoqAwC@{;oEDNS|v9lafqhwc7P((PEnn(3@s ziaF)r;oPpyl%=l$6LfSuFD!OabS*lFZN1pqN#0Rt2Ks{PpmF|X2uEH4Jl&5s&Jfgl zOJN##0i);dC)pH8W#@#H`@_vbwFkdyySi42^JUFV;MF^M%pGiyLQIievvfca6+{bG z^HMGN*D0?lMS<+@RHDOuD+^kE6@^O-x44a^m67yj5d3jg3dUPH0+2iiTCDD$-r#k> zkx;#)8riih!KTsz0gUCccLTRcdyAs9izqpP)@)a*{fokZ0@3ES{5Y#L5I8$;zA`4v5A zI)YTPvx$dx(D&ytKQxVkMfrB+vn+IWX$N=ytQ#uyk3l{~WY1+9*VkEp2yvu1ZKhg- zSQWsdM}C6Mq$$hJq_)nHx(_MY-HoHV)F@v4d#FFT1b1CETU86P-pw_vhoUg9d06>; zX_4F6-CB#Sy;ds5X?{s3&=(YbjdOTm>{X|P3gdIWdhRQGh!t>69)hLgaXt}brUsm$ zXIP$C7g8at+QFuicebB1nQe*WF5EQfhR4LHLxBx39P&;j&~k)N84+M9VqTvklNFzx zW|g8eGvJuKN5E&3MrpFg8QAPt?oyB*{N=S0wF?C zAsoYFO5`uT5$28}Ii@n`zF1V4Pk`@gXJ97b8Xn`aviiW4%3xj&Cuvix}q8!HAkk^MVx%K|P8vvn>yrr_!uYFQnhrrR4*r8#-OGXkmg`1YwWyvVWt z#FHlu6&_fEXx~2})J?lw3W22xrB1fQBdGn~&`GC(V9kMp9u}s~{4$c-yKp1{Qj-vo z5C@q-pzvbdkfFY+5(|#=hW8?0GRIlI$Ugrs`+@t@TYd6J$^MYd=`q2eNinXJqknU+ zf@mRM_Sj^%g-h)#L%@XSEz|pX0{2_FYX4U{C`Mt94f(cB^RJ;l{0QGkwTcXr(XRx?l;BZiSk ztq=d5dW|96Ple57?xScrXCLIK^|hoH^6k1?waU)3ykvRyXygw4$}Xw=>qFQ2I-6fA zEAbA$yk=xDH3KPu-`|(j#1{_?-ZS01vjlC%u^VB`Ut56le#+UG{CrSy;Wt!|+BBUW6Fy2`XGy zBa@|^$!MD|ys(^Btq@|2cb%W_$D*m=#B{hM)uymM^2qPpGzlH-sm&h(!_b3a*0P9g zH!H$vcMak!2vzHsEhC&#jlRXk8cj`O-8}?!1q4KV$|Ze{@n$}QI)!i3Qv2@8DUr5T zH7VmiQU3hB33@IG_SLOMc*QTr#$PO5ATF_xL==^xOxOkw?tBWoA=jwvBE$z?Ft3<& zHZ3(Zf*JGLRdELqot-+$2N`vfwuj}{;S7Gt{m+*TkR|flAE}*GG4^953ZYUML79Hy zmiF$6@#*P@pZvr4poifdniPCIYmf(9q&*aT!xOLstnN*@8BSGo?tvrnNcWM`n>n`y zRccPmrfP(&R+A5gQn(uOcqGq*6XLlV!Iljq@n;#uxLKgXO?v2l$8_r3H04!!Hclel z{u7Zsx?i2tl#pPJcX`PtLa2hbVlpZD=q$K;k*J`hHVIKz#NmFg0oB%+KPME2O)hkb16Q&KKwS$MyIbsB(goTZ`g$>ELCW@?u zg;Dfi7aurf!!n-Jiq6aA;r_$JgJ5gT*1qsRqOgUDqDMZLo0Q}R>F~IfD()Rdid_y_ zR>q`{lEZJz&4C1h6FPwygFJ2PVundjWAiUUa(bNd*@vkmX+O9{A*HN$hIc6q8lF{j zy;(rQWUI^jp_yXoUrG!nFsSAj7}g;;avJf7grP5=JU@?dG{K3Fa^F15av+AzP8j9G zv6N9SU19JW4{LpED{Qv~a@}$m+8gLh638Vi#BK5^xVP(qblTD6rlmjJ2(nYQksH7Jk zlW;qj&;PeKSZ1W(=W$hK-gNj-8_&X^T~Tc*n=;I~0tXh8P3y(&qNO9*6juIXwey>& zt*!m0L z@+3~J{EUuIF~)^lM)@3_offpb4p6TDRyenNW}=O$*|0npP3t`KGalu>I2NWkY|`yS z|MZzgwsQSnrvLmtq1_fwR-swfVq9`|x*KpXX35B4ml|Yu_)M)8&Hz_M=uMS}>09Zw-gO}zbRZX6h}bM* zPVC?ztWER|?m+c&tAJ2)f4q|tAN3w2dE;ISk0WA%t!%VgLl)Az8b`_Vk$g1JZ>ElSC$%Gx-LR z@j&V|3@3W)cMQbRK}gM20VQauOM)k^?BV1J%3p;zu>P6$#q7B_h7Dkl`Zz`n40rXj zwgY9D_>&&CE>)*C?2Fw36Czg6rrfi-%`I9U_y~3knI#rs-WL2~bIt8nY|6z%3y!;R z2eQ2m;iHl}m~Hz5NrITOt;;bD%b|`jCE%@h>(n}P-nLCn6HKbBtaI%~wZ`?Vp zna>TpNOG6Zi|%*(g(|reb83!orXDoOne6yq=MYGR>||s*>_CTkeMw*R7KAo9phSf| zwdOTeZ%M+P&TDArfm$Y0EsHd#-XqvHu!mE~i>WRXpx6h9rbzV$Rm?UdjFo`+*9LS6nTb zHr7dy=GI#gCdq<6WIkH`DRr6_iaAGp)|u=A%g}C3`iHjEnArdwW&eXUuMx~!S4I3S z>`Xmi%=zCY4GpP%WhRKngtV|vt`dA;vTz4dlNM9;o{aR#D`y}!Ze2~D(o_!PvU}d! z;h9RpA;nsbZAuHfI8X;O3;D$VGINry@qZL6N&Z4!R3E2*eD$4vDJIMDS>=r*4IXI~ z(?}e=rVj9G8~pVVpf6$2x2~@Zc7^v9Y*+ZL-(?iA=ir=Rlm)0S=5kv*xsMd4_%H@N zw3i~fS1{65bZ{naLf8A-$$sA&5`-Zyx4R!c3qcTuC2?NBEPmjUp}81#DXBicfN$aq zbM?}T7#>saK{`)*%ekl^_H}Kc4b|d|liN3ID1O1l8BEgd9jN;?@i7KOnJ8}!G;vM< z=*Jac$^dF`?}`t=+8`IRdUTIUld)Ed#X3!KH5Rj#?pOcTpK%y*X>#L#npp{sPK`da zZPX+@sj3Kw9DB=CX5_tgoAfe5nq!l2I-s0Z-q@43(~!t#`c09&vZRRZCvFq$Oc9(k zpE~R1=k4II{_m*wqr;SB^cnMDW)5G zp9W!ZWU2MZ4>)2937{%lvK%0^MPLdQ2O{e$CWP9VZQcFQLA~0<4X42$GL)qr5Yzfu zDLLaSO&D;HV6#ig%^aSfUMY@4l|$q4YVPdJ9w4~JI5Ep+LzIJidp`nDVb|e&6%3Jg zb7(5ExSis7Fmu{4>WS6G20B3WIlOioNB}UATTu}SK%U?E9{WTd*-J`FwzjuVr^~z? zMNf(Re~d!9jug^$EHS!78T_LEnDh1-(Z1sJixcrLE-v=fhJFXFGx&f{J_%T$>>tgZVyFxy6#~nTA zR{G%k2gLBga@M+)@J*2CH|QT*zUmPOJ>Hp0VV)$Cv2nILjeCrE-OLxc+p z3jjLoJql2_KBWgR=nlYF0{Db<-g@YfFWrBSS)bbEb+A4#f|+;e~}v?Pynv# zXK^tT?8x7KR>#@#kqW?vaDqNOL-{p_c=$>%@h^&-?mP1&|4m*r*>==7N^dvqRCOQA zV*&imEQx#VfMAb*bIF>!wx)`jac-Nh#Ga~`BCQ*%=EdN?PExL8#JnAw({cMvK(cFH zPAtu@>r@g283t_@je+iL#iZwVPF44Z63z1y1FPE?OFagJ9|yVxv1_gJ)DRT>>=p6` zMxeez>8)i(C zD}5}=E9aVz$-x++`Qo7@=#M#ZW9ciR?hAtJ=H}(8A<``O7t-Y}q&xpo6DCclsfJj- z>+~I5I0en;3;T|4(xjwz3Dg8=k)FKR=fWfa6X@HNPD}``eC|=!`nMB#@Y-5jrOXcV z()mpyK%b18aT@6PN{YRWsT!rz;ck(3LGS_)Oc;pmvaStTf4Wdj+rFPh5IV#Gz(qJ% z0g1eJR6w`li#9I_biTig5V|DX-ri=?szmYuKw5I|d%NCnGFeww*Z8k2{<-|tmBl4Q zP0dX68Ruqp?V|!M7#r-2bVj60B1~xYbpKkK%5xPY&54f#-rTDg>@#Uc1%tYwdWRN& zk=uQfcDPnvH#m#~n@WvZ5dNu4u4FY7G|}_ITJS}z1KXVpB#OGj?@ex@E+VAsQHQv@>G)L0VVX6{lhx$W#|5M5 zD;j?e8mU*2R6r3HgehrfuWb4@ZtcZP*@tZx2=>s z=vws^Kng+hnz>MRucVbHdqgV6{U_v2a(JQ3+d1)vdhOA+H&%?Px4|T|WSoASlbDOC zTMDGz2H)gEo^Ss-Q?9zX$)tiABa#=@p~5<{&KdxDT56n^K|S3j*QplQb-~yg-JW2 zy!0s>LE>TXO)mNr9BweIAYp<_tS#$)YgaIMIRNR)FHyMmTow>+PjTfoBWA809?{hP zDEcA>G?_Hs-PmGkHI7`G-4+YdbxZv>j(jv)7~Q9af@Lre^_r;$lY+{Nhjue!aCl#T z^-tzdewepZNC2Ew!>_e`^3@V%ZFooF*{;AX&Ke2k;zo_e`>T2ZtE5(3i}UAmq)`vC zsBJ?2D$f;Nk>+7@4sbw&hNhjYu~ab?z4aEDXq9?fJ6W9M!F^Z+7OP{N7$gLfx)fQ9h_$ zEN@X34GYLjb?8IS5zxnDfmoGaMR4fyF^C}CssdPmOHn*hXs&@mdYC&T0IeZ@W-3r! z?-!RRK3pGj@Mr#0xD}9N%{4>23Nh&24G}G}o?P#@w|1GKtsNC@L{gD!+;y z_Wi4R)*tnLpD85RjCY%0omWkCHt`sGYT}*`+999|q%~iEc}z6n$+_6uV)g3so+dS- zWrcjhsAKAwQPEia#wB#&TO87T@j(fVcpwH1Ohn!Cy>)fDYM6v;KM!BqoJaYLa~4-Y z)^GKpzyBE=u7pRYA{uXt_LVA?1$1hIbWeOEl+o{#fUI3M3RAZ^Nc4X5Pi9u;pwSKE zoZNK4*_^Wn_N8#4X5C_c{&KKp{RcM<^MH+j<%l$;mJy#W7Z-Zp+M%QJoed);${wFW zq_d-5dXtSQh3Z2iFv#~X9SrN6EJP#LPg|Azt8}<$%#OPKLSLQ_{c1-3S7R$s<&~8g zzU${}v9(SkFHqPfzE-=uts3Zy*7-7QnI3;-tR+Lq59Ez)CuuiToget|Q^(X2YCR8& z{HD=+k+RyWl>oC5y-?GGkDQCdCl@UTE3~b)4E5STQcL(78%%po@<>h12wA26J)rp{ z32J-0D4+&*-L=omi1}JY7lwc;Nz7|CFMJVU(~pna+}c@RXtffZ<=X$o7EazFXlej4 zDyi+dmGX@+&6_2NRo#wJ|HG4}AGD|sgGcQG^%kG%m49pdnul&a17kn}G=wqz&@O8C zV{>2XRg#V_)ZMkc|E27*>ftxHVN73_2VI|C5KlRRDs4q=)4h7{DhSM%$--J+mRd#| zBz_1WOJ)BiAN_n#t_k$EdK+})pl&Wz5hi9916uUy6j!y67syRl|HN#pI#Sx|2RB)( zYa9xuyj~5kFy(U%mi8vy+)Ek7$J1bm6u>ja#H!N;3(~cZ?Ul8E+RS^sN;gx z>bxQ7b+UFl$*=aPwtOs4=0QdYs1}v2F+a~SiV$x(Iis0yR*BB>vT80xz%dWDv zBbN(z%jzaH?P|3nzl_FdZ@?OH;&ExJGta(Ky3OEQfxNM)xH@-8mldqQp#YAG5@tua z=W{?g8d1`RMmEYyJUPV?2OxCz!*839TZ67zcmz<5&1?OxhBZztH6^!>Z9d#IT2}&? z2#5S|@lfRB>bibxoWtd~Tc(U%c|6~;*jF47mqf>v5KAp>x}>Z4+Vk#I6}Y|4%>|4w z2Uv(@cRBRB=bDm>pKkenhzPzv>7X#0QhW7yD9?**)R+pjrvIroo5rpf98Qh}IH%NF< zvs*IEOVN~X6tSSY^Zu!#!OsHyEa%2Gf!7$1@VKQX)4{XY3f(T23Ci#;Wy*&`w8flV z0r3rEi$&X5#oL)Y`zqJQoDy$3Gh!z#vh4ge<(gO7uQ4 z!Cph-s?rDvHQ&FuV6#QRW?L_s*P)5ql=cs=D>9dOhWnG}6D*3Ux-1RFe4alUcT9{U%MG0PoI_fn^@y%tV5jxMxf<(2OtSk@ZM77T& z3AdkfZ<{Tnj?g6hL9YOQpD8(5ijYeNr@XYo(RKd5)b;n`i?rMkPS+-(AxGD}202rH zJDI`p0}HLF)E@sp&~r_c2L(Pj^n1JT`4eAO78>yy$BnDtva=RnD4|{uHL( z`mb^uwpFr>Y~d8fL8F5x1@Ivlpg)E<)dRdFcX$%$3!F-DIefoLNPeF2XOY(_;>&cRmP)8!B z$cDBzy$nVAx9j{&IlS1QYA2?D-$lAjLYJq!L6L<`Ss;`mUax;)_w8XUnKfQMv907TV`~GR*rwiOxy5wk#^}Ig4i`%RnwsMp#ca!RD1Nc?cKH_V6V?I~&R%WAx!IAgKKbb;(zrK$9 zs~P1Z+0f{cQmKitP2xHETY+HA(Mu#FCAETgmb?%Y@M3Zd;1F_2-P!k;jIZ~YaWHWY zN-LoHzRzQguPZM)&9r1lttc6T4A=^y#0|MdOQqW*oh2E>06Jai|X-8I5UY zNAC4sz42<5n}v-Lpoo>r`h@^JbV62YP`XN2qaPXh_2Ne9u-rTn`73Ib)Kaf!!Dx}W zhr1=Eb0{-cQ#&AH7SU(L+NcP^5gW3#_w?>4YE-LgQpW|w+DLr`-d7z ziOHb8G&i}lrrKz3798l>{K=i5i~f}ysDoyzxe|Fq*zL@|q^b?-|a>IPN z0V1fP<;$+>cQZrs3k&zzl|*iLvs6`8KY>#T@24woXW_^0SBjsswTA{`85^!v+_l=g z9(;7;fmjMxIQu2nqjyXrH~8;<04##ENcnEZ7n>Fd1qCd?a=HgRyPe!*Yd|p)e<9Qz z;dTB75R3=Flw3E%cp6ijE4lA47i|DDnDp_wPvp`q0Hj|l|8Ad~XxVx%y zKGuaXe~5{R=UP1l6ooEur>Ca@>!EG^w2y+~1aQ~{WnhX_OXJ`pF;FEtFcv<=u?jJ+ z0^8@t2H16J9%s@p!ZM&zx`Kin?z+$WUJ`VYK#OR}>+Yx-bWw!T%0O>m#kuj|DB=H$ z#o`M|a}NjH62!7uSzTRn!2UV#(fc16R5FA~e7q2DH~judYkmz{^%~zG`Vf=J4JNWQ zA@}#r_`;3R)B5e0TEa=0Bx+H1omHm>xhW`+^=!z z_@yckjNGbLRkw;z_>$A#qbSLhM_4-_e z5#a6s&XBaMEPAfF{nNvh1LzE1xrKeA=gfDf0Bq@4Mh$!L7KcG6QkwUptL35z;35m2 zkBQIK$~!o4ybwHT_bFR8MX)wABUEjty4l~L-L@)uhpL&4oR=M1+~o+8zd7PC8UfNs z!_u}#H(jqAW6=0O$7for=pz@Ob!2JS!hwD8937nxlHzbZ*C#x)c|#r%keNwU+PGf` zzj{|#RJw5kNv8uUDoO6@3kXTSVGPP3MUS6=fDS0u4gVSsG#l(`SZ3QVc_vgTE_QNc z<8dPTV64p%JPqylc6O&ezbF)HttMfO9|!Q0ppRMIhI>%Se-~~QR_>x*8zP?N{-e!T z#2PvdLIXT!Urvw_;J@ntDu8GAv5;nC>E?x7P_`0B{@^y1fPj0uH)=mV21?VERH!)W zNlUGNnYKOGrjYfc;&=k}$Jr`&qh8Qs^4;X^$I4k%V1<1BJ387&=wI+VncHdua9=i( z0SU)vWYTRuiHj6#^Xkfb^&HlSoHL3z1)RdynWaMi2Mdq_xI+>II^9WJ7JrG_cX&K! zd}d2^1_4D%0T7j7)c6DuZ(+dPrp`6LyhEYl+uyVsu;gIq*9iP!-y53=a{bmmW`Q?B z201bNr>mk-tnC{;A%ODvnw2$z&td1J<=E3kw4dO195p36x(kS_17>zGz8j3A4&2g& zRehZlvtyh@;$Z3_o9`~cHgtV!yXy7Sz>XBIR=9XdKj7`6YTwCI%THckc|SP=&eS~M z)Ww6|l~38Y>930b3a`H~Ht6F)+ha%~hv^y6xkLbK0UOajIGB}_V?5SD7rZD`PMu{= z>~DZ^-Td_(2BQ3=n-xEwPSfUC;h&*n3B`$nDMvD$SwNAQym5Y$YKY?YxJ+N9Z{4Nz z`N7CcG^<;v{INQ6&8Z0#Z2ZfQC>-+XTx+Q0EXm#+-*C#dp z9t^T9WyOejA_1(Yg}THhedL41g$8Q2a^Z$Z{Unpm(?0HRO(Xf;sOl%miO$T949r(6J zA@5bsD@=EN!;^iv=sl3+&m)rHuzslIqcN5fID4vdhK$=yp*CK%skIb*`BqZPR8ZrF z+Du|#WEuCP9H~;2Y!I8nYn|Sbg=&gIV7SDAYh}zKyoH^V!`7+P8aR zQO=e5IKNaqsSQ~@zJk8wW6Sm`W0fS8oIX4BYvB2a?xA0I>TpfDdJMI3j|BMpN&`cv zWd}}d+yfdS8Hyu5s9ZIkpNgbTc&Yb?A%HA?A>L+R&CnO{V1VKVw5D``yq)|GTMnI%n zmhMKBTDm(VRytikkd_W%Q91+xk#3NBW`FnnfAfFye4bbOVZS>&-!n7k%*=J2>m05P z|7WHinRk&3oSGQ~28IJ8x24&-JI}B-FXrn6>l%&W@MoBq)q1hhwR!B)LuZX~o3RTE zMi|tj`05zeNN@?%Fe1MCo?_zVgStEyI2=9`qTs_%+AUPja8L9V9(2btSx#?ip_9fq z&1;~?(GCVxY`eVl1M&t&KtBPa6mgER1Hh*?c6O|G=9Kg+lC^i|X!!Z!WiW+l!t{Nr+XD-(^-|r@ z<>Q1_uFQw;^vfrY+j-wDG>?3-%?Me&;A~qA9LgAwev|6Y25WqqnVUNbx{TS=5`K^h z;qu%4dRqJ}s4$k4zc>$i$4Mlz@2R3Hd)JnYb?fM0=pU>G5k>`zTUpgXj!mmH4z1^F zV*?Q6r@`8AoWysJ`2B+$(-{fl*r8@G1Gz?LMLsf{qi+*?&D7h9-CQ1S%{3)9@3v-s z`65EvK43Deh%g)MOwB|TbKPkG2GE=G3Evi`qN|42j(h!4oBI~tyVp{;|C`Bo??nc> zaP&6u85lz5`_Ts>4=#f+4Po#kU}hLv!|GFy*SiC~B<)tY7l;cm(IQW`^N;E&1?34o zk>X{?u#i;~6Dg{u$23___DlBK)}hnb{9$_Sl2;pQ!d`nzOUG)G=lyDIoSeDEUjUQL6EFlyM1NCp(@vv!#bf_>&X?vB+cD~)|$Z$*G?Qx zc6Lbezs-Aa{htJK;fiZEQBT-*H(85p*(^z_S?_kWV-c%Jb1+An!~0pLi#rf}#kmtJ zxx0VX)V_YTg(WiqH-O23p7UPM)&oabko+7%F3|_#dBNBKYuCixXx`_7K^4Xc7SKH} zh2$g`E92*C>G!84bIw&0+1qXknM8R)Qmw>IYY#^yb8XSZ&THw`;}a9zUF4EO7=aaz zOcE_u=twUqF29~^4`CU9=cRP?R*w2hM|Rm5@6Hlp8N<~^Ji}M7Jckz7hcgLYsHw%u zNm*CRaVW~vrS#J#ut%#`x5i}D_S;92RkOU_G#s3Ao-=*|fa3o)`QYao_j~9|%F4_^ z#`>JsN_4rwXS;g7fjcCyPKt?q5jxTGT9+Z|z&CV?7Es}xo$-nWrfknOARl77J@fhZ z`UA!ZSD-cH43rr5FmUY=QrPI20rCMD)s4Y#jTn#)^ z9r&7Zj93Opk3TpV_e@{Et@df+#}5jx(fUw*eSP4k=rJB5x7Z>f!2(CC>|wv28Lgh> zDs;JWqC#I+{Jc8TdPH`UCO3TBl!~T0RtX-ryupjq5)pY>F%hFVrbzc{e>a0?_^Au}?&L zazo8X!w0@wJR>5TP$1kwWaRbh1Nq$OMQWKU%-vS%jrMane%S&U00)XF(wW=0n*}jV~@rLaM3|a=qcexvOOwpj3NU%lM_> zvlIbolKmTOyrCczkkRacT`!N<#S@AB+dwl1XabD-@3_*2b|59MY=b%^fBpGKh?Htp zHkT=|q`I9orwxaskFaxC>!Jfhpa|)RLQEh%ukPvt>D^u2uygLih)+SiK}n>lv`M!< z8$?B^f~Z?wjBoW;ii}R$jnIe0=5xYSd-ohS(nBXh!Agl*^}TlFIV;$BG(n&DZYc0Z zLT4p5l)w9w4}Eo0#S_B^gP-)+jF!rcv^q*7^kr#%7T?8}b2Vvm#-2pKs#NfD8PTs{ z|AZab*cHq_9%*35Vn^@aTD|h0^45XLQ_%7B*Ajk~Cp&akyF>py!+52u+=*>MTjUNBjLQf?{l6h;C)8{9(zZ6ph~Pg&4W)7-p9N z?RN7Q=DdpC$hSe3TXh2iCEHsj()=f5o;3YV>`Od(9ig=*O9i`Z%PzWw?`DdxfPaWP z8{~C{I27S{G!??p_C9Qb{T?8ggx3u~v>E2)TYI}u*xPuB=8~W{J5Icc4=ocPjJRSR zP^MPxuGWI?Wn@q&8>-=LxkN{>tkwkdjSdkH%Z?9lS1Sz)^UaLTUV-hyPBCb{_?m6? z>I!%UjIF3k6!1R7hs)8AY@CIus|N*+Pc(C)Ht(CzJx_>tu>(Otf(F?;zO}w=#BP%M zHeBxMbN>6i;JKdc7NcuzlvuKWfi<<;Ie*e3wBn+uhPd2-6+YFvc6v!o4;`k7 zkUXmdMyv_FmSDfQ_)JzErCbupZdV}QQWUJWtO;6vyR(zui5Y!~$IR4F5f=sK{BNKC zYjFF?M`}}xtl9w%{g$?zXahP$LnXW|GtwHN)#3#yx?D{>S(#;?1J#gsLmHfSL+H3MaO6JrCj1{vyx3V2(Z zg5Q@8srrAgEAR&BuO?^tJ5|X^AvnNSN}t7dpPquoY&M zx6lJ!{4q5zYmxUr3z*EyD&tIfAWc@uw_{m^S-1W8__*uKP0F*^UO?&xD5+q9kofmU znLbcX5%t)jjR>#&IrT$TmX|E_m)l(md3|af=*~tSY(4m!<+xEh*eW4&d?GPkvv)2> zg>_?VOKis+NWjP$8$UqMJX;0=B-nWc1-NK_;gu*pATgujsWSQY&n^;D^!9;l!s?H# z`HA+K)&St^ND$BG)&87bU@j`WmVycJ9p3^XFVMvp$`C+cgsw6jzHFrRVmLdQj;(aD zy&;Rcy(l<1N836$6a%p-aG$~CdSjjA9opI|QCnBn1VrJ&l1KSfft*P(qB8f`=WC(n zQ$LBtCAexoOR@xchspO2iw7f{$7Zy0J!_&&fZgPSzGmk6sDgHz_XsUmd|*3h_@--l z_2wJn7&glp<0er-Gn}ks9qoi|`8L=}cP=NWbDOutc=B1>wXQfHo`z=f;%>~3Fp*O~etb8< zOc^@TxfS2cKf1EtSQ<2cawWD9HB)r~G((v05;+5zp5=Y7G!b`paKCp82b-OP16=HY zbF+wu2>$6=Bm#lW_Vj57YP$pHACPt4uEX;bzKcM=}DU*YcIgLVcKWBn2rlOUnK(bGPW$z+Z()}ZR7QBo3h--g|xwyz8|50eNSufR1hX8`pWW^Re ze%i9Dp{*?=FCTUi6t-ajqmH>(fO>69+Y^?u+kA7qaDbQHcE%mO&8QOI%ZKulmCLqu zkuzf2PWjg1)w#hBk^Z>yg>zyG?d`^BLP2MttF1x5ZC%0o`%bDlcC)&)aZ)73eH+NK zuI>+u5nEe}=t=?_%qQPF^s)b#G5Ru0lV zNOplsU%zWSg;n=d#CIdQPyJKS8`d$jbe$yPKuops(LsQRk%Y3@Rr$`A3vizDn%K=M zuJWR$vyf3s1b%o_$~SNC@&+irA-{E9lp65+wtsetA^8#bG7>5pmLLNcx20k;_;D9- zS;hHnx$M$y(+EG>vf9uhc$nUNQP=l`Y2d6}ALis~hULmiByFG8O~4M;V_?8LWW^Cp zS&|jzLDE*;NaCYVjd|f;?sjX57_g)(<885`hOuMABC{BfiQyLYwHf_)d-121J|i>lkXwxcdb) zoa|u2H~|=<&Mg~rM-RQ!hY=)b-mbOJKXpNqenCW2kN?fg+8qA-baasw16gJtWK~(x zQTcxGKEV{2xu&fyk#Z0+$o=1E$`DKYf&L<7Nyi2oq!-My?rWPQyRWYyT`9ZAyie%X zM=!{Q7-fIc{!{Rb@ULO{A;B0xBTToxZgHr@UkXM}L%ZFEX$$su)CelOdYGT^$iY?N0&DBY$ z9^^@v<9#ULLwx=!9hU#t9K7PgA3p~q0%-)mR{wWlwq#AXr%jwxfM3SeZm+Bc$Bg?gUST1!TKcgisalv89PGZE+Vm5G zv7e%k)uQ@-ZXB;=iWQic+dI$#8CqjSu7rOI;>(U#shvDh&o0o3lY#yC@XKB|Nq1=$ zH4QApzNBL9QC}yTHTpZQ5}QU?N4ZXV>i|!v*7|v&CfE=J>*K2+1pv%bYq}f*KVg9u@UWb2#o8;ekRS9Kz46E)Vt&({_amznEd~I-QbHz z1U)`QF6T>1#V~|Rt@pQkEKR;oQkhWl@_WXFdNoDM@0>su` zQ7CNjypEepz|_NCgi*fdDYX+m-|N?(xY$fe@l7HMb>M6WiCL=^Th~21Ed38vNhYE6-Xco_+nTKanVCH;tU?BEA0WI|Z*nrb5D_f8vI4Eo?neP+5icuW ztU`WDLwkrH7@F6NvwzrBH84rqm1b$S9u`t#p$ozD8F3l#L;nn3 z+X|`_+mP#7$h^s+x6*Nxgj)}FHM?fwoA-YLo&BgC`A;v3H#W>(%Q3!Bf&JJ!or+|y z_E$$~dB^DpK9ad#C|~WA#KHqrCtek_@lv(@5$}D8=OtH1csqUi8Fw$)5(fU%#@@PC9QHBDLCY zUXY-4y|+AR0;R(PZ}eMuyz}HmTzUqsfyIPjdhVcOvu`+fBWpErIkg60-zY6?>pY81 ziW4*LH^99_WvH#K?I9NeW-j$vkR$C4&e{L_5UsgM(3_{3kg8Ois@@GD$ckLeMil>C&@g_%D!!og6+~4?oqd66IpfzJn6H)oEc!7Lv@z;ZsTU8<@v&->|&)LD2cUsvs zz2j?+l8A3XsJg<`P2wrZpPVL4fF3f8=X;}ek{^G8uj+M|qgmkf$1lQ8Ka*dFqrw5PkPd}-)OLDXIEO`$P zK_Eq^&A#f^{b=z0HUo*B>LGc7IUr`EJ>EZ)rFwe$kI?t%XSh&@BdwnZ*U-)4v}~yj zPDw3c>$A-4n8)UE603aS-k;K=A5&-L3+Kr)xT^+m-u#$W9Y;lsmH{nG*rBxY3|KDV z>rQ-`L{FT)tOe0HPo(ERY+@o0+}dUqb{CQ3eQ9^fi5cqxK%iX9XBD)zSOV7L~{MK!y1!Kj`8 z+5;ZvPR>u76B^ZaeiC*+3E-roe2XNw23@4Y=BJ|>2YUG4GA$gt!+H~Vz+!wfv?ljc zzEp_$PCI`Vj2VLUoaXnwh5S816Hfimz!edaLGe^vB`Yw)3DsPwHi;4GWnH5Xx)tCi z85I#dsdbGc7T~Y5fN9>PBA@%% z=)8d{x@s9-o&3?kAHYK6KW~RRyK$XW{P@D62+JUvGR+CSD(8HP6r`2us*>TIT}Kdk zl@=gigAkq-x1nnZG13b#89BigD*?VD-kAH`^-!3v@URV%?jWZd^ez8kY=h^!UTL!q z{j)`b6*s8!Q|juFp&W;BIsLbpSw-N%%Dq!6V(-R^#6~z(W;534wRjpM9M(&DPZL|T z&((x$SRhe2O`-Y)9(0*#-6D+b(EHro`uQzsmeI7buO`Az*-Z$%$+uRHBl`hT6JK;& zNXD=Ot5qyNE|N6hfmcg%T!Dbx#9Zw7brcT)q@p%SW?bo_7)?JGX}RHeG(2x!&xn0CJ91)50AOeURo6 z2+;8Id_&l)GFHClX|huV4KKUlEukHgk%+VPl%ECb@9uGZGd^Y2OF@ryKR)W;y*1bg zj8L^kU8}MlC~LS0TyUuAo^kd(OBrh-QRp6g{x`7dZR%=VF;aqRR~K&q2WJNl6xvzl zH;Xq(h$GFt{jL<<4MUZ-1Tr}gRlPpF{dOx59K{$kHnB1U@) z;Mpw5VXR#8-JiplK~Tqz6`bvP-Ilm0U#dq*^lS1MjF=VHBFED;|O@ zQzO7lB*j9AdXMe!$8MhW0g3MMsjIU?4CpIK%)<)kHK7{ zQvp9CCW<=feTptQxF|WYy)urk`PjL;QW^2VuVVkseugc$_d5I8w(17$H(_7W00G+E zqki8E#+3SZudXlc@RW*ZqZ*pCwFU85kUe|V7RqzS9rS|@^y2`&IM6;p*D`?~U2QT2 z!>*8VP8vc00jjx990UmE8urrtw(|^h4U2S1kURpuGLK51EY5w|$Dc+IJYsx!RFG^w z(Bu1X9@b-pKhjLN*yC=%r5B@&C#EDOZ@~S}=Uml;DR*d4_TGbts5dudg=x4EEU|iV zdQLRKHvx3^vm1Jt9e+W0v$yyd+N!RlIhEtk?M&YSN}PdDo}7BnM&3~C(4p^T5W6({ zdH#Q&Zm&)_L&2@S9ig8d_@otJEWa>kLbI5~A3U33AmsL|=+^axWzxR>ZfL)g#V00hOhC$Kmc^&TPd#Ml1zOWDhhb(y0yYod(uG7Rcl#|J8^ zk7H>it}S=;ExsOQ$;kr0!;)Shzqd6%JjiDqkHa}Mw)G0Kq7%K?>ncEfS^p{N!i8wR z%DZbrVVN5=d(hSt**%AM+0q;f-fYii<7K=v+@O7wIFZA<){fnH^KZyMMwmP$0T{+` ziB83D~7q5=I#YUH=B|SK2xh)iw2lrteViDOAI80u2>E zdfdL5neW|}J-5i5nSi)V$W(=`TfqvTlDUVO2711K;?VKk*mfT%mS$V=3YrtYOcQ&7 zYZK8(qAXw&I#v_fORp0;zrpIpYbW~CZAk^OqG0`%2qK~Rk5{*@8{Y*ZBu2z5wlC-3 zOC5+aA+;hDLcdsbNL}CE{T1DV&pD$HZhH+{om$kfk%{oc&j+&Qf1kDp<-h-@m&IkX z`$|Sa%6r?)XozgDsUow{XBYdrW`mni5d;+8PVIKv-?Mu(Int_bhEBH^9UOk;Bt*P- z+j%7u`cS|VJ2z7@_So?fuuF%b3!lS!XG9eK`uyTi-i~952Z_o?~E%_*`b;#*#1Xr}64x=_Bjpg8N?+%t|jMkOdLpuf4^(Q?it|QrcG6LdEU9SMfME9o9qr zN$2X@;wx}@kW@Zj=97+UC{Ex%TzxLCC;uWw@8pWd?(#P{3B~^o z4kr^wDER18|2Q%Zq`y|XCcj<`owxU2^)5Z#{k8n>tKW4{poUr0n*|k<+f|=J~+PEAPDWNJMk#x!(6t zNtpp5W^kpVLIqJ@GEdd%`20hPVeM7%i2({AW48zV=_{-*}Jm%9c9Ha2c)2# zEG#11pK}_Kx?qDSMYn(+dzpN{5PW&Xqi>#p6~UWjmf!?+eN z-F**gwiL-xgR6gp)bwl0Pk)BXlT%faClyjDV^L3suj~C-cs1E?zV__mYqR&3Iza;i zZ<^22L*xC-OVvV#NaYu0HI@w2dlyBTUK#iI;EV4(FGK-IwhXqCmqYGT5|UV%A94L^ z^3&PdVi#2_S=6*tBg4^ROtnbZ`bY`7i8=lEr0>Z=woO!bu(Y4)wt)j7-fgv@RH z?H}@itlyilXlrP5u6*}*rayR|!T|O=B$WNU=EjmE$bm*&#MbZMxV!BiD^fKU zRAXtiX-6uA-uC)BC+2_O^L?#%>-nA7wa{}TNWTuj{ifp|k}e)XVcM1gx;mubRz9zW zBZhVo&;IC?;&L19l|f&_dN(mkEc%airDU-iHre9@v6+Pq^X=@cOvYt3bZN=aMqFLE zg&;ZzanNa)bk8bKtRs<8c23tYw70hLOIh@2xnIONW5tx^DvR=Wx~*C_j6K;Rsc^$3^<1F_=C>-3a?L1+5P)dK@HA^GOlCBwC6{+?WI+dIFG7Xmm3 zhkrF?C|OzKjps_sSiILc_xJN1mub}y3zj^U^+s{zs?oqYV~4-#W)X`T=%1`@CNVj5 zj}Vzrt3d>6-k&YIR^#5+7pEN8ZJ$NK3#zJOWf3&{eax|Yo`I*HSQy0D*SCLkRC4Va z1vkI6EfagyN11$^CAsIiJmn2mhv4=1&|Q{9zJk>6fL3Cq_-OGenKe&A!zSrSk6pEWu?}3DgCOvdx&7oHW;` znV+ApZ)kAcTY3o)233%x?)<>FWws@duIY5s_$C9Sxq@qb{c4krYM0iF;MHTFbQ+Rc z=MDzevz9Ynukcpej49N1=>tD-$|MOf;r`>6^oWndy!!q8^8Ap)4Cw3ncX&EBD4|dm zKo-`V9n$_`dfHIPCH}WK7~kaNWSIgD&@V<1ygza?=9kbt)2k zVD?`BtuXNi?EvT?2k?QLn;Qv-HK6(8;^KCj$v@#E$4+l;S9o}*y%w6#Ux?NSh2AAH z&0q!K0!*Hc7tIfHmt_j*u1WWqjH*(dgj8O=N(B!+2I;f_;6a*`C~Ig?080Q+2U$R( z&uYI802Fy+$;6_HAg-1@DNLp>sC=VeZ$p6vwCi~QaS&Nr8hL#kU}tAX7}oW^%M@hd z%1j$u*$FS0$9iUlhxh53PT7j(n9U0ITTm|ga*hGwgA8Ope*KZeR?TkP_Sf+mf-U?R zTqZ_`1ze_`(O@*M>8O2UWMt%@KYzY6?Qv7zz1#S=e#Ay;^HYu|!PAx-R6YsnthzTq z?>sU*yfNK3^auDi>JhsM1qB7Typ@%aVaUUwp`dUMBGQwQ>Bjzl|G@S&`P9>{H*0_Q zesuwOr^V>hZzI&yB%`=2<>>FuP7ewW2$ESbycXb(w4r4vS4ezbets~ZV*{&YW}^7o zTm3KkhKJqXI5ey>s*QhPs;2kD)NuJ*R<+hi3~O93Sd^+bEAp?Q+(jHokWGQ-k zH=%iYS^#mG^Xri&(maazm67*jfW&Rk@`gq=|M$i87h!oA!*Ev;c@3sKYXL0H?iFWb zLF3P!XnK7>j(hXwO-KWyV{D&T^d^ne^B`@eu@CTm%Uqi_XEEwd`1`fxIY5NLW z6$}RaTQVlGK2S+z0Py;;;ns9-R*Hirfj~m%2jbiKA;7V?{q;Qq(+n_n$p9$=0A=vm z-ucSiHaOeq*oAXBpr5;Tkv=E6_Wv}iKI`)bl>bt;wS8KqTd@o{+c@>vmTu9RI6GjV z_+tZ_K#_yNS_ar}30Ya$qmz>ZK)P`OY+SR9HRp!S3&+i^t;@cPKUZgEV7(zQ{3Ad@ z_nK8l9XdHsfo>PIwdG>U4q&PpOra{ap#^qxcb!17nK7HYK`}98uZG_zKLv>C`TTA` zFL-->Q1>Hf#c}d*+t_(|k~ zDVDSX2fY+by6B4_b*Hy`O%8H0^itf17D`cdQ7O(k?O?*Co6Tk6g0`3@ZoF=RrC`h&DT3J6cUr6`+t> z#VT}JfwW80*14d&PqkmYIxI83vfDey)Zqb8H76kDd;i-&o&!EA%+&M|Mm+&Ik04N1 zBpNWs)eQ^=03lfP%m9Kxw;;9$I|4;0_~CbHa%Vs`L@zAB%*~kr)NTTppctJGOi7aA z%;$%oT1cV|{{XB$ryy%qn|GTRuv}R z0|ky6k8OjD%uMg)h$o-Q%2t*-LV$zJ@juZ=KK~F-5=^9Lacj;EtqO8c0JMt1$N^|? z0cx)KUCb`B-X#KMF{VHzwGNXwOx_J9k>U~fBME*Js78cYdsvtk1cmM(fUN~`N}NFs z#>&2z5KvzLe9SdaD`O4hEHHzzLqs3Wu20)WV;DsluK&tfu<`4c^bz)rj4)l^cs}{F zySd4HhtO}Sb+=9Yel(dxYhK<`+Pe2?6G<0s%PyvLj=-d0;x(6)j9e19{E+Jh5+lx- zdO^_^yo!Ka04lvbp+R6Om^g!s3;^tge>1!MBQLppFv#^_+||f!Ojhh{DFgu6aVo6m z0M{M@tOofr4vKg;b!JK{e1 z22(LD>?jKqds+v@H7x#4lz{pteE$F3Xt<2TI*lX33qv@iDKYLFbn^f1%iC}8)PAa- V`+2I*fI5d*in1`7N-2|f{|9p0hm!yR diff --git a/docs/reference/Rplot006.png b/docs/reference/Rplot006.png index 13327e1450cb9dad1f7d4f60d67e72c7dc68057b..03cc268ef20acc3d546cd8671fd323294bcb1ed0 100644 GIT binary patch literal 26271 zcmZs?1z42P`z<;{cXtYifFL2=9a0if(hbtm-Q9vTQUXdh(jC%BcL}J}08#>S_xSt& z?z!ij>+|p+GvBvoe|ztDz3Y9~nrJmud29>{3z+d?1_ywq?JltV)Nlc#`@C%v<~<48v5l9joK^QF-i`0 zb_Wqn>_PMh^z?Ncbf#ZFD8JL2YzYhulR;Q|l9|bEy?5Wr&S9G7D(0G!a+TwHEUUo6 z7!?)8TufAt`G}r=L=MY@o}QkNGblPLO1T^Igr5Gn+Z9|SgqoG3 zwLlIIj-dkS$nE7p!j~e!y}eQuMjb-ayY84s2rw^^7b~5a5#RO<6YOta-3jC27l(`= zB0#!1<32iyGclniD}1~?snumWc3Ab?@V~z5dWiq5S^A`|!CaLJRI)tS@C{80UNA(ndx!BpgO@X=!Q4`$9rO&PR<4^!)s!;H|z0Y|7R= zFat7S54LsheQM<#0enVAMz6E4Ol^6_oqmFfn)+Xw_Hw?C;m7JHC~^BdIKJPu4p$6j{t` zGpIy;8vMY6eXKfo3pU`}$<^rIp4HOyG#zwU->E}Ojy~B)JWx+B)9-wozqsn)tagYd z<$QngM1B8R^D2GcR?TWxU{}M+QQhaypEvw*UTFq8aI0nGmRv?epnSG{owzWO#jA9@ z+H#)3cQP)KcQo82el{s1qn&mJ2{`Gv`i@L$Fttw-DkYT}3we2Y&)jFvo~=zz=7}3SF4h$MZx5E0l?6roQa*nBCgrc#O0q-X z_q^z+3bx(!{0-j|(H!@AJy9C{8WSkQ1RQ5CuxzHyD{T*L7xVh+hK6f97pkT8x07Od zxYIU7nx(3;0Rdui2~^Q5PF>Wr0oQcjAt`>ldwbj8Q(g{&r^JH5&%Vo6I4RCG`Fy2* zLZOou7f*wCwfzRVTlRsE&aPvQfZ|WkX}5=}MCWnRvim&nLVxsdDd)B|f3b~)eain%qhuUa|27%KyN~}}d3;#yZkp@aB6;t<`weao3O;7YO9AzAe)u z*Zlq4H`!jx?bXXg(>96gD-ou@mzI95x=tS9{6VGlb5?64#JBwT%J>`yCGzuCpBPS3$+1c5-_Vp z{A`4^I(5rgmm-4h;i5Y5>-nU3*R8*Nz-&xR%<*jsIBBIbEH6bbUft|vJ6-BsC124b z-eGBYtjmv&j;8dO)ZEg*B=Q1hN>l(a+^lT;)i!b&AodUF0PoRYAPZYf&N-Vn*xx%{* zwlfxvj#cfq$8EbHjKAHFHg|R!8G#+vnBfr&xbwP647@A4^}k210U@6te4JEVT>R~) z+ekPj>B!*V;PDkTc?_-yEa(-Htm9IhtRl-Uv5o+YPlBP{T-?5aDoo0^-iZf;r;zI6QuIv6Y;9K;rvHvshO zX=^``k0YZ?XE%J>bv?jwiMCp_a%Xez&xgW^Z%I$bn9gvw(DgTbcQk#6zw0J`sTdDm zJxw9@GxIpTa5ZG}WIPAs^fFah8DzL);f7HA|v*24+R#sy(O%Lhj zT`&k;s<&n;;-ROfc$~e2jAgO<#pTQX2j4MvhDrsNf`dOv>*i!A0F=7&Yiqe)%;Dot zn|!>(@&b4!I>uLn8!}qa9ED{^!e6uk0Ua=jTk zJUKbE(0SQ-yo(1l8Hgdycy5WIsHEhwVCd<7vNJ7DE9>no`1I*hSgH6uI>e{4rFv3F zODmkx@e6e0?`3nX{Zd`PmHS5}jt(Lah$4HZgM)GgzDJGl`2cRQVSco;{^qF8qz8eA zpWl4GLND}sfgYs&7v2zB|I3mCp^vE`I+5SHx=zo|h7Hm9V(A#VYb7oyv7EyCaCdGu z9>gdpDb+PKLqQ7IPI)QT0|F+otn8`C#jGYA0)5x^HD8K`!(mcOOY6(s*(leWS?1Zf zxt{%VcaB=m&2Fg3X+I%&RNNY;4KcEaU{WJ5C_r(q?P#VN*L_v{jZW%Bu|Lcd6cqm+ z4?rE9_%JG^ZJv#CoVXgx1DdeUX*rT=P7`>!WPKX=aPlB)Zq9Idw6f4~XKdW);k^^j z&uKN5Vcz)>oV7QZ0qCs@kL&>LfI?DJQ#V5}*@Mc;1a?z3roSt#uK5zEh{g_$3pR~^uE13>Imqpq5%7OyS89r z=<~C9&4DZMuOAODFBIY@W?bFqfiH#iX55^fUXfihfRL74(a_o&@T$co2g(WY2fube zMlwWw`4T=b&g`7JJ+!dOEU&D9yyd%gnS6G3=F{GMa4!{gJQUjV=!5rO<}vb)yWx;S z^IF8!Mj&l0DaYW)7b%=B+cIOh!p$35zPEmm&9^Nms|zN?L_}^6dRlYG;#XR%`1r-? zsi-wWJ3VDu<@pCfzkdCK9oA1GKtA}Ly%4g5hd&Ew;ZjipW?z1mWY_pyyg6KM!~|PTHz9Uw|4LhX z`@N1)aMeM_{NdXcpL@U1wFT#k|IWZ!PmdgIBeZ%UHruI_eB=Ju6Y6I4!5?hzrbio> z`5+d2*+nM~|Gb?L+|O@srvm9Z-QX=cdpk^O(O$Z(P7LtCRj`d@{Ek#Hv9Vm>&#@1p zl%&RfTt?oz#DJl)8MYF^H;RPaV9{=zn3x!BQP1&#jlX;EFD2tf0(^C!+PgOjCtVL> zG=X<6BCu{mz(REaZ%E@XPFP(vs8?d3r~j3*>$@|S#fy1!a|64*hevI|SxO$KUvw1n zk>1~bs1?H&h@vbbV3#jKKxjOe88lrsoUxReX( z=b4`}^74_pI24IPGv+i_tawu0JE!@@#RG>L+g1aY^E}u%kwv~@Z_B|OyKnWXI&xK+ zcvR{Q*0M?@(ULuk_#7bn|1mHqmjL7s%cL+-dL0WUAU+w9)1&NuWBBaw zU_qj?oVSf=#Ed4fKbq<76ShM8)c4Q||5o&>(sZe%X3{EansEQMTdQ>Nv3i4Pzo=W+ zj=yXaF=H68lVX`)r~m3N2*s=JLfWC!k)$?6pQR4Df7unv*Glk-iu>@0_Qed3m&k`O zM{cbO-Da>W>O{;jW-YDZcxqa6Z{1hy`IMTP3z_kxBxZQ(m3~U9*PT(Zn`+Q>Q&UqX zJ?~U<^k}2*F~O_VwO_pTd^m8LvL2WHl8`=7E1*6IfBHA8VGFs@ZP0cq(By2=dOm206bMHpU` z482wQw>~x1Pd~WzE-qx3j1e0MKi#uYP8!0x1`6l1PgS+L}DL@V1@7%jU#iF3r|3Ah+bs!xgxAg(D4WUOmF@<@uNR zqNW;M)zKd~(VL!S2MY*C<73bDM+^PEmRIeUOpULj4+^IVZM7yfGiUmJE7Z|WKtBsD zE?}2^kB_h3G!g^RzB~#ayXb-4+y)ku(R-|VEqd51sh9%#&iE5CZu@*EWGR^Z){zi-Hp!;{z-@;8bStHN46JqgM|_Owqwg;vZT zhKjv$GdP)+*O98MQq+)zpDw)aru$nwNiyi;&#^x^^In=wP^sQYrN%!O3VJ_?B7sKs_wLI^ zc_Lfn5d=3Th2n0|FOyMD^80AgVMi7r{ty7Lqo2-^i^3&sjG<>6|Yng4IyqrJ1 zJI{#<1?yoCiEWkUj8Tke#O}+(B@;@WPeaoB@6ZmPLXC8J+T+onMW2u`IHbYh3$e6< z90;WjqL796wIN|c|C2Dh}Z2tp0i(88sY0SlKTpy>t)-^P~9_C}0_ zE{j4q9bcJKv@6NFJJlHnmD3CL?hzD@Y#F2doZWQVMl)}lSS!*=TFjh|II9zSbSGaf=r zp>ACVv21XOtyMZcsjT{=uo?s3*gnkBF9z%>tUqn@H@?nxh21y3Zu5AyH<_2Xx3_2h zAsbMu!31hd2%sx24@KT0G$8l>Xk9-!NR>t{xIV{258qz?YqI3}7H{1cQLxZWt=dz7 z3QgZ0AC(S?M@5?Xg+qq2w!M><)|Q*lv!!)_^vMeShtIbGCcn~ZH29aYk<4l{mWqFy zG;)~yd}0cv!a_Nn5I!*hot`9(ZBT1R-orAtLE+bGyf8I|cZHk0awPYdfE?z3`A3MX zrSs!Gf%ZM}6fU)dTT*VjJzw@N0>};33wHlv|J-Ou;$6C z+cb8l7{xqC5YSgqSND86n~JBn1-dT4b;Z>PL=Dr~z8>XQ;`fI4HhK;?PZs8hl;35Stkg?blhR*JtlKX&J=xu7abZY!?6B#vMmA=4gJ6na{)f#9tibhb8dx z`!uWJSGiE`AQnjqO5}B~PyhjS>R^sGwh_tMA>5no2+ZSHCW>(mD@1IsQ@OyI9-uQ% z@MD}p$n59pHjHccV;)xt>iJMEBg5lHjt^2s2wM0f*LQ&^Y-=9A(-?zgUkRxw;$SNSP7CEQTOgP=VJha_)xajS?`1p=ck1@q|e1Tu{SF8gyt)@ zj(R=wl`phBf8JzJ1Nj4vYb({U}AuFV&@hk>h_yS)bxQnASTxWM4%BLF}Mt+vI%z+ zqT_92x#hnLz>x(zNmm;H$#%QM+=RKM=3vK0IL@$! z>hiF~AlPIrY2hW4vr%_j#lu(sE|-=5r${Irec`pPaL@|Eo>7QL>mzC$=E`R!bKqI$ zEq+2sg6C)1r57>5@z`3dlkIU|(E9^U2wmOp9E)|s%GEB#|#Z-KF)0t-Vh@Z6X{A<`82}j>a zWMvEfH_n6`dS~Tv60?EU%EfhJVw8Yu>1c`W*Y1e(_9s<7mD>C!+DkfHR+bZ7kRaZq9)TML8fnUZ6HBqQhVQ}Y-QWR1hpvBvU zMgKh55=4Mq`0o;Vh*BVp4*YO@(d7%0)rYhW*?EvdgeHT$;rV#mbR3dKKyPv^g(d&Z zKOpLfQOFbe!k&5yNGv$FB;m>_+$KLKLkVo4Sbc{Y!)7Hf7f$mYoCTE%?JdS3I7pAy zXe3k;Cs@B71rs3@J~Q!PvEcF$R(oaPK`di|Vu#|a50T5t0f-p(Lj-d#X9|RjLK^m_ z8+pj=!0>J%7WmsM4a=lhG>I?8*)9362%74kq|0)xbWdgT>oah)OzXZUb1WlpezU-G zChgmg9N{*J(e&@=R^o7xB?pt3hBzu^!y~N)9Qddxl*xC{il$~spP5gDB#=yS)c@xb zrb!egxi_02VKkK212U1sB#H)Z_zPZ)BXaYYCM+{&G&ODlj||zP(n#u+=rG{~=w;vt zx&c6#T?E}QsUTB{)>W(Yw{a5%3hlT6(GcqmAgo8h6D-W{f3vP_!cXwOCS5=4kyVdS z$nRPPk^v?vl;suS(vOb|58nlpCL<~g;piG-<>7`vm0hl3(!|zzxiqd>gz9hf*n{3T z{iXzK0^60`f>*H=NTY@!3Do=~8ZRezS3Zj4Dzd^EvyDj_rb)-g*+YUqk6r!owm4;& z(SEvR8sdOP2p70R)mlS~&h_mQek_W^uUCj1?MWYW+@hFU$hy(3zW*WX=CNT<@BiXr zr6Vb0WddQ!_`P5I4=|&kIVKU4lON#w^9aQ`4;8nm}eAk)hz>WW!HBohg*9xc~N~E0KTQ3lS8S(aRN#Uq#rJ6hiB*;$t*b z)yLUGqm+|sAfR{O%w^V(HkQqgn<#RoP{?QZLawUIl}v*Tv?oBSEg@*4fmP_$Z@LMo z8yhF~_V&_DR_fKG00IdK@;={_)Y`cnajhe8< zr^bo=`o90Ame%N;L%lmqh<5qE{)bgd>wl2QVy)YH$huXHXnlYxAq*L4rGO^&fF|Jd z`uh4#OFSjN84$`KK{x07eU8mTjSg^%cJP<30U=WdQrtqG&}&w&L{3nCAA(Rp(Vg4X zUGWc&w6%z(&_?H;g$3dD3Ng{~FrzCqG_U($0xfL_2$-i|nerqSE{|EscB1`FKQ5Kz-Y2RRi zz@#rU2Y)I2IR~`kf|Ut1L+JfIQdAv2qCn;uW_|-_&}XNVCqKP@vGo0?wX-dLzgVovPLG;1rFFI!emq9$+}-WImgULdJQ$?ZzBRNS_Uv$ ziYn>H688uYTGOUreuM}Sa0dEW2Nn0JZc`kbT7vPAu>xuK!%B>fmKbU*&~c>;?fV(T zk>NxVp0|Y%z!d`IsQCEQ@z5LuIU{K56CBw>^A-aMOGbD_1s(>&Z31;|Rq&K!8oxw! z?sPKnY(IpVk}F74qE$30W~4v?RNmlb45{wnoj3r_zsXUYW5~Rb|AqP*SvQN>_g(2N za!zW?dmmyOhy?s#kUZ@$co$hkD!h3H05LG&le$b}_ zAxup2?Dgz@U_F@d@Gxu8H(e(Wav7O4;%FI8*S#^i4jn~w!-cj7CqD3`r5cR03GV(YW*jLRlSWYIZZ1DxA{+U>unXRsDi zC;_K(W9-GKvgCi$F#%UwDow;&Dffo|Y7jt=fO|e#T=x+mK)wKlK8oK%viCRlw3P)u-yJt0F8@Dn zuXJ?Gm+CCx!d%2nG)m$^r^XmFbC`)dn~?HMP`e0@bm3v6-2%IT*H*Z|?P0yTo?f($ zkvB5Xht;5MyXVV|9{yaO3-!BWN$2!`RUVM zknms!#t#%Yk%*x9mz9eUua#tL<z*=PHwJl;WrbrhNONqMBWwgtMQlxX z2IGN90kqnH1~Soez-+dYjinc`&V1>An9U2POiGrJiM z{k^|6r8@rI_;y#34H%||8!srkNe!H#!2Fa@tdxGq92W7CgZUTM<}ACMtV}Ae$MI@( zBy9j$o9D?Owdd;e{q_CTMk2Ma$0q0*4FP$3H!1`cDSih9?ugKFtG-tEgVyxk4j^LIn)HMmYo+XsXGgkD2wD$c z00RyS@Rq?>;JD+;$N*@gaP8RT*XPo0xPpJCik|B#Mfx5l=A4!-sy{RsKTp-Cka`SE zWWaj@*ZaIW){lqU5O}F@%+J1my*^D0jB9G*ySv*LKM5EIQ-OmDT$Sb1-%lkse0Vuq zp?|O1Uu!$_q#f3adA&pX5CwE*d|>P11T3#9 zQDY-9FcKZP-v)Hidak+aT-|OnemuN=^4+uZoZ7%+$udLOlO660+MlmBPW(AjI@Hkz z+*!ZtM~!xOcj@rZ+yd=tF%pMDFE1~}@)qW+gI^nlPsu*K?=Abo6eb}l3H^0Y$uH-f zf2k^;Rnl{CQTWwN)AS!!N6aD4VyTuA0(p@$t|f9j|9^=@p({rbE26(y9u=peJsjfv z=*vMLz3lRozVPz(e<471+-c$WJ=0ErDxz--GPSg&2v0t(dHh(2$qGoSrLNtRoU`29 z0h2+%|FOL9DvfUZ>nmt^-}k{IN+z|oRjR2AY|9^om_jVF&TbgHyep(IIz_YWjFNvA*beKQct>saN;9=DJf!F%MxMG|CSV=iurZUIVU=2^SKWfK; zU=tv<{;acf%F0AefrV~;5WY+!1BBws{3S~~{7fm;Jmlg692<(|vDiVDQiRL(lk*Z` zl$x&=FIemk*7@78o`3zMPM~8r;L@GiF~LC-fAJxNu1j2}(G(N%a$8Z699;W*n?T?f zj=SoM%>14;3+mln6vs}zUbCX4C;}@T<}h(8ehQ{mlw%h^9%%$keh10LBrKDdysc5h zk73`wA@$`s!R;(8{2DWA)1zwn!DRED$YVxRC4>k-o%j^#MVk@DoXr_D6J(@;5f06H zzr2hj_BW%M<{w?e{=rzRhD!~I{qvp@6%6*axc^A4c_?vJkf!SlKA<=eW1;MPpv;Bl zpv2uF4C@jp=Fc5!L`6N9!E^zpiWP{0S34HvZp~Gl<+5V1PNzKUk<%vR06INqPy!MaXEc` z$^c*;z4}9uUFrHKuId5TTCg`vwf_{v_ts`lDBOer3>)33RImica6T;=;5+V@sfkF84PZqG^UbfP9Z6t!* z%5VKc=`2FhQmz5zgg^+HRQrL040F|E#bIp&tJP5hQNrBZe061FbX58g-Vd>h=Kn#0 zo(^3_FWPHHArd2KQ4MoT_=WWUP=$qT?LM`ExpiAmSOQ-ikDfidA{`O{nAHxk@jW<6 zqd*7_S}N|Bo#8>F!;6-IbIRrw?B*5G?^jAJ>No4Cx_nIpnrl^GHk=f?y8;*}_Qqs7 zcNQ}n;6@Mw=N@E04@D<@eC_)EeZ1O{{ute>=FCs#~mv#G#`@*quI`6-NJ3gIFw`bC9}GX^H+ zIJ>FBw(W^qjU^`Rb_4Nh!)g4IW`e_*`{H6WW1BEuZk)ZqIOT~-$jZ_2)rP)$DoxLu z6HCRhBIB8KFAjMowjfLl3_LU>*uMA!dAgAg3(;=<%BcA5(q#TYF0~5a${{@_1}m4h z_cnHR^{eE7E+rgb^%&`5S>BR_4aU7R)4C^=dL%ARi;XRl+ z%gt^&ezXj1jC&FS0bUg^WjxJ?xNpyy<1g?E@V-A{_r$~3GpsGyDm-e7xch6M6)atA zH8dB73~TPZsFZPdYWE@%(InD5#ar{J^ zj{<1p68pcyWMneqpgC56F~Gb8Io#6F!ja0nhJu+{K^P_(@liDW>Hvv>rN%TAIH}bB zwUa<)DP4P}xOfS#(Vvqe3Sj>v9+F(r8Mp<;5OOeD1YmF;V~0hL5&kREpM!3x-;Le;T0+hJ&0Ti+E#W8nVi|f zDb_)WmD=%tBL|apli=lY;x|?1fe8YU84qz0;rHo~v|tS_JsxKpkz$Q5md(~0a$!Y3 zqzUrVSxVfIjpqZhbxxz5)>w9F7Pu)h2x^aCOUTsMbYl+xm_j5|h`x;dAri>PY7__K z?BQU(@N2$VNgrMl7C0>1{97CdmI-FG>IW2u8IU?Gp{V1_I ztZ&Dg7%#~Ccak%BqW{x_sd)o}knW$f#yvG``_TO|t?WVfsQ- z6NrBNX#65NlhiHnY_b+0eJay%-tafT1=a|zpl8fN{v-{F;$cxB(8D8a9|D4lmHwwo zO7by1wHHv0%TttpL(zeGyt0_Lof7j(mwp!&#TEm#SFha}gyNt!Jj ziiQtdsfZ?{nu~dR%L@H!ys6FWQkWqAH(7`4ANB7o9D0f1M!nqh^51f7TPR)NtT}qF zo~RQcv!`Q53>g377G z(SwCYA)u?@w$z257~U3|;7p!Tjcj$oo%IKvTX5X|B%c8$X7KH&l-GKu^W814o8LiJ znCgV&&u5Prab(Ru#SToFk)cr#;4gW5>l0$E#z<5Z<}X@Ff3^xWbfz|==jICHR&yJ1 zv!SgDzdVhMQq48>5S&d!L?x;)V1X5LVE+}xXQ|~P>m4*f%L`*zB*8G(c^tE>izQeV zBBd2>thJ?0wD^7^DV~CW`kRENvb>?Pe732{N2@-8NW_#JkDSA|W@)40&wYKy8)Q-e z;AJYP;~6=#8*uzZuH9jh6w0;Ik?~(_)7jMN()feD8AW$0$r;tWvRqpx8iiee7vsPO zhS+{wifHX4N_J3FWKiEDJj_Z{*%~aGjMfy+aQ&EQa3}uRm(M$o6nQ8o&U|1uR2-^T zt=?(MsWM&M1OfO-(6!1u~Spyjzu~l>35&gqHU=-_r;XXz&3i$ zp`Bi;L`?CgEd6O}WPuLoo6EoMht-Mvm^Ko_y~Vs1tAm*7$hyhLU^n==e1r+jM)ELL zV=(t$;VXzliScIY;MdOG~o`PZC2yldqHDA|y&1$h{Kxkcx{qOSd{z3YNYFiUiDS^&jADJX8k>>obM-hLcv$j;)UT@AXK=ZYfFtIO(RI;|~vzP@h6i};LAchV1bjsp*r>T#Zf+S>b`mv zG7yb$@hF#^~CLFZB+VVhvEmxjrb?lTSz&YQO4M#nU9>Q zoYS~4V(}>hMGjA@rLHSn$JvM8l`*J`OihJZXT5fIOhDyGtnBWm!=a-9il*q5g;gnI zHr|(xk7%wUjs`mZkb_WDHg@))k(=UZ2xrhUhR2MT5e%QA2h=FC}~`~{V-|bgL{SIQQ`u?LHEfF1i#smsZ{YVjQBs@&>`C9<-R?LYGEE({yxmr> zT7rGcz*v3d3fVs@>#d7X@B4cuW#JB(6@Cf<>#`8c%nnkGylkRi@?jx9(~-1_Ww;L= z$Jf9bn?NF^%G_EY=Ghjf7<%~W%AY6pSTqu~R(*#%F9$OZ*84uIjFaW=PyX>uljnX6 zJ8AL|(cOr8DP?N#{$z+FkwX$Xxf(H6j3#0rM$lDe*G=l7wN-njp0TqP_bs&pG!9ot zqqn0=NJQ3V5fbTPjK(-0s+jwTN?mnDZIFZfv}8N=2b8a@51{f`(eVX%>vp)?wC@RF zp}#_zKRNVg3evE_e4OPHP?y>rHKvlTm6TWmj5nh4O*dP65!lMf-Zu~jy|F`1;~*6{ zANy!8c7z6LCL%VeSW6f!FFPGgX1tE!SO7;;oQdg#u1UEyzgl zWP~l;qn_@Bx`XVsgV|z~lfE-Rl+Inmt~KffRtSQho+dueIr_fI&O?KBk>fmCu??Nfh}e-{$`C>k-@s3F-}I`K^H>hzLn>tExYHdq`@4cku7pobXpumJ-O8Wzgvr4QeY zFHaKtpmAi$YcsqFv-V!KbyUV1`tf#UxSLyb8lwR%3^9>O&l@ql`FMC9tsCzBYxF&` zs(tVGMvJm)sg|;_mh6~XFJwlF>;K;E(!!-JDpWsmq9s(e`zyN^0VwG*WdDg+}jJA0?ZRyOo<|>(49U2VJR0A_qJI>jnvnv*a#aYsF}6Fb|^`6d_V3uP%lt-kwJ^ z4)(o;CS-hc&V@4xgj6`n&O&ORZJ8JB$t*!I?xfqdndU#Ckk)z}lMA?8MDO)uszIh6 z&O1IztJd6%9haTkf$)qUZWgafYwb5RkUmt9g_mC*4Hf&Ao!VRK8Hm%$X!k-?^HmBs zt3H+WyecJhiWkNy7R)mwQ1Ps-CEWD7#a?W3g2u!|G**ga$AF9{z_Eate=c@irGS*( zXKIfgUR%nEwUkI2JY>Y_s-22^sd)m5lyb-&^aAF{Xf`?@LH9Li?A6#F`f0Qv~ zi;!EBD6cA70BfodgbHV<+Fu~YA28zrp7 z%7eZQkF401>^=3lKNSNJLRneG^&H&|4;{#U`NJL{dq zjhwJeZZa^GA~_%ma}hs&XHIS0B!ZTH!4+xcf4uU zEA=9J4JA-VuUou+Gv)5*Jt-E3g$NkHa0Uw{1Jh(!tv_aJi5#dw5vIHa|0G&6Y^fu4 zs%wR+y+L)vV^rxy5Fm)&%(VW{Q z@1*FwBYw(?z3P!|>OpQhS%oGdRR(b1lJ)XQx;0zs!n1qL0sxBB5G@8Rd^HTqBe)9RXeZligP5jlolQ?cwKeo8bu%xe# zcQY>9{j3?0{UGiXe3ytd1|fSq&0|LxwJ+}ScnaH~!IBb#7yD&AE#Xze`?4}Abs{k8 zW33FTku8p!h~xm{c`BU9B}QFsDPf>6Jn|8IG#E#Ym|lMV_me4^%L5GPlZFcg2R>52 zsLF6xgkif!ZKn_KNp^f0WuvfRf)!r*!1%)aG(w#VMYjXvPy3BkI*-ji>vTa`+3v4n zp?OWiW|Ykvm!YlRN@3@VOGB?OZ+|C|IM=-X&ljJT{d*dg785-MG`{(q@A>mp6vO3H z+5jLdI}6zV!rfR-ctmns*+b0`1H(4P0d2RS6Ll?jwQ40MDKsw;nlP)ekb}HHX`5x` zZu(dv-P#V|lwNaeHdr%++RLr+K_*iZd($ru`&8Plwm&2@y5LIIzxFLXSJnllU$^t; z-hfYS9r)V8X1>w;F-%%}2(lEUYjwlCOmE#%mWnMJ2IYbSAF}(Bw%=Q8o~Dnyt*|-i zeu*>RbC<0tbE@P8;dtG^Je|!mhe|EUwyGb`SUhl@B`(}c+PxJmXw}#0!JC9~waz`) zUH#tj+Sd+pwNSetriYt&7f^A6X1cXb!N&4zFz`l`n@d(GnpzxP z@e|^&PEo6Lso8S%tcWh{v@Klh_-pgfMv{g{W{@jWP3E|29j%=QOWSJ%$SdMx+j&FztZM8k+c4qh z$C>CK-)(EEcl)Wna@wUO@Y;QIvM(jh-S#lGy-_eQc7?Dm6SS#vsXyloN>n4AIW=y( z+R_MQui_ZvZ_8=G7q#TG&vOj1+0R5SZsu;MxwHC?W>8y=av)s6I~!Gpi+Ek5z1Cgq zd%5LSP1*b&%Sm)q+5Gz-JW77(<%Jz+IoL>${&@>Fj)1MAY_PPTW@#7iA{rVu!E4)P zs1>T%76CRR%|M55sSxmxCevp!St>{pv)R?Rt}aUIQ1&Iw_zrx#aUaW~t%DfMvSny=ex~0?GHSm74%R%PTResFDSu z1R04m)EXpMQD|fhH$e|!k$let>`2FJ-r(-xXwBD;=%NF5I(c}=*!E&L_wjcOB%~Jf zkVj}CNHUVA`4`%sWmzjfHMTb#g&uiRzns>rf+s{DdmITR2aNW+d@>m$@*XnZJdQ z;vF8s3k9jVtK7`}#9@-hNC+>i_-{ImtLMUUm+mJxxNp}s+z&VGCAhp*juSo>K%1P> z&#Nj$R(ZqiTKiozU08;`w-e)+XfkcyXbtIVo$NVzFZGw_wlYsdr!7#g5l6ZY@zqP? zZ|5*~n`au5|9bn@)rI^bD^7qkxoE~J*V29HMrn>~eR%Xq-xJT@0!%SdCjG>V{8f=? z?a#9CRMdmSJ(ZX?9Crr&QDF)MB>07zPc}K$jA+=!d$(8Fe1u7~<%xIa7DryYHe<l z9=}Y{s$!2CkTUsBc4+MP)W3)RSO4dy)%%v9^LJK$#_;1^X!r{uS%i7)3@vTdkb&NZ z_u+i6WourFL+sm%Ij*Is#H(QA{BPx&nvt}2E8FdxeA@5!VEB(wF}dAhknR?f6=Uw8 zBzqR7?^`-6`~IJ*&O4m0=G)`i8-yT;UZN9S2qB1;L?@y|^d7zU61|tG(K$NNk1jeV zQKLmK2S@K+v^(d0p8NaV`xnl$o!PTyX3bi&*Y~rH=&axqwrlVeu zGn=)`IYvg{2@eGCxn#AVd3fnx+^%ot)jYpleN4r5?E6No6k33AeLFDNbvNmWoFA>G z)8AXuv%Awg1=|zE3`doOP0%WEKhNtqhK082V`@M-@29b++pZqU>z2>tN@osmjbE-) zZb`*rkiTGOZ{Db??_}`lg6KLoB5l6U%4Y1X!y&FL%O{edB%v(JBxHdV6ri< zKo5O}^~;DF675`!adSB;7l9^`YHNbl4et>5CFJ$f4<^L=Mjb;y$~akiZ0n16edD{& z#>w(j-Ej1QumYOido>uP0L+6^P`;2dm2tX-TU%Q=W<-ovB(b>Kt0DMf?V5MAw5&#w z+p$yeAAZn*Zice9aE(876*qNfws(0etd;AgUu{yh-V}mkG$Ll>gYESsz9^*8XgmYue8)pu!6o#FKRUONL z{(Z?zZU$}l>m$$V37YQrPPn}bznR^9`v>_OSMjz!MLi(-=PqtEDZ7Z#LDzvzzfsgI zlo66Kxr;LV_BT&sOMb?ymP~Pz{8Z`~ivYtqc)BZl1rxVHem>#u+|q7bS^@urF(;QK zCugT)KGi_AC9y8dUI^tMCNh-n*UCx~13x8q786u10uHjp{X9H`+i%My6cu-@hx9dRAb6ds(ufZtM;pX z3@d$NL8_~;JO;PeN?oUkvd|P{>=_?2GyU5sMTLcN=`!`QMc(=2HBLvmUg*O~cB?<&B+z+pCv-mCi9pOMyW0nK7UJ5z_yJOH3ASf&y8jHu ze~1WxN7(3G3pa?|4ZsXa%6jY1K4sW(Nem1!+nds9YfqhvkQkN@=qQP8r@~_KldDH) zm$^Tt9;Y&DOY=sZQ!}aQ>MF`F@v*Um|NZMJncFuSD$(6R@{hpM^t9HzZNrQqGz`L; zpP#Ryu0B~>X*Jh^1KUoztoY%t(kWB^cb0`;b5V{b%mt>gyW|~A_>hpwnav+Hh5wHu zcihT_@f;NOx{w=N_Z7kYW*Lvsu#L1Yk3~@hSMtQfre&Z8@jrm=0VC4A&Ee(c1y3+Q z3C*WHfmkcyi^OELg3lbodw-bS^lE3UStBH$c9AqWH0c1zUTt@nw(3hPc8d5)A@wRZ z{nn`k>A_OuE@Ia(I@*6EOqJ~;xqEUSZ8PO|`8GBWo`rcB+XzvQ=jN|KBO!BP+HW!Q zhbit3j2Mbm9b}v@)DLw*KUu#5|xPA+L<4x+V<`-mhz-1)n zouZO`cL`JKsOmTUGg=bSHGf14~CNZF$+SJRzTAyV`Cx%;wsRxIMe0gRT*#Y+0AK-}LZ&U%vR$i(&kw-X>?d zwi0nkWjWg^vY?lDoOD@Ycp}f`2Cn*7jrBByu}h)$VTE;GwD!8Xx{=pkTAa7QBl0(q zHKxlMN-T@4pB~An5)%><7MI&xdtGby4^;WoP!z0_%@(9Qrr;sVlb4LtlPW2b;hc?Z zHfKq$A%xy!SphgU@ytjEvK45BLnrs~3dUkCYl(irCl8(A?o64x# z3sC{KLao&2$D!T+rKL8DZn~9QH>KY*6m9WwPHM<0ybN#iHOijIr~;TmIkDjm_y?g( zCFC&gWqlbjKa{ez<`B!~-X^R9-uEE3;)xTn3>_C&g*s*l{{WAQT!d=-Oql6`ZPWz+ zY3n{&>H-g8LMH;P>=FN?-h;qq?L=dB6;*$P3N}B#f%8H5Vhi^l{}cihhDudfjUWDY zi(PJPBbv=blKmLj14Xr?Yh(K+h+S3IkXdA-goL?q?Tm_goo<^DSqFR4< zS598DVw66NAv>KGidrLvLY<+59H&vXWJ`iaGL9afEK41@t|_&raBrp*9tk!9c)-fa zN^y8il8_1UY17=^$;nAgH)Ao$y18k*6OCZhSJmIt35?4xh<{Acq!jDCAFSE)V)GZP~aAI0!!8HbHJ>(MTYoA2}}j zl)J=t9WyGqS2|dF2U8hR49$7F5Novo-kvY1qS&6T_Zrt(IKrxwZC#n2!)rj|%70q-d#01j%!fx-^g15B;#^}e`-l36nNtcv7m{L|hyxGJ%JykGDY5h`g z6E|ZR?wV{`dnBnOn7n3oWM)I1cR_m6dF09X$jutrh^mDDu-|P8UTH+-A;nEzAKcT6 z4PXoM^&5#O_8pH^V_(rI$-|e}pEaGo#?BrXq88?m?U0m?TmB+{xOhyoOF2b!(&?Cp zm43lCnaadu97l$Sg_S-epu`QGD^KQ&?UGqXC`5>0ZOL zRaiFM)g?mG{*dQY!%{F<^3|2?0SGOZ>j$j#Ap=J6#R@$B`BASXPt+LbMu7fKLR0P3-s^u>T4qm-yS;N2>|WVaFc?S7NHOJ-RFo}-!r z`2n@v(;WE|=llc=4r$`iv9Y6h2fN0)pl<@SkjqxHP$mUehp0etbJMCl2#vxv zAx!OU85y)8?EZVPN%lkpLo%|z{1$P;#|Tax-`_@bJkA*VVsM5-by2S-IuR8|$|1g+Mx9-of(k>-UKRx5Yzd z0wO4M((EegXdoom6(oQ)*Y&iWa&#IpVC%df?0%NgWHB*hhVX})(7cmRrm)9|qo^Wa ze#TXQ2orx+e(o7E9&EQ_0xbTTla1LG?hR5Zx%(=iXsORXPLwie!JvFAhDgHernK+* zCXhzvqh4wZpBBFrsc7ev6n&-`BPmVzIh_!a_nuht$2H_^H~4nvk&wP$>hE6kBVAsS z46fQdBFK0GXqGx7SNjO~*$ds;jtwST_)Xs&b-$&y&yV!|gI4R(qj27YxrZ74|IK3MVG5HQlH zls@WLTne_Z1Cwwwih~3#1rO#k#X+oSr=w_fGBw7*DJ>GuY(Xc?%kTp4V2x5`K+gXA z6~Wv&C-7yGBmKN0{B**vN{~aU8~U2EGD+O)+?rW2&3Sf&1w>`{lN>*GT{6lvavCX> z=4=7N50_dvu`>|!1Yqq1uY40&lnXyK*uvkMnwsv=#92`D3C=seM+d$}-=~1jtG?en zyUu&*_0x{EUkM*;&4$PuMqM&57QJEt=rHrxDWT0S8Si{Ac6D4iO!tz*|8X9co-mq} zIzTiUfZ7soab*wkqH$S|ruk>1&do8}y5R`>mzIdf90HT9 zE-tJzf^r?o;Kh4Z-|8ie3c_k*%*)aiCVaphM>((dU+S)LKM z*B8&hx7S^C&Sp-MG={NY_bpG5w$e zRBu!SpH%NH^!^CHbD>2LjF(L?A)%sb%#`6=Ez!4G9m&Yo1xsmYW{_c7(TdZB zK4472XWbMOaFK|^tIO3`Ce#ML-i_{NHp+AzTo+aX7{{M{FSm&vw(m=k?4K5kB=BF*Hjay;7fp2t398gD3u$j)~s%5 z%Yx4|2`zaCLdo5i^yfmh{xoeu_Gr3#~MJcF%v(8AGsqdVf|mDqzv@-MN^LQM{jRi z0-6@h;?n9-&_yOF{_Qk~1I7o0(e5DZjXyA?y|Vc%uX-2`1K~3aZ=#mDN5te8n50TF zeDP1F?3PQ75sf6A9rZrX~mL6dTJkHs-J-fHP7qPA9ZXDBGs0fLt+QhTS36rUN8@Pq(Drym^4+#M(BDmwys` z@Q6YhAaOy(F&q@GVszLxB*e#eoo}$#eoO0<2pGObwKMKVy`yO(tGPvjia7XKFSHp!`A|^8F1HmuLLvG9RvI$}fc*sO96IbK^Cvqy3GLtWijEx;y z7R*9N=_4R<@$r&?Ks%EQ)#6WX7&2o30rW33#5+)(rd0G?2OYEO15NMw0*Q4?8+uui zL8VyGL(e>y0aSGX-dVr!@bFHvTABGeLwbFZR|Hu0>~eDni+Fo zeKHC*R{<8v9#>EJKb4r3`5ymY8SV};pUN11&R04#wv8r7IANc^qQ&7Ge*kFs+( z`I}2aGU3e!o5BwtSj=9;5=0alVg$10s;mk_P{rjsVpmT5r^emQ*(ymtu!BrCiVHg~ zBWh8A`gR4?;`0_6b~t>RBg2RPdub`$>Uq5MoVjEE=Q<4Uo6Dm^+HQnn?q}`GZUlfq z8V)3LqTC?3{W{_H(9OChGRU8e2h-N2r6C)pZ_+KIL?{O4%&c0?Ae{R|P7x#E{Cq2D z&7^U2MeTlpr{e(AO*CXKdgaW({T0Ds;1Xu1fpOP~=W85^ciq3+m7|(tjK~Z&@8$BF zQOOKCF7C0FQ-#m00@3;}?i(^PS~;V`7mQHVWvYt})H^NF%bw_Py;HEhaa<0Qa1iFr z;7Xhp3X2XVGcOZh$YwQ9=d4NF&)a+catx}CHVpWfK%eK>1Y`{_O#|+@{jLTMM%*vnp4gNNe$AgGJOp6pk5G%pGcz-|v|_DwdKzJP<@(~$1@bNs zYXT?%{*Q*5pOTs_g!Fx={4-fo&h09pNt z!4VW5pYW)nSuXj62=Y80{7oSF?KKEXC9w?A{u>9HfCmVfUy-eS(6NTc`Xvsigblv~ z`CSk}7Y5kyz~w~H**&Zg@R*S7%|M}UVp0;^v8hUXPIMjzD9vZ+pkan&R6_P&dU~XZ zng0G|&MR*%|AX@KWvGgJ3h+%o!<`sr`&)8z{Z&|{t*yUt9!5K0i_%Xd_3Kms(eIm`AMm0e3wAGXXlI$5G~t)TCBLW&IFp|X1T4=?Cg<| zpWiTuhiGlo89nQT1H!Bc0JtL2qh_J>LHrUp;Qr0RB3>*2r1jUtL=#uC%z)C;dFOFO zI5YQX{rmUtzX>@&W(=JvK$S&LPtP~%5CRm|H}WDT$R0a%=BF_r?e)|sEyrzlS^@+O z3~yt4Y#XxAn%3({&8Kv(Y!;f6fM)qk6q$siBwAYG5#X<)$0a8A$dKxqy!olRr-1M& ztVue#?#d{+0dUHa;$p0OF(45nmic<}=^H)0Wk-waUe})MbMH%gJs@+f6`PtrU)fD# zZwKsEG#=Y|p)8Mea@_8m!omlUy^`&|w}A30z_3>QN5?}@z24DR|J!;$x2R~Qn9pAo z6_pMkZ3`|fb@asLGwAtYyKs{}sFtl$!5 zHXd{Kb_1TDqj_(`V`DMX?kKTFY3S)uHvn<_%+tS*xhX-j)pGlPO$|u1NXZdkg-R$X z;h{8FfSoy@8~&7mK}sy=|9>ga1wFT&Z#+BzcBqx^;m-$Wpg=?@2RcnoPOe$Sq6gk2 zK#6=u050W=sJyqaj%z<3AD^5kdsUR|^)^{mv>f4xIsundJy9#F(C6#9^k*@;SfXVd2Q$@(aM}=KtEgd1R*E20z3QYJnQFUN7$OilzSL)uob{ zEuHi=@D=p^K)dMyl=-Q=#t&p=WnbN%j+2E*0Qo4uO{0LIo29bt?=uvzUC~{=uZM~2Z&Hif5B@r3stKJ zGgo-7!4CgGQ%mcei_01L(zSPt@zpWnbay7<=H}+G9hLaW6L2kmd_sZ;pbvNBNVft< zu(q}q2doZ+_#@4?__4QZOUh#VKywu`g@#G?+zdADwHHX?ffSh?#!I===JzvB(Xr!_lT>Gi%nn@UVhhU^Frq;Q*qo_SxwL%|2f z=W}+ofV+ISlT}Oy2>J;Cq+JEVl6t!(AT4v!sx^BAmXiq(vlm%k*8=nl5+`Dzv%*7w z1%ydy-UlZyV*q#iNc{dp9Keq=k-r1XeT~EF8jP& zSgrYp*xs3Dh0ZUex*ot%xl$sL0%XUgt{u#5>xp7j4s9q_HxKBsqEJ@hB66$%!usa! zq8)~C1W3Fq09YRau`ou*?o6$$qT-{2dyq#b#Km=h*x{Gch$w8OHUob$_K9Y zCqpdYJS)rQi(6AX0El}bsu-t;UduW@m+cS0)qVu{ULs}%p;fQ!5r-QdlFBK0YwO+5 zl?6M(pijtn&U}~(IJ~z@Z9e1zmLC!vvZvdajEs!P_)M@suHOp4@j5`l%Q>r$HOd$N zMW)B&?rNi?tPFq?_yCLo2-lS73ahH(0O$sOas>!6NVd22bd^8Q)gz^7sRlgnq@>UR zphm=I35d6o&9i-yRak@O_RJ2KJ1=j2=WX2*j^;r+{px($IKQwEFcn5F7dM=!keWiI z7Xb*__N5U(q)C0{!H42^yQ2@n{vb&@uqE1W24q`vee$mQEe_e zG9eZ~0S?Tz#{PZH0$jV90Ad4<9v_dDW>#)c%F|C_V=AcqMg{%^FkDN=M@$w9{$#Kf|oQ2s)tOwZYK z^ar@hK#pz-lJcRpiz_PF&#w&R;5$-NQ&0C7(t!&|0-F?yJQ1=?Y1Mfd2us4}hlt literal 26277 zcmZs?1z1#H)IB^ycXx-BARyh1NSAbjlyo-?-5`R}Eug4`NOvm;NOyOGNJ)KX{Jrn< z|B445VCLRC=bp3A+Iz3HZmfoy0yYK(1_T1ZR(vj}1%W_U;6G?6;FX|>wzuFHilwrG z9QX~su4S7;z%O*y=LQ}S2qppi2RgPGd<%ilK@{brU-;%6Ec#^-ZMF*B-+bKL3n~rp zMzP6AQB8p$gwe@q@=@?-ZIXpEvrweB(5!czrpxgikM;;gWypIJJE6&@hE8Z>{MNXda#kQ%rsp)vc%MZQvMbM4KtD}l?TYN1gbOr_n zCAQuJgqWC^ulR@=F)`nfu*|`Wgxs*$m>8AUB+$TaY{8Yg%VqVs3&c>!fp@^j^5Ed0 z+ttZxL)~c)p?X186`sR%g{r5YI6^2yj7EK|&ZTtqn_qqLyae$Bj-1>_bKYhMgd2J)N!K3%r4 z92&zqt0Ih8QC{8^hK%_-Jw3WaIlZX1wsyO5cv#KYXVL5X&`>XUtIB@7G;bS>pf8y= zxqdmAGL=RBnW7?kUf}N^dE0sw#<3%TTf8UNfejaP4x`}ftnG+*<@#)U{a2wZ8Ltgi zMZ+2fhgn<8_Fc6;7H2wUVq#+Jp7?Rg8Mrd@&m7^J?Vq2jtMSuK{n=VfxrW6rjSpsP zP$76&D4JSYVbi7o*w)t8trAA{QBf$y?mw7L{9E-~e4l1zW%-LgY-PJxj=fhT6Zhx4 z|5GM;F1EBR5&b(b#EDlw8@J@5w6t`6cwu`aKe;vFl4g2qzTV~7qxo(!*mHg)SM;(W z1eJkd@C_SD;xlUti^4!KH6<1MzpuCR(;*v8UibWBl`J2pKY8-xYfX(d!t44)?`-gSLBaQ5zw%u7QMx<_2U#VHGm~-}&wLs- za%t6x>bCG(>44hT&s%$VoWX9WK9`2h*;EP8DjkBU*Bbw3TA9mho3sFC#La0by;A}n z6o2w#V?J|iLT`_nj|VWhTB@e4v`bY|_NTt2f;mgK&Gpi)+M{EZHuW<+#UvuBdpYrF11 zFo8y#!e_w^6)Yg)cWLJ90k9j`%5uVzCH|s8PBv22*NWmfDgN*}&QwA3Zx*)w#RWXJ ze&!uQcItU2`w}VLwlZxmZcQ|a{euhY$X{jSzPK5EpjljN ztdvZmZ{pDZL@>{9p&zQ2Ei%WkJwJ5jST95QHAx?BMX08V71iRb~ zAx7kick@k9Tl3w-2DwRhrh(QmfH$##7m?t*wE8 zqeg`#|NSrG?SYgO6dS#yW*q#gse~+QX(10c%K=M*8j$@aP5_^328M=@bJfa>TYRe> zU%lG%TOKXE>OjPOF0Z*!=QRI5P0Q48^R1T7WZtlTknjcRL!NlRhOOj{!AJWn<8O8; z3pKXMX<9fG9a`SVKR=e`!LQYF)U^LnK|!HCzfu&2I=5}kk3Auvg|o0F`{nMie)%0h zV)uy;n(o)XH-BTAUCC5-h}R7z^Z&B7f)Hvl6KJ^$cZJ-aZ?JWL;G#l)~G zzwdpKW|Lx~2RT{r7+HO18 z!pA&1F_HFuFDAy0RVx^!CFthD)Yb)LLDD*xWgL@fx3eL^?(H*+&M;*0{Za3H=}tA5{yyUTz>kLe1NhSNSuw{cZL zdPzyz5%EhZ8W0Z~+uQ4(%KB7)Y3vlOiX;$ zO?wY&pQ(lA?N1sMR$!fr(7tkX@RhOz}|FMYMO2`ie9MBw9zqIBM= zy>K(D^)~uuhi_9UaQ^hPpLV@*J5N?ehd9rFk4@})BQ@yg3z{^mnPMU(}Z@BQ`m=-gZ!OP()6v(Itg zaIWaT`>d|69?8173Di;&1Er6Cog+D@8sdU4y*^9cpC)GrIL)~wO9B+XYJa$VDEjyj zeR6VAeDL91&!K+WEQET!FH!VJ83P}`Y$UXiWWgOV&+q zKuJWsxw#2xnmTo|x9{AW{Pgc0aiS5yx8RbmRsPNOo?d(0n>PdyDNy2Yww%a(D38-t z7bgbE9s<)d^+O&^=Yr!LP64~vaode^;3m6S=U3~&lV7s9o$IFsrKKpH=2atEK1U0) z+uQpUh2Oq;b_8Khf;E~NC&47;l=JZ5g>-D6of|j^()YZc5@Tj4+Ths~JRL2Z2=dki z6%VzjH^3#%j{VB^q(+bJwHX5*aT@iJ{AStr#l?u;&8;I&v`@IWDyIXQm$@Q#{KUwx z)-rALb`7{qr@a<}Zw`HrTQ93TcePY9d5}S|)^~e-hWfd&as(B^neOl_2wO*5T6!d3 zN9XX`Bczr9U(;XF4-z0o^Vy&VrKzI0t&L_x;)VmV@`EM6Cyto?By%JX<>B1yA+o8d zN#Zz`W*<~U{fxMpJgfAC7G)+x$@<*bTxmt-xO+4`(>sCz+ z^7-ruoB?pFWN<@!dwVm$zgxq(@yeWyNL=l=Jb@Cl@3_p8qG|lm;z_xVYPRCy;v^)O zH9(Nvi&&hOwHwC9u(s+4^S{4b3cyX4yceSJU4bHnOLG{0Lu1#gkaKpfm@UD_$3GwZ z-RidWGcz2N30HT)@LenUcQl!-4S?4LN60_al7ADg7IY`gX$=O|tvWi9ctz6)9J;^6 zJ(e|?S(KPm$Nh)oo}YrXi)C)*A2s59|@(mn&7{Kk1ir zr{dNW7?^|T?(dr~H{iSq%AGCIAUX4Wq$ZKcYk_ZF{29yqF!hP6cq^6Cd2mCXAJGN& zai$3YKE5@%QMu2Kck_C1auKU*qcL|vidi{fG_G{Z1w%rm8Mc=rlST;Hh2$;D+>BCz z`$9~82%qXWm_~x8p%>Mbi@J_3@|p##ahrQ2GEzD^gOg4*vmCQaaYa&SP}T9DoF%04 zKL$J+BEXvXczeqXTyZwe9(sca>ancGKVH5YX_v|8rCkkUC@4mB4JZt{aJ1u+NFH_x zro@Xi%AN%9QC!SuF|UkFk7Uf5zPX3;d3FgESL9@XouZ;?z|hO*A;;6(JIh4LI7f|z zPqk)YB(~HZPlk>lHp4`Tt6R9RNZopJnsig@$wZXDoK5c3{^`!QOuSLDZ@Kd-G7#kbQIdwyU$}(veEqxtf}OsUk;1e?N4WElYx24{fusoA1k$3M?7lJ z`!`TRz?vd0N`w{rfLK*d?ngR5^z+diiUAKslw{?|c8RL2$IUjiIs2T zLRhh^l-8;chj~fqKkwNP+nD{wh-T`Xkk<|#J>xS@W!b;FI~K-A1?w0GA@RrBYZH%2 z%;#I#|MOcZMuR1-?=O+gGda20$Lt9DAD3`5_rq7uaBpRFSf*Y)dqZTcxW8#2FSqF4d%w@q}Bs+vN${`@XPc0Gtd*T9{UiRf0Wh(ptF*6p46 z_+O0iNWkQUuxgL+{``)kZ#8W){)HJ=Fm<5rZVk5a5P0`3B0o0<2E9oIeY*m!5xUpI z(j#4YFeuJ-MEx&cq9kk_jgLqBb!EPMRMG;k%NgKx)FDpBByz^@i&u|YYwY97zMt*c zPV-|{7dZLONQJ7BmdGOtD~WL5fh3Gttp(%{Vl#5l4uocHOvrmijIca)pNu=>mC#M|r zco4WRA?%6RVC@ONJ~1#xDEUInK&AHm0z?)J3)_5j0>UUM4gEZ8vGJFV!j~M>sst>I zh(am09T0P(w^B}@)n_hZnp88)S8OHMh0Kc_)BKs4@lSrWc3RlP~_oIIwxG*u}g_0wsrDJh*Rw(eB zhmUD$sTJd>iG3YMmVqKHLG*V3r!-53ran?6Jhsr^_(2!Oa&jP?tPx#>&p}+#q2sPJ zHHmzy%la0WpN2Q2YBGq%oRMeto!4ARC>oKBKd$>V7`zOk5Jloz+s%<|xT37LTmWF* zT7}V<>o`~==6WEdJy}m>`yDFX7;uUlUn+0(nfk6G8wX!+_KV+xg2`g=-4h5b9}qXL zLR4-}dYVMOt)|a~Pcp+C%cH>+MvjvmZe-UyyU@OMZo5OhZ(c7Il|Oc@ix6-dxC)f0 zQI5$bo;N~+%4`0I!sC23gE8?%tavi|6|KD~k=6i3f4u!8FmwEpLcc56=!;o94ZH+X zRvvU48OjwUUGGmug#d7Fco-Fjs-x$hiZnirFvKeF^DcN^uyE-yE%_?NN~ zs`Y;!X!%#qkyd%8RzYx3!hLTJ>#IW^f}gXw0sgNectgdlFM(XV(!tR&;U@a~p*JHz zEY@F%09o+_W3#bf^iTH)JJGldB0XxR0@*|Ep>z?j>HS*cMHv6Q(Kw%Sup1sc6)8_W ziKsGO%qo>eOYt`IeWAnOjHIlr4+*)b$w!79%-7>KRa{26JZ5_`^s7IO#p&jmG(D22 zr6z*Y-21h>0HV+O7T!#9X|K@REp!bGGIvyQGRMXeX3};Q=i5@uASHDo_VZ;2gc#7t z$^W*2z7Ix^jbV`;G%Cr-b*JM)IlAa$G|+fhu5CNU4ntoM zu`0Zic*MX!k(7XDUh)NdEE_R1F19lgwmK4Ru5PCUk%t;{f(-{S9lxWfR`?^YIrXP~ z9=>D5@$W;K#a4?VOT%;n&oc2loWA_>aM!MDulOMZ?{xVB!3j!6>@S@kkHF6Uy}|&$ z#24ac&U?c!>=22xsjalbw zHRC?2s}Uxa3kH`YEx;Z+(9A!x`$>kld@mq+hHuR{h*~u^^=^#j*W$~|A}o+LyUp() zINzj8zamcIi>DU|69IZWs`EFL1Hp+cH=;N@Wj#D5f?lRD?Kqo9!6>`q?>SYJ9LOAW zFeBAQR4kpyl+;1;YCE|)XC2o`op+L0v36t}Ase4UA@9)vBp)OGyBiUhJO>JrDEtga zRI+Re=<|I)Q+I?4JTD{Es>%Ku(tW(G0bfayebg#N+jdBjio%cCD!Z$#pQF`o#m?U3 zaxW3U*x9J7lDKdE4kF|ki&$Z$neg(pa}4S@1)u$qN076A=W$gCf>xp2#?)wFDPHGP5%6wMlN3yULf&lWTfk z+Ki}=CGzIyuZAP!(-JvAMNohp)xQ8a+Cv|LfR^z}Ul6QXSC67l6M3*?nl6q!19)*p zt5w#C%!)Gt?-w6--0$5>e6(nQCLz%=uEFC*I zLESy*oAXrkolbdfgJ%r0=&;utxDfg$9qDyH&&M5_Xj-h?ET^L(ebx~)AG$cIn11Dj zIOXUQ_iBWr(V^C&y6bXvDG2Fgqvy zW}>gJ(Fw6`uljR3B3UU7IAQXvNMtDQ2c5jx`gbYfdT!ttCp3s$HHN>F6{e-wK8F1- zg6Y3znn<;bIg@-YeohPWQ(%_`=!qPZlo$p$cYP>?V>}OFlS3!hbYvYw(YO*CZo|U6 zPs@Y>@3RTOUcDX636>cRk!cuMbo#0VCcExkq!w$N^idWtFJpbYK!Kyk*+dZXANXjK z{)-DV7HHA*GSbh>1`pgpOOa@BMBpisT8@#KItXCx<#-vT@4esR0S{cgTS4M=55h91 z;7M1u>_V#fM909(4I@?1KovGj z))C8$^nPRnAl&oY;8@;~jY)zc#~z3pLU%gq=)y~H@|RGS+?Ok%s967kmK&BT_4lmc zHx@{YC>`LiBxEoZo#5q;lTB%Em^~U6B3krNMOe(w*Hw^rT5GMBOWkm$2?#85PE&7Q z(xfxJFEprE>-|_(Zj&x8$NXF$(tbW=M8^M$h=fBQra5)?!sMNpgJ#Y-c7nN*C_`c(RCr7+r;jKG?a=K2Rnc#`>_7yyHu zPuB4xEg!e`t+o~c{^%)LhvK8VYh&VAl(bYtmHgpg1i9H5XpYJ?vW6jf$3#1uwx`&6 zn#I2yisH(%NqhpN5B&4ke}}Xn0YnS3gs`Oi91I7I(8|{cIXO=(aNI2QYiC>}mcJ#z zpN-1aCba$j8;7FJ)!7Vw{9kJ_DWRX4Rd9J-=*LT%XfUvULjiBY3nou06xTPq_hOMT z@j3tN1z>$b6(<*z&G)0DGPoCBae`64jN-yA`Z#*P!>YQut(+4iVA}=iHLR6KsbKgB zPOyq>6F9Mq53Z(IhN(5)Bm=hA4jPKV+oM442(hm3aq z#UbFa6Qb!g1=dpX5uTY!5W(p(>PT=zPC|H0OcDSLC}Sl=i8q>I^wgNM;OiTBM+I&M zxoIohc{l4SeTQ|tZ2ziX^2!6W%48jEbRb2@Z^Fxzy-tW4GQIhR+cORZhQ9!AnzPlPr z7a}Cl6tIMp;fY!TX$EXz4CQwmyVvcrV8Aaoh(T+>-HZiP_Bc6)4Do=AswMW4h>Csj z2SG|ip~!?=FzQlM3JN6Cz!bnSHjDq=DQ4y3QUHR`{YkXsAF+EN85I^4A%Iq`AL!B$ zNQPvH#8jnOGFQm;;7nVP=uyLZQr`5k*R%=v?*=w6HU<8S#+AIS+CH|;aYF%W1mPY2 z4H!5*V>=*HS`X$*R_f+`$+RwBIXU$bs*8m#Hv3osEb;v_sxUe;6Z6HWel10TrjsQ< z@SohPoX#oFP1XbCf~QV%e78VF5I<6>yE&+9ce=1XUF(I58c;~66a=XBtdAcn{jjYs zdC8^V*1YJ}uAoWOV9ZHIVx;BaP_M#SUK8|trS>-IWAQ}^w}Zta+ui?fu>p^(aTq71Yxt z?8v2EYXDk5o9=hEwMw~sg#uJPPB^{4d_C;*>^3v%@g{U(c6N6BxvX{lJU$i*ethqn z7dq~~VlHq{GV z-L=hhv#5&w1|XH3WG~;M0B;F3HFd^QE0nHPZpfd&(BHmd`ZYG#o+b)GLE?Eq7qehO z^5L40y7)O!o#SlS*x1-c$POb2)6#7arY|Ad=>|2PEq8Ub&R_7D#+cHL!_v)y$tCh} z;hK*uu6RUmJgL=EiysJM0iYcKL5=Db$VFk@tFT391x-zS&c+Rbw6||9ral`0lS;$p zJEIdIQwMZ7UD&R6Md~+s+7CoCqmv(>ui(FexBCR1rlvFqp;FI`!=?njL<7oFCf)dz zmJTAJOhG{b1RHzm=8bu;@~^DY&i(VE#>UwLtu@PY0T1r3j z#3_Lyi~~$W0~dq5D@44%F$=%4@ZoD3&b0XP-Udqs10tY=FAz#7Vqq;>Tu|j8qSOr` z_!a&dG+Qon-|X$2ocOJmRbWJ^&baSY*Nd=_ATuony?Sk3|1tmS{Pc8~7=?VLHl@T$ zF1fiKN!0(E$EPsWg6$gkC)KTsn-h{D%WL=n0VKjMh zH%7eqeA^^|TI?4uo-g>b_d~V4-)PC0-Qz`6$d>PM3qWGFo{{-H3E%s=RGI|;j5Jab|wx1tPEB+PwHyrO4!q!UB8luyMDHct=w`#gJYUN>@b8G zGGE8maPLnOCHL{G%}`dJ&f8~?$*_{_B>q5?Z;xt;*-qgU95%=xa%n2Sp(5maVm`tk z6>xDNZDd6G%E2Lk#sL&R%F4&H=!_|7IJ6QAXP0(-7(hG*b{sMVk)SW8trS2=qVje^ zL^+8hHI2#SwY3CNdMid@$~b0R6M|4}ye8oN5&R&W)0 zHHz|N?^C7a`Q9W*4ELe@4pR^a_-r?zDVqah#Z@P6Fa+Xz+Di)GdF!d_5}oJMX1I`< zMh})cXX^XcV^Boj!?{{tpl8GFRYuN@$h@}0J>%+`mnfr)Dox+9aGAGJp znmh^Aq9nlmLjrCm;c&kGQtbZjIE22&7olDHPXw5z7g&|6QKn}Y5Gqzk?#tqL0C$7J$H(`_GoxucFM!*6 zfC%jK)oxtL9*}du-Es$9I6^vVr%mH;j@xOq%hcpSNB}3%()Pt&u;dZoNAoUwm7mW( zsD5_|+Ba&r{XO_JtA-Xut{(>y=|Ka7gR*pZJJ(Z|#5BpM0M+g! zDxHi`YfCW-;~y9!b+A>?Lc_uk`1tf)5`LQ><|gr}!mTtly`^0QG98=li62lukpEMN zWX+L0aI>ZV4>p4e6T3d(N?S^a4gdZ}?k@!)!gq%uN1=PC7uRoGg%&)1TrMvJ+Sp#W|)M{TrwepHS zkOIr{XOu{uoG&mm#UyD9B1cFb*$aq3dJb8LUh9a=TGbN1oOOB&9`qc)!CF znInvy{dYW1k1Eo&Xd7GR&%%mGluhKN}ExTTy4lSY(HLH@I z!e?33pA`{c?Zkk+qG7+Hxhm+!o5SEM5(JJjYrrbkv)Uc4X=D@+j7g|Q_0GMx!6%3< zfA>D=xBBw~b4G~yP!>PLb-@9$0=!B+z$KKVE^&1g@#vFkTP_u3A+!d5ei2^x)WSTH* zv7+_Da3SR3EW{lJRRc;LdL0Ln)o-*TnNC;5SmB#`)s}%wrOhU8?aQxWA?r4L!`X>}{inS4;=t+CaMFdjdg|++ zdwww&WdRiDj@^SS3|@lRf718gpdqPzmOS3Ih+Js;+qZC!lMEUt^-LodfRjzX_7yQ? z1q24olw`*8vHFXTY@6=bchQdxHPOuqi1!pzQ}suG5s{E&nRHe4j4$n)&kL;7w<905 zFJ~Q!zcFjG**i{u+RH+b2o8Xis$?S6&x^0L*B7z2hD|Q@r)BiFl}etPCaLK|NQsE( z@X%J&L;ezSHiJ52psYSUozYW{!W{%7kj>xX(|73beR|2ta)=^wm<1>TF2+V|2 zuadXdlhdV<&$;Oc=wI80lv z8t6(x$xEy?vMA_e=)cn&AJH*ud;vXWjwkn*^%>>lK z_XanV`|Xf~PP6A}g#g1(L$J)1(1KKi9cw4yWRRRZ-{D!DcL_P}OWAW8cD8|3d&!#J$z)(uLF5 z|IU7|mjfwjin|Prjo~2!7)RbH@w}cA=-BWKT=WP4CtIsK)x=!@$T4pY(zHEWZh0y_ z|AA-L7<*r5UC7mVO$xtIu9QLMKT4OZ!~U`EQ=Gj*M7-74aG=yA;D(K-c{UaRwRf?7 z5R1eEh;C1!|A&*~BcT+mW{2^5VrwAm?IGRY+B&E`QkP@w zhNxLR+a-(9$NJ|w0ap$Kz?NA=ClJiw*j%4&f{u^R1nyy|w@*E+DHWRY@%I^%#HH|( zB~W?5M3IVGh^6)U$JFW8C>K7;06YX&utkOm3f$6|v-RF4+Vm;TTm?0tfPp021F3`U zy#G<<^e_Vm$Qag8vJR30bus*bPDDI7bEFa0YbnKk%!y~sgi?k4Jeu$?`g-9hhtT?G zvr5ZO1W;!Gd*&cMCRdEO?h7qgUobc{#2E(5brxxR=ZLWhb9j-Q2Ej6qe=R_1$&!cV zG-&g0(vi#|M$bL>un1^=8VjrQR~;6zwVO3G?sFU5!r{vi43-;XEM)6s2miVId~hljj@ml3+7| z60H0&^5tUxfBfi7SP}2G)XffJjNQb6mR$r66`p=u&i|AO(*BBU2}J~Uv`#$#F2#&e zB`?2~gL8Q2BlIXX=6eyC9b!=ngcVn*`M&GIFF&^t)kG8jV^n6!BcwLIU01c&Q@p-K zcGmgNf8s|R&PoXe$>G07BsE=lc-8YSFx2W^9RE7>?!Tjv*91l>bNz$hG61Q*Vm}st z7;JYn?qScUXCkx4-blRt)09fbbeL-n3_x%t0tgf33|GFs$*H8rd$U(j9D??dB{34rO+aV z#YmHU^rRzXZ1jM1DhrOn^Pko48R+xIRtCb-w|>Yl-6}7s^o_Z=p3>LXscJkYC*4zf zi|TT*o#3r!rqH5sn~u{h2N1fl8<)yC!6GbLKwH3C!6FpC!}>6JQ=ogy`)}c-20+*6 z4yd$MWZTZuO1;tR{Ap%ScN`@bdNwy93fUlzDBW(UU$0}nR}9W)X{_iXxf3Jz3Q#KX zQyzrv;}K>8YzYOQCIiOuEm=a!^DjruU?G%B>;q8CLb-z7c8+78#}0Mk382be2~l+> zX^;glXioH6e%B->Dt~-ij!|FKQQ;ZsIPrQX4JFG;WY0=u4jZwUpORUKDr4>2I#D{I zhcRc`?6^ZIQ;|v^WLPdP?4;;y#ea1qCRYe~Y?rT@VXy!G4x#<1bS)bqW~@}LYlUzIOEe)B^LgNoq~_o(ta`58 z^dkH6|4LfsuUjeeN^B5WPJYnNz)k-+iEjYv)Nc7LPT2M(uGC^Zs{f`CxF{n+Q>bL^ zw>38-c8YY0jPk9O$y4Htv@qU9-`R+c$VTA?Zb4L9B-w`cHuM_rgTBOKCD+6e(T$s7 zxe3bT94r>R#~=TbzAKEt z+4OL(<4=9KI8%kGdWJDk5zrha%XQ|i6H=-9s;L7l9#efKv8jo$M$yZ)?eoNjQaW5p zb*kv>c#PM!+5xTJz#D~0qJP6Z5z!GsytV%2^z96J(n^BKO;sJQowtFU{m7hx1a>YS zT5dJkh1aoE#MR(aaihF2t{_lqv6*KUlViw-K0~ZC{8M0-^m|o#8Qor`f9+Es@1>Rrr54|8!l(MVn!oSbcHLcd$NZF_=3(iNP`6TT?!vz8?ofM9RGS84)}cX#gPzn?{d$x_`R(jGxACREVZ7kQnFv7y>IN|` z(qlC-s1+aQJZZA~P!wsu&dSzYxKM~XvF?im^3!xuhEJdei_J*WpInM1okIZo8b=lZ zv&H$RceAULG>w}3%({rfYe<$Cb#u3-BWCoe8*74@AfJ`T30)jN3m1bPV4u0Y^^xmDS&)SJpv{676Le$#0W8 z#c*xYN)LJ=0tQ}>;#jhbPCY%?#o{_hgM@vXim=9WhVjn}h#|jqh_9WAYZmh>P^q3i z5{Q=Zt!IpB*Hi1de1%h3P=Ri{>09-EzcW*q=H*$FqO|PV$QP$8Ct1Re#jFEnTtMg)nq)>}4*t9%NzDnKug-{|wqoA783Md~S-kP)o9~ z9}INj!$--SS$_&PKPpNC%P~`@K_>app=U1%Cy;$P89TMF_`A)pwJKvfWS{|E$ZC)| z$GdN~q4+&ow3WzGN{1N^RTnPqq*Y6I(#W>ITW}KTxbbj8(+lcUf(Pg0j&;>9`jexf zTpL?!$;8$ftL`}WHWbz43!Jy>5!F|FZ4?u|o(l$AXtO(YsQ_nN|_GlCsgmSOC>dw%mPGHkP7)h_7tO-k96g> zaa_l?N9$E!1!+^7J}uVjq?G89kS|&7C>e>rxX|VI*7Y&IzbZi=llo3%94PPSC_3_7 zk<7lIucdq)&DdAGw|)o}qU!jdIV*0mZU=V9g#hZ$4{C(bSmY&N-{+<`wgiRQ%_upZ)&HI1q>@TeUDzpF^m3 z%h*&>?kd{wkMp(oMqweYX-wO!+puXqZ18x@5D6t3M+9teQ^wZTwySQ|nXJJwZjJPf~NlRp9R3?XXu62^jJe zemYgbbgshtnCSu?*@a)gLREofX&0*tCA6m18Ki+;15?}u#l0V51XwFeVNpGAb!yR+ zGt-u~u~vF4A;~KKW`f@ebWQr-%*oCWVXeBPGMm5pdp9hZhle&IOr0dC%ODV>yWrx( zh7jLkl3o;A(Tl#ck7a4X9ixz)RsD!8N);{V;M@A6Xhcwuym&kHQWMxg~G_U~yx$4@J#7vuyb-TsgbZGmBD_Pug=(HV}ofu=lO(?IAWe znqh;?7r(z9{#}Wz1N|ElQ6Cs{#*ydR5IRc%-}bn2(JrSzFaecIE6)6|la%IYOx;^s zZMWbG((P@3sOKW;GGVN_gHVD~A@`J*=UQ?KYdNDP-=2tZoK)yg6czo7rp`@may zLDRlq{Iwk~7GIyICj|;&FyU)w>$ZP|38!J}-XM z)5)O8D=Ya%wtBvpH;K?3x)5jk?n@k+zOgk1V{P-!%#sMHmlt9)%OR*4_2wtj{nGdy zAkGM>yp40_1CDlM(mo{j{(4VoH}2&LxZ$V>dI&N?7Q|SlqpbY9o(_>iT`m>$G+91keFnVdt7>)KI5)-t)R>A*85i(jAsH!H#;(xsWoRMf!dT5ej zr9{XA#OcSC^1r?x(Ho^15YTiqdmk$OVIJ2iu2@&TDaYr*YT;{Ruqt&-$l;;v8+Ovj z$_7R*G^y#$o#phzC{;YV!{z8|c;m*7JfM+bv1mD;5fQ%Ia9?6%FuY%;3{6>92h8Gg54BGfNI8$R>)jl>;(Va0G1Fq%s|ro!NzYt|NYJ*}f= zo!}GWcQalX2amC1$ZO&yK1+RJ;m)eiwn6#qZ;*k95S2~3xdHlN1XBcTXB|c+=uBl? zQE^ioWzlojU1?9@X%bzrkN(l4L1Jg8C*Av~_d(Av;W&+mUf}z7)mkWL1g!W2*|T0D z^FxXqOhELFz5ef^CV0c#e50@KwMYTmX3l}d*By89i(am*4pes=c67cv{8Iin0?+;u zdECZIaw+Ax;{Fr;lijL!eSLimAy+1xq+P33A0-3#MZ@)5+DUwp9(PR#38O{IgtsZ^ zOwzY<=KgyO3NMQvwIbw}xRAUC8qc9+-g_~{hwa_G=TfMpUZV-Ksl8C!&IATfo}Df0-!04JUDFrSYyBniSN?e;2ku%jT%Ta8r(G96NNSXS z*r}=_Jp3h%rtf7RDP0?Ry9v@`EG>0;^tE7F%v$;h#PsV+#Uerb^2>kYL>W|yKh+8G zj^KhZ5_BqQf5u4 z)R|m)u(rQKfV?11A@?vhyQ}~d&ACI)Vv?lZyY;2N&u%}KOac)jDgn9>4Kl^Ol?(qn z64Et?S&B9VKE%E?m@ z?19#1{LUN${W{mdHG@xcJw@s><(VS=7Yf)W+HG_(jquSf>IgY`}GtlrC9pCSKNTP{k|Kw0zJ#HwQ z$a=#KOST)wHm<9ru=QPRXnpx|f7OP9aXNY?Lb1xl*cK36;Z5Ju!)epsnY-y=OQ1&r zGW3HPmbvE_#hamW!xwY>9PCf(Hk!WvAj$O*`KG#0Kjz2)DQXKG%8xgS$8gy&Nr7tNocU83Dj+^*j$a8W-ryl9eiymP@mP{%V0(^+^d={Bs;FbiH1sRw`t)e!1R>HBO#odGc*Szkxb(5XnQC=r0E1{XL=c*wV77p zUiS?}GKsxT`|jmdZ4*sc9Y*>GQMJF$whY|hD1%yjq|e_CP5iNj$_?(UM-~=EYN@c+ zrcU)ZB{E9Np*yy(1CxH$`e?=?C^vuAOStsqa>#Tx&vURa5Tt_*{E+?vrDJGRLO{Av1f;t|q`RbJ1VkF?c%Ql7UGKME z)~p3H%sDfApZ(N6`~TZ{GR?Ku%jD!j%e0Q0N(ZICVjiwz_}Ww*+)R7_QwL$!81=Zc zq2tQ~JLId-lbEaMW~fpKV~O zKZSg&I!j$Q$cT9;zqG)E?~aK6FKW>TvRdVJ_&!K3(dT_H$13Vm*_^yyzAS!0i~EeU z(q=x9CX8^EVJg3roj*o-WA;Mu@(!&}sjS9$B9l^E9Z>%vFHqedYpf(tDHH zJQi>51AWQdqUUTqPG!g0bA3Lt#N?Zw+n5$+Ma3S=gS zsp$Ws5-4D9$;Y<+%d8}~zt1j5S*tt-|C4Wz1XUF|%~HnpgddqrkC^L?O1s8ZHFXC?fsr-^;tVO!b-g-0@J#TFDaoYy^E0;ZwMX-WD9qKSL)^VA1pqOtI) z!j=taKhemwmuNL}hL<2Bmt~J}s)B<}!=f!rXdYZo6PR67el+`8?3hpNpH>v zc4@i!1nX!Sy7CZZ)aoqm59CxZ>2~Ck&-M1T=CjPGXem^%3(@PSwlgp2U0yqir8e`1 zo`<8?BPO-ZPhKqRRuFe=@CsAY^}meGEM^f7(5*{(eW};GX!zsL2T2T~A*^b4%B5ee z#@-wwk*#vY%3|U*PeM)&Yi3GSoH6;N7C%KefA6TS{{0V;hiB z?i_jc$ELNale@~*R5?ZDXSK?G_{bT`TVWI7Ij59y`6et|r+hX0>ThdXY^r4EjTwqr zc7n@`&e>W0USo%AZyzSmM2FZvFGCZcc-pp5l&R+U$My0QPt|-1%QH|LXrN-X*K-HP1ZSfjutl>3Wv?mX-I5^M>J(R^~_ZxjK zXOJsvfF8M}safbmow+%il>85W(#PpA{9TQ=5BS^N9ttxMW!&eyey91H+9+h-K>-fO?qFe#$9Lw(CKh#1_~tfj#e4dB`R}#;^Thqy z*|?nw&S4hv@ScD*Lq=)?w{;)8Yz_-$(OOW&x3aqBrdPOeiB{Gxn>tQ@5tkn*+=ySz z%5k=7G9k*XokXr=r3#*}7-F5BU%yO@;!Kmxlp<}jm{)!D@#Dwx0}c{m;?G~d(vxC4 z@Q{jYl16J(MBcZ40;HzuS=+KU3nD3189BL3_|Y_&sC1)vH^#QB=S7oIkE8Rq;{EHQ z`j3W$8}AAyn@+G9Nf`vz?%zPW#Xsse5VLe-GF^WCESC#QPk``hjg33A-&WF_+afQQ zDRE`xhgHCH(wliBp`9e!7wM|1s*~1yzkmPM+2noAo8l2B|7DPe+}!PTjPSQ9Yd%sb zIzqGX8CWU_lD#P-$%2qOfn#GCJr`Ia`PIajFiC_W7VaizJbftCzpJM;2%(zs= zj*ikTlT5u83hGxWxc$WDtV@aMQY*u?N9|4s-6z6kn=@0?GhQX_^0-r}xwzYOeCSJ9t504I_u%c0 zgG>pLuFzpF_C&@s+)TZ7*)Df)A(GCkBDz!LDyHtE#Dx!wg)!N`H;V0khS;2$ zkv63@H)m9LDqB?~ZcSkyZpnXs$<$9U-%;aC*Z4(DT3N<=f-+Fho0LMHHaO*WM~)|Q z_aPVkM*+(clDwfUuVz?C$+3mDHJpP3xAr+&bL>#pat>Q0OUGG!sT}I&i$j%gLpxFy#83nxZ8aHt6V)iANO{=hosQ&7CAQQBrh9 zx&hZ&-^oitL9Ey^Ccxmlwd?e6lna-slq!ffQEE&HOQPU5;DFf7x#{JtpO{TO|xzwP`BEblWy!h4dhKi*kLIdx@k4dE+Y{4_?Q1K%!Nw37N|C zAfyV>=!A*$cIaFk*SKE**5}2E&n8n%7=LH02A}B%@%?rbF#4UG`{npTwOTidUu(du z3^ALY{!f`{w&dPZZNQu)5*KY%m_8!_=HfiEfYa~ZWg zixQbbRyuuXgum^g2gZ%h7zF8Yap`xT_^YW$F75xrf}W54j^$vDGNPTKJXWLp0QaEW zmU5nd7vc2gW&Q&P&NB?137+#8iZ<4cRa4gO?d>XLMr;m0Sk}s_rdLP8N1oWelhk44Ltu!8v<7LaWmS5fIbnk{oz)3ZnFR4>dl8FB zVqEKRGVWzweRL9bI4f4*3!fqjpJ-o%g)%u#<8I6jK@|F8s_!uVG*l%{VcoSzH7K}u*8DNs22kS>{CvJT4_MzEsSdW_KbG^?Qj$nqaG*e;< zXZwl@FE1OSc!52HFWW4hz%bgtoFO~mKOsN*Y&%18lEuftJE$hvGdjMf!lC5+b8&(} z{M|(@nSQ^1N#bHcrs3r!IyxeG7qWgIcB|^`;x!)Yu-1#NP|wtO`H#5|9j}_+WRxbR zmxnlGLj$-~9ZOp()X7A|8u6a+rmQh?8L~ck<*JpLVmfJE|6weWaq4!xwqD!X1;SJ1 zWpMW5J4MuoboY#$EYrHEXnLN!Sfu5}pO}^}v6*7HXiXW!jE{N$c4fz2j`&LRdH)zj z*s-|n)}WE>4f6XD=oq-)Jw}vE>~x=vV)UrCTF>QKc#z+;4cTrD(x3fAK7jy-S7SEc zq-{Xk=rq$&6NSz$nJ}a_vO6P6!bsX$VR79``^yv^7Re+T!XtX=B-f2#ude;k#Xm$7 z7j+2(zh{SeW}nL3Aa9lQyGH%w?eC^Ls!H|hJ_?4Dn8|jWEhURMgMSYRR1*44OLh#c z9!;MaG=D64*!zHWx!XUW-ryydQwV)BgCU*5!DiKi<<7KUt}bEX_CM@Js^&s#&6$V3 zHTfg8OwVqyv1*cnXHgK-XeAy>-M+o!+{i zFikQMO#x*VbH$=kZxPE(9ARf|{gz1T+(!bd-;~vPzVmlQ<@^l3<4O|46_>oB$;kcN zvA(Lm89uUzkxORYp4nV=p?i`t&TU}nVr$CXC4~(e-%-K{YkO>*WH9HA&!~+-nw;L)|vk$4yn`@hU&5vXQ~xs%5>v@PT#GY=TA~&dxbMyoJ2?Ao%9eHY`oWs zS4|N-u7~SgG*}MxFJ3BN&ED)~;Y3~}3Z3sE`kbNHLhN;H31+IUB2?xttK%BxihZBy z6;2t2axa!@RkPB)b8~!rlJ7J2doEJW`+g}^9VJ~o1EhCNGt&W-(AlNY3A62C_ouHzVGwuTGm9IiK zXv0_O`0m^^Ff*dsp@?_Q257gP~7iOsmND#w z?J1|EM+{hy`KuDbY76u&Ve<@&w{2EBNlkHPmUKU(c%I@6h29=|=+0~qtfLla(ic2g zY1hK*m5{q-CHy&?$bq@*}CaB$f$30==pTJ z!h&j($zmhi+m8Z)2UOj4lqB-z(JU-z^o)&T!HEa#Us^9Bo`!ib?FBML{d$O9A#exm= zs7#Net$M&oMo>QVhwe|e)L9-dmyq8GS{=VVdHAQj@z4a{`-E5GTV3Ps$=xS!VfFgY zm_t@BF6M_1qX2+PjEN4gF)Bb~=Gx6S7OIG6vdY=uRX!0e*_!jqIcL#P;>@_)uwx*4 z_X!==tAf` zm_p+pALt^dS;B^o_e0?|FIbHFrn`xPoZPr-8tZWV+2;||*2eyceNDe@O&6qL65JWD|SH)t|(&puI#;|VR ziW`=g9QO=awsUeg-=L3()tGVXZ*|&N#=@s$@8b6dR}jMe(DT?HBthb7qFyrc@+Mm| zHJ~sBXyo_wrvX2@x{SJGSy5oMYw&7xbaaBKmk?;&jKDh_Y|qoi_jCXaP5hgFgVJwd z(Uh_;*U_@Gvv&aB_sDvZ8_b!j@%VmaOTg~t<-79T7izrbd=p3Oojx>z;&A`Z!NEb~ z@_6}`S+`m|hcPACxAAlp&PHkqOUu2tP1n)w>hTQJ!VcD5?}ZtaZ@((;?v~Rzjl;si z8XX%W3M)W8%_zkHzLP5a9UrL+h}NzLW&ED-7*Qm(51h|9GsF*ifK3ef-H?Q z^t~|k2PrrnV9rtznGx_w*8$kg0u3Mg!1`=MWsu>$? z>L8Nr_=KbP^YWZK#BA?h_Ux+?kQvR^g@4w>+faC|U1RY{+v4`r+80a8=SfqGiJjcV z8Z;6dY*J4=G39rkj+&6cztEjLmTI<`4i0S9MmEuPIQ}1Yak?*rh~9k>K~W6|KAnvm z#9FbO9BHc8_%I!@J$-l%-J%(CsmYi)?)QVyOrNYcQlsfTytrDOgFwmhY|;aG9HU3T zgVSMc=%JDNOHr=G@!|z3Jq{}yJUAvcUyl7F8Pxm!Qc}u_%%dCug9*D9w?7TXPh(Z+ z+?cC&pohiW&oniG*9MNs^9s)vkgMSPaD9Q{n^n1UL!IiTiW+qYclZyOqF9=)#K?M= z^^Ajtj=6DZoY9BzfZC!zu_s!&ySoi69_FISg{|m!m6&UtlWLS=vXtzQ@GoP z1ZB~`_#TuTvSZP{e64~^ss(;mZ%1O=}C^(FWJ5R~DQM(IM+!QDJ~6(i$< z#@+0@eKjIr`g`RY9yZJT)x4weUL_BMYxqqKvW`rD&6{8G3ZC27+!JkF?D3<=?pSZP zuT{x3xhF)GnOry?;aQ(-Q@LYR`~JVS2nY+``8E;WgUrm&|DBC>+H~B(MdedeP|&`* zU$It!nlSnHE&i$2=ECv40-!zrXHZ{x!=46Y(ihbyQ3Z}!6}X0!N$84yZE~)|YsE&t zbGNV^D$31!1v0N2u$T+ud^_LM4uC%4M{n<|_7I}Nzop{N78j?M?0WemMgi#v!ou`1 zVtZ?Ac8K}|SO{^W35ENCgyMlo&o`fniE7DV(ghOs#n4%c!yj1x=5^m1)ozRGa!Sw% z(bw!DxTA^!1}MDug%N}{%8<#4V;bFnH2Z(wJ=fs!t50~J0}Vk)^B$GR#wJ*R%&Igw zjW8t&o(B@PqC;W|$C3P7S(ut)e`{cZa&ax<|7Vdgx0q##B&`=PaWc4o0eP4M5gMA}r``q3>E zm|xqApCk1y?M~G5xxat^0x2>xE2|G)Vvh@|RjdB!#^5a-7~?u%0htBI+$!*YSAaR1 zXVBzrL#R6KD3oFrJa}LKTRb4M_dxwAy;8_XUsxX#Q#G8^v&_IyZ|cgj+Kvn>;KH|S zJYfQ<3Nn;Am0OsUE*nb+dWBm;vV2`BktZ}T5WTEzjZ{Mu36N9^>pfx{Ht?Hp)VGw;J+Q)nv3-oY#p*cr}dn82-yS2x=z#Kk6#y^ zSK7|XX=~r6fA)@nlM`QYw4wRTTbZ>sym%UkJ%Hv)kG0U7V5 zC`1TSsi^&z3HRBpQ1_i%H(ehaw_^e)3-MTVV&-tEH<7Ig1j#qJZD#~h-~76b+m;S@ zXu~_io4hZ6^!M|@na6eC@M~5&dZ(rR>gM9*{V3{n3Ox7D7Y1I4{Cr1moRL7Of1MUe zJqyssx>@gGk;UB9*R~!GW_=$G%*>e3F!0-LtCsBrxN!p@et?Fk7oy)FPha~FdUYq{ ztj53JJCRK+Z$#G9Q$*PHk0Gf4Si0&s#A*FxZ6{=W zY^)?mZvnWqf>P=jmwZS__yHW$@6`^=3H)}c41wfUU`h{O3N{T4eCp<+#C1GaQ#Cd* z@yorsC0-s}EYl1cWr*kL8M0gLWZx3s7S(KaeByoK4M<$z)`o#T=)=d4H+_pX7#JBB z?FAro#}It}KPR;VSz^Q;{-Rws!6t-ut1*?Do*oV8xfvfnmX0RwgPjEEP}N}} zW1_s8Jy)TWyx79z`PJ26WPD6a8)Pe#+=kb#DT`h35Ii|hS$-4-d3XH3mzkKGr{F0y zHX>2?viQHglJ8NTaKUZEtgEn~m-^rCUO6X^x@Y~bVGn%@l%hph_|O!XDvU&hdr;iM zkoIFR9Li__F&1FR{VvXq_94SOEjYC7s@KrDcwh`HRwD;baZK6f z%m880T3#-$_jv&FEuX%5!|(gLsQJ&zCzL@$nKuOzr!S9pspo&SFAMKhBM3L;iHkAW zpc{S-J)<>+>(0P{!j~wUP~HMMg~(1b8Y(wJDZ;LKg18cwTHwRMf%9FDKM$StFbqNX z&A`lz!Y;dR&*3HOeD&HWtb&{>!+apMK({7ZHA}h#_5pyh!*#e4!m9b%;b!C+a&=W* zTl>w=BhmO}twv8lCZQ1Jy&N;6mJwDqR%w`}{cfxmLVPi9ag&qZZb#V}V$hq_to<6+}9kUE>FSoRG zuYCGyXVT~RjKaWk$bF`2#!-IR0rEjrJv~J^Ik}|s6a-F_qZAkhylC|lkOP`R#|Et~WLAI_t?*ZI83h zg;T{OC(l%0LFuBPt4j?EK?W2B8$i6dkSse)b>voxkw~dhy+4bV=UfCKA-W;d*(g1o z`HTUk!xqE!@Zx318Y-W0$UeM_I^#RhLFHBtaNtN@HN_G4m8fU%oSAW$mJbgN?rTuv zcWQSSSLl2KH6A!y)Fr|qVM;!17(fbmQ-)7$FbWBs#!d{o&_JUAJr08f|Kjv-7F2x^ zRJ{3J)$i@*iQ%RNE{#wu;Gp%r{%V3)IFWplE70OL45B|M(;6Keg3A=Fui$BjA zYL0>WH~X*^281>g-b`pO1GR?03VtuoOkfUIG*a=G zct|B3Owpi&z~6>mR5TT!+H!kjnKUvm3xx8aFmd%?67+vP>%SS&6)nXd_bvXVNYwT- O*JP!XB#Xoi{r?9|m6Ol_ diff --git a/docs/reference/cleanse.data.frame.html b/docs/reference/cleanse.data.frame.html index a0a8fe7..7c48342 100644 --- a/docs/reference/cleanse.data.frame.html +++ b/docs/reference/cleanse.data.frame.html @@ -1,67 +1,12 @@ - - - - - - - -Cleansing the dataset for classification modeling — cleanse.data.frame • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Cleansing the dataset for classification modeling — cleanse.data.frame • alookr - - + + - - -
-
- -
- -
+
@@ -120,161 +58,198 @@

Cleansing the dataset for classification modeling

The cleanse() cleanse the dataset for classification modeling

-
# S3 method for data.frame
-cleanse(
-  .data,
-  uniq = TRUE,
-  uniq_thres = 0.1,
-  char = TRUE,
-  missing = FALSE,
-  verbose = TRUE,
-  ...
-)
+    
+
# S3 method for data.frame
+cleanse(
+  .data,
+  uniq = TRUE,
+  uniq_thres = 0.1,
+  char = TRUE,
+  missing = FALSE,
+  verbose = TRUE,
+  ...
+)
+
+cleanse(.data, ...)
+
-cleanse(.data, ...)
+
+

Arguments

+
.data
+

a data.frame or a tbl_df.

-

Arguments

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.data

a data.frame or a tbl_df.

uniq

logical. Set whether to remove the variables whose unique value is one.

uniq_thres

numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.

char

logical. Set the change the character to factor.

missing

logical. Set whether to removing variables including missing value

verbose

logical. Set whether to echo information to the console at runtime.

...

further arguments passed to or from other methods.

-

Value

+
uniq
+

logical. Set whether to remove the variables whose unique value is one.

-

An object of data.frame or train_df. and return value is an object of the same type as the .data argument.

-

Details

-

This function is useful when fit the classification model. -This function does the following.: -Remove the variable with only one value. And remove variables that have a unique number of values relative to the number of observations for a character or categorical variable. In this case, it is a variable that corresponds to an identifier or an identifier. And converts the character to factor.

+
uniq_thres
+

numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.

+ + +
char
+

logical. Set the change the character to factor.

+ -

Examples

-
# create sample dataset -set.seed(123L) -id <- sapply(1:1000, function(x) - paste(c(sample(letters, 5), x), collapse = "")) +
missing
+

logical. Set whether to removing variables including missing value

-year <- "2018" -set.seed(123L) -count <- sample(1:10, size = 1000, replace = TRUE) +
verbose
+

logical. Set whether to echo information to the console at runtime.

-set.seed(123L) -alpha <- sample(letters, size = 1000, replace = TRUE) -set.seed(123L) -flag <- sample(c("Y", "N"), size = 1000, prob = c(0.1, 0.9), replace = TRUE) +
...
+

further arguments passed to or from other methods.

-dat <- data.frame(id, year, count, alpha, flag, stringsAsFactors = FALSE) -# structure of dataset -str(dat)
#> 'data.frame': 1000 obs. of 5 variables: -#> $ id : chr "osncj1" "rvket2" "nvesi3" "chgji4" ... -#> $ year : chr "2018" "2018" "2018" "2018" ... -#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... -#> $ alpha: chr "o" "s" "n" "c" ... -#> $ flag : chr "N" "N" "N" "N" ...
-# cleansing dataset -newDat <- cleanse(dat)
#> ── Checking unique value ─────────────────────────── unique value is one ──
#> remove variables that unique value is one
#> year -#> -#> ── Checking unique rate ─────────────────────────────── high unique rate ──
#> remove variables with high unique rate
#> id = 1000(1) -#> -#> ── Checking character variables ─────────────────────── categorical data ──
#> converts character variables to factor
#> alpha -#> flag -#>
-# structure of cleansing dataset -str(newDat)
#> 'data.frame': 1000 obs. of 3 variables: -#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... -#> $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ... -#> $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
-# cleansing dataset -newDat <- cleanse(dat, uniq = FALSE)
#> ── Checking character variables ─────────────────────── categorical data ──
#> converts character variables to factor
#> id -#> year -#> alpha -#> flag -#>
-# structure of cleansing dataset -str(newDat)
#> 'data.frame': 1000 obs. of 5 variables: -#> $ id : Factor w/ 1000 levels "ablnc282","abqym54",..: 594 715 558 94 727 270 499 882 930 515 ... -#> $ year : Factor w/ 1 level "2018": 1 1 1 1 1 1 1 1 1 1 ... -#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... -#> $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ... -#> $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
-# cleansing dataset -newDat <- cleanse(dat, uniq_thres = 0.3)
#> ── Checking unique value ─────────────────────────── unique value is one ──
#> remove variables that unique value is one
#> year -#> -#> ── Checking unique rate ─────────────────────────────── high unique rate ──
#> remove variables with high unique rate
#> id = 1000(1) -#> -#> ── Checking character variables ─────────────────────── categorical data ──
#> converts character variables to factor
#> alpha -#> flag -#>
-# structure of cleansing dataset -str(newDat)
#> 'data.frame': 1000 obs. of 3 variables: -#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... -#> $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ... -#> $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
-# cleansing dataset -newDat <- cleanse(dat, char = FALSE)
#> ── Checking unique value ─────────────────────────── unique value is one ──
#> remove variables that unique value is one
#> year -#> -#> ── Checking unique rate ─────────────────────────────── high unique rate ──
#> remove variables with high unique rate
#> id = 1000(1) -#>
-# structure of cleansing dataset -str(newDat)
#> 'data.frame': 1000 obs. of 3 variables: -#> $ count: int 3 3 10 2 6 5 4 6 9 10 ... -#> $ alpha: chr "o" "s" "n" "c" ... -#> $ flag : chr "N" "N" "N" "N" ...
-
+
+
+

Value

+ + +

An object of data.frame or train_df. and return value is an object of the same type as the .data argument.

+
+
+

Details

+

This function is useful when fit the classification model. +This function does the following.: +Remove the variable with only one value. And remove variables that have a unique number of values relative to the number of observations for a character or categorical variable. In this case, it is a variable that corresponds to an identifier or an identifier. And converts the character to factor.

+
+ +
+

Examples

+
# create sample dataset
+set.seed(123L)
+id <- sapply(1:1000, function(x)
+  paste(c(sample(letters, 5), x), collapse = ""))
+
+year <- "2018"
+
+set.seed(123L)
+count <- sample(1:10, size = 1000, replace = TRUE)
+
+set.seed(123L)
+alpha <- sample(letters, size = 1000, replace = TRUE)
+
+set.seed(123L)
+flag <- sample(c("Y", "N"), size = 1000, prob = c(0.1, 0.9), replace = TRUE)
+
+dat <- data.frame(id, year, count, alpha, flag, stringsAsFactors = FALSE)
+# structure of dataset
+str(dat)
+#> 'data.frame':	1000 obs. of  5 variables:
+#>  $ id   : chr  "osncj1" "rvket2" "nvesi3" "chgji4" ...
+#>  $ year : chr  "2018" "2018" "2018" "2018" ...
+#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
+#>  $ alpha: chr  "o" "s" "n" "c" ...
+#>  $ flag : chr  "N" "N" "N" "N" ...
+
+# cleansing dataset
+newDat <- cleanse(dat)
+#> ── Checking unique value ─────────────────────────── unique value is one ──
+#> remove variables that unique value is one
+#>  year
+#> 
+#> ── Checking unique rate ─────────────────────────────── high unique rate ──
+#> remove variables with high unique rate
+#>  id = 1000(1)
+#> 
+#> ── Checking character variables ─────────────────────── categorical data ──
+#> converts character variables to factor
+#>  alpha
+#>  flag
+#> 
+
+# structure of cleansing dataset
+str(newDat)
+#> 'data.frame':	1000 obs. of  3 variables:
+#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
+#>  $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...
+#>  $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
+
+# cleansing dataset
+newDat <- cleanse(dat, uniq = FALSE)
+#> ── Checking character variables ─────────────────────── categorical data ──
+#> converts character variables to factor
+#>  id
+#>  year
+#>  alpha
+#>  flag
+#> 
+
+# structure of cleansing dataset
+str(newDat)
+#> 'data.frame':	1000 obs. of  5 variables:
+#>  $ id   : Factor w/ 1000 levels "ablnc282","abqym54",..: 594 715 558 94 727 270 499 882 930 515 ...
+#>  $ year : Factor w/ 1 level "2018": 1 1 1 1 1 1 1 1 1 1 ...
+#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
+#>  $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...
+#>  $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
+
+# cleansing dataset
+newDat <- cleanse(dat, uniq_thres = 0.3)
+#> ── Checking unique value ─────────────────────────── unique value is one ──
+#> remove variables that unique value is one
+#>  year
+#> 
+#> ── Checking unique rate ─────────────────────────────── high unique rate ──
+#> remove variables with high unique rate
+#>  id = 1000(1)
+#> 
+#> ── Checking character variables ─────────────────────── categorical data ──
+#> converts character variables to factor
+#>  alpha
+#>  flag
+#> 
+
+# structure of cleansing dataset
+str(newDat)
+#> 'data.frame':	1000 obs. of  3 variables:
+#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
+#>  $ alpha: Factor w/ 26 levels "a","b","c","d",..: 15 19 14 3 10 18 22 11 5 20 ...
+#>  $ flag : Factor w/ 2 levels "N","Y": 1 1 1 1 2 1 1 1 1 1 ...
+
+# cleansing dataset
+newDat <- cleanse(dat, char = FALSE)
+#> ── Checking unique value ─────────────────────────── unique value is one ──
+#> remove variables that unique value is one
+#>  year
+#> 
+#> ── Checking unique rate ─────────────────────────────── high unique rate ──
+#> remove variables with high unique rate
+#>  id = 1000(1)
+#> 
+
+# structure of cleansing dataset
+str(newDat)
+#> 'data.frame':	1000 obs. of  3 variables:
+#>  $ count: int  3 3 10 2 6 5 4 6 9 10 ...
+#>  $ alpha: chr  "o" "s" "n" "c" ...
+#>  $ flag : chr  "N" "N" "N" "N" ...
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/cleanse.split_df.html b/docs/reference/cleanse.split_df.html index 306f914..348a3be 100644 --- a/docs/reference/cleanse.split_df.html +++ b/docs/reference/cleanse.split_df.html @@ -1,67 +1,12 @@ - - - - - - - -Cleansing the dataset for classification modeling — cleanse.split_df • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Cleansing the dataset for classification modeling — cleanse.split_df • alookr - + + - - - -
-
- -
- -
+
@@ -120,105 +58,116 @@

Cleansing the dataset for classification modeling

Diagnosis of similarity between datasets splitted by train set and set included in the "split_df" class. and cleansing the "split_df" class

-
# S3 method for split_df
-cleanse(.data, add_character = FALSE, uniq_thres = 0.9, missing = FALSE, ...)
- -

Arguments

- - - - - - - - - - - - - - - - - - - - - - -
.data

an object of class "split_df", usually, a result of a call to split_df().

add_character

logical. Decide whether to include text variables in the -compare of categorical data. The default value is FALSE, which also not includes character variables.

uniq_thres

numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.

missing

logical. Set whether to removing variables including missing value

...

further arguments passed to or from other methods.

- -

Value

- -

An object of class "split_df".

-

Details

+
+
# S3 method for split_df
+cleanse(.data, add_character = FALSE, uniq_thres = 0.9, missing = FALSE, ...)
+
+ +
+

Arguments

+
.data
+

an object of class "split_df", usually, a result of a call to split_df().

+ + +
add_character
+

logical. Decide whether to include text variables in the +compare of categorical data. The default value is FALSE, which also not includes character variables.

+ + +
uniq_thres
+

numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.

+ +
missing
+

logical. Set whether to removing variables including missing value

+ + +
...
+

further arguments passed to or from other methods.

+ +
+
+

Value

+ + +

An object of class "split_df".

+
+
+

Details

Remove the detected variables from the diagnosis using the compare_diag() function.

+
-

Examples

-
library(dplyr)
#> -#> Attaching package: ‘dplyr’
#> The following object is masked from ‘package:randomForest’: -#> -#> combine
#> The following objects are masked from ‘package:stats’: -#> -#> filter, lag
#> The following objects are masked from ‘package:base’: -#> -#> intersect, setdiff, setequal, union
-# Credit Card Default Data -head(ISLR::Default)
#> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
-# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -sb %>% - cleanse
#> There were no diagnostics issues
#> # A tibble: 10,000 x 5 -#> # Groups: split_flag [2] -#> default student balance income split_flag -#> <fct> <fct> <dbl> <dbl> <chr> -#> 1 No No 730. 44362. train -#> 2 No Yes 817. 12106. train -#> 3 No No 1074. 31767. train -#> 4 No No 529. 35704. train -#> 5 No No 786. 38463. train -#> 6 No Yes 920. 7492. train -#> 7 No No 826. 24905. test -#> 8 No Yes 809. 17600. test -#> 9 No No 1161. 37469. train -#> 10 No No 0 29275. train -#> # … with 9,990 more rows
-
+
+

Examples

+
library(dplyr)
+#> 
+#> Attaching package: ‘dplyr’
+#> The following object is masked from ‘package:randomForest’:
+#> 
+#>     combine
+#> The following objects are masked from ‘package:stats’:
+#> 
+#>     filter, lag
+#> The following objects are masked from ‘package:base’:
+#> 
+#>     intersect, setdiff, setequal, union
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+# Generate data for the example
+sb <- ISLR::Default %>%
+  split_by(default)
+
+sb %>%
+  cleanse
+#> There were no diagnostics issues
+#> # A tibble: 10,000 × 5
+#> # Groups:   split_flag [2]
+#>    default student balance income split_flag
+#>    <fct>   <fct>     <dbl>  <dbl> <chr>     
+#>  1 No      No         730. 44362. train     
+#>  2 No      Yes        817. 12106. train     
+#>  3 No      No        1074. 31767. train     
+#>  4 No      No         529. 35704. train     
+#>  5 No      No         786. 38463. train     
+#>  6 No      Yes        920.  7492. train     
+#>  7 No      No         826. 24905. test      
+#>  8 No      Yes        809. 17600. test      
+#>  9 No      No        1161. 37469. train     
+#> 10 No      No           0  29275. train     
+#> # ℹ 9,990 more rows
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/compare_diag.html b/docs/reference/compare_diag.html index 7ef15dd..af6bd20 100644 --- a/docs/reference/compare_diag.html +++ b/docs/reference/compare_diag.html @@ -1,67 +1,12 @@ - - - - - - - -Diagnosis of train set and test set of split_df object — compare_diag • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Diagnosis of train set and test set of split_df object — compare_diag • alookr - - + + - - -
-
- -
- -
+
@@ -120,201 +58,215 @@

Diagnosis of train set and test set of split_df object

Diagnosis of similarity between datasets splitted by train set and set included in the "split_df" class.

-
compare_diag(
-  .data,
-  add_character = FALSE,
-  uniq_thres = 0.01,
-  miss_msg = TRUE,
-  verbose = TRUE
-)
+
+
compare_diag(
+  .data,
+  add_character = FALSE,
+  uniq_thres = 0.01,
+  miss_msg = TRUE,
+  verbose = TRUE
+)
+
+ +
+

Arguments

+
.data
+

an object of class "split_df", usually, a result of a call to split_df().

+ + +
add_character
+

logical. Decide whether to include text variables in the +compare of categorical data. The default value is FALSE, which also not includes character variables.

+ -

Arguments

- - - - - - - - - - - - - - - - - - - - - - -
.data

an object of class "split_df", usually, a result of a call to split_df().

add_character

logical. Decide whether to include text variables in the -compare of categorical data. The default value is FALSE, which also not includes character variables.

uniq_thres

numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.

miss_msg

logical. Set whether to output a message when diagnosing missing value.

verbose

logical. Set whether to echo information to the console at runtime.

+
uniq_thres
+

numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.

-

Value

-

list. -Variables of tbl_df for first component named "single_value":

    -
  • variables : character. variable name

  • +
    miss_msg
    +

    logical. Set whether to output a message when diagnosing missing value.

    + + +
    verbose
    +

    logical. Set whether to echo information to the console at runtime.

    + +
+
+

Value

+ + +

list. +Variables of tbl_df for first component named "single_value":

  • variables : character. variable name

  • train_uniq : character. the type of unique value in train set. it is divided into "single" and "multi".

  • test_uniq : character. the type of unique value in test set. it is divided into "single" and "multi".

  • -
- -

Variables of tbl_df for second component named "uniq_rate":

    -
  • variables : character. categorical variable name

  • +

Variables of tbl_df for second component named "uniq_rate":

  • variables : character. categorical variable name

  • train_uniqcount : numeric. the number of unique value in train set

  • train_uniqrate : numeric. the ratio of unique values(number of unique values / number of observation) in train set

  • test_uniqcount : numeric. the number of unique value in test set

  • test_uniqrate : numeric. the ratio of unique values(number of unique values / number of observation) in test set

  • -
- -

Variables of tbl_df for third component named "missing_level":

    -
  • variables : character. variable name

  • +

Variables of tbl_df for third component named "missing_level":

  • variables : character. variable name

  • n_levels : integer. count of level of categorical variable

  • train_missing_nlevel : integer. the number of non-existent levels in the train set

  • test_missing_nlevel : integer. he number of non-existent levels in the test set

  • -
- -

Details

- +
+
+

Details

In the two split datasets, a variable with a single value, a variable with a level not found in any dataset, and a variable with a high ratio to the number of levels are diagnosed.

+
-

Examples

-
library(dplyr) - -# Credit Card Default Data -head(ISLR::Default)
#> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
-defaults <- ISLR::Default -defaults$id <- seq(NROW(defaults)) - -set.seed(1) -defaults[sample(seq(NROW(defaults)), 3), "student"] <- NA -set.seed(2) -defaults[sample(seq(NROW(defaults)), 10), "balance"] <- NA - -sb <- defaults %>% - split_by(default) - -sb %>% - compare_diag()
#> * Detected diagnose missing value
#> - student -#> - balance -#> - balance
#> -#> * Detected diagnose missing levels
#> - student
#> $missing_value -#> # A tibble: 3 x 4 -#> variables train_misscount train_missrate test_missrate -#> <chr> <int> <dbl> <dbl> -#> 1 student 3 0.0429 NA -#> 2 balance 8 0.114 NA -#> 3 balance 2 NA 0.0667 -#> -#> $single_value -#> # A tibble: 0 x 3 -#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl> -#> -#> $uniq_rate -#> # A tibble: 0 x 5 -#> # … with 5 variables: variables <chr>, train_uniqcount <int>, -#> # train_uniqrate <dbl>, test_uniqcount <int>, test_uniqrate <dbl> -#> -#> $missing_level -#> # A tibble: 1 x 4 -#> variables n_levels train_missing_nlevel test_missing_nlevel -#> <chr> <int> <int> <int> -#> 1 student 3 0 1 -#>
-sb %>% - compare_diag(add_character = TRUE)
#> * Detected diagnose missing value
#> - student -#> - balance -#> - balance
#> -#> * Detected diagnose missing levels
#> - student
#> $missing_value -#> # A tibble: 3 x 4 -#> variables train_misscount train_missrate test_missrate -#> <chr> <int> <dbl> <dbl> -#> 1 student 3 0.0429 NA -#> 2 balance 8 0.114 NA -#> 3 balance 2 NA 0.0667 -#> -#> $single_value -#> # A tibble: 0 x 3 -#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl> -#> -#> $uniq_rate -#> # A tibble: 0 x 5 -#> # … with 5 variables: variables <chr>, train_uniqcount <int>, -#> # train_uniqrate <dbl>, test_uniqcount <int>, test_uniqrate <dbl> -#> -#> $missing_level -#> # A tibble: 1 x 4 -#> variables n_levels train_missing_nlevel test_missing_nlevel -#> <chr> <int> <int> <int> -#> 1 student 3 0 1 -#>
-sb %>% - compare_diag(uniq_thres = 0.0005)
#> * Detected diagnose missing value
#> - student -#> - balance -#> - balance
#> -#> * Detected diagnose many unique value
#> - default -#> - student
#> -#> * Detected diagnose missing levels
#> - student
#> $missing_value -#> # A tibble: 3 x 4 -#> variables train_misscount train_missrate test_missrate -#> <chr> <int> <dbl> <dbl> -#> 1 student 3 0.0429 NA -#> 2 balance 8 0.114 NA -#> 3 balance 2 NA 0.0667 -#> -#> $single_value -#> # A tibble: 0 x 3 -#> # … with 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl> -#> -#> $uniq_rate -#> # A tibble: 2 x 5 -#> variables train_uniqcount train_uniqrate test_uniqcount test_uniqrate -#> <chr> <int> <dbl> <int> <dbl> -#> 1 default NA NA 2 0.000667 -#> 2 student NA NA 2 0.000667 -#> -#> $missing_level -#> # A tibble: 1 x 4 -#> variables n_levels train_missing_nlevel test_missing_nlevel -#> <chr> <int> <int> <int> -#> 1 student 3 0 1 -#>
-
+
+

Examples

+
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+defaults <- ISLR::Default
+defaults$id <- seq(NROW(defaults))
+
+set.seed(1)
+defaults[sample(seq(NROW(defaults)), 3), "student"] <- NA
+set.seed(2)
+defaults[sample(seq(NROW(defaults)), 10), "balance"] <- NA
+
+sb <- defaults %>%
+  split_by(default)
+
+sb %>%
+  compare_diag()
+#> * Detected diagnose missing value
+#>  - student
+#>  - balance
+#>  - balance
+#> 
+#> * Detected diagnose missing levels
+#>  - student
+#> $missing_value
+#> # A tibble: 3 × 4
+#>   variables train_misscount train_missrate test_missrate
+#>   <chr>               <int>          <dbl>         <dbl>
+#> 1 student                 3         0.0429       NA     
+#> 2 balance                 8         0.114        NA     
+#> 3 balance                 2        NA             0.0667
+#> 
+#> $single_value
+#> # A tibble: 0 × 3
+#> # ℹ 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl>
+#> 
+#> $uniq_rate
+#> # A tibble: 0 × 5
+#> # ℹ 5 variables: variables <chr>, train_uniqcount <int>, train_uniqrate <dbl>,
+#> #   test_uniqcount <int>, test_uniqrate <dbl>
+#> 
+#> $missing_level
+#> # A tibble: 1 × 4
+#>   variables n_levels train_missing_nlevel test_missing_nlevel
+#>   <chr>        <int>                <int>               <int>
+#> 1 student          3                    0                   1
+#> 
+
+sb %>%
+  compare_diag(add_character = TRUE)
+#> * Detected diagnose missing value
+#>  - student
+#>  - balance
+#>  - balance
+#> 
+#> * Detected diagnose missing levels
+#>  - student
+#> $missing_value
+#> # A tibble: 3 × 4
+#>   variables train_misscount train_missrate test_missrate
+#>   <chr>               <int>          <dbl>         <dbl>
+#> 1 student                 3         0.0429       NA     
+#> 2 balance                 8         0.114        NA     
+#> 3 balance                 2        NA             0.0667
+#> 
+#> $single_value
+#> # A tibble: 0 × 3
+#> # ℹ 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl>
+#> 
+#> $uniq_rate
+#> # A tibble: 0 × 5
+#> # ℹ 5 variables: variables <chr>, train_uniqcount <int>, train_uniqrate <dbl>,
+#> #   test_uniqcount <int>, test_uniqrate <dbl>
+#> 
+#> $missing_level
+#> # A tibble: 1 × 4
+#>   variables n_levels train_missing_nlevel test_missing_nlevel
+#>   <chr>        <int>                <int>               <int>
+#> 1 student          3                    0                   1
+#> 
+
+sb %>%
+  compare_diag(uniq_thres = 0.0005)
+#> * Detected diagnose missing value
+#>  - student
+#>  - balance
+#>  - balance
+#> 
+#> * Detected diagnose many unique value
+#>  - default
+#>  - student
+#> 
+#> * Detected diagnose missing levels
+#>  - student
+#> $missing_value
+#> # A tibble: 3 × 4
+#>   variables train_misscount train_missrate test_missrate
+#>   <chr>               <int>          <dbl>         <dbl>
+#> 1 student                 3         0.0429       NA     
+#> 2 balance                 8         0.114        NA     
+#> 3 balance                 2        NA             0.0667
+#> 
+#> $single_value
+#> # A tibble: 0 × 3
+#> # ℹ 3 variables: variables <chr>, train_uniq <lgl>, test_uniq <lgl>
+#> 
+#> $uniq_rate
+#> # A tibble: 2 × 5
+#>   variables train_uniqcount train_uniqrate test_uniqcount test_uniqrate
+#>   <chr>               <int>          <dbl>          <int>         <dbl>
+#> 1 default                NA             NA              2      0.000667
+#> 2 student                NA             NA              2      0.000667
+#> 
+#> $missing_level
+#> # A tibble: 1 × 4
+#>   variables n_levels train_missing_nlevel test_missing_nlevel
+#>   <chr>        <int>                <int>               <int>
+#> 1 student          3                    0                   1
+#> 
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/compare_performance.html b/docs/reference/compare_performance.html index 31e55f8..c6c884d 100644 --- a/docs/reference/compare_performance.html +++ b/docs/reference/compare_performance.html @@ -1,5 +1,5 @@ -Compare model performance — compare_performance • alookrCompare model performance — compare_performance • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -59,17 +59,20 @@

Compare model performance

-
compare_performance(model)
+
compare_performance(model)

Arguments

model

A model_df. results of predicted model that created by run_predict().

+

Value

-

list. results of compared model performance. + + +

list. results of compared model performance. list has the following components:

  • recommend_model : character. The name of the model that is recommended as the best among the various models.

  • top_count : numeric. The number of best performing performance metrics by model.

  • mean_rank : numeric. Average of ranking individual performance metrics by model.

  • @@ -91,28 +94,28 @@

    Value

    Examples

    -
    # \donttest{
    -library(dplyr)
    -
    -# Divide the train data set and the test data set.
    -sb <- rpart::kyphosis %>%
    -  split_by(Kyphosis)
    -
    -# Extract the train data set from original data set.
    -train <- sb %>%
    -  extract_set(set = "train")
    -
    -# Extract the test data set from original data set.
    -test <- sb %>%
    -  extract_set(set = "test")
    -
    -# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    -train <- sb %>%
    -  sampling_target(seed = 1234L, method = "ubSMOTE")
    -
    -# Cleaning the set.
    -train <- train %>%
    -  cleanse
    +    
    # \donttest{
    +library(dplyr)
    +
    +# Divide the train data set and the test data set.
    +sb <- rpart::kyphosis %>%
    +  split_by(Kyphosis)
    +
    +# Extract the train data set from original data set.
    +train <- sb %>%
    +  extract_set(set = "train")
    +
    +# Extract the test data set from original data set.
    +test <- sb %>%
    +  extract_set(set = "test")
    +
    +# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    +train <- sb %>%
    +  sampling_target(seed = 1234L, method = "ubSMOTE")
    +
    +# Cleaning the set.
    +train <- train %>%
    +  cleanse
     #> ── Checking unique value ─────────────────────────── unique value is one ──
     #> No variables that unique value is one.
     #> 
    @@ -123,57 +126,20 @@ 

    Examples

    #> No character variables. #> #> - -# Run the model fitting. -result <- run_models(.data = train, target = "Kyphosis", positive = "present") - -# Predict the model. -pred <- run_predict(result, test) - -# Compare the model performance -compare_performance(pred) -#> $recommend_model -#> [1] "ranger" -#> -#> $top_metric_count -#> logistic rpart ctree randomForest ranger xgboost -#> 2 3 1 6 11 2 -#> lasso -#> 2 -#> -#> $mean_rank -#> logistic rpart ctree randomForest ranger xgboost -#> 4.307692 4.846154 6.500000 2.730769 1.846154 3.384615 -#> lasso -#> 4.384615 -#> -#> $top_metric -#> $top_metric$logistic -#> [1] "Precision" "Specificity" -#> -#> $top_metric$rpart -#> [1] "Precision" "Specificity" "LiftAUC" -#> -#> $top_metric$ctree -#> [1] "Recall" -#> -#> $top_metric$randomForest -#> [1] "Recall" "AUC" "Gini" "PRAUC" "GainAUC" "KS_Stat" -#> -#> $top_metric$ranger -#> [1] "ZeroOneLoss" "Accuracy" "Precision" "Recall" "Specificity" -#> [6] "F1_Score" "AUC" "Gini" "PRAUC" "GainAUC" -#> [11] "KS_Stat" -#> -#> $top_metric$xgboost -#> [1] "Recall" "LogLoss" -#> -#> $top_metric$lasso -#> [1] "Precision" "Specificity" -#> -#> -# } - + +# Run the model fitting. +result <- run_models(.data = train, target = "Kyphosis", positive = "present") + +# Predict the model. +pred <- run_predict(result, test) + +# Compare the model performance +compare_performance(pred) +#> Error in purrr::map(., ~future::value(.x)): In index: 1. +#> Caused by error: +#> ! object 'pred' not found +# } +
    @@ -188,8 +154,7 @@

    Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/compare_plot.html b/docs/reference/compare_plot.html index 3871abf..c54c66a 100644 --- a/docs/reference/compare_plot.html +++ b/docs/reference/compare_plot.html @@ -1,6 +1,6 @@ -Comparison plot of train set and test set — compare_plot • alookrComparison plot of train set and test set — compare_plot • alookr @@ -18,7 +18,7 @@ alookr - 0.3.7 + 0.3.9 @@ -61,13 +61,15 @@

Comparison plot of train set and test set

-
compare_plot(.data, ...)
+
compare_plot(.data, ...)

Arguments

.data

an object of class "split_df", usually, a result of a call to split_df().

+ +
...

one or more unquoted expressions separated by commas. Select the variable you want to plotting. @@ -78,10 +80,13 @@

Arguments

These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

+

Value

-

There is no return value. Draw only the plot.

+ + +

There is no return value. Draw only the plot.

Details

@@ -91,10 +96,10 @@

Details

Examples

-
library(dplyr)
-
-# Credit Card Default Data
-head(ISLR::Default)
+    
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
 #>   default student   balance    income
 #> 1      No      No  729.5265 44361.625
 #> 2      No     Yes  817.1804 12106.135
@@ -102,25 +107,18 @@ 

Examples

#> 4 No No 529.2506 35704.494 #> 5 No No 785.6559 38463.496 #> 6 No Yes 919.5885 7491.559 - -# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -sb %>% - compare_plot("income") - - -sb %>% - compare_plot() -#> Warning: `unite_()` was deprecated in tidyr 1.2.0. -#> Please use `unite()` instead. -#> This warning is displayed once every 8 hours. -#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. - - - - + +# Generate data for the example +sb <- ISLR::Default %>% + split_by(default) + +sb %>% + compare_plot("income") +#> Error in plot_compare(.data, x): object 'sb' not found + +sb %>% + compare_plot() +#> Error in plot_compare(.data, x): object 'sb' not found
@@ -135,8 +133,7 @@

Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/compare_target_category.html b/docs/reference/compare_target_category.html index ba32d7d..2df0c6f 100644 --- a/docs/reference/compare_target_category.html +++ b/docs/reference/compare_target_category.html @@ -1,68 +1,13 @@ - - - - - - - -Comparison of categorical variables of train set and test set — compare_target_category • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Comparison of categorical variables of train set and test set — compare_target_category • alookr - + + - - - -
-
- -
- -
+
@@ -122,18 +60,18 @@

Comparison of categorical variables of train set and test set

the train set and test set included in the "split_df" class.

-
compare_target_category(.data, ..., add_character = FALSE, margin = FALSE)
+
+
compare_target_category(.data, ..., add_character = FALSE, margin = FALSE)
+
+ +
+

Arguments

+
.data
+

an object of class "split_df", usually, a result of a call to split_df().

+ -

Arguments

- - - - - - - - - - - - - - - - - - -
.data

an object of class "split_df", usually, a result of a call to split_df().

...

one or more unquoted expressions separated by commas. +

...
+

one or more unquoted expressions separated by commas. Select the categorical variable you want to compare. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. @@ -141,116 +79,126 @@

Arg start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. -They support unquoting and splicing.

add_character

logical. Decide whether to include text variables in the -compare of categorical data. The default value is FALSE, which also not includes character variables.

margin

logical. Choose to calculate the marginal frequency information.

+They support unquoting and splicing.

+ + +
add_character
+

logical. Decide whether to include text variables in the +compare of categorical data. The default value is FALSE, which also not includes character variables.

+ -

Value

+
margin
+

logical. Choose to calculate the marginal frequency information.

-

tbl_df. -Variables of tbl_df for comparison:

    -
  • variable : character. categorical variable name

  • +
+
+

Value

+ + +

tbl_df. +Variables of tbl_df for comparison:

  • variable : character. categorical variable name

  • level : factor. level of categorical variables

  • train : numeric. the relative frequency of the level in the train set

  • test : numeric. the relative frequency of the level in the test set

  • abs_diff : numeric. the absolute value of the difference between two relative frequencies

  • -
- -

Details

- +
+
+

Details

Compare the statistics of the numerical variables of the train set and the test set to determine whether the raw data is well separated into two data sets.

+
-

Examples

-
library(dplyr) - -# Credit Card Default Data -head(ISLR::Default)
#> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
-# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -sb %>% - compare_target_category()
#> # A tibble: 4 x 5 -#> variable level train test abs_diff -#> <chr> <fct> <dbl> <dbl> <dbl> -#> 1 default No 96.7 96.7 0.00476 -#> 2 default Yes 3.33 3.33 0.00476 -#> 3 student No 70.6 70.4 0.181 -#> 4 student Yes 29.4 29.6 0.181
-sb %>% - compare_target_category(add_character = TRUE)
#> # A tibble: 4 x 5 -#> variable level train test abs_diff -#> <chr> <fct> <dbl> <dbl> <dbl> -#> 1 default No 96.7 96.7 0.00476 -#> 2 default Yes 3.33 3.33 0.00476 -#> 3 student No 70.6 70.4 0.181 -#> 4 student Yes 29.4 29.6 0.181
-sb %>% - compare_target_category(margin = TRUE)
#> # A tibble: 6 x 5 -#> variable level train test abs_diff -#> <chr> <fct> <dbl> <dbl> <dbl> -#> 1 default No 96.7 96.7 0.00476 -#> 2 default Yes 3.33 3.33 0.00476 -#> 3 default <Total> 100 100 0.00952 -#> 4 student No 70.6 70.4 0.181 -#> 5 student Yes 29.4 29.6 0.181 -#> 6 student <Total> 100 100 0.362
-sb %>% - compare_target_category(student)
#> # A tibble: 2 x 5 -#> variable level train test abs_diff -#> <chr> <fct> <dbl> <dbl> <dbl> -#> 1 student No 70.6 70.4 0.181 -#> 2 student Yes 29.4 29.6 0.181
-sb %>% - compare_target_category(student, margin = TRUE)
#> # A tibble: 3 x 5 -#> variable level train test abs_diff -#> <chr> <fct> <dbl> <dbl> <dbl> -#> 1 student No 70.6 70.4 0.181 -#> 2 student Yes 29.4 29.6 0.181 -#> 3 student <Total> 100 100 0.362
-
+
+

Examples

+
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+# Generate data for the example
+sb <- ISLR::Default %>%
+  split_by(default)
+
+sb %>%
+  compare_target_category()
+#> # A tibble: 4 × 5
+#>   variable level train  test abs_diff
+#>   <chr>    <fct> <dbl> <dbl>    <dbl>
+#> 1 default  No    96.7  96.7   0.00476
+#> 2 default  Yes    3.33  3.33  0.00476
+#> 3 student  No    70.3  71.1   0.724  
+#> 4 student  Yes   29.7  28.9   0.724  
+
+sb %>%
+  compare_target_category(add_character = TRUE)
+#> # A tibble: 4 × 5
+#>   variable level train  test abs_diff
+#>   <chr>    <fct> <dbl> <dbl>    <dbl>
+#> 1 default  No    96.7  96.7   0.00476
+#> 2 default  Yes    3.33  3.33  0.00476
+#> 3 student  No    70.3  71.1   0.724  
+#> 4 student  Yes   29.7  28.9   0.724  
+
+sb %>%
+  compare_target_category(margin = TRUE)
+#> # A tibble: 6 × 5
+#>   variable level    train   test abs_diff
+#>   <chr>    <fct>    <dbl>  <dbl>    <dbl>
+#> 1 default  No       96.7   96.7   0.00476
+#> 2 default  Yes       3.33   3.33  0.00476
+#> 3 default  <Total> 100    100     0.00952
+#> 4 student  No       70.3   71.1   0.724  
+#> 5 student  Yes      29.7   28.9   0.724  
+#> 6 student  <Total> 100    100     1.45   
+
+sb %>%
+  compare_target_category(student)
+#> # A tibble: 2 × 5
+#>   variable level train  test abs_diff
+#>   <chr>    <fct> <dbl> <dbl>    <dbl>
+#> 1 student  No     70.3  71.1    0.724
+#> 2 student  Yes    29.7  28.9    0.724
+
+sb %>%
+  compare_target_category(student, margin = TRUE)
+#> # A tibble: 3 × 5
+#>   variable level   train  test abs_diff
+#>   <chr>    <fct>   <dbl> <dbl>    <dbl>
+#> 1 student  No       70.3  71.1    0.724
+#> 2 student  Yes      29.7  28.9    0.724
+#> 3 student  <Total> 100   100      1.45 
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/compare_target_numeric.html b/docs/reference/compare_target_numeric.html index 88ee7f7..6b4c07b 100644 --- a/docs/reference/compare_target_numeric.html +++ b/docs/reference/compare_target_numeric.html @@ -1,68 +1,13 @@ - - - - - - - -Comparison of numerical variables of train set and test set — compare_target_numeric • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Comparison of numerical variables of train set and test set — compare_target_numeric • alookr - - - - + + -
-
- -
- -
+
@@ -122,18 +60,18 @@

Comparison of numerical variables of train set and test set

the train set and test set included in the "split_df" class.

-
compare_target_numeric(.data, ...)
- -

Arguments

- - - - - - - - - - -
.data

an object of class "split_df", usually, a result of a call to split_df().

...

one or more unquoted expressions separated by commas. +

+
compare_target_numeric(.data, ...)
+
+ +
+

Arguments

+
.data
+

an object of class "split_df", usually, a result of a call to split_df().

+ + +
...
+

one or more unquoted expressions separated by commas. Select the numeric variable you want to compare. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. @@ -141,15 +79,15 @@

Arg start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. -They support unquoting and splicing.

+They support unquoting and splicing.

-

Value

+
+
+

Value

+ -

tbl_df. -Variables for comparison:

    -
  • variable : character. numeric variable name

  • +

    tbl_df. +Variables for comparison:

    • variable : character. numeric variable name

    • train_mean : numeric. arithmetic mean of train set

    • test_mean : numeric. arithmetic mean of test set

    • train_sd : numeric. standard deviation of train set

    • @@ -158,65 +96,69 @@

      Value

      the standard deviation

    • test_z : numeric. the arithmetic mean of the test set divided by the standard deviation

    • -
    - -

    Details

    - +
+
+

Details

Compare the statistics of the numerical variables of the train set and the test set to determine whether the raw data is well separated into two data sets.

+
-

Examples

-
library(dplyr) - -# Credit Card Default Data -head(ISLR::Default)
#> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
-# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -sb %>% - compare_target_numeric()
#> # A tibble: 2 x 7 -#> variable train_mean test_mean train_sd test_sd train_z test_z -#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 balance 834. 839. 485. 481. 1.72 1.74 -#> 2 income 33361. 33881. 13331. 13344. 2.50 2.54
-sb %>% - compare_target_numeric(balance)
#> # A tibble: 1 x 7 -#> variable train_mean test_mean train_sd test_sd train_z test_z -#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 balance 834. 839. 485. 481. 1.72 1.74
-
+
+

Examples

+
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+# Generate data for the example
+sb <- ISLR::Default %>%
+  split_by(default)
+
+sb %>%
+  compare_target_numeric()
+#> # A tibble: 2 × 7
+#>   variable train_mean test_mean train_sd test_sd train_z test_z
+#>   <chr>         <dbl>     <dbl>    <dbl>   <dbl>   <dbl>  <dbl>
+#> 1 balance        837.      832.     486.    478.    1.72   1.74
+#> 2 income       33466.    33637.   13353.  13301.    2.51   2.53
+
+sb %>%
+  compare_target_numeric(balance)
+#> # A tibble: 1 × 7
+#>   variable train_mean test_mean train_sd test_sd train_z test_z
+#>   <chr>         <dbl>     <dbl>    <dbl>   <dbl>   <dbl>  <dbl>
+#> 1 balance        837.      832.     486.    478.    1.72   1.74
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/extract_set.html b/docs/reference/extract_set.html index 0107dad..e5e2aef 100644 --- a/docs/reference/extract_set.html +++ b/docs/reference/extract_set.html @@ -1,67 +1,12 @@ - - - - - - - -Extract train/test dataset — extract_set • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Extract train/test dataset — extract_set • alookr - + + - - - -
-
- -
- -
+
@@ -120,74 +58,79 @@

Extract train/test dataset

Extract train set or test set from split_df class object

-
extract_set(x, set = c("train", "test"))
+
+
extract_set(x, set = c("train", "test"))
+
+ +
+

Arguments

+
x
+

an object of class "split_df", usually, a result of a call to split_df().

-

Arguments

- - - - - - - - - - -
x

an object of class "split_df", usually, a result of a call to split_df().

set

character. Specifies whether the extracted data is a train set or a test set. -You can use "train" or "test".

-

Value

+
set
+

character. Specifies whether the extracted data is a train set or a test set. +You can use "train" or "test".

-

an object of class "tbl_df".

-

Details

+
+
+

Value

+ +

an object of class "tbl_df".

+
+
+

Details

Extract the train or test sets based on the parameters you defined when creating split_df with split_by().

+
-

Examples

-
library(dplyr) - -# Credit Card Default Data -head(ISLR::Default)
#> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
-# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -train <- sb %>% - extract_set(set = "train") - -test <- sb %>% - extract_set(set = "test")
+
+

Examples

+
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+# Generate data for the example
+sb <- ISLR::Default %>%
+  split_by(default)
+
+train <- sb %>%
+  extract_set(set = "train")
+
+test <- sb %>%
+  extract_set(set = "test")
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/figures/logo.png b/docs/reference/figures/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..0284e22d20dc7625b408fc553fe5a73c3b4872b0 GIT binary patch literal 36129 zcmYJa1ymeO*ENc}OM){v!7XTTC%6Xp0Kwhe-QC?G!QEX01lQp1uD8kae*ayoXI3wm z>Z()6_SvU8R9;pb837Lg3=9leQbI%#3=9GW_k^eb&QD!6ia_V)O>aK z{_^|bMMtSTtf^)#zt)UTJ+3m(vfNLbP0pbAo6Ei>#bSYfNUNg%$g*i4938?-8xs(m z^ARRjO@WYByHpy2T@KN?UUOZz$6a@EcJ(#8vQdl>8)QptP`g`#7!nPBUaT_e1n%}2 zOU!?$L3C@d-^eV`$LQAd*Koeqp3f`N?E5y|=1d5*iqemeWVGn9{(CW`C+44Xx;ZjG zj>`6T@(j`)S95;Zoaw)2TXvfUURm}QPo`$`1)S+?J<)!q*!!!{_q8l8TkIKb)7;Xt zfnZ}fDLodQA0}pHEv>o;{Y*rwVi~rqBfFroK8(a`FM$1uZj(M_l4EZ~se7TkEWSUZ z+o`Ydv&Q8m4^&rZi)Pxzpxu+DQr6|(&f({@QFm97=f^fziCa&*Y_5|7kNvBFBzoBA z!sG;h>^}bx?_4p#+r7=#Un^2*khnkab|k$S;_^{68Mm}8i}okKB7NleL;Ur_(W9?o z&YMVWxSdb6I!w7jM5Npjee>bbgF^qrM~`feK=yK9?+)ZzcxdVrrr>r2nQxHjM$`f@ z>mL?OOZ`z`Sg-uuZU6(rE-O-cqIy9u~|Ijp1M`IMs=l7uo?>VaC z!;JAod7zddCchUQ2LwMQE(l}Me^Q4<@;26%1)S71?2F88JV6bn(b?mIl!d6y7mm4? zwg^_mqIA(!uDaG7y*E}GX)UGs3ObaAAhOXhGh5Uq9&{g$ zo>^{bpMMl=cyFs+G};YnjJ4KC_a0k(vv*d(vxM3Da6XmVAKFiNWqYx$hAQTjG@QCu zeXadP-I@VKtRflu@yCNIu56@8#kK!+a2;Jcl_&MfK>N7oi08QHglD%lL@du}=2pjF z1{-2~-GSR5S9luh?jKxn8chz8%qyfw$SkmlKG^lJ|5eauxuimZGZa!-@J*^bdis#f zn8izoVo1DO{G`>vpb8%P^b6uz=2b;S`M@UO6QQcL3}=TRW(2vgQA7f}@?DeKRW50w z+>W9dni7u^X6dg#f~di@MNT=E5Kqs9v!zxwiigvNYn~A5Gu&23$m7_~U#H^@@T%Eq zlF|cEl+e0&GV ztZ*hrVAr5IuL728mb(dKB|H!}{@fkkc0RJWc)k2NSn0E`*rWHU=itfgTt9P|;}du* z2Q!KE2G7a%P=VA!JOg3{r|~z*?=muAG{8L^7gz<4|2c<9?b#*YUXIQd3pZi3ft`Mtdh>Yp=wO3cDm}8 zBRg8%%z1Y_{VZf=W-R?KL|y<4>VKCWJvbyeaR2-@$3kQ$3kxaZ2VR}OzTyJ;<8LJV zI}V1l3*9%x?jgahbtpZYd-qpnw`>e*LOv@pGM+sR|A;Mi5j{H+meaFuGfuN*JN8Ky z_XKBxU{EaSU`YOBS-KG@P;*pFb#?;ORGj@xV_zRe`K@1q@!MF(=R)+g=DsP}qfYrn zA!lvU!}$mVVfg6BF`*sCENr|Zv5+VI2H2OV+oPBeXm5kcKN*Y^xcvNO`tAaWS zteM6CeU23I2nZ-Q3VAJN+j+V?{&@Z8ws|Qj)UkOPR+hqCr@3OOSp|3~fv$L9{VsM( zIc#v(ayfdx1O7Hc43<4WebUv%pidjW!7|gqy%GFffaFfzfq4*?F;iFaC@e!t0s|!= zfC*mTiIT?ckAnv0+W{XSM!*^7w>W=(cYEPEUw8NCk_;{1C(>Ue3>T&Lt(%2KGabWh z%@CiRdx4MX?8x-2<;QHzysH_+yNZy3MK$Sv$bp25z)?a&KuI%@-%y<6#9%BIwE+9w|KQ)Mt+PMFD7=r|lP=@9yFryU`fkp8IWQo@;%FzKBy=ySO~sGYw)nzc-mgd2$I z!}EN+H1pRp@PZ0OnLu*BxELrjx}@=|>M4hf`*jf&GUeu}G_E!7i|t?r&jpG}1-8g& zx6MGgiu|Xg>_Lgbl*5pS=#ui-c(L9h6N{Z)eWNVz(GJiS|Aa& zh-%M!VaIhYfJT;%j>pY_Px|i4jKxpUefWxh2@tdCUK?ts~bEY;TzxH+Rj@Fe@c|mzR z{~j8jp=3$)BR})o@&3J7Rl7{l#$szFtbMaZr@UShAd5_b2=zq*EXWs@3Yn%gUcgLr zr-LA8pNJjKGY@-yt2rcoXC@l_xg3IWh(KrsbDtZu_}5Mm{5hd6u$HngbbB@Ma8dv;$SZprqk z2x}T%wMeOZqC#Wc;HxW`+gYcg2~utC3@vZ27;q{7fPqh<`RH$?mipycfza@ny%@=8 z!@VP?aV#GtxVJGTJiZlVp{Q%FGoTwi5KFl2QOcf;XG)RVvgy%}b@r~5~CgLx==_O8FPxK`Pxmufu zZy(MT*1G%)3OS6xK0fC8n}Fmy#J#BHSr(ZhM>%CpeHlPC+GsIM18LJFN7JM9cG4*2 zbjyg}pMF@1X+ zO3X}&F?@!^-X~AME0;Ysm5#cmY>~S=hqaxR*!r2qB7o}i?3ml<_(gpSPz*I7O=z5O zYXpTni$TwXZw_;2q+feIvf?z!M|(I!c;n+~rh%n_GWD1O=MU?U@t$ZQnJ^C6x8^0M z2;xO`bZIw%45=}Y5UB!SL4uTHqys?s{rh`_WRYtiQ3PBzSbE71wt$wf<^weYhC!g3 z)y4_*>Om%Q%c_Nry{F+;hS*2sk7YgrOMrDq;JY~-6G3F4G`DR!yefDji=$J|6(;Y9 zcP*ku5?BW@&-Dv75|~W$%pmB5r_6oh**dFWoaQ;oVjH@8Pq|rX4AkZ60_y#J@D@lb z!%>0h=JE6gF<)Vo^nBRyh0}kek`8gNEi7RnS66&)uYCx`WiDo8sPH0F`le3+(n|)y zM{A!vKN%br3ct-!MnwgWOK+#*vX9Z5;4_?5U$nroYykTWi$aY3LFPCWDPe4QdeX!r zA7-<@H0bw7U;&;}-L(;9@+?2ji^Gfl7L7oJ-e|z}<&#B^aTubilnMSKuSs>xuNTO?TQ@{~ zK&4lu-hYtE6%;#nJ+W)Rhs0c;>$DsHMaXlIbUGRl&qpBoJ${8ibFhXA3=fUi`U=EE z6HhxW4I~O4#MCp}hUS>M?FE^-7*A}MRHp2Dw~P&OjXTz^%~N9f33LSlgPUv=bK-~~ zDDqKO$o0Ojc4@+hAI4HEauV9vQl~A0dI8Hc+(wa9bu)plUMV}nBE=`nXq)l~*<#UY zXt|vgJ;nJ{_y4D2D-e^5g}%Di=>sKn(FN=mwPYzT$>56cWX&%cRW zzo%)|behU?t;RDY&W@8(gNRxHbNDTaVYeax*tOh!B|4MUU)|f@`cK<44ns@#%_8z_ z?N^Gjfc|A5_H^%kk)dSIzFa{kBVqpV5ts%9A&*3ZSP{sv*zV)yRQ>C~N7Yo$?iquk zjxW^+SM!WYAbDmnp^pEyVb~af?dBtp_dY}l z!H1EQwp=EX`_m;I55_6dvS(T^X=1r(&=66WfTeI6IOK#291LCX zvqGq2MC<8lvxEwNgq3=iQVtc-j;@_Gwc5dP>Q9m=Yv(l+QOPM85O_S;7Ig@J{QX(h zy|}oG?J>Q9RCy2sn_z>p)oo<+lN1Xr1l@)l80mr4(-x`G!@V8(G9nSc*MXd>O0MD!&@Q< z#pu4vF)H0^lTo;XIatHoHHaEXSXcTH=`smCn~j?8@BYxei}@CUpe+;~kcTw@gb~vl zBE~N?;}M2DyFxCjByqN1McgJJ!w^2a z*DShn-Xk#90W_3E{lpELuAbfj4LV%ezI|kH+sMBuG5iET>JYKB^vB*mrS08J9;2ea z%36KnJSsH05q3x0j|SY}74EOAB2?HYt@9*{Uj|C5lbn?N-GC~$5sIM}mLIX8GlRP-^mRZj@tKH` z6bmOY4M+qZM}-D`@Wcoya@G;sE!*WgT68r{!(vCeI-RiDo25t8)io=oKlJlK0Jrr1 zslqKx$d6Vsf}EJX_w$nt^jpS!!+`a+B#vQ$@NF*@HRhmc10V<2S_wzHJ!C3nv9nI^ zLFV4RG-7I~k`MFZdrpR-Q$9%-FzfFVUH~=uPr_QPILqM6aWN@?*b*S11KII%Y2cdT zeOM1N53X!Dzm%H&tynxI_*{312RNBdI`hXve46YgNN75LJ#WiH62cnx1hj1i2vwJz zqC^6n=B!?vgK)#XI2{D>mLm4~_Q(2GF(k`2F#zJte;*Tl{1A!5Lrt6F4P8!t5aZvX z%nHPWk5WUn%-}%w#2mC>w>JM~xgv1Gdd+RZV zU?*&Ov+T7U#!LlBAZW1SF<)l74X$YfU2APP*rRKT|K*JT+d)h?7o{L5M}`i{*GCOL z#R5xYuF!do10jCQTTyMkA30p7e2NM?jwKN=DCtafnJt7s6uR8J4N;&HOza%^FA?9@ zy@!f4%8+3uh^PW*_ELJGSbV%*TB}0QtIq?L6HNCwD1-UJ;J#V#Hr(6rR6m)!4q_s^ zdDSF07^X?6z>sC0rMgnDC%zND?PP1{vR;{W+VwX*0r4%zny1LKy{`~@xMV)p?mj_L1eLyna#Cu3W!isK4XyYz$(!oB zi|e?rJsy-)KY%zw#XJuMG2mPRe3XF9FLa>Gv$VvZTkkP}5uM|chVq^VnDpdAh?$FW z*qFB41iG+vAuLUxBcH)l{|Ev0+E)xF#brS-ztIr=e3p!4w!IA|5&({xiJZ0;RfQ;SYN~pl7(p zu4r-41|0a{G*7yN+DFkUtE%$vqmcdo%e|#EjTL?qySm_U0D3PIB6GIn-pGE!wZ5o$ia)Jd9Dru-w@+%1(i-BtTX=**UX3mHvPE3Gsn9387GBstYd{Ovi7=2 zm?0{NdAC5E8Ys=zKzfDFReM{JmX%9b>|7toQysnvYhGoW_Vds$K?%pu0$IbRpKV`J zXqsg2#n%&#oX}1pSvk&Oh(tCxqny6amwgrl2QU|rK8b6o$WVtCYUVkr=AXpnwgELo z+c`FTlxOjMcZ(EJB4J5U731Gb)_a!zmUYPR05Hr2N=zF_@FN#P^Zdka1rs+DqGgZT za&x=hJhgS(Ud~)$yLWgr$aqp2K1yYgWQ@acLDOAb|A`Fn$q`P&Sq|p!`b`uy7f@s!|(FYrrtH$w^?LR^+;*&gfoY z%~cPS<_c!pifugo7hUjY+n0;vn8*vmfJH0E&dmc!?oZ!3G$$cTI6;{V-5|-&XShp* zx=>){VBpqhAwLZb3cPR?k~`SoizGkC!euVk*$i~H34&`30DBh_d*1b#?Z@U?MNt6r zntFPRL~sQ%1rSD(;lI7Y(jyb-xI&|Q=O59~Ia`ri$XaPAzvKc%%@!RHj3+KvXvx!1Qtj~p$Cj;#friNXXWJ2DbCi}_8?%rNY-6z8Jfz8u44M63 zF{!QIq0e|NuvPy46FYxIKH5f%cxacA64o%py_Zd2yN0?pgciP&bMO2D|v7zP3 zDgcAmCQ*rOG3qeCVJ9RahLrrBK<#8`v@Uh;Jh0GtDFAa#ZGv&0@v&BexYp- zlg*+4LA2G~I!nsJ|4<1W)U!m_cESW@u~QUV^)?}Rq-}(>y{fp{e8OCRwdbjL zl@%c?Fxl9c4+$*N`0!|R5WN{tx`Au|zzrXGW)`omd=i6*WBqR@& z)5XWBO#S?uw4$_TWWZ46d*1CNLRPKU(td=7hSJt2k5)aeK{*hHmI>>e5C?rWv@y5tyH({(m;#{q#k`ik!> z3S|5>5ZGJRFg#quv%pQ1of1H#p?(lEIz+we{fr0jbYM`5f}pfDSLoF78pNEbH=i-@ zz*2J!rE&B1LIZ;REh-?fc^Uk@r=2jDPZISVmFWe5Yf!^VKTI_Wl#uWcutS4;XoLWX zdoA4sly?}s3ifV$PAp`NY!zm2nDp8CjMfg5!d@TUmQ38$_$oabn56Tw|?*1P%81MIB+Vl%*NqsXa<4&e{=8}AgzzY)O_lfh=VzJu< z2Oo|0Y51x-*K#Wn+=c?J^Ufhh`|Nmch`5=|Jo^|@%T~RUH+PZT_H2Io8^5)Zl$9;< z$d#r^h>I!_--`?Yn}I=PP`wXe=XUAua&d@U^s?1lJr10R?(yaYYB1hC|63Y_osYUh zQGt8RTAl|nSBRfL%P<~?VE^{5O{DACBKncoROZa0ie!b>JggIX@a8XTy12mJIdX+f|L*+FKg7aQ5`p8-J9}RIN>oAi@2z-kpAsGK7;u>VElYWP2*~_iw{tnOIv%8 zS!+p|ZaSZhp62S1-p60(lpHg79V)wQ%lUK=6a7^P=*|@gM+y7k12Gp@tZO?*0)s%( z8-S!=O{lcjT8v=Cb%Z1V7SUg%B=Ibkm_@3Xr7hewF$aW>&RfrX2_y0X$B9Ua00(UJ zy{}J!Gs;(&om+OxUgLFt%2#Jm!|^cpkX`2=n8%ocOh^{84#PubyaP-|FNcp#(s^@SH%nN9CN@M+h!%0GJrjAhJI!UvOYv^ymmQ zxX5{^Y(8hF^Qu^LZ^zXG<|Qh2YC`UU1o2H}O z6}bkAC8F2IxgPP9b~5YVkOcRyGRhZt&#gdFeAVFF{Wn4ZFdN`#;_oPQ_G+_|<3^hHWCLZ-jYX+oE_PCfYz_Zd4+8yWxFrU7L z_L{$Mx`dz4;_yKx{&kV_uEbaKAvUY3Gq`n$uO^jJLhTWzht9nq9K6pLch9~}N!|;n z)9m^G%N1Y%JuC-Bn&C{M*clOW#biob)I7w74A2f+%t;5!*ApF|k)*_B7uMmR?(az~ zt51aM*$HbZus{*N*vkN_4%l?wcXQRi<7&G^a3cEyaK@C~Puf8EwqLEdb3f+nwSJsn zqQ=!|wq@e5!OUjk)LLJ$li%J%gO&nvtT?|AIAHUD1cd)k#>Z_kg5-}Y2|87G>Vb|si6fV#~jJ;znM}@~8H z_L`QGp-rVc5*a+s>!y_q-wiqeINR-4@c?ZVkGdf1kK1 z8Q3Y-L4LTSXCjVHpwZwxmT*0h#eu|0)Ey<(1+a5ZW>3^o0B;NwsC4=fywMW)AO4F; z(jd^^#PMCXuz!ix(>CJU^jGb_QTCc2I$jf#xm<5Gt8Ko`ZX8=|It*RIzMjr~_|ioU zkOz$3Ik`OVbCUuv;8aMc=67gh03WC5;QXn#t^%s@s#~+j zaFe%vC)p}?B%xf$uVXzGqYpgK7HjN7bI>!?)VnGW@5~XV-Fr*{&A@Rct)-5oAGWHl zNQCd2M=Vz)cW5H}gIVKe7~l;!deG?oY#<@~R}lYmDlZV4+1B+0K$X=BuiMDfM$MBl zn3iNdH1Xv=k~aemMPI!%$t2C?)s)|$595zTy@TxsPQmF_f=u(Ce|&uS;hq!zu}%-@ zm+(Q(y_7OmRhbXI=@KmiOw@$zwho{{DF=rDK7lrHUx%Sb8zGE$E#0U1;G!rMg!a-l zvi->K5`(3(W+SrFopHK&@2;C-W(4G1*$pAj(vD7sr z#=U*hwSoNpC?5eusIe#~b9X^=H

%YdV0v^--Nor>}8k27wm~S8)dsB3hICi&1|5 zx{7bl2YGa_-_f89zgoEU`QLajxNlIT1UR2aFHq}>oQuw+Sy}3TH9S5z=*x!d%WLuJ zH`4V2Cd)t1e(n>%{GHz~Pw^hz)E_|X|CH^C4umE0HWp%Aa;5Aya76b^UH;kx2bBk^Ywl1VFP;1kz_7x@rYi2tag5 z68{m_z_`~jTRDOp$?|5J;sF1a!Fb$S^$6r&Rg=K9|0bTmWLloLaWUpwTUaZqWPN2` z?J6c=ur4w0WW+wmBm}&T@UnWoNOB6P& zHjg{bu5&WeoB(z`1PSvUx(2`}ws`L7rpwpK8zQPWhO%w}Ku`bQPU(=m=ete$h~4WT z)h&&(?5T?QK(Ssu3sp1MwN$aLrntbMx=*11ohkp`YkybmBb>+#PwgA{py2OsNn+A1 zO~0H5dg+u#f5FiQ3BGqKj+I?_XzS}6y5D^_;eXO?pg_!B49ro6u^q~uS$GYRWvs}v z+FR9-$&4^jGZ1&WGQ~LJBXV)7i_X>Wy}$xV&K4J!ApJi`2KW(6WS1OJQ@jZn>i2HJ zlMyuMcuiF-iS$!`$4OAZ4u(ldw(aW~cAFvjs9ubW#OLVqe-ft3zQf>8sTutWn#`s2 z25B7ZiZe3GcU33$@lME)lEEG<&=E%q%{Czof)d#zemIw&2M4%0d*P z56Usg!h$*qhx>eD)+enb$dt?7t{9j|gW=1gE z5fVst0S-f+EIq>EUB|%_`Ia1nQ;d=BMBe^YEqDE1N4XGi*CKlP=#U2|;zbHpvg^g! zq#j6?m)Ti4#os56B#};i1%v>u)&E13@t-;&fY)=Q68by*PSBK7&)pSgQ~a<0&+!Z0 zGa*c1mK){?4N3~8hS;|OGqOxOKMNKfX=qYqx<%kuRveS^C82MHUXE_QKn|2kJ&pH? zl;0UhzbgtoW|ro`Dq-tkGsCpuQ1Wby7R()bY{PqmhVsi8t?tKajazQw$o=-~(^U=w zX~D%3cs1PaV@3x&=r|NEPJ{UUIq(R-H4_-Q|A3c=q`>7X6f8>q#(8AD<*%zd7a#A? z?2Po}7nKr^%?FX?-D{XealjdvFB*-zyLD@{J-B#qcJJmE=3b5o5Rgi9He&2p?mz#7 zvj6P#3@Rc+3ju{t)VG@~w2o^Bzn{Q*zerxR-)}lBH2C_@lba?y1@@LRJdWT6*+Omc z2>j|61qXoXLJ08Q!|3}3&B+)O%kLvhTYbaN#8s&n7uZP8zC|CjH%e2cbFyFXsq*W0 zj}Mq;xG;gjw87ikP;W+YuB7J z95RJEjNpH$33wR5=WLX8bqn?mZxgTm4KmgMxSB&>I*g3*i_o$j=q=O{gM6P!C$lg~ zU=eQLi2#cI9pnn+ph5&~qZ_p~8+QWjQ z^xph|ZiyWV%xvCw9GiWEUwi;hj7@v^KZOcB!b|Yw=`G6ht>NUIZ=Nl3{PNxtsn33; z!x0mFq{6}br*$C6kwR4{LwWeg7naN_#s+ZzCmHaaMFnslS4tt^|NEg2A5ceM{|X@g zpL)-~00c``wh+>P3j>3?20EZQ(G=wWTY%3Va5(7v8Os3de~-)ongx)abR@t*v42Cp z$O+JQ#qI@%g7?7%gdv&&er~q?8x5IQSqSngY|IKR-BA7t!Nk?L0)1-_`r-a@-tHWG znYE4#Vlw;h=y26(lXZrofuvbxg{CFYPumC3l3V;=Hn(jM9{bM}sc-~pe#UeN0tIE4 z#wx4g$0C(F8+9^IwbqCa9^n4;}C7h40q zsn1MF(pQ?Bs(T{N(&bY98OI3SJ;zQUYQkh z%_Z}_@rC=E$(Pop9kxAx#)F+kzFg|esSZ@7`mp0rE);dTfx zC-hQPW@iPcd@sH_?su$iuaVKF7nel|D3U!xMdcQwVt*J1PbGFN>QGUz70~e&T$>fP zn8yYTm(x(#$Cgb+4a1EEUT<`*l_2p?okoU(PsXoU;>3{P6+$9sj*mg1$4M&YrUxV6 zAFHgmRv#8DG*;(w$yL3Kj$2kum+Y>Y@c0S>!eF`?p~#%Fo&C&Qt*t2M?f#wN<>kS9=Etj_jZ!S*jPUJxtSrAB z|B`EZWSpW*2izTQZS&1p7^}Brb^9IH>dQU;_1fS%1%+C@ZA%2>L&X<|6Un(BSz%SP zXLLU;u|ifPpBEEmdpg2!^3S|4J*!oW>W}V)?{f0XoeE`WgRV8?i0IU(pn7xUgibx+ zdb={O;(n^edpmQ}{mByXNBVocz42<4(# zZZ~OJ>3wPJ*snb~^KqT=7g-OhBO}+z#}P4K3$9G}E2XGN%kapcTT`46aF@fsPrsq5 zsO?N1|m6M-W2)OV1q}*<*_bwSj zx=T;_PF`LfeKPkmy>%o8iEDz%#02laQE2E3(kFN`zOQhkvTwCNIbdI4H|^CJ9+Yaz zIrmX7*k~C#ug2-TEjP2BB!ot>uKlzwUO(&T9dJOXMkq}(YkUb$s?`lrGLFBze+%wM zJs8%M%Qv5RO{`Hsn_-N#tox>^H6sjg>26Itb4La`Enn4QUv^UO)ld#iu>ho*77p{frV;&5jf-LS*V2BI9D?C6-TIqup-(_ol1|q9qGldn{`f%xn+g z6R)2$<4vh~Y`zN(j{*c?5ur?32l8b5tFGJM$Y?^sN9tRdL!CY~Nu((eHPWkvQrvz` zfW>n$?|7WOrM*3tHTlFaR!n8};J@RNB+Hv|+WHeT|5)#F+|BRYQm(Tz+Hu{UOf2sG z#ml4G(Se_HV^4Di(K%D5rarccbi&HO$Eri&QB~R@@})%3<f zIrEecZd2?2Sv%fzi%1n+ndiW0PYlcY{h&zY!=c*pL-xypHDNJri1;fRM}`IAuzgFl z!%*@CujleX-QXmo$_+H#d=(VTX*4iD~V)-fOGdxYXTb$}91-f!ztGSrX&fFDPFhb?s#gjjH_783a z2;co7EvF)>alGi79lTPg)02y~T#YBI(#DHw4(sg4Y|Iez9}Tm(ISU%8LH_)bmoG^` zr!ult-6mIiA7Vojh68oU<-Jk1WyV&GL$1`PP!k!Qljjl+#_rwrSyyU_@9NNlJ3gAi z@>`$Y{qeHsH5Y8`L(=5XJiYnPjFhzdwqF^sDB{v1oA!Hz~kD zO=OKYjiO^ZKA7gwX?~4B=E|eCB|aWljA4EAZheG$oaJ(^&E0wBL}m8cT&#Y4OMt>@ zJ)YPzlp*ZgH8Pn}Udvi?-y4rV{TfA^=klHp&&Jg|@!oDy8xQV0DkNU1JGstiAMeE1 zr@y?`#DG!K7>gQ~&#HFlWuwjCF?dw$EnQar&0QRmJxSz;t<>;B78Ghrru|eP*sgey#?dtf66~?eDa{rW`zgaxn;QtxEQe|CV#%4 zz3bR+A$fVqx89GDbe<*}ToX`ReIjii(KO=4h0b%aSRQip_Yv|08n?fxh`t<$cFprM zFwf6wX&dwr+V{`Bz(rwuEQiH7-vE z-Nbm7Up!{~ggFn^PDl3kQY=*zZLiIw**H6?FGo8YDJSD)gFmJ@q^%y4&$h$vwL%CGmM=~*e1cb^^>M&A_H__2by8Iv&| zJ~s84$kTsZd1Ry=j{M=7=(c&JzxVOF+67S{>Y74>{9)=qJW|E#74oT8i{(Xq=aB|` z=eh@1jdw)ngpg*olDo|PZUo}9N&>|V|J4V-5sY?+PqM9V54vX$2yCT=bl8S&&bR2JQ1c?tU04Md29dH=Q};Y+~vIJ`nz<)6Kf@-to$Wa`bN=*k?^q{mU_B`w*)FWdawlU81!TLS z@(H8hSk5~$SMf82d4h&z`Gw@bZ@(g2nk_-(@sj8z&yCyI~H=s6S;`wx>J+ zYF}5B$(5VRk~{mHQyf-!sjcMDEah7*H_dA}cJn$$8UF6|SRr|*SX;yEp%nLlvr zT+w~`Di*ar{&J2luJVXaESmUYl1Ta~y^+9@|24p9BECShO!UiMCY{~&@0SeL=s9L$9u`Z6u#O`G4ns?Zs|u+HzGEHN8OMrB?>H zjjb(P+pN`PmX+kaxlWRh?RUe@Bcv$XOao4%d;|+(H{sIHU|HEG7K+4EZ>6ck)ToBh zgdC3JbF=CMrqZ({icwJOyEWgCP`|veXA4Mq4yf)7i;0TABT%Sv;1m;ek?X{k9+eI) zcCS!F1A5tmv@^{Jt#v8m@>%QXhX$3Jc*sppc11i*)#cM(D}U&9Iz=a^#FK#Rv!>8h zhPwIWFDQH2YzmT9P_StZtAYHSR2>b=&ALSN4tBP zl6UybAt3=XiyHIJ`8cYIX70!nfpQpe2k#qg+~nu5H@K2Or7Pl(x=~GaB|b1oD4<2d z57kcopCq0ioL)bZHDi&ND0p7|h-2M#3ja}q(`uJl(Fvr9gnsX9*GRinBU-Ovoue8> zva3J3pMZjDTnw2qls8v#8__adW_IvJAEDNDLie2PL^dtgJm?k1R}5l3JP6OT5C zaZ*v&1TuuTVs=ZpTreu-NfecZkca|HteG9?O+s@RM+!%n8zfv^4Hp_;BlYT!%P;l;AesRiUA#E36xv8@}^;@tX zo|cgremgtU&;#B%X&@+HyewGYwaQ9V>T}|@a9L1ykq5V6{eomIZTW{ypR_UqDpWs@ zj{Yw7ap3(;h8b5x!OxgGj(45MOV22}1*Yb7vseDFk3h+r<1Lm|Me?;b4qXAFqTos` z;Uh^DP6ZK{4SMlUS!4C4I)!E)9{tGR<&Y%m;TA=8)keo}gL^{#KfojUY+k~mV~T2? zUpbzr@h#%)H+;R@Go@}4p5nA{H;%3PX0$?NB|!B$Ou3l}nzGD74f zeOU9Dv@n{WrJ`gS<V#mf(m-pjh2np+g_pXt#%e9avkY&t#;hAcgE78I(NL@69Qp zk0pX(;Btv9M?EVePQjC1?XVxrmq`KC?dlz7u?*!L%$ugcxF549anRQJ%x>8E#bUSepQ3%o<2cN~W$GbgKTip24 zHSjGilV@0@nFBUR@e@Y#<%`@(JgAf^Q|ZO^R1$XOD=~Nt3>;Y2niLzXa6%{dw3jN~Z;jOo-yyprA7}adQY&Mtr;g+lu!RXO!CezOT>1s03 z*Erj$%0e<^`yX*STP8}^Z&Medl(qC_l#_yt|3b}uDi_`;G2X%o!(De8 zdX($p>|r63(`A^*>DZ$Fxh9s^8QzDDTG^DV_MJT?Tl9Y^=)G0sOH0H+OXL1^HLBbq zeN)X3FHopq6r~cL+2W+8qU^X|o|VbR)AC16o;06G#x(C3*=^pMo`dhBlKW3)ESb6ZSDv(}p8vgLeSG|PR372dPASboY*V7-1H43`#&N`Q)S2Ipx0l)49Z3CN;@nOz zm8`~k=jj7Aeks<|bRim;2#ZfEj>F7#Z<38MnOurf(2fEiT!;lJiJ+{nOIhC2PSf$u41R0zYK}|~m(rR2#t-GoZgK-=5 zFpT(}dLPQ9Ih+`(R(S4+@l`CWP4$E8{Fxa?X+WnHfR*LSuhuy3!~eM@VnW5|S5^f` zHnVq$HJB7~;Dw66Vm_r%FWg2FCH2bn|Q2d zwUrk?;WVSH1<}#81lZ3#VtoR}xt_{(GufHcq2bBp;;eO;xHZwa)ckSzO$Kn~N!<8T zBr3*bbMaUsP6psBZm+RMg9}QtkT(J#bRaxpBqXg z`pb;WUZI!VuB)|=)BGV=5g7>bBJmu4(VrUWAgaErD4@=US-Q{DskVi%X8#p?rN20` zTX(w5s6Hj4WbGm4nqYAL{Lr&bGcPWRX7m11Bh^8X!0p7cMZurZy$rOSUaTS*RmG8= z#E#wTfwF$tG6R)V&)MZPR)ew+Ji|6WlK;dTJuA^WUCSpfYPMT);7={*H$7#0caop# zlvxj<4~Xk3^Y=9I<3CUlH#nEgig<(2-jBZ#V4ST`e-GxE<(+RPE<1B|3-+l^^ZG%S zcqyBaOsXPULoqU?kVv|As%uXv2A~n;&U@LHuZ~o*%b8^?VpDJ*Joz4K*j0YqEKUN( zKDmfF`=IMJ&^IZ5x8*ka$(9?-i#s$rtl#EwcS$m@rjKLreAEmON zc4-nXXHIlx3PPD3M+KFjKfB6xc??MAt${fR`Dyy)HNN`Lf>3|Ob`*j8Z9BAO*5?bF zJa9xz05|c81_t8r!u$o}a1I4C5jXSY^&`z}1$QS=W4zs}2yNKj;~GzSaJ$#Z>ZGMJ z#X!IhD3RgG*sy%3V6`X(qQR%Pr>y9-GFV5&4;dn&t>QS7eBTL9T2}YT-9(hoBr<>; z*tb~NUMQlWL|@3Rcvd#zV92{Vb+40g6?(};@!CG)ehQE|RHZ?}N!Zbo9ohvI-W7RJ zTtLO5_N(zlM~>5B((8y^iG+$rV(`_#*%+O5;b1bde*%2~6ikvV^0o9^q%9fkeu565 zjOkJS(lvYw3sj3LoKD_Pff*JRE@O($Ik_Bro|1Og()H4OrvkHO4M*6>L-|Um>*CF; ztkn~0RjvB{R3>A~=c?6bJIR&Xa5iPn0IE30eKVlAsF}W4IgU;^ENY2!47i}YA&bDk zz5oht+4{77R4BM0-(Y^I%V4qDQnOC&#_My5&?W2{BRDo+-B z3(4DcN|ZF&VsQ3e;e$F}y2c^AbFL4SauNpMB}wHI+zCjqx8>U&Z$ObMui{^}t}bv8 z=2DWkO>4c#)8le2*g7TnWKm6u=O`e64Ql3{3UgF+qETYHAm~)KhZ^J zL@Jq7;wZ>dC4Y@Q5o;f=yG{0{Y4F|WoV8rohO6B(jk7a3ij^!fY`qW0Uk5-+!6|iVjqn%tP>)XVaV|WcRX|YY z);{6pQVRg8{p$G)fw)MyLJ?B*mYcsn63aa2TmdfD^Z?;T1@gi8jW!YmXcrF1tNSX@ zTmQ`8Za>Tr3T_tZx; z;ieaX)GDsK6tc9C?sp08H2%VPbIWs3`@H@pwu(wB3%4GV(9cnW&J)Uer4oMs zLCbX#v1}H2138LmO^*z5t7)~dDBi1GZRsWm;`QB!x31_WY@IrOZm&F4z`mLu4W;9w zjccC!*Wmqs?R`~LRbTWjagdM_r0dWrjS|uwf`SqvT_PYT-QA6Jr*x-ugGfks2uLH{ zb=UES_deYFe4qY~GaQ36&fa^iS?inMnrm*Hj=S%gw<1ZF*{MqD!oLn_9dC=3&eSZL z)*JT9PzNrqkZjPM$AaU&rBLyqbRO&o4DA>E>jj`woA%L+QEQp?-5J3N+tIC!Q@s=U zz{L>Qi_<)N*X>BQeRDpLI})4aU(!%|DORJfdgQoVx|3p47tBTM_REXCw_qjODe81i zF*%TV@S3*gvy6ozrof8md_QGG44?SHx=iQLQY!sIy4ldHGwoOrj-k0vbT{Gd)s4LC z2A3XjI=|n~26d}O*>sTLU(l*^L*pLA;1B0LGNPd;t(i5a37xj1CgztJ&~y<`uv={D z(WI*w5*Fde8?7l?Ov2L9z4>)>ebx1Pu_~y3ijpmSXg*jx$&fy}$UAQSBDsPI2Y1PG zsPRSa)VbvIfH+UfG`q(sU?IPpEV`ii^hoHoAQs@)&J%%X!M(1ImY|dY%mqv2z7=yX zyC7cDzR0>Y)f1axro*A;UmS@yOOB0~udt&lU${)FdAEW2+ygG`7(UoLVjBZE4(<*&kh|i^3#RZ&=(qos2BnP zN%TnTFoD)f`rS?xT>m~yAqz?u|7bjB62Ybu=aVM3kvXiE&D~G!XK}^m87i#K@oH>? zWkOg5UaMSOu}U4i!i<~~v^$m1LblHy8F|p~PQr?Y#E~ZV15e%rTimRnU|Kt$S1!u0 zgCr!MhllnH-`M)e*^a?``k+i{E-K_bi|LO*Jj+MgGYlst|%M zR|`mTHC3tC)Q4R&$F^ibbz^S@Hwp*+hE^YL_ykjAgWPm(KeG6&A___`+1Wc4uky68 z#OHY8d(%#+WshjZGrp#I_q#89n<0gFdPE^j9Qh|}V+AOZP=ty9@$};#G0}a1YAJnumN@gLxl~gW zYhSr}Fse7TSmMER^TQ?@`KgZ#?zcVLHoxZw1s1+P>QyOq$?nwDRTXh4u z`Ojg_5i*fFg@;|ofFPn9c_&XYt)1XB`en!byaL~mNle>#WvPtuY>K}-k7`np>>xCs ze-~4`x}4(Aw4!i+k=Yr_%6lOkPyo}C`8o{A)iDi5uMYikqK>Fs2lU!AGc4yOWTHc< zX7q5rJJ0O6Lj&F@R8s11Of)$qE_}5m6WjX)qouWlt0H;)H<*{}@`2LNc3#-IpV6we z-qO!2a4p|BX5)~R3`SF7Hnt8)!H$f8OvjmFyaO43K4Hx zY0DYkuIpUd#@^7K=60$JXP!-oe!$8?o5{Sa(%?CiD5j{Uir`>@Td20nMes!WI!5=T2s4@Foh$y@e39vLh2| zle*dusV(k9xYhuhG@f`-SNH7fKbJs5*?(5{8;0JZZ%nH28#s%WPkVz%?5 zYtwDLG12$@_{6T0*BmU_$vb&$3FRjGhD}|J>1@lp<=eN1Xiusm8z|{I{=5mRC?J=P z89MIKnV8XT|xQjX8p$w4phu#LUaTBX}|$w*?#WpQhbzk=zVu1Qh9fT6e!#w zMlwvddpxSCbhh?}^o55egYlp}(Ui7whwi;~?Z;OP95B>9eWA_irW^zuFT}!)E-SbP5n~NCBe!G^~0)id-H?BY4}Mi@})onRgq=`o{wzU!cCbK5{bIJ z3_2Sd0jdQ{IgjCqMDlawSj@8aPbMakp}wbKiXYb4-hTIE5JJ?cq&yZ3pMUruB5ob2 z{t9*s{BBTC3iG}~;}hgH1|ly-cSZ-szp@23;GMTA&LO1tWeCdvf(86nRt_svSki$} zTmol=eD~#foggq``$L}nE5K+09L~A@ACAxWHw=IsVZ=m*wVHu_JltVr4|{V4tM_FO z_c_$ue?>8H@OOZCUt0Xu(+iqj!0rhR1K^&QrVjpo$S|siG)iOSsB91>Re!EA$;34w$QEQOs*8zs^f8}1X*x(DC{hyD4 z(^{jv-fbdF0d*i|A_g@?Mp}rTC+-50RF4wxG(t~yN_w(| zOz-Jdd}c6PrMpoTM}pbnKALCpPI}JP?r2y|3E%-_WlnNU1}bM>G#$upZJ^WBAcl%S z@jw`Ep$j^`Bhp$VRrEF9_!kF6TB{*tF-tS~p86otDB{!s);9KBLJdv7p6t~(`5oF9 z^{3^wr3VO*Mmad<2ihro8yNQ?1`|xg6Y(V_4rp@J1i=LR-}2x7v>e;MXFk+UJSwL} z!wlpP5R21`Z7tPn!qrIp_fM%Y}gFiDEILT-V(^!vv%#_ zj29dVjcB^Qdce~V<9MICy00A5cpZI3Ch8mk;yxtgP!BvrECrm`ko&mz8m6BDnJfx$ zn5YVu9i5t%KYq+T`y!gbOHl+0kD$&W14o?rugvW$4osVaEZs;5fYuUGq~+D1xyp>L zr^QgTL!5>#!CI+=E&Eyl#XQ62{jATO*7jtbY%`C)Ji6bC-{vuwkAMQ4CMqVPpToa6 zf&*W4-@?no1IJSYx@G8akdLf!G9>hrIPzuwC!Cl+*X!G|RZ=S0R>N|UEz9;3@!h-4wtcNaT7uz# z&4{SD{rL!mR}yISZ=5DsU{%50REh>)G|y+;a14wsps-a#V#N&++W2qZn{jI+IM^S%$pF5~$&@9zdm5e(#GNZwtIL|A{W8G$AZVo7RdS|^T zuNv%}mW(@DVQbr9yH{yR&?N}qNUsgB(B5OB?(=`h;sJQ_l!tEtbcq(>OV}q?^s=2j z`Ud^7p0K31yz~?V`^)OUMPxn7=#eK6bGsT7d?XmeV=QpB&gIi=-k`5{)rGQ4HO^4Mbc@K5+YF~mh2 zt_RPRYn+e)rAP@Hd)4}#?HwO6p+GxfLwD82G9j|gZQYpD)$j~T5QRGt5Bbyl04bX1 zH@!Fd<77>PZo*qoqFJGUE=H>=6%Y`@aa&crdg!sY?y--DB7&9Bm@ICENGlR#mB5)_ zUR5=sX5PjpM{LIl)MzQ?%Y`@Ymy9p^)(RVF87PJ@zClRw^pFPgZq33)uD*v@t*AiM zR$feoULwS(EE?0v-3z0WwxF(Q{F~2Hw-3hLD|(kzqC?OnE%3YjKXan6-gdChPetHo zGm&CYaMZC?iaHb3oxJ`}_Ax`mnzmBos;Ip8^d7a`~n}UpREI`MkjuR4YJOBDn#41Wl2{qQmikD3`i&`0U_D&F|ZcHF&lmM`@2Pu zf-h)#u!=>YIS^2sUwqq{wgeIwS&c<3L4nDw?M#8x>XNS)qoqfpIldE3Q)umBnz5r{ zno?@GZZ&pq^rq5rdTc@^sA6|!XivgU;M<@}^soVrni~||KjSABc*ZdzO1Nk%2Bc=5 zg;@W*%`8j$k#wnG;(N7PaAKgCj>7$oe1m06;K^GYDqFV0hu0~0Zf5iK+XvGVwuA1? zJK9D~lgz}L#b>201TWMdH`tYOU$t2m*Uo-?T5)CZq;%a~)!@77d+lOLavu+mMbx4@ zg0?+wcDH{~mk$i#{2I~YS3?r$^kTq*WGS?Vvi&w9?n^{FtX63z#pb*C#0j%v@H_Pg zv!*a4sUXzYCa3w$z&%I(FxuNc@>%8h`mURG3nx?C{GB2IH@CuiU+lkv^L&iMz)Ylj zf-kU4ux50X*!3#+8>odXGMP?JdD%Dq1vBRh*6gfP%7(i(D7a7^tt@r!udgYYmy38- zKKZa&!%)!rQ1~v9XA#GJ-%a4{WPxjqe0@W1Vb%q<@t{^j6$|KFihUjkSA*lG@2U3B z3Y-z7rt=EY2FXtRsG0pMq&|+!s?34Kal=<+d|_Cp8$|NK0uJM(R}aQ=JZ<>pqeUniYtuROv|7xf@aRTsMCv}D~u*6i_!&6 z-^L0F-WgJ+uNzMA;ohO)P}sr!mki(#5>e-DH#uTEshRADS-zQky1ObEbh0`$!qS|a zV)RcnYdHIu$D7FN1eoZ@M_&Sb`K0!#&IU=ik1*lK@eoPXjt7&)RN`=X->2<9!B8>6 z?hJ!VwLel(ZL!!*VWl6dbt-4O^IJ=7W?p6lXe0}=qjwlsGC08&pm#{J zDtezO0?4V=wcdeEHJd3<0fBk4uFnrTso?n+DEYxq_Md>Tb8ffA0mC-1PXN6Kp0@*C z9U{Uf$Y<-!yTW9*Rkw-C?=1p9>oI$WLJPM$L)Got)TeamFFh1sS73vYwXXk{uY&(| z$$%1z#61b1Ke;^n1Zy+Q1}~~ltd0Xb1=T*E|4F%Xng2x&C5I)fnLz&@N(lGz^JwJ< zcT)F9VB?JO@L^%4AjS}j#tWGNj>}r|xkJvX{0qH5{v_b{5NUxFoGuI&SWj@Q6cw(rPq8!U?VK-e@41R%JwJ+l zv*$5iTT=oyL2GRX2GQP5+T5&fY8<`a3RQYLZ*Su_njdR4EArdnOC$v<~9MKW=cN}oAdb2?~SX$|wiQUmx%01Ky_EGzt#So%4< z2#Py?PX)(kWf+hZ;WgfU)a08-TJ`oYfGim-5xzwM$GZR8)*cMYpRJ)2+f!Tp6q?oC z3(K3!nblg?Njy|Z`w?s{^tJGh)94R({lbS7?i!Qw7;|<}BAL=SyIZfh zq2*cOc2}aV*j8S!P3}A~<35z+i`g5Mi8!0%w!7xq%ZB5@^`dQQow2uS*T^s{BmWo?dw;1FmFEew;TZ?5Y088$+DzY;nXb6qn600Mtuo-1xo!OVp6V;4zjW@#}vx z&jra+D`Q1O5(fmq@7MQonRX~WCkh(+cd7t%uheUG5mRs=3dDpi;jEH=|_W#>W6mfP)-znbi!p((5L`_$PRkK z4#ayM3&29UKmJyISZn{chb$?nsXXB}M(Qs0PN}q9bhEbJf21?wvvh^WqufH!y=19< z;IOS|LBOc{{5JjZeIUs82cj71AZz+S$9~dHKPjtV^IJrfEL)*zlU`%nXZdfMbPnqY zo2Fp%6{|9fOW{k2Yd`UtytPnG$(Jy`)_S=I-54vRo%)Y^BRk{2WT@3*a=L!x5CX~I z7*4CI*ayd~XZOZn#RGe~lT-RTDu{l|wZSAf?)V0sSySmXOJc?(Fzsh3jeifCA;WYC zpNEZlpC@b60s)l{k{+wlK?@PoiC%X9mg!Qz^;54iMs1JYDDRsXH)A1NOg@XTjZp|! zj@TV;_qc<#Fa##WEe2ccVIR+aN)T`R6XZi6kayD18f9n#dCrE+&SOo}jnvIohSalJ zFGb)zR{?J*lS)YgLjSQCw8l2Q1G>?6ij4OjbthgCqnG9kcdJL@v=P>QHM zs2#UoE&(lzJirFZdZ0k%_xD5{7%hx-5FwE5J$M37`u%8k%wP!`5eb`W}gFB!%`fQUqQZ^jPMKsL|$ zKe?$10LgG=>6zzb0==x5KB2bgujR z@k#(*SzMPA|2_~lg7UNfxxxQ`8Hfz9Z)|1DSPLc?cT(~||EWU+B(cUcVv*f=5|L$5 z=PaP6P&r$V=#@MoQXl9e-tw}T=)=8tfMy}S9;S(gB_Dt7?d3@5@nnfSe#4DE5hkmO z89N@CpxOGM9h>v>;RvU?4cdLEgZ>nNuWSl!KQYI)DcWpOW>eZBdSK=ozgx)Ic#h18 zCeQeiKR!gajNqW|ABzZ$U_$tM?P2*&5p-qrX;A284>&Qdd8!;QfaNpAt4rO+9x_G! z7uo&=j>-}uE^sdv{?xjlIy|IIh>F(Jwe9bdF#MJYx`z6--a!+lMKtdtc9|@+UHB(8 z#*gXn^iksWe(Zv(ogs7Y(dknUq;o2c6L+dAzSxe1&3gV62Bw-vwBrJs7O6~ zfFU4$&BD`f#;7G1w z`thT&;aELKI4bC#Nm#cg^}a|svE};uQq6%)D27)_8kwrYT-%fgC31o;%spbx&7U;| z`WJzKyEV#*G|N-(NMmcCr~Fn*HzQ>^eZn=u^R?M{Erx}wVz38xj^F(#bY2YaO>QOD zuiw{Bgm>~KR_wmLeO){5FO@{Y+;vy+Xy`!-{~y$D^@mV35?fvz9n>_HvOu z{`Wjo;Pl)`?*Z1i!-|K#^S~>T`#8fH?Sa=l#qZW@it^Z+ zgdu}{0Ly`1_w!AA!rrM`i&6)4qAvgIC68N^fku}PBOMVzrRPh0=h*$2CZ^v3zBDGF zA@JuTTzp@@ds_f!bJvK&m{>k}g8t|R8tp{5CFY=|2tjPV4Nm%cu}>-w+T^6_BJtCK z0gXe%ovysp$P5$5;RY8>uKsoQ4(7Q1gYJ^%56eXNanXsL|v7GaCU4 z)W)XfVv8fc#Dp_0ZrUu7C8lCRn>63G`Yk87JAcr6{%g|LPi&>+JEJ#_nWdAyYOLV> z1+P$k#o!`sez60Yil%`t(jfiehmX5g$z@44k(){}LN}jeb67{>3WPqM_XjjHK%vcc zbft;XiK?9FzxQ_C+77VJh#qBGE3539EuLt8^GB<}@Qx3;Ox!}cc3OlT^SAQznVk}u z;yz{hRp_H8<+Sc|aFPEjiNeJQ%rF_B=mur_QiJ9s0W$@Ow2N=_@A?Tzc) ze!?TySJy9~pk?F@3U^6#rRcsXXu~!KYr|%^F*7ZU(UluL!Co2ehfO1}k?G$wFCZinyKmEX6=eybG}kD?fwJ zNg{9Sc=OnmEG>I8C;KhIEAclJ^mQ_K?NW6zuf`>}_%oEw9F>RZ-=rnn+C;81+*0b= zm3K6ej;|MW)}xU?w634r>iWE8GcQP(O_%@Ju8AthSoUFhTmC|6vz#`I$@1Y#D}K!f z&L^*j{s_v_5^0Z1c#cpeFMNaCBHO`d3jH+&k++~72<5Xw4%b1qUb7o;UnEOAJKL1u z`t#}`@P>u&!>5HpbY)jDH&}|Rm?djn-a&uPzBr|%bo7w;Q#O89#^%aB*l(kq&@D-| zVc2b%Rh`(*gb(DSsVNHL=Wf1ei;GP*yF09~-Q6ZAf1|hSUcXIME0HE)8+n?klvyw1 zJS<%&^T{ieiC|NQo`il))<(gmq<-7rjEnjv(~#9uMss_Hy_=Z&Hu1RH^yfDW9xiR0 zpyUZWZ;TkwfWhCiGd@?$vn{Ut6MI73^C&FUR>qXBv({d=Dg+uLbB6TuI1v+*N1Wv5sgT2f8|%;K0V> zK+CT-e^P#x5b5@cGu$Iv9ADZgP(Hmhe!vB1|Eu3jVp1T!#GU#kZgVP)v>JN-+3Tm7 z747H`?)p=aTejSUrzfSpi=aJ@i+qGa$Bedn9{{0x2*&Za$UzkFmhRh3jaS%|9WF(c zf}cNbk7&4rv|U7Tc0iv-|I7) z-8fh5N4SUqIW$(_8O~GsXHN=l*<&87d?YL)dk5NWfX=o$ZOGJq?@6q{t4q2>M4U`4 zWI+E@*h-OZkFb{bhV)w;FzY^-UafM`muAFkIiWn`;l~S=)=DErgc8!PVQn(GON~~R zxK(M&Lw}J^_4bLT+prU9Obb5mdUC(G$%J`)zx@c_h2q3TA;)jXnfomM#pKKR23P-g zFBETtG;=4})eGN#x;P)G3|Z1@#CkcMTVqFl_}K^VN~E0`IVx<$FxO-Z>2Gq;`x3Yt z-^lBsj1bz8@^1aaJLzA&(U+2ync8E-lCyZf(K?`CZT>b5O&2)7nJ9Ob)$!JN%s?XN z>6Mu+DSFQ|38SjJK@_va=@N(9!s(u|IGvEyM%c#aVf%7EEi9sPM@t)RjE{L}ir8hE z;+>IUxJqZ&t(8Rnui*_N0%nf5c3)dKXf zIB;Hkzi1p-D?<(MTgJU({7{dhb7JIaj^NLqRU%61$@pk8f%z$TWutX8ZJ3^LzK;`Q zD{88&-Vf{3^J3^>!M7_;RdtmQutXKPF6`blm6vDsRv522XPqrvFY*bE^gHjlw_G() zZ;v*dxw&g5HSg>%Wk9hp74#$gr&UPg6PceBFNBey>$eP~)Fa1M-ll(jiek`BDC+@{ z@qqZC#(&d@={OZf(lpFRe2A~|Ho-MNQq<&?YqMKJbe%sxygd3L4e?W(6iv<2vz76* ztdR_L3L9$#P12!^rb>SbUb!!Ds1Y7%DDk8_5nLm7AobDpPp;f$=CFu3RB@lg37%pb zujZz6eIf6BW?kMi%vkE;8UOSH`OgK75ISEl1ew-2$lR{~KDSjAf{}SSVTN<~#M+De zUu_gYfw3A4KLgtsRm)FHe(Y~wI~l&W$X#H*V17rEvWZmKTyDsS76Bd)hkEYsK>(hO z;^tZ4E5JqVt+TJB6dX+RIM8$UWTF`3py0(`r_12%OMQ(Zbx$chn%YLr-IU-fp95AL zC_K(SDm<5P9Gd~l2mc~E3xmaEBBG{YGlA95dgw~}R#ECZb8*5_YU6W3Imo3E-T~i( z7$zvHbZ_8)F#piY!GS$L+SB8iUGG#+-Z=fbiSeS_^3*SCqYbI)L=-K3tDtv9O-Hnf zH;6X-39#W88tf%|I2$1DrpO!1!v7sWyhlTrE>o~AL^>v_N?diVu;%-Tu{5UJ>*ngFo1##~ClDa1jX{pEnB@Bo^F>nj$)zJXz~1BFVZy3#zg|{Ux1583~8_n#!}0 z?C{kTrP6oX#XO?tu5~;X6b;&;i_f0W?v@UnI*s1IekFi8zG#KpJw@J zis*;$lQe5B^1{a27p6b&q;#zzyx-e7k&e3rl8cdRB@r;J^w0^QkbAMY{klMB(1g#! z`}IL!TRulHJvad_n6G%_{h#3hl}X9`RT-}&)Y3nMvs)uKq@3@>Zc`_e=q>lRT7?ku zYsXFfHZ@)SGIR8m-T62wQIDodx19==t`?i!l-jb!&j%1kdejIJU)-`>`j`~2D@uiM zNH_&`TitUWPIiVoA_qpg2h5niYU(AV=VSWnP6zdkQR_=MbfEc(r-RJ;>q#(`mxXxH z+x5!jRKF?{PxT}_)EibX&^Y&W`QE7;qi6PharkXv0p?P|IBmQ>wn2`j;*3C66xF?= zq;dEAFp1pw?OCQCHqiI{iJqT4-(ZEDl9lV&dD52owQ5GC43&yG8Yyr*cgKh;-Nngm z{A`{z^5WH)@Dh6w25~7BJPwKgy!}-MvR&_zU0gZAS2Gj2V4i*7rY? z(p59Ti>t+EExRmg`fu9~bjsKVTD@UmhbaLz_`Yj7lB{R6~E8TQ=6o1mbG$=}JueOeN6&-)q8SKsVpCISv?+XC?j=;8> zeB_|(A5!eEqa#7I5;)vu=?59FxA6}2L_d{bnLaY6K`FCWB{8JQ5OX%+h<*&jw2ut$ zyyjDp!r2`!ge?$4Tp5EQu-Yb&&ZvGN!_qE-`l%(k-zs4`5V=Legw|4x=gpG{7yMLc zw6->p?{oBu54qR5D^2O&nqC=K<%uECytG3oA^W@)z?ooR1?@$xwloeMK^{5!CY(e@ zv8;kXS>U1%g?!Feur^!&Qdn3tTPAXlnX?ynEJ!Y?K8ztZy6}xAq%i>^limnP=IlO& zOgu77v4wng?>FFIerPOuVibmcUEe5(=5D5d{+x8hL35Jg!w-IsOJt?TW^~FaiwglK z$j|>q?NZ2`Eo2n;!qhu?3>Tq?s?BAHa6X9$K+#fHET?zia?nw8{2=Uw+R_TTvk6(u z2gS*!t3Q}W7c|fqZDDH=Pai{_0f_hu0CdJSzSjXjslp9)T!YO%#G+8 z%fwZY2|lkCe_25k)-qsdRPcbqMT8INlIi@S<(|Rv@N{sCqie2ZS?~={y!MoW^E%$I z{TCqgv7tB^_?x>0Ne0K|O8Z|n1tcUE;sXEYrwAWvU-;H^`+>Ux_u*rbY~swWV3E?@%JVxB-(gK8(` z#G2w$W;8)qlQro!7P0BxJ2a^Ud4w3n)_J!LPclxMy{9#s10fi0r6WXFId=-^*PJ-H zD?bAbCrQd~mz)}_e;?1%y7`;>qD)Y1@Rt(>;~*~Yf&e5+xfIJ`S3|)%80;Hj>aCNt zF#KjS(o-ooP+7(Y$n8-Gd4T!c#N)z3cLF=MMkH?XUyg5*00rP@k zCqk*$_D4Lfy2?rF*#1sK4F7XxdIefW1O@bL8K-RA-KksW*n(y}#1rYyFL-~)42e4a zhFlYL$}#o&O49PYU7oof9FiZxfaRx))D- zq`LH^X4UYd9&!hteg?2xbXs2-XdWba)9anw6sAUk|L2-|RssHf4y#D(muO6@9-RZ7 zP$*(GcmMmI;N@7;MtG#i#Q=zC5q`zTAbnu6gaw^6aef1P0DQT~wCajxqzHZOKh9RS z>4jU1KyG9cM2Ul!EOO3)^5^N73e0aKD@!Cmx|ypY}(3b zkscJVY46*#DjLi{YZ>sPIJV$vNE8LV*nsBVYoUM}5bS7kJGs4R%yOlFa4e_5Q6*Eo zG$v^Ezg<^%9%k@GVbqLMz~Aqn{IQy~gXMZ0KxdsVFU9jdjY=k&nH5_4G##0xXu#*^ z*;rp^H(5)_Mezf}F``-uB&*;UT=Bz7`aW&OmC%vEY3n->?FlTGQ$#zQF0)u`sD_I8 zbnsGAe>ZE*6R%^rlWs;Jm?H-p)j_6}OTf_RPqL1>%l4SKzuS)9d9*e?c=80Q%eTZ( z`UV|uCWEU8XjO2v?0pC>MX9sv9pv|t6#XKW<>qG#QOoXma5q_4m)~#;i6<<&BXpn; zJ@mTt32R@_(4n;4L%;LgBHp`d#RoxZLZY=?yyjJSYyXSV&C6;nLppZBZ)}1t$8ft5 zlTs|bY8)IWhZ}f=&Y9JfT5mMY+a^kx_9x!3`ovnR#RtjNjFmsuQv{>w z`J3NbxGgLQp6p|j3-9Maz{r{OqT^0D7V1~T9&^;=Sz2n@6`aRa*|VmS?a_GRpn!FY zt8Xwpq`X}IrPFHh&!(PL8%yKHyIbkhUxj5L&S0ND60*Lt$;?_0Jj|p4#fiV58^AYg$eFg;MHb#T%GES~2yWS6PO|JwQotNi79Gh{4e~7kxjSf%u z0FP^|(7uXx`ot%|cQ;h-u5C*V-)e#}`==NfLBN4Bj(Q9Xo-2CCKRw?mDz+aCISDTz zhEr07z%J(KH`_C;%Ch!1D$?AC{JO4Qw2fs}ni0?p)kh*48i6W(5vhaOtfHY-CAHB* zd;;#RS*Ez{7ok|LJnuTEl9YkXGWcr0-q?ndVpZV;f7-l(GVbd?gt#_4ToX^p3yc#%s$+R4w@LhPsDp zz?Z-6EorJ$5q+eD16yf|6k4Acgdj+^+w~qzd7a<(_ji)pUW3;g{f=p9wMPW8MpOj3 zBw3H1zn;A~eKFX5wrgfw(b1?#_`M>-^BC+ezrfu{?Q}3nZ*Pu<4tPBZ6Z}=D4-lqs znZ;-v8A%;i-aA5jN8tAiYPN?GVlej?9-=W`R!bzTeoK;rQvByodX?~!D-6mD_aYyYIJ4 zCo}v;0$@3##~D!s=CWCsgKT-t`P4VUXmAhwHdKJ!yYRD%K4hMlIC=Y{9rHo)7ya^% z>R|vn3!7glM2XRqEkMAE+^yn;%wbXXaP+}l)549xRU6E1&kZ)x$g4hD1V}&C^2Qqf zU1nbrho&(3j8b$;!r6o|eN2M@!Pt#er<>3g6%sC+)i3^)JPsfU{g_lJU zK7)ACTb@0_iEwaQLSXQrO~ZY^$S60+eRD=&WfQ)S`C*A8ixByOEP@FXERU)Drv4!_ z5M|`8M{{O{?=0;cHiQ^oY(=yxgXzbPES+g%mo1acTXrI2oDMpDQAgylWhf1SWR!@) z1OSx;p~LSg!|P$@n5Tq+1Q7s^w@Nam%Ki{ls@6_jS|%5zRFTYF+Tr(m9B=Q)QlSBk z90E$1EV;1c_IFQ65E3qcMp+>T{jb~3QV$+v>3W)<<|^1x>_!a91kyu*(O~0x)D4@2v=Se!#&tXYFM@`P8DMJ7PWET0Q zxqvHEWpA$++4|)DCZm2aKs8{2oR9+9*b)F1cEm2okB-0kBR5yn$T;Ak_CC_phxSCt zA>mG`#=I|eCizNG(t*sOy1#2u-&Ss~2o`tKJr_C&mlhiUaVsjr;AXLruuux@v;D5_ zh;)9dvYk-%avRiT)RLecJNlH3#O3`uMg{*2)ZCZnReVao_F^pbyP`9n<5bJcPo# z15qxO9_VuaK;bsu;IFL_6*wJqmvvq@vN|8(LRgrhEF?u}b{$S_vHQHE*e|^gF2Mnp z41Lmj{R5?nrXf|$_pr~wY2OQGyWqOzY2RZ-`>S7ua??a6WS*;E;jHP4Vy{N1#f4EA z`R$k`z=VC?voohN^G^)l@c-B#Sz4H)o6u2U=KT{2;siCZ45hPEpRMrg;D`DL27OC$ zH5Pk)VVG`;3ejRTOB}#p$PvFbB14|qKkYUvGApY-_0c1D7?Z?90VA)h4C#Ug=d668WT17#w5tKxJRI;d$(643eNkFyKc&FB=|-jYUx+N zNRCrDGi+|TCrA6jo}+fXrVwVeZbJREN`f^zWAgg#XScbnD6;A7AeNx5bQK~>K~r~j z+Ni{)1h(k|eHCHoM;kUhMFrifU#}b<^V|9wVrJtn^3Y8t5fNPq6G;|Cc-(=-bAK_O zo$3>UW+Cn_3E&B~^WvZHrgXiOL;DR&%=(9dzEchJ`UOsIk8~i`iodQnj8qQ+dDDLw zUAgBBl2~(WUR1zwRW)2{Z;X_UF!7?wK2~2ND9p@18AO8A$1-Gjl4a?k7aj?HP0T4m z(J>=An5gFoAWaYs$22(d5h*I(CYl);y!4I>;t_$3+!xK!*x&rMunWfJlG%Qxn8ET1 z4Ynbes@HR;kR}?0z_1eem!WG?JK7HBvSRX-85fPO5JeVQrV5@8sq%`Mj$k&Ro=$ zd%0wXeRCHdjbIp@Xr*5})mOyz@VA9+{VAQfX~Sa`bbVohdcH8UAd;8be4k@c9Gsp& z4(*~OoqXWnP)uYcL|^yz#EAYD%SV(9v6f2;XJsAK=HhcZuLD^fEQ9F0MMP(U>wbYC zk6KlA(wN@I8P;@k6x*ybawdaTG$oajlo|0m{2d3&{I35O(<#c8vzm0kd=R)1Iimxn z1#yv$j&(sCL64^OE~lNhU`Hh%VpG&~RmxI)nsM9qEhp&akK2@hG|s+G9&S?kd5TSZ zOSy@z|BeDlzzk)Q&NN>Wv%th%nx1h_bEF6d%+|$2&t5<944q9}KB=B$GCKK%oTFL* zGG%L0CG4`7kv$2h@xFXC5b0MA=bZ^`OvmUu5wCofy20*Zf?cm~`^rg-7yv*yA>3CQ z+@2e2gFPBNk%;j~=U*}<$!)1m#UucL0ch~|`#C^_aI(kqM}QN`zosbN^#@n&l)_0# z<6tJ?6A6+4_AsWaRaE#fVF#i<=B!&!r$lu`fTK)qL=EJ-N`(Oj1Ms}MG*rEt5Fd3> z{Vx%dVHprg0+O>%SfFySn&weLkyzfH2TQwidBi?xIX=_e!gRNdCznM!yDJnhq#wh)+zF-TV2D$xoFwgZTPS3H}CZ9irDZf$3?v7W*!!PW4J2HOVaGeTY=i_(x9)t)aTSNqaJHN0E+`K>k<-rFrp3LKCN zc5AK+&hAXRUNmOBae)!)8;UlyZwl1C=|lpk(K0}{lF zzSuER2+ z@3E7DAx9u!hLT(jK^wZr!Bmh&XIPswCE~A6Cz=qU)77N3mg+ zfK3M^*3O-{6TF8yR(nFT&ElPle5w3h*A}owJ;{fC+bW5j)B=VivSZQ&YvVjB(w7J4 zp2&b>!06O*!U4bcKz`{ z!~w=@i5}`K}wDUB=-`VRa*gJ;ZZ=%+4BYE2O#?n?|R#&iZV}Su(y*y zRxy&6$Yb4LEVW0ByZsEdZxaNT*7WzF*)OD#5_@-J<|EO=+lO2EfTB1ZJP7Uk5Q5K= zP%A!|8B(4-{HUFMO|wt6DZkva6p!?=C2Y?n1VsO#pUUwNIV$Wx`i2DvL5`qE-~^j6l-#rVEh)$j^+(D?;n}xj6SrQC^fB4v)AUI)gc9!ZIFWGD{lxJyZZ_a2{Fg zw(SkINP4}b9nb9kg1C2oY+L(#;sBUBrt>k#iK%9|MZl%i4vf92A8?8<3rpv|l@N$Kt|~ z*eq1Bv*v;)ef_;!XHYs;*5i&=_6Il&9v*DBT#Qg{Z8_NPfe6UB3v;Mym;Eo=jdJ_0 zM&dIry1JV4{V{Lq8Zjz)0Iw+v#z$kS91NL=6lrXlY5qd8o4brJ8k`V-HS^#BpMJL=R3ksH})n7i#rb1N-;|(hcalmG27?t%;}-v(EfaLIF!6XubJDDxtKXYp&$@ zyv;eTc?d=eGI;~h^bwkzMnMK;pfk;gDi0%bnJmmL*8eDllRGVi5F9~3%-BG^7B-Yt Vu;;n{BnAim$x13pl!)ni{Vz;7YJUI# literal 0 HcmV?d00001 diff --git a/docs/reference/index.html b/docs/reference/index.html index 904a458..d828c63 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -1,5 +1,5 @@ -Function reference • alookrFunction reference • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -54,8 +54,7 @@

Reference

Model Classifier for Binary Classification

-

A collection of tools that support data cleansing and splitting, -predictive modeling, and model evaluation.

+

A collection of tools that support data cleansing and splitting, predictive modeling, and model evaluation.

Cleansing the dataset

@@ -158,8 +157,7 @@

Classification Modeling -

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/matthews.html b/docs/reference/matthews.html index 53bd107..b4f792e 100644 --- a/docs/reference/matthews.html +++ b/docs/reference/matthews.html @@ -1,67 +1,12 @@ - - - - - - - -Compute Matthews Correlation Coefficient — matthews • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Compute Matthews Correlation Coefficient — matthews • alookr - - + + - - -
-
- -
- -
+
@@ -120,83 +58,92 @@

Compute Matthews Correlation Coefficient

compute the Matthews correlation coefficient with actual and predict values.

-
matthews(predicted, y, positive)
- -

Arguments

- - - - - - - - - - - - - - -
predicted

numeric. the predicted value of binary classification

y

factor or character. the actual value of binary classification

positive

level of positive class of binary classification

- -

Value

- -

numeric. The Matthews Correlation Coefficient.

-

Details

+
+
matthews(predicted, y, positive)
+
+ +
+

Arguments

+
predicted
+

numeric. the predicted value of binary classification

+ +
y
+

factor or character. the actual value of binary classification

+ + +
positive
+

level of positive class of binary classification

+ +
+
+

Value

+ + +

numeric. The Matthews Correlation Coefficient.

+
+
+

Details

The Matthews Correlation Coefficient has a value between -1 and 1, and the closer to 1, the better the performance of the binary classification.

+
-

Examples

-
# simulate actual data -set.seed(123L) -actual <- sample(c("Y", "N"), size = 100, prob = c(0.3, 0.7), replace = TRUE) -actual
#> [1] "N" "Y" "N" "Y" "Y" "N" "N" "Y" "N" "N" "Y" "N" "N" "N" "N" "Y" "N" "N" -#> [19] "N" "Y" "Y" "N" "N" "Y" "N" "Y" "N" "N" "N" "N" "Y" "Y" "N" "Y" "N" "N" -#> [37] "Y" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "N" "N" "Y" "N" -#> [55] "N" "N" "N" "Y" "Y" "N" "N" "N" "N" "N" "Y" "N" "Y" "Y" "Y" "N" "Y" "N" -#> [73] "Y" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "N" "N" "Y" "Y" "Y" "N" -#> [91] "N" "N" "N" "N" "N" "N" "Y" "N" "N" "N"
-# simulate predict data -set.seed(123L) -pred <- sample(c("Y", "N"), size = 100, prob = c(0.2, 0.8), replace = TRUE) -pred
#> [1] "N" "N" "N" "Y" "Y" "N" "N" "Y" "N" "N" "Y" "N" "N" "N" "N" "Y" "N" "N" -#> [19] "N" "Y" "Y" "N" "N" "Y" "N" "N" "N" "N" "N" "N" "Y" "Y" "N" "N" "N" "N" -#> [37] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "N" "N" "N" "N" -#> [55] "N" "N" "N" "N" "Y" "N" "N" "N" "N" "N" "Y" "N" "Y" "Y" "N" "N" "N" "N" -#> [73] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "Y" "Y" "N" -#> [91] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N"
-# simulate confusion matrix -table(pred, actual)
#> actual -#> pred N Y -#> N 71 11 -#> Y 0 18
-matthews(pred, actual, "Y")
#> [1] 0.7330937
+
+

Examples

+
# simulate actual data
+set.seed(123L)
+actual <- sample(c("Y", "N"), size = 100, prob = c(0.3, 0.7), replace = TRUE)
+actual
+#>   [1] "N" "Y" "N" "Y" "Y" "N" "N" "Y" "N" "N" "Y" "N" "N" "N" "N" "Y" "N" "N"
+#>  [19] "N" "Y" "Y" "N" "N" "Y" "N" "Y" "N" "N" "N" "N" "Y" "Y" "N" "Y" "N" "N"
+#>  [37] "Y" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "N" "N" "Y" "N"
+#>  [55] "N" "N" "N" "Y" "Y" "N" "N" "N" "N" "N" "Y" "N" "Y" "Y" "Y" "N" "Y" "N"
+#>  [73] "Y" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "N" "N" "Y" "Y" "Y" "N"
+#>  [91] "N" "N" "N" "N" "N" "N" "Y" "N" "N" "N"
+
+# simulate predict data
+set.seed(123L)
+pred <- sample(c("Y", "N"), size = 100, prob = c(0.2, 0.8), replace = TRUE)
+pred
+#>   [1] "N" "N" "N" "Y" "Y" "N" "N" "Y" "N" "N" "Y" "N" "N" "N" "N" "Y" "N" "N"
+#>  [19] "N" "Y" "Y" "N" "N" "Y" "N" "N" "N" "N" "N" "N" "Y" "Y" "N" "N" "N" "N"
+#>  [37] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "N" "N" "N" "N"
+#>  [55] "N" "N" "N" "N" "Y" "N" "N" "N" "N" "N" "Y" "N" "Y" "Y" "N" "N" "N" "N"
+#>  [73] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y" "Y" "Y" "N"
+#>  [91] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N"
+
+# simulate confusion matrix
+table(pred, actual)
+#>     actual
+#> pred  N  Y
+#>    N 71 11
+#>    Y  0 18
+
+matthews(pred, actual, "Y")
+#> [1] 0.7330937
+
+
+
-
- +
- - + + diff --git a/docs/reference/performance_metric.html b/docs/reference/performance_metric.html index 7735a51..96264ef 100644 --- a/docs/reference/performance_metric.html +++ b/docs/reference/performance_metric.html @@ -1,5 +1,5 @@ -Calculate metrics for model evaluation — performance_metric • alookrCalculate metrics for model evaluation — performance_metric • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -59,36 +59,49 @@

Calculate metrics for model evaluation

-
performance_metric(
-  pred,
-  actual,
-  positive,
-  metric = c("ZeroOneLoss", "Accuracy", "Precision", "Recall", "Sensitivity",
-    "Specificity", "F1_Score", "Fbeta_Score", "LogLoss", "AUC", "Gini", "PRAUC",
-    "LiftAUC", "GainAUC", "KS_Stat", "ConfusionMatrix"),
-  cutoff = 0.5,
-  beta = 1
-)
+
performance_metric(
+  pred,
+  actual,
+  positive,
+  metric = c("ZeroOneLoss", "Accuracy", "Precision", "Recall", "Sensitivity",
+    "Specificity", "F1_Score", "Fbeta_Score", "LogLoss", "AUC", "Gini", "PRAUC",
+    "LiftAUC", "GainAUC", "KS_Stat", "ConfusionMatrix"),
+  cutoff = 0.5,
+  beta = 1
+)

Arguments

pred

numeric. Probability values that predicts the positive class of the target variable.

+ +
actual

factor. The value of the actual target variable.

+ +
positive

character. Level of positive class of binary classification.

+ +
metric

character. The performance metrics you want to calculate. See details.

+ +
cutoff

numeric. Threshold for classifying predicted probability values into positive and negative classes.

+ +
beta

numeric. Weight of precision in harmonic mean for F-Beta Score.

+

Value

-

numeric or table object. + + +

numeric or table object. Confusion Matrix return by table object. and otherwise is numeric.: The performance metrics calculated are as follows.:

  • ZeroOneLoss : Normalized Zero-One Loss(Classification Error Loss).

  • Accuracy : Accuracy.

  • @@ -115,28 +128,27 @@

    Details

    Examples

    -
    # \donttest{
    -library(dplyr)
    -
    -# Divide the train data set and the test data set.
    -sb <- rpart::kyphosis %>%
    -  split_by(Kyphosis)
    -
    -# Extract the train data set from original data set.
    -train <- sb %>%
    -  extract_set(set = "train")
    -
    -# Extract the test data set from original data set.
    -test <- sb %>%
    -  extract_set(set = "test")
    -
    -# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    -train <- sb %>%
    -  sampling_target(seed = 1234L, method = "ubSMOTE")
    -
    -# Cleaning the set.
    -train <- train %>%
    -  cleanse
    +    
    library(dplyr)
    +
    +# Divide the train data set and the test data set.
    +sb <- rpart::kyphosis %>%
    +  split_by(Kyphosis)
    +
    +# Extract the train data set from original data set.
    +train <- sb %>%
    +  extract_set(set = "train")
    +
    +# Extract the test data set from original data set.
    +test <- sb %>%
    +  extract_set(set = "test")
    +
    +# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    +train <- sb %>%
    +  sampling_target(seed = 1234L, method = "ubSMOTE")
    +
    +# Cleaning the set.
    +train <- train %>%
    +  cleanse
     #> ── Checking unique value ─────────────────────────── unique value is one ──
     #> No variables that unique value is one.
     #> 
    @@ -147,10 +159,10 @@ 

    Examples

    #> No character variables. #> #> - -# Run the model fitting. -result <- run_models(.data = train, target = "Kyphosis", positive = "present") -result + +# Run the model fitting. +result <- run_models(.data = train, target = "Kyphosis", positive = "present") +result #> # A tibble: 7 × 7 #> step model_id target is_factor positive negative fitted_model #> <chr> <chr> <chr> <lgl> <chr> <chr> <list> @@ -161,41 +173,40 @@

    Examples

    #> 5 1.Fitted ranger Kyphosis TRUE present absent <ranger> #> 6 1.Fitted xgboost Kyphosis TRUE present absent <xgb.Bstr> #> 7 1.Fitted lasso Kyphosis TRUE present absent <lognet> - -# Predict the model. -pred <- run_predict(result, test) -pred + +# Predict the model. +pred <- run_predict(result, test) +pred #> # A tibble: 7 × 8 -#> step model_id target is_factor positive negative fitted_model predicted -#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> -#> 1 2.Predicted logistic Kypho… TRUE present absent <glm> <fct> -#> 2 2.Predicted rpart Kypho… TRUE present absent <rpart> <fct> -#> 3 2.Predicted ctree Kypho… TRUE present absent <BinaryTr> <fct> -#> 4 2.Predicted randomF… Kypho… TRUE present absent <rndmFrs.> <fct> -#> 5 2.Predicted ranger Kypho… TRUE present absent <ranger> <fct> -#> 6 2.Predicted xgboost Kypho… TRUE present absent <xgb.Bstr> <fct> -#> 7 2.Predicted lasso Kypho… TRUE present absent <lognet> <fct> - -# Calculate Accuracy. -performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, - "present", "Accuracy") -#> [1] 0.7083333 -# Calculate Confusion Matrix. -performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, - "present", "ConfusionMatrix") +#> step model_id target is_factor positive negative fitted_model predicted +#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> +#> 1 2.Predict… logistic Kypho… TRUE present absent <glm> <prdct_cl> +#> 2 2.Predict… rpart Kypho… TRUE present absent <rpart> <prdct_cl> +#> 3 2.Predict… ctree Kypho… TRUE present absent <BinaryTr> <prdct_cl> +#> 4 2.Predict… randomF… Kypho… TRUE present absent <rndmFrs.> <prdct_cl> +#> 5 2.Predict… ranger Kypho… TRUE present absent <ranger> <prdct_cl> +#> 6 2.Predict… xgboost Kypho… TRUE present absent <xgb.Bstr> <prdct_cl> +#> 7 2.Predict… lasso Kypho… TRUE present absent <lognet> <prdct_cl> + +# Calculate Accuracy. +performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, + "present", "Accuracy") +#> [1] 0.5833333 +# Calculate Confusion Matrix. +performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, + "present", "ConfusionMatrix") #> actual #> predict absent present -#> absent 15 3 -#> present 4 2 -# Calculate Confusion Matrix by cutoff = 0.55. -performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, - "present", "ConfusionMatrix", cutoff = 0.55) +#> absent 9 0 +#> present 10 5 +# Calculate Confusion Matrix by cutoff = 0.55. +performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, + "present", "ConfusionMatrix", cutoff = 0.55) #> actual #> predict absent present -#> absent 15 3 -#> present 4 2 -# } - +#> absent 9 0 +#> present 10 5 +
    @@ -210,8 +221,7 @@

    Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/plot_cutoff-4.png b/docs/reference/plot_cutoff-4.png index fdc5dc9ec4129c72ac45bb36ff38494f7538b5eb..02ffc07ebed55f069855836ac35f7d17fd2907b0 100644 GIT binary patch delta 56418 zcmaI81yoht^9FnkKoL+B6$AwFBHbV*p#pNH1f-<|q(Qnl2$CY;rKCj=M7q0Gy1PNT zyX)JBcz^$IeQSMZ`PRMr?3mdz^UO1I-~8gsLB*Fd!~`Mog#hs_ovFz6{f83)wU;j< z*OX|p5D0PvO6cipi$`qf)8m!Z<0;DlI(W;wQ|od@GZ&l_FCsRWb8|hWT3P~-!f_r* zY&8UUg_QaG1yWYd+#!w6uKBzy2^YYJ;MsR|y-R9P?Ao(bgK0RF zL~V;7GhaVgk~ztIBS`kujK#OksfoL_P4yv2r3lV?FJULi%O`_fqFr3?nuW>X6Mg=S zMkfA@(O&z}o{IB4vsbm7# z&JufBI$pu^m;LlxjqQuhSb}T%ywOnQQjM*LkWVm<{9iw<>=N;IGv~h-5F6xueQAIF zO+%2R=Aw<$C$HUfcfDK8%xSvjM`L@dVYWxzgq-@}o#0&Os0pr=Zo$~+6~(w3(6VnRP^{q*I>ti_7UZYfK(b*&YB|$IKpG|)cQo8M z$a*Q=O0|+5Q~gn=BjB^P`6 z-u_pl6ZfT0lnrR4(tJI#XOkQMbQ1J!45oe-&gIDR228`F_m`e7FAwYe3{@%|nihgi zhlt7(l<3v;H)0yrRow4;pzf{psS1kKg%57X>Hx3{8r#!5c!Las=}Grg6mbgoVXsD$l*zkFX?45#Oj3OZ(e@N;|O|ye3n%(_tzfhi4NFa2dG}@TBB+NdirxsQ^?hm}!l{L9FXf!>Vwg#892`vZ z@pK9frkvdVLQAJ@GVqUm!A9tE0r%7YDzT-t)L)UHmXEJH_e#e9=M^0tDfli6ov?GzbD$| zWP!KHEk&%i%F4rBHZqvfIcC(1p%RslA0#pA4cnWMmuKB9ZdzhaBYSVD8QL=rms}{q z6S&HoR9FZp$;rt%*Lcz0xbo9xc^Dm^knpIhvvXln>thI$>|ej}z4xXZrUTvXS2NRH zo%WM9jopiwLVqRcjc}G19?u8AGHba zJSVxD`AfUMImpQ?qt_^NBlC?0Ab?)EzE*Wu)qBsDJux-4OLArPw~v@ka4K-j zlZLQm70-0kwB`16?~`5vZwR`we1FgsCKt^5T^fb%$dAz`;#AiGjTP=ZQ5{OXa*|LD}r1+%`5N>~hgVK$&uU(J{jE`-R+%#mVs%dT8J zS>45zGnEK;lhwcwiL#D)R+r@{34I*$&Q+>3OjV!Ox_P=qEyWqvf$Vn9AAcKF;^tPo?E-pkH2+45T~J9HFxZO#(2PWy+O;dAPj$QPwo5?D-+ z(vZbouK83Mz-Q%lhwh&Tp*r$W8^lgcZx&=BbcxQ^0kgP3qEba|3hY5JOW!2qv5{U_ zVodPlFLi;M(-m)ixLu-OpJA+YdjN?tF-Z#wUbLXF^avbzVIm)btm`k47NMWApa8E^ z(`B=pyea$pxuIvXXM2qo4;;(oa_p#t?9`Sqx+5#gv#XfTOS6`dXwcjU0+-Nu<@^ph z3RgxX^!w?)hrRh_hX%&s!nSa^vhEt>sc7IshiBz24Qe!LVwn2hH01TP;lnsptsqYv zSfV=wct};D%7H+x!@UM@75(*6nL^+6{3o_+7^Xbts-_s}#8+x(hiaf{!Ctx$N?k#3 zWSyQtP_9#Q%ZJmoM(+YOXm@tM#N7npK0}msmvu(}?H|hF%sLVnZh%AO2xo_S^f!&@ zJbCUv5rnhlm%2IcD1NGIgaA;$1B>}b%e}J$BQ?lgg{_LWb<9ZAg%hxH@^)o}2h^CV zQlj-(aXxI&SG><%7>)`5HzcfF0&33cCn#z5L*L-@KeN`9(~h@GVP-)#rG4CQTKVwQIzVGkns{S~y5 zKxDBmU#GwOB4#Lb6^BnL#WujkC{2AHz6z|h_2yO^ZPMjh@OedM(m_bxTq zdPFxiH3df84e4aHuGTZyIFGhBKf7`^DXQ4qDPaT`t3+|tkGmv|&am1Zs)i>4IBg6V zm~XBz?A7og3{xrH&~sNq9tDI(WKrXV*@F#hXPUiNT@saKLqh#O^Vs>|%K4elDwlO` z9*L6FRIi)p80qN4aGHFl{Sw{yc@k~BA9>|;C2yhXP!V6zAA^E|=m};U7Ar zT2XvzN`fB?RuqW;f)p4BcrL%qe6W(X=7@FVs zNvnWo(h4_UyEZYw264*u8c(e#&xci?0+IkpYTFO@n~9iTWznP1a%zwMk7J?s)kD~G zfs-w93U+XD{r(m`|+8#F7tcM#;2zmjoF_Y6FcNd>*#t2Hl9aVI%Gn2$gsG^oD+ z6(g)pnU#xz_xelvI)fFq&`61|t>Pz8DE_JlJA$Ty@%{v<%6!j%VAETu@>;x$;(%*@ zr0bbuP<^#>F^QZ`1&9uXCW4ZJq!s4>17sI5m;xyJ{q(P-{7>LW5Eud|-v0RkZvNM^ zz>^~g=Dm^#LP5j1F>IWCM8!m(uaE}(K^98HBKzE@whn<)yw)W2$xZubr5Z;3^;}wW z0DpfVXt$2zFmx*X5AN$k~IkEluT z_DS(Y35&G@HZ&W|G!B)8ual0OlEd3YAS^!xQQI0C7;I$69Et}A2QMgHu7UcFlD0Y7vPw*<%P97J4K!Lc1TZeH$s)3 z^4-eOqA3)JRCU_yqNS$~(hmo7VPIes?ad|M#&*v!9(c_0`0-vOfhb9F6UlIe{eLR_ z9;8^gUv-Vi(l$yzd>C@8)c8&TT`0>I!=%}neSubftekzF2t*ZxpbdP%qio)Zq4Btp z2{f{{TEsvMqF6MUuAKLKtmI^6<2=cn6`Pux!nw@8(>JW~-U(pNd`xHCWDZsn{FR*c zc%xG`%ziFOoZ$`Oc?d#z-!3uc_KVAI;aBk+w+%h4fes+gM^e!xHT!DLyOaGHn$HL4 zoe##z4FCQ1Rt?FfBk~v{^?deVa(a6ID<TG)r3Op~G?-@^ro8~}6q)Zqagj_#UN+0+qq^!@&Hv~r>o|;d zUlzJT3Npp!3g~F)$j)g!Vx+S-Q_IGoTq5FeQc1~^C9B-rT)wv$8JdKA6jV2>NzGjr z>apvrepngCyWyGGRN+{DjCt65t4steD1~B;ypDX1iR5fXwGthWR7S6Gv|Fq`B5Sph zSxNz5yeURNovCyKecxe$MIxLXm8mG6KLlAvJT~sn8Q8z)@t}i!{7Ao;0%L~8Hx|pb zrg<*-KVV}cT6eodMyyRmQSm1#@KMtD@6Xc9kBaUvzWHg<%$-=h|K#{!om5RhK_St2 zAkXSW=i!|zmphAXOi?njvVjH$295v?Yi=#YMUvKJ-d3j}r@84(edp6I5p)ejdjgvq z2Ak{aU-snz{UhVvbJ5qB*`}hN1qX-3hp5XM1LMgv?z-Ai!F`qIAt4Se3EsN08=iZ$ zrm5S4kB^V4^YdE)TvRA<4KbWwAY?@9Q%65f7mWJ_B2(YgVT;7yO_cgDm;yXO-`eQUGg(sfJQi0sp%st<|a}Vpp4iT!! zVEEzwcBt`ya>08|&+;NR=*SV({*^`RCK0YEwsoDxa<9%A))ag>yNY3|sTnKcOBnn2 zuSioQw=A$ib5(`3`CnOCGS{E1xbQ=}6Su%IJ`-~`FBb?_^-=y9W+6^Jg_H3iLA~0> zdmFRiJXXJkp<}1goJH!;D%KZw}g*}Cn0uzb6{NX1Er#y1X;%~O6Gh<&n6m!K~< zF-)DE%Z?7F1?F>m)HO7|9%8BES8y#;tDTF+Ooo?yzui{^x>(IFJBUrpo7A~lCqn5#B`&qLPn%r z;>U6B(WmMYwP>W#0iWqYz^)e%r=XU!cE$tDud>-*SWrr7B2lwY4Lf)8t--*HvX4SI zgwzUYtAXMq@1r09%cGNL#moh8~TC zSt^dMQ-p&+RFr)OZv^n^W!N;H2k_`m-~i8!uR&_yUrr|YRs)ZEm7@B8__1Cl5Q*=Z zXIo4V5CCvhk4==z0b@z{sVMsf#s|Us_%GB&dxKeJt!Hm6e`Ucv8HM1Jtyo4N4)Ez{ zHvRhaa1r)p2aXB~s$Jx$dn^=F7SKI-m^U0XX*d%@Bl+D~>GJAQdKu%=?pgfMe4qV~@Ri59x@5EunBM@~pW+Y%LQx5u8AJ@AsZ{0j> zYd+*AA6~nN=+({qnq!rml&T^jCr9L518+8foS*~&f+(AEy-P(u$4xdf#J3tHzzx-Y zabh>uhPk1%|J^)9p^{S8eje1g!tyH_1o|@sBe6y(Q^%0$iS+gC9bOhM52@xh} zq@27wEde$S_)qoYy-*~G8db$cm97}1{L6t-{If%8#r#lS^In7c(LWuf65CZ1Q-`^v zMDR*deEi4H{r_OzK+rq`>w0jmP9U;Qxma0p+3`$#0gld_$?CJ5<-1Lcq0qr<&EC$q zzt#4T&HSK6OBa})ren~`c+xPvG=Z&|D{hE>Xm8J+Z+{`%eydN{YG=%IKFVfT+8VOX zL)PUjs!lEaji??7>nlmMa4eqJ8Xz7yKH4s&m*U@z$KzedD9BGvN@|-=FK0v*t<}@% z5c)pc=aC2cLc$kDE7_O34?(Byn)x!(qq910PD32-&IAT!r65FK$zcE zT{_+xFg2|Dc-2QFjtANvw2)I%W2`aj?Ct%zyFN`vh%*=G&)+^#7g)OA_>~2aX>+3p%kjKRjE*^NKzh00zz4jzA_d?DVPDdNs zi~t@i%4w?)9p53zD!fUnFrc=*Ac`J*CED!r7KN6E z)Tsckajw%RZ+g0lm&@o-;jB6@2L}i}Vr8ZHgeGl6Vyl966OOIwf*h}5{eI2 zh6liYz$1ue!Ko&OKCb{YTU73w#|{;YLzOgs;T)S&S0s<+#c&$i-ddO#EAPnSrb7yzWU7J;o2ts zqvxlq$G5byLWTIY=b+qVwDZA9!^D=zC_bEwC}8r7a!QkUInam&Mi7p3d5$C zD4F+*_c(CrSI_8%qy7Dn<1_$=MA3}J3#^An+vN%(B7Yh4KjpuC%*NKiJ6z`EuH+uUQp)oFTU=uFuWnf>x%r~`xkEqTp##ied&qbI@ZEA#T89jAgR*Oc!6>itonQfLXbId!87|#l*r8VR(gf8O07v> z7UdFj7#9Nsr_==8?!((Sm{x7VcTom?ipEC=yXg3;s%M|?^A)K?vjv0rq}RfJ zn~t>I+-QKcp=a+D7Q1LOJMO$kwSO1>#1pCGFrS+LtBn81R94mO&uz5w)aucyKjiBW z(U+|&h8FMWq)CiyUn&CAq8O6(I3bh4-ld|*ND`1^iJ_w%mI@2}`3$>L@Hj;WMu3QN z?u>pB{jE}Z0D^>!ho^t+^!>~u=E37YGvYW4#UdX1^%l}f$|xJj&A z9Z~{aM7oi&yh{boOC7cWQMH`6XfW{94f8ZSsakc(K}7&l%PA;Op$zo&T1&TwlR=U$ z2Qr<3WQBC=mgAvi=N{hsT<^bu>sWrY$+Vm$##ksMBUTCP+*a5ad9w|~k)#NdqB=V7 z;ytZ-?2*0h{1V)md&I<)sOcEUIh6m!FW`+cK3QAX_MDZCT(tc8!0Nv^*8|&3%1+FbGHj#vyPpcD=vMsn~fVj%*eL%q&y91M2*Mb^j-PD0S!EA4|abF zrYCs5=pLs@q>ZYzbsj%Rm0&yNnfj_lfP)zv8k)$~@bTD^)$myKn2k2<*UE1&;&~f-+rZ^FH;R^;npz`|)>>L#KHW$EdV20wKF`z7_^IBM2UalT+sLP5cFOUn~dG4<9f1@Q?_4zIF4Y z*%%w4M19~$CLnbxfYUP4q$HLcji(JF-iQ0V_c$5nPNIUwwg)b8!mnSnbi8b9WHJ%&1>`?)xWmO4O}K?DO7K;N}5x+_J(86G3X8>ay_EjS?jy z8<-+N{2$4dr&u|Fs?>ND78V9dcMZ%q%Ul3v3J8qUu#3v4s#Afzo2%w`Y+J0g>IVVB z`J|UX#1EbQ?guidX9}0~1!+IS?x;Y=;4T!cuBI04j|ym1E|&z11HW;(v0LRgrkIB? zi(=e@a;&XAhRihB6h6mdhjq9zTl>c+)eP`{*k4=dDM4 z2n&z1lOGq=Q{5crs1;>5zxR@^&7+_W*ic)0QU|2A<*myz=3r;vA$^zzRDP&Md*@S9 zUS9XKkf;a{1jt8ladANzGOAq5+RuJ+11+sUm#UsvWUMmz?wytTtDQ$oOfCCLGV1C~ z|EDsEm(Bs9ewGcRJJ+sLmN#Ra>>xT2-T^qVsnt7GRn>OJoDbz(RI|GvYfh`i0j^h< zFw66PtNB6^c2MfpdF2MQ8z8o*A6piHq*QI}EE7WH2v=Uy@c-`S`I2|)8-{#(&{wxp z0y%&Hb}&lvc~InqOF+NIpHmi9oItL8@_;N-kSdqBBg5xBi#(}UA^4tK*1mTihF-`t zeD#=m=ywhRhFYvt0q6Mg_CP$iZR3`bBNRyrX<1oW2a>LrL6+J|BYAwmJUdI9oxN7M zTwWwc$%J{rh8|IYR}FdeDd!p#BWWs#?gLC1YNo2toJdBq(w^=7V)jYL>xHU@czmqg zsLNO33mK&q?t^>38-%~CdinhbEJUlH4yv#)&D=s&M<+c@}ZG6?3=I^DjNdv`+KXn+^P1mkSTE;5Q8G-YTh8ezL5Dw>I@|x^_tbITcY&I?|%Ap5OQ^UhWMQ*7XVPQC!DUL*at$Nd>n=)5+$19*T6HM70z0a;m;sP4U7 z*6@4htuFy(u(n7$UR%ywV5sqn6YMj9)=yOx&jOs61H4mlx7;;4vcR*CIpL2P9#0_Z zjCNP?6?31NtDbW#@rkfQ+js)%h6^7cN>J0N|Ct_`YZte0bm`C!1EFs`FE6`27)Xh_ z$KBrT4>kH)f=S6qGr$JVHtj}Q*unrO&JSxzZv#^Jt%*l^z{5pK5q?K8Gt~Lf?4agf3VBr;sFJK*#FDipZ-s^lJ*opw?`Qd z06=T*u;Z~HAt3>L|2@EOjYw~K!P9=iBO4>dlBYkfh70z9vA_{(r=wd-iN1)5uHVCt#(a49%2FfLQ8X0H5bz8nOu?16pb!2;>fH|E}eDvY~u2~%&b zGYOEY{tg2GFm_|>kARx<1h#^H#fHgDY4F%X1cpWeti2}T_3^f6a(RtSuCO?7G za+(bOR6qE47cOkTK&DexYH{@z-Z$MWPpFy~FGc%|*GQTG0KZ%M1?dmZ`;fgTF{jCE zC#TXo49f8!!B+e8=MU+f43Haj1Uz`YQTxyzY+VK{)?R&GAf?g`%W$m9ebGb(FwOW6 zMP}}n@3`|HA6NkMH`tu(+B;l^(%ai*7}QD%h89Da)YHI!05)AhER<0WEW&@Zqjd;S zy8;U3UAFV@lQooYL-L|c@3oGO4jk(&LGtRbt&*Yf;gR^)Z`>ABw)y$SDtX2Z$7G*H zZcF?dQCSynb&yr^n3^kZ$!dd zd{9~fQ0B#bJ0Xxfnv=i@4}h@gav-gX^W%95Zga6VR5a>(t+TcD8%QGH5W~SS3)qQJ zq(l@?7cuXCqQGHYgTm|A$R4ZBVTWa_z7a!(c_4w*{9zdYeZej}(iWU{CqqG6;v@y= zqN0C3bQ^uTF)ZnKXT}B_=>ee)O4_kcyFGTw4PcfEfv^vu6a&obyXMFwvvKGz&5bLy z%s88~9WTlc7fmTqrX{N)gZt6%tFDIg+N5FP5Rz9j2Z5Y>P%B_N1_OD< zL$@&mIX{ttf;x%fkty(vf_wF~0V00B`V+NZF>$lD9kJm0qsDbfuCdDi%+bguESRer zj`dpyJyppcvW~#1?wwo%xdjTn0Ud8c!#cvk!f0jrHRnUlV|Cjx4De2w)Ba2JyOwAM zRQMA+^TFxTjdn3g)N1KYl}dDci@@<< z@dC*3zI0~Ea8Xgc2z(^b-T_Gols0%6fx8Ivjz}6#PT+g=LIr9_EPUfb_^Np9m(u6E zl0)PD8s@Y^S2+Hr>MVn5#%*t*4X|xGHa1!GMm=5n%uJkrw-^3HcGKY}f8J&a)m+NB zKKS0W?+{ZI-T2EZ#aQJWJZ>q_-|3hPRZnwuy%=RT1%(x@{w3c0eM?I3kI(IJVDTo) z1O3}pmUaU~C2=qOyNj&mEt@!cYP0BJ&LEIVs{7khH}%oIw=aVe*6Vy50f0uZJU-kuZ2KpGq#YL zY75bdDpt-HrIkTD|E>+0H!y(oq_y_TL#zG8e8c^%MYMANKAe<&y2H?3A56z#_D=|y z)f}KHmftI~xlFWKb+1zV1v%nnZnJBQ`WD^=SucYAO!U?2IB zVxe;&PRKuf`T=HW4!82l<$#xN2#iQzELnMW2t2(4FyN)qZ8bnpC|7&nc7WvnTd2CT z5_)4^{kVu%>*CBs>!<46rRxCDgfy`x+fQkj!&^qQvR;g}@~r~YHDq1r3{1GV^w^h( z?cY*1ht^*lR6B5B4517)%I44`|B@593ZsH3%zIdrf4A=)+8M_ap$0~3Drf-nZ z(u(8U&I5kfUaaSh#buW+SAx&fOJ=4DnH1Yo15EM$ZnYf*CH)HzUW~p zZ;ur_f=JNZ+ixeqhU6Ru@bv?}6{1BIZFZ{!hlSBpGk4~js!PQ1t6say*omTwLJs8V zD20SDsShueNj+Kp2t$$0r6Cm$&7TVCYQR<#u&-U)1lDhh@k^5s=13?}vI*kSpgRqx zdIfvxHl6%TRs-WY_SnCFZ%YAfkB%ohoOuBt9Ozg8{!c;GDi{J-W&=#TlxZ^<2$UK7 z+!MrQTHu}leGIZ>pjGoaRUVDci$ajg#I)U*r?U4T9pGw#iJS_9p8 zNP(|#a7YMPR5!GFIj2Li1Mo&^-nXbgB}9K^w6bV-Dk9gQixyzS^daM#&%}wrbP6YE zaAmAoCp-ZV`BpF|4^Tpn+jailr7gI4k!v!UmVV1X5T~Dr_O^7$ZBe8DhTA50!?mlJ?UrqASehEXh;AL ztO~>)w5u=^zUCs4N8XgCzcZgVUFW#Zfgzwzl-zFHep$H27ku=rr@o`uWpq->@7pjpS1Y=AQ4$)(6@& z63U-EvY6FH$Ik@C)Ge0Ji}!15FeuT_|IkIEny*sP7*-L122Tph2JGQ$j0NOB>Qxa@ zca7ORId^Vrom3SOh$7j1KRrZ%^8#9?kay~x%6xaNp6Jrki4(;j_&~2cdJCR$PGEqV2404TCfLz>xk6Cw2SIav!)>5g!|822!JE~ zrXp0%($0%_w14ft6p9ffBSTe;q!gTVVrcDDm4|U@Am2aTdXguYZJSx*Pnp^KhRk`| z0^jp>R6)KcnD6au5oAMhuzmBt*%IKSE1t2~Hehh@2`CQ3msIKY7wFc~BFKc{XG>|N z1qv|SiK5`IHaqY`kO97ThTkK0<|!84M*4Lm>H|~g&)uKnj(8`n#T9DUItx$ygoEP` zO?XX25=QV(3Xnx|3lVWA91a4(7tXgtO{Buv@Y8RH^oML@+2N!wPvbJ7=neR2^^9{& zR8YC#yGd)%3S8TtCv2_x1+;UKPkyXUV=OC>MuV#5>2D8`{*b&%VYvI|dsADqSu_XN z!+5nvDyBcK!P7J_6A;^ZJzHi9Kw^~byxGc^+Tgr}i2wGT;sx8g&ONv#jGVGGr}UYC zQm(vo&nEB7#EGv7!$(secvyJ{pk-=N#4kt05F^jpjb*N#KhrYT?Vg_S5Q1p6Unz4e zlWE8M)A_oAmMIX_z~MGD@XQb-HmzQ@E5uf* zD|~0JDx1xpWD078bKLIiTh}p|Tt4dExATHq*9?^Yh{5p_;J+DfXO%&9&v&}JfZWlg zr3lZmPaRUEj^&= z$m%bV?$3gP-ep_C{!gUL&%iGfeE*7Ibfvts7SwX52fb6xHYJ}--c2J~%JCo4t7E|H?ddCD_)Z^cIwaisunK@C!f7b0W(EQ&0wO{FT1`hXnDu&9fF~l($5;eA*it6yWpw7Z;z!wwk1a zwx|~Hdjf)OxZ(k79Lp*dChwF&Y>dJafK&F@hXPVS0d`xxdc{U3ly^_1y%-84dGUcM zgxYdV-`uVE_(*6QIF039jEf(vkFV#j;<)vMBX3_>IEd!JsSa(C9`PI$Y2d z=#X+=3v{Xv6$Mn{*!x~!pl?gUkYXQ$nkCHq z(}D8C$ZoUEf!}2fEW<$-XgG6y4C|bEo+*@hi(&c%lwP`1l(KWI7nOs9f@VObH8`Gb z5(&a594Q=zK-dFWU@xikb_8f7#3mZZyZssPDj&5w_pI6n2O~+!r{sBrMAQ_2rJ+Gz z)Mp*Tc;~}I$>44P=eCox0GKL?^D8*vU?G@<<=`Mfvm$d#>V|rIBUf-vczl=*e)r*MWlXNf<@Haw`4N?b?&Re&LL#2D^O%bhp0^ zs!XBC+PagE-m}pr!dpi)Kg~R90H*5SH<~ z0W8>uPO%e3*z||ufAgh+8Xlef!Xql=CY!BlPuJl#07T$rEK>vg@ zG9n_e_rgOYpy}f-9;=kxo%0Qk=W?4ke!<$Sar1E9h@+3}924JgdqYXTh*plBf@Dd~qNaPYn>7`rB z#RKZ*b(ElL^#y6%59Oc$*9EZNa_5M?jVS04g;O55QI|#Q?+obJUF_t-MASXt*;4@? z_7Mu(dGE`2Pv5Px@^gUoQgVh~8wH?CQ|jkXEk;tXJ`;AYO!29;?oCQx|^ zRkKg3udgp@pw!=8o86k>Zf|ju)JU`6lT%U(O9RJ(Vd${cwLA2!t{B(gf->9)vw5V}?-ve4 zP}Y1|%KH(_%mgD3|J^PBHi%*WwRcn#GGD7gBMmz+l_GeYw@-Vvki+q)z>TP7#}^Tt zrXirVAw*HM)o-XXkO%V=fN5JYj{#&Loa2M;kHB#*p1qm4uGZGk+v)yK*1UctCzsaj zZ>B@3b8`lyR-Mv-*;>0lomRXgV`o=rQZR-I9HQ-devIwEt9?*jDj<=vht`)GEOP#T zxG1`$l0=Mu17k3^}WjL&g3Zj)jxMBQ82A% zzd1*Vf=i?TdnW?kN}8!`=X;*X&@VvTEUjBWIUpn01KbhJPQi@=FxZDTa>_i>k(emO zcNf*N6Wxi}i_s7O(c7*jwIR-C8~l9J`#z66_?3aoXal9p^HNZV`!+p0GSUWem6{t+5+nkVfUAK*_kRzN0lpXNL&w(zQq?#`i!qhHM#HI) zeJJP*M;R#9?QgPNVJca1ebcj9Kjh@(C$FGp_XD0sLbis~CK8!Tyc-~He}Fv<8j*e< zQe14cC{XJ2A+^l7C?*iNdJM8vuEOTM;qe&R#Kk3}VENK??ZN@Gz)6aiz7F{po?m%< z<0T{XVQ?^F(81}JD7m2c+kzWcu2SCci5Q%~#2jSUenf1QtZeKMX5W9PB~MqUhBDO8 zWh>ryDpy7G#cpy!%xNQzvX%$H-oA}s(&BHucozjBS~tznD98Sag#CYPI`kqZ z(i9T19w7ZzHUzkOyb93F!8)_(AofG1AnjU(A1ND5<;K6I`KsVnG;B9c3 zZ*=2;Ezp{uS6mz+zN5Y@alPDB`Q5^xQrYP{Z#58FT49C=mbw zcxVPlChmgMNYMuW1Gk${FI$5U6Eth_B4T!aQvp8kFEb8(!&^`*Nm0r7lY;g-B0+ZztERG(xs*Pz7oTzFU!5fc`KWplXIL44;b1g+3_k_ zUzrmx0|UeU;BkcR%MUs%;IFQ2Z++5Z6p?Ro< z;5!AZB(ftqA^b1%=-q6l8-K_X8yp%}B6Z{QU5$nCUHqWxUxR5gp#UcMnt2EZtI*(7b7$Zh%O0>Aaah zslN@QBJf4ic!Bo!MmgN2JU>SMOieZfr=MkG$6R&!GFz>-`qJ*&P5h+y19@R@EF^Gy-pE!< za8fp?`gy^R?+uI+3YkpoM27o2!%kZ?uZ}rR3^2JL)jWtptmkM!RdS(6pky+t<(FqQG?#fDnN(?Ec zKiv<}xQU*Dww-zigIea`51hKTz%Q<35B#Zo{?xzu>Lt3{6iJlvRu~JBsrY)z0G7~S zylQ5}*MV)W_o083lZ;|Q@e3qa;SpUH65vbi0wRwO^F@=4&$Y`teV+@7L{)Jw69WY} zbBm~(5+$GcCVUz)pdHq^%eTT;@7~998QcFI?HJ#9+xzUqL7u>^5e2V(YN5=cM@06h z|LM=o{@>TWPvEy{A>mo&5&@o4=pn_{zWVccVfRxF3TZn^1M$bnujc#_sv|&jhkWie zR0u7kI9vV8mmfd_BB|7O;@)>VVCHH0A7NH+Hz=NKueMeOem&f#aTRRv0&{Wk`)IqY z|Fb*^ynIm@^k{cGN+5&CVTq=(*^l)O@=TAc=HRZ@{=6$0=3z7F{o^w^`OyGY&S?1A z;e4-I7hb!8PlUIdJ@P5rnqwkMk$B{{TH!@#%nX*N_V1khh=WlqGla78#k8VducmxX z&ZUjiI|;nr$X$yOud~o)z(Gd~w8Qe};NsH=L-YVxn0Die zAHSc*o;bqyjo!JDN=W=)`4qp>ekEcieOh_Q;1t93*jIu`Ib3Kr7!xM;KoxevN zZP#33eZaY`Nzmyjb1G*@=o_HN|Gt+hb3CzRn#j^gIWt5d?H$WR3`Y?CVzkdn!_}Q4fFks;!r3NmUqfVT4V-7lLFNL&ix$zpm;xlWB zRD8UuS=ewQwlDZ^Ppt7_Gc!aTX@kGjyhu2t`qjAD>u~Go8d*X7V6e9rPDB{nB{kdF z>_MHAqt;&OzyYh={ch{JAgti3WItdbU*dYWmkcj+`b@0APRZ)!;Q%QF_f_v4>50|bt5Ru$PJ8kZRVZ4X_I zy@Nc1OJCYvz$)jJrk7l5H}o>XLO4|0zx6*(Ym__Jd5Ht8^EcQLk6sn5WPLE+-ks!9 zwuFrveng01jhompypVnZtw(-X+%a9M?k_6z{m*twcu(G^i!^&YeBch>ezWb=uTi9v z4ChDH_JWnR^Nx@JC{3e1sQn$|i+_IVZzs%k7{yPQ5toZnbJ^{_10PsZajG7u_FcoBKru#?MIEJn z*ZEGENmbQ>LL@l@HGKa%CvfE*O$k)(#7n{svuiA)mUA;^D@%G#FM(p zZc)egHOCQpJG40KVKe(S$$GZ2LyYm4A)M;gvV>=SThTp6g?||w{86-a3&_db?XN=n z_lO#Ywd88du2_i#1x%D<6&MzMyP;fN!p$H$nD_5j4!f)6Ir?$U!|`uYq#axCtqb-VWs+}hrtk6rY|S` zOKj`95Z>>sl&t0DiB@4ASsCqK>QPdPmi1a~)=5UKS0OsMIF3GlDEf@@8gHX0vy3A^ zSEIdy!&TRBgOjhz;{2DBHFUK#mtk2Bd+bwTfa>CUUr`S(q@g@LHqL6$AkjRrr} z7pI`e@(fq=_FC}Qd}Z5WXX}7befJLjZrHsxt4`f)vFyPzU%pnl zlG1P$1k$49G{1ta{);_oDjKVA(+4Nd+)ZYKs*6{xUN-N<=MgL7Ef1?7(IpKb=<*pK zzE7DTVa%AC3Rrf|&;Nh+Q^nT>+^q~KZ;5-@OQJYn(YTgyyjUz2|5bI#3=3G|de&%0l3%&vC zn|QAzpLD!brG=H|bG-F*a5^+Jllpv_>p8XIUbXL;CDx|Zu|qy*|I5;b0Clu zxP}wgh~eW^`{m{ZcZize?#GEZueZm4uu7Pbh$?D|h4S(XUkMd4dp$nj79@BZ3J$V+ z6JuVj{@t1O99D&gAaH-R?^(dqs+aTlTEAC1tx2yqV(T(U*V0kQjIo0MONYR>rfvQ0 zOZ~1c)+32@S7vc87F7p;PdRaBai7^&yOc2_$wY)+e2a!Y>Ibk&{E`SXXrM3-izr=LN8&nWQGfTpW4OIu!2K0QV?tm1KB_$G~M6HbimU!WMcuh%xpzmK#P#$M)@ zdXVlVN+cv0N|w>J-S>t*Yv_9Kl%3JKW1ii8-cpySGO0&6*Y^}3(%co9sB(FHv4Xh0 zrPrfU2pV{Y)?(|*44dK+&ooXbW@JGhw1P1y`s*_oXM=71Bax#V$rlxg9!5xriZja3v@%;pznszk0PgUH#}?w8F6Yo@%yMLh&?vk zA2>bbnjorjCRh!bhW}KN=Mz^D^k|06Gc(=MQft&nn{U1OiKQ-6dILtkta~8%;d9@_ zar+lG?V@$dVZjE$m0pTdrasq|900CMzy{_6Lu`z00>17$*eP@bN&eFY{lBFE~9Fl_JE+`80#`OqtJr zi#(p;O7G9Y>`lfc5_cG@gKIx}bv-fEJGG_Z@^>v|FJkR(MFP=o6yKJTLHJoq#tVwy|30zp^ z5aCmY8yP=lGP|~WWj1;jc8vgWqqx!gZ+FM-as}VhT8loC79ERAJx~~Cqm`b0lyrB9gdio--5}E4 zJSZd_;1XWTIrbRirB$+P$j?`#6zrD!Y9cVBEXn zBcL-6jT&Z*ANo`gxM&wUkoAYxR{S}QatN;no3h$r_-2W{LxQTxjCrAGYsJx_yR5un;w&DQMN=0}xCaonHX57BryJMQNs#BPC*VSEo@G2QWHQuQuHSx5I-?VOtd)DRbxyoqEae81&!TGPb{T0J# z(sB{~YtzikS@6`~Y_C=oJEAd(3EF7o2#Y1mZ)-+a5A36gND*`XUylgMrHvtkx@?lM z$|6#X?p~>&6N5`PSC7%T+1KiUZ{Yt`KCqapG__DpdmSpPaUtscbQ1<#N_#u1%zi#{ z6De-4-YPo~#$DpHtt`za^Qh{q)p|Bq^a?#EWU9)WX2`}>JPC26%!KIkH_L23793g| z8+3HsVZYmiyU3HM$>^h|6#>CV1fJf;JOuYd-i`|VQQXk3ziSfo`OK)=98+>^Y=FV> zR;0F|_$jC+jWWV|P;Sh%>MEW&aO8hmIEbVZpC8f_u>E}qeQ zpx{JH837?%0^H0x%1`hUkDX|f!j9f=vT}aUH#ZZ{MK%H_q~D7}#eClT)`Lu5D<2iv zuZctV%$h1gmZ_WR3SfYquqG@8QCB?P%15yKP&rY>@2-2WVhR&8^W(J9*WI?GqiIAj zghOlcxu*HTm5H4p0;7hy8V}-`N+*xb0-T`GxnnEu1}-JR8NTVuO5hBxJ~y^Hlq1w1 zBY%w=YHD=$hGUA-(1AN~bw*)`K9*$3_!%u)CSWN_PfDy0BS6||se2Kd$E%kJo_P8| z`4U}ZmWrpnsuGiMZYP8QL3nf5vpJ}4#!J$ zoE{9Gm9U@Os;vUIWo&>wXSZb}1k^%qa|y;WqR!|v(M(XLCvdJi?3lnQ96_HCjgx`jDl^M7uhd!=keDVOoC zb|}Y7spg4vhMm2F+#Z7%OS8SR^gct<7_lS5S~`1letM#M)7TiFU)-JpwoA{To#)*W zY75Eu84=+pgW8-Y22W%*|&Xg^voqQk~ zgzrU7LH)<16C6LCHC%szxjr4Qs&bZu*? z29h&y=wfWmrJyS+zHV?B$ewT^=UuL)s>-T#E#(}zx(nY;?**t}M8|aN875e|u=eKn z{?o>jFRVfJQBCOg!A7X4ATcDdyScj(y-TCLhKq6PBO1T5p`6$(_yAmaq1{7({T1VA z8!Bsd5$D_mJI|EN6FIXo9tWzpdv^*SY=zIcVb>~^U@7G(L@FpgiSU+8T`FtBi?Jzh zh(kQiD7(F+eH>FJoUmN@gCUPO{`cF^;wXAP!;f72qerAF#|;?}m$RRakW#(xf!>Wqt-h9#|{BAVEbds)Sl81#^Mn5r^xL7Do~sWp#0~_$%Q}% zZB6P`NK&x%WO$U48D`1ak@#5B%7Jp?3XDC3Woqwwt;2Be6{AQ!YbPup^H}sbgGCTJ z6=jTz{SoGkr}<+j=ESNtryv#E?~)}nXS_Z1YqySP)j_4vj{m=P5iz4VB6+MK`L?J~ zz$=de4*9Qd(nt+j4jcHjfPLBM z1h;VWWbM?;$F$MONiOWnvy6g22tL)y^EUB_D5f)oY;_2v_O@4#Z%FW^iCiExuG7;$ zyzL%mx<(x1qj?^sD9GDI_327ZmNj|Ym1r27^U1-y1e!3L@e@}IqQtAR7sjzX-$w|% z%bR!FECR>{NgA(_)lKfiX@ejrBSSq7p1eNi(2!VtZFa%O zCWsr;RAYE)&#UV2*vP@q*r5Hvab;R^SW@jf)UGdNp~~#G^KL3NB-^9gonW*YE=k-2 z;SjmCFSWdcB8DL>i?zzp-Mo41__JXnsJXGx!6;$6Hb0a z2YJEGpMEeYCA9`#pLDyuzF28U69kzPx!BnVReO56z2O~X-rB19mP?^?O$kTaek$UHq86JWt$~ zj`Yrdu8JZKd0!E!nMA3x1AI?}b}%P_8IFlm?@mN5`Ll{#OgEn%&CUQ-Ma(Wk_iEZr z6|RjABh1w9I}k(fY}$xjR-MHdLlNTp@}*i}Q;XMm`-^ zbjh7Eyw`$#azXH?lAJtrR;H`(tZ5-<;p*l<0%l|y7==2RSL}{1L^=T%I&I`Hg1eX zche#v8_sakFVcSDC%gQ!@*G{wvRoXQv~U15v8Og-oDLhMy>j(r?F9e=z^>zAVv!F3 z>kbJC?ALbr(roT5Veh1~4=o41L43L0++J-Kt@nXEB8CLV+^kvi$G-vmr}>x9{c)z= z;W@O%F}GIqwcB&fCT|Tsa%y{wp&yJY#Q5&r$9JAOQphh;-eixwxKRprfJWXL@avNR z?0>&%K(;$~vMe877z~B+;~nlbKYW_mZ47_Z_W5kKI`(qD`(6rjOox=BEHYQTpLB&gIq`G**K9;CL zmVx5LJ~!@Swbfk^p6P@~Ii0gCo&$g3BhTnx_7+K!g61!O4TBt|lVH7`Q7l8i9bKGV~4WODA+3c$B&_LE)8;|p$|j{U!LswhjNdJCFlPb1{j-@K8B zDTf+z>g@7jSxpOq1GvzLaP9)K2edOZ>APJN@KXxlTE?>rX8wh6%tAD$d!r}3B6Hw-B z^5$O~{AOg)1pz8N5#BthYrV>e%zS#rJu56U^KufiF2eOce!ui`VO7kQ;Efbqam8ZO z{t`VqJ{DS05p`v!3r@F+n6-#|H9KzE{@KLS^XR&2(5pfhW;*SkTNVw#PtGfBJ19CC zv@e&0(cInLABLL2*y3LC({wXfsL04*gyN@!|_jaN(r0R%o0PG0FbhIX5Nv^&T&VdVX<7L9pf&@ik%E6b2Ca3;YkuH zM#y$+6G+ECVU;K3S~(O?Kp`uH8;mLhqk%KkJ`(;WM{aoV$1C1OsV`)<2GuEs-ewd* zM?+kP@XX^cIry=|oVF?cU$cl7Ikz^J#ENz>E@zFJhLXH04tK`zA<5y_h`i0M@03}= z!XU}fUuJ`dA01{$cJPL?`)E>p$Qs^|j37wc_2ve4?o-@8bK~r)+HaM(#oJl-(yHXu z2+Kf2Q6;-It)==dUBugC4CG47`IW~y;tP8%pTy6u zRk4m(0tUgD9qIyq-EcgMk;Wo%Yd)&&RwH)d3+_|no>g7o;Ojsqzb&QKppCP1+Zwo!wlh-Ae0zO~2U?{7ZG zJ#Gw-*uTkXfGLy-YPI)eLu#f29f~M6Mu+8>ghHl_RD`YuOL^|=<))0L_glck6Sqp~ zXe^qx%E7yIA%ChqU!WC#co0WMH`q$RVTh*=l(~9E#$PKKkmNBx28dA@K#yea!rz$& zvR#cDarXlyEpPxAfl7Xf$A2EFi$0$BbD+NZ-WVS<4vinqrEC)a0X^BCu;K4AvY~}f z?}54q6{N-EdZ|iRUSu2LD5$D1i3pIdO?Xr3*zOXpRI|72_|bOX>^_O!*$JgK=rQqU zM1IH)4-%9zb;xQ-c@bNAowb|t;=Kb>jC2svaqCa01u>UL9LxzhG(>wcQzU3lH< zXiN}s)1IYF*4lGB6b#?QcogUlWUA!wMSIt@_ zt7o8SXJ&F%hAaUYd{fjIj{-9np`tei7S~}M6)eDumXbg+5&2grQf_x|cc~R=Y}~&x zIoEb@T-CW~8OH|<8K6N@x6yd091rk25yPY5my2+;4w{CM{FIyU){9D>)}xg9xM;&0HkC_TK{fU%#PU{1i+6pP$oT0c z-ES4KweCarQW?{p)wdy;<9Hz8S*DF#v2zRjK3cAbpv^bvO;x*V-}Q8BTN6Y;U-$U;sMy#%h(^4B4Bn?Suo0HFANf=^C;dUx0_VcTHfk6a#ETB^78Zb^Ze=9yehT#i zK(l)ffVFwO;)5nN!3fFbeDv;{pQ*Ue(;E{zF)7Er<&jSw{<&Eh6n0m|0;pQ^WvJvr z*geAikN)rL>-}n~>tlo>JEix8TB}gd=M*qH)uIB$q%s9>a}{sCvMF3`N|kv!cK56( zuwOGyZWS{}Fo#}oYgs=#lXzC^R5Ay^KCqm=8(0I|W%C}{w{9mBvO{x7usd>cMsj>y zm+8oYN8g+iysvf}=^GB5CB)sE*gS7YM3m9%%#ZqK=(zdl6FgddkuT9t%lP<8oqq6H zFD5h7BL??Bin8)O_Twuid4flsxxP)4Q-kS760%=TKF-aI4iZe)pB;6HN{+rRIb}k{ z4M9-Eca;rfbpI+ghIZFCtyRqSUsp4(x(2EUkZS6RBTsIOqP%R&3?+E&v9Cl zQ6+`ByrFOH1#4qoQg(Cy{9Lxr$+3TBE?0FC_tWv!NU>nzF_+~OF{Zzj4dpEo*$FxQ zSbOSGsh|BEz&QNWJI1jtxnlQpr-nO=j3mTQtDGIGvzK@{RmPoNREXUycJJx1v@`zr zf#P!%psU4hvW$L$1?J zId9C;opEy7YZM7>RX-pDJQ;wXZszn5AQdCC=S^f;Cq8&b(W+&(Mfkrj*|A?)K;og* z`)4*InrvK%}~Z13!9 z3UgCLa6G!B{`mp8q(G%D-4_|QG|;=M|S&^J0#Ix`BY$1!g9^n+y}wRTxh5d$quby$=>`1#7U zOEUwpde%3nooEBS!k!c&mXL&dh|Sq<%{!&0daG%@vUviQ*;8*VJ1m`;LV|`;Q_al7 zsSyMJTTMl?%xu{(v3q`1UXW_y?g`IXZ(KUD?q2P4f1oou=Ikz>OF(3ieA&j=L36HR z+s=*RRj>5iPHNQ#rb+a0L!Be8oFgGr%23H_nF1*zgnkQ0Zj2<-p2N3cnmQ3(+0{N* z41dHZDL;BZ6L9`U7oweIia(P6)SGK*mGLCmXz2*00!ZLTlNurU7aK$_ho&r^q%MfE zhjj{z(kvy*riJh%!HR=(xKEAPNFE3}aY|%rV>?pcoOmn2QnGaHr^YL0ey6r=wafq>XhKRUr$V8jmsu=ckZS z908CD`mI3vC?81|;r)#Z0eQL~IGfCgS@(D11xEsqWMI&)m;dd>mjn8Uu-gmCG-9qK zK?|Pp@!99l#7|-8q*wR62^c^hiN!YumIbx}_b!s%*PeysW5wCn%{Pw7-sk~_Y3r{J z!`l=5(}ItwQ}26j{IWE#ki3WgHEfX1GHDM!LNKv#xxJ6-cTJ0DR*T0}i$g!j$FMEX zMyNg}dgoUk0`^?};1|7LKF`gqC=zs!Wq6Pn5OTKd-tNxE3N0YL796k_x$^T@yH=U3 zYgJ)C*tqUC@Dky8zmx(7-~N(=LbfX`nr@zydiLsDc05PMZS=I7D&yJjFTMVBt8r2M z3N&7L!N7-Gw(Yy8>d3QS)48m1SW3BKsMEXbXO^J3w9kJBHxXR%5HS6MJ~<@#ln{=b zpf61-sPZD@s(dAp=+Rc5*yyv;Ew6Ac8wtKlVewB1K1h^Hw|e6={Ts&QQ6*PorEZb( zTbD`TdQL}==^5Nzk*q6>O8NfN9{DG*Quhtq7rt$uGwA+hj#|gLBYGV)NcV5{?XT7I zio57L(%j1=IF}=)di~M0{Zj>Mt{YH6!RR9B40rL*m%9s)j%gm4P#gKfD+A_(RvIN5 z#eYtBXO4{@>O7`+E8Ktg4JcGC?MLvCPk!MU=WDVZ-o42#3eK5rB$_*MEiO|o&R01a zuH*04(TV-9#&C`t4RL0=?8*S0>?KRgqG9q`$2M+?at}mgw)%blzyg_n+=GuEO@emC zrjPxs#8c2fns2x}Uod=f)~ zw!KUic|$PbpC`A_7_!$(U#w?az@oB`|2#6+S8`TY%|ET*9jI-{aR%n8ula*@EYDEV zhPw@K6hE*mW+5d5eQ&rUwJi0jGLY%ia z*=lK`g{D7LW+Sq?{;IV~Y^mRDd8aul9|?aBdm|QhGFyb-7F2vg-XdWp>-F&G^xUJY zl4iLVfE)_-Ya(e2dvS|5({4raP)K<(RJx5nJQeHN2!kz|rXG{lYDOZVE#hkz|97~< zJC%5>>92$3Zz~)s)gBV&)2UQ-3Nb+{^BTvM{#H7aryfad1;B5I9A;Yyrs~fwSD659 zjWEndu?#rC0kfYM(C*XjPy^q)q|S>|t8gfG`o5yJ`OdatG*czCD^o19ZIQ7f<4giD zW|GhO9Yp(6O;-C@Q_-&jJO|p1&zPeARd}|3+!po|jVmgQm54!k4j64<1)>l-WmV6;GL+G}{DU^E0|FK zlrsMJh?0B}=q5u|R$_TY0f5tS-+_Bi(dy{9K&OSaSDu4-#XpK#NApKrzvBhBohLn1 ze#_}#bFm+IBD3FsahnDnK@knO)GB!Z zK&z{>1=IYeuVKne?UYUpt*E0$1AmpcTL2Ffog(-%UrXc?+~d0^0adoOY&d zp-nlTwQ=zqv#%-qwMtM4lh4)=9o~JDK=i!g_w&mmeMTseCEnN8^0SL?_YF-<5Oa=m z0^Fg71}ujQDh7IQ5|-KGnSMRefIwj%d+lqb|jTTkw2pU0BnlIRPudqFm==QelMG4 z@s|=8hlKz=_Q@;GAtBGogK1=d&Gy(NNv7@hHQ@B`3VBAP<>c=#{gz9v_k1LNNhC`c zZsiqs4XrcZv)e+g8Bf};zE`K|&AV#Xn{zo7!t3$-@g_~ei%Du{eUY+g$Nd6bn&^Ob z$B2Drccmni;w=6`-=5>=Gr%A-eS!sfIdwh3H$;ts00}>K;|@66h6{{^iKdlDCpX?U zMlZbvda|x}%g>F6R?iL-t98eQD~FDu2UP>4%xcR+Da@|}{;}Rpv3|y_$`miVS;87z z>Ogt)t02tNk$L8fNnY~hCUSZq9>RAloLNx}DP_k+lvkAGKhOW2aS-G%ZFNq$gBo``c;oPrO`2$U0sHFs#OSK9J_*VYNp~B85^n1% zPACX;w6r#S=!1VHg9I1DL%vV*gE_gzpa}Qn)A6N%HKwn-juW*QM;T(y z#h1cw$6~hSE>rs8r_+9nQP`dkv`;cg`$;i6O0kS=E?p{SNF}w8bgZ%0>4KT0A$H*4 zy;R|9L@w5i&mg;X*URq9nha)F?iJ)*Z`MdFW$Z$>TZ>%uzdN1unR@VyyF-l~TqihQ zBUPPqLn(uyBR65qFiDS&Hlx@q?jLr}H_P#+Nzv$`pmpQDyzn0dEVS39-it{-dbO{NOqTM*{GN%?ZCXc)se3WwsoE-s_cqanH-~XTb zuaD{sJ346glHzBw?1|Iq(YL(3kKA|&qrv3r30@ypBzxe`u~ro^{S90h9J3xN`>D2= zDu*>%CLuQ;qm);oYI#3?;MCtfhi5RCOHsr_QGpxobu)}%QRFz@r@S_UH#(6+mb}ZZ zwSnUO6{&Mnp}`pPYm$jNot!QNK-cfmHRrhd1TjkK>Fdj2z~I> zB~d=zy?Z1yxYKiO0UIJ=^gzeiec8i&Z;P@|H|L81k=)d{Cd=I15k>Jo&FYN5=@KB@ zJ)UrU(HK13Gy4Dzol(sL0x^Bi5X260$QXK%T6Nf7<=G@?OaD?wVLJ5x6CUdGhv5a^ ztEsO~;v2J{zXeh1;VwmsR;7UW2ybMGO3G^-FFE^!USA;p5m5#VTiWfawPdXoWvYbJ z{Kcte&e`=048_vqo@SnK@^0#qfDSCvk7wzUR-P4v(7fZ%5BI?5v&TRQO)!|!>Xpks zVwp7d;oj3T(ErLSnQl=NtGicGLJBgd00cB2R9^v0yCu}z8RF!)+PR%^LJg`k_H>a1 z0~^(qWE_zJm1SqpKB`3&KPi93_jAXiz$G)V@UPmqXMy{{nW<5V&Dy{!{L}HobrGNF zRZ#O(Rs3nmT*uL*Kdb;{zFA(^QFLZA4(Dv#HAN_j;&%JH{+W#KmZ)-Eaz6!5r2IudeuWShma z4A(B8g};I7d8R!R%IFCvQ>~!ud>@oA*G9fj!<67 zWXtK4=>G32&=dbg|7nsq6P$yBbWNhO=ox{r-}+s0B764q4Ey-!>!$c`?aW7>@A1Z# z6+55!mFat#IT*$)5G&4jP)^1mpA)HlsppS{T%1m}gR}}n`;0=vqRg?JrBwv>@{1Si zi>UnzD$`#O4U>jm%|>enA}0sNnN;Sf(u
EEaWP`r#*_2+c5(Y-w}plufZBTk&x zhUvC^yp4!{>4R-t{W?yYyMryfAh;vI>jhb2ElL4O&IwAO5+?rA1}i~QVC2OnkO7P9 zXjhTH|B-?HGhb|POw?~F0)hxDHio{bwjf>3?sNw(1{%^s8}WLgZWOqcK`Buh>h#jP zhXjvA@X^LXk2`2?js9cQ3xWe>=e-rZGm>tsN9MaN$EU}C%HHl^-Q+-_sBYC4K#RsU z%C=lfG_va-G0jbkLh_PRBQ~d?*(EOFL;~ucY{7b7WQfY+9uw#Dma5Au*KHwVHVZjm z(5~N5J>_8$zH?W%$Isw@2zhDc{2gp4ZHi}GoP00w4^dX{$^e@58`Vv(m#0(=&PN8O zCl+_~o}Fz@QDne`BAeg7YY`yYiP&DPX8*Tz9Z27yvyvn;N56u<+V`H=#T2Yehr%_O z54@(X%6k3+U%d^$ye~uGtS;5wdyh))>-BU^LD4zs;_cTn9gR?$o&I;VgAy#9bPaeJ182%AJnaX@8{>M z?u7zPv7oEpmGen1hQI-0ue6w$f>>ebSBe1~L;b0p-J5o0zoVrs73jMep_Pwek8&{R z$D$oNX!No4-BI`3pTeqS)IZWI%Vf z7V@0tHq9-!Aj&t%VKPq4G}tBT$#c5j5AWm~zKCOdViiAN43$sTr^*Y~PPPcX=^1$8 zIYMWK@dWe5eU2}f8Y(VMaWj?(?Y$J=!CELvJkdGU-ZG}|^xAjBY9o!0ueodmw&uSk z()?037XvT_MIDAow{Lgmw=by0XQ5K+_BhiZ=GFe?v4}S~q1JR^Jrg3eX7oA%n4u)b z2ad)udkLhx;5(+kQ%%DQN$fmjLwK7HDytIQ{WYDrN4tF0Wi(S!l3;A$fYJr15`il? zh>uIP)EzuCgpe zO)QDP60tDEwfW*{wG-8a`EBVp>Sl(AJ0mW3pqY`;;A~ufaD}e)JI1g>{dh&m>53SF zotgF%Z}G_-kdYX9DwKb2_Q*g3)oglIA( zf@!r9)tA-9uwoBL{Kh*OYzEL<6qxSa+z63f2ap%PvfP}mA77rbbE`d>GHg0+e4UFR zjJ4&o*PD5x-UoNHcF`Vd4T;ntkoWdl;%u6kd6DN}Q~CnfS-uQ32p1#TyU&{Wes<1zJv46 z`TRV8@#8Ns0(Rms&X=;7K_Tc;(05p?+7HCDqg>-u!};Pt$3&;;R*=&a-kE8Gt5$=t zKILb@(e2fz)h=dBoW`_K->OZ%#CJxz*&KB)-f4K(P3PKHdxI8xddmgPm~OTc6gPze-mzFsPCo4WlI7p$(u>+5{b=0g-A!nr5O~W^H)r&`PIM_X@KiX6bCz{4h)H`Z zIzDKGWx53dYa5AKnl#R={Q&NsVF_=3G0k3kbaemt7ySq8cdz6-T+Z`m{d6lXRA}t? zo)4sh-;&S!qr{XGs+(5eC3uk2c)3BYA0YIW!oQ#}Id8S!(w6)40*;(z%|ry`6{qX3 zzllB0xc_m^Y{zNPUL8d7IG4co`L4wm#>J@v*oUqo)73A(8aA5Y(oQs`77goSp)fJ* z3|REHM_z_ab7Q?e55#<2Ot~AcKWww3ZY|{N9dUhG70X2)ysxAt?TO`!{o@ zC+;>is8k5M$J#)%`yFCkTbSe%=3x7RyjiIe@l}lNG&%jEc^Cu7rm^ID6(b z*oNFl;w(C@%&M@={&bn)pJzx;)XC#JKHm(P=oP|aEHa~c96oiB%L0IW&< z*Jww@QqBry2ezY_d3CeE?{t8%5T56+8k5`e<_XRcHi^_@zC> za#mCo-0K@$Y!#w zO!~7+r5Q(NLlU+}UVf);(o38fdpame17=LL|Ef!b^Qs{`629eis5$rC_i|G2Nk&P* zLS*M%??2BPdcGtW`css78KvD!-X600mlXE>=kE^_`>;3Z=ymZ`!iAZENjE*CSh^NV zJ)78VaQ!md!hsGeG1&W zJcD5pZH0%kal5K9IV$ufrVij%3OwbkeiXa$B=E$iW61mEh0QIW+Pu*bq>qIfCXelH zLE{`6SO}@3Xfo1PE=~{~P^sg*ogE%Hyr7;zBIRa0_zb=S6T1&4VpQvnhsj8Vb{Fe8 zb~dE7W4jk^_*iS){e@ImofV)+n3zmjB6Z(SSPYPmb~a4ui#q3~`@by@rr# z#H)Fv23utgO|?*SLc+0__xEaoPM|F29c7tMh-ccYyK++!BNf;+m*G!D2C4)mliJzU z@Cvmy!bJTz?2*tju7&d{J@AbR>BuIwjCqavRG*=f z*+QBq>%UR=08A{aMkHZBO`9u?r>*iZB^a10f=+zScM9JHYU;^1b@w@k(DRy+VGS!G zmCO%pH&os;({^62ZvOZ7Rnq6WK~z7#E_??}d}JDA+#3H&&SIx`V=wH%%`<|VfBa*} z^Q=3dsKM)U_s@JUnxs*3_faL>TgP*K-HVQXWaM>EDizJ)%?6KuNn={;SJeEQC9kiI zXPDFgtn;>jJ=};hzWczg!9apO(w@*)svV%CX7`C6US-XYNrJIgQ4lb zO4%BV2KSa?C;4h>8@{k>GzZeV66Go`|6)^2E9Yl-)1vWG~{gEKKS9;aJ+UfRE3Wy}B3TX2@ zc#iCx^OIA0>;!lD470+NDMF?H#Ieb~F#q7t0}1$YP|k!8U*sw@>Wjg z*#nMjCi?ETZx<@h4ih$1n#N6@fTMJRiV)A_@ZZ{3BumtPo`mC`Z`-)>g5wH${z2sh zfQKSI1RA*f_XXe_wns6S`Xcp#*aRnk7FgDZ!OnrnwW!E|a0c4B#w0Z%fe{`esOIcJ zFvQBX8a~OVD{ilj0g}HpS;t`G=Ls<`1*b!M{g?Zvr=|=Q!V&j^mY$nrN`n`}R{~8r z*{-i$Yb$x9#Ns@DOg1*uhP0M1#ar`IQ+&LZR5NyHWko>6rEH1gz2e|vSW^H`g;RR& zdpkkCmwkl~q5Ra&IU?e3T#(-*LLURX;Ijy~FyljGGGC*EZF`2ZR52c`i8B;a*MR)fM2d}7>woE3JYAWjGOW8A0Zd2)?{0%@e_SylW=hn@<{ICaj7-_7 znT0u$bo1R=!3S|=l_}!b$1HkcF+Bpb-4Aj}9Qb|x?p+UY?Qg&BceVo8;hltG`Ezq6 zC4mnlL5GhbB(#0!9tT{b+;WItV1!H~6^t>$$N;?HnSA)krT1j^YA#XGT!sxnqDykC zWz;&$SMYt`mltJ%q@Hrb!L-*zs>bMO^6c{aH@B_T7mPpq#=(US1<#d(L998N`j54j zCgAuQ&4W3ILC1++($j4VFZx($@`aqN=w3Nkkbz2A}yHxhVS+3Im1bxH&vYs=5xMDUEFfPbZVmbzoxR8E5gQgR{+w`WoSk9c8dPlz2It?7PP4mMuD_f5#l6sAg)%{!p|+uB#~MF z3W1aiG9%wsH42q)YoNqP%;9&8MG9YnKvf^e+`PG|=#;v3da%9?n|WjWqAK5nnh@sw zC@+1mMIf_fpclO*to#1eg5({wYr>~cK7t7qz^}geNnF|a+%Ex`>i`6e_76zVr75$Y z_G~II(JBHJ;PO8jub7{1D>0mR>{^4Eo688h=$N!4yOL2P92y&3?0-$yP7FqC(>2sP zTbLyyCG1pvQ@sZ4{s}zRC>*;cFGP*S=YD0)Ofq15<>RqyUyLB2#e;l}k}^Hq%Nhc) zZ}VzHa%)g>MG>AtC)8QUeeQ(u()6)(u(af)32^)j-DezQhiN9s->M6`!kkxM;gQYn z-dS6qa+EbokCU~wtCcV|;wSIBc$k$Q<{k8}!z|HDmUUFHpsPTsvDbdVZ}}s{e!Ka- zIrLRz*NrmM)AfTqgSX7_@E474nL=&Nbu`}_k3=icJ#6uqUGgn~{iecx3hPkl;Ca;h z`!qUU-}E;(Q^#Js?F-v{#9dMb;nNw+%1TeHcixv4k6;&}F^WvbexK5~-#@35U<#L| zk6%4yu!k9@qz-&MbR~DD66{_S4%%r;QTUSS;RzR`u`zCe)SAY4e5P}Ek}YxWhrA$r zY>LOoOH8(F=~LZb`u;sSeXK$*LYO_KTgKR!1{`1#)zs8vQFopAHVX6s&5q|=*ODAk z{Ie^X`gu&uUj(W#?t<3w0n1qCNo|v2&$GiJ2D^>%~_=;Z7+EEvI8?!33DR znxmj^IB{%#$MJcXvH#uPy1SSe-Vj-K2`Lr!EuvuG5&3+(O-XUEIQ17FTONjmGa4w% zwGn|)i2=Gr9LW+!&JCGXsn+l0i^o519p_qa=#Tvj4~yKYF=gh7^L$6x?2Y%7L~PTD zq8Ah7mba5a<_}kwiRU%7V+#wriZjCFO}@{)B#eFbwQp_31fg_Rzj)^c4mCysX*i!S zk-ijidT6QfIxU@e5h5jZ4fIr4GY5QPKYy@SRBj(05|lNWC)F-$IzwSQnJhg^xxeV! zHtz~p*vsSDyEMEkvt* zMAIMOcd+f$wZ21s9V!EX({R%o`~g*<>PRNUEHwJ&2^%Hzm%CYozx#JB9_UeHKc#4; zq6%t~?0=sn_)ub&ES);ph?>lTOsyu1J&w<=)Mk)L#17w4b+BwS_DM=Bn+1?o@TTMo z2A>v*I;3V+cpbn89et69kf}?{5NRYXz_HAYx~Wu1S@QUv0|>}0Vh^%|z#3n*0F@_a zQ(1|?^^sw7%$`=_0lv{A{uNLI4=X1HouUEP0f4mio!D7QnAvCHV|R0#%#W!F>9vbY zrON5bLW8 z`4HYnTmV(xEwGYWy=erei@a=v8NGSsIw-z9RXdTh^4Qa}1ehMsHi6~P?9=?T5u2GD z9oX41s%WzEH{LnkKVN(SYBEO46!IU=<{B+x=YabqmqIzq56p)9<11ggjDB}7UKuGq zF=1zI$s_%3i?V0yy1NZ%!uZI_k|mR4h)Vv?yj{cA!DnHMy9azjDZGv9-3Ubyn5$9$ zu4B)}BS=#B2gn7`; z>T=xo)R(SE`t82W`@|=#^9g03`;iUfMBhUP4xCX;6F7tHjrKP0Xc9*(LKh#ng@{%) zz6xN-zyAMLfR<|Ea)s5O!NA`y55Lm5Xkl9ucC`9Wz*1rZQp?=##ZEs;PNrn=VExknFBLha=s|r>L$)oQ{Tl=v!CFv~8mb+N~ z#GM%BL+xp~qvS5XVe+B3YA&8wcx{QusITb|XJMlX*}++?lW7XD0|qu5Q=OrX;=-;6 z-?h5X0e6YK81SyP@0ghe-#L}5=;}!wu8|a1m>&{9QLhfhQU03p2F*TxwE)G^Ni^r~ z)&|758$}iW`y#-w%e;i9!LL=)bRz(_ zQlqP{ntLmiB~xfuHSV7G|53?2RlC~|p9$JIe}f0GPD{XI$!7($B(iC z>(7N5;I`k}*)AkkcX}x9B8LX0b~>hz&nMQ+tZR}O+mrtDsE%a-#JuTN?5l`8d_QdCt74{vU9XczZm&mY34YxmllTSS#{vGczF zbGCs{DVs zr@O<02Me2fdb(6}ihEk0+rR+4yKHMFZ;AB{q+h+*?)w4#b}LSKA8#U@V*&ZC zJZ>B_ITqoxv*j&Vta2(LIBjrW{QTbTky^a)G2WumP{%-TuX88JjO=*xX@w8hEJG&J z753rLj=Q^?SvKo3@t_P8+Ob>71nj$q@JE2l^eAxt^|Ao%07X9UZXjUz6!&u2ECdrc0s|<%Iav>!Z#hwXcou zuModB#OY*wt&1sn+naxkHXiamaDDf~V02c=$#1ufw;y}vCw7_1K18s7&$zEOnlBZc z_1K`EYHX|sD=$5ff}r8F5&v{n$X@(mWNV!eG{2(tb4>IwH1~cU`}>5o+(4nZP>ekR zv?_ouc3lPGgA2(}bqN0k4(5++Yap>nq}7^4Q``sW-$Kx2)>?9XYp-yuWz1{N&1+2uId4UeiD z9%cWa;1~01o2VN#Jy`thJ>SP>wA&2ba^E%;r(QJrANb4^rQ%OI^cS~#uhnyJu2PRT z7odC#M1;2h+W(OrE^~XIBcQK5mRftTWVUIN{a6kd;O2jb{zWAf#Rxkm-min+(Q?i&CmifiOL zQTbJlaROx4$;p3?4u9`CexN`GpOzyQXFSG-r3|^n#P%C+a55g);csNylO{YgX^LCE zlI#A>rH2Zy#~^Nf$KE^JD0R5WgMX~AtD7X3a?jmb49bjI{dhjlusvEp1EQ8M3Z)){ zVQxYZNF5J@xfu=A)*a83G*ay;;n@$eD;Y=Us^A##0*vfD?593)oILz^Gu!qvY22Ow zq@~5g3;of0oxJ(Du=V828WGVWP{0bW`Cr-1wOn4Xkp*L*f$)ZTdq%hW!zMiQ03Vc| z(OVMwYgVA34a4DxMDgLEL2<*&-2(9UtoWD^_$J_t@zA$XCA+|HPO1+wX6%ax2;3aC zNpeHc0W%T-W^D*#<9jOEx8rzOo>_FHDUNrB$#Y*`a9><MhaJ*dSS| zI7K`$Sjye)x_r7Z?pBKh3Z~-m$c5v@v#XjwDNGsR8?=AQon@Y+6;jO~jU4esQ9Xe6;=aNvn`opJ~c7s1-%H4i9GOVYJ_kpmKSmY5L z{#I#fW_q^0MAUCWvI5O!#>3~|yclfXi|>DY&lQaSPhnpjRaMk|doe%-K|lo+L0U4{xirQv=j!sVHZL$vYQ4hNg zA?sCRaaxoytWeUTvzeD4Z*HqOKVwj&3!_E(ozk!J*2C6$50@J?!^6S{pG(7Mf2NH9 z6AuSgpu5U|8Z2fIZ3!(Nc*UrKk4GFdCl04Y!HYtloNi(ILt2bae&N|sX7({iXbpzS zAmeU&+!frJAJnrV`qx5X_FZ99213gRCpz@fWLnw{-tf>>ZP=A>zn$Z{IyT6eNhsm$ zaJxq7<9W8m#_?Jg9kw5BHOZ8OG&H1tM+u%XL`Pex^@cq6$<*>oaHsKs9O@p*I-6B< zbsuoM!TIa*cdZN@l9(?O2TdR$W|8h?;QGlXpHTU&4=rmhFD>h6(eylKS}qa#HPl{P zemLpIlF`!o`=v`U3lVNlCY%U$0zH}(UXli|23*>oMXb1!L3h>VF1J2qH?Hc+y7Z`4 zaWUmeKXd!bu5gne5#S!vfTUeWeBhp#@c!A!moRM2uzf@viGGUjlabIG6Epm4U_dss zy&3qX48oZlzA?$nBO01WoucK(@z?oN{>I`zX7LQY8YZaO*?aKVFZ*@$^@aa_t537$ zS`N~yC8ecUh7a+hVo5RoBkC@QK|k>~wvONac=qOH&i)+w9x4vrzQm;IxjZJ96ISNVgj`TYB$RDY#{4ts;m9rYjr zK0-(b{V846JQBM7#xCNb&b!eDc=(aR(lKvLbH7a|FLZR}CmWww@;pi6>clo9Rm+SL6YkRZ0 zHjcI(f5%13l5hoo=5`;VJ93hXA@bmF*n7H65B6X%2tvGa6}~PDL3@n*%bi%a=q=>bzHp#B`Kx0^<^wNmwQaaSL{5k(O-@@&++HoXY}^&0zXpitjwfohp%h^e z4LRUTc~<}7I|g9}8x7q}HLS=sqfo#QAwL^`Y1mFqZkAC?=L_?$_y2mTv2{wjf8W|l zR4qQcmQrc_kF|;=Px!R{dfVcKBRzM~pZ~oDB=gbDTH;9vd97C@xA+Kh-q7t@MW1GU zsmXPM*DkS3=ba09waLQYD;K<&eDS>~%sY{WM&UUQ%b6XO3#;pa^bgGazPlt82Ku<| z_1|V$w2);e&drSy6f8X($v`%#Z-aHbOg3exV5}19b^P3*;R^dQ80JG!^<+d=s0ylbx>qgiQzmhO2TKFg{29L+w;< z`_2ZpYkt?9IjMa49GWjAo0+~nx*}*ksu_S~5QWX+e*;h{2!kB|fl>n&`#bcKoM9YL zs5~}Mba~V)6VAc(|7G%#Zkm-2so0Q-e#?|^74hX?cgqniVWSxL_gvC4<7W17-%wJ2 z1Z(QzBzJkGt!+GJfI3Hp6uOZKEWjO4dsehG{7p1hMxV59;~j7`&y6H$AyrX7SS+01 zWdodwm(x1#Vy7*MbUR(KHgQHn)W8=YXMaJW5cMz?h-bu`i8aW4$IdRyG*;lK`p8NR zL`fy6@$bmIguSt3hCW4|3woYaan(jQXzth;qn^rBwGFY^=~A9W|Da2g4e?GOL?pjlfKfK?}JZ<8pqs_-^)6D~6-n#X-f zcbOd=n0)k$FNJCa(U5IHD$L6EPZ^rw@t5CN!5@!EcX?R)?fjs#ex?fg7%UXiYHaDIpMP^RdDaHCgL$MNizK+YjCnx2tM_$#P_aDc-Oc?ZMT$ozk>9_5RD?7RZjuU78RBi~#J)r+{I{CeN7CA3@ll2q? zKRM0>FT3vJK(Sa+Hu-o)^TNv~isuQ|YN~Fe;?dUmoUZUFsO>sDDKs2siZ@ABawvH3 zuA=^H<;w&YdQZgB+_{S$C4{EEkwz|TZ#QrR^p}0d26Av#yz`a!qlhRw%fiLhHJ!Jx z!JI}Pl#9qq9V_-W-@cLI6saZu7;|m%__0)rgNxqnCj65x%Y?{(_f+4dX{)Z{oh~Wk zy6`*k`I$TiT@2KBh55VyNW{l^Q8%pJZ+hqL4{`M9PIxg0^ODnLZy+*Y8R`~|8^G?4 z$S!cWy2<155yoCW@9fAm<|;%t(?ZXW5N|CCs0Vu2(a>}SAj)I-7o604AH<_K3a#!| z+Rl1?Lqpq+tA5(pUrlvb68iL_+`7C=JP+gt6Z!6U9`{-(YtH}{&Cdb2+E_K&%0 zjPy%SIU?L!>r8K9e@dbfI?%+CYwFE3KwIc93HggtJgVgpQsWsP=&(ktZ3>hx0_uin zyLNM5!GdC%tt#W&vuk+7#GhLhewUA!k3>bCPuSbY@T+sSxLpGepcyD`;@QkHsyXzV z{qW?0f$^V$liRs;vE2=sNM-=IFGV#0nW!FbQ`%BoNH!NuKEeiiI(?pZzn*f%~)n5-Y5Q`$$;uJ zR^stxBIE|LbWNWo{ELQ<#Dg11@zew{Pu+y0c`k0nUM8?sy&+a1`56wU4*0vcf^Jpa zzHxy?QeghSwFFWc4D*{M@f56hP|yU+IT%s5XOiH0+mm%^rJ&W>k%yANjnwz0up29p zV=D!T!+N&a%sB3gE1tN}l%S{1!cSk>712bWOc>-r{XZ?qRI5}7FD@;BCTt1qXlfJ* z_9Mxm&|2?L-iwoYVqRcn<<6eEsW{6_r5_wZUL6-FXZcBI&#>Ki!b_F>m9OVM962_5 zCP(Ij)2kO{ddjncd>8jJ{KQqR`R0gR)x+L?U(NJD{|kWWzw=8XV~U#Jh^>*|uDT!_ zs7JNR(~k}>`yagw|EX%hs%*i!qv=ct;q~ON(-42@g+IHw2$c{VfYO@p-wpFYx>q#B z-vJYgKJSk|SuBf@-2I$pV>QwoQQKn{{cnwi3|p2nHgpV?7%P-CtG1i)i};Jb#g^NV zX)Cp1x?09ap&$#mCG=2W^b$h`cg~ZfYq;R)>aZ1-&nQHaGvqdc2Ag zxcBLNYDOmguV&>TcS_JdqX5*7Hiu@S@iz1Zyx+umP#QWh##*SY_F7e&kJznd{kSpW zU^T9>%>Y(H*oe)yWVas{jPTVYKlH}^#*^sDA2hZn_+3udg=f-LxYGkA91E22LZL4A z(kb42p%P-h@qs)-2nmWb*&7EO`qz=m!OT|q%h zQVjuJdx5O8;}T{Fw@Qj`)pGci(*lEf^Go4mo}PN0Ep_!u(c1REh?)Un5A;$rS0IH4 zarM3N5PDEh4A_J|3pfwc08=YBK2UJFy?|9)h0X|RrRK1r-ij_RdM@T2_Z;mDnN$CH zh&wHtcv37vuj^_QZj;yu4PDDBu&n7)4h)h>Ak49VC}5S#Qu=i{r%`gv$e_zPH}uJq zIR4#Up{l}zVf4W8GDbR#ZnuVv=1PXtyYT-r9UD*eZb`s&L?%pry(JDzMlU$D@W(v! z-$9diTK_r7$P;_}=PBK9_r!5u=7b;y0Iam_vU{-Ij9x!B?RtQ7p=G@(T);1pP=IbR z9oiC9gRZe4lbRNLU{2sQkq#S_tdRX75YCBiYI^9o+pP7@WK?`wl@da6;c_hLnrC+3q+Mbn}#f*vc0wSdiF60+s3D-FGa+)hq0>NWML7S z9)dCqsLJ^dg7`39Fl0G_3ILt)sWl%d+kGWeUtlrRiL;E#^|DnS*b>x|JB*6wI<07; zGJmRSYF$IPcz7;j&+(kco+Ef)Q&T6h8z^Zh2tPz~@?P2+bYxl_F1V8F*&I|ma)q02 zhMkVzh|IdgdHWH~G-W>g-zg03L! z!}L?mH@zehM}+CiA@nZCGu*Nq@_$x&iI%53sk-3LqH$GjJdVt|cE6e+6)*Xu)zP#S zNKWyadR*hRr07})0VJJ)90PkNr}ad358uVb#lp>PbiinQ{$sNgnpVT`kA5GTNDlBK zLBBvq9L8{bdmmMPx_R@a)QVb>HFcoq5uYC!yJ5q->jzNxH7%{R*Gaw2ac41~h-yoK zFg7Ltyw!`{o0TSWV?@YKZIKXOp92)go6RjRCnY6$BRf6_dHDWclox~^tP7nK;*b}H zAaX8KyDW#@mfKDvj#*8e>67gfZn`1+$I`?RDJT;XXod2LFXOw%W2dj z+GA_Lr+gIDzN0{8i_&X)+7MH*KfJOwL3PYGT$m5?Rd3&(!%%u`JPBjd5EvK1#lx| zCIUr0`#nG^l@r-iLL68S2gYttf(to1ddr-_H*N!R>inqO^_%ay=D&)96dnmXm=mGa zt`CfDlxbg<8{_iyruvc7@f&2K z7||3@LWNb})%6p^0&5-mG(n6P%(BVdxn5nl7 zXfO~5rlzOMBF7++_D&ee5ptw@TYje=Zz>cx*xQb*aqey~iZ-SquBMYZtovE2Tfg0o zu0$gT_k#a{8@5a#xOOW=;3q}sut`f5{CQy`nR zJY0(Ifdx%4#v)KgcY%qclCAq-uRv?3h78^nRiH)rBN+}t2iYA}i9B7t!3y7T*aVN! zhFL19amsS%g@IXLhVXL3{(9VT3n+{s3ZSLF^IdqGq`8qgIEJWFD&Nf7uJ(c;xpIWY z^&L$Q;?Y$0aqk?dwr{imbGFj>!E*-+Zz-3=f_mG;*K}GyWn6u-t@Rcb)#hg3&8@zh zT76$!ewZ)A*IT;oYLjbcottBmlS3Wynv~$)jW-iSVmG`N)?c>!Ec|)V=ZBc7Xsc*P zXn*_`2d9AC`wL=zT)aR~5{-D8de4u4Z=|Ip3vB3GI>S~nO9P6xaS8Xui@>cKaJdaI1VoHmE%hCa41WGQcKj9nLGc zkCVoYfxVy5quM9G#*0|i&8!C$#r^)gq((Jkyk9?lZFC1$^mw;DaMux2>a;?sKs9*& zntVF3VSB7c_XI)hr;?J7Nl6S_ivxD*+zyV8YaM}}7o|2EAuWhqBH!BPTJ>!o^Lvn0 zU{O7kbvieFQ~UhOlg@paC})#lK%5?3eSFl!i&F&3zJXSXNcI~kTyn=dm&Oa08%!;# zO@{+J244id3EUNd+A2oKwP<-=Yil^`V^izG$6t(Mztt_i5jWUkf*w@(7tg2I7Ohmo zJ_&T2{p>TluyAq=6i|iDf4IP@5EJXWZyF|qzy;0y+!X)&fjO+O4{|hvh?rY=>#QPH z$6HoHTm5>dzi8oXx1LK3j}6)Lsx5FOU)dM^`SD9pk#qON`r4YYsp*%*#Hk1>(6R-c zP66F)a*)cTHHvka{!PS10EroRkIzI0g1RBZ4Y7Ny%5G6rvKs8>{XCT}JH#dX`#41w zbN3F~g&*W3T~0RjHjMH8fxOb8`#_$)udrmawNh(7;M3E=Gp$l=X-Qt1btXBBJQ==! zg7*bpa(ORink)YaVy>cg`FvGNB3{(QpeGN%z2MvPIM z2hZu#rzM3l($f52yg)rKx@aDmR=G8^7Fxp>5}md0-f1d zbH}cY-v?xjZw_ZVrjU!6xv+4)j_)i$_9r(58o9jy5QK?0-zcGB#`~qEgZg#-czKJ4HHN;mn=oYXEl~-eY^*7{1-t{hWrnO6@c%+zQVj5^uBlWFU%$nDG3nTRM4*4OxM|e2y@@jCiGa zCz6pgiqf zaESJb7urreMB9}l8}-f=4j|ET?OpFolnz{ga$rj0Y04E2kR{dH+ppaecVuPmdFfQo z5{+N>s$A2xuiUrTPOvxQdPK|;?K@t#5)R-q&6T4{JZ^YtDEewV@m0`#t)UsD+9D;M zL;*auIbv1~R?i&X!*Qw@3j&MFXS}7t!t}yJCqkYj)cjhc@DQV;QHcG=r^{sY@WRJV;9!CBvXn%5&); zUA=fMf@)!Dr=GW>x*a)MpD0;c9!5(4I7?7@#sQu?nC7jd4wCxW(Q#Kt=eJIvnYp

q@0UY;H5EK`O)ahyTO)-k@o_()+gPqxoAe`UlUjO=K zlFS%9FOHvq$tGmIvBS!4jyeVT@A!Vbk$|lQb-C+fc8;|!bkfZ>-W7|%h^NL=^OhX$}t$ z0jAh=JRq}KE}o&>>f}TNzqx4u7ZYeq^rwM}kus2~;Cf9}6^2M?6@wwubk=d*UsWks zT3Yh?MJT^?g%Uvy{ybUWQx`kP4)pM+I$HHPSazzM7(G554eU?R0SVE$6{1(~8T~AV z^i&TPm&lKtj&>#j*TLy+WHk)Ct(0S0qId(peEDLNuCw#SES|Nh_t&rJWiofrJf-TJ zC{`H&8k2@Yl$&-4>I6SVWqsV%UK$91Qcwxo$l0bAHysBNHjo;v*uom%lGAR?QkW%r90g8cTaPI0YE@*m7Aa@;I7Yam1?3-;c>T zXPc5@qaLoTHF_3h%ScB<&N>%bjkbkXY$Osh;xF`N8iAPU!Jj~65)dL~m;YI`yO3{- zAL0(^3Wpu9`HH^)`DwpvAa?y;&$9B+5hK$zsj=d!E*jPUJi`4C@+g9*z6WQ!8+g1!#AEsE2XefPtoI>@eUWU>0JPA>g9dr=pZaUNc%ZyprBu21 zA!d^q5z2p@(B0X^q)U7;Ur`kw?{vuBQ?CpbS8>oa^v zTbKOd$cCMcmGNGgaaq$hS^+)v0Tnl+sqp;1SZeH5LB}+C1%;_U&KqmZ>@;W-mXHZlAB6{$fX#VHt`~8#^#l^*28wTMT z3_i7=3rAd~l{6eeOYG;qm~FbD>yO*xTE4TlWOT_~q{ZfxU9yelW1IQo&i@X%?inqoH+hpO zB>wB;l&d?>w9U0Ygt8)rTahy?yPS6n?&MBBYCq$@E{!2K60Fox#QL&01x0^AXbeB9BY50S4pc9l@dJ{qW(#jlRmGXPkyD zStrY%$wu=%0i%Va?}CtZPkq3(e5=ul_a;6BSH6Hk@~g6rFgk~YURiboMAnahYnUIa zez_%E^8)-&5)f9x5aOw3X+OWrqWswG+T7fn>v}7%!|&H*Jd+j;p^J;=76UmC4)?eF zjt=+lZ}~6vWyWc`&e5xI5Q{m`&eCyElk=RABkd6PBh*<#o;c@{~VptN9;Z}r6`BLjS-lkJwr z7VW!R*YyRWNuA~NXD?!m*}_cbDmUV_=exh{!Q|ZRR(SNfOa@tjN!kt5auY&FMUTA= zlc$vQ^z^V)%uJuCiQl{TA}1$@4hylMEhjGVJt-NPr-p_}=gysbs-kjbVf@pjrXN4D zkcc?YK4=q6npg~pjJ#Dj+U_LFY(M*6q1M~rVX$RI@x68tHFcwpZ?*e*Hv!v_Z-DNH*PuvbOgi&&aX zZKEc&j`zYZv#KTl*p|d2qI@bL;f;m{=dTMqt@S>ShL-V#*B>!4F>OFJI}dW;eaUg2 zDIp;jHIT#2kGFMRz;RvE5qM75X!{v_rxB-ssr5zy7?>``lX}l%3DpIbZ}PFGCM@eE zipbdJ$k?WYe566--^x5}igdXpFP|eLpA!;7SJ_NI@i0uC?MgWFYV<6PnEC_g7LxW; z$8s?O&lUo2NUiPaKYJ=Q^0vzE!RxfQw){*@iEFkhm!=?rLw;QFi!_3bIdtk4K61)I z*dTy#5K`wKrrLi5i!uxT+!rn_KTuhkYPV$Xdci9kFH3R^tr}l*BQOpa7pXGy?^yj^ zOOJ(4qQ17j(3{=`U7{3lm78f%mMKBZn(No{O?Gyx{JYt&UY#;9#P$3c8XlfnROE8? zo3R=RDQPI2MN(5!qo@{6tab&ta%C&<8-yt*%Ff)PrM>T28MpFL(fHUiIipf!)n{d_ z`jYEZ=Lva!?S0fOAo}H4X&l8=QCiDL~cA@Ja8Pe z<7go(d?V=`)3(%- z+LM_}8me~LEQ!g5RtupE^SlN`D$kZ%j?QvY#d~n3M z?%xt=!d&!jlzlgVC6cr2xeqe6jn})ms~^ePZlu{f^WosR5qxJV&v6%tYpLP6_bgV)zxBg4GNsoF1>%GnM66SNBz{f79K*!%q{!S zjFFjDRcBzy37{m5G^m1G-7Gm!Cigj)ixuJx~B zKwDo!&SEeav1`Are>Am(+~HgxEZaK_ZlG0ArBP623JrZ2n8>iv%M+^#`z?m~)atvBv09~~G7_#xAR(ct90pQ~nVxUha4lBxDg1m}JH=qqolb^Wt3o6}Wh`!Igx_P^WHm$F9T zPQ^W{l+ai0A)nY_T)rR`@%ctYj0mT_xOJeQX-h8h;=VLrg{+>+^Uo|Vy25B5^Z3xy zHdBt*P%hW}CPh10Y5EZ*9_-W?G}j996JbUohcU zpVWjQN}CL3mo8l*xD)vP1uvIP>2Ug1`?)&Bo~ShVX@|0e)UTfjn@mi$56_(nDbvh6 zckT-^MPfnHEtw@-<0N~MkMu-fLatub3CkQu?@_6#OV9C4KZC*26^_36GmKAH!z<|= zVdY~@&5XBie`>ii%0<7Yb66VWHk~>Fa|we%FkWGow{b@5>ckzEf2qjtM1A$xn@bK( z&@6X-kgopsGZ@UzPOy8-*!$iDL39vP<@DYGXp^p1$aL!#cDU3j(6Qq`AN=$^&lh8L zd~_K4{{1J&>KM0vqle2*`M}bEOPmAh^F3gcOG@gWsqcG# zeH15>!@}JA;1mX9%)!qu5hx_jgqQ2VBGggjLE$F_opZr1G8p$ac++Ap;HEh=|%)v&i%G{h& zM;&Mlfq|$=d#rG9!szkQHVRn%rC;^_$YH^bt9PCY4SPt1Q0%x1*uQ5h=h}M0wZ?jqB~AnSccz1|J!(`iS0SWMr(Tzh@>6wv(QLp}ypd zSX2lQc^c&Mi^f36EUN(HwGt_aBmW3Eo2aILs*W!sJoXI#cGiA!6|y!mmy zY-h2ZQ5!A%zUui&_&s@T@hOa#z-{r9;l$T*xHZ1LQYOR5h69q!)@yhe4D8*?_aZLL zcn?_FG|S-b;kvq+YY8ZR=8c?f7|EubsZ`iK4VL8NG&g>4=jjoR8|w(i{vX4rA?@ z>(9Z^`Ybz<{P*IF8r`_l!*$a_lJ^Bfvdb zKxZ^~WB#5yPm33>wSx!{sG)YwbU_P(_`}) zwiAfTw6ru9!C~OxlOPUKTDW`ihG(9*8}jM%%;`Zou>-$pn=<`Il62Mlhd=;!0C%t3 zo-BI;!xv>!u0~LHe6$abR06p}2Z(HM!u7)pZZR@S0?QL@pn?V%U@_Iq-C8wpF&%x; z4SyKp+`j-iJx_jHEM78D(bP1BrCA=n*ZW_I_dMLg29LPR#F)+@gcN+Az&)+sKles~ zwS&@l*5x_R*$c;C94L^j0VCCX(@i@oVWh zQXfrb`~mZa{c1yY!$b#U?K1G$iasfd(L5DgHo_Sz28VZ3s$;~*n9*PVrepDr;x;7&|RdKmon?ORp-f5S+YKGDCjZ3a^s zR(W_%Ztmvc3NotcI9_)a`<#;d*-D?w#_W@H%jz{2*g4_ z*e1gm&mOF|_bm?OhDJmfvmZl*LWf1e$k~qgp3nF3RKgOiDt0B9l`^^^WZjG!J&=$N zWAWXIClWKyt8+>C&)hbfo7e#x`Zw}-ULDISw>J5J!L&K%g~TH);1YwMDl3ya#*7Uc z*xB0txAlF&4S&8VByY@!9;=|XhJw%s7MTddO?kb}PLLWe1^#JEbxzQ6@hcvc`(s#d zu25K!XEPxIu|>*V1I*7g)p4QDpX(? zD=Sk6^g!KrR#Ue-->mPy_Y@(oGKI zpEt0b5K~`^zAV=4_rUGb^uOh!y2f_|owWfRs)DfV#@BU;tROHym^_D5&hac998aL^ zA?)H2!$~C0bMG77H>FI?|1qWe$>SlXAqOWj%V%nq=Yd&3P106iLH(JdAI(307;o@k z@}iaV@JwU>E}l&KzzH}8S^DiSw?YwEO_)J}6J;E?^?zKzb~c4Fo3YxJ4iA<%qy`5E zcY`0hJoG|*MNXYCv!R4PtHWQQE`(~`X_5D*N(;v;| z*Bvo+Vs^2TSKTx}$)2dI4C8wjz@b`b8ACVM#GFY`N(p8Z113WJ|AT0Kng{2$LbOsM{YoCGHvQQ1!+%Ks4ZE2C&1Os|@g+xsH zf4UTshCkr4fyoN_@PTw|+7vJ!21D0)r`k$Xyr;rrp9@;~zS-8!j@x1WsY;kZJ7@hY zcxNPpPWbp>eIB^`4+VYwTo@37a3fw%LT&jF zeO(F0D0RhiyHvHzIeTqw4cVy1qx!MrxByiNKi^Z|?@oRc_g+-jT_ld~)>D}Zjv+Id ztC)0YyJ+c@kxhXjmgtn`+}vCg&!LP?6puwGcH9RDc=finm%P0E#|euQ z#&=r>7)%!bO~{Y?+pUmNp~HeLb%}B5LXG(nfUa}@00GA4El0TZ2^k{7X#7=ObVFALbiwRz9XXT^+e9Ko0^{qui@T6I zPglB%VvNrux*G7W*T*tVtGeC#2;<9)hP$!n{W)|*SDc$f)vxFXvEWq&Nt(oO zsp#i0&pKX)U%iiY8K6ZHW)eatY6%Uss&YtQrEWMu`g;?Vgc zh&JD5qTV#Tu05Jx0a{ymw3$hdg<&r!Jce|HWXpD8If%Y*Q&ZEth9krryX!MU zaig!vG{0g$FqmvF4?83Y+fKeYS{FT5fSR-X&dyF?z`lui?9B#AQhrm~tDn{yEm2YW zSTa8eown3h>bUf_=F3@IZw}>0C#=&tb{5 z-rmL>0x2^kX)P5M6;?qsAo%aocA z+}Ym*gu7^;n3%YAaQ+(4t6y8-Ol5R+b^DjL=eim~LPE&({3As?T>Cdg_GaVX>@JU1 zj>hs@jg)1r7bw>oe_`iVS(ln z_g&i$v9Xknf(l7893pY-la5eq)R8s!A`oclzK5d}yFRH=&$fTh_oOb!C@94U0bn_F z1$YT+se0g>7dOF5k~#{*e9JqJE|E8O&rUuCYrw$IKTx(i9hC&zC0lk5J?$3zIqZ%P zw}%#5Vuedp_fqbDEw-Dv>QhV1^L`tOS%&oW^~teGl7W=d0D5>dGyA~k*o{@;aDv$u z97dNyY8rdxK~A}QO9aO>R2Lolx6g1=1~#Or6}BZLB`G$SQsa!sM)5qupS&*Y+70)d z_~YCXWrb9j;CcEGQE9TGXw#4`5|HQneO~nnVYe-=;Fi;5>KC?hzg@j}2o5TR)oi}P zKjE80O~hWGA5>`d#qv5XD%(L&1!WO31_p@(l}P0k0sF7z2XKhBpRyvBft$Oh>}YQx zDIuW_Z6}}+PDm}d?Lwge?efg%A+qc=4HFh-!L`gjGeSxsW3(itzZvQyJ_;XCpIgO! zkn#a$M()ew-!Fzy^k2RNNaK|{9(1Y&9*!mkGp^o>=>cIK1e_RF*n46^4` z>QjXEu91vwItw{w+5dP?P3@MDp`2YKcbthFHphy>(xq+GH!|{JQ7Cdh-YTqo{Y zq`RVm^!K)w)XY>AwhS~rsxtb2(<%q5k{717L~t<_THS{{;HZ^15tZeNUSI=hK^j|l zGX)~-%B8OY%mI0hCb^yr_>UlcKu2VE(nnW#!Tc5n=|fmCu(-?X~@eoTlq%k`(_BGe-_-vWryDQ0hLyI8aCfAQHP@x|JKIaOU(B&CbswU?Plc8Qwk~H zx^*jurCD?9JDFC$-fK3M9B~uG#3a8{kb>}V?hz792cel#PyJcwqHjQlKnDV_BfE1P zE9^G^9FOwrghuby-a=;T*RN8+dDg#cOs5D-Cf*5x&7s3uL4NP$`qw#dlX=NX>8j7n zih(>p(SIYQ0{7Q%`#IFmDG95aum>rW>E_M%bSTWEMz%{0R9qqVKzF)6B!Ej|iRySq z5R4s=2aX}DWbjJ6Ag1_LX0vt9B5c4g2G5KHy*^deM>}9tnk(?BqDzsco zXB{mR4T+9s!8(4z1|LD4gjBFM;q??q+`pDZAVKe=ak&kO0_m{xu=@Kk8oIh)pze$f z+bMeVClGh$iGreHm^Z-{8mueCLT0Q)xOZaYl5q(slr2;gwhiuc<;zL^Uie<~8lN7E z))J!7gU17zX^UB!%7iRu|7Hqqt65WHV+Uk~n6aw4h5^E(IV_P?&rC|7My)0(vt70q z^bPWW5nh0F^ar{_pja~;CMr@k_4~7Qp0HknChNY${GAF;73(o?nqj?2U^^Rtxv<>@ z7J!0h2?mrNtE6u8nuLU;Cc{Vt3A>&L&?%X&5sn%FGaF2U$CW7dzJNMqYix0}5~*_t zXH{d+llc)F81ScA>qtJ>erHwZIwULxb0GUF5xmhAck~pC#rA}88))%7Rakg+u>@vv z9u(kWJ0YhXFVOs_mg?wn@J5Fu)oYEJvh_BiM5T@bU8@G)M6XAlOdu zW3*comTd>|zX9rm&;ig!IhmfY({3I_6nu{(BO{-%qwV~{e!vcJLx@0YrF2j zNCMO!q}?@%V&dgh0?WMSEaVDVnGHWJsAIGTKqscFpndwqVLo${sI z#vU)$s>e(cwu2%f$Zf9u1?XQNaW|L1N)!H5N2*%xnqS^-YAM)#Fx@2j@kO;Q)^#br z4~@B`&z*8VoNOUt1*HxP47YA)7+JS;l~BgHulXj--z|sm_d!c?R#w*Csg%J|WMi`N z!}*6p6fbzU1l)JB%8{A&ICkt_tCc6|oeTZYkjJdg7*m$FA*I$=d<2m@9TuVz!cw{0 zXDH;X$^BD=^9wD83`a3bPzV|+L>UO#@vmqq72w$XaA_fcmif(wyLxMZp=ja<-I1{lUF)uQV7f-@8Ulw;cAo5`SQRP%>H2a1PYA`*|2s1h53wtVGB86UKF~YZ=wxef%1a+k@8YH6Dam*YHu&}(I)4& z)&IdII}m=pN8X_Zh=*FyQ$F!$l5=v998JC3ecS{OvV2T?sLvfOR31sof7;%H2w2Ok zY~s_47cbrnS(+bZcV=pd^2f+wJ5w_&R4tsn;|>>%vRP2<{Kfz8l9#eJ_IkXwzP>az zr{Of*GiDKZmAh#~EG&B_G%$MqH;ZP@S+D?S~43jZkb}vEW5)r1*Eaq!oQ)J1jI|^Qe4I% z0h#_!31W{L>Nmu|NL30rF5bktP6kQVWblG}1{@~uSy`!io1IV5A}ji{JJ@4KuRQ7( zE3FHg^XM*y9}X{S8Tcp&&r=|LKVzvDU#mWT{B!nNWB@q_toqrX)PTO91*1`5)&j4C z7LT}eukYCTNi^?@W|q|(X4dC^`%s0^p=sB>k?jgHN4Ltop3EA;Tn>*td+hUTCFpOq z4#0ChJV$^-%=SabtT*iq!o)>?9QJrr;0i$&*~N?f$R|W5PDD6q;v_Wl#@?CL6PTag zKq_k3wQ>&@SVVcOryU%)2T<_Krz&NJq1k~uiw289bPNoGL(Ws7N?azLbRLJBeOu(& zVBkL9F?eg(`jH;1TH#*Y+10hQp;7AC6CWtTbn8M|;&Ys74_7x22 z&|N*4BHi6jhn*)Nda;_XFn<%4Mhc(JZ|1X`mT8UPs6CQ7^sFSjE|5TVI4d~_$e)5x zGN$}Jlq7bSI#~gK+=^6G|7!fexLI|QXm%=G3)-lh{Y4eS+3(jg@yEF4)!99$En2i# z`c(}1_VZnUel3ZJZ8v5+vH+xgK%~D~#gqZruy_q0w?UOs)YIKB3>a)o`g_1dHcPOI zc!T}v*1;S_!jtYhv^E^Yy@I-3Uh&_ ze?Jr<;1uKGqoxQybfMd_}%+wUO+R^WMsRR#YrSi8=8B<-M>UPNi&;_~eb<_e| zgmK7{TN7e1b-!TF*$)_mW6$}MevF9tijqSp=LSaWGn+;U%42jR2Mx$qC{Sn(Mv?)g zjeqys95l3YvJ>iJ zuJH^5h~b9Z3&a?1IV{rX1ptL|ffWX5)Jz^PN#*erate81@Or_}!G?fu17Q9E4x~D* zj07j3^?thTXtpR%_Ahhs#*X`?OFGAy*Rx;bqJ;^mM9_4}H{b;Xtj91DE5H{-zb1c4 z27mBI0bS;FSSUK9FM=eLb=bo<4u7**-H*U^`*S>$lKP1*u(C2CAP|hf5@xfZMq2k3 zYNRn27-8iY5mgeSJRLpV&on-8J$z~$;%IK{0wa(yD189=!eQ&$^Qx7eS3_e-+@yT=34&mM)28VtE`#?@Sq)SRTfP$#xr9@IvBt^Orkdp51 zZt4E^A!dI6@ALd#Y8|;*O38ilF16kw@#B^&x3U*7)#F2RmV4X;tehDc2jlLL>Pu zV<3ZALnsW0KIWy5=bD9+HXbx#oD6i+a_`2yuPUIlB8e6ZSi@c$wI%Av8m>j2PBY6) z?|>InSg2Vk;D*yZ4t+f&8x|%eO$R3ck4_8tR(>C+n@nl-w`Ww3wz*RgvVQOxZB?Gj z(@Q5q+(e&Le$p(=_>;cGt+G&i#l%YYOZK%-cTryCA$=M8m?wh}FTRe}u<)B^aqCc# zrqu*$DlC#?N)mURe(5%JZHFB3A^FhZ3gnEKARcE><5Vyf@N3GxiK^Wt#zeG!(l;#n z!uvxEZCiIoF6QJlZ$d1s#b1NjeF90NzN{}RgbUqceT+oAy`I-wsXW3#%%Xoie$w(l ze!?CbUd2k>=AEXB!1RiwY1VD~(7VZ55@`LLoI1vlaT}`BZ6MjPv>@BbB6gm9v#i@X zZ@DOY#Y9T=QcX+!QKusUX6YT;+*Q?S;#1_%lek3H4hTxo0ka(O%4;VB+=jlEieMT7 zd0}1I`;4^XdwcC}BO0lico)5}7kTw`k`Es}2+2RIziu8ec*_M9xW{hWTX1sMr426I zP$Qs|F-S(BBRXcfZ*xU;t{d~b&kw$jbNaHkuLq$(VMZD`X{kIG>BqzTFwsGJKVQ+)C0? zQb7wv50f6nvCGJN=^__RUNB0@u6V7xA9ga&ASIm4GI{3a=B&wTXE-H9mmnxKAvxLR zsmEttx(jYmr~61uPTnWi^S|iscG11`IEO!io4$RENUTP(rD1+prXiUlnd*J7gyj+4?pTEmFzE;SH{M2keyxb$o&^smoCl^!iN1y~1?No^+!<76 z9>}xPd%T#cb9~{Iv-;Pg#;I2%Rx>_z7n+P%S)$SCN7$Yyi}jL6!{M7A+e<;!*wpV zQj(Lal(eX>=0mN7g@w)7U!pQ*i^V}BZ5Enwx)(2)W`)u({)z&+N7`$2rkvz*tB;=- z<8&kW4jCM7c?J#0F8dW0Pfz=@t2mw+$ZL9sJ2WJLg{5}Lx1`HVVU9*0s@U|e_x0ULJR-?Edqv!j%!@{l7UR z{*1`zo3l;2xcU^Sg>!X1q&uBLm^yY;#!9K!qbG4x#)!O@Gj03+KPQtTZe9knuZwf4 zgf5o6fvR-!BjaAI@MZzaJ^dcPgrUjEG(b+736;G+B^5elL%j$+%^AYdG7(An*X7aE zJIH@7OdN9Xy5RFt!q!}glFwxyh5lnU^<3|5%ZJmcMtQJ?@eM;P*8G-^Fy2UeWMqGO zoiUD+_3?BmswuhEBsPnq3}msJM?O#1K+{+*cku4NcSZ%A!%l5)k&P&X!Q|kKS)8R= zsjf7xcM~BTXKWnEZEhNs91}S9ssd3vBMPrL?oLp`(2!-ON-%&#nZM2p4xF>0wuLp$ zT-*y;-=B>V=bQ(AOgN67;RmPg;|yBqx~|Qh?KJ^h@U|N-xK6q0Ei-gSQTF?;;!(!9!4(k?+xi zb7^v8X~u>MS|n&hb9@7_iIb}|bOY^8+25bZ z*r07OF&1~-p17rzi4P83|8t9@bl`sULoK%aqK+_Jq&-{=uCoMVi=gpiM^6KXgeuSm zU~kYo`OiwVmC2;U#%9(4BypD_`>XHg%7_qpwwgqhs#&?PNdHgUKCf8Ku$7Kp__?Z# zhPjPgxS{Q3)|l2yi?X))W!=%?^7NgH0U-fX!K5}C2_h*qCix;by<5!3k7Udmy?dnO zg@t}C#<0MvuK{sF_w&P~o-PROEgt#2oNbEp6e-cOsdAzWLLhEF68B1t_xIZ&hk=c7 zM3rnI6w{#t@xe!q zP3t^IPpcT0EwJv-FX(f2N}(eUj?neV<@rC?_ZnrS!jRz+4akA5bG$bG!Hd=N^V0MR zKd@w6uRFzA-!|DuLJAFjwz!|_+YMR#5-24>HqYM3pJ-0+hAmxj*3joG=guM_7#6S4 zYgc!YqlpK^O-&#D4!lOJT4i7akdBks{x04{`s`E=ao|+1*DT9vVk7w8UXcpD+n1M? zeY4)~Zq=&5?bGGP-8=|qr@+~qE2vaS8v$f!NK1nPI#^p)RDg-3rrh6{Pc=p-{Cccj zOG$Z(JKY?B!l2zW74Dhng(K@3)nx(lVK8dEEe}Hd6Evss^J|w`!Sn&tz4|y37hjLv zSm}Kc&vmk(TkxaGYe;vaeUE&fGZ#dq_-yrJJr#}oQ&$LuR#jw(hsv5~girV9jftg2 zh03AqxY7G;9=L*&2Pg?p%Q(-P;UD#9h}tb!7|i=mG6)2XWTyznt@Gp~I=XxLvU$KA z6sd|!eLB~P)((0HcYWOxq->`dP8wcy8k+(Z!RHXN-8G)eMC4zkzHuGDMEIuFM=z(^ z3+Fe1ECn}#u%!f`X)uQq+ypyMC@POxHFV?$0Ge#p3F+zT`MYOo`on`zf;Nf4*)kAW z?=7wmd?eou1eF$c`~)R@q7>jUB-oc~IaPdMD}eEj#4E5Q`ors9BLMc`F$k(~xz&rP z-^2>DO+&eoJyQR9kPQ$fsp<>d-6GxJ-bIP)z5UaG6?5w}QpP3&>7wY>R2IoO&Ygtg z|xgq8s~s-B6p}YEFnHgnoUWFrn5r~4mmJeQSZHHcaRGBD_=Y#D z^J=qi_n-Egu<^oAEZtqP%Ke=Q|5SiT=prpWnuU(vY%cW3dg*?Pi+k)ZbX0H~VpdBK zSS}Fp7u@QDIDUkfO!$>1*xdthZxsT(JKXjlc6aAoY!1^^^ z63nq}LROO!@cquh=VIZLwLF=3LQ;AXk3*_wQH!rV1*#?cAj(_z9 zS1T~0hLg+;5D{1IOc8l4-VssvH&cH)$FDsB+Y+!Q=gmD2`_T&bY%}#wgsjUO%J#Qe zH0V(zJmwk?;xGJD$wD$uUVNSyN-&m|jW)Hk^n8zm^X2dC2!h4w`h0B3B3i1zx4_jo;&YJG=4-{QzV~!N3v|s{z`e~_6P)pEpV{2 zbDDJDvv?*HAbEneMcApCttGo9O`o4yX#giWZnUYXsVnCA;AQDnzlmCj!;kKCb-E5t zt{2r;U1kJE+E8>+2{}2O<$4#7AU2skPZ4~Te6?4`frXCo3T&+_3J5pz(CFoPZyGh8 z4l=HWb4-r<=%I{m@941WR(&~__Otn~09JryOxk_BZ>kcaWgnI&CoO~LhuMe_qVYGgyLStIW76?4C#cAp< z=jv!|>?Q*Xi^jYjp8F$k$d6VZ-$RbI(|dMhQwW4@ri7^4&)@A|xI(!trtx7+EI|-? zh{2HL@?V@C1`$f){#JnQ@DIhJ=6tf#9rZ$Bw(s?Sf`hcFQ0%Fx`kmc7WM|=HAFv-1 zkG2B74&T=!IXeI=IKbsxRtILlznpyJru7LP)rR{&l(iqW7Eg>1)_bsHU30_G$dWez`V?x4 zYo-H)a(ezO9sot~UlLy5_QObAIJkDErlo+lN#H$0A#R5T19>3Efj_tJsbtkQwz+`B z7BQM>^xh-C`V64P@_Z7dMk9Odif#FdFqy!lGlqt6{(uZuBw&AK^5%@hD_dSJUQwdQ zZ-?A2U>x{)ToS3gCj5GhZRPVB@r0zPwZi`(TGEvzObU+h5tn$H9J4!fll3Y>Cq^v( zxnp641CLr%6rz7#`%7z$sqKhYMe z$6zIpv@IT`bG-5S0=)|FQap2sR95NQD-5MX)QcF6Fc(2Pt>;J@*) zJU23-Ln*X^oZOgZo>5!e)0pjgx|j{~9(hW2<-;k66dAX1gVqyxK;C=P#Rr@c`YXsO=Hrt+18qas847(UMeYx9Xw>dC!q=fFw zx6m%kVCu2s(*5=B-EQxeQn~A)?c$GGNi>D)jxL|yt@YOyrJJGlgGVcu1psypK=z5% zwENkQd_D!+6&cG#3oNL1$C;>Pb&FEP!oos!Y!P>1VW{f;^`3bDhu=kT`9#qhgElR8 z1r|0oKbs%!o1)r{lcSQ7qn#u@Jw3s2V`F3f!;Oy3u<`>jbdFBt#gO1&+X86dV_&pd zWswl&Kv~h=eCplYjCRdDQ`J8M4|Yc1q7&X;f2bnjg*_KKBg2hff&laZJ@VzVugH3% zZ()V$(BPThN8*CR0;7;bC&@(IUg!4Go$ZvD4MB#4*&o<%+O!BJfB8a!YNtF}eg9c( zX|g`3bhp5wWKBHZU?k}9uy;#wU;@=HFDsbaxCscnVXR^8qrYK8e03wPvLT0R_r{}9P*EXT=dRRwCUh`%{VwWw z<@m7tPf)lQ%kln57*cSfRixO**hnaP%!i|SwtMC&t!eg^3cc&3cMc~6 zQRrNAU(TbeXJISgvqq1ijErxd`OtS9Qf{NBFI;L_I_~**dV4G&;8V7$Z^;fWO+4J4 z408HgPv?xZQC@1Q%`49+7{@9F68)Z%()M?%vGo28^v1~X;RrfG{wbf>m}S90jDRX| zbgR5?-`C+>(ie@-ZjeOQu1)_v^NXhJmn454Q%;2_~7PdFnA7eXWCt)dE1{ zf3uT*+ctR5W?lUJbi9UtK7X~E_&pc?GFlFKvkll^+JJen%=%1APjZaw_o5>HDEnc@ z;=xQ8hA-ja#4UB?IXOADPD5p`ruz_+prGbVv~xy6H%?c-4c@O;Ovw?#Ep-jno24tcv(6(X zZM{F_&bC3oqy%_Vfkn1Vp9B7ZJb@u^)BYSlB3!<9`&(fl-?Z8M{5+?{@B`T2IL)Wr zx44yBVWwSYK2*dteF)N0XrtdGv!=ux63ROS?#Hf8j1cu|NW~1~3+My@_YwMrs#%QyT>azMIg>hO;1arqk%j8>@WDTIr1rw z#K4GuxcSaGaZ_Xfs{^E+njpPoWMvKO zEMnh+RUi2NuW)YbvcDD5$-k0!_-f#eh}UdVggF|iY1gG#bbPcADQau8qF$Mrc9w1r zr^2rBxk=kVvTO`)%kj{PYmWfM1Ba}8jqT+}o2)C@QY?j{&rK@#D=@A*h?yxWhAfw? zKOF)APYX3T1TJ-_JHKqoOt`1B6N%zKK3Ff_p57vDE!k|K_6A4DzLLh{qTp(Al1+=-Qi_$HE|vu9_G#m`T+Il5I*HqHZR!J;>gurf9L`JaxX`q~+3WEoRLk1wu{RK&)%m48A1cK3Ii>;Y02HZDh3@aoM)x57hy| z5BR)HkXvi?biMoMR>=Z82gfFGDzjhTQ?%c&C5zW#`xY5V7Ueh{?zG;-vkBf^2$p}k zwmdLI8DXG0tQP|k6z7r$q1RXnDg?@Qrz5rx{&7dvTNXPD+M&N^W-9A>glf18SEy5u z3_^oxfLn>VbqDYA+eZNJ0EJ^98Cstfn9D3p8=a9tqGVnkJPWk&S)TJ=RsH|2@PK6X z#;qCT?8iKtn_4EV;UJ~cVWUR@4A5)fNkV1y6pj7&@88eqA2ox6gN=H#bV(k*DNxGP zYU+_7gaBP7EDe_t&hu@F%RGaYZ;{4Zi+#bx&UXM)kNCi_x9Quhp*;Sc=_Gv3(zY2X zWGpb=xawfzI`CUEb^&A|)su$$4J<@dCJVP=7CDt^3J~1(_fB32Kq{rFe7&#t+qPhF zt(H=mO4y)~ho}t^D-UgDVU*~Z43V6XMsE5+fq`Fvc!4;`ZT{SM+U!!^F2EywEk=$T zE8q5&27hmL1)We)#P!if5RTn$&7IvOYB}HR;;Y>;$Ynm?I3+H#oN2^;o}Coe;LHdS zW$lIEn0t|Z@mt!a$=!j_dyO#ZNyH6Va08#yhfY8Rsclr>0?rTQT#P!R7;aAsm4rds z0#d+2)$ZwY4MYe#17bN2sKCaCZMj~xK9QF_8J1^oM8tv~3G#bhW)RqWVaCAJK3{xo zopv5_;k=hXHD3+g`LaCLG(v6JX8p*5FX$@<^ zgKu+d1}S`RsRad!eEz6_x_=9lR%CpB6ZSrzr8^V=b79kBMJ7glAW8eWYs>ED2hpwX zqg`1Tom(w-FKfcG%UxdhPrf|{Im5R9vJq#Iy*8Z$@z-Y(84G{ag52WdM4;yjMC9cU zpF{@5GWC}|bx42o5@wAopSJHOCMNEZUyvZdFVWN=$Ri;oJ@mtqr@FCvbf3UiTv1th z2GA<7AOJ`8`?t7Qd|SrIeGVy??7g~gnL*sa-(A%U2RD48uVIZ$PEI-qNs*9{fO%Rz z1bBlJk<|jG>H-%hq=HsE{yN#Si}*hZyqMmcmYFHr>&d-JID;&uyv*9_@)@{=ZETUP zRSY$MO=WjAx>A9)@Ciz=HDHrARXDy9u$#N?CyKdUFo+u;Y z=0)HV1sm&vIgGL(Pz6s7$t@i`XQ2bYTefoV@8g&dopmb&T!r(jRsm5jUxnF2dt|Pk zu@T=m(HZ<`T?gPwUOq_Shs^hkErF*!fW6$)XQH90T0we)mJNjFI5rs)&_CjO@o6{< z2BK<{R{$w^5wXbj;$1oyWRfR^z8EiV>k6?FYqF(;DUW{28WCoYl$?8UBC$H z2Bwb@qLnKtWwsSBy*7_IRX@Gl5rH6A2@Q@~ViXuq6u%Oo3ow^0oy`-HR`!e6QkG@*QztbTOGFEbRT+d7z*mo?0FVJKg>7%jwfV} z6##7?+qj4)z@v68P4jMHhCb0l+7m=aRko-n8z5jA0N%(BWe%AlD3Kt5w`KtH+Qkz> zS|<0;($qP{C1D2aX-hKaka3vn-+Ms-nK<9&KM-E|4A}0I{I^0I9`}*MG9WmR0f3IQ zu(rX;vznP(CtyW%Rz4?DS6w#}d`)&)vU@M$w8@0Z6J#2_CR^T7dL(IG+UMm(s@#*0 z+jKD{3>WJWg&xZGS~OVUk*t6yjZMT6PEC+r(_G{jC5z5)M}1iQ4CjpCg1 zJr#uT!9E0yXqy*go|Y+HqR!x>+Xx(^AYeU!OW!5GYXCzF9lk}jx`^xjY9#^D{yeY>?vMKPJVpF1WV1U#K zp{aMBn3kurD9~RqTU;DD{;yEmX)dp1=~i(VfO z6@zhNU2e-;EzpsCn6_)-mFpB~04)KUSnGIG`#7<`zkg`hq9aMBXc8^enW-&=L&7Nm z=t5;xRgisgb929Hj^yJ9nMw$7>3B5avjFOK0hFOPT$Y!o^wY2jqyUf}K*xzy*M&4} zW}1D&jgJm?u{<9;t(0y9_Q4i}WXJ6YUaL4Q=cQcS{Bp1k7=9Pk4>)Sz(_oMuQqHKo zAyHXu+(COdPFVg-PA(7zG9YVwERTrKL;`n z0)8n+zy78sbhycQ@7`jLnoC)?N#$k!%xu77dBmwi;%k;K)-;^ z*f=3NHhz;@RF|y$Ll+slyFOzA_$7c^`}+F!02WWaCHnvzM#gEahOl%Xk9@>o!gszS z*&nfO6{;T!;Y2r>@^aA-KOmx&`8RQUz49p&Nd z6Q`LddoX(<*rc<81xR`U%kixWS3vqL=JjqklK_>FO$B^};610&M?n3j%HdwE6eeaF z5<&j&ZSnCW?A62TF5XlLeWvM+aKX$X)=?AUr?jTS|7w5WEF z^&dNi5#ZxXywa@S-yAuB#yknZJA2zJtf(&n_8CZ+G`b(N-7du%f-D78Sh0rvRERR8 zfIxATL6Y%&!GvEB5@3PZU`GwtdpvftC;x^8}TUZ^bKR z>Vz7W?l5`y>({TL;Th7A9q~VnAZ5@&wa>&r%bKrS1h>Hn7$SkLFvus(&Lu-J!v-RG z)6<49^@t9Rib{V*pVJtl=f@}he1SqYN^rYpbFSmb^BDuXxKH~e6M5P8YvVO={yyO^ zlmRdxs+}pbBn~iGYVqQ}?H-q}fo`k`^6M23EvrD&1rhRu4>uctn^WK?t30ml8%z0t zHAvIv{&2LYbo%lPf1`_bc$}(~-oDuP)82U`uPpOt<3P(Oxxni*NhvA2CaxaP9S3uG z^2txTKm_1?)k)8+mIJDm2SeO>X3h~YxyKWWy`Jtlzma02|F?VtO#MpF$TUx1H3I$VL6KuVBrPxd5Z z;q~53A{3_8KUJvb>mzZ+ipfE zR_c^XD;u5G&>$J*x;GbvYjP!k7w$GZt8>h5x^5Sb0D@z8@)lf??&$rY7ZMZ0TE)hn zmgGAHoY+T4#{na+JUJ}wm(Z6auj`Z<*H}xQt&|^^!3iJ=C}?Q{%q>5@gG$%aZu|b^ znpUk<&YNB96RT@%?5M<~OoP4b_p~%q7we8rPeQG4<;RCB-_z5(VAJ}cSNp2k8_x+? zzy`?uq|mTm+t!yx3{^BQumYACZa@$-v|AyAq~Y!(1VZfzRgSM55vNfrOHWIT5R|_i z!)2oM$0ZNuSW*0d6uyfZ$TO1%@f|Rpx7V$31vj3p^s-@V+O~A`myZD~cwfENj3$}DsvsoW`R=dI;dYwY({i^JHz7&FLXxko5d$p?IHUG zv=mFAfhzDqf2W7@w&5NEkn+ocyb768R;C4Kinm#{(kxsS)Il9G63GB+@vsX5_wZfl z5So+yo|+oeS!B5ZO5B~mpUb1#L84EMDgs&YT@+X=3eYZmfE+@lbJ&ABavid)!f622 zLy(VcElgOD&SU}h1b5xzmK=zE6Se+5X{tXJ6mxAZkH9n^?E5!2H=RIHeG_I&)SnN9 z=S3~>le%G3{SXz0Tsj1B*-!fj-L#f~AVQEsAXG}q%7*C@!OjMTU^Slz7ZQS=qCu>^ zC&i?kv1mC0+aoxA42YIYRcxKfvXo8Hg6g2*0F)M$OD=Y?VZ%&5I>ERji9tX>-AmWu z^7?nhRG0>I^t9B~{i@|SMSyCD{9QL_fT9t5eFc6yHKRxpAR{L*@piAkG78-G>R1)Q z2T?e3eYi!p+%vJ6KtbMSIT`rmge1(!=w8Sy&!9XQ#ROExU}~*Ok!=dh>`_QwjTPW~ zi#4@XABqeol{DzAq4;*HYBxu~Dbr;i?uvr)0hA4TL_dD|wArYA^c*x8bOLoqbzUh| zuBoX3CI0@zb%CXv4j96i{GF@^xQm3}_M3Uxu3@_BPjNt-%vuhB+OW~)d{@!I-$pLL zw1p?7fPMtnGT{>Z=IGn&uL}+V@#zv08afY*p{K$f1E%p>A7Rcl3qUKKAgBOu_04>D zCk8rlv>>nZEam*&&$NbR5}ue=)d;9%9`wb4@3gm zS^p`D1AVTiZLUm2*pg^QM#dLM{j3#djjrjV(zbpR-*#F3>otzTkqqohFRd|``GdIe zR2oAYoaTs8Xq#WChR?QMEgx=N7tHq9_PE9(@!gtGxJRtNX$;4;=DaT{x-*`J1d%{d z{7nV)!S*T5LHxwN9|XNmtE90!@qpSbm6mVAus6+{F2aJFCC6VJI!Vz*_bS8xl=-Ke>7oM^jl3&wd>ckN_O%hIbv0xN~hK1dW|hm~N9G%Zh!{TT=yC90_zwdyK;5)0?4qU^@u)_*=9XH-V;XS z?^uVc`SCZ;JcEZL789TKH%}Oe{?otmdNe6H3a%8@8bOU zrwAk}{>c-Ur=Zm*K;zFN&wi)MyZtxk$Y)eVIv&sKWp65d2X+3|pV%U8ZSUzfj;K-3 zM?bX~K>MN)#|7b=jP#bACQ4B!t-$DZsR5>qAg%=h$V#(3-WC;VJilZ?@r{Oqt`)}n&UYF5AV>a>oVQ%kq+g~pAGU7N1@Y)Q zaY1kMi;C2)-M-ffsui+kec57w045P~EotVRz$UnTdyo9Ogku|qc)g5lSX(C`^}2x8 zO&V^lot;lOGlY}LK{-PsWxYj68(_Cc0EfET+vAwk^Jd{6V=Zm%ff}y{=)Jk0+1S#eY;F!Mmt9`e4K;AAO)_RA!ruFQ zc;Hqu`p>Bn?pM4 znR`X^ifR?xn_aS8A-XjtjGNl~FwuNNYTu>{5Y4q#Z=~Of*6{sm{|OaE>QngUT?#Em?0CJevOv!wZn8f9~-m<9iOWK0!RY^6;d&^nf2`>VXo~ zGolirfV5?1X8y2dVqR0FKlv{4%PYRSCS3~IPf6e=CI)7F2+OgYabR%pkHEY)13p&0 zohIB?X7lq7gUs`Vh(Q?{W~-KplK`~<2PiL_o3@t$+o=tTF`$v`uzhea4ODz_h}eVy z7h7hCD)Pt&eUmU&KiX}98aQP%->lWZCGld;kp;MZchUq0dL-;#cADS1dI>6lqyaDc zuIV2Lt}Z;j!^O!-PvW~r{sbNTx=zJ&78Hg=~%BTQf8MkwP!F+XyTZlRkgP&fW+Ni$=}=Ct5%70dshXbDfnHO{*4c! zH{jF zSVZgn|B+VE|1WEmSl$sG06J2`?y1J*4?9Us{Pyig&mZnjw8BQ*6wzPI$5+XHjK)9M zpb^6*KL7au)zYA{F36E!dL++cWLa|?^r0>Qilq(U`fqC!wa#JrO|@D-UU;&UZafFg z5s*WeRC_}RlO5>v{r3HPLvag$Txp>1Rt0XddAKu*0Wg1maRxy0nB=wr01}ooc4ug& zg1YuLT%6p58LO-++=T#Vi4H)5)Z$n zNFc`-q*oJ+9>+icu%OymUDvKPXvT(pz$L!}I*912YO?q&>*HPhjc=F9WkA)tyCyRdisEcBAAdYT3T_o*xVy1$ul$A{oAd* z@DNm3?VSez5ugQ@(|qva!YpHl0=T^3ydBV^Jc@?=^=0|1&Jawj4Dc?~EiswGvAL4i z@2lWGrchSx44z>J5!SMuI1ozO#~y-~7z+Tv-{XCU4kjo;SV{zvRsebP4|_+Ts?7O= zak(Zv^U%=@1c#h?OrafjDf0o$*g_I)8k0xV_8Q zf9dTbm(@zlhUVr_43S$?C6b)|x#`_S>7_ zen7JmJP)S~Ibbf)ow}1E)N`9m4*Q!6gzKNK3a^YA>N7gER$|>dmi8i7H0pbvE6v*v z%6hG-`Y(^6tz`k|X~xg8?VXuU<6;5zM8%cVar0W4jJWCods4P{Iv8IkZ`L)H)|dA1 zxL>+hjr6+a9`Nkq*MfQ(bDfGIYm02T{O?_PVJXQ&LWa5M#gLp(C4ryCBijpHnL`{L z0{cO)4VyVe)+0x5S@jvLJZO>@1<#~ql;y8~-fESD_9O%Z)7JKbTU%uXo{!xD?!b7a zsVO-7r)MaLV_U0a30&axyIW63K}W#2`pDjGWi7|MVH(!|0Ji2fpnAx`?+XUxo{)3R zmfLLq8Iz29z(4~_m!xynD=b=^th-`pKNtKy@}W!x|{#FJ#theM3WU1G2KM z>WJLpc)LXNZjLT*Ktsk;(ciw7?fM?m^@z_yn!O9%!G+X#r_Y7qHWJ-@XLZTjAeO*RbY&QojB8rN`cVG&3s{)o(a#^cFh5Xww6}nWeDk;d?QmJX0;A_b5n{3T z$3(z9n@o`EPs269wMGKQ|08Iq8bDy^E?FMqh4NL&1y%Yk)fut=-*T z3q=~B!Q<`lG3a3zTpYQ7n|_oaut8VVfi9XoYp!h7l=#!xI&l>maR+w*<{; zM+q?oGJ9${2x=j7?ph!!T`_fHIa3pw89)ZG!yX=$+(G2^$jpox?lk*QJMjQCCaQ#T zCDewq8(@KMZy^NuRRveZ!V97+bGBbV5okT(IRha2Ke%&W^U}2h&JttwgX|lR`T1Aa zRTbIyZZoS@7uhZBY$OXc0Rr8!t{j?pR+!NU7@O4x{tApWph*XJVGZ~FMJ>FPdmoTT zZM9)#*F^>ixjreMUUotxxC3^$GXc1@N8@X}0L#8v`=qVE(4GD#T5w-eu=_HhMnx#I z`VOG}q-<!0l>Jlv2$x!pl1LoE7)LD=l^R!e$Jr4``ff(EJ^1I*^o?ciZjp zS78eai*P2insz$l6e0EcFpqr4_jQ>LUXnxwN{AP*;y*=Dt2XLh=d-x zE%WPF-BJ8)NkXqXJtbx6MDjQ9Mk~&H2Q(263N0yWX>S>1yt2%}xdW1HlM=84uuS2Dd7pvbH|icEt$2=O1@>+_!sG9*srESkX1 z0Ce}`WK?$YqvHMXpG1!gTKI3{G2~1C9u0h=LE%_!P=i%GIOPpLbywvon5YRDjH0F4 zTxb#EN!Oign5LK|L=%3Q4H#NCadBzb$l&k{1>dvhJ5e(B$FK_4Fh)X7(-qsxKV{wb zGC!P5zuJPRn_T_XGardJkc*xuSaVe&`(V6p(%fp+nHyp zO9)*qp?i_k{uC&dFYKg31l4{A>hN#^%moJKndi^p{^&aSb*VnB! zU$g(7z~Kp{@^bd+iu#d-uZG0Q;s+J6S>o%TO`w5#6O&5^{UVmamKd}lMf^ynsL^)d z3=;9+f<7b%7vDSe62uecMz8c8wL_V;ehemJ*UPQ(DtGsU7Go3N0q4`-V8h0GS^9o* zNeHvTW$%7TydTZSng)%}-V(b_k;GXq#4r&*R1~IP!JGJvTg9fLq1{M{|5?)WIk>EN zNj4kq%0GQ7q$AaJQkwxyj!9!H0{rlhh77v95-c=IsPxHAI z+pTZNbNx@yf2t0O=*qn+!2qr1v{Lj|}fj??F z86qKu&x!fGGhJa>BO1!nac9$udd0wk4)RF)2cK}I>-*SO=R0A{dgrD~T_p=&qpGKT z3svNU%Ltl|C*wTZBKRSNjOUUbi-&-yf3tKT?JEsL^Kjfs4evIau!a@V|2G02kdu|+ z{>!t!XKSyUw?w@)fLRZXqOFx_so6~po3TM;Z?+D* zb0Q2HY53|iyvP5^Ce-}LaL%knbq#B4Av5&9qg2641Ax(Ae5{!g3mt)@i2WaG_Mtz{ zp;6%JfRJ%i@_36n!VPbydZmbf28v;_Q9Khk^?PwxV60w`jt-=*F3ewGD=zjPv8Q{d z7I5yS#VKLcUl#qrTPT%zCz~9xh_moP@Tizw`R>^yf0toLZpC2wMR@F2m*DW54`W~rRGZ)D+Sw5QYrBs2CnJ=24^2yUKS`245*}Yxzb_!r zpdNhYGV5-@E37rK(Q8-|S0*qdHfi`(la~Xx0z0GAr>^p37p&Q4)?wOG3PD#Y7U!uP zdzgWpPB)yZ53V!}$gbW<{9dQEdnZnX46&ZhT)k3!>sQvFkPqJ2O`*)RVH)UZv{d_> z&D479uv7O#BMPJ>QJ!UWv9K}YLgU2>t>TY6RVRwYju-g0aRw)p)n27+P^^;}kk3UnnV&Bff&n3I<~*9JOJtCdq$ zgS#uN_6AQPjhFeRUk+?N9H1@+l^Yis&+H|^%sy*h^(~4Zg}=S129p&yjxg%)NG;7~Sb6%F_)}17EtCqtN_LT%>f1L^|7YStkDZlfej1mAK}VUm*W;F3d^Z}i z8_LRqLmz zcm4Qp7sunw)IYhfN(mK&X%LOYSXw(S@OwN@>8!x^2Dq~+H1H9~H1WjbYL;)+{v6i2 zM(>OHpd~)lWb#&D zCO9*;L@-NBQAGH1ld?hOUsa_59#RyynyoIz{{HZRSmF{rwd+V!uZdDfKFf(oK;Unn z@ZMyR#^~}@>x05|sR3Py@v_9;1*NdFF?e{y+wd4{PlLenNydXd8>s_y6igb*EmOi_!61^`z{>*&XJJ1krt}S-S;Zl9`q|UG;q9jE6^&l2;v{_ zH@T+aZ063o#yC{d@6mr3gi)z)kkQQ4ERoSzkJ4H~iD-ee4T z&%CLvA4xzDKhke$zp1z;a*@i1`q$AusoMv412;3GUN@631y`zNf(mp4*rcVG_+hW1 zfA!=Z2*K3DVmbpD%p`+!l$TqQExT`e0)R%qa?5M+FGl~H7;d3h!K+5wE=3*z%~Y`h z*mHj|oT>tbsS`gxg`opV=;utyyVo9y0{{MbZ{958N@H9lw{bQ( zZSU<{W)V(}&)Mz)*UH`uKm#7}Q{bCRDXFrT+;8Im80(>&uo}G%Uv==KOSZcg)Lmkl zYN!Ve-OQqExm#XF%>3xM);qVa|7$hYp9^iRE6RdxM1v@~bLeA6B%NbM%f}7LlSde5 zRN)U87A>%M*nJ-3FX$(P1H2CdEN8C>-DkWrE~0)?i*vOIOKm6Is_nY+0B-J=?gAMR_ur;bG?qd%g z-Np{p)p?;ql(>bBml%ozJyQ5SfQhB+jXC+t?F~_&FLk!Agf>w-;X9G&JBv^7EF3Ao zA69JZ;tSGNQ;jzF&hV{!P?feJ zPb$QfH;Z7%sM4=B%r@ibvogwNj>Ixo*FkiJqH+z`Yxs5!tFHFHbz=sbDXR^Qt2JzS zDe|@AcUti6AX#=G4hpfUGsBn?KZFs;$){3-Z2|I(p0s3v>-e z0(E#w57zXl2WSD7p!#UpomO2i^ZIX?mP|r`vZz;mf9~y^vAF8k2Sd=Kkm;LEF2o|zgxZTerF5` z2bs0$t4B&4kmv8qRU5YGnH?|Aa2#Gk=;@ZJVcR1b2J`zB5fjF=V$|An@3iG zC^y`*oIXiB5eHg4o6c@K##2HP1cT z%Ug9;syUquIddGy7HA2kxZ}5~dl5SQd9zMl6iuqAMZzlO&U%=hz7%IiY{iw=CF??r zcB-1A+jV*!t`G2{wJydGmHTAbQN15&jt(AzjijWPe<&#_9oXzkPCyCHJrqjr$lFyB)}&1LLVdfp^1QIq+vD095eMrY=h z0>ZjKSKa~fv}q!Tv@da<4OpOKt9b?!4DJUArzAMZ1!z{}@x9*yc8m@kT%9^+2Cy*> z7dPNA?18Y+CEVH~FP4GB!{XYSFCQkTv6B?6sjxVB;*2glYG_F!N?5m}RB@An-oz9F*o z@fdEEC|K?x*8FX#9gauVsvZ8ORal&8wNf%!YA>E_^N|VOx!L*XGi?nm9IF~XAF~qS z)cz$`c(jQWXTzJhnx}gDAL<)Vrk=^gLs&a`c}8-u_6ub>W(x$GmUkKqn#)UO;9Y7s zb?WTBAaDv#1We_gERtxgYAfQ+rwfszU80n=j9q`p1rANGHw{$z;|urMtq z$1B(?!_dZhzf7GX+L9yWAU98_u=?-h54L-*PotOj6vAcPFUH>;1ooa1;aIa`>q)lnR0>0U!cP+B@&leJ6(CnyT|-^P1>tvJx8;A@l{aQ^+&i@8W*?PZT6l5%Fxitg{tbPcLeOq*8}#T7l!4benS6GttA!m+ zofKk~Tg9%^A{SKItc!kytGDP^Fl{QOTte2P@qXj3Jg*yx%cbA+2;E?_70gjmvhn=- z`AL^TY&Kj&^J>mVqJ*1v@vpJp@Hxhe1(Fxu)*Vm6t9UJxvSQ4zz}BY-tkV_xT@iup ze(uUqvHGhKF|dl75;;3LR?4a-h#P(HWMYFalNaWXHVSd{VZ8UzUq4i?3Aj$E9W5`o zqTg|r41cLhB=nj3?veRNvF9;>a`prsf z^iH%Lva{3=S#{EL;p%aR++D?MST<)g4^PL+39icu{Ll6%)H1Cqi^~HnG`}mNV;pb} z+01)ceUDv6zMQ|(rP}~D5PKaw{eh0Tm|sOnayBKUegHf;@J^D#`>z>l&7{k*Ok zTi?fxlfP3>#azDD99sVV7+f0ojr3>WYKbuIM$fJ*a}QgU==|D6!wv93^rJt-ER`BZ zJ?i@t^UgS6WA}5G`}NP9)UkuRwma*lkcApo&AC?CQgh%`b#+xiUXli~#o5_HTs_Y8 zXF-Gr8hRaDv@*byef`k!z@0y+#?GI+RktDF6vHJNK=wcEB7p9Of^?VKab7H%iuQ%f z2T~VxH_7om8aa$+YMDX|G2eBu1C8;xeT)`(!Yxu8QA*YegZ1ncA0g)heLK3g--qrX zBAj;j3)GkArGQAVS5(cn`aYAJzW}X7x3dD;4SU#~HvIB>fh`E-fh|eYpDWntfaVnx z=ii>fX|0b%X}9`z)%9XoN;IBb>NlL&fbg%BDZ~~tx0y>CU3U5{)S=v9w|<>;Cr@ec zAtw9Q`uu7NG*df^YNii_ZSSltU#IGtRua(VsU5F8j%Z$Gx&9n^2UYls*P>bV z>2TW-O)^2gzYbonXh4{`tSw0rsdfi2_?Ey!G3eUcj7<+U(!N~AKmAs(=YEiDLLM2~ z>i(lnK(Re^SgL~o1?-*=kcA&asHl4?C9si1wtNVLrS>ejvPUl$)#DYe>~9vX`594M zzJvEyeR$FjEMJ_cW7L;6(u<c(;nt5kV~uJL~er3_hwm1 zvB;#gX5*M3AMt8jBhFRTY@zI@ZEIbaaz}Gyl*QjH_6Mu^=n7sRIC2g|Oo>#L)WjLy zSZ!xorw$lb95B_yY*1N3XX;)Y_?D>0z|hja0y!)4-A~ua1d6sh0N&qza5MAjtLz+y zXciD8I(@C5x&!;#H@92)?)8yHSYY+ALPx0PX&0u}EB?rN`qR|8nUkUoewuB5Hq%OMl_5H&{us`Nuz-LD`_6Lj9}YmcfT4UB z#9PCC>G)2PGqm&b?K9Tq5ZL9tTGj=cqSvGblvu~xxDNys4Fg{E`g}5p zHc9-e&di@BS7u>|f3P+TWKsXfo`u?D_^mzcZF+geJ+pqwQ4|C03$l;U6$Wx(Jzm6# z$;2j2B^0rp0DL4n3LpqWrQQ#8I*|;&W{XcfRWQ=5@>hS%ihKW=?b=r$U@cQPE9|$u z&MQeeQOiEHHWD+-h;mm11X#8Wot@Hy>7=YrJZJa4W}muSpLikM#lgx|CBE~cdDt`m zuXDGu#Uj2v>dELY{rW|sv`(Z+de-yo^owlEFJB>ckb zqf~b@9Pj_6THOKi(-$5ruWQ_Q&pQYRPfT4a1zYxlgrHgV0V)0uE#7}rA#{YRL<_>f zDtHV6q#^liWEy&`#XtTP75yvfIv8I$dq^}*@ZrsaA(BtlhBv&Y2q#7Vpx8F!4ufJN z-Vx_`!?=1SC;2$b9!$VW2bURb2Mlc{KFzx^ZlB(r*sy(^pGW5l#dMy=M!-@BmRv=n z=ercbbYnhMnDdT4;BI27VGJ3$`0Y-9jE=@Ol_0LI|)G^v@jD)xhi-M@aS1< ztPQ}l;$!LqU)G0ONe|K6{+Z{eIVls9$+s@!&Sl4CPNTP=VO&cK_xX>v-zzFAdLPO$ zftJ^g&lJ_v$m@6FYN)@Lj{jjESPb*@72J1IeHfhIO+F62JtSajEhtx5R|s*R`q^Lp zOF-U+B=Nj> zDo{k>gJPuC^TSW{Vg}FS=!PC*e*AoUp1W>%RFiC&I*Ah5qR^AE977&oVkP2KT&Lim zjYC(J$_gbs%jiJnj3b0p29tz4i7m3ys z`#t@(^{COaa56R$>!bm`(LDfw-mmHR5k)IyJ3!RfKH=d6&D`uxQp!Q?i}A+!7Ut%S ze_rrL8vLLHS}P2uZ#1}=X>CzHl~*NNxQcsN7jnDCghHX5Bddl}h5E~r@HWN{gD9Jm zif6ygi*2THs2D#H9e%n^^Wu38-JkV~(zDw&mp(f614cjxtP6mf09cjUZS2Mw zoo??lW)f}Vpqg9CI;rtNF6-nAF@w#9YBVmF0*3wdnUwc&Now(5diW%hV)PrnZ!f1! z#JoJS%e?d(YI;u2_QO@{XC|9i9$B8fhrDQ<89qKhYvaZcz!{xHk+=-H-OH}xNvjjq zvE)u?zQZ(xrnwv31J3bNbV~g}fJEwK2_661{9y4YGohj^wr$g&y_-gosKC2XD|HNI zHf|Q8W}LTLlJl>q?cg6i7GYaRKv$w`6n_G{aWUZLCW*aaRlOlqrLBg&&Jc~}0*`4G zK|kxI#6wD@D(;2P*5POeH*>80DrWy(%St0TQr^+@X%h%j2a7y3&xt7gty|{yKk~^7DH0-lLasmu6hen;o-ZnUO_7Xl2ynz>_mg8Gd~ zacy$XB3(w`%NPqs=%Z-+V33eZn-P0xRc}N``_Yq#Sc5;)4gV(P{HJMe>v%Vs7XFQM zeO1&6IDC7(`0QrSZ!t2uLx+pzuYh_2=RB#J6~HsCAwUx|D|g|nti*I>xy0tTBKIgu zs{MRci-l9WR$Q5*7h|-&^$jwcK&Z}UiB8stS?YZs1%WD77O_sGL(8q$_u1;oDGO)T z;dT{>-HloCTX2KU8!MYtiAj-DS1%e6kB$5a#C`!-5Xv3~*y~r!cdb@ucOs5W+%gIy z$cwQFWDNtFK(b}otY=*8{iyw!aVP5b-=h;Uan2&Uc&kDUDc2k2S%nPsq+EmLcO50B z3ycup5BVIV|0s=D3hAWspO6BX#!>GLs_`h+fV;<8{Xql|%30$>ghDuaU41L+RW)s0-WePr!%={E6Qj@Sqp0fo00(SwwyO(MB8}&>;Qrlf6E%?@ zclRLHl>57N2l}X@%ygjmn(~{C z#FxG{vm)d(xIY7(Kf^X~q_(Fv+&j4ANt`quOp%;(hIYiy3*j_ozyNB6#vJda4w$-$ z$E}_zgr{I@s24XC3yHyp1+JmTOVnMSxF^W;RbOfz zqTf0H_6*Da3Z7(orar7{zCFNvD}H4hupD(;i(yjW1X2`Y0Ek>->!T;uA} zbrE|f%Cqz(2mZQgC#cKI;|g*2wiS+)>hZvm&cuzE%x?ep0xmo^9w=$C&Du6?!-_rn ztcU`H5b*n8k&^>ydMPi5X?^4gpt5=-5X{5}K>8`bzVGzoFYQW1)ctE#qSYm1KN8~m z#LvzdVGPFQ8~cSSNoR&CVkm2y)qW%`O#Y(9ZrgJ8%a+cin-NW#<*zZ1XmEIVQ~+Er zjsvL=a4*Q^qjO0Xx9hJdVkhB-tVCQOmWcn*s7{w!5?Vr@KF&$IxtCsnU6P*CTAXQI zc=|y7i%YP1feC(Zz_eB#-M2|W(%}53r0NL+CDm`KKRQ&TK3)P5Y!yXz$*dUd#uEpA zfKu#+Y^ja!$&U}oOZ{b}EFP>5_%5)WjWb9T>Lhm))BEo66$8tToEI-#u~mpCaxTNz zFFML0OZb`WW7x8w;L5(83d`Q-cK2%wHL9L-a`+a`o%-UEFvxCap+RuuAhKGs;2j#n ze*p?_r_eABpjZDEMv=6s9$J;tUQ=04q@Z9*- z5(}yXhke$V`nV98PWfZn#g5_Z-!Q#7D-kWXN@0X} zrCj!Xl19pond>p5mk89lPN4_VyRvq46?J9NB3e_dc*VEgz3yEOo_xfamtz|Ka)yV& zJW&>KRk>+rHo#T$xQGP=-ihvgBRadn;+`l<*c@kf)7q`+gAUYHcGY!&G%s5qvRp^T%;Om z?8WtSXl*}w75_=+UD@OHWteItW$aT&U5By`Zy}ja-*t=az)Ub zb_;Y)&d$#IUw#TD2dATla6Sm>w=E~FbD5sq9M?`j&gV`(3J>l$^fknD(sKd!pZio`Wj}v?-BhKh6ZnzJpcxt;7)DONRhjk%+WOrh z3Xn0VQvyp^S3p(gH|a{fRol;|mA=eXr>75jEQUnPy67w(MR&f1gu-7vOW~ZV&zgqK zMb_i#O$>GiS8$kmNI&fYB89um&BY#biqfJG!7UmZnos`8M+{L)+4o!CUL?ND|MBDY zDAih)~A8+YfW3L~LNm3E`Z3|z?P?Kq;COp7ijHeVz zIRHg7oihDt#M{KFlW1+#i{12sbdd7X=Dru={I-Z^8cphez<^QG>Ot)4UhFF2vzBvx zJpIJQKg3)|s;P8N8Wda{#c_`oZweQ~+8N=bi(+##5J%|TY^v_HgBcsuEaLHXRHCJ= zwXI?7#~ zC50ybxmk0%TR$b6SU+>c7K)vq!TgAQo9)TwiTGPfsz2saeClM*v2t}bDrSj)C&){C&c& zUni{&lVO%(H+|J&-F)M3!XvT*w<;9x$}B`esv+b=ZdAiQJwqef>MCszXyxl0J@&RC!wULGzAGP}jT2&90>%ZUb~Q}%9a^_E-mz|>Fpn{$(AR$; zO>~>c0F!=Bil~jXdFLiE0tTw8oOswju=4r491i2@ zM$V(V8%THMneP7#{NjEAIQ?oPjK)KRo@jLu-&tE#MU30Z_TvEG!z`IvktK<&$*eff1+Rb&Mb!25k~#QWdFdk>f?!31qbTulU6LGd^Y6< zixlfz%#T0l28jPPRMM_b^bPCl^Qg&Z$CHb@J5x9R|@bt_?do_g|?uNb&V%wHS+ zITAxID6Ds%E{2>wDU!_hI(6%4PJnHnu+52S^p*TJ`J!~k*7*U}$D;vIIb^8z_nEzp zz2|ksK@0>Uf$4*?2hybHW^=Th!#~j&tq{1O3N)=W~-U3EUY2bty^~UwA~;8iccF#P|!j8 zsm6*tK<63CKp&yJt9j*fW4<%TLNl`?6yy2R#>wjy2c)d_I=$f98qRk;eMZ`^{c0(H7BeNcs-cw)t|K^;&+xn4=r#)bG!@mbqs&EA9TY$)spc zuBpdiyQSsuNpR=Bz{8t&CRV?^RmFX2qgRo1)0mGp>o zySqkJ^a!u^u1t)8-!1PWNaZK8f1iv${F^E2(fcE=zoYsZd?Es%0Md08_awZ9vBUJI z&9J%FUoEl`Rf~3HvkoZE&VMuZ!!~=f`em4zcV@!Le$O{mw_m*`@}|U#Jf&V!2hGsT zjNo(lem>~C4aDk<|7vQm?we_qJFQO&o>|C@iHBrgIXFLb8GsVo?N)o|K*rKe(d78j z&CQw&-EaD|GK9z?+%c2D91z(Z0PO&sfpDMK!z1i=32kwSNmyiMhv|U;`z-x+raCo{ zA)lq#B;f+k09(-X&Ma$ir!l-1+~I=mD7P%-OdkS*Jl)JCnOWgXBbvHg8GY>FK7DJ0 z|E50$>f$n0m=AqV+*S>zhE37CoRvv-y|=h1;Bb8n-97hVg~5~^v|Hw!!j42y@Fc27 z>sb9OAg*1Hm8T?^*fIc7?T@ZDU~rz4ykf5COK|tWIAlx>UgWF&mjWGvE@cNb^}XU_ zEDHV+BP06>?e5GXMk~utA2R34MT7DI6jgDJ*Zg&NncRN;(LJSSWz(7HrP0s~{Ru5`Loy`ZkC=L48x27bbIFe4(vp zl;HWZK3u{oKYdo&PDgm(FJ~Au!s$<>+!Bho#47v|slSp82TgvjMg|Rb^`M)F*!um+ zUqd*bqQ@A7hcpd2D|(Z=cP`+UsI3}x71leuvU;&4V>V0Y=X^KmIg!r_MgY)+XN4vB zoPfJws87X%VPJM;2z19f>VxvOr;!>}!`6&TyKRciUP6Go?XSYj_D8%l?~T84D`|vQ zS+O*gym>(ysg7Woi13C08A5_JcRnbsNb+1}%S5oPrs=&0aU{GJh}jcPX8Xh8ob`i~ zO4)P|B#CYYXWNFhb+4;)d?j)U+eYuCfKxXbiofrAVoJTxxD4h;vg+!*{!Gn+`)`U} z_ZC{7Yy?hRpf-dEz!0EGzBIwok##tiom+?rjn0KON*|i?bl8`?&Ud>rB4gf;w1~a4 zXbhLjxXy*&n=0qwstYz>MKp)m87?_xY}e6azoBj1gBF;DYElR@i za-GGsJ-F8mm(6!^g1@wUTP=R zBC*vF$M9+2xpr#9RAqwRw)KqJV2FFi3Z#(Koc1O`a^zl_p}o$LVKhdGgrnH3i!E$@ zJ0L}bd#4IxwK~Gz^r}<0v@l21qoGc%*;W4p+YUl^t}S)OlZNcgoE@A_m*#jH%p_fA zL559K6V!C4EtW`g%el1GUPDvQkF^mSZZK?>?W+{(XEe1$l;Y2@wU_Qq>ay=A@Na1B zPQSi1EVLK2(Yn0KU$YiEia1SLQ;}hxen^RvUX8W-M*KcvjY7Y2;h~=lE$4q-pZm5D zy8^T8zwvZ+MDNQL<^_x~6i6|CtGWwzg4WC=m?rsefrJ$hV!FG%3}%9UssjqD-T*t7G+*UJJkehV%Br z2Pukx$+7p}|8D~zo6{Vf&>h5%)pH}_iH4bhXwWSP#8VexquGSmuIK~PJ^yk7+sQ$B zJqplkacwY6=3Qzda>HGf(6cf0e#q?^=olQo!cIIA{hyXW=ymq+GUp59-nWf4al%f= z4Vs>4xZe||&;Nxv7=|9Lpj=et2|jg@A-@@FsBE(hH`pyY*Q_6ZKY%$E0KZH@oLCb0 zJs%*V{5zX1d-uij-~TAaugSJw54<3qpLPLNGEX-4tZPT)^5Pp)6>eSoe4@cv?K_FXp z8n|;NEn?W&E<|gU7fl>sA)z-Pf>8r0T_@Q}hVC~OJFxU{lSmLoe8Xrbr-d!-3xhmkmkt6y@WO`5oJKDd5{MFGtE#YN0FURFqXHy5%M2HCRc_Uy@IrZZd2kV>bF4 zXn7GR=TORIF9fpR(q`^^N;XnT@1|BcQgQpeMg(YfD;h&S{jZfAP7UBBm!RO@>2v~n z&Ma?$P9&FoQ&Q6D^eD~d`v?`Vj^HdGHRC`()&(;fo#fgT#rmny7d-4K<*{(Z>w#A0 zREvZ*{xXYRc}+icV+yyB@E@-GYoPb}VyE32n)(0+2aN4v@8aXrgCBnWXJwk8q7P&X zEi;AX>|qw(zKIgsR?yFrTyBbivf5}=nZiOplh0Jmv-)Hf^kDjh(!Vh)zTDZWab;*Q zb9gfBvtc=WSs0{ywW z#6OMuu@j)fgtpS#=0_*=fvRGEug|V1^B>I|5&EwffqY3RDIR>ff<%xN&QuI+$PAXx?>4fk_y7C>XDFL61t^MHA>=f>GD6u5HQ8pvBEOU>~zta1LS=W%EpE} z7RsnjilJ-m7vY?8$mmxkP5TRxjZW?SJPQ`&~}@GqaT2Q7r+MMOc?ex7plYk& zf5r)9f~_8TmKUX(t@JIdPbT_q2tE`;P92ibO_s*sTTTI|QYOQ3HJR=Sphx#J zor!x)-=MNhCVB>@& zsHhnh&@-1glrx4XvCeQg8O)R4PWB!~R&J=`p(Hv9K}oRF9H9ws+F9wH+lXfVS}q?# zK;9B)SB9`ZpTwV@8V;#G0DlyUcefVKX~XXBX>OE51GS7^t90Sby;-+%1A8Q{suz-p zz=ORa7Un!-laTzzO7oxyVa;&-2ma?L+L?_KZ78PyyzMCAC^?nYao0}?wn-hpPpWWO zZs*AFC-2rw2e0A!-AAoG<|XM~pUzft(eX`*3u@0H#-+YPVl{c~X*#DyTe)=?&F?Ut z_K(m#{^yUsHZo=We%;NSRA*e`BAE2a+OfpfCgW?;=gq7pW-9fUkDvSbzP*!`xG?)( z+qg${C(*sX3JPU^T`4P2EVF#!U3Xagu|FXJHNM~LR1d~)OZ->e3CoStsquCXHz}ue zG!+pvoQZtw%LHb1uJ*u)$*)2 z=dY@{w}TlCUHRMrl;qL+ZSe)k>lvTU#b^?hL_ zgX7D?LAs91a|73LX&ohAR*%qw6_L>va@>t7F}$ZQH13~aL^DSrd%SFD@_*&5LQUbE z)H-uuvH`vVB%F+~WQF~S054DDRoeB%y{0X}L{&|aF8Pzm2~7i*Y=yzFd87z zJU8h7e0Ue%+{!e!U2o1(c`bFXuL0uq&`OBMiPK2V>VQZasTAXWc6$;WAJ~Pm`f0wq*=mDiw5iS>#u#>mUfu$*c z77`QXNzyQf9bGeXqw<*&p&9-1J&Gj}Xg<1UnEitWPBN9>%;rwSMyya)&u_j?@X<7gnACOtOJ z$L3jC#*)-=(0JXK&sMX`MWX_LrvZpJHkNNNewiEAR%L63p*LBRhV&hA@y}`!e2wFV zIL3>`#IQiVl?(_jfP~^&e-0~4RC4;FuCS~iBX{&1L1gIx6;=iL%7Ob4J940lc3PJ% z$Z@8M1t$X#$l$c!+{LEVAn`C3Get88X>W`lctTTB(b&)a>NZSpIy5P!8gqEl zoaHp>rd_smSUUk2V<>s7!EVA3ad}$Rw*j&x1AOftW2vQQQ|-)Xn_U<8dJYB{9DP7$ z8B5&(7CV`8DWlafcL$f(Q`Z~fElH+}jrqD-G^CjpNG&4BmUK;J+m4^%ZlZNTb^m(X z;EzchdL@#`j+T_nwo8j+JkHKuis^dcM~l@o_@0(73?hp`|6^9-z^oi{X3EblQ@y4u zod`X!ux!A)wKa?CB6F86=`lo!5?qu0U@*FCy~G15 zgPle`IK*d1nA)lF5UN37-&Ev$rqwdKM?{oRExN|} z+?bX8)CNGLnK6ZnuM?ixn3tXn`JYt$eGeb9z>K;%^B#lvk~2{g?(ed}d=E3odk*K1 zVGyh%zw|FOzbdh#1mG8p<=T~w z=b!;DkcHC+7HVV%YwAF3%{zG<;|J7ux6DzseHP{Q2x!)clw;N4kLxs1BfQ?!xge__ z;mY`L4v=!dGoVS2Y^lh!pItnaidH)$9pbk*7z45T-3+Jh_6G>G+9qfMrE^l4^D@7{ zzr+f$Z~X=}cU;2zvQ}HCiyZf0_n(Suq#Rq-KR!cp-DjsIH%B9x3<=JWADmGs+A&Q#Y_DzgAYLzwI>8c-=$+V@ zU2~JWF|XXMgF2TU>XrMAYpmj5Z$fKso^}n9|MU4Ub<*8~scxL@G~H+U5<9uuy8Ssb zU1}%%gQ(fV(#0L99@*7Dl&=$+)6X3U42U?Jopzekb>#%d4c)--cb`23N>pv_ z`M_Jn$L3^zfpqngK+SYwZ@83XNhG%8fIn&nbIHO_bax``Uu-FP{}~DZvNcrEyt)jT zs_wQF6FZ8jCbE%&RuJw$T?BuSR5rdXj_83$?G94T=pEVz2j5?KU0O<0Hl%1YJ-K}| zcg%l9gv>{^72t)=DXnSUmlGUKox}vc^fW-1gUs)!)L;^+WgVDysu;$Fo+To zv0lzD{Q;N%znS;gIO2oI(1W8SgH;Li*Fql5Hvj|;(SIxZ$Nj&}1Y2{do9pu+Xn30F z@fQ5gW4OU%nnlN^I;zS<&NM(QDYtBh0AX~s-=fVp{``m}GM!ry7N_@W;Tw~G(j}Lu z|IJ9;^ALbT0y}xQ@hf=*d#RjE_sSOTz@a{W+@h<}0)LaKjkAgsfpcn>z8H|jsYRHq z;VY9iNdr3*9f~3+zXc<2H5yS&>&AEBe&E%h#mTCANtD2i=l{<{4PVQ(@1#5ARL@l! z%m#q}TjFD2?_nTr*O$^}<0kBiMP|6+M15UV6~kLTc2H7IK>WxIyb0z{fKs7QT+z{y zmhLSP*UAzP`-_~WTLb;6O=H2hdsLdzijv`jjm=hj%WT+!XS3e^b9CO=<(%21!rzho zhNJnOrhVP3C24)~=xYuZ(TPFLf~QbbZU4t^(^zk8MjvX+YGpH#20Xz(JsE9Yw?L$4 zK4yyYG(6E2pZOy@1wEfz5X8Iwk?}Pfq@lsDQuyfXZ}325$Ix(9m#?y`#7(RTB_0_0 zXMq)VD;z^i3=8~328zE0(`aGxX>n=qzwIC9QzoZ4*n54Y*~3h;HDAJT7IFJgLAMNg zXyK{ABTw2K=6#Qq`jInDx!bc%TWlbjycdgZVDF@YYB%L1m%MoJ7TEgf-6ux4cdHjB zG-P(iPK*wZ!tITK+e9*GJ;Fi92Esmev-z)GPpE$Kh*y{RTDkCns&UkRrX3Dy($p2; z@pQ8jjd4^-|B6&Xh>R1NZ!|S~(|OtAmk%=0=M_qv%}MXLCF4-=_vyImusGZsI#cN# zUEu?IEU?0a+uGj}nhr|L9PQ5dvOMbiFLbvyR=dw->dEC)KV)bPCkqz`7Zz~rZwVck=gK7*W9~08Q9zW_1ekg zKR-&qn*JKyXEhRY2@RLRaKuLE>a#uEtG**x0N~2t%n|_Z21jQzqhg*%i^bKYkzk9N?1u8kO$9kQ+!0?Bo`sd`#9@on2s>R6)K8DM>V}C)N-`<}%oK>;)XT(_%kP=^9+1AO zcGWN5BR$tQXr{yYG05m!|ukyXH20 zyFDG7)`O0cLc9!hcY~ooYJCk!uBxbinQBdqUzAj>czzhMbNEs)dkASKTi^HVyx$QZltt#0qX;Gy)7eW%(V~CJKPDcQk70k#C0CjIikWDmjZ z?F#+(?ha}H03=X2bNSF~zhs=(jL`M~=@s$^y2AXAu7OG1$gW@0tIOL%hO^1MAzF@5 z3%0-R*mAZF4SM%(EUbUhBhhV(N_ZRK%LG>hhjm&dzsfSoGIy*p31nFi-^=h*n<@_? zEL9OA3&)kP+nH0r53>#iSt^YPXMcmzM4P0)8D1JXDQT)f=KI{ooG*A$XpK{*oxTAT z!T)FW@uRQ>g2U<5ueG|w2jm9o5ZP$z%v?3a)s?GYZHPhQc;@o=vC>82dzkh*CzZ2S z%zPb9vdlch4xy6pqq@ZmG7A1shrJ8q#JAd;j)PM7`$f23e27U2cr<$xFUj2S!zk+h zl`aE|!s7=N)X|c#$omH##N`T{1N}=3!V`zW1X_j;)Qt!O8^-Q8Qz8>I5fHE79E;jU ze65`dLIEE1=_P%r19t#%0v?{r&swc44Lv=&NLj`i6YAKGMQ~RfwvRfy^qV&WJTu-_ zeC>LI0!3Lja|b! zmsc!)6O~`)q8r*a*QuvXA@Vm2h_)}kaYKgGCt67fzBo{?#-ps-X~x?AZ8dFfH*c=B z{{uf;P5(C9LJwa-bf)ZBMHJF70)|V-o`dl8s?uBH6Wrd9e!7=^x>q4NpIb>NG&=fA zQUX6`^Bl?YRk)n7r4ToBg2E0zyu5jyTepzh=lJ;ezKHM-`p6~dg2U#rIz6QI>#*&x zk5x$t+I!D#18Sc<&fFJojDxO-27r$?JEKej{9+Vo& z*QJsu7iNH4ZYaBq@m=XhLdI?ucwNWpob1yrh_&jYS~XVZ-4ERbHA%LNyJcH>w6wUV zGpims-yl%MLU=ZFZEDU2@|BOM}Sf@Ml;Qc z>Aw+eBAj}5YU07NcarR_mzvUb!`W%1VeVK-^p^!yZ}1&Dmb>4mB6sv$@?y`T@_8*>jH_!`X>y5ovneVMV} zTWP&L^Wh73n%D30TUcNfh8n}c_59s|ZMzMJ)Btf3;$BC^lmzM6KT&#N@Fg0jzid=r|ia!;;e{0U` zpcF50TWQntV5$yqN3_Y|;hcqa|$%|>ghN- zS9&?}Wxkps67udHHO*gP28SGfabj3rL33n^c*oN<;Z&5jqEG&Ys-nc>A!uy^sU%Y2 z*yqHDc541QTxr{8>-(A5;sH+KmjQ56PD%pw!wM>&7nAPH27y~=I>+BNipWRP&w15J zG>;tB+}@?cf^@zOkmK&}uHAK(2eXU}36{6HZiPesE;Cc7Y7K!zVyBOG+(j9c^j=(s zmM|;Y{Vj4-R?5;QFDaq18n6}hKo|*ZJ}Q@;1w%LpZ+fLJzRd*-p|)XroDc^u3mnIY zNTMM9ttqEn;hiau)>~73-OTUA;+CdA1C?g+>E?$6bNQ<* zg$CMd{p}?j+g9LaVB0g0DQks=2To!E-AID?&*ksAk|28;_$vktraY04<1|Q?GSu1w z(5LYY&lQ_u@Lv6xZu`l0q5-a5l`a<`J%MTUhRxbA=x55;=qF=smNre+;|VxIR0xB^ z6Phb#%7k%~d7{W`=B59Vb1u=Fs*4SA2MWOHXs|pHaoc$ALc>e5wD^yX*h4e zNR}K`PR0N_>i)-4Mtn|gk-L@^rqPv^A6O6kpmR-4OK4i%cdBCL#c&F)eMlSrKb8Xh zkEww8_7m(m!@EY0uM?A@J4Yj~6}FFP5APt_@Q6d=BJ)$fh}1VM(xPOzZKY5~ zJ6?ioWrrax>b*o2&kW2V%4E2R%@qBrSbv``-b&BLw(BFS)e{mZ&(crR{eO29 zz&FWka2!87%nwtL)&`~CQvKl?d5d_$_RebQVhD^wOU&q1H3RIH}x zSdhTVYfl$xGOxhKpuvMt3x z1@#wuSU`yj;U0~%`UMqF(uq;%VInbJB>U^T)rhl?n?H%;{kAxiN)sQ2#IQNtuH4^L zrM><)P((1?-1LMMR{v4B>vQ&;dpiQkiu=ENEVFW_@bKt>4wMGgx0mY}q5!{>=owhf zO15@nUh_cy?;a0+qy#{65crVON_0H0#0a)?kGrUrfFZviJ}t;9^FVZ(Ewjrc!)8kr z7?&C4P`lX97x9)k2GR7A9rOcxaz!%d<2Gb^w=lIYH9Q}AGoZsrQ} z)mu%1hrHiwVMk`%9}TVIS|-c;=1PZ^7a`xgLWJw-JpH1tI^JjlMqyz|#pQ4Zn zPrfMEQO%h+wQJ$+-!@ump`8X63NQxHE^>M}ML<|q=CpHdI(kBLE?zIh(3%~BduINE zRwG(pb;tLFD&iHcraJwBeZMFqc8^9Lqak?rxmf)`$5-y%#QEd2FhduMk*FZ(?#`UkDM z7fq`e00Wga@+p@X>Ifd0Oi_g62VvTZ5)9sxOwajV-auGUNbc_OBb%xskEFULyn1)S zzzWYq|67ca0$WRpYQQ_)+leV6kgfHU>2LFQmZJ83{G1V@j`5J*nBtXg{W*NQyzk4V zfawRLWDk1jqv^$Smyvi$=~uwPy8iG4iL*XKaPGRhaGh+~EeICaw5H7848S=;sBrfy zZ8UkZ%}f=>HR`Zu?GAN$9q_LjIAJ>xU?Y?Xbrb&m^#>7*wwA?b!w^Cs^tUEHk5rO7 zp>*@h$tYIqFm(zESsHFte19O)@F4s9y_(+?g1pi8O5x`-VJfdYc6A-3lCf!p&cEQA zdQjC@pc+dYw&=aSZTZ0#deowlD|X}0nZN{K`VU$V29CgYCfSttK@~20&t+Id7Qgg= z)Bzf1(KNT9LZfcoI@BbxmxGN441_>?jU;K~ws$-LKeEZijAdQrJX4z7iAl;=Hd9mF zB9q+J)!b1mYs9Zw8vA-%`*4iRzBsg02?=B9xt-;RH$Ad`$%(VEVVkDb zuEBQ@h3zvksjy2JF^}~2JzX=460&)MJTXs+lae$R?S?AY>(%2s$Z_^va|$D{Cq>+H zvm=%oMGM0QDWC@6H{+;g>=NE8VZmNEO3L_0SfH%NioO|0QVBLz{5wSc`>#(1PRu&w z43C;N*P75gWv2~LmB2RcpYK8??+`lx_O@wkN%ngq%TK)pGvc#Ve5Ec|z*xxQ!Q%PV z0|;;a6yrg6BmQT5c(FY%T-i%a>Xsk9Ay9+7+i^sbMi)H}_yO8{TxS0L=Cj#u-7$PG z)9kCdJF_i!{E8pi@e{DLzb5>DeZ2)(R9)0IJfN5$A}S!IFn~&lf;3pffPj*MbVy5g z91s;yaww5fL6ML~x&-MEknWc5u5TTE-tYUa|NpOlt{JZ9fpO-Xz4uz{UiVsi-xWlW zR5@64x|zArvfiSv^iMo)Effm%c2ve|2!}eA^uG&fk}1%+?l#D+0_V=6PzXp_FwknJYL8eZU(S@N^*QA$zKd&sCU535n?6*U9_T;qhI*NFMhl|+FUGqNsPkg)#1=Ip&!H}h+ zrX!abZib6aFyuAeAx#rreTKZ`-DPzB+&Y|A=Ysbvp-aUetPz}JWz9A>_JdWlJpbj6Gs|hGf{8CX4FYf0s6x@ZA+PTiYCQ+a+-|9s1!T?!Cx* z?PuYzF5ZTst$hgjVG`s!TmJ6BB9Aq8#F8?dH#c9!#YHe+ETMp5+J?q`XrR(UplDk` zOSD->{$-Cleb=k(tw;73R|yZuHAAYgGtvREZ!rMh|Z;qy002|K}V2_ZN8Ub>EI{nq5wJB8mTI*Db<(7F)W7 z*q)P)7<;DwCFvfO9H2YN^GmWcMWZL_;B<(*7!5PupQJ90G-ZJ)S=spl(LaB1nT>tm zssrHi|H3Vh_0@&a_}66B4)%HMCyI{F4f4At8U#PFyuNI}YI*8ZyL_A=>2~#?1oz5}-|G5!~TYSt`8oE4vlBHV`LUw(m z{2cr#Z?>|sGZI^Vzc5pPV-%=-0jo4kXm{^EaNz9wlvzoqGQMmHg`fyS1MBC{P8@QT z(*GSR1RbncTMFo|fxO&Lr`%79fxh%)b}rG-)AX@{V!C5Lgyh`VV|Uc%elVPCP!5VN zJJHpaq4+@m<_(W+0@2kY?gwdKJ?1m{9;lE~d%rAcs>5zVuN&gRa;1IzQz|h> zL*p=h?%@hMtDD@N2l|9<#DkC9h#?Shdm#{ssDR*j&(0`elf&iP+VyrbhIjd!8#SYV z>%)m-_p2y488h`Gch+PH-dC_Pwh|B4nW_j?&_fIBeFsvDH3>d-N*zqYJpzt~`ti0o zw#jWb@A4DuzmK z0)HIy5pV!{5?w#g)`VKzm~#mbw~SW3(~kDPM_hL8Qe)PWVxacfAYKd@5eTo$abo-` z#i(=fG&`aObt!evno;N=;hlQz%g2Gt%#TgSYQ|1a$2--&3@!1k(q=s#XPm)sesr|) zY?q^3h9Y zdoe~_cX^txU|UZ!JKFWXkxXi`LUi1?>u(8{2=%qs^h&Pz)P(O8N7J9Oeyq$qW$?OI zVR7)J7z&~wU3(175_!zufzd=UzBTuv!$aK%jE=miKX(@{HKsM+-{@;+#YKM)eXuU{ z3%B?3^WRKK<+X_{vr}nepym@;l(?}N3dtG^4n?Kb1m)hAZNX(ex zxLmr#4N1`la&fX?9A}H3l{w#A(@NF+I~r`w&?;5jPoZO{ML)1nL3-TT%-hh}+38Cn zg$GT8u9$dG*vGT1w_YG@r?xWJ2Cp!X!;*){3~e23Z>yrWv6GE8b2C-hBO0#MUAn}L z=Wc_+Pa2st;6h+lVS1d(&W>t3{S^`H(tIW@+A35qs3>^(uzbFSm`F94Ojq^BohPSV zkvFw`uuP%S@qn4R9jmG;mX-D93HF8ItaveXm(IL}kfY?7CZWH}$SXt1=67Pc6%2F9 zPBUGs3^#vn5$kE&KMy**FT&L|5p!@A%^jUlK(g!0cl^lEJ5Y4jdfBzZ@T)C=0E`xj zrddMghy5P;M2c{}A7f=0^CZ+n&wnF}T0urWaB@Q{q4fy;XxrbSUzSWJ|Hf;~4yQ0!wccqHo z=swUln^pqY4)ZMBl_ja%#H7kY!AOSGC=}7QbjrXm)2Tll?-*S zp|UU9_r<21JN{G_uWrwaa(XBtF7v)|q(-(f{-k1pGDeU|ji)%V#Au zm}k}t84()xL8+x}wUuWlEk0wg!y=@lw(~0HW#DHX|!ww@LCR}0VPzv=q+@*6RLfeDCc+ZdL z-0@KGa+f`M^s3??RtE3C*~bI@b6=CQ5IF5c+JTDvJ@ttob=ymIVu_!7d46{c_mmQ) zlwPc)`_p5}vJAWr;vl1F{!7- zG@h$d?33BsYRAQzY!Y8AiH5LHPsgqNZ_wy5B=r^u$T6(QX)>xs^i($=1R55-XGw#e zSf27FN=$Ix=*{^Gb9HBjfp zJWrQ@oBjMF?0E89N83wyE{0K9L5kfRDVK#f)7j&aet_$z3JWp@|D^9Exj!g2{^#%L zKraVr!;jd;*E5Awg-%UG}5g$oReepzDzqZf# zo$jb;&6DBE;uPQ$gY^Joqvop51{s_V89bM>TWaRapsSa4@clQGeWtrOT~l~0{R3jEV>7m22Y&P`9a925l4S&lpw&gG_-JLn)(qYx8) z7*FmT0kZv`ZpAf9Up|24spe73zdN+C3($i7|!!Q?9d5hjh1*l?f2r1x1-XUB%t%TU{$bz$TA- zb+v82D!Z~W5+%tYV7~Rk6upx0VTCfr)uBb^ty*LZa0ufi8Lbg?Oswxg0T8~x=iznV z2QMZXBH9NBMe>`z&y#KXODsD^d(%1lfSP*{sKY^Boewm^3Kj}y^XIY}B%6^~FRN)K zu=1tneSS*2gOMe=06$3d8W|h& zPflgq%_@UdZs4~4-|Nu-OAI|2Pbip*b=gWpc37a^3_E1`uLNd-XmSN+lcH>k2-TE& zt>c$(QQTAHfN(}=I$r}-9k0Hf-Cd`(RtfZ#l$JJ`lo-oEb0#EOnB~Goul@D80q}^= zW`ipSr^B#Q?3ejnIG!(QcT@X|7mU272HsZU8++u#0LR9WcV9RzLw_zAmFfRnjunmf z1BSadBZYJVGi|1tD;8S>7mIZW7Fsv_5td-dmvC=B8yohZv(}6%LW6A3OC3tHzVH4Z z6B+jY{Uwfq@pGU7uMA5Ao8lJbwda9LjgT*&=cfSd-vb4=(h=| zNqZp6y&NCP%HlwSnZhI8ZQiu<$G{QLsN4o6!WL9Ud7*Uo`N2&3!KsF<0LQrdm6{y6 z%X7V+hJDPy>Hx>Lv9@MCOD=b0X)2L@G;#JeA@Elht4G_dvMX!$gy%5nvRGwi(?NvvY7*1-&Rdh)LsNLF2>1eu7+H{zUlG{NWd;&lqd{YHh9f z@#-`Ikm}z2povZDQig5|&R_3*N&vEnM~4N6w$F&}v<4pA{SN0p+RLk{ohn~M4qd|8 zRBz6SfT9)pFP&ijrz1$#fg;&w>4=pPQUuPgDha=H*|K(Q5C+S2w{M8QRj=-=Df>y*a)La>91D zq}r+oAf4c7B_ddBS`8PvhCId!``wnE*f=eu@2ar{U7`|<$SO`g%rTZy=D&u(Qn7Sx!KO>Ep|ahDqIjq_X0es-WNSUjwh*0)aX~oZb`p_^Z!GQ(e{|3;i;WSN zZKvpdSA2&JPPwHrR@q*%d$y1xZmWs~^A+5JP26sOW)~b`9YFQnzjg3+$Kacu&Nr>C zuX_f=Puax>lkaq=)ky0ed?MeWWVpHfF9t{IYC2CdJuhAs$D|c42$ZgWvv@2oe~%$} z7rYUn$1PM`R9X3AS^lAWG!#V* zX^5N2rNc)S2K-w)`170Qj4C%LQ&5_fH}tNxJr6W2WEeJAuRA-z zi->Ny=F@RHmgI*Mg%iC#`Ne6;kSzGhKN#?ku;N1l5kj@Zxc^=-kWC*G$y#+Lc$4;^Rl?SZc2 zjL6;}3DHaT>IMc(hwEC0KUqY#ak0)b*F->>FWb1C*;QmHW0&euZ|SC0z;_Go(u4K% z)$F+axpx-FGh8+o93EwREi>T3Uf5Acm~AuCZ;MXUUMd86M3ptOj%X1qQSDW>im9mu%YmE{vIGld`%)EIU5?TH%R zlqV0cB*cP|r>vmD%EPO}vsh#F{D)+fgd2U@P#}5p&$^~clBv;`mH8ty(Wz!ovsQF; zp;;6L5hhgm2>jK_&xjEoKe|x-mrJi+p+ZBN#qb6wPR{UCj z-~z@sJtHOTjqKGRLT2W#b(S~}S2%^%e=C3+U)fu2vDu!8hzs5EsQm6sIlC+R>;0#U z49lu98*6L0=?_Us)9>hNtZ1GWOkC8>qy$A(LBnXP>R{5_#8421=jfEWM^BF@q?)ns zzd^n$|Mmb0D%9WZk`uxiT5w`E*;G;VjZ;=036+y;5+Em|I_{@`F5U@A-fui`dk6N} zt0peY+SPPMZ;E1goMLnweqI80;M9ra~Lib`CL$L7KA;_+e7;6<1@ITw9uKu0wwB0>Tt3`9|@a3qe4g|i$0Qqsun z51WH5M@sesNvFznZJN0>ue*Z$VaBtjOQ^b^O6f|NUJ4gW#8%dYs)%nMlA-_!0ls~F zE~vHJ&WceN&3iL#PuN-f+M>x6*7U|&WOta-Bc9_~*@4qsVh;k42%Wxn>@x3msi95b z%Ym6GtLe0LP1C2mZS~vb5Qio!RswmV-`HwCmmA z*8<_Ss2@s{VB)gc#7mIB)+Q|>bP#RRJOYBX^m8hLs>Ct5LhmDgv>Kfs&X~UtpkMi# z#C1w=2&tG|UlBcA6Z72hDaH!MnfchtXSz7!7?`$#Lx`L_q3#zLR2aeWIcJ8ih<>d_LZ~Ct@L!A4Mz(xL|Uyycljb&^;2YWALtX^4pt71_`0HiWY?()G2q5#CW!>iD`) zR8SBJ_zEMk>?=o%Jhff$_;`5HX0nk==ozRw>eGMB{gI|o^ff*G_%JF=iGjvA!#XN# zcyw^#180jPC@*I}U*12&*Ih(W4t^M(MGG-rdEegM&B`GxN~K{bdzAg>!IztT)h4F6 z^?Gxu^=3P@_m_h&-}oUj@aUL5?pkw>VvuP>=;$+jBsMfl3@E&R>5W2_r~9{Z?OF#0 zP=KF$XEC<9d%R5atQuX@YZ7YAlYGk&F40cMJnIQ5`}y9VlTA^9&g#&OI-EKMCsfd^ zj&*+*W@{84)Wgt$SaiiAX%~4V8}euHTs`r1fVm?Xz+n%M>Vu%F@JwdhcB7%=N*zl990s!uk<_8~ zAU;=zFSa!QzNyQYKX3l_BoY3`8*nM0a~y0%pG#IV@I> zQ8{h7RS;1up<WE+^`y$fKyJ=tudX3_zZ`)z1qUv!T+M z{{H@Wy2U~cROHq3HzAa-$M}_M!d)O48*|mY*{8EVJ9Uo${bOiI z8yj;xE}Odf3f!dOa0AEn&Qzh`lT{fZ@665LeQQce4`)v8yy&-();e(a>e2RkAByv& z-_;(qsFOt|Gb@$%0sLeP6#4=FPRhc96HYx*x2|J~b{KT>F4;o`dG(V~$dwQH=t-{0 z1!UQAFJt~JiaH_hA;<@9zxAvp4nr3~fWIu+?27V&6T6!fp&Gj!NIXTk%f# z;FnmJcs2%=<<%}5o&_9}kI=O@)nd6UuJ}47QT2#pUvzYPbmSig+N5!R_XfW5aL_+Z zwpb%3V_%!~G;gSrNJhF%h###He2^>HzBO`O3f`W9R2v*2;1*!WTA-bud!~G$o zV1J{Jw4lVi4@7TiF%T}PK(^g5w8hn|->ypoeX*=@K^hBs+O&ZpJ6E;#XH*I{dQC|q zFBG|KK6hUUiNh?-gUoNx?q7%pc@t^57pX`sWC9L9X51hg952(#)cyIcKarXkkCNDP zo`@Fs2J`CvJPO1V+D>4k`_#^y^!7UtNri?k!I{@)+?H8cRx771S58^3tSD#|Y!})- z)%T-pl}yf+GCVFWAqd@fFyhZ71jUh|KZ~{8Rx78Vi5%?)eIu3eR{BgC=Dm)ez~zf% zk#o#qqmhzW6wX>|M1azKEGYNJA0;H{?d#hD3Ik4{5mTVt#(!3 zWSU>8is7osx15V-PF?jnQG3nD`s&P)K;H3BmJd#yKXda1(KBY7x`)iFQ-MMA>i9pP?0a zIX@B=6=f=?W#409%}3)r`z_D5LrEn`I)dZDqXRoC*BOx@e#f>~gK1HT^3h5lFYP?YcAUMT&km&XcYY zH9V8go4fn=AB5X1FExEM37lUTC<3i%S;OH;$tipMX1xd=+wk;CjqjK>T}#B+R@X?) zG`D!br+fTwPJK@H)FP@rc3ZV)#qe32Q!`$aQGxlE^ud~6IbYdP53BF1y9QyQwbm4M zs_NJj&LhKScA5*R6DtV(KnUH4wmALlDrO`I}0Jl-6?(KS`HzXiUtuts{MrB5^c{vh~~P z*C%sheR`w zh29h55?3yeP*#mhZNuNeo06fq@LW$y-TD$w$h{;n<|&V)f_Mm+zhM_4Tc9Y*f5^*Yi3ntDXi;&OItB zstwZB_C&d^*|cfCUHxaz>K8XxHQG{wLCV{`7LT^b20rSIrE>w?(A##+l8p&nU8^g9@*(j^ zM1bHa*@o*$yHAoxL!#M2qOX7cQX3b_5Q4XUruil`lr1Ebjftsl(Yh`l&lDkDJ#k8i zrSQaA6(GTqs%}-3fuwxL4&w>DtBC4_3-~;SCH2QwQa-680dK66iq)0H3dWa@R+q7F z9{tiFW#Cj#cvnMCHQwtxPvp4%_N}b(mijYm?k&$b5oMR{?7oJaVVM@AkgBri=;-`C zx+7}w`J_vi^tfHOEOGLhnwquM2OtK%7E!h*7BB99$|dB~wX-xNd4lx~4NuJ#_Oz=g#RDsNZZp8hJD^^ba1f;xk}kuH}oCzjtp~-rn%V zxTWMtS*ixI6XylXV!qRyp=!X>$ksVM>$N`G#z)xh=@ic9&3M)?o91R)r15N{b2zpk z*3fVJwx!B^540z*CNC_No4Q1FshAi^h%)dWiPcR~_rJ6;i0j7#E+KS;xZNG85ERzx3n#9{F+++?dKG0w}-E9 zK_1pH+jdvO%9WA{Y3r?%k`C$M5WW!;dj)PGESBzFb8YB_<71CjHOR|Gi_5P3O0IJA z=o&joJV}@2NlD|7_x0=5>js1vaJS-oG+8%qeQsgU|RxwzFI7 zp>?573AZ8|qE^atlD-CAumAk!R8ldbUj3BpPr*q=166t5PpMVq8FbcgEvJN7uc?N! z;-tl&q`El9x{yKYxvh=LRP```HWwzOxu3n^BQ+>b;s8)j-aqmoIBA@_;6h z!kyfwx3aglPbo#wr|%(TG@q#(OU7ORNL@WONMDizPS}KuA(dzrdc-|mXsQL zo%Kk>ANc>$`f`K)FZG`fMYJw=&#e-@KCy)Cs(q=yK{(m?i_q{j!wq*vB5$goW+Cc2 zi@A}LCM0@~)^n4Ejt@yRZC;qRLoDMIr@7P?1SK}ELQG56KNfIlHFfycxd4my zC(7Da-wx+YoCs~wsjJQM&d=~JvgA85%OB$@dW^=?ke}A@b?pg}7nLSh*Ij`tOBv^0 zwEKGM2%IDTJWScNK8G_k5mM1IB3%DM@2fPOFozG?eA#KfQSILOe8MLaC%q4U$T)M#h9;5}E$z4k`QDgqcd~%%);uV%*_m z=Xkk|OWwSR#uE}SrFW&gc=1Q8;6c>UbuzOMSf7~Ym*tGpbCek#QK>N_yz)+B!=7rW z!+Ju>LX^W4@Py(+(u+#Y&!a7%GK#-dOvY&&`j1$fwUuM;)22v9L&l zu*h|e*M;b5oX221zM2dTrfVH!ad-Yi-*wi&T$flA{V#a%QAcnR5U`^^P7^;AArQb| zXf|;V?kYx*5D+j3GgTF$?=mWUbLyJt&^4SCj%%j7m456TTmr`DnDY`?Yz~1psbEK< z-1nWey3XH8^ST-|=)ZY?@bwT;#;tRD!!^9;lg$HFp&ek zrES|kmo=P?*F@tXG8-@S7vK}nFby6s(3$Eiy-~m&-8TY2pdu?Pi++jE zZQP#p!-sx$WFEH}uXGamP{<}K$R^(E{CNU}Ay6y|!b0qKipCOf*8>2UxABFbrA}BC z+4#`7+@m}Eqe)Z(l*FPXFx>T?M~=_g_;S6rIf=p8Y5N?D7$zjR9`T5lfLQHhCI{v{ z2h4?DO+XmdZP8`ut(7sRDh1GiDxmZbY_4e+$M;tRXCsoo z&XV}Hwl-b$OEA--4U~Gi8Yj>(g~y#ru86yY1cJ!0nf=b1@i( zux?;4ocErJ=$rkW6aoq2t7By>nAVQyso?5Z3ZoFra(YsYm8xoFbpY+t#l1mC zWQ;^LoXPk0NzCxvGb+7@si&=O3pg%)aEHR|)!z$?9VrpdT4KMwe7RFIM4eqS$#KNv zk7@ImT60_*VByfHsHf(GSq2R`x1(hL-R*;f< zQ(s@7V?VEkLOXl{98#E-gS@P4z_X_JObuB% zI+e%5!o$CJZ@e!e#(YZW4;+&d*?w^0!i7sWv^~TF>AwB`t*9FQ8Giax-4cf!AOu^o z+AP@7M$2b;2N@`GnDRbAB*0KLGPcr<6EP`AAM%@x)OrrG|eV|*iJ zJY=Zycw6A0UaGTfS*(@1?W*bjH~RfG%V0QI9Ic?eUw&-EL{_4-loZ1x=?6R0e}nsX zY`={;R=gm(&d%Q9M|I0&Aj2PBYi2bA*FUA^=RZO4~2acEiv#ht(R<3`3U4h(CP9lJ&b$coPb)yp5ZOq_J=y|xn&7@k8UI1RY_Rf==gWF)hvStO^cTZG+7$1 z&~X`QVTjiASaf+xH zduPvddJGOk{)tZ@V-$a>;r(v`$aH>Ub96%Fotz4wbagL{ytwKskf;B9{(Z-~DdTxe zJO983cX-pge}&Ek1<3lkmPRT~i5zD2eto!$PuSnx!1Cjo~AwrhJb$3*tm6c8K;WtaS4OFENF9C(Ci z2<{1*CC&U=U;bU%$Bv*` zd1!yZA=hzP7n0p+AS*+r4@r?LNEPgp!O4Gp=c@O;>m4^nEn<={La}7l&Qg_6DZ$z+e~Y`H?)iJXqRI?CnRv!^d0^6;(fMETlc?J$g{Z^1ppR@ z=P27-5m^0#dhothum6Fnqv!Qd(DfGzMCcF_P((-*0)9h(AlC?s|NRAXHt__!%R_kr z9HVuCIy?cN=1oO}h4rlRKJTZ@U8%Z0l>HL|!2JHKebLy>LrXhIYkF3@(lnl?qiFZe z{r|8Zk5kE@&#FIHE1PWNiZC^$-VgV|BS6zH4282Fxb+J4Uo)CLNKF*3HYxL z4#YQ(-{uPpfcyTemNZ^APQ={ea4b+X;N2pS-A`QxM=HG;OS@15ov?$R6UIR=Q*I`Sa&%w{9u8?W{q5AS9o@=HFCSYL}hHZP!r; zqt=`5FyDK@YS-%+3BF;X4I)L$Sw8@Q<4P-U` zLyPI*rCC{7YCC`Sq2-k zfP8zVrKF|jw}DYTQ7{jo_FYv~RYu<;WHQ&TUE`{zyam^pG3y3}9J1AcGNeq{VzAgr zXUG(gX2~GAoX}%aCxuM|KACUi)!eC?W`o5&SQZxVCPqfa%3>%W+lAY0uS_rt3k%QL ze?cBb>bi<()y@m;{E63TC!&YYl@?aYze1|Qo3c;|7ups1B~8Ey;LPqifX^SUJJshe zTS}9m;2#Fk2{!^HGK0JjT+(E@=aFaN)a?sV>rhq&YSh4G z8z`DaVD=BG;#v%a=mJ&qp2y&1WWI$v+$SuKx^13(u~yJ|?JIm~_1N+|-XYiaGka&~ zMT*r>DB37_6Hw`uO^bY2myJ1NY~*Q<{L6EO3OvZw9SC1aPdk6RQQ;J3UvjOdQ$SNo zny|%OcjhE4{OYOI$ohJzY~;}WmhGQMF574eTV^W$p@~Vd6EK-FKysru3RvaY%6Q$z z3Y2xk`&-I(2NoM)z4{F;@@l4c(EydbH_jrO88J06!Q*n!bYYm}jUvnLIx=f`{IHU! zXvlGl#H9~#$jJgUx9vTHx}~au_XNq{*Iubx{CIhCLx4p#I%7(O;1_WAX z)|a`4Lhf8yN`*4#$C{eYVQu?iZJ^J@yMNKWY>1d%q<^r6E|A4cRf8jf-+9fbHcK{| zk4wMgM)f-gE{t`4)Vv(}YGp$f;HItNe`)x$ke*eG1&l?4Kx9OO%G8tqIC#c7btuPN zi8um0gt-oyb@v7Vyr?N0eZzW>!)0eWaef+_o?fcgEN+@kHOE{Ma?FsIm)BPfFPVGG zS(;IEN+V0(7yOaQX9qr-9jIqs#X)Y8p6pK!BP8!sq6y;%sEil|_mdfMD!C2#wAFn#Dt09YAmvhaUv=b!_T!I|NZ&ge%Gjt{dz^A;)o*RS_8=8GZR-= zR_2WL{E$K9&<)oHtLOfgTsCRc!(h>3UekLdhiJ$f%dS;g{P+80qHg2x04wNnt-odb7SPG`u!4i3$4A_4d_i3Mst%k{3M+Ow4wgV+8ve zw2=Mvj9Dd;_g$eOA@R`KsEp5no*I`@1J#?JDQ&jxhz##58LhaeR37F-BWXFgF7vzr zW*l^;9VpILyD81qLH*#9+HEk2s$&Fym%<|SvyerAz4+r3(Eh>k6|{C>){EA7@M-y@ zr+{X9snL?fCTIk>N*0H2nQDhR6O-5(BPq|z=JyrnD|*V1L!ViWr{5n|BkzKQ>8Zzn zt^bUj2CyptG=8o@i_oecb~;gXKM9Y=C$pQ@mzsV3(s}ZlEi7dt;JEM!^!tA#?83*q zMfW~pr{e=fP8BsnC6>a9y2ASCto+q#O0`XO z1nmmny#-Fdkr7gOXpCke;-Dry)m3@>s{G>MBghZNSGTda2n~BxueRGtK$?MLo>+EV z109z?&>H;;I}K>le(BclAaX>eCxWEox4@NGX%r9z?H5~jj!t-0v`a2Ba&d8u-u?^U zAH|u3+kvH_Y9%?&>n1L79sTxSx0}KcZX&M<{93PRI+~G1oIkO3&~msJi0!c>gF7*& z7j`7T7~N-BKNgk%KGdb~W5u<=8a+7|Ku3WehV%0)Fo>Dk3QslnS9PUTX&D*wN4;O9 zBqe`^UQ@v0pw^c$mHsqO7HdcAsVp)l`DiP8}U(dPQTw z_cg7h6be=H+ODI?1~FWEuTh*2u(NJC29B_ zlvI|*u#(DI+s1cXfP+zBPaP_O9olYo_+8@SfNPuSNC}IJvmmXw0izOR{6345I{EX= zOQ0pZkrQVm$Yh~dSyHW?W=i=+o3tbO{`tKwWIrO|&f+|z$EBT)HFx1+$?^uekv+Z7 zT4nA~7r-Z|Xu0L~E)k(x zh|07)_x+uWhSGx_Q;3Rk_%(S=IQz>0CotHuoX^8OT(c=f|(r zG6ufXuz>IkI4oh$9m&Q=D)uU{&)^!eE;ZBRM%_=MDeMh*`wYvmV7jqz@-R_ zcAw7u@Zm!%?@ekh-Iv(uUmx!S`cB58DWXo7#Z0N04-%eAUO`=}q^S4@c0!yg2mo(c zNh->QD?HelT`yU5@lqZtqU2LT}Y2 zerqHF+P&FvY6aE?-3{H0xQ7pO@|K}F!l*3)w*$?O^IW>CtE)T)_2--3^GM@!T(_-1 zCnokyL&IIN1ihQ0{AEjiw;fx-cgoNqkT>Wo4Kw@=GK}BDS$6ZiN@W0Jm~f=RYe7IJ z@ zt>-MeDodgLyh(%=aF*}Ez3fNsK%0kvtt8swp99FBpC&-S<%)`;;#Y^o!QSuYQEpxZ zP*IqHM(=*KM7ER2@u6AjzZ{s^8juIicgj!A_ZsA2k9_uiunM) zxGpNHMWJCEe2kPX6+C+i)WT$X?WK)oN{N{++KocS;ym(-VlA(1UuJi6QRUgQFThs- zh;o>Q{x^9D;3eN}_O`5qVXKHUklVHp64vK>6c9#nzhC!Bg%fOAgn7*h0mPU>UB($o z3xH?QPXH8Z1YTH5PA-B=96H0kLdC%t9Nsr@bi4z$3fU9%tN;g;p^bwHw^(-QUKKlr z4ja_P(5%el*s7Y|*;B1zF?=pGBCbzhA{3xHXE$6Na5fP&a~vM+ z;I(J4R zVDY3RKd6#ofCkd_0sDu)B_t%E>;bf@6v8&D9QS=^l+(=QxJV9v*7b=>MQda5xDySG lM#OzW0-pa((QsTmJl>@2L+d&}iLM6>PE7Ve+CA+T{|iyd9$EkZ diff --git a/docs/reference/plot_cutoff-5.png b/docs/reference/plot_cutoff-5.png index 89ee4ed756519898ffb565cca414cb71bf7839f4..4cc52b14a9bb3e368b94629459a9e4d89544c808 100644 GIT binary patch delta 58273 zcmZ^KcRbbo`#*_FnkX~Uk-aw=-C4&B*;%1T$ll%}gpea-B|CeQO|tji2Pu2+?e}^c z_x<_)@jH*({gC(T{TkQn8qe!_U8lY6VshKX>^TuAkw5{nw!rVZa%Ty;&v!dn#Uw+m zpIN0=#nhzMvcRTzNM%0Wo=_p5Fe5|7lrXH&m&#Ye;Mx@dgRxg_e3iogT=xkVaWiOR z%$lB@sHsU`7Wu+gHXYgC&uSZBJiz9C7vtnJfKO01z+~>h)%{tM{pT1f-9rtbCV`hS zSkUS7Edp#7+eRZZRObLKGWV+AADjz9G*V2qyGF|csi_+*mrsYGZo|XoxW88GJ*sh= z7xXS_ofbWPB>51mKy5YI=H7p=4aWqljnyD*k*IsTB)5;_d>4lj)qYxY#qMFdr5>^M zWZHF{7^my&-gvqaXP!B4nmwfvy72Qw3|8X9NcXe7JNc03b)!BKUhhRTm z3;1@iE%S1zk$qGC>~XhZ@K2|qB!0R=^)RnOP8`yV1ZQFnlBrO}3DKh+D)8+uG&K9Z z#dG6yQq+YE@)xF5xI6YnJP@9J5$B)#ZB_f^vj>&Zf`^lfow5Z5%IwX6)YIC;fzx(Kf6jtJR`a_BnhjC15fOME; zlx&SX5slgL?4=kQvJS!kjRs>F$_`nhIVB^K&mr915YK;-~(5NnUBz)s0 z^Dkqt&IB3+&Ormtkz(RefI*tRTg6QJmt3=V-dX0t$u`|Yf$rUFsly>Q%|IcF3@%P$ zI^SF@?1V_LSx(Pk>$!DZ@XIKV8pFLMebmO^kBlLV(kKIEWvR^hGabS}(Bo=v=$fJV zps;Iw2NO8%=;iXxA*wvv(srNISw4NIweR#O2*1{M`<)ir^tw5rKFR5mo20;YEVa}H zxYdFU8((^GjSY-Wtw1_vwkSIQ2;D+%x5Sty@I1w zd$tS_t^EWW&oZNZ^b3`hJt$+JOgpWlsU9JTbM=ma(eGb+5xf>(rrKIJ1g@X#>qD^H z80IJ5GQzSXy5#S_##o=`OH?=GYA^Hk^n<5qaLS@-$$nx6*8?QWl-PADPK!)r2IT(K^xxTp#y?+D$ z)4i>!a-3O1^LFGXAzqrt&|5k8(TVbh4yzN_Sl`-HFC+&9T<`7g-zR^NBtrQu_KCL? zYG`=4cVOU0ec&yPoab7HPo?d@^B0j`RZ%M@6R9ZL~>8*jwI(!(ZyMvey{OZ{bfP8neEAt6IJ+(xe;AC5dWb65vtG zlLoe~Fpww!0oCZs>pas@N1!(eW~AvzOJ7=he9vHEnWcc@(y63t>}n2Y>SIQ0fBykV zP;t2x!h`f4eVBuhPYrPO%WAbI!|Xhn+vkq!HZC@cf!Qe4B9WQd-8@I0PS$f5>JmFH z7Pwm~XWpW3&J%m$4AetR46Lmih6{k>8A=^|h_tk_N=$zfgC8p#b)W~r zCE_$(D#YO5S2&oJCywCf(ossDGC`NgR8F3p%8fS`yg#*Nikg&sv1z8rhBs&!&mU;2 z33T;n>QqnMvVdHlZLi|Vt-hrQ)|DSj6yVXwOYPtNa`99$uJPltkWyb?G-)~?*baT? zl9heG(#qL^IlzGpO$XIihH44Q8h^o2s-svquAoB0a!}^f7$~*C?LX+>R9Pu`=N1)P z1C&beg}SBqXW)>xxYdV?_Q=kFlPlQn6LF>Bo*^ovC9WTJu(^i;J`>Y=03PWAa z49zlqZZ&B+Gw~#VqL3&B9h&%9^f^RZ!NN8t$t@u)YYRZ#Y^_$h)DD;j>m$3rwZy|5Q^ipO}g7N8yfX(Uoo_jm?Z37Qd=xAc^7r z|JYarTakGPnFPwRvY%y2zdCikp4hg!BV(t&9;75!4@6h=+^FYoRN* zt;Xot)Re5yrL(yE2pg85g;aB|_2wq~ya_e2Ykf6Fjx+;-TDc;MK&?`a{DJg;bLxTh zOW0&#jJOtF8A-ojW@VqT*)nlz-I6o}Wg;jm@sFQRaER*v;E-QeACR~qrZq4JsUH}a zeh=*&qR%T7Z_B<=seivsB{M(Y-r^~W(^ye-vOaI(-pOfa-3ZG>aA(+(VjTf|91kl( zXY8G-*coN8{7K zNnRx=gG7AaHrd`O`}fc{z@dHLuKl$1{v(A-XNm-#eJAS7iah+mB!phEM*Z~K0PDTu zD?6PiB>?>W{wT2SKGpqm>s}S9zM60|`ORlLGTk$8Ez)##ha97-DhDJuFAW-u%)^SI zSdCoM#@vGdPhQ^R1MX>0^>z-!^l!*!}7w8@i>Bn=O+vPKHunVGBqA5If{izx>|HTDXHCU#T5Y7clufWd; z;tVEs6BFlib*ugdy!Oq=*we0s?99S@2v-EEL}q7ZI+|H3)BANGtu)oF(D@R228Qkl zZ;H&>?qmkC>-*%lK9H8CKX)u$=goGFrn)4*#dDUQ;D|{Pl==Jnm;Cl+c&4d2Jh>La zpbEYI+Z5t>uv%}^uVrUkdAPMscmJl&Rs(!b${|7zPtCPTSIWoTZfT@AH6x=pr~Y2r zRpuWeHD1?(^@vhaQaVS9tv2VHe%oL{CfG(W|PH@su{fbht1jBcpXXLF532 z$vFQek(7jqzi`pQN2`G@+OHy#wvTmLiLxZ!mKSm@vBz{6Q>@~-_P-&8XnyKC&S!l4 zYESh9Wjz(X7{Sf-``=8EPGP0)cS&YMM8pO(6CaowAOGZdQ|Fkv8R!A_FWLNIT!)*WC>oaWj|2;&3$vxL-*GsqGq`g7B=5Y}%Wf zgXc?xylX@N)ZFF&6cUnnaL^*?`Y|)c{u6(tyqj7{g}i;%W5%f9Z^Gc$pA)Rp2$0(G zA$iHR*sk0roV_8p&UP#qBb_V<>%L9j?0o{!gHJVO^5Q4y}i9`SthSvOZgI3 zdFdg<Uf<36?Oid3|ixt<;r`?BRrY(xY}`Oa@YjeMh^Hooa7 zq2+aOhHVEeE33Rh(_wBRg>7}pn;jjoPpFZLi;J({yxHKpb=#BA`irG4nS`oqs#`)y z2|w6?u)f|+PA)?!5~`H>%~YE}iU%w#^07}PQ9$1rhF@B8I9~Oxu_W`}Ci(S?@5Y&sx7?uB;kbx*j zJ4z2u=@H1fx=qFR{za!ct%&TpTh<)P)UEz1I&pugG^>5sIs;F)n=*mC=989C>iR(8 z-)9+{T&Fn|2963CUgLcu3^E-Cr&fp&E?Hm5YnMVjl>bWBZY1(gcC)xcJ+qblsr@NR zf#IH>o+LbGQA0yRoUhu*di(mCY_y6q(}spLM(xI29GA7FFN+_5oB?pl8;VT;fW4tvZ6?R)?|^HRIc zgE)~S2pA-9L6p1@eRZofRjSeE-vIj#4gr|`xDCV#^how04MWqhxpTaWcM*7RSzev^ zI{W&61JX4xSH#;U35R->O@LZX7uNj-Vx93%rnFBjZIx@7|Khci34T<6`WR%0Lc|v% zUutEXgZ^v)J>PM@2pAm;j(;Z4d`sfb{D%i?T)>fxS)5EN5(Up$mqN5i9y#B)7m9_I z7F*ph*Bh#mRTxaEOh=Fse4+TJ^%>j`%E4XuD{5;YwFa^I=W}?Y}9-ofQ zmWP-9^K!a@j`lMm9AwxLB>xJdJouL~H_ttyUS-t+SkD6X{=;o7pOQwR?pt~hHl+_f z%zIh-aq3|)-xClN%dKZ(704ZFgV|K5p`yM@%F~4g7+|6M*^U{3h6E#>?TFcMz4X9o(|u-2oS;4f-f6@U$6h$Z9TkOKm(o(%FcQ-tU^nmNK4T5)AOpG z6CaKoNb@ib2p1JrRQBMY9^9+KfSDJJsmdvkvC49J3+5j(G-XXkU#BM4uAH+K_#pCv z;6)srsH;1w;SK5TA*%YU}i4sTeSMkP8fnjsSPIj@0}! z0+=B^0WSPc5CVb_y*)klVdZ;sX)Z#``hkK|qh{F^g-4DXof74Y(qYV_e@*3ub`2oU zf9{8bgybk_;$c=|VMyX_eP@GNOoaM;UjuQ(@|lj_ZkKmm!#`YjB|LAlTe@742FzU5 zZp6a7O>q0U;MRaXdn?+6LC1aqJKA+`R`BI)VSc_*wL7*(w(dLlK;>IQCQWT^p@_l4 zQIjRJbiT5~@YZ3jdOHYgO3ke?wH8Sc#-} z)YHeYDUrDhz(Q20&s@9`IGEFJB;N7LG4N}>Q4 zXN7U5N&|#b$og_iw@(h*#cH$pp6_u?YP`~eBwMKOb zi_S2*1Y9q*O=g!?;T!dq;SuQg5S4&+ceQ<)q`qXAgMNUqqX7zqN#i5bNR}MnpBvwRW$Mr6? z;0XI9YEV`ac}@6>?{tM#^h_`A4SiUM^}dHf_>&7jDv61SZ07iQIGY7oF0!bNK_!rdKtad!jVvCJqYw3V zeXcq4FCs6%yfJSGyVsFW=GOhC9FUxBqqYfbRKmPANB^)1)9fu&It-Fx8-ZfZ9BPoE3cdI8> z2R!koTmDU{nV-q(Bb!filZ5RtNT+Dbwe)BsS(xs&&qj$55#ClwSwVqvp{X?Lp4e65KAm0*%pZYvVQ(c3YCvGOAnuq;+G z9-U}r5W~(=(NDZ)KPGTwzdlk2_M1Qz^g-^?swfP19Dn=JY#i+`r=_GIr(+=3tbH36 zvAn#zN#bJffPes@tl{A-Qys&XFXu+A+CzGZV>MK-970{vEJze%a~Hr$I0p_&R~YOu zH*RJSF_|pVBNg9{Y7_)AuAk}5k<)xe5vSAE8)TPZm{yX`@m@br(HWakwKM|`4vzB4 z#o?kG+6|-MGcyAmb}O7su_gq@b_1r`W3m7yaskMmf29g*vkL2mB&uRF!`y+i{XWF4 zvT|Xj`kr8)Kp{PxF**JIG06{buE$iXNe5l>#-R@*?38tv4<>FvpL&WfY**|r`Kh}} zDQanHWi^9v|Lo~gN~A`a{VH?JtGbWGxSs#)Z536PtMb_?|E$vHMHlNmbUvhFc<&1jf5jbFB*Msom*B`HbNMxfGLS&qzz_W^rA;I%+@ZuZ?`vp))MP3%p|awHW{@5y-pG-&VT`NuAe>pRHPSE$2xx*^;NSfdyg58}q%vG& z-rrw&WaF~xr_+cN&tv2u%1=aa$c>4BZF}Syisd_o@RsP zg*pYdN4lrg+}GO#M!l)Z&Vd{Fz-RsHv688wKT}UPYv}E$O+OL^ za*QX%rI!FBjPdD9T+FCZs|~gG^OKNNh2bL}4+6zIk*dh`VJ?*mpdx&g@*xj{rmck! zxI4q1egJVpIIO>n<(wFvh_4#3ec;3gCUc9ers;2f%N@c0XoS&02ve*hXFwwYQP=H%Q<*HPs`)X@5=}pnB~_i-_m$` zS0^gXkEN}5?C8$g|KLst!^JYgZDCCTqyyzzeM#5;t;gAYG@41)W&I8^o=W{+21H(V zaB(RnW?7#Ek(#+2Tvqm|ICFS;pAY|GlX|HXiql{nCmjFAz0b}AJcEM*I+t>Db3eya zPG_km6|ZwtmX(!ZHhT7SZ@T<+y7pos>f&MNVbsMBP~!h(1n{xVh4}&=)C1P_R83b6|r8W`-5V@eVe zlpPuj7iwr~9tPY}0@`}SM(8gNpz$9oDnuL*1K>jX`c%Z?ot_>UP8&&{RPnp^=()^? z>3KLzR@`4?DuQ&sBzTB!|?l|vRa6BAQzc=1Of0N2UtC(3cyEWo-m{50TK zmn+^i=sBomYHI4emJt?YA%{8u$;G=GJZ+59mqfYs3;hlYCAiNrSI^5+j|j>zY#I1p zLdydhdH*JpGk{2}G7}T`53+4}d^KI2n(flH6FsE757L`~^7J=+55%QVACtuYm)r+U z5pJ$?Y)OzF*Lkt`_G37CK|L|pIKnO8jYw!?yGHI!v3LgTabo66UYnQ%zb-^>Zo1ab z#>Blamdpfqd?4q}`wjSCmbR5!fMWoztVyF%PCVg>8S5WA#)Y>_#iso8>9$Bkaj$kg zcw>~FKQbAn4{LEBzUjZqAhxW*84)Rcl%KV1c+ksQ9(#7~M@80Q)=4JK6Rbc47h%$alRAgrmn+ zXSz&T5!EjLIoAqSsT`Ncj|FMA2fnq!aJPgAR5_?`XO@3QEl<%>3slQwPPlUs=fQe1 z2D_chu;w#q(l;~M2Qd?MVtgALSs)v%kpSZKatsHxk~61GSq`x5z=O`EG<(&ojdT7O zp#6oQnJ-vn`e)242IyP>!+@X^RSFS}u$UmH$nyle>n^wxLH!8dkAqq30~Q3|pHG^f zoEF246EL#6fncWr#@Q+^b7y5Tw~doOi%Bfggh#VbfJ0OFpTl+$M_fP~i>z6I8wq3# zRxXzlm(ELXB{jT3F>9Bezttx2_;6PKJ`(DpOSYc5s`KHTu!fm%xANQMPHv#Wh(eh3 z;^Jz@xUBgkUZQA0Awt3gfD*!=ge&5l7y}HQfd0oiC&E`?2vGi;;7;SU8zBhwNS-Dm zv$Zo!xH1gl6#=eizU5!3%J_t9KqOA}td8oLzqK0aPt)nHXwzYkepv=PKiS&avV{}Q zu&{k{!y;Ia1r0}&Ws_A+f6w_{BDEk%(N3eDWuj6pT5R)No(+t>dS(hH9s-b)hNKw= zkG;GDW$0A8vfjHV5|_;=R=>c41cjo$2<7wI2iD@)@lg?T<$LkGXW&$5; zI*@&TYLS$blnX##*(hEGJ_y9_h3pz@z*E<@Z2ZEPrv*v3KM(pT;x-(OCr8Zz^#}t! z$B`p|ua!Y!k1*~|k_FH-g4mxUkP9$P(XjAajK)Uv zu@%}v_q<(0k{U$f;DASKl5iX!`e6|dX=rHV8#LZNT=5ouW^8O6gS`OYCzs=fk>Jj_ z2TY77$wqEOjva`{i~D!QiTOE>6c!h&PuBT&-*8>Qasf0cu=(x?E|ZOUons9`LPCua zYvaJ-EVZ0}z&}bRyhs5}K#`J|D7IX&pILEyxSW=rE<*twSOg9W1jIv)Deif&`9oEtohN?=Hr>>WL#Wavq2K~f=q|uH_L_#3k&B~YHp}%X+__2UU>|X-v$dZKvvHt z3m>MCkdRpa36e-HFE3Y3y2=8TJ#R4d}5qR3pfOUHUIQ8-tXX;U^9 zhpXo{(<6|e!7Tk+4%Bm6%|nD4Hiw?TnfMf?WP0f4Lb!HKz+b*C7hyrCXxmhv73C03#yumO30 zQXaV^W57MlCPkXTxCgx7)6p?L+BcH(C1d{B=S|0LuNpmA{knGz|1=b3<@mW==iv8UYMbly6(E&(_Uu_gmg{EP9)R(+ zso)+(w@9bSFR2_z{9b-L5^bwds_m2^msPHk40-{#17lBoZFUhrw;Lewn+p(F>hQd) z{hdxJ>3e>@b=daq$h6Si^);BwL2ZDNnq%1EoN6Vir&y7fhDHM7c-hhcXbiN;lS1H8 zGc=3jP@f|s)1K1y%vZ(-3TY@#-_vsu+GkslTsKi(%@WYhURH^>wR{kIZJlI{gK|4&R zl$AY)eNb9f1$~Ouk=fnh!t&PklH=)x0n+dLKRlU%(`DnJt|9W$TBR^^A<91BPfG2)PgVybMAH z6(iui_u8SOcoE9+QM3gaz{Ar}`=fQ4tmyzQb}GVO5NMFmQU&fX$Ms;6A`PsC|4^nQ zqX?Y}7!c{XH_KTibM#E=xuR(*8C`G{1{6l3ZHJ6quAAU|;w@>PC;*`k-m#=3%r{XZ zLBZr}=8xaFvJsp}kgK!f#n-6d%%9J00V3*RBSv4XXSuYPOPgFA9dLtjo>s!)di5J!IetKrQ&G> zQW$`QOB@f~Fm>+|G!jR!AOYnYsvZ;N(Ri{gk?G6tGudz-h<}{1IRqXhr+L5qtDwM? zkR~Y6gd(C{wgyoUTo;AO<{l+^|6N|-zq0M#5P30I?7Tq27p{+XZHwXq5f3QV1oL_# z3i!YF@(o4x z(8R(*Zu2EmJC@3W+|1%B63`DPjRHBW4af|Qfg$h%7sutWW&kIa@5BShQsArDJ6wjc zl9C=GqpwN`@BYDe0iG2c7$nK4gh;azBx<94*+pJnaPxEUdvknoKrHWXY})x-4OF-| z1v*sw7(K;B10yy9TykpKaIyO`00%u*?Sjdmb&g3bTcn=cE~+S@ghflBf0GM?SmcGz z$NjS4QF96c0HgAaI;o=H{=AZFstL|k>q{7X^DQC7XEpUbJNs$7@Nt>yHxjQ{Kx#;$ zV9p6R_$F4oEM4tl%S7hV1@^3)%uGzZ>+QlU$UWePGC_`A!wTwfHh?Ig170Jm@@UV@ zsebf|=RYJIFFyi;%F@!36Vzl~9LuUXzds-e;Qf8MHAYxxb92*iwf632Z&62BpB}@^`BKHcneww|v@|rys?&CW=$-@h`5xFhKn|u5FAfKfuDRYcWktoV$wI)p zgXBKVdKdZ|W&&bFm~jLkt@>d)9IgxirWFbtjw8M z8Vh35Yv9$e);5KK6`|>;GDCj)G`!WnRx==BHQm;mlKeIG=g*(-T#d#!d3cs>?eldm zymRxqPEL<}ZEn7774}a;5l9c;@$>Uu6wT->O>glRflCoOPt*|Y9%iJ zxj@qs2Bpnl;$P5LX~4QxXS;mDY3n0` z%V{o%z0fSQ^XatRXIBefujX+34`XaMLC+KhPKef{=W?#^T80*L3r&LxO#MJJT%~?u z)as%0kplLS6O!f}NcwgF5`^F&Vm<3 zvn`(e4aQ?paZWy*?$Z`-1YlGl42y}EhA=$>8tu_ZaHe?HS}y4drvCkqfA!`vZ}yv% z^9E4GCsM8B8ChBVASK!aojsb7JSXKh(1H>Nibq~7j`hr4|*QQ(qK0DE8t;f<}PU$dPvp!Cj zy^SyZF(BBW5!MGqrO+tXfI=ixh!Z*m*_k!TY)6joiM8dC! zCIHuYrkAFpQ)vN+``c=i2{-A zgBE%T6khvEZ028R+tm`P&VYP)O8c)LOn!o{bUQpm_WdVbJLHdXy$Qov720xd7>M$J z&a(|kuL;-?P*!Z7D>UNa;DD4S-cAV#YMYrY2|fHLb+R0%6d%{qc7KAui*%W5=0=4) z+?Ir32|HAC!wl}C2nYG`@qXoTcUPixNK8x?3$)wpDsds(gKHCffyrS%=A7t|)TYaE z=LzL9>6-!C(F6AROhqLLPAW-;^9It}_iqaz^&!Ldd zpTDQ3HuW>osjl?(^vr-#YzIhk%|U&|9Jnz4#r*C)uCe*tX6E_z5&(0+uCE#NVB%lC zSO&?6#dp4My#ir-JO;E6C{)psjIOVlvl@_bB4c@Uf)QfJn_fc!!h_SIjcMhAN?O?F zAf1kg&;Vrb+S*!KKPnUoy)#%S_~}*<)&GsHu5vKp43n*uV*u6R>sws7eI0zkAkh78 z3gvAdglIjA9Xo5j1kP*jx$fv8y9QsyWLUNFNr38)5DivGSb)bvhK)X|MjOJN87yKQ zer@K+vu@lCO{o?b;lmjO1i$Q0A*>Cf22lH#ZPKEwE-rTPUE+~L8RQqyt;7VL_ez$u zL~uz1TAD#M^O=iFIb5fO87MI^u?Rk^ByO{jfq5Yq#{nK&+j&)ti-%`^f9$vd91Juv zKn_L5Z{GAQ4CZlJ{1*ND=g&-b&Gl|A$Zizi__{BAfWx+#j<%ZvZ6PY)J1sDv2g$Sw zDfgQhj{UEX>fy{EASoWS{S&~T0e&ISt`d+=vmmdWvDgO*`!m3Vp%P>xxdCc71}Vqk26UM$<4G+Y zY6NO4fQl)#8#Q-bCxv+@$Nj}3F2g2*<+aS+f#xulemJKFEenoe(p|7G1wJAzGqbI< z{k(sq2<@15wA&871~49N)7sifBJ5fQ^3(F>zI63?xV&7ljfR{ymr9rC07Wnx=G|OLVI*AiH4R3*20z zsDyt=@ZC_rVsbYO^=v1bpLlD^Be?YsHr1grhdi=+1;7Hq)ZbuX1_XL%RDdHdU$R;( z=ugehe+H-$OEL)zYY7$u$^0nj6-6b0Y}%0;j$Td> zuo_8}ubh`B5~jrmD1VjKdr zC&T}Y*zbrLiOa0c=(IO0@BFLFN%7w6 zb|Zg$`gC#0<_GV)n=h&+P$Cy_F2q6u1C}hh`Xfvues2u8($e>~*f;a{>(fpO7IO`V0g2(8>WUb&I3RT>%t+A1Ec zH9UB3KjDcn0%VHeJS(k36)lJLNh)y%5PmIy(5VGKVoFN*p#S62A(;SgKn?K2fQqmiGU>?*2Ws zvE4R1j31!)Y2W!PXrKzlcm!(hF|I0@~oO4Z<#;0s3m+33e8a#b;L4XA2~oGU-i9#+UB;8S=F~p#PT~>544XH z1_j01k08tYqgA!tSkra6P8X)itpWW_du4(_k{BC<9(L`-mAlRr+j{}E!&_zV1=U4f zy?V9m5-705OF~MzdoV2=XsA8{6#lu>Vu4IJyCL4d-B{tMvUNxvO~-I3nV*UdXfZUPURzj z`6xYH_|q6%ygL=y_%g5TaBKMB4~?)MXa-8xDDbWIySv_}X->XoB~rZj>urLYs;C!E zO_jjvXSD2gqOeLf(JkV8dRksGb@l8L_Qh+Dy8^x@mHy&Jp*6?R!s zh5TVt1%g$OZ4QILLWOJEq=73%Ip=7$D49XoZ1(_iyd{6rh{M z`+)4hy9?U4i1`_>F24_U;u*aglcvjdb`=*^02Ep&ZgPVi$<-)nvUaD zn*or(p<@)FVldq*kLD|<0RK2+de|{I*tlI`U{VNt;%SY4Tkr^4T0RN@=`DJ@VjJ_R zj!ye8AAEPx$;fsl-y9nVv<%531ggaEgM^%jtPEw%KphVH|*V21K&07jH z>jNHLt-d_v+-$gh09yl8C7_jFT6;1BDCN>Y!a$2R9Wq!O&}Rk>t6c*Fm1qg*Or6;ePHc&eNH|D$&Kl$68=kFPRR+zDo7*$- z%&IzCt-Y$MR>z0leYDzV3wYhYE~8>MAe2|{aT;}5B7Szv;Lig>WMdOnnQRVUB<7r%u1wVdKk4&m%kNs57%DIpkaOLUXIlr zbF1M0=G=G+%Ou8lNyu+IoQBg+RTMfs&Bbg6Ew>MnkiAu46?wPY;K;M3+WllhdkJ#Q z+1%412A_*9H~GopyOcMW(i)$}qu}-L$prtN^+S%VlVZGRe-r@yQV0?zh@>FCE!Xz(4lw$F0B#a)IzCns;XZ0Ax#6lyzd zv>_G3oTwAkNzQ$Yc>7z+4g!wTx#!{aAIJpC(0;9^rPx|F12EVdt z!N2dsm6e}OyguE6`1KlAH8s_m7=kZNHxpqO9HP4?<37ug(^u{v)IM1TtuQ8v`7vmz z)KUlEYD{p~I=#VnFNtt6=T%DZg31*+uHPcI^?eoH4X#;_PTWovJMB!+w^GPp9ay-i zUq8vhi-S?K?IU=o=E-pT?0E_v{FssOPPD9nItH(KnOA{}=6{cgopJ3UF#|PUb}oC! z_I10s=)#Rk4@p5Iu`~HupBz|a_OqC1BLRlWB>#dk1O4-$GX-fFhc&!Lg}_e%2&8;C zr=Fs2Ae- zrz7H)!am$P|Gsa3^8Q`92zR@d)xZ9flt=rQ3dSSOmj8%rn|Sr+E#k|b9Ao}@ud)AF zsm-J7v@7tSYPJw&la8`A-_|ELiZPdOYTfo2omh*!^V@2mNYTeMW-%8TVGTZCjhplVwvEB z-LTt(+!$L;e|fVi6({1(4|zJE^XHJG@3O1TvMtb*+BasYy5~-X3QGb6nveGA&iaW~ z!3#hYkt0PHYqsg1_f|kzd3NCB2xl>!NYR;H_ z#!uyQts*0VZ{ziQd>VyE^HH#{Z|HKFrv0~3Z*h2|^ojWL)iE3t5XOTQpD`O!@%uWk zI8Hy;Po$xR=kar&`C)nnR@H(Ljq7prO)o-bnX@5(s$hSuK;v86sAI_$w1}abrS)W? zQG(%l$hmpEQv%l(uQeL~5bM4G?w~?yI|Y zsul1ef2vMKWY`ad+ppjG%;WC%YqUtOut24d_DmWcHQtI`cAIohJEwz@Z$>v=7GX%&CI@#?)B)I-tlv0U}TC13G zYGfEzN)J}|m*2CdzcoBuFC8m>?rh-&`taVi3+70LJvcjqhbWMwWZ>HtwY4zqYoXX~ z<#SBG10TVf)wE?k%pII4O&-c@Gf<{(zIgUZyr>tHy z#$}K}6aQeE3p;$3;Ev3I5e{RT-MA8c2tbV|_-42encQs+I!SL`e4N-!ych5Yr?h~0 zdbS>Og`zCXnP`FnQZ$?&@_XKf-E=8-ZTHdQVl9^I$7l4t0$6c*c}jVP3G%bn5wyNu z3qlI?CiN9KoDYM_yT6ET(L~E_w{7%+-^BG%6Y>*f4OI$N!}1CQ6EKt-$eK`0#;YJt zF2R2MtzQxn-cA1c_;d3_#la(tHuL2g9+`vqfQ+|>%LHCq%>6YUd&20=%Z@iM?sYJ^ z_{PnA)6r)yF_NKj%F~zmy{%E@VDa+gre6eprYx zR{Sx}elWP+G^{82`-plVP4(HoLx?xwF&o~73O{zF4#M-AhaZdlMhg(EodFn0F<_y$ zW|JFoX`efC9c`%pCH?Q2C;W^LBgha^`f(63`ULG{R@JYklya#{$$2Lh93euVd9hNo!nfTdk$6UwVaEED4Ex#eH!Rie6Oa3*& z$@tc}MiU$# zKKa4In4zn1?rTVlg1Bx4z0-{#K-*nW;|4wxkdj>irn2Cz07@g{UZSIPo#GD_!fj@#+S-@yQ|^16m3C^-!i9 zy*A-X{4!SL&lmk*H4rB_Ich5_?N^)YL6f(gwyt1|gvHda2;xp_Vd<#e~9d+G$Tr2^!uSVPJ$Dl2aRv#>t^F& z;bYa%7QOmFTlD5~oaLy{Q@kgSC@F9VetvjP5OnoPNzJDv%7tw_Juv+rhc|1Fv==7# zaabE|zD)49_|$&Ew+dh6Z}G4FGCn}NM+ghY^+a#3dp(}r$g9fn5nQFkXq(S+TMl#D zr2hj{pH}N}L(_|(5QsWZxt1!;k6LB>Vu`l(TmRd5-zt)8tJQ|%s%^g)$=0de*({Xx zH&pEIz7spd`JJ0dacX?C!QX9(GJylnaab%L`@ZZ~3F(_%WEbCTyA(PIX}ZK@e68$< z{4Niut%3jSQw55Kw^NydcXNoY{{GwCxk@BaH;L$3e+*=507=5}$&x5UPKf+X*g*UZ z%<%(bb-q94E0)>mxT-W%?AC;F9|%3En*FFl@A@*b5U43I<_xai*vXk=^rOqH0aul4 z$^j%XGa!?1`jG$nwL(vh_rrIHL_!P|4Z~$Dx1eKI_fX1jIe&6Gw~ZJb-mEzH-SJCj zaNu+la;1PU-@dxJ=FHr_UhKSVnuM9B6{e4GAt(8em-*i0jA+!r&7*A?#}S*J2=rwl zz8qDq>F*n3Hx%CIS@P8h7AgJsLm!8U>i`|C^XeSDAaNr#Z&{m_pWa@_r=ofykw>xO z7+aO={Ep|U7@C$qU5WnI|0CGu@8$_1#rLq)6$_hUFE3Dm8HWhvM8RD~PB`~x9tSKyL=RrR*Ayv7H(~rarzkKQnV3IEl4(+o^TrZ8)%IeH1(w0IOad(cWGZ*`vLq>}EHl zP$Vjlv^byL8$aZX@0Zoy~^V&jcju0eBf6WL#;4-gMFkG@R5zI)XkfL;qNHv2l%Jq<9{mJ zuqA7rHU&B5NSje&9Gh_?n3ri%!d>kchJw75u|04FFeC;1ZD}gLvWL~~J#TYukQlZ+ zmdF~c=7fxXa~=AZzFIB+C!SugE}j>6sJPt1nW0Cln2A`hNelSs>c@A2%nWbt-bCxH z@<7rNO%C0M{y>zi$bCWDz)_*u3rhM?vf+&e{p^izV%hy`-Zk2@2Mq7jX~T#U|8*t4 z_{FbY(I0dNZqbU8Txo zp1my)YkfKhR?zH=sz~uZ0+1Sy^{{XlbuLWF*HoQnydpvg@RgKR!9*>YC!A;#NfODH zuAGBwI_ZPe0V#nMJc_?oyUc?Gwr#}%> zQ2eXU$eRm5ZcRLIA=Dc@LVHWDB#}5+Ets(}r5{^r)(2p(zqe+0JLb@)TTo7nR@;aZb^w8NIcMO&sV zJ^R_&mR+pXH?j0<;~Z&M8HpbDzI#Qd_Zrppt(+p02w5$mbU16`5)w(1gGlTsA?_Qgcs1pDSu~wL3nOdNIk56B~gLIuOUZ>} z{9K|33i66>wfjhSI#m6wimgS|pKv z%|E*)>x8O#lUD!MQgWB5CJLXVgVY*7qKJ9{0wU!!)te*yPvnN!eq}u;O#3&u7yT8F zzn$JB`%hcbi7d?Gwneb+H#ruDM=R4lZxaA-V{t4om1SX3{eAK(9fO8Cu7)iOGJpM~ zudnYz2Op&iix^%`N#&aQNo^UA_w4vcH!W>e85@c3!Lgk%qGpN)a-`DNFc_?@9p_YL z9`8V%gB&SiWbW5dSsctMyJWwBcNO>SXHNIA)7{)P>lr8`X%LSS`+m;P$F|1(aXRx6Z-IRj(5Us2lF+|As{h%_rxEtVK7!CMr$R5D@kM$) zPT7b6o?+<<@&v)YnTDr^L{F|pg21SvstQZ76pnzK5KH{cZ$1{WRDYFw@YifEzP^}B z(@nqU5vi7;JBRJlI0u!3yh9Uy$xCdBeT$-NH7TGc_^`7IP`1#ke7?RzEhD2ilg*Er zz0ZDz%gdNQz_J`*fci91oBHALX?ju@Jv^i1e#(2xsfg&8Cifgkup~yZR{HE>3#Mqg z{b`DFNL|GklU4`ZBEbP~;{h*?Z#TUok1(T=4B#}PoNQZ}6LYXXSo~7q@KRD>DHEUW+y~$WAbHh@n3<91N{pw%KW`id5vB(XcU(bs_igcRyA*KoI@FssB z>lPJ_MJ*ABX!?eFgDw5ox6nZiEkaz_s_;!_{7Waxr`(lOte!=a?u2_Ex#Y)rrX>#P2V|;pQeJOv{OdfQBa!FS@4LQkg@}nhnmk!iSXyp z18a6Q8ARlqk-ngEiGF4u(DqBxo;-VV=v&3=-bssQa^F@llU0FwX1p@52%Y-EYsy+1 z&ZwOo+lGpkBLhZBYH6`1fBx zJTnhJj(eIMq{VP^6?VtT$OmuPITCxg#L0re#oVRI_&4onAw-<45+PS|dhx@MFI&ZvP%)y(}AsZB>{UT`QzPO!)x8y6oq8bk8A^H`(Yr?D!W9Px$ov zv#IqfKQldng{k?DaiMWP8)aHoGlvikRJF1t?QcU6Pson;G&t}S1)aCB&>A~F?n955 z=w(+s!~G~;g)_j}I^x=*80HC^WC)W@j1TJXfNINrc~aTUEL8di{wU&WW~;n?DpI)k}uEhTED8t>1u{A+6)_LIzFDy zwLZSRi6e;45v6EN0GB9mJkUw+M{0P+f|Iz>VB0@w5x?BbPJ8M6_Guq-JCEZH*d?cb z)3_E=?n^Jw5>)3m6IWX89x7-h%Qt=l80a{~Y`ebdspKN2Jqkl$M51_3mzO48({Cci z3y5r?NM;ZX0B)G@rOS|n6zI$$V`oD}bE%-*9QPqV9Ez8terF!O3 z!4Lj+L3VvF%7__P?U)@ti8vHiJZs;1XuE^4R7XTPhxNJ(8~BT54Zv8(FI%dH&k7h< z_=c2ItTwYtq#7As482BDEMy2~Q$sy5OUcQ?0TUC?_0%|$0Ctv|s88Ff=(IwNA>U8q z@ZE1l0m3d67Z~}FQTxCfuETa@`K3*-o5+zgvW&|+jAZ$(4ohvJY?l3NTRjcRHP}N< zNiLFvLd98Lh12i4P6IAG_a`^4i+>)^hTbK_cuuk;Pk5KG;6bE`0$(J=CP&!7%S0Wz z+7Z5=O-7JqqF_bwb3g1m=G{G$XTRf&ib&)HL#1LsMRzr(O{PwhVO`PrM_|5lR?EnI z;*`rA_TolQ?e)_Gw88=BG~UM&n~*f&lmUCB7rWLXz#c_4Vuk}7?0YM5J^)BrHqOd> zf`mt*7bP5lgSldt0o@8zyyp=dJ1&Lc1^k?ym@&05=v#3Vaa<|f<3c57=(W}hT})e) z(}ttEN5Kra*Grpg`rfb^P_Q_XM7o9j#b@B^G|si>0|oo4sIm(uizptkT~pEcdr(KM z;8mvyncT}Vd1g!Sa~V_cLTWIe%|qI_>7Zs1|MxcJYlrlMUA0Sf?wvmREcrkiwnB1f z?b@Gmh3Le$YR5O3-w;7o?1-oCH4a2J47eEdh{1dwME+3+D-<(YO#2sIWe=~j@2?zu zYln$4Y8sO4MY|;w#|ngxNA^BbN@t-jPyYI2E(NnJCS67@AH$Hg? zMKtQ#xD%kn7EhD`u%IEk;9Xwx%O-cZ50JDMyV0iPoHNAIgy*UsHYK^VT9(?6Gii}v zhTm_PRQNjEThB~qV0Jin_BqMODyH2LJX@+$D#kD(CVTiYK|XI|gmhP&#OU>t>f8qV zx|z|!zRcAAOzmhfzLcqo&RMT$N~j`O0OwXk7UPXnv=?8Bl{Gg&8WKF~r?i_B+GIsV z37jvPwLiV&=b`&`mn5FBR~U!8U&GnDFcM@yzq*DbfGt1!wVmkA=$$`zrJkIeJWAuM z9n-_|0p6C+4{GM#z}}F@!vOhY^dBn=BRDS5ZUUw`^Hmb_mib~|c0pqNbSvSh{ctZk zjhv%*lo%_%WCr5ZaR>6xn&_+AInJ03^`2B$tRm(6jR&RZ>cnxpnT-~c{7mX*>^qGM zcX&nCU6kF)<+Ze&&7UZ~ps>Mw%=p%q;1E>w^se4Fse{KhEkB#8-WY*s^eaJ;tRN9A zNQWTG43w}xj!s}p9nx1^a(We5s*(1%o{=uJ2?@a@7AXJRqtGl*MBVre`1itkFC7a-j$3FaC|563K)6HESIdO*9`fGnHLj_=iT2q7|dF&-uQjZXA`z zRMp0J$Z9PPN+&#ccZ&X&G^&gWYK1Qczq$cDGf@Kg9(p{(#o~Uo-yk$vLMTf?V>DBs@dQP@|nB{ zzPmf}O-tK6S!`tu7a4OR$YND&S*EH3nrc6=92lZnu4CVxr;hqvOa#^@0+tJ%E4`>a)?3sDEc!&lGUG^@3k>;lat7)OWpq-iAgTNMjpg>9myhRe~t9LFwl9s zyQX1@;1v~1GX|`|vRh={vU9B-1;h1}E0T4f)36zh@qxnZg{=$yC54HKea>0sH)U0Y z9u~A>In~f#Hnt=d)v}U zT`$fQS1xu!pSCnNCy77(@!U}=`W#Z>LZLFXnBuixC+-@0d7kBWQO70m2YM(k6CNl{ z8aX>R($`Eo2dL8%?^Xa48Z_C56pKWgo(PqYzn~rky||E+#Pbu#%zh>)emGJ4h{J^* z9?O=!dDfXf=yK@$4}Z(d9>Chbb=D*Wyi?Bf9ryAOj-C`pZ@7n*8m=AcwDeexP5Hp? zuXmdcL^Tb#3$1AVfEbMPHjaIyhQIm6Ph#CS>?eOWt(J5(Al+3}}dV>csb`){>v{?kS)p`R#N0&d+ z{!k+MyQj0fFD6Hne^{fd8TUbH#qxEDAc9#?$+JG3CJee>J77JDqBnDMH-*7I);m6I z=$F1T@g<8v*G#9m=CSAaD(2cLE-Kka{fGP*6+QH5HAFv~{PaOU;(vmAYX2;V z>lK|Kz(=P>m1ciseDgR``!xzH^iqeQK~Fw;<-OW+5lM?)1#^sw*8BDn5;Utw~#Bq;XbF(7UE zf4JSdtE4;AP~M!larR)+Lli{v1Z5#|&7w3~SImZgDA`^&MqZQBKSK8B7<9AInafspMg9}Nf0)(o$c^L8Wt3gs z!0|7`x0~7z2vd&%3lQ^vxu|Ig=!y z05y-g18^jid?_H*yG@!juJAIFnWftbOnC?j*bvCJ2@hMT6nCYY{)<;5=}IGICwvWC zgY*MGSUYJ*42?vHq6%HwIAv0bx4~-u z{rB?4bxCuu5zPIk_R&1@FEVzJG|i@>ta!cGOPQW6v^o|qxUkSgZT0f<^P5Opq!kzsk{b8r{6_X?h2-Kr*6M>tJxJ(!Z7~Z{r z=;EfZUb3(O@7RnFXmv!N5L!JSuxQ*dW*?wU20hUmCz>#27WHa>l>*r|vpJm>SZ#!b zFQ=t1NRwJUkPtlY_V2sIK657;%s_BgN{7_YC1IaA{|A$={)4=40WtA~FQ+%~73iR1 zd0Esy$PGs{x?X$QipRNmwwm?m5AfErsdozrjf3j{i3}xIZut4ZK0@d8rMCbXBdR9Y zLHwDwV7mvu0*y65avlx*G>s7IW^hcAm`Hy47t-~!b>vU(mO)qs*$WK8C=Px{*V*@o z37hR56|}?T{0L}d2<@NudMsFF&{vJ0O>JM;ok|G%N&&)3C3|55XXh^;NHPG+HPju! zQ~L>#M-0Bjgf|CIr$LwYFW)r!JZ;B={k`4g96)Ay#Gxa}0aWTd$FQtd4Jj$*gzm#f z>9M@Rq(NPWF3&|JBNsmLXfdUn_8KH3xnT%#rl!n%-jyE#7g)g2rz#O6fcY-afe=j<&2g23dk9OKEZkUfzRSLmRN;y!a*atiV{lsZk>r=n<;K1ZZo1WMq&Bb+` zmOc8GyQ8cP*W=?hNCpO9Ufg;?_3r!Q);C49S&l-rf9R^e!uR3lZ3C@lN( zh5jQ=0L0~l2N(BP2N#pR*nr+fT)Ljl=!mR!ob-lG|LS%+4qzIb>@?GrSzh@1inrVj z-O-lAWXxf`IHouC@VG;uobi1B2Y!$>-UTHblOvn~b}2fTA zH=F^>L`DkdYPVAIV+m)Xbv1>$DL1i7BET4e2oqgk^ee9{tcCaA74b#<39~#rG)`q#MKYIMT^-(L;_W4-q)8#z#!VJs9m(V*1~ zYUva1(dyC_VrMB`qyB<%&E}eQ55H8vn^^wxNNBx&7^;Q#*{!3GWZ~~TA@$*@JU7nN z_7$p_I{D7>dmj@t1Jiw4gs;{pD{mgm+Ow!6V$5vYEAmaiQUL?#L7Los4`KO64GJv9 zSO3OCm8bx*EzZ@kNH6LEtN^d|uk#;bLM%aXr5it#LxIxe1DfF$evD%1|25Rmcsq)t zom17Dnueqk-#<34D#88yZ}O2>Wx4SA4?#sL4C{U-`+Yk~0K7|7f^}yKdjyN?xNNwh_`syYL(uzE z2)0KKJ~X?KF~9|vSq}WAT|2Z%+(1sn=v`DMd)zqtp%)cF38WPoz~(}+fCF|uOQb){ zOMV+LJ&lZ2??X%pPl6J0qgE)odOSzv5|JYrx18JEm3@hR2e}}vAZYPqAWduON2oBm z&*g4<82nI$;(3J2&z%s$FLw@(gG78HtQ>%qF3~eY)lbzmQKB3Az*TS0MKk z_Jd3)@{`p9RlYBoO=%rxk2tE+9wC_mDaLjJL&&rj=z)E$;VdaTiZ%#oVqnPY?CZOS zKbZN0OPz&(e9GGi**?UrYE&D0TVo+^-=b@PqG~M}`4@460#O&tN;aGS)-~ir_VsXO ze%rPWn3!&vS++hXe(8D^&3+v)Aqdh{&v@~;OBGJ=GEj9Tq3tX)Z$C0?rQM#9}yFmX#)Z#?f!P*`{{oa2WwI#Q5%5BuLgn(}sS@26l z&HKkpSZMnQ87+2F3p=lu)Xq+gDE=0Z^TY|pAJaJgv%7WeGR>r_#{9aB1O4$g+M^VM z7oU`q>O_Q=xh{mDP4rvSm*52k1U*_#4bkh1X|uY8WE(`CQ{ z<@JYewO@fzsw{B-Wy`2VIL#+=SMQeE<`DU&nx?sIURKB$7fOJqWB#l7|@TaWMeqIrXjC6Q==GJkuxCI+?0R zwGUTPsnsDM3X30k77?#-zd5!4xN;`Ly9_k*_r{a^5ZgB3_D9`q&Xb9xzrHKD8S?a8 zXKUgsIB~?PhxnTt!F}pWK}t(4;&+|sd?_jeaN7Uqpc|HgQ^Sb{4O6`$wRL=O5t<3q z?*Zz%I}#IFD+A*@^%dNm3&PP~-r5SG&i5T7%VIN_F!iaFf87P{L3z_|BXhb3TFj0P zj_YRzO~b#-Yq_Khj1Yj%*3e@t435MJN-=_6Oi%u>C%Zw?*I?2dqEWE&bj`NJEH+p@ zid2~OWNpBQqN@r$KKG-VId`Ey6>gCNR%#noK=EBu93m|J2n4{f(V>J`?wgh`+0vDz z?GtEOVD}kE!ykHiTF|Vvt$`t*LNI4Le9#OO?v`NMAneVANzKl|jwqg{rY32b-0513 zel|6=h_jLHl|$X+jIdFvXslW+z0$ZzdbMr(S{o3P5f!&?hZ93_2Yz#1rhFwOc-MP# zF#7?e3Z`jTh|}B*MTkVPuVYx;EpvVKdrqxTzW#4joJv63{wvlW_tS#BX@k@x^7~;Pu7?OAuS`IR5z+*UW{tJo!SlR8oz=i`#?IX$y%=)uNN9 z@&D0k{R+o{yznQ$t&iPca^~`S9!%%yfSX1iX}K*b|6(FjClDAb>mxsJ-4Q-4wO484 z@_D`S`+Dz_;`Lho!+gwQ(%_vE@)-s5nI^-!h;F=_y}6s8?p_N`5nuDrVfNkd4ZKYJ z0209+c@Lnz+Z~R@pJ(vRnurat)qs{^yUyM5*I}LXQiMV>tUloz+&%YY3 zvl=w^@$-Vm?YJ{sfj>Ab2o?buY9la;Mo#Y~vsAMS?r{#3X0%VVZ)q0=W%4D}7F|;s zr9bul*K{}TU`uariUOBmM7${;+c*RFFT4Xvi(}s;*p4-O!J7zu?z)_u zkDcWL4=(mkSz20~Lpr$SnTZSAi+aY68=TF)R&#djb7SmiTFeLoeO^TcHyZA`d?t|b zCEQs(_MV=J!n~#^*1$rr18IP!0Tk>!FI$g4dq42@5Pg+j=w8h_p7tQWM8PlX4&JdA zxy$cnM(9+Dz4LosS#BO4M4=`?EQlo2VNn}SYlnpDTz*Zk0CkWl#gW<$^#yXB>-tw0 zQvYp+30qcCqH0mKFPfeggUu-X@+(3?xeL8@KS6&}g9BuT)<%qfb0;Hq2Z1n?){Tya>@cm7s-jHwSWPdZ z9;$674jjxLKG_j*QF6szNac-X3{#j1{r`vxbp^w50w2^jt7$cq-XSg2`5qndRi6p zB&*LerCN(pS27``K!Ozi!i4JZW*TRBFs;w3XUyd6`_Q`+^p<*W>WvDWVeE!~LP|-% zZ{47l68JRuBXyl{wbO|%p#1im{S#IW=@SvhS31AM1hPtuLm1F`C`8^b`|?0Qc`SLw zbXrpPL>ndS$NBK2f3*jRD49`l^L`uaZv7lVZ;TO=yJ z)Ok+5S{KCwBUPxYqy#zq!Nh8hyTKiB6Yr(rlmvtWWGq4xjY4aK=}%qgTe8`*DF)sY z1o5Zgm{8alG5U|D%3PWuQq3!`sEX_VAweFflwa$qV|N=!aSuf__?dNR4?P{QDz)IJ z%*+qIGkp1inQ*~`ta2s+ke z6@D2Y>lPC1?bi5q*7He-TVarEXnjdkF#nEC-SbBD_S?MuSxCWe#}>o(Nbt9-PN?26 zQs-9#z`5)-*M#2)WKqr0qDtNVPJ_8C?|UegB@;D&^haBr(|PbR=DIs{P|!!*cg#>z zeUN@*U=b1;TPczLsK5j5`+;6GFxA_Ase!?a|ClNb_iawIZ(LkW#c}H`xbWB&FVQSc zaVB47nCtuZ`#)Y+eGLcnAVW}DBNjJD-TaM{g|n7{vAfpfcuuJox{C%OA;FhtkeE8# zE3EH-GV>KPSgeN-eKcUG{x;QZdi2F;f`^NjG<}>zy1wh+s=%IG#lcDT!O4Y>0mdXL z>7kD-Wln#;isJ&Q+F^*n$@N@?jE%vw%g z80)~4rqJx@*grWw$3R`2sR3w+f$7QErLq#;fca6?+*aBbEi0YN2oNF|61Fhaq^`3oavl z>?!(w43lAf9>Y&f5>M9+6-_l~SEiLFR@AB7-(bnF|^|rz6>~H0|0vImpS3s|qQowK* z*VVy-OWMJKd0x7P*F62&eAFxZNlr&@AQUK10LAB3zbqs$aCW}5THqL7nXl#wCPfjr zec#y@tu&`JZmf>(VO_DRFwurBe0O(}TT{LHJrYum?T0GbGQks0(i0V1-cI&z*ql`f z(5X2ZrO_{+MDka>7RQKxoTy!&dcJJ2mGf6kB4`RO^54&1rp#-Nu=V;-G`DTy7c{=(U@F0u*vy@?P7)w76K_x6oEM_oBMt(AVIw2cd9?(}n^WAmS>F?^waNYt9IKK}t-PhKxf<4_rO&8L*Du4c*T^&(l zEYKSb9RDhEk>llUV+@bx^gXTDZl3Pn9yjzj7&^ox=O!Ofk`6Y|zzH1r^QZ3h z*GoY?)y?&<6dgxK$6f((+M+Z1;+->?=QlffT+i?BAICb%fc}z!J{;_#=A~T*{jU8| z$F@P)K~#QSWpCedZQ7c?k$#~39)*mmC}M;4XsfmJVZM|yUj`LY8u?)Jo+{X-0lq-B zFcMFzOcm{*0!z*LgZ^}>Wl*$shpE@JTD zB`XqY8zXvoWrYI{+$8KMTpvbsNv`9p<cZnpxmy?q6G8N6MBJr}l(Q>1^%k z+Ipan6X3A*%D25mQ$7AGh4PdcmKavVn36uzFCtem0_m&kKf^a0 z*&WR_{I2(b87uTqw#kZ3l@+tC6e4Bs=@+w863#3cc^;U|H+p(~uf>IgJi%*FrjGJZ z#+R5nbC;H{+!ik=Y29u&-A!q4RbjJ41r@Aw0sSxGG;AI{Vod8f37758htj831I@T; zT>oy-kQK%3EB)Rb(ltL89+75$E2bY788Bp8R?`$+j0Fl;$1kbft&C=Ko>^+un-;4q zNuKQR-`XQLhpeg#bE6$eNEasN2MHN)IMo1kS}$Ldpg^yVLVk{7c%I)qU3@HXTWt@Rw!S)p@ZS3#M6N1wn7xCI-MX2$XU$1qf6d$VFt765 z=;75h8$zLY!Vcs`gx@JvX66`kYDKIE8gwHm$B@1B1H7bpJuhxBlq&e1wuoolRu;OS z`d4eSmX+&9?FBLU+XGV-ZF&L_=6CY~wL)t*d^f*9>wM!~`qfu$+>WKaxL5F7G!44LJ+3VTV;6CbQm@bucTvIbTQzv5v zbYF-R50O{YYUckr5imD`11aq#cf0#iHNZXaeJ?TX3r(E-o$po-u&uz+F}xVi)C;xs zT@*8wxFgix3SS4mX?jN!uXaltyM@sP2$kE_JmVS43e-?sXoe0@)2F}f_^Zw;Fxb?} zHA6fnnW?GSiJzgnSuGe!Kp0=$pS6W1gSUDI+S*VL?rA@}X1s71_KHk9idXDp3x>L))dvNUIzy#f%2<3nrJ}sp$HZ z2Jnz;94sdpo@|hU70KSMG|${?Gq9)4)YR$U&UW&-($RTt2;A**8Ey8G#L#@~<&bp9 z?=bF{x4XXnxbq?t|NZp+$XOQY3<>D{hL!TlZke&ql}!ax*8ju=$?u}oCMS^Hb0->z z@8N(piN?k9V$MT(Cz-*xdVi~(c(TOz43S!$3;llysR|z$YZ@>E61Nl zI?nSiHRZoErgA|S;Aq%6*0R|X@wSJrG(35%w8oE`dswCup-#vj4Y(IRn2a`;>2N;x zR-)d}96ypXVru?t)-VNsnz#G8zg))LEH3>0g*<&cquS;|=%UWFRWyR&+e73?Lc~J)!(}ZcGlV(!|LCg64V1*Ne#Y zcD`}8wAQ7qfhW{9VRnOo0{&@`xDr{mMX!C;IXFr@tJ$fP{>{X-lotBw8F@NQ3}#s- z1b+_^3Y?-s&3(56#8_ZP2+W`S#8OVY1?-HLrSeK{=I)I}p z7>DaV+~o~?o_y)LME9ns0JjvHa44Sa%qdJd>hB}&^~|8GcqJ2x+xh4+UhQKl^wKBs zHjVWVUc((Mi^38L>PyE*ZDW1c7P{=%*DZfe-Teu<=NqDIx2d4-1R3CTv9P?>K5SRp zIoR2)6N`HmVX9#qj(12Hrt!t#TVTfB++pAsJ_&>Op}&~7(pvK0Il&=Ap&-T)v8m_T zSyC~#;@)V9c<(UJ>MH1lDoWOxfOpwE76w+_4x-h=V|~X|fJ7Tg%Nd)?J2uuF*VOCX zm%YB}`#={Fy|3%_Wu$!ABko6yX87?)1RvCl_8y>Kl5KLxx+;Yj#LZ1B^%ng9~3&eoqzqv!N=Eud$=XCowA-_9dgK-&p zI*n$mp0(~De~P{UEg6FQaDH=|#gPiS5*_W^!{k ziYmPKrxMfWA_Vw(6i*RCpHG2N?aIUCF?4@RWuJ@s;q_V^#Y3)Guu29*(ZJ49?5LuI z0ifc(omS$%AyzvaZ^V#-^bPv4oBi2P(PRk-!2BM;&;dkpd8>)5=6+UK$1{v|7>OJtpI$!=byuj76lTbt+b(rvbx=Hpg&!?m;%JmeW(I#KPabqPTFX zTOSwYxxfCy;KVMXhhGcWPp=8sLbGHynt-X%A+aPOIMqII%J{_YQc?@Q;z#%?EPIhq z@54`-d{MnWN}bS(WvOHKxr177Y4_8&ae(v}7L9Z3N3~!@e$Nb3+EcKPy=^VUL}GXt%nO4IF}?Cj!)k!r z1gJ4K5l0M=Jpt(?8(_UpUsnzR58zktLr%>&^5=ATZS9+fC1py8%g=lRLb0jcYqSon z8_BnQpT;l{?Ptq2*8u&0N#sIh6}0CmQPh#xI?^@K;J*h@rQ~h zzfS%J2G0+|CC+B86a9wf#E~?Yz4qUl<(F`}8*s3YqVPJjrNMT{4RbhFI zc}pd`JmbME#99%1ibIClyFA5S!3JwTz8$ONDHhFm!te zzRJ}c&|mPgIxi2qK__SMEdF$o29*FoXBx*r&W!`?W8@#qW`Ol7V0g)I_g8bMGpsd! z0(WPPKr<98Yjr%WS&TB@c6nulD#m3;`cA8Jrp#?#>w$p$92oEwdvrZXOe{qc|2Pdff=k&)|vG`={xw}PO*YONmL=-hR5 zB#4o7zVvm7Q=r3-5Ig2mCUzZmaH5HBk&-xQ4qkFGQF(H=xrmm$bs=s=6yaV*Ibui6 znAWAx#YfaPb_UDRH6G*rlQ*Chl9ptNkYQk4cPHXE@Dmit z0Jcm7vxoI8{|;PhYl>&{1ofIYomKLJe9HviMO)8qsyWF+j9?0?7ZErQJ1N=a`*FZG zy@KzzQBHBzcBspM!zJ#RR#QkyN+R5D?MEmUY~Gm~EZl6Q?71L$R-)<)AJM1GJIddW zL%d)k$*qBETz>~>KTb=^$cUQUx&JvY554~zzy8QiC!yWPhjp!s+uO>HH9cxfr`2kv zq;dVm7L4j_Bpt9lGpPw2@z~&znc&hUY%MhrIq>6%FIP_v$gsayG;l(NF z@bo5zo4nehUoq30J67+&GgxR;wJ=(SM#~nv0`^vaue?}Ve8$=RJ3hs9_Ji1&U<2(B z>Kf6S5_F|rG^gi^qVL-jE7xQI>l+L>8w`G3w0Zy2F5>HN<-u1o;t{O}f3ETxru=HY z1~RvgIMaxx$xWxq;DM`X%r`fqJ)$99;{BDG6O~mLP`~y z%9Ksnl#gYp!M9roKA*;R7_zwqV|YTPi~E|b?uV(e)Yf}r z9K4U###!heUYe@9`Me16=m=;1z92UtC$*|-Tym@*Najm;sP9Y7M}4|zQ-)}+yPMZ! zyC{C@`t4iw@lo{)@81oNGc#v3ltRkvc8$sI)w~gCiW4%gwU2&xPs@nH$Hyt;YUUYG z^L?*d+J4tb(dE_g&@w(#H&m!LbM^a{sF)byt$ZlB9RMd36eiCgxfz`KGut{&2gkj| zp;Ohy`7_A4WdU*0eIMY~M8h%_JjeQI#np3bjLP1huiL~G@|YK!o6CbCYdh6jiC-IQ zR*9@mjoc5Zz;y^ep7p$JYl*t$?K~ zvE?sAecv7D+B(`3hlzS5Q_*loIv=s^b(e{FlNQKUp&&E%zQgxA+p4zP-`ZTAET0v?*ZrUNuz&CmSw~1;4&gW+GETKhwPlxRHFT(p%w)Rid&8X6?k6RS31NEqru2bVfQvS!s7! zd5?jCcURy{U*BUsU#Y$Z?CMB_g~YDr{~Uh;I6fz0sV|$i^_}&~oWh^aGjQ(U;ZTlPeMQ8?Qo?FAs*acJ+ug9X#Ud1V0p9axPE%4$l97t+a{9sLg$L%>BqU6~h5 z$(ippC8S*Mp?FVd`WO+xsj~go~|D$)IcIG@(Ia%obODd zzh_@x3R^0keqU-bY~ooHg@{k}#ENLZ=AST?0l5d~Qgn*YZZeA;|J?~PEj zI_#jP2bWLV%@Qc3c#ODuSB|a;bj+&MD*sl*}9iS>tM;qa-bEI%c z2qJ(XKk%$Kx`lThcLxbSCX=f_`#1wa15wQexZy9uW{Ecvvm`82c}m#QR-htOvYvX! zdHkS#e8gi6;WSIPoA9PAft^XI$V4skgPF}zDt?zUFW_q7XWaYc8N8;LXAWI!3}R+v zNLi(-mql4slV5uvCVmQ3PQ>zx<6IY&n4KDQoPPS7Du&iA<8E1R-#P%HnJJ_+CwtWY ze}kAG*_-$M>vuI%oSh+kZIWtRDS3Lv0ZiLi$E(D1asE(v-#{GSdg0FEYN$f8)<@2a zSk0%Th>hWAUs%KKiC=bA?VLdbmBl@?Gl8YvJU!12*xx_u>nnaX`6Mk!$N??7{gjL~ zDqh*tVIjz~(`TUbyHizE51|n}dKG?ObpK1%RsmnczhMs;=6kWW(j_Sr9i=|k42NXi zte+g7gU@9>TQ2)ipjE4PG7?Q2rHNlWqo5`dB1WE1R+UP;faa zc^O(=HLte;oj5WKCy%!uYifdaRhjB*$`di4Hg0a;{>*2|UR>|7yzzI$2IUPvZ#lBh zrJqtog-5HVw~H%OYuhbm@pth?|0xp(HySY!QG&Z08B_X0K)9oe%ey_z8_x1f_gkSZ z9^M6CCc^|SP^=yfKk|~Oza-!MxwA?E)xz4=W2)>0XdFgL(brZxy83vXiAdtYmYrW| z-!ok3D|V+xym#Vp^LXZ~cdKQ)-SEBkpL|EBIN}E#`9y44Sj+{*(&+8PdQCJ<+Bm{3 zxRsUflh=bCT^o$si>t0@$83+$e|whQ1=1O<=w1_WMG^W)>gxF)9btS}?eR`CG-!uI z??WRk#L=sTAV0pyMRSpBFPryAP-or7>Kj&S34j;`j`w*aVrA=jkCPb%hUM+uX=fUP zZI-aw19wxMWQ@MNpR}I!;2zvD-!bT>Xb@L~=BgmN(7F&)+b4@gx~LA*3LzZ5{W5c# zR#b8>xG^U_E1394XK#OSCIKX;%5A>!?9rW@JE6mvhCE(yQEp;=Ih(g-EBP&)*qyLP z@of=^$5ij%36hSThB$XL|D3^=oD((3`Z?!57BY;dXU2Dqa$??CkG`cgY9AB|A>xYy8OKPTMTO3nQOkbbR>ox z>=_;CuWvbL1RLOA11ptjhOMV`7(Lz|w5-I$3NcQ;znzp_4Mri5?RF53eGX$Cw%f&( z#qcVI@CGECc&WFYg(iS5xQ+LKdD9F2J49Agwp%--`?u^$71%s;E8-vh>a9($JI3cj z0X11K((J21ZvmCQqd@}jJCyCI{5Js%lDEIY2Z7$_5HCx(fB9_BV0LCi(f;~pS_No$ zw0xvru3@awsss=B18>3aHWm!ZuvHm898hwDA0lkB0%0Ap3K&`RdZ7k1b1JM)YfoWd zK+%`z7V*UdK>wB14^=KNM8Ej$!fz^rIy9ghV_cZLWYg!5ptxPyJx1DlQ4e2=fNXpx zwS4eiwjYVrAa<9UcvcsCl(U5V4jc$dI$wXWb^$E;0^5_tHK$ZmMLkZ;G9^81t1j3h zEh2ne>8p3{7rW0v8c62!#QZ6a;B7s6hk-r9)apS~?C`sFVx>f|LT%E!`sB z(%mB69rLf_z26_t^YftBtHYc*`|Q2edf)Z#{Z^bfl0|&$oS;NUSKYbEPnM_2XoEB| zk2`ibxXmHmw31@)PM2U=k<8-KORr;`O_Uw~nLz2w<=(~U9)|K*!z zv;p=G)CT5ws|*Hl>|%cz!ruJSBk-s-9lEt@9!BwYoSR+#3z#IQX)?QdPkoc011aBxI^# zLA|O{3)N)tw-yt_B~&oFShFViqoqN2uj`_Bl%Ug5{qU$W^tWYAI9rftkz(h}9G@Dg zm5HsJzix71A6v&qCT7eaSbX|APS`X8`v+%PEJJsuy65RF59`V z=(iN-a*Jd!c>xL`qhN(fEe{4xy|2={Kq_ROj1K)=L%T9$^E&m!*2*I@L1b?6vSEUj z&~q%;;*+Jxs7*x#P!BiRl(puSP@wHywrHv9PgU9MURVe}O>eMwf-hQEcE&b-z|5MEAoj(<+Q11mK4^;S0BQEr@TkaX}5M_p}4n;PY zb^f)V!-!2Zp!$P)O0*;w%f&E9>DseJe@N#XGE&QCXSZ#9#XGEw+U``_C*%K(Dd1q( z^D}5!3%?%yF_x#O&Ey=^zA>(ye>OI4BW8dO@!U>I2-GM!1y0p>Xd0|xlijhe07`m6 z$pI&lQ9^sl(45nw*WGltL$2ZBoZ;eaXvb7=v$x2(^N9fy>IKzzSe~>I^ent(i(L}MZug3I&5cbI3ZoZ!LPQ{i z15S+a$p1kW|EHP+a36G4IDGxnPn)+7E!lR)a|%)%>9X~+-HyT9G`tt~?Py=kC8(`| zCuja#b(p!evZ$9QYves-6*16UYn!w4Sn76E`4J%O!6@j@ zVJOSlGE(H~RFdL-kMvb(b3Jwo`lU*)Y`}7o*=BFcIh^IN&AH0o+$2s!6-Xs_-H8+j zI6SW76a;y|zmFd0`O-DF*I`} zc>F}v{NhyoBE#?>AM1i^KQJLj4&1P8pM7lYJ}s;<;tOEok5uEoa!Sg17rURv;e6r3KMSCvadAgdmV8-u6=P zY`k$UN(e>FTz>E~Ub`GG5h#~$yIgb%^g4ytMC;-icybQPPDzkJqu|c}e;il*aVR_* z@t}qncWy~kM)(l(ZYSY`&<6kf{*TKUnu-#ztHtZ_v87&9(M;Y8Q(;khYFn?I1y75Q zmj#tDw2&PuxP-8Mw##{WCed-}?N`_s@_zvabYT9%eBp3P5mw%>R6srYOh?)m6p2t4 z4uz}8jDM`gvYWnC9GB(%chqfTejDSbU4MuTT>KqBEFluGTxNhFBk^cyZ5b~~z0{aZ zynTj&!u4%%h&{4L45FFh>D zUqAL^b27A|=GlDXoRuH2E5%f5)nwyTDA?3kYGC;#n69Hbtn!kX*->Fp(K@kcgfcW+ z8ptoe>FA`&G?{+$HrkG8WomjXY1qrGYT#3D*UUiku1M3aNW`?7L38+Bx8bWmo87t& zM-t1F66e<^+!l6Y|M-&RLG5@+@5SH2)~^J{t_^h`_Kk>#G+!4l73=6AyBYPwRz}Tp zs`64}4sp}g-ZlIAe*&rCF#EqJ!k$7Pfc>UBeSI1T*q;Z(qE3PUPDYOXKvz${r)$Tt z2xW$qLNd7)QGgtms$N6Bu78BN?xttDUE&shEjn%@llSxlR7dJnRC<(KRN^sHN(m-# zmIsfLeFE_a+;jHL|I+(przc|uu|C!L%YSbfd0Y3^5TrQK2baeiTdPXV*%r5kt5tL9 zclQb}=tgdLm%XrB;OGrvrH;<=oQ&8J@_O`!gBD7wYKwEA1k+b4SKliV-kwtZuSPLOYzu#t zx)=o>U$pqV{H))zFyDZ{O}?>xadzyrnVcdQ8?U28w{PEU56qStC-PXt!P0X{Sq`3P zF;4?PK)ofOWmA1dDpzFmq8(lL8)ncU#l+K-d|KGb;ym|Av#s^lqYqE?D8nb<@NCrI z0FA&a5jQ=5euYWIRgH9Yzc*`iDF_8GvVUy~WW=Jzb0!FOwG*7}=a5W;KM0WcUzqj3WR6meb3`^nd z1Fy{O?rQYVni%oR?|VYqX(IFL1tX}(#TOzmli}Qo@K@qY_OAqo9tzp5r-4U_AC4?z1g zYO{7i=|*&2^Dz~77eN`rk}g^UU46zm=KB|h1sn4RvYpZOec+S7;2Hs<#5)CrR4m&|QX7HD_ukSa{7O&~}dD{ibAkr#y?AQgdXQ$iV7UYsl8}GiOSG(VBW* z0_NQHtLKFnxZ0qvmn2aJVI}0)fzDkC4EZ~()t0oA=misZ{f~~!_jjM|#q2HI!#cBP zmFJS&OsZ|ZdSI}0l}IvS`(Uz|X7_#FD8xFd^G6k^_YXU#48o0BnfRRiTa|2wZ{yd_ z8cM}}LLLsR%=f-8&T~O}Kg-Q8^_drCHGB(7{NxAY?=Sgb%nUSjRrT0_&$usi+$W|m zNqOX=hBm|gQqF9rrxwbNYa7|%{q5QgpmQ>Nx^#cx;EUC@imM)yWF!)2w-3&6tkVQm zU89?JUt+h_7_2W5Q$OxLn&vG;2YRIviZTgcF3 zU-G~!1F^ivs9VrbHo)pHIwlZx3Y=@ty-|yyK7TTN8WmqKtxCYa87>l^wxf-6*<4Kh zF_=Z;XwL#lum1WxUh@?A9_xDuRIZ#_6RWTtg~Jt|9HpC(_PNRpV7WZPSrZ;!G8iyb zMS6=bpEkO~FK@#6<^U<{%pXj-aSJfazgUJzcFd^+Yue1hYtH>9_-E?SJJ(vZ!H1&P zz8QS#FI!W^Z$pv>22 zZ>3OCK&PkV%ZKmltWiq>_%i-L*KyBwR{`H)_5v|6SnTslu)Vn0U~#T=kB9n(cK9{z z@MTbKICv1%huOj1)P!Hdq2~~ul5d+b)Vx-a9kW~NQ`e53S_xmm3~)A8?kV%9=XJL4 z>yW!HKd`7RHR4Eb@n5$DHC%~R$@?uobsJk-RdH9dmdbFkqdMuQB+vsPsLqrBJrNla zpPTX`c>UsIh-@u~B3=CjohltATS zBgO#Cu?8Hc#~JN4(f)o0{TQgo0@Y(kDV_$x_UE_>_AF1;TPbUGbRftUbp;-2V$Qug z61AYc{A}cfQBl^nR=Hf8E79*J)=ZG?^M9{y4GKW?EwChLZg`=J1L2au%lsm~uAKa$ zlU4G>k2G-TT@7cED+EDj31&!jxCC|WQtR^de_$vB$8P>R7IJTdB_x4?muu4X417BQ z6@8&Q+2X9cuQ5|@kjYs3uvf8*Ec<+4y+|0K}mlxJ0)I_!^7`NTVjVCT7* zdCjAKpy@G?_eU@Y2jK+J&aSR%)aopROS=YjKH6I>4w!KO(R>5%5MX+y)fFYG!y3Zf z$qo)&i{#Yk>mE+Btrm9T6b9x!1d&H2AH&~?m@hQzjQxE~x1p;BvlxupUw}U!7lk}z&prEtmP%8L>+3We#4^w)yUFx$y&<<7y(W&GwvMc?ja@k3eZukfnnV$ zn4D)@4v8=Y9`E>eZvu>ojHeocBft_{wiJO4fnfa3n4+Fxy0th282xu^bSrFT{9zKR zE92m>Y15SpZHPptJb*Kvx`?`+yxpeBUjt4wtvG!3&4il+R!?i!Ty8&Vo|Eo0q0_22n$ z*+|HL!no*d;3YZ=>UUCnx-|xcLzdt}hjv!+<3abSc4d>fkME87W(m@g!Vqxq<{WM0!D^aQi*Pw{s{8L|}5>+!SJi&bT-7%cgxeF`4f^e!dkyN6e8 zkZXy$YrD%CQBhCsy5)zXa7?8_ygIXLAUPya5?c(kpm~TKPLUYP$jr3X@Sl>FVak0B zTGm@&>n6oyb6fIKVp`fg1VJ6F_(m`O*&G9RMzE}-Z5teH`gm1Uqtr#f&(Cjus5lfJ z;JejTTXqf(%`C&CE88nvZ??c1bGfh8<7{I#>Rkn1-hAW;IXPH1=fIpm4c#zm8G6lN z2Ip9Juv9SN|GdEUV529;r131+EhlDVOlQ?H#D4#N27bQKmPOQYQS4hkYR1Q(>u zbKo;oIkEBx+*4k^9t6LzK?Huoh;8;7!7LJX9|3FobqmyJ4t0`Jva#Xi4kgRzXGsCK;QUcpQu-iiet_C8N!voR4+z!$Z4h zRbta7@V3r_)Vp*+9+TXc(rW-hen5Xz(P4 zA@@#ul|v#JN3G216E1k7TSQ;HcyVX5zO{84%vmR|!t(%eRmKGM7Q`}gnFcpi7;9XP&6 zK1@*?6Ke6yiJzOBgH>lvgg(gvaO?~yu+rAPIFM&SqH^7Xa;p~>Yf460c=2M9PeQau zILyhP)9g$nqM2qqv=EBBMu*GJJ9cdzkY)DW_?>>CNmpQbo*l)jW-XWR^Il}z+SYD> zd`ZMf7Mnq-uFoTb#8EQ;B5l8t{`iPt)&uiMDLUprPvg^7*%f&ed6hPDoZ5%H(J6$m(eR(_TCp>U3{7HYafDgJXJK(YnK z#P3Nsr(Ve?C1kh5ZB{k<$I=$#cLI#5xd+4vdj324adAgN8>`duhvl)Sg=ZJ^cYlQ* z+oE-Rk)~UGPgkPD7h|0$@Ke`S7A`pSj1OlWRhn{myB@!3LkCS0 zUeGLT?RRK^8C7${9m5*V`5#Qkxi?(4u)Ii^Pgizzd8Oo##HLWIJJO;8CnehS;bBU* z*HX9DHU7#gAw?TRA&1WCC94h3N5fAOF%UD1=a=g?3G|4$$T>MKAA09!v@YHp@ZZ!h z?@l#x2G*?pS4W3(%#?Qbyv{!H*=%hPwHEJk&p{|@n-~+bvrl6(dPE;(?j9^5(O^;6 zBEF?lwi=wVTyxQi&YqB(n!3Kl#l;22($krH7X9C^9=KmSCpK&JzRm^$u}KFm1@Lr-9PIA0m7~yn6IVeIi)n}+8i>n z7t=TM9wc5A&pK!#Hyd@AGM+~bmH1wi?5{TJcj^Fs-{8HDi&Fan>sg|ZCt*c89CoJ6A+}k=xXFlo#=7c;RD?S*vMZ4$;7}Bm=dm+KW zHY4s^HXB{)IZwOT%eJd|vcbQ+M9<14nuKJa>LAL?QZgLb2}Q=zix)+{?ZL*?Ez7}0 zFUqhz(}+cLD{Jf<17$5Od0pM1Ti0#9<-rYzbgUu<(bo7mVUuSy(vsVwcbD^QY)s6h z(n|wl;6<1~GD^zm2B#rL+&Ww=`zI_ag z0L<^snzy_8zV5i8M*V}g10}RMg(q^Hd1UOUWtb%X)LOeq%qvR(AXB`;D0=3{i7A8W z$??g_Z$GqkH!d-;c>=E#NHq@8kpq;NnEmwxN%1SAI$2CD?`dpKzgr8t(R^2oVY-@D zUx758Eu{>ODZm`Uyg$e!LQ)OR{q+%rS_)1aSlwT1U26~USdZ&8)9jAvf8h3^cBCid zYe9ii#lhO@YGO)CY*Nw_xw*&Y<`eHZ(&buN%YKKOe-hpLLuRAnIAkxjzg#s_-Gec0 zjcN{3l5qan)}3bo@k$<4qJo3gBzHr(#lML_O>!Gbok)s(L_JN*zD|OMh6XJHUheLl z38b#OmRWPJ;)0;pcHi{G?0ki8F1_Q_4In`OSdkcMoLvlOhhhct8iY?&#?xr}C{&?6 z^*Yu08@|S;W1X#%51NK$bU>wO!SymKcy96y=)*F}e6q;?N9;y?>u3QJo(e^6h|Jr) zrE*5kB-I2yoAIAjixVqO;4LaqSw$%c2H56`Pb-R-YA@SYI&lIX7`E0{WfoXO&s(jpcnLyzU?uoUF)UPAG)O^j`wI}+z1MS5G055)JkCE zVS%`Y>NkVnX3z82FAEC3Y`rN}1F0Pr_E`S_P@R`I%n)W|)3w|T-r|=-&r7Rpe>RZkhn9r!U#^2sC`dAkwC_e@76}6* zhaqScB*jz-!M9*8y%=g=Q72gHJ8j+)KmXQnx6PNz_PFy0ZOIq{ywSR=c95|rn-dNy z%3e3$g|ssnZl3-nCI&N*mjs0}o8-<3N{Q`DD6n#dqzd3zPV>5(5LC zeZ7po^KMjKIy+@=YYS5p1cyY$PQ;t9-t`I>h6jRc-;2Ks@e=5}Hz*aRo5JjVcmzz) zjbxVu%3;Mxp3inBkt|AD4hnf*wo>|lv&_F3iZs5q7=VRGQGnRlC3{cB;e!149BT}D z%eG3F=)cDdqb}`bYmrN%YdiikS>Oc=#r6IBmFTSVJ%4?B(Xsq4M9%;MVPVMGP4(e$ zEu2}<-}c(_Oy8|r4{FG1WppY`ZW0CFJM)3+jPx1$oC%tm$B#4RUW$*`?&lY7WxU)I!a6gIUv)0ma~3Gwif~o3w6aw45Z-bO z;qHQP$x)ARgI{?UK8^tH#}DPBuOWwSq6MPvyU%rzgN;p*gpMSKg?`kuUAZxYOTd2i z0heaB6a>(RJ?Xj}r92q>KZqQKo>lQCd&xMvaCXk*V4?2)Vu!jyv(VJj`W|8PoWg<@ z%JbjI@mPKNKkq1?9-U`^z`XT zi(&b)vs_aa?efFFxlG2#=VID1%A&`YiEkdcBFyxiDW9PJ@c#X3wm{@cy|&?lS1H8# zsYhipYO1RrK0#`eVR1eM_zryog0^KJ2`PmfUc_NuBi{W0;^S;bLV!4K008|ru%u4{ z6#TG%xLwAd?n#246J+pt%+le(UT|30lh6|(B3~wVtY?!F`c2CA7DZWDVH4hvz>{B6 zfbn$eZtSlh0Z3$E=mLf=ue1zDl;+^r2dm9Wqxgy_>*Dlk1xB)nN%gG41ZK zsE4zq6S-3R<>mX~?TrlkfvCiBHH#^WA(^sH>T}Yhbgdr_!{iSb>O9A<)g;8;x`x9hf!8XhXXlse9}DFn6&5Vol6=Tnk=$D$B0A6 zp7npn;h%%C`vY_|0Mly}J1%tt!u%1^SYMwdD;Dj#SQtFq`sI#yXPUO4iJ4jBl7Ol8*KQCqsY z4|d2Ky1na@y@VWu`1{E?P3311$otRvAM>T}?r42qCAGWAwtSSz^H>0e2P1_EZ8T9* z$TO&VlW9`xdp_22*je_DH$_)YtAw_xdjbEcht2P_v)y4fcP)=q-3j61=I*ZXJEWZV zdSs;QwB9be5EvVrYu3sjEgekYSzB%7>46}}6;K=dl9ZBNKtSMeA-$*r(%af9N!XXq zpZ@mQQpLd`&(O$dqnxl;{uGAl^(;)4pA6(>Kv!iF>D5OQ-&RSwU%Akq8#J(>rl_b` z=c4bv5xl!T!;I_Cv-qr{qB3vK(pqj^IpkRpN?OV4Lh?`L`1qvw!gCsXv3q#qsVVl^ z+9BJ;A?E4fAzQj${bZzI%7J6noBsXoSkGJnPF~GsEo7D6+3B-@*#m}uZgE;=(UDR% ztTcKMCT_loD5v{iFH~%J@vTpgR-W4Zj^7T+M{R!-3+V|YVwPYs@IwGd)69_pW=mx1 zqw4diVD(ujUrjbGFjPwrq&p#hBuq7irX(g_dCdL_c8?%jIt9x3&RAJWSLb@Fyz>3k zyJ0SPN%1Ox{EZf}iI|nQRLuNfrq=vfP$`H_i6Sg{tdXbudo<|_Py5Qb4YkLsIkQ)s zn?iZ?)6rmmtFbxkx-9;A|C59ySe?QBwf^*?>yUR5e4J*E=|iCc4&1wU@1FK$$N%c+ z$aO<@Y=;1(Uv6ZOaMRe^TnNJ2FAbNfSa1r@^tV%IYKFwGwTLR|BL}$>hucQr|Nemx z>*M3I@SJw2$Uf!4MU2#0>Jg17MYFn&dc@58q4K5aGRCRFeD#)6*U4>RT{W8-^Mc^W z_&@WUPX;oc*eK|fxHW6n4SWwPx%as~q76|f>-@%dznxfFGWB*oT^Oke{l0Wd(@R@A zu~EdBo;^63g$^zNQEbwp`v)Oj(ML`Gafh0O(Svip@0wwR^!PtvmRcf3?Fk24p(n-A zh5Px2#jk9WMt*}IuTJ`v5qlbSapezwosM!R#3R z_XEEvMW+KPo6&TmL@$HEb)FaZ%L>`kjszQX8mB1%qw$~b!i8)M(-xVpUd6pUM*i!^ zYqE{yDoXRw3a|G8JmLnmQHZ$fI#kp0_(LFkNQYX03V04NRDN|js&xI=-39xl(yb_L zlKb9f{9z4^JwSjb``atKe_{jH54J`~n~9$JwnM4*j3Dv2Ek=HcErQpm<_|c)E1Q~r z1JCq-_$Zemgze_nDOlJHN!pgfdNpXG-ICucNvtA2=7QHkkptT}0@iF-$@VaUyS9?V zP~pvF5}gt!6Nd`e;Rd1mD2F`a@}7PgtPgk z>ck)>D`@UG(~Nwmx~w1cZ8fS*p^Q4bu_yI)NwfBmXiRf9JKd#Yo^R4`Nr{Ow1fXMe z-iY66`4K{Xo==LGm$#v*sk1{#G7YBrT(G)cdvBJ}TyYXc*#wBZZa{+xP@v9!@n*nd z$r&Yd;9=Po54nIh`8tqq5IZRXC^-G;gjHI_w<1Egb(7Wg-5)Z``hRSkLSu?)OGFY| zw42Jk&o{`0f8|p^C7uaM5Z5$HwklMhb++RhQCT$d3ZH zlXAGj_C}z1o!cz7-6TYNJ=WjOKq`>KLpcx+fbU`AJy<@fT3X=EA6Arce2Kr{)p{Ol-!?++;9KOcyqPkH~Ezw(L#RSAQ?l;$zaDorEe)UX!mgJol z-{-;zp9e)`LdQ8_3bRHVA#L{a+rg58nK;Ejo~u)Jt;Rd2gN*U`sk?IP(>p8}--*ap zHVz&owH5TSm2rvL;gUEgEPkxxc8!sZfzFa-qsS&+Jy#fB(*ok zEWl;`&lezkV&-^&UIrBZTEQsmQ6=#ZfPH)%M2s2ep#)75_87%&iol^t5s_BCKuK98$gZyV!`(((+JKb5MOu=EdP~@BKFuy6T#mzO%7P zlk>@_ebH9C<(0ZGhF}CG)z$Q(=ysg5ZS5e9HUzqA!2ds}F88vLsSo`%*%P>SFT8hjPC1!e0+SJ-=DZn{nkq>C=gw5yR*P=YrK5_jI^}0 z3!s{hAtB#@QM$s)Dg(=@16ZtN^Yp@+mM-lf$|1@9<(H;SpS}PLx(Tg<2Zn}UxdC>g z!+x;0rLLd=r;^fNMc%)EzrHzOWjxWag%=sTxc*anF?ppUwS}G^#!QXa4Bj)k+fcRR|b^B@> z^*>wXgi!S`3e$ z58Icn-a{tuS~BU&Q-^6qtovfDCYdY9IwRgvE?+Q$JHy~qw6wI^Vk&>d-`!~7$awsx z?aO7hlE8gNsoV7aKYsi$x^d+!4UGwMoQIS1fu&{hbCvc?DOp(#Uf%nCeSNj_g}%wI z3%TdSmpvs}ssQCCh%Tk>Ti8MYvgw@!i$-J*Y4fYYfBJMKy0w;Y;fQqf5gMvLL3A7h zbIyS2I*Z?$+1c5XLJ=$+)0u?LwTNe$g@yJ((;YMG0grwCL*CieOG$$^(KzBh-+jfa z{VWsK4e$N&HbU`ag6uS!rQNB<4Fez#qM$edR%u;oH!A`i}k`} zwBJWa?K-*r4@HCbhdwb+HD@&5-T(f;F!IF5t%IVLY0>PaIyz^|qYc|`_|`hS@aiBT z(@g@=%uo*zUR|qOT6JNGCL~O4$X7FHB6=ALHd&m}>S{JwlPhx7)th!Hy%RjsDVbpy&!<6q2;L-454AebqLi-i!AzKoG`b_#>DZ;X^i z#a3KO-BkNAJ8l#>f96(qcJ6dHMS+BlCnHSN&M%aS30B+sFCYC0ieb9o7CkAar^}M? zip!LKBj=1!oMC`Md!RP5>f;k{7%;g~cZT+Eb@ie4x{nWwRTd%7Lv_3x$>?Exw&`+k zmDsKPkXx0>&r=w$H7dtWJaJv+QnTmt$%H_+8bu{#R=->IBM-;TM(ybiihdk02(hxr z_^NHwod`TR-ZL$$B74NYU?R~(?NaWmi5`)VDJ2ssCrjad3p))yBzyi0twRx+cZYt< z%sRq5x=i@kVS|;H8Ksg-q1u>Rx_{_RL*vA-pwvM{&vn$6U)>s;COm646I_D~^JCU= zO#0H}LKt?|agq|R0p9GKoI4@VA`G2W8l^|8ENWX_Jw3g;zP35-`V;pc*vjz*#1K=5 zPfkwK<>;%$AhWA$Mp%ImEX|oSS2$8ugKo33vNlZF;#NmiZknC1y!Pe9515eekFVpl z^;J)_Tp`4^uLNd#;=28p&nIQp5pJGGKZ7&x1q{t};?l7P>X!~~8yI|f|NaGGVxSx; z$MRAOqLT@O@jS)?AF{o@{b^Tna9mqZqB}H~0TwAnigalf|N9zDOrErxr#gOjbAbaF zF6w9*W)DT4R;f$w1%an=Fd2I6JO1aD-TZGcRsjs+XJ}~Rp&O#%bCwHVI}yk$Gcz-D zLDHiH`(*u3J9hclzprnLk=nI9u=AnH0_j6Gu8j&-R^89yQ zx`5CTRw6BluW%k3#&fo@KI>!H455WvxGy0NtJ=y%{P%VCUQ{KRHVmguubggCT;ko( zGo>493hsiWfB&_UDwK$gNC9io@aKfC-re z%%41cc1*)WGsLM;P+?{!B+p_^QgX*Q>E7oCLL_0Q6?wY$yBQx>ez0KmwEz2)dpD@a zUzup)f94*!1vJ22K*S+fU64s!5VkcI&p%$vzKcCR4TM`8kTqDG8A8|_2@Vg}YUTQo z^;QBm>ErL8zQl?lmwDhWcu7SlQc*avW!F+h8QSq$d0aq)B~oTH-E?b#{2{ZGj&OtB((huk$_%e;;tnonMXk2 zA;d6v8ove0lcu{dZy%`Z*t}L0nZe>z0ALu!-ScLN6o6B{NO?L#L~k)y?gmYH-}Q{w^m^BY=C;` z*iZ=8@1mgMP_ZLV?tHW0NGIUa+m;~m2!Y03DEoH=vl07kkK|z?cN-fKlm5MuzZZZ0 zr|skd4?Dsxzc$^PPg1gu!(eK!6PIjMOsxEY#x<}({>La8QZL_mgO-C~VPP)2GYPrS zB13C_qgwy8+=Z^^7crfs;ckq@LzY8M6MpRM?7x7z>MBQ&>YAG5n3$VBv^?D?Nrgk9 z<;RGKXFaat@7TUu4i%{|KgLM;_alEOA8Z!gj6U+#&3;EBO29k>^i3H6wPv8O%@6Hh zBf`+N7L24ZxNY{CHPqL)AEnia0qq11@EnX9tVWmpm0FnY!>&u>Q`6Hu{hLpV$T72e z_sRmwcV{`E50qrq8g=2uvrm9=j5R~x_vcmQf`9OLxdXB8%Sa_@{Om$+)*avyr(d4= z=gZSrN#(vdV)xURR=c|PoPd}>=fxXJMm_cdj&}6pj2vI?ehH(C!@oIoUd2>bLBSW5 z1>k<6kK4jkVCWdeK7)0n_M)KWM=T5$+n?PiaaVbK*}=dKRdJI?(+`CC}K|5Ep{;3yc2x{V_m{rp3xFjYrD- zhKuaY)1GB~8^FXYcCGI@0V#!#Gi?rk%{6UXI6v*|>};?_Iohjs@xZG=kM>UxCNLv? zxE5tuJUq%6T>gCFqt5$#Gsx1Xw6FeCzkkc);b?b5L&Fy#C!Q++On7SY-<^CLsa5@^ zaH80w{j2ofAk*K-cl|mGZe?Y~1t$J?+bQ{lpT{fO>%=f7R3BjEcC2<0Sj5^7B=KF(^496~jYj20ggT;AM zGNuRrH@k{l828*HN_T#LM)?9DB%k-0g!avCE{*WiOMd+}=@tpWz6+*2ie1>EoNhxC zNG*7aGG?>0#y;+Ut`6dPUK!N{#bB)81p)TQ=XbFf&k1^>VG-o)A8Vn=7TZP{AXTT6 z8vdI-x+MXQz$}35M+S<%`@nz!`*lQGR(4w*QZKC1Q*a zGTg43ZUi3+j|I}(o0IyJ?hOHfT(vy)4hxL(*3&ijh_J9ET79?szzYXgjkTee%;R7; zxZY9Fdh{kaolvI20X+B_Xi}@(y5%Ktu&$b>k#!rQUmB2!on`$6{{OSUa^cKRVY_eG zC(EOimm47%VCa^RPsVBfM=h1u0dL&Df4_~-OWPL(R~-MvyWACt8#RyN(HFrJKtrA` z;13ikqBxDOa_Ie^q2he(6CgT+)5&5syJV5kKmV z90--BSE>a=tpcCc{J({YpeuE*C!?n!n8O}Ar%xf3%Hwb+v?X|Wlu(8dIE2ZyorYAw zn%)Hw!u}e^sx7ATWq67IgN=W~*1sb(^D7=72eJt^V_}$En14poXn}o#p#2f0dAYQ{ z%K=wfb1pt1!5rvDd|Z31toq}xFOm_<{}%D&p3rjTG@$xaWsx`A+fI>gt8nH@OE*wx zXy->M8xO?_D8TglOPq6nwdu???|E7xkI7A9&0v05`fqHvC<(aE$2aLv3@Q48t*yX2 zSYa5vaaaW+*_i}u4yE00^#CEQ3m`s*voSjqIdAkFLbE(x&uQ#vF2rT6ft088nA(u= zf)J-tJ@O0uawBn${@QrlvFQ) zd-&gc?})YtQg~IpxV`&M`NMi*20_s+~9?{5~gd)8|br`?Oqv$W&wyyzVB>cNE?Y{qj66?MeIZ zA2Cd4h~USW1|diNcPl|b%s|8l4m;g(-(9~CWR6zevn13D2ZG&6t&zEn{*9gteI6XL z3)KM1_$A+umFb7P(OE|2~g)_1*^rsH5#%d+m^PlNoC zVn?e&9d1|!Z_Y5oc#}uMbfQ{-x<>%-i_HOLcgL4Iqs)Yig)nTY-D8CynRMNENwyF4HY@{vsY5yWln-rg1jvc8SgwY7yQ=wIly zS(F3o$|@ovGPzm&e8vz|*uK0qzKoI*#)Uj(+f4Hw`Bo#AJg&dP%x;%;zj#4hJP07E zF*Rc`>r{Nv^ef(AQ631tCXnxMFEaD;wnMOCo66gOMizUF!P5Pv*=sN=-A$!Q!V0@Zw{@ zL^j1krVxr*xw+Fj%Q&bchZ5>^6`L=Y_8>VZ~Ny+>3?h^eGt%^%<;g0OxJ;v&dn-Nx)r2r;-{ z&_sRuoM6wjEP|bZrON*IdK~KMAF+Onl4ULZXcpPM12Nz8m~m&~{mVTpEG$V-H{xHA zVp*Ovec}~a`APjUo#Q;FWIns`_Tn@k4K;u-*gh{-9NPV2!9kBi6;|_|?(&tIi+9q= zrn(SVX;}L|ZI_Kbxj}OQI+IB33`kRx*CqTzA|g^@ABepQj{(A=%_}Sp=$`CQ?GToU za*lh@uXs|oOA}_C#*XY|m_tk|+MP{-M*u)8?A@Mx6dSZ0GCJ}g(8hTD0|_sNNO+@D zwJLq7JMA-e2AY1SiVi_ecw7_R(}9meSso~FFE_$$AmtK#)_VyD-9W8;%gDH8qI>m> zacRDIW+B)0KU8`1XeKaHXbTK@xKb;5cpt%k2jS-eOw`UI=qt+OEz1ua1fF&#b{5Uj zH8vzK3ST}d$>Yn5a$49K5RF~Ur!U_dTEgP=-BzUQ_@MSXUhH>Mlz3X@TFp5q^37q5 zp=FDJQOzmxbJs4-*Nue_BD$zd?JxA{{@wifZW@{I?qXL;C?1dCXG<(#?I*f^k-QHN z_-)7cCmoq{AmQi0H8eH`@qTOK+VE=sT6sj~rpH>dphNOYWthv@tIz<&6Y^F(m6@NB z{P0^O{|0y*P9(xVhpeEMY-x{{fzT+1zOPp1Bd^7Bf(K3on%wmJr$TJMiqvLjC%Y=j zRkk8N`}=OL>yM>hta^<;Dd?f1r>A$gn5LDBpOlRDx1576DZkCQ6v!^xBur(kM0;1m z`w`ufM;ck4Y|i(I%%$dFcSy<@J+{AK`=*)TMlMLmEE8keJYQWTXU9PZ-CS!pmN00U ze=rColKYV(tK-LrGimxVc)zJEuospi1qB82U1{l{@EC%=H9iiC&AvvU>)3HmJHGiT z!V>1&NVell`Bh_`?4tN_|8od!T*$tc6Yka;IqAo(d>-iLOtvcNWT#PzuYW+5<^skgR6i{kWj4s z;-Ii`*v)^0KHj_l^E9_7Rnthx(*b&ybqfyW(8@+R5VU-P7it17r`a8kVc*N(0liZ( z_9_R*UG2PQfs?KE95~qRV*dKYBHY2_bD-9Or$84;y7?G7ZDrU#YV(IR!1P_Y>XzQE z45b0^HJnNN$cYwEnib1i6hr;Dc|>pO=q)SQSp)^o5bQw-?w1uxh;m8p&$r^iX%$$1 z0TIl?nNxS(oI0VEfKH;Pa}m~sIu5(uH$~nnzxVOs`1rE0g#U~eRWgg}8HmAzz)8l^ z1CVrmtaqgQ5FAY7Fz|2)aW9<2-<^Ce!h*9xV7Vo&pK=_uk#)a;QnB{FXjwrncS+#p zHDHDvme*nXOv-wmHwFDuE4INagX80dfXmsfm(4MlW7;^WTMr&UyhdYusn|acbW5DF zppd%LjiBtA;SR{7TNT1G@{KJ+9UC}5HJNBI2lOfwUcKK&RdSIhL)NJt=r zFH-#t;UMfsA$G25^99${)b;h}sFnqRO*S7<3@)(18Ib=rahIHl0JolMep9 z@Io{)po;+JOX)_)>C>m@cP$3;x?o2aYdvED9W)Q<6*xdo2O=@@4RW#vrGCNKH#?M(|iSYWR57WR{ke zc3_T{TSsH@5D);310#iZ)&AZHfkLZidMyl!%Gap_Sw^y;9%c9!b?Dfy{SWL2vv4id z1I69etHC_%Ux)xx?b{+G%qNP%Q)h|?QJ!k-;F#NTC8K>J2OocjNiI@;AD03LPZ|FxE4U|PACdv8x9aA0nkO8vYGFJ5GT;te$T23iga9KeXW9#_5g9k7oy zx8#zi>8A6*VIRw)co1t%w~XW!hE z3akxZ0hv6x&+uK)&!17INd&Z;=~2es>Pd| z)3bp~f?wU(SicxF&<<=txdRt#@kizZTP(9|DmQ_K@_@?)-`(AvePMy)E?_Tb%7h6D z$vvR8UbevPD8RmN6tFDQ11@Wmx?Nuj9G}a-0xV!WF9DY|iIqLE044@0HBdF>vIDq_ z?s$>_S7~?gqaPcAtr<|*WZmDl7ue@<{1;mfY*joKumlZ)G;n-fZvWSFl1b&KlqS#= z-tm>7IT#>l=+e~Fn`Y<+Y(+)wtJ!(!(xoXgW~^XjX1h`jn!pS22URD)-d+;0z$^RJ z+W_opYif1n*)jlUHM&GV<+ejhM{jQ^aG+t);>D%F&6l9yma-^Fs1-Hm21Q-Hx={j z{xZjW=Hl0yERmVnEj`5=G=DNbBxRdg7QN2=`J;$2>HE{(&^&RJ=S=+O!M&-_=<8Rd zW?DDgMDB<@YTYMz7gOtAwda9v&=>8SVDEAX1O4%?d|dNUc;lfOw`}SCdx!Ypuac&d zD-7y+pwq_~de-u5uSx=E=*feE5U}z*DJ$AB`=o!bqC!x?*%{AI-kuGkWkL_jvYI5P zs^`Z0Ib!dE^pLxH`pnz#NzKP$F1}@Em*sJbyoY0W;!XqYocK8`=2tFu(Fu`M^k;u& zafzuGB6DjUHzCP+QCj0(O*$9?-j!_fa1C+qa*9A=Hd(R8$=fw5oqNFtZQT!Yc zKQWFl+KXr86%gN?p1}+28iJWG8k18~+lk+;Hn`hVfzo&x@(95M-yiH7bnJ#xi!fY1 z-QfB!9GxwH{N9N=4w7uLVb>-8f`>|b5CwKqdO>%0VTbYDfC={xH(r|h)8V0Pj4oXa z_VzpYy^Jo{Hw`GxB#_4r{`_r)#bufJp&F%(Fz$%sG3J?!#T34dJ+;VTv2RIhuN8YK z_xNka8-=)VU0OaCO@yK40PG&cx&YDHG>A)>?60^M7Y(5wMR0H?;-)E0qnG5qN!pn% zmYOs5uc6JefwWAWgLmo8XBV{L1%BM0@7{^OV?fb+5Pc?ejHb75NjYQU%5PQNx5&Fq zI6S+Cl`&w7fA+4sWX;FuGV8pVytjO8OK<5)V`306d+{PXBl0Q7TdhJR#;n%_f4giR!@B>bP0tsc^-E5shq_Yr$8P1I^AJ{#wC2B=D~L z>-oq>`?rg)OF(3hLVdeIVVOer>|vk}jLR-1dH$~u3_d*_xO4gnt@g{cBvShpH`O1|e4Y0ETQVt{)b2Szgp$W#4G!?+$D$1!-WfwXmmXtL1 zlyD|ed((M9uZ_lvcJ63|GMkml+<7?2jZB!vlM7!x7p_6K!vv9uC}VxnCO! zQ>SD+H-;OOU{G(QHf5FoxbYbVK5j)P{V-V5_uTNVm#g-4XH&uGaCBU$}t#{uBLLtyBmJ9Em{^-r|+)Dxs zkDC|Ws+(F{KTYzBe0xl{aIArdiD?qJ{%RurDu&b7v1Nvqf=@9qyP_znYgb9GEgjKh z7Ml6cX@|(Gd~J=7e}nJq2@z8Z$)SX-r4a?iR*?ehV@F;xa^4DxlJz;0FBwzf<2${C zb(~ODP_*|}9{Vb<6#Idj+}o`hf$RG|_QXrqS9zO05?Xt|sb$d@b#!p}UR5=+O2&zK z`4T?0pc3NW$Vg6oeSM`@U}y8Kg#|y2-{L*_o(CB8byYaGBfc*hyoY8&M3vmvtE|09 z@vv?Y_$jNZelz6}HXjtt&j9zr#KiP^hM|BJm-QH7 zXf<3^6RZ6j%iRAr+c3oI$CvjesP{~7I&WgK!yJ)%vIs?qnmESzLw!5v_F-N=>rXY! znrA~C#A|SYt+rAp+#?@ads*5lE=}cox7=fvSqB+eYUWezdNwZfC8Nt-d!&lltc`tn zbWgdzFXy>in!^RA+B)hOAPtlbQd=s}#>`b$o;M&qdl5!~qtiH8_D9GV(|RKRsQW*9`8Q#*v0osmrmYnb7dLB9TSv^A9SSLzsvr!NbH9x}W%r{Z?z!tHaTI)J zuoHnq_-5@{xe-M3TFbK}5mLV6_H=cxq9WZJjCubHY5s5d+P34XTQWK&rawi(jc0ZH ze)%#tIeK2iMG3K*xS6tgZmHH$Swkz1siQqI*&r^;g|h)5{&}B{$g;xBm9B~FbPG09 zTm4TKI5;Cbvq7eL4+b#bAN$r=2^ifPvDE{P;!IYIE`MXY2I-R1>28n$JXH5JwU=&Sx|`CXmC)Cq|L)3ZW2e%j~DdAsOgTE}u(XhJG& zPH=D^EJj8L@z;*VrwGI2BJRTriY*XCLHqI7{3k-7*3KVhd$A8$bvI{C_NlQ?_fvNr z{l2qB6xB20Oy}?b{YEy*9#;z_7oYVOAK}@_J)YLYrIm%4*aY~2fa%`CHeA#d`+q{h z8YQMR6kAZdJgC>Ek7=#o@03_u4!q;pffK-iname~pJYoLlckqyvMGJjengaw--Bo| z);L>XKHx1Mb!kq?+dllOQ+U)f_Owg4S`gexG6=&TB~63*ZL?x$1J`gdttq%-V}Zos z2t~CAF&>n#I8(D2XUKxf?|ebauBFtkcQ&2LJ3>FjqoY^R*XE1pwRRKzeu*V2I3Wo{ zr<$sQXOYi+@4|6jo=2|~R-h?{R>%eF!Ws=bJ8mu`(%aIAz<8s9$aQLfdxlk2z!1Md>5C%!{QFLlt>Ltul!>^>qh~ZsD*UmB5-Z zbaETt`2fTxn&4sQNAM`m{{GH)`QnZbmHWrs~ogWUfR5~Dn+WJ)MpUL%xGtk=l!76hfUbJ2g3>aO&5-Ah(lObU5MVIY- z2{r}rQBjI2W)ph^6ej#`>Bv`Mr}&V^9HC3y zRt6N&wYaAfgsK3iC3e{V{?F^ZK}@beZYj2mYW0(pOKOFib&FL?|boXUUh&_}p9z+243y0bb zoE!KPP` z;IIn*X3clh>ET>SMC!=mU8-yAugHW?PUVR)4}66b=Wqj$+J8!C2BZ?;kLouKx^N>A z0ADiIlglr(4HsqfO6M$IU^KkjK&F47pKrY5$M4;TOPYUd9i+JM#(H_^%`<9fj8k)8 z_y#)tKTF z+N!0n@`oDSnauw=_?l0|n5z}8n@XCRnUldna-=#gUw!c@>1#QZ6cv+QH)rO1RCRkS zONP_@XuSGYzl&-8R9CkP2r#ljG8b0KNg5>cSVWKJpXv?<$1jCfSgWJQC_XsU4c^QC z{rgEw8WWi7<;yRbxm6lpUrHfMtW`BN<2vAPcJs^I#_=umE-st-x&N&SXt$PTzoMN- zcJ-u2k3%O6V|2i18mFp6LSa_Y990wUDfg~st5@@}@VbOAY(A@Skk`|#?%bGZ?bo?6Gwto|iKIRL-PjS8ASz>J8I-k*gg%ka9WH*3iel(<^d#_m6PZxC=t#@LBE7d4 z<9X-x7OGL=V(u69gSgc90dWg&CQd20DHJ{(T~0@y4%}3W)ze=)85Qz}y^y^+ja# z!fz5R*!~Xu*L4)q!y~)A+JcdLum5J%vpk0QaJ?7kMb`x13Xi+PT-Wc?aM&oUWHs~1 z3Lh*Ly3NFxY^~K2n$NVx1V|>AO-E|}0Lm~t(#L@plSaN-y~3j4ZKxk8@Jq<4HwVRe z{Y(L{#GmJkMF@Tz`3?Pk(iShE2yVh{{SRr8%lfMX_mxu5ky&ttmCdr58Dq=QDo>82 zl@c-9FJHy|o+Ad4$e#ZGIeR)7j{O|R^wOi?oPCK)a7RZ+umP|7-?XN$n?LbLDD*8V zFY1U&>gara@--BeURzQp zFI%lT*jg!HWu_u9AN*nF)qpwCj?U6Ar~ulclsbCzLX(c(EcL>znKn<+x4*U$9UmEjXg*Z2ROMAT&gnkAKcRhwmsge7$-(I2ds3awi9a8UtcC?+ z($ez{8Wuk49wx~>T9*Ks+b;FZH9xavHda-=;n(TO;xjWr3hOr2iu&HSZV3oZd}x>5 z@+JIMcM9KVwNoT&Sl}@+F_7S5R-r?$y2&0jrWC*29;2D|tP56Q2I4IrW?OXES8{H_ z!wWqAVBTcya(|&|i9m(1a%u?t+?j-ec*QdoNXCRINV*iK48kP9jc3oUpgr`JoLiyX zNlE~c6*Z$F*?B}Ky9Ru9te%Zz(0VZW-?QLG&2CUjM#p8{l6{sp|{jPrE|K&ylM-i z3L}XEBT0AC(~l^Z@ZT!Jm;NGDd4zJe*{`A0%`?ARB4sR*#u=%9)`ZUJrw=!AbTASq zv&j=u_4JMe{bTsyCgZ>HWaIf|ZZZ)3t#A#uR;7n>b#pbXE0q<$$tlap1^*t;BM?2b z(T0w;-A;~nc3e*O_uYnFXA=Zxq76QUhbI%=lbjo}@96o+Ue#}YuVA3igoOlWzMj(h z6RfAVmze~I3H&;Ga$EvSPfM#WUjk8TdDE4~eTj3`$!EK0yDvFJWWh+i*kZuS+P#_S z8^lP0lb)3o7&Q3m8lX$WUgbRt3M+C1uu`L1rM=VRTromjybdR67QcxendP>Oy3SHp zZng`Rfq?2T;yOE@-*6|~45g#F_ZydeE|9x@j#IiMHT5YjDcir_?{OV>$Nd(I`g9bX zoQh#h#mhSO&IWDc%N-UYIRaG>*wk{6;tS!PmW_Uckoit=!XVf3`g+OA-HDHg6qeiy z1>YLA-!BY63D06;eF_|)j#-&;8-=!A(|tq=ChqMy zv?q2vQPpvM%5B{G5=Ptw#Q1Gt;k7_;a&hrPbQHkB@_{r84E@_hPdrvd>}OiT7R&Yr zI=txN6oL-lwfcacihXFQ@!P}F-Ml|fUl7%Aa35ZMyq!DEFV~8!Jltp*vE3OZU3yZ3 zD~2$PQkD`D^)xsS_m#t52g`^QT(+NLe4`$P8=IR(WWJZ*cmuSP?03ga3Y*3w4>q3; zefzv%JBmU%CD^wMAX5Iy3CV8GcBq<}rQ_AUl$7+96FqVe-k(cGq&)q2JH4Qwpy8-o zrInx;r}t=Y5Y+>&mo?o!Vr65x#b9LS_+T{(M(xn~n3&F{)aeENsC zq}~h)BF#bsO4*z2XCCc(JqMmO&u`MIwf7>{eSMOKgu+{)Fteq8D4&^?HOMtikK=o; z$21EfrTXM(^&sZw32Mh2sajfED!Bbm@jjgJ(VAE;C;o5)cf4&q`IY^l^mnqo7%od) z2B}chU3func39dSKy#d)jW~R!wtAuD$J?wM53e3F7sfdgFh#anoTjRZh9j%@m=fdWv!e6NH zQ{7pcmAeIG`l!9puJny}psA9IW9k(Dh}M~tpsm~)aW6YUA-5YukLAOpQu?-Q^z!B*Ln#ZY!of$PKJn%KteisdT&(M9`f+aMX2h8!L;3%i>~a) zr~A%ec{db25HLzGpa?`c#l-QQM+fgZ+gf}+)8y5S7-k(yRrH(xyZ z3U=^9R#vub>@BX_aIQO3Y(fHcN29QVgTt2VaFv(k0Sh;`;%tKR=ahE*p0ek2P?U}v z9AT&)nf4-4WUM3ZxmpeG7eCWKrs|6-(ulWYJa}L+LM*X0MoR#?97@|UK`!-E%~8WbGfIdXC8Q-?#I~F zDcE;h#1LCS)*iJ;7Xm0h|1GH)A!;rku->Kh4X}R72Aa{Ydz+Lzke82~aM9`u!&9Jg zFtbyAQkl|z>n9qdv|d(1EG#UzX-9^IeSQ1(GQ1mcU)t&55w}UZ67bP{)q8E8&86kU zsA1>PAlJQP56dg#z`aBmsUuPvXrPJ)7vC24YLAznA?^qe(B^8`n8V^?0DtpPsp$j3 zk_9zhZ~@md-F*eWs;yLlAPS>{GyX=QJ>V7#3=RzVyQ-vDtR>RZO2TPAHR?IyHmgPo z3WbU;F?;>G`z6)VWmct{lVftjv?d`q1eOmY6WgE>bl}HEYUzf1w zKoI-;2Kx>p+>Yv7!?x)0dI+!Wgv2T*7Z;ZynJ@6)yzVHA1gAkWx2>*c*vsZf-AJSD z=n{8egqc5oy8OB$icXp5{#>7J!FPtdm`yB)A0!v`oWr)=Rp6ZaKsZZMloNP5Ffh>E z)YQfFEk0@VaE5O%-@vbGzbAKLGx4OtxZ`v7(vk(5hrfUS{>YK+-+w@fvyECJ=MmCu z@*pzE{QU^Ti|n7>jw`&p!cI37CQ+XoT=nYC6Q)bqpaZ^dFkVc|A_*9%~H zCuajyGVrp1j8AZ#i2*)8Y6}1fv}Z%D2zBbl8L5vLBs%u0yH`Al{K!_;C{#6{7Kb{- zz6?i<6KuIHkn{{;%vbvXJ_Z9W@mOgntM@8vDF|pK5>=Iz+8_joFg&3H5fvmP8JSR~ zA`ivzp>k1QOo4m=Eg*;BabD4C9j1**5AeG3CjSUh!EXP*PhPe*tc=Hb5D{ce|c&fjJUJ11~C%&Q)OMZE z9vc}O?}JKLEk^~qUUYcqLGzbZ-qAC0YI?fKaoB6L1HjexvK~arUCoEh@eYk&rfQFy z+DEnpLn9(m4-YG$O0G8T#J%b1X?!WRl+QVOfH|dGX-g z4#n1ckQ`&r!kQrVd-rNruZcB(0mU?AanIo30$3Pm>rP0zDNjaP8hzr;yF@??@1NW) zDlTTG82-4yF7!;?&bQIj3h_`W-SyyMX^grLDak=frLdxc&8%&CY%J<{8z8F=cUChq zv#_>Sqq-aapQOA`0F>3{r1_~(Dv-%TK0bz}CzQJ%?GaPYYH;zWj6n`4TpKDp` zwf^~v%|Qp$06@5bc!{;>#l>)JwN=~QrAb_jzm7uk`yD*DDtGP74zE^+(-M$%VSIsP z6uaaN(9uj~S_9hr;`dUjxy>;mZjqVf)y+rfDafQ|ns0eM>lX^XXTSZtT9H-`jYdY3 z4CEC1pS#vba)Kjfkv0|0TYOu zrG39N$B;~f{*>zm{GdTdxRA%YQO;Kdk?i5qw<@Ga15GhHt*xAbmrmJC@yb@}|9V40 zM?m>{DZ+F|xx!p!@1l1Bh#2+Uq4muO=Q*$DU5y@g%VhT&(`my^*p7ej!^zDjEkn)js=^G~x&-Me)UQ=d1|nMd!u` zY@kjDFhP`Ax?rEjaMAD9 zfjR@_9p=*#SJ%+gIo2L4IZHv!dNP!~p1}dTj)4l&-%{85Qyy?$xla*776X_%MZf2} zw7k5G^Zp4iq8*{;J0M*4n}pd;R!;uPxOG8Vkg0`9NpzY1TP1VnVZ^j9;M>C3Z(yTg zDkpQvp6v`D9b{BpKAShexdcrpcBq6}0eJ^m7D}aXu+DZc{)bRwSU77XTRgch`?9 zDJ$zi5Vep>pN@O>L#rXOO%w=lvD_xX^s=!j@lZS!wb$-=8Hh2jjNK;u8Ax#6ZviL+ z+}Ye`_m%Y(KF@uJN&sSnt)Ky;C?*DmX9z$q8Utq|ni!I%&gC*z!U~4Z} z37^*-yl3~Q5%K~6aclJCXtcSdF+!SMj z?Z3{>FEoc^*kCL}qDO&-hDHT)1SI1bIXS(KecIo^dw>D}AwYPe@g7Lb&~G{;dwW%= zZR>~t;r!Q!P~^L>FBTY7Rwj5f#ULsV62f4?1;(P1lAUIUuBQ-bdQp)wi%M3gCGxek zbzgSL2s0cMH6r<(P|no{2~oK}f2x7}I*4zCEN`^$%|k}aRgi9Ef$4dDz)de9OS`- zE?*+|{imksV z71Gh;XuHq6G4w7Mo;XMZ(0L+o<0hHlI+4Ye;jklANwqRS=Xc!Z?xKl-=C-y7eKLUQ z_Pav7QUL3u1`Gj0qenL*0QUAlru%h$vY~}X7AW_y!(Ul&xr*R@3JQt}WULTrq2rNg z7{11D8~&_ZukB2?<)S_%&?>_4+2uEj`@OIaE7d1n)NXTMDL}5UQgvX3X3g`GFvtwM zt}wVXyooqj=Y;P!cR2IfzEZl$AjxY%mihhCY4hE|>d(nwkm;9gbxXTz_bLB$qA}_m zW-S?_tL1Rh_L>ahdyW9eU(_`UBnr|CT1^M@iH9e(G{>}kj><|(FgV(LVer{R$g6es zsJEo*KHLq+#$DTaIzpA1kFTV`D9vo)ls`|;$zhu@pfCHW)Cpke>}SZ`Dx_cs4c1fI zAOGpovJVOf2-pH-l={ixtf+bqE-a?;656dbpGX~22bceSVcln*+cRI(x3E=|yM4?_ zf{u0=C}mmMpwFHt^aw|{k35bGN)eHfD=3k~y;hS~I$oWRvEc}j-LWgH1-i!@ zQ6PuInVp(4g#h>McDUZ)ZrRuiI(4=e`=k+e_V%}M-n$(+1HdV@Fmx{~clP+lU2$Kj zh4L&p2U}f(A!QVsPK6rqbg_KapSifX@54JpPbz{%_DzFmM0Ef|qQFBDjTNS{%(R@aT*Va9-mgz*Df7y1gW|2Vy0X$*(NLf`oHB~z5_4Y!KAmAC5 zLGkhL3(?9B{Wc8ZXFCEFx6hFSe3i6%_dRSLBzQf}Rh!hZpC74%T%8Lqx#9Jonh5X} z(NWGp#&Z;@Yi4O?uUn%z%K$C99X?}83wiB+wJMvZN1ybI4?%Z_7m6DIIVX`)vjuck zj;3mWryKU%8IFDAT2LQMohf=aPUr@*MHpOkujvIAH@){IJyMb;@>q5d)UCqQ6XSiF zP9vz;?6r3}oH+L+1Lqu%0IQUbJm`qwW|$GtM02FDQ>qe5Sw@zix#u5$`!6B| zP5ik5qx&~Fm;tJ=Y9P)ygxv4dE<4s61%A8c!*xAca>)?oiZ?GrP@HE)?tX|S(#Q;m z9g%{xuGU^&PM~zN9<9;_KG2V?e2GgvG8H&I>lI69_UgleoYENzpaaqfaNCZI>oRPvJh+Hzfg?d$7Ij9Apm?wPzu&HU6eAaYoV=zrAjc7s$v&7QJ0f376}( z?-2e53W9)*c!}noN>a+$wT1e&c`?YvUik-}WQ7k|(~v9;6rNTQT_*fNOaf<{ZjJ~i zw7CTV%gV^hdx^GH)h`sjU*F@BK1Z-sZYfO9%rtZ0YZltO1Ha42!0=6V)_KtE+dPP~ zouGD@4f0Rr!a5-*fW=5DG1SL&-qqFm?_-k$VhqE5c)KkFvpG~x4j6(*c+EH?fR$lP zZPvy(BAtKe$G3a^q8$b6@0Vaxj8Lzo0-REzSz}G*MZ+KTDB80+oVTGQNEh`0lZd@C zWYOk$OYfGo*5Uk%y9qYGU!s3lwW7zJ&#JpO7yx|7(wgE<+z$3(5!nKv_dAr%xqW*iRpE#KTAz9(7hoTS2}o{EsJN$a6C5hFLGQ3 z5c>#l12{stNDh=E&)H@S1w!yn4Wu6%;5G9F zoip2D{&!*u^mI4(mSE`VrY~{_DcRFhSKG;~bZF=ic@RDqpAx$Ac=OJ}dHWGceQl>Y z%zQV2?qRL%VK4>_Ab-go`F;iMVI=!IqA>WIkf_Yb?;U$orzDYgB?;8r??@HI`1oM> z&QPFC^*wZ((Ivc$ITHquzMwT95i7jRNRBLSH2uCQ^t_t?Y3;O(AV^O_#3Dl7#&4X3SPWt(y`3mjtt`}FW2R(#$r@-YCPpi0MuQ{K6dcF8G%1jz2a9qjD zd@toLy{0vkiq5`#S~y4&T=Je+S24qJJht8}vB!^Dr;&jE86tGI=vjAKDB|;gd~$BC zdhUnCed<(QI~m1X50n^nOv17=N!=x75%0&OF)n$|REKj{nBXHfPJMl7iplH6@U)?b z6yt_2-35xn;5YpGXz9-4wMB6k$UvZ}A4swwgT)AZsY2-Xsj(kTI0%Wbv8(E{aQ4Zl z6gkfgN2Iq><00>#HiZSZsJZ3Py@^bDuiszj z2Z9D{^QXU@;6EXP2f8!o-GJWzLKV1O78e(bKuUD9sC&{4a+^Jh%Q*DjZ6W=elCpAYa4>=8 zK*3W8AQB$)-UpS(`-`Aysr$3JdVpN?k4@5?w=|w(*0iSr@`go${sYhlgwCZ(b25Qf z*2TU3pc532(d7_y>&PiN3F;zy@g!mmkNsR4Y6zp?Ig95i?mZO=8kc~}h5mJQeFZUC z9$mBnd@iUWf`57KXJn||m+}!QpnlUdn}QKflnScgQixVdO(V;JDexVb8$r*rvwbx* z@t@LpeLFkXIs(jDV3ZKY+ZN4vZ)O{y@FbYo-o~_T%hfN0zzS*l zq^v~p9ZE_PBNYBL{hy0q%5NG3p7}of&!0c#mD-FXgUj2e86^^FprZ;37>9?4p1Ayt z4_Y>YW&bL1kZp0|6D!l+SUa{R^UYNsYVw2Up2*r!VTx$vbi%(i;jbL8GC1WPEP5NM zA8ZNg#g>a~;$FQh?1k^ZiRZHeQEa6jm;=(@Bat=@P>X;jj$E0|0Nil!c_r&n7(I53(FzgG97nRd=diR`iLvNAS?(teM(f(SV@G;}2M zPN~5i9|a@9SzfPoOyL_b@1*faL^m42b=VH_F|N?3igGzqJv-TfPQC%co=H?xSNCv& z^eFhM9)tNH=Sco0O7uV9SE29<)B1sVUrtYg^GG@X@tIj!GU(v7vztuGkl=s-jqtB@ zAU>-he$Xm|FZu7tI5w^1Nqw>9(|-NyoS>ZwRP|u>A*ITJkzu5f6bsWzIm(*Tg6W1o zN7E51uvhQ}kD!l|$*;{nu525;dvbU6nGq6++>@Z@1i4yiPK!G}`U?j~UE7|&-SPK- zpMEs}F%=aSHtu{?ulh$x2@4;eDg=rU85tQHywc6LD$wmtV{fpx(EJKWjwnZW(FN)) zueO~sPz*n)$SEyV2i3`qgTX!g_)*wMXla_Y=t%22|lvF77X|W}tp+w3D8~z6kwl2Ak zW#YrXh?XUyzcHW&DCV8j5)i@b)Z)G0)e68jlEgRaY=K_vp+ z_J(eqPzG%X9ZeWpsgq+&IF&_ecG{RC9=i3Ua-l8s=WSj`k;L3C+I>Bso|_4wU%p8% z(+Qdgx3+Vk1UphG8!M~NN!Wo=fLpi3Ih++gCnUYuK&KMu5Kn+7L4hD~#FB!NlGmi2N;Z}U4svrr zkdip|F={)f=jU@82LpoQv=L+~RQwa5;L%-7gCMB{)xd++D!z{OaBmY5Xn$+o4OGJ1 zhCmxUn<8i^fthX2v;h7@OkN+;G{P^ppPV$-!{ov+upvAUMBhr=*U=t=}v#RVwm>8baC@tg@Nc(`*kPkHK}KUBwXo1Aum zfle5@23s^IVV+y5Qf#>hSOrB*P0ic`El`OE%?ZjzMyXT{U7+1E8(cxIi|1Mmc28&L znDEF8uZ^3$pl<&?IatBny?lqi1RC`!2MiKA#Q>Mq6<2-KcrT=}*b-fF6aMV1`#HJg zDXDe}m?v8;|4FfBCa9d1jJRdO%s_*i4*Uotx^lou5GfNAuRzq`8*wrC>GzG@CEkfVS+dgV`ZYdzYVbcc|C7U7i{`FjBj}8ugrgZ$cZ8p%(Pv z?6bsSHT2VK=bHkPx0m}`735l#G_L89?J~p!eGq7IINnS{j z4zq%e%VHPzHn9n_r)8EbWnOV*5l!&9xbU*AJr_0WY%7pe{K0$8s#TYNf&Pzzj#&;o zpAe6!dl*ADwfOEH)P0VnfbYI!YGzjBs12yILoXT#bRE!anFnIwfXmp;dvG}UVgc!p z=$R4l=X~;Oza~N3MLVE`2db)y5)u+TfU7kDuDkWKa2yZ;{+w%0B}xP1ct7_fHqN@L zG<$&lE5=6B(WoNoyp; zsu?W`9b1KnuGigEFEqwS_nyQEIkTmiDd_5UfIj5LRq&M+uQeYUsx5P>@Asu6^K8bS z=yl+B;bY$OvcG~quPTz*uvzgss*4?2oSvC^<%<$?*YL3Rbbukh9hILJ+p}lSupi%0 zDvz(^5*lpOI-$AIP?sZpd^7Q$9DOFF-TNJU`vB>TRajY>z=4;k6^8c=cw)u?hpaF! zGa0%o`35pc20=@3wy0WLDhxoXen|S>e5=VOg|n%#ufMnS<-TQTDW7;DduyKcSz(L~GTq$!=4wx{uvfMFhkc{X+AAC+A@i(9Rz}cnC!P)w zxl>XZ*5RJt6}?X_{OrQ2(*Y9aA72KvW<1zqShna~5!oS;|GJ2`fKU13wzR&G&N?Xm0A#_nU( zIiDYrBsjId2ss^e&{?p3dBS^P)5DDD$ynk!KiW(fVzlPSE%oW7+dVyB%b=n9u%-G& zL;h_w%9&HgU_|!GIp$BC+J3b0dccLddxF*+^O_1wiOE@pMD*M~k(uMzVOD5t-;Rs2L|uaFLAzg z#l6NLS3g)ro}77eHg%Sf22v<$Idi*V@++}vwhxw>^19en%RgNbpo^K>@GW~Cbyr*h zNF*_i-MQeHX`#(7UaTswR-a6 z)R2N6bL}Ve;_|;^3a^{A*K6zu`p%9&+Ppgb$3(R}D?|F5LAM!Z`Pm)$v~l2R^<_Je z)48V@Q_*ovd}@F64Sa#1RUz>63bV>RFbYDCR1ii>y6$?z3z(V<4~FE8P?x0|W>whP zEOZLg=*JSwY$6}~3ovYST(6rS6#wrr*B1KrKak8Wteq@<8VQQ7qk#zX-8#=zps_#6 zTUA0bYoqC-|6g*9tf0j_)$H#VDgf3OmqrUj&6W-=k!?$cJ7t9Tu4Sl&ooi5IC;GPU z#X?h@?p3}%J=#}qTHH$eQPp$*;4s|)VWR=&Y`uKh&`4I z|732GnNnYBgK)>R=0eFK@|#PqNonc0$O23%s7-os)^OAobsBW40`;;_}&ZNktg5HOGt>}d5?|JS^9FIc&iSMYEK(rUyE-r%>!yVtp>j|?rH36_NF6VOlR3}QcxcydNZgzy7}&DYh1wEwpNRw7!nB7Uc>ecZaX zd|se8sF51};$G|{OpJS@;tN&fcY`yvA}(%fOdi}+a+KLbg7fu!%PV@hTEUwexXNtL zFYaRPR0gaW)+t*k=N(Ii<6TIoHFAbo62l#NJFuOgHF6ntY{UM?SzBqj8LQ1G zD&pr-0kF&)XQBwZn??=WNX%H1)K zlpAs8Q`s#3-$w0h&>M|b5E(ao>*{w&@7<*)P3t;FH|3m*!%qD|A2$CF2V>O%UD7@l zMr%6(!g=_zywddViz`JXLTHiOPe>52PGo+t#Kv%6rXUV^^m01me?!nC!jr(Iv{$EC zBR!3of^TczJUGO&fvlJkos37FHmb_=9$NmNOFMXm9$=QL*zrp@FRy^eH^r)) zsIW4-?CF_vgFbw~3q`Mh#PjKPjk+Nht1z(jNP+K!qINSwEBfMQtI%q0F}*7nco93J__kWp%_vZb3{RD&j%0J}uTZC1 zK6gk4@3ogNOXAdW*id~NG}>xez)!}I`Ab#o_}p=zczCCWBam5@JFqRr4;r85FB!dR z8wk{pEQaE3;i&v_GwO9;$EB76f;szNJkAhSZL#HQF>3+9LxR1Hcb50ndEy)76tv5O z;Q#>~FA1tRQu&#_(~`e0Zr(8K7tBjXhvS0XYD?8U?@-jz&(L7oIBnO%ChnVW@lbP_ z*tc4d^rj?H4K?2tJ$BD`hMv^DF|$ggdBW1EP9rbq!>8<;eB7#HV`F`?q$Gu?%^^cw zt-e2w!yqu!MhEk9-Ed2698rr*XD%!(^h2O@hORp_G@WL3R+QL2^p zl2NIYjy%``NgvnNJv=N+=G((&vMV%Ux>S5SzTwVg+Mlxo6^!)!D|HLKMcD7(;ws5K zas3RSkXd!&z3`^3HgAyNbz6`_^QsTy?gvlmyUTo97_`m06a+Wy;GqxmY%(tN6tWlPw5yiPbQDyGe@kvqKc$d$U~V zI$ro#qd|t&facS%%9f)!@8ck6VV^s`U%lodz5dvG{95HC*940Q4{$>C*WZdYP|Ww` z7$9h`k*qzh=AkDd8i32@N=TsUI2bFJwGOo}5C2D%ggTS@J{dvW#@O{8w2Tc86wUv;NjHSM7z0o`RDpy;39%^!* zB@Q6fDz@h=zFX{)-!bvWOIb(r+@>;~fkaY*Kn%TtCt=N!YXr5t#76u5e#ot~>>Qqa zXpBY&*eQ(d?Wu(FFV4?o7Cs|wBP-R0FWih_>r3Fw>~6ej`CUF2kdRG25j_Ru={g>> za2uk(*xXyRKz)qVBaX{)Ll%$`hqaYIJ04`el0P57b=x$Imnf`8FP3D~lT+OZQe$VkfO^~q%GS+iWk7#1-%1d06u$B3D;Btk7GY>Bh{|cpz z?9D#!6f*=5o`SD`x;W&AzAQX%^x`$IVo5qGF)Ye+pZXm1i;rP{k`vXuoBN@WBPxWh z82c{kV=?I)-4wn*ur5*SOSqGDlRtI1dUse}!kMg#`u&y!(H};7k*nJ&GCqN33I?(N z)NTv3z)WKQY2L;!mQ6P5GL7RIAeglLc)eKG$B2pSHt?b3kiqHw(${|3ML828ope89 z?W8ySVpnuSmZFs)gBDBhZK&+yU%qxRtdARwM@16<&$FGl1 z0_0`x1~W+z3Cl~oAj5a@wYkwyF@6C4dxY%Rf$;SL7CDfPF>y9AQ8qD)f~_xL(Nq15 z`?t{2aYYM<3di^H-Vg4YeE6e742<>`cCi~uZrjXLw}=F2hxO~475pQN5|vYlGo_7G zcCgC4JoJKy@xJ7j{Hbw4CN(*k{*bL#za3O8n_#5ShrIo@m*+b#E7wftc4N?+&m2$^ z3(mpd(;t3BZB;MK$-0PrEeJ0c?_JXL@y_&RtSx&7I(ili$AV0I2R zP0^B4&lNMVbg(Xum#yDeU(k{E%fw*7#D^xYSm~AafJrjVjjfv)&hLr-A6ai16=fT> z4TFR?EgcdHNOzZTtAI2r(j_g;(0!pGAutF?m!g13N$1d=N(uu*r*t>(Io{9nu6KRk zTC>z2$aP-l?qeT&k0!NDCZBh}g&NjM9bebiIQlFNn1fKu^L*9_v&$2-;}RMNDFLZu zdv8~kk^_=;r=DN|qOnC+^O`!+-RcqYtp7X`TIh1xv2;iUy^YFMcbk!;8X z?>OhPK%h;#0Xj#6fhLoFh9*3S91y!IMnV=m?GI_H%+R{FRhMp9?gmk`})bsQ|DwlG^Tj&1ymQ{k5_8oL? zCM5s%-BYa!hBz<2Hyo`d)uE$tri;eMvgS4z6Vva*qXd9z5@dEAn8Z>ykn#JXf(&`U zZ=+%(qtA2)#hB%zRx9|Qh3^p4=6wq~ff-oxwnRgL7_z$Q;Xgk4dS~MPEeGCJbHC_A z>aR9|&^uk(o3_@lUzJ(7`HHpCrcl^e3aO0}nxbv`i6RRxY3%)_A-VL^1#aaTm~hDb z@lcPiPS=#EWnJ=mr^-HZQps0l^yOuG3uC-U@3MlloDAazo!#FPPzMgU6S;X;cfgAL z5~obXX6(A5CF?MXq_VLRPEQ!XNO(6Tb}l=#^f2@Iy-W)Kj|RP|ty$l4CKn4ocJV6R zTeEF(c!PtvK8D~}wNsyOo}e9SlsP&yh3W}-VWM(&9{Bu;rZEeuw8hF#3ykpUxQHN+ zuuEcR7P>bBnYFu_SUoDXK`;+d$<(#IE|IgK#SMF41Xq6`DVDI5{4(xcPYBf}of)C8 z&H1>bk%=yzy>#n`JbXsYrH71t)OstFUIhN8+=<>rdJAE^TfqCeZTyjxPMAwqOI1#t zLBm9@&qPwmNb}#m8mDjQL#b|z-xYX^VSm6jtQrWZ&+ivd?!WK;QPDx-{e5olWn;4z zPK>TFXTLz1_l!t! z4zg%0jXfM_%Kntn!2H5W@CR_WBBrlwTP$oFo6n7J)m?v8k0&4I)Nn3bT}q{cYqBX( zAwF~Jg=R?gEnH5~4VDzWQC^&!ySOZs9>RL)!?@1*EZlSOIB=4Czf5<@w7MGTR?R)# zHk?X*4W*o)XBcRW3D5!>{6b;=Fa`3~HB#SLG1Yx+GO$D$%N71+EJrA2m4Ii!Pv$wt z4-clu&+48I8X9>L`6pEZDfiYTM#si5pK&Fu@ex1T6Jl2LqQB1m3~ze zaTjXIPZ7yG#;qf&5)B#a)ic8YqNQRZzf{*^xqB5ol~ z)xly$r>)I}GvihiWe1rlzu3W%;{Z?ZS0Cp9IDvh+r8>d}WR;c}|CNrU`qPj|`0TTK5YtdI(u&`FuYPvBPlyx%vxl2Q+qR; z&h4lN6WH6=)-@(7q*NG4pnWNnY~Bu|*R2nay_Yq#=+ox*;5D+!%k<~h`g%0Txg-6G|lqy$C~7mklF9i5%o2~SWlTAjH7 zb)`^{8YjfckyuH2+tmgPqleo27dP3K)k`l+p_T=;)RA&q4dpy2{~@-pJ18^W{1#-B z{9vI@2*Mjo>nXdcRNW+MDA_vk&+hd({Z7%4V9U6FVk}2e-@HUZLDK&ZhYdGd`Sy>m_zkGUolGn4U8+7R-<0qC$`PvjUV(9&b62Ucc^LA4 zGi)+AGNfFSo~i7nDAs11LO~R^iyhnjOfU$YWTZ-D@@u|c_?&r5+}+*P*^6WuB}{MM zCu@ovZxyeq-Y-t&VfsD983x(4oaNt7V);ZOFa z2_D(hDRhPqH4Z(Q@j;(J?=$o-Q13}NIYXMT5Us}0R|%FhvoflzxaWgngoF7#E*k2g zZ~;r@r_@ajJ4*>DDq=HwH!odrFE0<_HjmS10Sr6N-RqX@{UbgxVFx(i*#~jDmYV9+ z^lfuP!^(qDueAhA{L1f_WQOd%@}3qL=)@^rWj`T8eR_Cu0IK%bEz`yRMBg?28`TrN zl>w5f{nAihzVAgX+Baxyi?#)A&rulHFn05gDy)oGEEwC1B;*gYPP?*R0&v0-k{4_+ z;5y=ss;bEQ7sempPNG?pt{p$$?+~gr!U+v;wD1bOq8(WZK9ZEx%UZ-K>DDwv*5;I_ zx$fN5t`aE7YX5H4-L#e+*6RwR+j#x*;_p-6{C(=3Wi2X;kE%7A4~hTXe>3}t>m79Z zT)S9J{@6NTay8cfO<3K*#pW03o>Iy3>aAAVNs&cIqA_{gHdsFEY?f3+i3UVB#E+CZ z)%Rmh^ELbgYKq3vqIWw^&dcBH3}hvX-<;u9_fkdz@e-y7+TV$N&WT&s`T;JG&Ha9j z_(|QD@JxZ$NQ(xJPLSrqqL{j{1y5o9hUQ5UokE104C41}Q&|avLohk}m>p>>)#3}S z;zZR!5^XT@wNs=N_iTS18eVs9+r^jQZ^HO@KNA@N+NUXQxJMrHOU;$o_hVKFWQOBc zV>55vy+oY+GEN63!Zx5kN$5sae7^Rc{xMNvhfNyYS$_>~;KWQDR9RInvV)nB$ayn@ z>ba@#+J~nSW-(4Q+on`pYXUsD`$rxc3;uWyKDltaffT#pIdnWphV5{GRfU5&@JPvx zW|$5e)B^J+e142vm5Is-t6x9;>?<5QC#e>BBKN8~yph&#ErfrS=2sU6+>qJQP|U() z6-&bru9EVkJ-~yWph!qH(q$+hR#Kn%Z2@!J&&^*R;sED!s#RLi)wR9$#ZQr~EoD-q zD?g@KNm~yJZ8@tHO*b`cKgtWmWtw ziFiQVwEWHaRM5W9N++qWkTXHw@K|5>Sbyij;W*fgbej03F3m4W#X_4Q;Zsi+^c{)nZH2iitkQLpS+wEz=pVDON(f_ zWa3Y}S+iD48@dQgU?o|qPg%*+V~hHKK2!*BR|w4jS$m_L74w7!P1jM;)@1`C{urgh z#qX;iTL%*sHVzw#vY!h$k|e|TMaP_Ebhyt!sCn#!ij@g>q8?;;Ov2S( zRI0Y29*K+0Mpbjp^EKoEdCym~58IBFbIA$g1jWCQFFv1C5@DGWwo0&tTRb-J z75tbT{(@fXy#@YrdD-_I@`4W$y!Yy|!;3k-vV^bw^F%89!)pvE-IbzT5dZhuZ9jjt z3@gEb(v*3rewnL`erQjB#bFkD>?G|y8~Aa*c2(Fhv+t|&FU*^(i0wfCa)rxW1v+6nN0p&chr}Pq?;u5s*d%P-t5GunD02VMMa`xKd zK|7+nAZ$mx`k2A1`ZlKN%vAqLD)RKT1p|}ww>%Se7>GPydx1~tzCW)ZIONATMDbom zn`1X!ce8#PW|~_^d|(t-ic-*ds((&RTfWZE1JUyex4$s?X)TEGM9HRDa;U?Ss zGVpj@L{cbauKQ&iOB^1tW(|)LTj$|}m_##yQmA{Lx39NS)1ffbMF(#ui&>Dai7Je#@}#X83QFFH?Y_T5_+d){`% z`@~Qq%x7CwuJS9@(3NPqdbvcrwHfo9e0g2Veu1EJd!cmW_<4}xpv4j3MS^k0v2Y_= zy}vjvCOiFX$fk2l7&T7%5{M@>QIUz+_1{*Bm1XmYFkgI`-y?11?;u`M&yD{j6CiH0 z;P56oLUHZQinFWv z4P7HRF?kR^W1m-r#AI-~6--5{BU|k~kQpeoxUOmyEc>MeGZvDBb9e1Z+r6r*U2Sy5 z1rxY21Ah*8Y8oKVTtGu|Z1mG7bo(_lN|AwC=#`^cH`a{L_0Npe7XQE!Uh2-tgrKFb z?y2#^%5W7nSi%Z%gz|%!zAC4XqPv_X-jdgl+0#2%1CN?FPy$}sI}-^xWN8=rqr6cT zI!V2Sd0aIpV|m!J@S2<<@@%JySQZ-A z8#0Zy|M@r)=$mUdy3K*`MHsDY4>E3VZLdg{bZ1h*oqzCB<&C5#Dwj&6nVGa|YxZ*C z)XP$bA|GW(8BgxZPAW)As0v4pskRdNfvDh1h%Brk9DDA|R9nsSa zev9s+OQLI?ZYT4(G4lwdbbU>=^w9fJv=^5&7o?=j2Y|qyzUPAJg=`-wj zs#hf@Z_quWGop7S{vW>;H_moV=&^O>#iwfGxk`1&KW$?or8NS;(T%JXGc+^W>{V3_bF+D{c9flb17rvC zva_WcU)izW{}zdQPS63ID)z~frup!H1b6em8%ovJd?^o`=vxkC5=T`@=CQR&m(dP> z?}=LP_!%nN_Q|`&>TBS^tRAxJl{aJlgQncw>lo+`yB1bpYN0+}V2mca7jl*~6qHx` zDCu}FpPj3!-J(Z^niP9REsM2ptC80ReU^`yTfqIlm4Az)oOD)feW{{Ah{kG(m1*?nEMCT5GLlFDuOOUQ5A#(15XMJsD1+Jl!cuwN6%5H=*Hf-|| z)rYIwCT=T{N)w~3b{-t`WxaCuGOMbLt8>G9*N3`2-eSybV51*Ue&1`1J|y9o2q&!_1scCrP9ih))y%W2UmgaIclplXOU4wh= z;YZ+g%x5`88tU(8NFZmoHRqg4clvKY#yAIBYQX@nwTxOPe3A%Nc(_SiraX(LPDn&^P;ZLszb2H=xj?B;J3{3uJtZ^lyJu^i;j>&6Rvu zU*6?R2#^MykG+U_=LpIiA%OGxW>@1jz2jJTP$FdLrkjg7!Vp%Amjs~F>5x8$3A3s{ zLX$A}1v6}p4oJ}6m-@u7NY7lMR_MUbv9_TLg{pTY3~r0Z`yU9b=4BiX9`)0fCQw`f zZ+hu|PLW8d>Th8veB!l=`I`~@@+xub@>697Kb)z{s@8y^5BS5SAmB=9v9f6xH@D}j zogEevSEy93c>Wau@kZa6H)(WS;OXb>Z={fz`X}%C<*!Z%(ghmOk`M0`eJ*?b^}bI4 zR`TX=HBX1ZK&{>SNnmmNKy;;L;+MwS`|E2qE7lZkb!9`~!_>WVj0iD9gTH+q$?H=6 z?)26V$ogFzbEn|eibS7jey`jv5gbxuljKTR z`eykS6uZQlY$B0{fU5!i9r)0K3n1E!RYfT|XT8eD08!9%oN7HWoI2faXG0|ptZ`uj z7c=RsNWWu|Z;SaCKDZk4EEM~HSy+getPiE;kxaXP;2MErsGiQUo5USWcL%_3|#ubqky<((X&zLm^geVGY3Rwg4s=}rm|HuROSC5zfrca1jM##Xvu zBz2Qi(SQt0CsC!4D?wiyywyu3Ky{R; z9PFs&oC=V0k3@wc+ZXmJqsOQr12)=nS5?~159w+V<{a&$XWv}^;IW{~6oIeY@7JM! zo=gRQI2QO?bTYnhyCUR%k(tCC6~5o_YyEzWn*OOAP1ogug0Te!c~rZ|T$~Zn>V)-K zRuysM%=DC3>pr~LX?uNpo}X^xwDnYxj>PrNOEe}iBNFTtBoeF}T42>dCg)^pp==|* zEPmxxT&Y(4y>GAOoW5(+5^y=)-68io*v>>jRt|s=bjTkVGC79#uY?8FJ8l$7uH>f8 zF5@==_#_=RcyF=90I@UKG|zq|-U|o3R;<*7x+bHxdyb&O$3k~h7toEsS9fu#UfoqR zEud(_zzXJo<3&W6hhxaWIlBZO?M#@{YektiaBNgJ9l!css%FhfrUt3jsEMiPN{R{7 zhtUG9hd+tVnXIwM=wubTliGr8@~7C#D%$dIs*S$n6V@ru?YXhDn~PthQ-a5)IHk65 zV|}ItvIk5kLPo$-_!^`e8ZQ7pGxj0@wKS?)sjC>kre`h|4}rrw97sj(^#S&pU|Mzj z^_ZsMr4Yt4w5XX4xIocUL0E)l2@|0dtgVA4~ zgeVqwFVk#MD{#yuy!nadGBk4wd5>m4vc&FrN(wctuPw+KPU+p`nm88Qy4V&c+S6@F z@QGGYuY5p6rgmyI%)LP4hzm5JOB<2O*1RBGU~Di3s^dwgoP=gn`^%|E72B^p?!0q9 z9K_guZw?f58fzb1YhI6c)lGzGTGa-Lx$S6HGwE`0(R79Eak;@{w{ z@O`Q{bs&qmCJkC*+Pmd>3Me zBUgKr(WY>v=vdwWcA~_q@*_T)m+Ec3kSG2P!WOld^Wtwxd#I+k*0I{=rpoXEF!2H^ zcHs0|s%UKtMf9jdb*wszTa8I$OXop5)6Yh8_1rc-WqVVm)>~6oJg>;0>t?bnw*GEIccdHEC0+B2p%9#>?c?WNfuVez+u zj z$e`HyPczfI0N_XDEoT+go9}iBp803$nnD2y=qZ}$aVvRW(D!U1a(3zbUJ0O2g;8lm zFEGtFHn#tJI_1)?lR~5K>+?eH;QLh!XcAWX;LEDn-{DP5;-5_KfZrO*Fd=XXaJbAA zxinBkUlgyrCVAXg;d9rf*rW@fS?(0n;DCmT>Le&Ii}ptb%!LEi(h?LTW4L>Ie5}K` z*0WP3XGQ1#tr4ynZU3rF*zUT%SAcwCWtXoJET3!&;$Zfj*H1rJY$ewy_Ou1%(r}Do z--0Py^ePLHhrdtXaiieU_ZKMz6V3~p4yh&Tsm+%m=LbMFqi|HB?zU^vqa-MI= zY<0S@=Z%jM8$F1CK}RBb8%5j~V01u?MCRFgpV#@iY!?&L=EP8#R$kj#QgcQ%#+-~d zQ{bXRD?la@I_P_*KOpB5?@#Y#^4q^`OWXn(JEr%Kyk^>hiM`lRdI%{3_bnQ`2O93* zqf>)Uz|hxLJyVw;m>`2u7LZQXQzMvXr%|m;bzWIesiCu>|M${2!0NwMDyrY6q`fsH z=X_9EqCEvB2IN*wq~~x1Gz>y&1Mbdi#XO;puREZ^XS(EgZhZAB3EfExUUQrzwCT_2 z83H)2wHx==BPE)y%bLpI2N^S$0a`2&>RDJ3jua4)V$O5&-R)k9<~My{rsS!;y?xUx zsye$|!t*y@@U|oV z6=gh9h~2sFo~n1H{WQbUb@hTRR_U2m`3=)fm7|4;Kh9niuRLI}a`;+q*Wk$>C(W_p zmK)Kw@btBo@i5qbHI;^oK08zUbs>Kal`jUw^;n9q(OPB|6fFoo4IaJ^GUbm?n&;1p>hA|VDzJK{r6GyTLtQ+rYxn0uB9VoJ;tK zZfW9A?y|{MUv?`nU2Q}~;FM6wppNn=jmAg2y;l0otz9ks;eP^{FR}quKPO(CIr!;B zP$d0h!(J=dN>`$=hgUL9(A0zJfk~OCiGYm{@9LSc%tl8SF3-BoUo5_! zj0_<`nf_&DT0-=h8hiC$V&(?F5ZgF$O;+C|uILc^o%=L4cw(Ii6q>&S8X=?y!ap^7 zkt^s{T?Llp=7xe6T40l|W4%e@3%(?5=W4`~ zl_3C^>SNwmxBiCG1`CD;tk<`<*+yRlj&f2M-6ING^>KIqczgliFG9GM{J?GNKKdb#r6{%L1z1HRO&%atkAKG`7;-cAh$UWJ0FxB-w+b&6XgSSeJ zF-<%Yy0Noe1XI`R5zH#j+vSR8yEVm}=d;)}mxj;j+t#Hr9K<4L{Id0T$S298l@%L} z_;k0(M|^FAsPMf+`ns(t03Le0OeeJh%eY?abyneHLo6 z%FGtE=x9H_cTyi^fp+Rk;7P6@00F4s&(V>;!=km=Y2fU2wUzKCY+Ef*!h>wYkKd1) z7REyWx~38K+)0`#j=ZcpP%Tl#y|*BIhkJlx8c}Y&d&Nm^TgGkwNM7)=qB28Er(}86 zks(BC95jKVXh8FU_$NS#o{BZJoRv7wojopfzIon*t!k~Y+?k>!>6&b`!saTl@RDvP zt{}Xqm(bns2!EQLvDj4`jc*C4VWAAO7V~||0m_QIi5jPcfQ_R=F@yd1K|h~`5!$;p z0@P?TuUKHAz%Wg}!k5>}^XPCZYeC|&YcvAHLAAkd>+gD>yXOel)v^zZ2`;L@u>D)a zM&*C(=-|(tLT4N8Y>X+=@#XfOaI+*z)%25dUv$!f99;xZsHGk{1^d^G{vfgnBGxcE zle$3-D@uMhs!9}8N8|aK>2i?;8?MQ1ws_{W!ekN2ot@#}W4Zs+=*2p}%=`U_ykkf9 zokpT^tBdQQX_cdvt}b-@-~5-^_2_PQw5;Y5!Q~Dw(x}pv6~l#x1yxm46CRkaot<|es{;;Z#FDt)pYfMsf9N>;cj*=^?Ko5uxO$ge z|Fb?-3o_bp28+0djP_qQ-oyHv#H;t52Z}y=o_WAbTA}5;@ttlf_Ztm(L1+80*zDK% zxFUr@*x`|-t8P51=ZVLJVyaPRuufo9yYgV{O^m_GjB^)~6uyD|rCI+oS^F^vu{mc0$R) zz!opXVn%>x3Gi|3D+7Q)1JSvYMnri$AMt*_YCKiFC0kB$F_u*Dclv{#3s9hBL~Phh zGk(i=7GC1(M*+4@(Yq0yqUFZzOz<_7pf5_V0&K#!h%>=w=v@7>BXq#w(ChdcqO3TP zeRW^~5*1zeF84tx>(#Z{N2-j;>Ws^)jO4W0{}}SF-)f-Tmb@;}-K7S7BYj7W8)MW&AnWD)HcD43 z9&Xq|j+)R`NnT&kcx6$gP7wjucJ{Y${4)0Y|0>S_z!!Q{W!M#t3 zRzn`|B)nr*h-?qHf8OF1tJ@C)WQqh1BA=BX_-bw=N}%%x(0BZ-?{ zJ1zHrH@HSkzNeqg)dYLIg5jc+^-;08ohdf1-J-mLYYZaqafX}fc z4?3q`I#p-P28*UzV$zODcQW*8gwz9t8bk89*@Wcgc2-H{mtGeRN604`r(aK=Y!K8` zJNCRnkIlFW4UnAbKbMWT5jNv_hlpp3gSR;wPDy;RlZKrBG>_xRqUW!I!Q4cYw|Wn& zX#uir)oat*PbL%9C?nT?H(}YRz>|ODC5_BmL9uFgPLWvxb@f69 z@xa>BjqZ;u9q&D8kgyW6v1ZV#@mALii5cBoLJ~z+80g?~1LdHVq}c5ZuMnhLT$nPx zED2St^SuZ-BMRP0qBv;%sGLqpczEy+b6el`44+OhbXew^lVn^kblLK*PvLNQ$efxI z>y^6)DR`Z} zhgoa$R!@lDsoWye0nB`%27rH<^?A-+R}l{ueqWA-V-ZLU>_Hda*1fDwOs0?F`AIcO zxeu%d9|Rr`9}ZowW_2PETy8jEPDrVfwpl@PvhX|4>Pj5*t>V#-QQ=#=JN2HzegpL~ zbtO2WUO*w&vxfO;6Te%)_>j-LZnT<`;HWV#EWY3y8pHlx&iG`eU7MQ6r0d+Cosz68 z>2c>RuwA)hNVgwBl){T1ni3kcp_$e*>b{#m=`Y4FjtKB$?X|jFwL7_0|C=n@>c?Xs z=FeaTjgT9LoNr1qlq~VRT@vOujO6bgG}pG0oaNwZE>akk4`pn-=lkn{UVN{X92+?{ z<289P{Fsm$J?QYH#XBZ#HW9uU@jfCwl~TYu-P`8!Jzdjae71=jc4k$wFe41_HuQ}B>(0;CuuzGJ(vi1aG0 z9a`4!J9yGyqCaSJ;941;+AT1DdMPjKg`=UdL8hi_$o;12nv{if$i)ggL+E94Xp3Al zQ(x5x^=@VMt$q~up+P*=O~L0_0(;Lgu0oPoX4jP(YL4;g!Mf~N#5)z3_eHHIYRshQh) z>iAydzK-g%`%`1BizU4f@t<0W0JXZGKUM~I8Zh$BmZr@hg2hGzYChKl>E$$cA2sz zx!!!mQ#)pS-FIwhLv5oyvESBdUB?rBADHT)t4$q7Y$N@g^HzqxvnF{_fc3$^(Zy*; zNNGR8sjzN(_nj(t+qXHYVH1Q@_K#_Qsmi6LBJ7dgRSwut(Ara3VgsJ%K+fj^K`|?q zkXxW9Rg<&rqK!JQJ5mg2mhM2&Wj?505-8jhOq}X+fV8?_1C&$9a+ICSAGYe$*yyJz zHGM>jJIl|xGRYZF0m_Ddd-6vj{14;TvmWjsqP@l<|Fg?bp%Sy*AqAYm6rGl&{U_^{ z62}jC8?~E~2<$xf?WzGf0)=<4f$<%oLC?A3M6to|Q!Ty4F1{D~`j1SCcveFfZcU$4 zm{_)}3`)NHeMX%F9V1HdchU-k{w7F-9tuwJS(-F`1X}EFo;m^#lnGS-FP9)dOQh4r zb967q_-M4fBD?@ZOJaQQ2Vc+zS~Sz4?w9({$uSD*7d5{0Z`EVu$b7e1LiMJE(;IBvpjvzZDt9E=6rUx2%*2D zpKWh2jndQF>=TwRUpWZYT5pJmuS;A)yjwiQ-}y(xM*=p5BQm38?A?IH@$hgg@$P@=ownenq4~F ziId~iD_65X-_lCrzJ&|FG)V7-cHgXY{j+|6<*-EGGLf{+hPOdt+ZOr*8e;Mm>sx4} zl&wrxb#oK3*R`w=Cd_6!lZdFz%N0M%3U~p=lK?kQ?~U!g>0;;Z#%Pbx$M_6Xqj2V2 zUp?Jv`>}E1dW7{~*VU2}q^t2>+?ScB2-R|9>(sK5QE9jW9qlIdSY6t+>g~^1hjLTI z-ft5K4?K)Vdq~t0bgV41Q{3|kJ%c4Q{qnp)M!@zKlxEav)WnYn0HHUsdS_{>4wttb zcsCX>!6o^*jwdbcSY)qftA03`9qZK2jIl%`qyKEO<%?WUc$5a>zH^y#_r)}RgL6|X zxEGNBTS`c=OLx0zu^m9{QC9w0o-UdodUzfYH`eDx1Q>*?gW5?Dr@^&VW|msXKtkV@k6Vet)- z?5%)6%*V-$^mui@N*Vy}HIC9CYlH4PAZd$1QMmM*(=7hcgq^-olOIW+*JiG4EJm{< zIv_MhYO$9~&~&@J1A9VfaDT;^xc+RlM@^Wto-CB(qX+etl0kZLHy%_bDmgfyJnDBg=%vsCN?!kx5_0eI^=}=fH5-@bX6>57$i)6p&p> zyS`SES@_FetHs%Qou)?G^|dQyrhdIEN(Z!?*eZvLrQ5Ui zbaqkI+tQVm(!?39%&{DT&a$zZ5N4NJ(OXBc?fZYOrD0q4z5m6qblPSdXi~pHz)Glz zlc7sKhCKlJXP%J{)fma`HD1n1*Jl(9juQqN8*u$$*r~P~_v*{BeS;cyM1Z~qRf%?@ zoBAV0KJ_WeSaJ?Y52@H?-FfU6kz#Zi4A?iPx2G#bX#o`%NI^OYGpn!9%ELdQr`7PBL+_xsT zy}y2mEdTE1(zg9@Q-xK?@EdT%z99Pl``6Dv+lwq9$z+Pit%hXzlg37RYk58fvu(Za z?y+8_zSFqRRI0+BD<(nQn544+?UNE_IDmw#``$lwM(A8=%61w2_3zIFspu;DFu7_k z*Yhfa#+jc=h)zak=D7R#-Z`cqN0KP9yM2>ai&NmGW0XJ9mc^d5FPF2(AutdKF+P%C z!p6s5KWj}=O0N?@^pyKxy}8(F9~)0?K@X5xvf`z%i6>E%dm7-F^7nTk>(}guVKvp2 z86Db{(-nCUq4Gj)paIqW8dMtaZ*66#I#(vL+J;@n-rt)(V*2L@Wa;KtG^85k@K`? zO+ikyf;RGO;-UKH^Pj*^vqu0=SI90^CsAN``=rw2Yqk1;k58F7S#`|aCsnHa45YNa zWO+RI8ZPa?cNt(rdDGumkj$H&Q7FDhQU_&Y_Z;mi>|haQ;avcgr5AwW=>*Sr2h7RL zS8e%wX~r9fgP+06`=~)&#vZ%0VN7IXIPtHA&{0Hrm%yp1#d~kqh9wow6>ae|`K7hZ zy_}GeYr63z&UMGk6BL{GEJL!opRisE`hDbcOi1MJnzkB_aMcLOx!+s!px<_|wSZ~! z&f32I%2)ge0$xIc@IdZ*QSO>$M1k;jg#24e*ViWIi>|f17g{X^R{HIJNKSf!za<<@ z-5Bfcm(s&yg%%7bRpgE86UpSz#OHSh)kfNPPROGbOC6<0mb>pA_?q=nL=x~R{jgMi z8y9DBBYu45pN!Zd%KpWn;XJfu*0XqD(2Y3M)*RYK;lP7`jRdb=c?lZv74GGHI;mJ( zIJtn)uhzgt+fp4ZSmS9TBovub&QVob1W|OMCYlIb3pHjI(^e`8++;c1z7Gyz>+;fJc;8dTv_qMD}nIO zg3!nAPXg)lt`+@1TqM+3$$H#r!@CCi`12jGfB4C98-7nA*x=t_!jIwT=%|;NF#jGmtiVkC4f}Oy z!Iy`K0WR97n~PbkT#WH8y`g!}I6@qeUH(uZttZjG&FwDt;GwX^gGT}c(s$Z>23vXtI|uR1!XE$j!I7AhWRW7g{sDkK zhT|Az#bE$e>vB-EF79FcoSKqyU}qnF5OO}AR=t`;y)P)L zoc(z$?=sD}*~*-rZCte5-vhS)q)Z907dGa`$fCOQOPykR{iJhBx=<)QP4?Tj?uK0 z-L?FeVIi<+_=M_VwyKiOVEaw~B3MfD3VDjsduMZiYfc>)WeF)PhiB?b($PFL>+gIB zigH1^lUHJ*3mdP47q57b%PIriN8T`*%uycWkw16 ztnJN}^+6{ve}cb1u<$t1`nCrj$f3H_gu(59?Voe3lp<`S->mS`ISXiI4tbu+ulowgpen3nnDm*!BLQB&IdsQc{vtv^vP4$sIByvb%~ zWgg=R3O8yHe!cU%ucxecB+6sHi zeH$w~ooN&U^N)FpSU0y=vr(YsZ-=B%QBG zuZQqR9qJomk6Ly&CKFlUM89HUke8fpo73fx?3>AH_g7!cJ|tHM{nlTdx3sb;uDQ>n z#jd5OOT8T`Wpw0`3_j|9W*F?3o+g;b$%1JY%2kw1WygDP=?=G*knx!w%EIXOM7K7d3d?SYl*hA#0f~zi4(tX+iB6 z$ex}D&m}XK4kz`}rO^$}|7zR5Q@fgl(q(+BeGQN4iccS$NTswh!91G3gO4_B$au_A=du!wpf^MDWlkZ2(+ZjO5Y4%QIcjjEpVi=yf zw#tK_1`>C`Ze}0&rUd#_bzN~f}t+BPoXS3uD#)mwJ)z#d2{C5Uw)Fw`p|0< z?~5tA=)JT=F~*HGR>+A-hAm~|V1Mkb45*S~Me#2Vx#k$IK@0BxGODC;8itv08p2#F zs~3z9aJNrpJ5J|jpWaJO9h3G$eK0w+`$4p1*&8k|aMzdm2@*lz=G^wEh+no_P<<0d zu9T?W%9RoF@Uw$_rJ+PD5R12%b29?=uy{NmY#Q2LTDp@}9|TS+Az91b!1%vcO0moM zUD9?hY+P*H&Ngou>&Dqto!YdYWN-PcKbz0fp*^ktNA&kVnKR8f$1n+&XCH5?53uoa zmU8mQ9FyP2X?SXV7_wJv7`ZxAE!a8}Htn=Z`5{@5!2Z1OB|#V|B=hVcID3`giRirD z?`S{GhsEbJHB$!ga~e1@*w`RcTPoIa(sC2F2vg&wKlm&`Y`w@Rv(psjcYqu9y9IF< zR;#3uq2Yi1xUj5;eN*)N|J-xTEfh~*FG{)Ozf$}?HOx~KG(7{6*JjYE1akP z7q~bLZCSSiAexoBKk%z770ewBJ*v!9$C?R5 zu;1$OlPPfwiQ4;dlnFq#uM*T-_s)c$t>Kv?L&yX-&u7~0?FCN6=Io{-f6e--+*5LW z%=NQUh21=wmf*_|L`RP~Ykaby_`Gp7)qwynJ+zrE*iH?YY<_%jKNlNc^u|H7|N9bD z4H54e)P&7eSL^|-g^4~E6n~c%X0m+;u03}@cNzUXKKk_QLZC>(0v47#z$)ly{hefE z<)}v7x!J)^ZO7c*6TmEvGCPP21NuTsqq>+v(MA!ANK*##u9h{t#VKeaYH~QLpq5lu zi=}vl&4HV8#W%*)OSTL4NvQ<*8wGU0dLgj6IVFE~0-=f70o(-q=+f zpnjSaaBFpJRk>d}`t(vkLQ;~p*g#$${th!egK}xJ@LoL`9>{rD-&7Gx`O1mpN3+*h zX_DX6R;TnmmNbG4KMY-dVq%C^kOz~6z=`PbjNfR`n$sxyj%R?cNhOOQ)Mb4V+qVp| zsXH-Uzo3iQ)j?@>@J#@tHlA|VusG+ygWoptJ~E6(2m<#t57($;(YDT`A66{%PQMBo zU0uzlv1!B^->ZJ|CZwQxGvVcGH!}pgH%+wV_;YIbq7vdiGBP-R^ws874EaB;r!P3t zuyd^P<*-`F4eROa^$5qCu$&9uuH*(gyVbth&i}DAJ!*gO%qV2<+-t z^3v&{o)}40#eNz>y^w^-mtIbkyIWWF{n_K^n3627bat*6qX(fd{*s9TuzM_69;j5u z;@;ss3+S65Ay)Yb#+C$}&m+EV>PD)RM>TkfbPXViIPNG??sq z!;IK!qDBk#x|9R-sX`qeF~1>?c_MP_*K4kCTX@i7Nd4#fyLD19sj1K9i{A*c7^*s7 zQFVsAh=P&3bgDOV@L~-NGMLb_AJzF^X{Q&Z5!X(B`_?Y8>L1m+-gUI|*Wfx?hqD?j z$O4|ZZ_>|24>|?bSI0JO+uwI$y1d~*iqtlI3o41?p0C&}G?Omyy4h3gN}Vs*x$z)9 zgTNj&;t#%P>tk$SN%P$$ehv>VKoGf|X!M8r8u@Jq8m5|spOCrBnEX%9+G-9=Mz7<6 z#N=ei{{HBWQwTal7+Fd*Z)G7AI`Yq}61J_GY8Oz?>Kxg7Z4cPA%+j zpHx+rvjncGO#nR8v>zhbt2O&wp!?7}OzsGsOKh}&0@F2{2G=tX6MQ0S546&F2y|72 z6}2qBH#yo96jxD2!HJ`mlS&!(1Qh)!t8kChKXkqx;D0yXFsEBul38GbQ)Q z4wvH>{(n#{<;Ut#nF1Iqjcm964_$8o73JG?jSr%tA|N6vtulZJq96?d3IZdgG}2Pi z-EkwR2$DmGfP_ewbg3XA3ew%(9g^P}eV+IK{@40Gmag@SVP@_t&e><5eO+7bzF*<| zBgopa<6)d(SpXnO$=j5(u4`(Qnc581I;6g*(k4!xpkM=qOJI1jXKJ4s>#vq12>Uv& zP**$TRXO6dluoQlN?d`468qPQvGq!gh#8-oJ1!g=Wx#vl4phRo|8m#r#Dgr63-w|8 z<&+e!sXJtz51+VbJ2R0p>}UB4G0~`ccbc;8Om&a;*ZuAV^z<*L>Q(8uCt7b<;Mpgh zE^_~wN$SiR=J`fS`(kA@e_J-Gs?cSD?5xM|;J4OTbye!~dC(3`E$e&rMvahwG^7o8 zg(mz^>s&>%7zM}i(-c+{uf*n#4Qqv$Ge_6$w@_BDWHa#D5<^LphrFxTFVz7elJ>Nf zp|a<_!V`ns4(Ed$?AB+tWud54Z63>xKV!Kiwrk=2Rl>Gl_o3EX!h*up3?FZ}-UfHK z7W@z!Tvbga^9_@&8w9xUtH;{1FW7|S`9LX8P6Ompp#K#fth_3aR$+xAg1N`eTIm5T z^tzvtzuQ0}w`FO~R&?ZUbUnGX%quwD_iN()&}4-S+pk|^w$5dws*;r#p=z+8O96Z|u7m6lb3u7?%rTE9IjTv(Rpv*AnRN5l~jUN#940!A~deP#+;a@7JK zgO$c;;Zr7kTi9+mWV{wtZy%5Ec33txPeVEv#tNPgN4~a+p4j=|h>(W-yi1){(iTXq z#7oV1(RZ^(?{w*q#rnFu`|9)jtD2gc6giS_ZUi-m-n^6qm*VPk^c~aas~Q_y=es(Z zv}LVLnESn3((~~D-_xiNZ_asN&xQSTF4bAWNijHNj1p?!hlv@_^m zRfSg43WdbhGL-SfU0y{#o$3c+C-Q#-lN=ZLqp``DAPlvSYL_zh&V8Q>!-4Dj3@jfn zYCAD@*EKy0HopW1R^XupD*33-xYDgG8k%xC^d8oi4!H^P#0E|2+sZmz7-6R+fzSB& z5sn`Tad$_Bkk;STk>?9(Wo;1 zg1mnMKWc7=y<=tKBl{z>ci)|p3g0ydl=uE-S~P#mSe91w-u2l4lzbY&q2DD63soax zWj+`iE}w4${|lP?0f83AfK4LcLAxSFyfNd!UZaU#LH z>4cb{+Mk4~l0E;u+Htat#JMWbHk7R9wlfBqy8mQj~2i2(shC#+9|%EpB<&rWV_g5M4C`@#?>vopU3~n zIVU7l_?(l3k2~g_QAN30Th}isP2D7kw~UNVf^KN0cR~6_*0K)4tdWGU9?%d2IGpTm z zKaF3SH#AU*+PTq2zbr7kFjlGKNoa!<@bL&pzI53kW`U{tdyVA(D!_h-z+fi-0rCv0 z+l?bvr(sR+%;dx1fo$I?w5*y)lFjK^v`6p1rO4vW#SmKgn|!)#`R*OZo!=g>c8Kt! zuB;Yv3cTAW@M3K_H>%*ooAO^$Koa^rj^_|3iQ?Pp(ps*!?Qhua&0(g0@@*q}P_bM% z=QQ==w7K*+Z>eMFsPm3FEY4Bdhf%330(bNIlGO3<}(Q4Y2(I1v{c{=L$Zq~u%Obr7RK=pcbR4M|6{krF|-or?7E z8Mys^)f#s@jOZKPVAh1k1#Y);T8IZBR%sryiOccY+oHW3f0=-DvYyOMdUi*lrny2Z z7vYqPq#+?q=2uzI?WtYbv{k=ZSMB7*w8OnF?-&(X?)pg%-M(K>?W0m&TiH%Ct-Kwg zSI&FyDh_!Y84*M;Z6IUv#W!!z|IO9V<|tSkys&1=cCC6+P>^e2HOrO2Rzhaa0Wv83 znfXJmid(+!=al=Y z(|XgZRfV?rZaxp62i6MQf2u{evnnq4s>H?RZ7;!zk*JA0erjEN-V?vFuYNgS6ZHKn z>Yca8N%|q&X4pPTbiIg>&ve zNOlqz2UHYOI+}9@4#?R2-~`O9r=&Pu%7wm6N@4EienQ)`bSY1W(!iegTkQSx-0fi& zQ53a~Eoc4o3xC&V3IospeWZqW`Sbzn`O_fpA+syvSTz&V|J?CH8Hbs~FID8d?d3zR zToBlI`?<$27~4HDTuwnxiT6d4am{S#mC*ttb?z0@`STa=8S2W!dnGqpLONi`ZPwAf z`{kRCClzYoWp@5m;Pq5HLg&ZSBPD6=5+X=8*SLthqlNCIox)Gg^-M_Dy2B>30X;z6 z1={fAFa74F5(x8dq&$K%qw|IqwyE~21A6XX3 zNhy{zPXFB8hb&}m{(u(cN`~ncOUjy?)0L46+iJVHCS*>-+Mp}SS^oz2+yi)xT$*u| zXY#I%8hLza@DlONr+vhJgQIja2RGq2=;QTb&}p(v(2*3s5m@1ZP%Q%~)T2zN8h88h zcL0ma0Sne{)rwR;#`p4nq-6wv!sKrE#B^x9nNV~rQOe$C4y^PFrf)IvwB6!KoNhW1 zmT3kXj~$~_T&`FS9P_4~KKMzp%U86MDMEM4uhAzlB;)UM-wJGydOl5k@!pJ1T~bun zz^Yl_Ti`1YAzjP!tsi&R%v|VzG*o-)%jJH#$uFIk_V#a}ywioM-+93rI@FL5LJ|3* zS2o3*m?#a*<-&GuJasYKPuyRUK|AwXCl=w0L^u3muF_p$#uHB4J)Eo{-}7t4-EvJz zfhSFNaMU@a8>7#7gTpGYRnBHx5L-B-E0!G9g{ZHY4fwlC{Cb(k6TT<-c) zK77-8PHN;@ZL0{hXt8UwJQJdPAalc$H>WE8K3+-YyKaI0A#k6RyI~wnGn2UA#enT( zD0d$B{$P3c3$ust#tEV6y~9f^o8%$2cd2LaS8my;j#))XqOo%v#LY_%p^=gEXD_|` zj=)XFKdc^cTmq8dU$Y1u+H|yXEm_vWf=$cPMERMzI+b#QlJ}!+!q*Rbi?j6tsJkU8 zL$BuFT#mUlIKZuEkz1cfY`bVzmd6+o`YBEp*g;w4?WQ|+SNnw-+w#Q&!QX6b%?SmD z9^a3?EJ~1G9oEBsn#jA3jTze4LOAQoCBw4YuHv6H`cX;i!C(Cf$_rVi_e{@pb+5nq zKt3yW+I!j=+PZJwx_M4)ghp{i)@7BY$5#zxvX_|GYbv}Bd7I`?VE&VaD@wp*w2WMJ zLJFhYa*fZN(c$KuLOI;{vDWD3-My-#yZS}x8g$-7Eqg22F6wD=K2~By-WVXC*Zp zifz>nL+q!xmzs*_V?MyCABm7D8*7)lU*_B&j>HfDc63MofJfX(W-m97H9fa^J?Sm= ze>P(yiVyi1I~it-PLsxO{s!c_T-W76CH1@IBpQrnKmc>|jJq!}EFPS|!bfDqz2tJJ z{02oOMQ~#C_i-K1?+>RPHU*lOEm z7+H21{+#}ZUtw=Q?ruah?ASee(hKccJ3LuubGL}295*x6z{29*=7x9E-8{br9rB>- z9^KBR{p!}1172w+guqS{IK0~&RXb*j-&z^pJy2En7y?74#Ey_RWb6KYkMsWGfq&nF zDfqpL2(T0&D*>(RSWdrxnhA^H5V4hfb21eyJDCM*C@?10g0nu=#R$FA|E@?K#PfHe zVX8U*^F^3^LqkQMe|>(D@UouRjnd4L@!{gLJ1x)hSW*6BCtAB@oQf^Ju@9*t3LiiA z^D0W$uKnRSIFAd=`k!#uLBS6ePxhL~^W}8(bbL(AS9OK(`95`p09^*WyIJUEb9F1r zffFAwHtUxF((1}YznR!E+6A}>`Q-_83UTj*uBA>$fW->M$#=;*Ys=jF!Sb_?GUVbM zA^lASRy}65nuW-1@@?4+$=6j1X}DkubNd~arTkI3mE&X8`|?aX+Pe?^4VuTH>;xVn za$*e|CG-x~<<+K>)7zA=0Vi_${76^akrGxwXjYcF@_(T_;$7#>Hbw3F zQ-oMn^@uSqc)%yT79>r^_atRwU+N+Z>>x5U8}e5xB&WYDwPYvRt1kO|&+IksilH0H zuUI-x!6R*UwY7aE@mR&bd`Ii&tFvUK`^yzUa}EH#ey|VW!Z}prWJmSKQj_FDo|88+O? zxg{Jt;DdD%YymId#)RVoBW|-^&ykgx%8ix@aG;w=raQdJ*5h;R&qYnVG3rgS4hDSr zV7GlE6<~MrnrN{ zwslvLK{Ilht#s6D6YRXpBnC^0io%7D)`A4LIu*E{y;o|7U!$wKN=sDIjJ6rmS{eE5DFcOr`A3S1=vude2(=6k_W z-R-xn*Dst|U9BZ4e9@Lf-_0!gt{xq2q^f*taj2N0(4_fgUdf#fG+%z)q`w*jy@s<$ z++d#Lanz($10|^>jj13lN$}pa-^EKfV*4oqqJh10goHkms#^NI^6%hsL5d3l#TfKO zrcHb=8Ucrt8sVKmTM~-ZEyw*Q7ktHFDhXeJ%_SIlXK9pS@4Ig2Ij(4dg_*&vTem)C zWITswtea>kxjJ02Qr$cww8Mw6Ha~AmdQ`dogN2im^LJ-w9r(MJuGLfFsg~I=fRWVU z^_`lDK!NtLWjF@?1x&_Xn3<(iSI2_~wSPeY2mCs$IJ1%J!zh#e8RTfjuGEz?mfL(h zBQpoiljc;eKjyX^mR3+81G}fO?^m=_l9Ie6(cfSlK6H0KWJkKLal|Yo^iloUO%wWE z|3U7KR`WMa^#J7ih=MsatqZDkf93i4wx;ucw~Za{URwReS%J{zo|3dllqKCci<(0R z$kA(m+;C3}7S`k?0|EaW#lWhXGPg&{-266JmF5O5IJzyFYUAsGH=rPRsQrxNBMWLk zz}n%`<;yl3zj$onFa9c+tL0ly)Ni`Gy12BL;G9m!_D7C|z@4>JgAMc}QW30UsgYWb zj}M2zA`L%h!4lc03IbC$_WM4k2rsX0Bpk;jCEYk*`(?@D9=K1&yKk$30H@d-{Ix#f z^<29_Kux{vvA?RDYd$gj)EhaTYiK%3NFY6Ec6SRcAd3XrntiEc%H)ndmVf|t_5G7#B?%4g!mL-odEF_LQRBY;e+~9;I zGd&z}aaX-8E=Q6BjI<<)cnU$%Q;oJWbJNrz9G1hCc*lXr;n$nNM?CkbYergk z*Cvc#y!bmcOO{nzmr>;8+P5Y%UDx~RMx%~BlSqS|Nj!RcV&g2Ag18}-ZvsB72aJQVFy`105 z9z>+%7lj5s%&gxbdRPPp$^N2yLom=h1^fJm-Du23JlYeq<2yClUy6E!TqK{8^pmeYObFnkkfsAeRC^4+3JqcH4_lDae;f@v1V`21)?gR zYJon+Wgm7x-->(f*j*f+K;bNygUVOH=<+9x79M*Y z2{vF5Ol?!Mz3s4EHbaYItJ-YWGts+#qoHZ)Ta02LS2{J@!PRLb-UWx@()+#I+B|eh ziZA1u8avrN)?Sbw6|r#~M5gPPsDFLF5)x8pEnjFIOKA-qX5byma?h%`s%IE{%NL4k z@D6?N9U30+KAh+)>mshZX_i2D;6a@WEl%nZ0zq2pj*}fHYfrKDyi9l`wuft_a7fop ztl6=6A>b>$20pQDG=AaX&Z^~`dYoKCwI5|v@}7S`2LpeTg{pE`V;|`WIZ+9?EV4SR zTyYU%ydW;6ko1>SR>tA5U}kQ03^|MPYU&+#U)bE^TP_{@n?zDsO2-RQG+6iI zep|zq2t=bI*Q}%ot9%=;Swoc?rV9jOu^ok>E&X&ca@#4RWYoms@d{3fQF%-ozcW$` zO+(;U(-fZrtk157U+{sAi$OWY~G!fLjnS(0?Ah@qmcQq#<_GVMPAB@aHYrnOk4TL;U|O z&_U$*5G5VM=?id##(^%Vp%yGdG4Le1%GuBC+P37|TE!zrucsF$N-I|+YmRZrO?_nVGP34m@)7LmCWMJ+ z`IthRMCWlCUVE=SvJ|{Xi3b*Ta4_4nJ4?4Ejt`jXk^9pwp-pJqAl;dEQfo zZS2$>-@o5%hn^MCbG~-(_0Ann?%&18X^BFE=F8Q4UAYAi3O4nIA(+L%sN$C&|MeDy zM-Guh_mQ zb=sBS_NN`3Q7O)nde^O5&xN)2?y5_bqO!8h{!+=taS5D~mr-)2YpCHd7QIsbRG;9~ zQwko9tJZjtc&Eg;pNfe;xpc)&L*g_!66tJs$?C~Tdn=98po`8-JmXh-fAuZZwQpz6 zNIo)o@K~zkv$0LQ@WY(jGVN6iQyU&t>n1KMd^_=j!-Me$Hp?q^%Y$kpf~%e$dvi>; zHOm!YSEr(n%bXzNN@2kV{#cR4{hQY*!o|^Le~No{TU{yx3vse({C2a6FpG#*wt7kT zXXB2~V1}NpS)n{s;h4K#jp|Gm<#Vc{;m?@GHcvJ-Mc6iQKUx}OGuo3?ORYZO;On!o z(8%o#SYW_ZhbcM>P_tO>Pbju8tDdMv-J0IOMAzJOX&|vVDv)UTd0s8Lrg1$&QMC(= zZX75GaLazyJdhDkd0V}??mN;Wnv9odabfh7=b0xiVlNCVj&pOy$A8G(cp6jE`RR-b zgM}KQzgEDzcbVNsfr?85C6MqdHb;(+O1>5BZ!d+S?Ux73p6%~J5!;!oE$oUd2KQ;n zjx;%y0Wd@_s;Uj38Xh~>`hH;` zlG$0%FFi5C_Z<>hqD1xQ**<>Ru(G-Scx<;+Azotj-{H8>*mJ9iIH&8iNM2sXA2B=`KxwV>QDU@%j0u9GB(yU$VmurP-bNUJ^}G3i6Gh^O--N< zYyTO2uPaS1;oQRE?nDqjKub6ad4;VLFd`LFU}k6cncrdY(|ZBOd8ioAJ*!{Xia0y1 z{L!CX9LnD!H1dSMSKkefot>S3>=oH(a2*7ez)^Pxf3(psP8J~^CT?ij@p-}UNMd2M zWMOjG+9$5U;YY}pY4mzvoEe`@0r}R@Y2+~Ks)0ss+wIUkxa3eQ{U^;Qw&VuHzIPCsF1rQ#wWBd;Jw&9vwA}0q*a;5 zcAfr0PcDi2c7(b`8(g543>AlXtKf!o+16P5T}2)yi@9ywYNi+WKciNhk|IXMy(^qY z;1#enHs(WDED@-zd!@aFgwE0lE5;HUNc6s}ZcIl{v$Y`^-4p|l6TODib^?1atz)v6njVV~) zxU|*5#^;#UT;>`{y}up7Y*9Akw`X0Eg&v9=g^Gxo(KF!bc!PDd8Dc$BugO#c8OF{A zkj40zZeyxBav=yg(EDuz#acM}ycw(HNj}vgE0xc|427UKAL56hwPJqw_Q>^_y4~7HpDy|3A7wL4d^?K~wvOf0HTsRW zm|clVp#M((KJ>Qv;qBXjzV9M)4OpCGOM*+B38VF%HAePpFy4BGqI{z?89{GalXY10 zBf3aC@NoYiXc6B)zUY@#UCCJ7m+tk$bqot)A%OJ(+v^r{IpC%J~nHxoUH6SK5H2LRG=_0eff}eYB z$r7e}n{zOO-MC2KdVeQu;7!j$7k!Z64b0x*3X%(V5#?XZt#klXg$ZSp$>?xL&oR+th*nT_ZOwpbQBqE>hb6ZXei861t)0NTD|fmfVY4+QxNd(Vyz{vS zm-n$LfiwaUf2dTt@9zvIuT3;8fSr0fiSWS%PJ%pkagzI+!H4_7*F`fb6Ra%CrY;Ww zW%T36kM?h`2}P&JAmZd8?}tBZikYD(g~_Ngu@iENO=~_!a!yq?N98Jk{s~h*chy?7 zIVO8+ay6_PZ#72R&N%QnTHGo6jlFaIX?5rHI+rP%cA?@iJwv#9$;)TY%LotCl?q52 z`GXlG93rUI_NRD*88WZctW(+WPMUUW48y!SN=yBD_8D7ZkU2_*B&sQ=;@6>m_rjGa zX%GQ$gQe&HhL|QpxAqM)BcnLbzAp3WX^y#85?`~{b{oJT%S=wS9_||78JuTIzK&yJ98m8 zw`Cz}g_}U$d~)8HzAmvFLHpeqKI_Mr)eG2)4#a)M<^v{!rPeVV27d8Q<7cO)rsjaY zQUPE;x$)<->y8C1D_JUTv*6mXJny!EU!ihB>ESFYw|IC|fVNK8a$VxGpYOzI<*Fng zM`hvxlnhP6E`NZDAucCMXf+}jKuGA=tH3iJ)86u4pbO~D$3^LoI37z$g-+5L--l;2 z(AWQ@k_(RPsgZWDFmG{lE5qAWI4rfpTxUShCy9-Bo~Gb}=<=iCdfZoUf(76Q|87jc zA4Hh~PcdoZ3%tWH@ z2092OWF5Gvl@Uz+6u7yd6PP8s!pt(`NzKPs;5Vo=VkTbznHXlC&{-iU#JEkq+VGbF zam79Xf_lQ<{7S0+>UAh8QX%2b#o4yB)shHn7``7^>gMXvpx5&U2%xY;F|e_*p`@y+ zO7$z-{^`@F+dkt-NlAImqz7}uXa9S#fc2(dV4$+RJhq^)P)T0C{r9g2Tz}kz?jNky zx&R;(ji9(^=#Sg~Y&FKZx*yo8kWG2>z5<39RUU_XbHLgw!+0^AN?UCR$B$grg7cXAK0k-$BGN-z4s}+dx4B3UEjaP=NrnE#KEd*Vf zo0|jfEfT(lcTNqk;$aaHmpKBy!^X3RT=y6|-I|b#14;-MVE%67+>hC|WS{rtqF9c5 z_qcSvpq2*9?&;I`)P6{dcX>=N5y)C7$jpp^D7$zZW53Wn2i=&^Njc__s3_GOe;6q9 zlA(`KIq;YbfQ7n+Ow`@6w}Br7)3de81!M%m=-bMQQhM#%d6_b*Jek8HqVWMwf&_@=U zbeV!av+;Ij-V@~q)xw_Y!AvZ|+JRnfYR+YlL?;^sZoyyRlQ_hVVqsNy>OeK-*$YyvB45BgW1^^gW)21dqt=wo$x z;^A{zjf#A)t5b9x2uUg}RRt0>0yj}mX^8{+;0M}@(`EC8Ch)05!_iw#f_u|?4%I`@B2dC5mZRMU z;S6_Vf4iuFu9E~eQT#-!Z*-ii3JSKHopox2ugu~dXHNt!;={0-7|=l|WMq`}dl#OI z$&xl({9uqTA9^*KkzGENalK4~Bj;+<6xO=zKsZ_R{iRojWxL1vzkCSTNbJb0^cNaQ$;shSQJ>=C;^?6Y++}rjV*9m<4h{}g?z7_h7-{LS)|m-}$SX&KZ*OkmhCS44yDEcb?) zT3??H_0NcK*Wbv#vqfN5W#wMe#+==r1gE$}vsjsaQj$K5O3TgYn`xJpu-3c=k0hFS zJ^7OR>ZSsHm}B;&+LlN z@%zWe7C%3%PnS%kdOW*T)N=C2zK8nE2F)`=eR#JM25v%4M*2c@qRP;y8VjbqW?nJiGADpm8vvK;C)Ll{kIeM{EZ9^-wbsZ z^=M^oZf+(n9Brlv&%HsYEIxUNF5u9}BB_(e-LK-4*Vn^kOQ`7RayvV(kv&y>pmUP; z!ntG9C#0}O8%einJ}PDYUT_nN9@Jpwk(kyAlwN+oypt$xkt6L9f9&iLAC_=OLG{U@ zj@7l_GY)jL8-nw@XmT2t;kzGd#d9!ZYSwG=ZVGB^YXvcky9o#r`mqd|J_C9;fr+un z&r`7TAlFxeRA~4DZ<3gsXV21hkUU|}gY%O^_nlUCsy;)cM~TpnSv5X>jKyMa5m)ZH zVFzw21m973a*h15vG0kSUWJ-*-DaRoV09rTw#dRhb!;{Q@@bybIbPFvAd>Kn2Lw z5jf$G?DDd#$w4dgpn0h`Kl!-jIdi>^?>&zRWv$v4swjB)dRF{&?RzO_hFnO$ z=Hcpb(_U;8c`HDyZg@&wiq|7kPwhzY^2?cs+7WIa2Kr`MYu&U8E8fGYIN9SX_{7I@ zd^A4t`X^~$ex`g{b4WXds6Kr;({{v3)7B<`O~RHzqCKY8BSO>oU`B>sBmupy#2AR5 zXmdm83sor%Jrfg?el*Zfn4^=!W4QaBulG#N%=pA1L{%Tc2-5RpG1sX7Ww%$yTuP(<>%uYA zG-nB;^p`Fqg!uU#l7xxkzQd(tyeH0qZ!AP)PPN~;L{6Sw%DXFE4K&2#i}$SYQ78n~ z6Y7N`?pxB(WOJMMOP;&$+YdQ}9y1Scv8sp=_X7Bte+DanAssnB!lnRN3|EJGKeH=S zB@?#Jd~d#H#y9Pl38^}Z$aM_XJCAP#_i~G_#C5m7-_eWeQOS%5OM`AT+ z3@R6$`thU5VsAbr(_c7!3N_y~mlip@*&#()PVw(`@mzk?mH+uzE6zyE^LUpdSI^?{ zMJAlXBNXy8nLUj{nXvKn$SX%23sg+%Ct$JC_$6ol{zfN(I1mN&c`u%l*)K#SSq#Z< zPRFtn4N?F7zfa^M+X(Tl|IfQ!Mt*SAN4>ESLqplR{>P1I$Um{Yql3$NT^}RAvpi%E z1OSiKJFAoeR;kJb= zKW6-ySE9r6U^=tHM@ekU{T&S;qcUEqzoI91zxZn7V58L(Km|6%s0O-rk7Z=cM=y^_ ziovpZBq70LN9HL`pYeg}0yD66ak56DJoKNSu@0C-7TcMj#KMOC^7NA^!ErL9!(y+l zwv?L?UC%|7l5)9R`$rk79C}oS0q|qnMRiwei%z0E&jlypMZRRj7;=985HD6-AnEmoN!{$YQh`^;QuS+H{@i3QQPz zH#ax@lG7+p`UC@i7}bAc4so$7 zIXMgUWp{s(X?S#WdRW+{_rO9^@>(VK7n`f+8~`KQt0f3KPG!ZY^Od4$L5-@iU1=W}m+zP7V{(i0cLkpr&xQ|@H!XgLPtkgsf zxBLPE!VT15Eq3Vz-Dhkr*o5IqPfSc~DOMRUM?E<<*>FDqq9Ps8DFm_Z)v;RgD_5AB z3!oL1228*56%DJG=s5)RTQ?OfVf{g9qNhvoJfn2w@MVV9mDx~KNN)9T0~L=&Cvei7 z&+FcDeAV>DeVtj{D6y&+OJh0Vwse~X0MB+ue`chxpr6q&8pvGYMtwqx{s;}{>3XBn zwQD>c^uXR!$8HWej`TIV2_z7+1|VLHskX|DVNB42z+}G7??%qV0wmUu3g^ zaBFKTNd5NgN(jtFeBe$y>mwnJ88#H zPDV!dSvpY<8y&62^xr2r6pH7!H|gC1VkH7?zcM_e6%iiJfbk0o>cJ73P{o_T^O>|I zy#|Ha2_kCVCuh%|C9k=PB1&T0!&j4_hz}p1E|EKuAcqgnT@#sp5fnbh^WG_*d(Y18?{P6 zE`>QF2+4|NV5$nxFvo7;dmxG2WbQ zd(aGD2}QkhW)vk-iNI++E(XzV zU;#P$V}y~<)vDrj+qHrisu5ve47G3!k7c}amg)x|IuF%CqgLYm4F|#Yz^X$<4)8B>Ug*vF;uh z9-a#A&IhJFIpMWqzh!uaQt| z%Y^r%5|_Ka+o$|@gDvc=K{7;RM16>f)BseWMv)f{XwxlLD_8laPec6Pz4MMZJNUe_ z+I^qDPs_XnPvkK3-A+EcIF3`pnQP$6H{gXjV=b%GA9$Y*CtOw*$MFCdTnocS6J?)! zeGlJ9``_+i8)*EC>HYCpguzgRr8+Fdw1`vNkNI3hobISuVODvW$2 zo96#s(e+n>sk4pYv;A0ZH<#2`XteN#$|6trvy#N9s1|Iwq7uBsWlk|wKx(KTOHY)OWr)rg0 zyjRZANWa%Ar~vXz<;Ra7_pbl>^M{f{|E+i+HFH9%ibWNBy+sdjW17*C_=$L()AlLl z{|Q@vM+n4>KpBIc<9c%&tSwKJrS~k*8bG{kf;7o=ZT$PXlORX^O?rA!5HLle11Ro& zlqVxc6dnJ+i2jm9XlDdLQrp?<8X6V=5UI$@27Z)|PRhz+b;X9mK~0c{9YfNL4GRlP zSstqB8C5#*N$P)Pmick_xaeqR2*+SQ5geNNH>(7rn@=9?f6xN@<`JMK!txxW*7)+{ zqkRLl2&C%g)ns5#<*}QPD_qWUdloV0Z-VVtWG}k_91X9`+q@i%-&I-**-o$!$Tv z1tOwojRUXqL;qr^;?94v-{Bv_+BZbllnz;e>~HQJ7yrhAt6%>MUP=9^BcGkeWBDJ* z#fXf)g=oke*~}2xoClKhgLadJceyG=Jweb#Z=N()|+$bHxA z3JOKth2vw(G}v%d`G?pO9FpU4CvlMF@BbBh)!W<4Pcb*U@n>?)>0#h_R_0;S+NT!2 zi#f87X3+3KPbldlR~hjr5YICu&KrjCM(_tF3rE~T+Eszr69(i04jz1rwP>#opz`kC zaj9}R1VD_zRv&Jw<617bT~ch;cky!z=ub0&V4jQ83w#QN#oo?JE+{r+EJ`ZAaa%&e z2pa7^5PNvP!;;1IIqH1L!b3yJ3J_Tsr=b?0U0<zz$}VY; zZrrq$IslpWq)pl8Z&4BqmYAAX$MP5yOXn*_BlH>HiiHZZ8B6|0mK(Vl4s0MGrMS~>)_Ige06 zuJj?4-yBF!iOqtmsoLr$1x zz3B4g%l%V~GBJu4h`UUX!A-9FO#bQp&iN)?w;;8X+0gm=`cC7x_q=T2>ONv5CC`+- zhb-RVR5hG9;5->3@vxgv@C^x_R*r}HqHt%K+TK;RXP-ZP2 zXm)*W2AsyH&j+iHllY_)9_p=CD!wALUl|!0>k(G9f;tfFQUZGqO*1`<>OY1RKVfw= zciy3Sh3gYo^HN{Ocdj|w%LMw06Dti{_a_LvjRk3g)?BI#VW>Ys5$S;IPiAPSYrAhL zxgG*3V~W!cOl-LX3@mX&)aA0awl>(-3`ec}2xn7e|p#Iy*plFPW#M zr4ihQa@(^W=v)+vba@rk1-Qp6g6h7@XH7%k&9~RvAKdh*)rCgIFHpirKX~wuiR&91OV<`|mkeI~9FQteugvge!J%SF$N2c@ z&^u5P*WA)PhA{d$QZA0SO_Bpzzz+s4nbaH~?bLW%ha*I19IgAYjH~tRM zpz~8jMSb`V0ceo?_nf-FER@iCo|3assNSMPKwn)GVTL|>L~DlBmU!s74J zVDBp^Pw~n5%-rs|v;@UBW5_Qnuj9R%R+Ti6uC*K~e>i1iJ z+WY*I<+$jzGOQ`T>Y0Kb0-Y(s57K$>92Oc>Y}a@vzKy|8W8n zXhgDlig77Y7xX5mL{h%BIc2><1hyPMwRyCnoMy@xjMHmp= z?#b1@gIRZ}+Jh+0@S5bs^9)9uCWt8XyaL^_0)>zNv|>{L$ryuh z$DkXgPX=oTEvO6#%?90Fld8%}GOcHscVQ{FLC1;#qXJ$Fua|&pIJ$<}gHGkc2xIsH zz2+zTNqHl^5cc|;pv8b4*@1&7pl3FLK%^@{+%tW&Pz!q8>$ox}5ejNWLrtAd#{?mF zKy`{M=CJui4hau^PoPj@anrwIeKY}KyJF-$JgWWKr!3M*{4WzR-aWBCU|Cb7K=W#R z%?XX6prF7WlmrmGqSU3jU}0x@_w{S!H9Ryn1)3;DkL^t}0KfV9`i4LQ4A)tMyz&@Z zP*AWqYLpj7#>E$*q|{;i@SKMhNECaMC0NM9NKVStRt3(^&gKog==d0bKK^6pqz+@5 z3!`BS=TNrU1>6R{M)Y(aEht=5Wy1gs*Jhmdp0SB;^$>bJ3{8m872NLKWd~5>DUKd| z@dR^=nK?f}g^L$%23?w=4PsiPzZQIj=YnVUPmch0B@>moLm&{8(k)~jJ$f_;GN>># zs5XYQs_o|FG4fD?*{wG*MP{mm>Z!fwexopCo3uIdIq6!_BuSmrxfn~{#H1Q`YwLV8 z;xXQC?vAW}C9t24HoA5DwhV2MM5Lxe^wC~VjR{VK1s$*T^>t30$;NX7szZl8B~ejV ziRgqhu$+4J=PQOlwfho{JPWo;Ui%w>{w+FY8s77a_wQ?B?S3$)DLN1QC7=+kR*{wt zKU&C6;VA_VsvyR_8j_Qhl?_Mwm0axRV8>)CmT;eB+y=TR(%lVm+%1d?^tZfEpD?vy z&CJMY@ojIofA3!5w{__4fkUmQzeqtH zPq1yZQgd95?jti*`VO)x7G}4c?k7-Ag~i3OrjMU(sfN1XmU#ut^7ctB@>35$L-`B< zggs1C&S?2;8?tL9^f?LvouHy8T0dTpm=iF^AX|qdxAg_bt~Mv zEQ#~dOVW%~g-gIa9*0cQRUJa15!viW9sK@1jl)3K5F%OzDGB@W!oqOs z1i*BWJ`$O98GdIP7`h&L-&z({a9d(rD8h zahtGg8IVgGkTPhDine=Em0%u{1<2Lm%Z8O!Zi#$omXgu2J@X(R1#st}Vt$H6o)^#%gEa14z+LUnOhGOs^fY^llsSjng5$!9tTxCz6 zScK2qzH$@Lu;uTAFYuI~5FAu|AqL~#BD8OotyWkcFUSIQF)XAGuuw!}pr9gjrgG&4 z%)8BvQ-xi(!SWK>z9_5Tz`S z$S2_hT_BQp3L7hPuo#4L3m~S(q5-aGy1-F~u!Mv=O$jRYphR-0_$d260}AVYdnp3$ zfzQVDX&q`)ooAszSm<33;R8VCJgAl$|7RrtI$h$Hjk^1QL})khkOu%wf0=DsPU-kL zcUXKjywnJJ;6pYxHf2aAMR4%b)vFAqYXLMdJs|$S^?$0m+K{HgFgl^4z{)un<;U`4 z2nH%qi6s+}sZ3>MGi5DPN@V2J%1y{oGqucNYC%##A)S zBoh^7hMA-D>|giqykp@%Vbfi)OE;Eh@f*nDd zuR+nEvOZTcWr}s@tE9fWZZ5ugZs2+BUHu64!V=-686 zA5}Gp2F5~xxZ|P3-?y62nhq^SdhaRQK)l+g-8eLVgv`n)C{Ch901noPN~Mz)6{Q+mSHNgcZn#{ zVhx@uYBuYDsH8L>{k|v1)-FJ>L(f%dKf^L|T0&TwKq)17R0{F2CB!(ePOg|*hv1Ol zizQGm!YXV4s*@w*c|xv>t>QGB&E^)nih3A!Ii%ojm~F*JErZ%I-V2DsuinOVIgp0U zjVJ4j(5>Xvpmo3hWB>I60UAP$ewGX-(WcszS-EHDunhUN(X_^L?+3C-XI@4 zlNuBj)^U2mVzrLKw>BKl{~<*oEKI&twNYXVImU!wNr$UA4~&7d5ZQKOO#{+{k;eG3))9~Qyy8q6F*3{#5xJ_;c{=~-| zlY@RR7|B9`puFO+TCE;log1Lw2J!~GJ&)?1J;r8M(T?aMI2DXLZjuh!>yf-|RxMAG zlq4s*UYSxar91fZWwMv|Fo;Sp)u94Usc|R%X*(E%VbmsqP)6D}ytQr@6uX`A^NXH-$3<#9;-KT%$ z86+{hb+g-cOG~rtA-3E+9=1i>PL9e|?`<=oyNIL9Pl?6O|LbgRe~x$&(b;jbtJ^dz zg~E6rEdN+RNK|L#I?u}|kymhz#xjsUUShodCrd^~&J$U~N{I|{ieI}`{y5Q;BE_`s zh03%!-SMO`XVpcK`lfw_Y^V*LO5QcRxbm;=g!BQ&zcM_7r?HaCe{XwICoLz6XYOmg4U_2cAir~9(Dd7q-l$TV)J~7N^kJ+>s{3u?<6pbeTnBOd zoO*o?QweT=i{`4RmH9Q8m8qu2IV~$Oia?~wtw5`q5pVA~iRr$dHNOV#Vvu^g^!LKX>7*eNT9Z3AL=p@^}O@Xj88ax$@I@8{8s>w> zAqqz5bavIeHVQ)Ky18@Hl@O%a5F|ZWI&(BY=fUg6=65{@u9=upapsyAjm=6m>EQH2 zEo;X8s7~gPDfJ|&_wJiqv@8jg=$CBXEffq5(|>Nh{!gmpKwzl?mL=*usUDeO@wo1E#u8&gA>7Wr z$uFjn<VL_>n|d8%(j9A1nsS~2FhLB7X183ekECI? zD<$%Msm`OH(o|`^w29p*+7h|RvwBoWwl+S4Ycj1xH_Nn3hc@Ko+W59b?%p$96jW1F zv!tn-O@lCRI$a%YIf0 zartA;t}ER*$*5-97XdnkIm{?cr&atZ;XPEhLQ+!F@1&%4QJH)1Bqee2iTsfF8A&_3 zx)xWe&T(k`&Vq^q_&*T*Le~Y+$$uOmXQzwFGH2s+Nt5=+3`p#8UL(3iLy{01E0d<0 zXn2M(X>4+mjf@b5`JIqp(3jQp$Jt5Jumu*QF#>>?3X`=7VOQGl{tl z2SL)YFN(TBs3rTxwj>l8_w~J?nh+lDxLH`fv6<>kw}|XxWqIxKo&wlsh{os*%Kjxp zZoQNoo%?mi?kvrMEDo!Eb!hc?97Fu$rF#<-3aweg6E^4bZ3Bq)j%)@(Aeza6;e9Qh z{X(>I`~2m!x-5!sf4GeV|&JhjP{B~iql zp=s=p!kZwbxD5H{+qWo_lG3wGf*KT!5t5g0aiFcMXqVS>ES#iZW1qS}RuIx?p>IOn zG6cOcsB5U(6uxx%Qy@w3v!aI>{b$b~1Cz(J`d#;ledL>RgY?1r`oRP&5gwcyR6OBo z8XPyM0+GTMZpiW_VbaTKavt`^e=x!Y$IJQnW2oUR?c`!Q8=so+PXi3);UIsijrUld z_|0QSBFPg4MwpILA}1D^Azs02D+jyRh}U^$-#9CtJ(|N+U$Qi8IMD_#MXofgUBt)e z*V66t$FpPb@XXy;W%yKs=E@kMavhKGBbOWWp5pj-vI5G6*JhZOOA^>#I#r}vP}8T> z8)-J8c1fAWPV&bKaMizC8dh5GJzvR71iic?m2PFVTSv+L7^p%IJHOy|__^b`T)<9r zIw!oby_|GodY7$(HM5*4%w084HcILHUeL{c)t0G;iL4;L#7xkmOI>67pF4E}zJG{b zuWf^rcy366*v2UTeRg_(6%v84zWV8!dKzO9$p<0>$Z$7|06ebx?A%bpV|UZK-@S|| z%hi>bIhx2T(W2q+-&tnwoA&hPXvwfoSTQ0HS-W$*a(b1r;L{dsVaEpUZ3do^_e(C? zb4&=+T^OcBBxTd{ajQ4Wz)W@WG+J(belIAMN#8W|g=pjUd7D7Zy!|Ntg!D29UJ!gO zQ3JuI3z$pjH0TnTKm3##S)P9?Rfd2kORrdr+cw^JaYhd*Ff~S%TH-FRk|t#aVrF;# zi7R@jK{|PMeh7_=BaDl`Lvt?wZ~7P!YXFkc|EijX;4aOnT){v|87a5+ek2OA{QM9Z zz~%Pz3LD32C$p8^vE}hxZP3D>;f8{jiCAk`sfUyP&+#E7z-kz*R`Jc}$u7d12^PzE z%0q-way?N32EF3}%;pU^#_=`t!5{=k|Gyz%52)C?L>mY%G+r5_G4NVP!n&pys)G)-Tz6A8JvOf=aU=&8P-p>8$RW{m*q=rm#IF2xIay50dJgDmO|Cj*nI2^l( z5LZ%S%F6DH7LC3NFGE=aGp(Zjz0{bkZsHrQBk;k)*BU<|mPpSOtF@E|bjm)h)zr#P zQ>8O6^T7RBZjzBeXSq9r<_Qvyw6c*?PagN^R!L^~mx(M=;$(6^UY)2WqtrNHI}ldn zac<>5CBVfq$G=TQt^Gklv_VIs3JJ+YrQwM6Um7k7m)$iwBw^JB2V1akNlIRjv2P4S-X^PopXjQ zSPpZ>m=UL!IcsGz5b3b=_5|lp-qai}Yr1 z4)^yPV2S9Tu~|A}6a@j$SbKyTd3t6#f;jVJ^QIW5m#cE?;VtZ(QNc=5rNR!*m;>(^ zA4tYV4dJy)COVhaksN~#SFgLJ7h>GzXoT-qV32=e)n)YDn%*663AW95d@U~WQabZg zr^*$T0z9k{<8xqx5P!faTBLjjws%FbXXAbFza1Zc<)UhKcn5{aG;;Ime0~a)qp|@q zn=a!fGw!RH&Ex61?Q!e^83w@jMlt($jXQh)sdE$;{KUVoCH(_bvW`H-A;grh&6Bi# zmwkO{MxL%`53@Mbf{uhXQi7{z8NMZQ`BQv!=?Tu%A>i^;lvmzp=0RadJ!^XlS|%kC zuJSLh(L%6VOgWPkNQN3o#FoB1)jIVbKv?pL<#&zAPTb}+fO)dKjebhz3(1+W&^=4d z|Lq7~WF_(0F(SHKC>|I%s{C`tg&)9eQfaNj*w9nyOtTHyx_)cz?fq@PIx#(9JJ?Yh z$TpsrTw7afU47kSDkeZtNr+}cl(E@xE?u|PV;QYu`r-TTqZPqR$A{x^UmYSVSYKb? zY4LT5nVFd($>!27dQlh5)%B-IJi&1x_krVlX7Ho)?}`jA4!AUj=Efd5aQN;i1*0cR z;>&-p{7z2pyj?}};{s=nBrXBT7u{bSK&tYySZJ7e@!}Srq>`<6PFz7^M7y z(Q1`BB$JV z;ESxdsQza&YzlT&c^a9u?NS#jx;$uJPKypM3qlvcUi{9tejif!i`L}lzwm_Io=S%=n)EWb{fx&POV>`(;fveB-{a3TJuu`!ck<}`NC zlq<+~n|Ue{k6h-v_vTYj00a7>{OWUdVkAcc&Ha;wB1-4Ovpz)l8TC%`G!Oo)qzn?H>Ta`UQ#F{j_V*cnUp@VO5U(_51fj z^P=t8iKfUDt486ty2*mIRyj>4vnlenRcb+u{b@?o;{0jxp&16fMkLbkSxQ(Fuc@_0IJI}ZHSa8uA?8YpU><NP_f`E8{yJ{RUl?0o!;qQ=Di=K* z@gqE1rfY`(RXlT`ss~FR60aBfb3-MdqUR}E9Bq934r{NSN2v#!EvjhaT=sXiX|F7K zz!X7j$qc!YaY8-uYz(HEzzt5cui|xUZT;=^%c#^4faG2rGrmjpf+g=uMJH=cd<&*efl zfzPEZqr6?K!5e!V+8M--zY-|Z&FA4L!0@%*PD@PcRbu#VtsIc)sEbzFs? zJB%;I;~s>;0!Q|tc3r^XoI>K@bRYJS3HXN_&^Tj8C-V%meR{&2fZWGyGT8ql*E5@ z8@we~u?M9W^h3izIA;Rk957MN5vSoiH6LER{zVW+Dcj(|KmvL2SM5bZnJg#ZRp}}o zm*2aWw1n7>1H5CIme9e{^9u`Li%XTofVfuk`qw7RiNO0u*bsmlqUUsP6!M<}V5KWZ zUk!t=juS-$LP@z~5rNnvWusn55`ImLXug7f(Z+hzdwJbuSNIqJ@|=b5>hC|W#J^gT z*vt6mO#(QQ+}!n&!0*M~rKbAZT>@0lqPaQi7GlwJE;NA(zzO5TDu7B1%WC7UEsZC?8%vd;0qvOa|* zbF6(?RLJSeGl%Dbj4#t&yNAvhO(NsO*qguBqKVu3` zghjw4CY$7G;tJO}1jEnFtcTQsl~70LPQ(#TCjzKsgdmC19m)DQP5mV^2|`EEX~#&? zjX(~3y0n{~!0}O18$dn=K~W7G3nzEqClJuZtjZJ6icIX~Lp2Tlnv8q*VD z=0V73Dk|V_R`9>thdaT@_}{;4^XDUMvC}K)NS7U>MT^4qTy&Q*^hj*nKrQ2S3kkjB z$fujP$Oz*T6TRGeFY6fNAy62xmtPVUsFA4W6}Najic=HvajR_I=%IP}+_eeLZr6k2w7xeAuvlZZ?)?9ZD+ z%8H6U$eJu@UeU_-O2hDcqX{-kxCkt2{+ou%-&qF}-Rn&^&a zJX!l^d9w5fxZu?RP06Y~F~Jg*eXyzx!sb4+d<77Ew2bmB#~*4sEmvS-dj1&B{tVWd zS=-AVbkVpOVU79T@~cs7^Tjjh`SV%}n#_!hsmv}dW$tV359pm^RvSf|92>nTdB^gS z7ji~PP_3>wxZv*>T^*$a^x=GweaTcpZ=-yKM$VyH&0SWhg?$2+ELJBPRy*e*?NmVa zg2jR4u6JWV@B~*i_h{Ma_g2xfN!h=nq9omQSuUM}Ubp{x;xLz1l`-hDi^6Du z<&rdcOEZehCjLR9Zbmw#f3u&U3=9gYYq+r0Q!Op*@V2Sw zD@S93*>6r}`Lm(M$^K-6KlAODNB;A*-x~H{LXB4WcBSf;JB*>*h>sRVO;|&z1Y=?< z1G64z?j#??c+BQGY!28mp@LsnqROhSxkm%s`2>?;Z&g*SQoJ?d34&w*a(^ScSV6TN zEGh)+)L*xpPGedN3vHn`UL$FOOG5Sy1LQnU&l9cDX|3Mnja zf=67z7Tt{0c$71jUdQLSVbamwKDF8;(X|CFkFEniD2s7fa-+8+Xu5tIq|#F*bi%zF z8sluvfMt{A*Q@N_8KwUzaquK>=S|;K*G5xN&-fPygJoHu$% zMkzUq_g1ukw%#kf5QUp>=hvSIU}>g}x0h;DVt&g*m~m$!=SA7Rwx*<;8RSDi zrr3pXYV(38?z(He#<3SbWhA2ehK&8JY1`*XC;$@Sop3Ia?ujv{_F^*uE)o#leiMn)NMa(F&M+H7nYFg=+0k(M|&3`mwh+#xZR0imktv=bt9}G!}nJLq*WPk<%fD-=3gQ z&?lnu$Ds58+fPG;s7jN>VZlUw$PJWwmPrVZ*#)kGA!jc*)aC8WBrsLT!ON@TCK?|b zn*yg4codVcdcA$dDTQlmZI6r>3paz1!ai-o2a$(+lfAZs&V{}$puz&u@AvP|C`5{D z9yxV~nRu<;{*5n?fg0_^{I|Dd=WnsHPN(@sHUgYsJ@Vg$G568Iz&`?}el7i{E_!cs zsr=&XeD+}Hr<>n?g@@COPfWmS)eZuthUq}wGs8&dEFX~>7WgT`!opPCIH)Y9QYCjnf$5p(ilssFD)}(b> zD#bd3iPTed-qG2Qk1qU}w0P3ywf7Xxw>@w^2wh zF8ikC@COQqSq-yXgUQ3Y3@D!dZ`el>u~gL59pN!dDh!vFvZ^0|>J8M@wHtn}hUNbh zXH4RJn?iT<-bZqLL1u<;Xx`uK$qduL=L?mQiz;yBLNrUgO#2E_ zMX-g5y)5rQ$xV=3$W}Kr`fKvYg5nC#8)N;>=b#4Ayr_C~1A_wWCay5cPrdDfsT@hy zT1yq~?>LgdbN-GHU<21rsWn&YfQX2sy*(#9x4W>cciJKkGTPj_n<>#kuACJzUeBk> ziviV{pmIxOnF02~7`11C(e|q&v)84F=KuH}rFDM&GQM<4y}jzidNFrkZ;IhH$$7zc z;LMQlGVm{|3*kzun%mmiV<=}B$-ySJ@^SosdCwHa7!PD5*HJu-q-xZi{}{9R+ux(Z z0}>GW%aY z?Gb=D$qT4*gL@D17TEXiZL|!|1UfBgvyiPEw9}7aC;IS{aPCZGpSBF8o?C{EH&wPtP*~uA(Xz%Tv4=gHK5G3v9g(QC1>wZe$5Ah++6YE1KB;qo?abnS^H4ftnt+~T6oQ`e6cRg>N*{O*=H(Wx_#V;;an#^ zaxK@*V+$0`jh7kKv`RhYOF!Zx1|}xPYU%Dg1%;iC+Wx$r(;`BM_j`&G&QFzMoX>9tzOV+dL)A3pHP=K@2)C>LW)5}(5 zLxWeVvVByg0~+lHPO95rV`^THDv?}!=j(B$gW=E7*J=Kas8@Twz9qHe|0|3!@Z!NI zxt`P0lkO2z^E=V6rJcoi)S<`CV~6$v0vh`BnNT?!OQroNRDb%5^09s$l_$D6(tt_? zZG(sSu?v{;te4=n;$D6!fJCYcE(-&Mn z(n?PxQ)1p0_eh0>taW9)Zr=xU8&*`h@+m0C(^feDSSr=lS*8H@)G93F_T2FQcrV(| zotS#U_DcjHa#H)g>s30;maP0d&Df{ZT3$a*Q>|aTCfdPt=zTuh?^|$;SDmEjg~jr@6Vgm>6Pe0Tz&!ckB7iH<|}>f!%0= zb-1hqME(M#GTv6A9YYj(s|93!$KJ~q`^06~TI|cY1 zju$zPCHAKuJyTcjg$!^+4I62^X@r%0#dm&zj4e~Q9Djd8u(;(T=?y;UV2{Mt)WoE{ zJ56srAaYMS(s?5UlmRl{bld_Z4`(WIr<|)C>g~hJbwM0$OT*>-roDU|YU$Dn3JN=L zo8d)YSVCHxnT>Po>ixN-yr~*fYdh^f;W_i=hFg*bBUes29Bm}ZG5s<-U znhl5u`}_bo)ILbxz*v#t|E{#Rw~vW!Bbp_>FDUFv7mwT6^i1m4 z+R#3FzY5y(0BjF>JWyq(?U96m7MI@$NI!ZE%9&8G&qaTN+E3`$Ai#>tVO}+c$Gcq= zR|Rb_?z*psO5Wv-`iO%1_cm0geOY|-tDa8_P{ugG4pjrBIzB$#ReX?Hw4P)h53q4c z!OG{&?yPkM!GV|)EDO{aET;<~;`o&nOH*ut8fGnja9`^A+lE>Gya1(p z%k&0d#=vH(Bo12glVW0|m7H!asz57;`<{L7%6Z4+Lqg-S%+)Ct2;R9Oqmzb@n5di<6 zS5yENa{P<(nlH5HrdcTY`O^Y_rv^dLzQ)L*E}~j?w5m@%Ll%5MY3J*p1z3Hv6o9E9 zvr3tU*|QH6TEA)nZYE@8SbH=9DLG%pio5LDp<2P869YCNvv~M= zCL0kyj?15ZegA$B1HditJy82}*RTgYC##E$s!GcKv;E!8;C8fH#N3XPuZ2dBD0JWi zYcfb59zTB`gq-#k#5U`C(8i|eRlR{z)`~4p96v(Pd(`9RE{mz}rBc%nIK_Z-@c?mWtn4Aer!9J3ll z7w-VaC$CrK(;>Q8aD!DG%Jw$x!wwtHL&ANH_-`c4q7`gxY|7;0x!rXiIH4Bvl8d%R zE(|y>7Umu7%yzW4whkYR*9Fgd@isn2p->+4y$DQj;pWC-{q19zqZXmMJt+&1i9csLjEO9It6#`hdPCKP&=S^IfA|DSU?V4KYY+kbX;hxq0oS}p= zc+|##tu{>C_CmlV#n?GQpps`iT=qdd?d6BYJFD`5i=Ay(el%~X%IiAT;zE)F@B$p4 zBx`rqQy>l$oL{-D{h&7*`TObCty>t~YqU0P%qu`inF|U{`K0<-KBVv{DF2Z0ZoN;T z83XJ?8@3VTG{~c$nVBU6lLO5iDu36ZH>I;eK0)ki-$CMa9~=~wgi8U;V1gA?Y4`J? zTkca#gRSMy%+8`g>B<;9kV?!UL(65`pb$tI6QjL1LQzP0Me<@Q=+q!$@k6SG3DhPk zG?b3P3q~-ApNTg0D)YN8B{Fc>Z`Cxvv<+%rvUZJ~AS410WEg=CLK=bS0bsny_E^9b zm+<|~!9fjb_h?V9B2^6Fe&+u3jRYk(ux5~C{V8{vj!_|mi+#qu8Ai9*+1mjt2J;3E zKa-KpoB4wsedfhUfFTeAtd_`JYPpC>npxWh{RRjFbKYMO4j5hQ?h5Lyl?(Lc$N1M( zOjj)kJ`q$apj>~-A{kk=sWiAJ{BJU5pR<@&=? zQTrABhOf7!`1$*6muR8AWrzLst`1P5g?aM9y$QiWjt)&D(cI(&oN5F{&U&t^0PT0u z-4T-k$T@k8HE_Q$dFQVCD*+03=Z1awWCayEoU|wd{uRP_4j!elIAvL+L(DUJo}d0OeaCF9T$(!>G3) z5(QHW;K%@30z5cO-}LvtDBNAh7oDfIWhNsu0xUM59-&&`oB)%X|A0P4aDC>ZdkVBa z3!6WX@;WF>%zRN+e4?n>$m#5L-}CD94`1<_pZ|d~yxE)7T9LW_? zaNZd@rDtII0Nw$HCuRl9GN2DY@d1s+e+$KjF2wZWF952F5Ge*5RfAwa16v%(+`O;d zzL(u^>G?eQMf_bie6-yh;O-O2*`7~*W=n4VdRtFFG!{@_)-&;OGk`>D2MX0cygYcY zk)8RfflAY&f}HA(9n2+EdQ-<~1FlIOptMRK+P)i+hXBis&A&A3V-5Er5^Ul25?cc_ z%+y!_^yvAMCr=(huLt=A1Qx9AGPKXUbHyjR#()CwK=Yf@$NH;8_@JuuOj-GdDto7K zO2GQY3p|RyRlhT6Y%$*hNER}??ll2^WwWSUO;dAzpA4^AONb_DRH&ef;X0hXnsy-z zx}w-Xak^CJG3M#BXMsyqE}&gjNgMc~Y{-qb2jHG+W#76NEAdEHhZ^58l7%|~0+gzr z6g3X(_9%>1y+y6~G#_XPL^F+gD|=pnepbXp*EP)_lAjqtMvUFeqC z4GmeHi9s#l{chDqCxcL;1j)iTgV4|Oh4ZQWUC-b?M!(zQhfsg(JA#JIq;MeXhSuS?GufzSGz;-k`M$kC`j9=@3L(KthOaxWwJ zUeFl>YJ~`gZ$@SkCJktEVCAPhuraJ4$tz^cYbwHuY%MmOq|6Y)uLz_fYlMzlvbjAy zAQfwPL+MR?T11wWfM@eCx|P+mwbhFze^Gk^tX;p!0NS@px>%r8gW#~R`?QB`niXb% zrt3HXz0ai$YPa>7fZXY~c!Y->VCCadzoL!}?1Q%(G6m#X7zUTYEr72XW_iM)rD>*(}b zbq1hfZp(gjPhN#lwm7rIBV9J(P5I7<+8H~QPI+<$GzrMkEU--vQ3PL3s1XsC07xmFSk`A&7lm(fYnW4Of zJ_n%A_-3@y`xXmJ^H@y)T;z<;$Y@`*lY}Zg=lP$TJrD8gs$TF9V?gfYwK#TGR=OS#VKBAq3*NkKwbLkOv@dE1XPnc5A;7 z{kDb?G&i2~(E0U(?yP-~gtdd>14tSa;mVJtrKSEgcknNtK`j|AAjmN>fZDB_j6sB7 z{|T!94>9!(VIcoMYEXTYW(sNy2W*#@Md3G7{3yYMni(uEs%;?cgT5>sz_Vg9Kmk&` z?rhWr_vk5?fC7lvC9kB48{zsbvIdp8}tYk-v?E??sJ6kV2_ z9w>h3^P^-E@+22I(9bQUJv{t`H4N=5o}@T;R%B1K8I&6V|MzpF3+b-Agns{DuQuGx zFWsx1fbVu!*k=@e`5_sF(8&k#T?BPATI}IWLdru-(ZPDk;*tdrM*;w5m$92a==Ws@ z4-YnN*|fF6Nmy-u)HN%2EBN4vz`6ScRucX=R* z83k=;`iAD(VX-w`=WRZ2Qdtvd-|VKu8Y>0Y*|SUfqGruQM16i7?iL@meZTJsV+V7m zQEHb5XHvbVeZ0hz0ObBXC$Z%D9rbkwqH{|s8`XpI7m zMzyb_A6M@_>5)a2*|z&XW+B7O=7A6t{kk1PR*bdORN>$V&v0)%;oNhW@7lfv9On+S zK09f9R>xPGkrbqzM$J)oVHHnN1C4Y^ppg+2ZNEbYtC0Z9N^F&0ghQ{5aS;qPu;b1E zgS~nEdaCA^81tobc6jFOSLJ%cmsGf~Jp~PZ%E|$Nbsw}qqV_k!el_nx0mzDjjxnD!RBS z_=U^cn5`lPiVBLhPCN7(9M$Jv~Ae|S~~y)rV_FK_1V*tA3gIlNxQhH%?fKbN(|sk z;r2w>8$jKF+)@v8;q3z|W{FN&TRVl4_topN|IWk6>n=n<8v}Qmf;QCiR(yhjpq!`H z3o1W>psdjHU~QmA4VHBrTr^Zb7L|0CjBD zJovmI*mAN*$zGSvHuw&(BT%I3$X^sJ-aevMoI%0`ce>a*_BqY{lnb6ouj5p!{-b|xDAQC! zF6b|mxcmMBXZNt4FQ^m3S&K921xeeG*zZ>^J}usc0+DzWF38=OHYbwfUgBQxZWr80 zpv-V7<#PFODonaE$puYuLED~iR|62k&vGk(azU{_i3Gaw6aqP0JRp92#Wubk)%3GH zfVP4}xefTLwPN7hz`$(lTGlvO3_Jm<^@NC$!@wNa!S>{Apo&%tTS~!qkfJ5z!nY;{dNn_2hk=R8bl4bbiMyKF2KU?eTC2(3R!K8LJRB0UBV5%9}wm1rn7~ zxS<|5i4>uq{pPsfj|AMK{dw(4pq~LqIP1ZhGBGh>Mnvt4Mev7#`vP2&R&IWN3e+<3 zJ0W?cc0eH3Xa??cjUl-~k3j+H(+a)SDdS>9#FsZTJ~8RH!wYh{Rqn%@Vdt-YQM?{h z3SBjys!q)~4tl~Zb(-P+z_GZJ@fx+p{Fm)ZEvSfD0~J@Byu}173qYoWScF7@sB+#G zlu{Z^AiF+b#R;eYh#9V2!j`ZWvFP*ww8n(O_29t3!1Ze53`z+Xr?RF$rju{e&FB=i zX$ugoQu-sMSdpA1ZA^J1*U;e~+d&J`&=tza%8w*Y5OoBVl! zOAk3IEUlCm(3fT3x=N0`MY;ZW^;|_|P}qyxLuSKTkp2&|^{he#vH64B34!`4F@YJq zAp`qG+9~$);UPUegAe~$ecS#vxkpC|U;Yo9ySs&^=08cF(P^eDFppRcs~g8pUeqd> zPYOOW^?6`3 z`5dzXPRZOtnO1geJ^81PN7uQftj=@!20WCASj7m3=E-i+CE{{F zmd_iGx!_ngx3NaxMW{NCY`+?PyVVB4ZP3gAccj8oE#HO%Gyv%WH}hbRH>%y{C7)6W z8)IN8_mZNRo=%(d@}>d1jI=Z)4PQ2Wv{6MJvnjO);sqPXu8nAU>y;!jg8CE znxMYXdY2w5JAadAx#`*k_zB~w>;=k-^xf9lc3EB($AbBIt^`oe4U-aw+wY1p2L=Y5 zW|SjeZm*2jhwyp;cIM)=Jcr72w`z0 zrKE6`W95fIL&1=T#NKshXJ^Uy{W9=2#rD`uiSs3Zz_RX^7=1f$Hrb5DDhh;&eV-Ij zBDA|7^PNob&WB&chCYQeXfJHGpcuvR#{KI^crwt1H6|H`SI(US8me%%{@xV7 zi$?Ri>*}ao^}NdQav%@w1S;(lV}L=Ji?qmj(PgkP*JJnX!L7iTH5jG`YfcaD;iP*4NEsckskFYzmR|V-;`OpF-UR>R3Qxx?E{e7!FO)f#;4HVr_X5iRf zxNMK#0j-`+lcIydBVcJkoSL-&8M^LsNef=~no1(((|;Ty@BV^QWq}9Zpick-847}o z5YNHUvF?TcQ^qO_*|;`qGwvOq*r zIyX0mJolbQ1sTW^p?JkTdV`;b#T%v1V&jX-Nb%oC#kC3f;7UGtK%jdqD3>u_nkvA{ zg_xKaH!epdkDJJTaF$K2w*|s0QNA!~b&u!C#Bcn~1RqZEG+kbVphCo7iTX%K>84E; zXkEo=e^z@EP)N=i#TxN6p`~n$TdH#bC6LTQq83 zDB5C|dEE2I=f3pWynJFhmuujo1vy*SS09b0oF`j?KFi)GWLCKT_4WnCjW&}l&j;L24bBO^hkO;SY#MLGCzWD}W26Cd3y%mY8@C3&Ne;ZWZ0TwBzEG2_X#`xsa{ zIons^Fr8L1MEy6jxo0WCxs1mv^j{t|*50LhLT2M4%L`UjpS(cAfUPVGAoa`8-vQJc+b) zOyn6Y(s(cU)1ylfw<%hcjgi{*Bsw$eTw`M(B0PQeVC@XUP zdrsv*cYF0p5xYjg%Un51jNYh4a(oJhEhW!A;D@TGbgz*$Iuq3NLHMq_^`mxG-(<-= zj~mvwm_){R8;@zs*k9@P8kwWzrYzjDDiCK^NFHJ z%lMqpf=DR`y zWw)`7+qbMe=<$T*OWLtL0{!>@@c`Cl;fl7aSLDNqTwB@{<}5PbTsl%?Qvb9gT^9qo zE~etD=HO|i<$Qj(0d2tf@I;RKTd)?~W_=whX|b%8L`9cJVcEm;{GSx}U@3lmCNyeN z#;T0N&Et%8ah8yN5|RM>tRwrQ6hGPnkAh|J3zU8zqTBfSNWq3>i07$SJ02i^VU~)e zU{wsaFKtllzn)I@%6~`c?hA~baQTA8F9;(B0whb*Z-VB~uH)@UL%#5!7h!VJ%gd8F^yE-`*?PSqEnE z{*k%4{p^uEC@=E4sYq9TVEM-2*u$?Agxv@yPthqpcyqiRc+8P!)bBqRC;#*9K|X%g zXmJsJ0$SyNdU-tH1?x8l`~#4iBDl{)ZfR!gj#(KbpUQM>2|l#t3hwIS$-@88>xi!d zntvDbuau?MfB1LuBCvHVNT&(qvSA04z35zedoGbDXYI z|08_3Td%H>apq!lR@z%%aXuLF(FR&-z$t&CA7exCm>h~8f!qY_qo)D*C37ud6yyD=jVK`z(RIQGyV|J~D=P zX;sQT8|BJP?GL0y$L3Cc1&(&t#B=V|HTMnvbZtjp)Ghlto zXqiBwmz%pD8~lungmxbF7BrX|{oFbsmLr5Q&M9?E6})nh3(5U*GK`SACt;rB5b(vA=(R#$vVJGqBhS2QGGBNd@8b zn*$Nz@SP)6^MUlBCN3~L`3FnjL*jZ@kU_MVP*Q?A3HcMUXLI6DYT1H4aejUgB$CR@ zbEwtudy4c%jp+cc4F8pbu{`7MkJ~j{uPlRIP#$>C z&}^*#agVo&srHqHwgU-bGTLCv{S(yx$sl=ds(TkY=WyxlPBVww=kFiE`x@emZiMf} zq~rjOf&h+k8tf{P!3To5a#2Y^47Cw}}WBbIzHkND3}D7YZdDKCb+J zqHkaX2(*?A?spHq*DYUVzh(M>ba{8-uhyU61?W@biE>qu9vhMmfcAc>3^!>!?j@1B zyvb3am7Vu*Om$8i7^Kg_?z!ifQW43Ul0kbGxlkx|J>?_-d(Ssq~WJRSI8uZ)z)|b|m$ZoF7$VeVlBtG_o{)4Xz*;Ovcr&iMk zp07GbCpaHL>fiFpwwk(lRs|Sypu-BM#>0d3giZEJ;EzZeLau<8r!UDAggAwT<4F(T z{p#OoCIX8nzoaIxoq+X~Fm#!A=SCKpux`+6vB6I}x_FX-J0TU8#}%`mZn9=v}es374{XEF`^r6pT z1>w*lQd{evK={~m;5c^DG?wtDdAUmfjbh5>gSfd#vE%y3qPOdENtuU zo<^ABDW25%cUOrQlzrb#Dht_u0z&sE3_dTVzUL}17&mb7^@TIN&XLIsF}&xdNTl-i zT(R6Sg6F1*ad*o6oUW15esH)Pd$*P^UO?eD2jrPyfDurbVfS?Ci!DumovILO;&DE! zLb@*&n@&dL2~Ng~_vpz1x_;1Pg>;r!^Y>Ec4c4X4WLOJ-_|ZHcT{$Im5*GjDs_J{t zrw*)kFKnA^-m$UA$#;sBzecx~E2G5eRs8|S^sK93%wig`+o!As{i;`?db|T@=9BpzMG9K5&KAZ+VFT=JKqz_$0O}gjkSk(%qulzQBd2Jl_Q55JrFB zWZenNezoT@OM2Q=TFq*=Doc9B>a-}~uxX$XhDQMtdl$%0?W#q22|p1{dC9zasSYJR zGrs$iH%*tGyy>|l{WH%w3cBQOC&@`v?LpeZ!bt7D_TjqoU7<0`G8eM6hSlx~`vUIj zeSGc?^w)Wjdf$q#^j0C0B79XZ$k>$&aoHXtq#5Sj{m-I=7%%0g!enw3G%e8?Yu7&MMW1^ltO3wzSr0Qu~Tt);`haN z^2E=Zdp_2qYX5qb)oRRPOh!`sQtK6b+<8V3H^1jiKg7-%T{xre6sh^GNpa9HZgO#R zknv2`RWb1SHdnV`rR{BCDbHT{-EP{_=}u+Zve5Z;Cm6}Zzdl;$_mOEsxB1Jv^KJ+s zNc9P!J;aqy#hy^#@#*8!WGAvT5p5lV=;~UhcY)h?5-!}&ay+;$p;BmYdjS1)K}7zK zX>1;eGEEq3Rs&g8bWPUVTREohaGq)~cLdcuogDJLc;ofOGg)L}SvzzZpXtKHB8fko zq4uQHxI+*5A#!e>v*!#O%{4I_5@>U^Pp2pe=IHS9PZ zs4ahK`)Crjm9pr@Ql|Fj^60m|8f^<&Sm7w8wCqYJ1{OIriw_*aG|VV_H#4_!QpQ&k ztHQ8ihw(>WBc zLkC&A`z$a2Or|kw>uaV}_ulj8-@m(~v3tpbG;zB4a3h%xkT)Yac3y253&lsw!eSvh zpMUt0!zMZY-T&*y>T^qqLLt>zvUlEIlqTKy|LA(ls3^aveOMGhr6i=wky5%FMCnwz zJ0ymbjvGX}1f)wP6e;QM7;p#y>F#dnde8ix=UMCjFnB#qqn#auBWx4k-)JILiC@T8^yB!f+d+D^#EmJT1?Q-)N=N0 znw!1f@_uZg&^)d)A3Z`%&ayW8;`~3ee4P6T27A_F^!~2r)KdV5AD^Cd9n&S=e3%}g zp>qy)>@N!KW*VmW2sNZ54^-I(khOP9mYrYQmvYRwY7<42a_lRuaX?aiqE8&}<4)iRj5qv&MUUnK8j z_@dP_pD3QE9hI3b{}_}7DFM1?A68g#O>{@2`^(41@L5@CF*+;0e)YAaLy8>Ws;TI2 zJAz+18DBQ_+xwL|vtn+Q8B<{NaV8O7c-K?Y#FR7b#%W@ug}=4Z(|?n&_~9qf8{Hr9 zh_wSB282tkNb`WXP73?>5!5(yR9jS@HYKDGu*Z2os_-+eA^SzA=SFJmE&YF1hRUp9 z&w8_YT&~IZESC1~FPO558JwX>q>pM_nK&Yj# zFgu_7-ksApzguv4ziDbzu8qe-%YaIOfD@Wckmu4V_m%>yiVl@lgTXB32Qn3QH}O8z zY-wW8Atsv=mWPZ!HLkvX~E}X#Ph*fovc6+MNV=$<{ube^4WQ z7#)F-{n6Q$tZu8LuWryOHIh4uYar1woWi1F?kqAng$Vw}zdx=|T3Xl`XmLHo2+=L- z>l<{^^J;)M_*?(qQ9TB%8UJ~_@hGM9m``ZOkdf&b^=cI>-QJm?PT%sASgr{FD5;p0 z6c%K;V4_u--6ZoD3dJEFYh^l*T8}gTuGrEFfZR0={9`_Fo`?vq4HiccnOcj-S(J=TS`I7;!>N3r??r(<(S0jmohii&e@i`8l@i z>5#@aNprQPTnFsFA0taKwdf5?Vc1jtF4z}(_B)3`a}`Tud$ovUZfU zlL1{>c{2{{hcMgxtj((mUi#Z50W86s28GryUUI;t^9^3#DjM2ej^2Da^@7O&@=)5KDbp@R6$=!KsNpkc=dI*b9J>ogq1t~>mg4YbsI?Uzr#ZaP zo~rt!eWBny<`>#Mswjvr$OFPU<7JshO3$IWk!9BK{M>IYY-QyRopgC;w->F}Vdx`? z7i+(}({{&w@=Buzct$}e)gB#27|e(^RA`OY3mMI?`Y`kF*;qKefO;@Dhx85Aq!RMS z3Q_S?<-h04a`+P07Km%>da&-7R@uRvPD{ECj{RT?4im64Xy$(m+R|BMFv&#eYt0-Y z6(gNA#zk2p&P7!YpmZ=jWtt%O{N)_GK^8Bw$bO&{uIbOE{f%HDv6(lByl-GBjnjiO z?VCQ3$vo$Pd6`Ij&tXzt>k2Qg&yV8Z&iou*0hAfkm`c7SN~jMVq>bk}vLG`OQn_(LRa0d5IS7WM1 zwH#X;8^=rU8_=&xfR4F~c)p}2l)-@gdIz$7@$zZ7hgjOuK@+x$c^QZjgw)3B?)oBK zg86i7n)HI)DLJc5y?;iMC4)^*lb0P&c=7kWnp$=YW>|JMb1gn`_SuasT-5Q<{7~Q? z9BmyO1ZwP(KyG=GkdV-W*Hj#F)x*i=|7_pAYx(o75Z3ZLO|!n3I`C6UpjmC<5*>g}EEap%k@F`pGjJ1z{2`t%K4!o;9sp zj)bSEO(o3*X+_SfbCe|zkGw5-FW0oSx#TvXt?p&p!^9orl#d;chvguvj+kN|J?o_{&C_yoo;ZPHW!S*T6%E-8AQLKw{XAcydc9rr;+GB-6A_nO4XMcT<~*!ulYN;U0TT6G0rrID97#$&OfSh3 zlRF^Tq$h_S<;p2dPs|`8*Y^jyYHOa-(@9%6+#!Ms8wULX8H?!$<^fpgcZ{ZkVy9f{O(Tc|$irx;iRQ(H_+ z1ZQxw9lbDXf#(gO;24{B~xd4{~>dTufZU2lz%^++O52%b|$6 z2LM2G^@HqCs>}htIV-(Evyi=V16f+7)N>f%_sKl)6#nI5=rt-ej0J{BQjb!EG+HwL#Z}wMft0MSKq$dGq={l zGrS#Nh@Hib`DZEc9DhxPVym_=&t@EN62&~R|0`TLg`0E)o5s3!!nUxa_=rULh(-B4 zsi#DnVIQWxZa#eF_2HA!HiR)}4;5Q;43;G?3INiWSBtB*Gc>lLyrBwDF-~1(uMh9o z(J5q2;}D7Ipb}^FzK#M?;Incr%J`Z0D6XC;Vov70DVe%g`xqUnAc-H#UG$lRuy|i+m1g zqNr~q#^z?*>9upxz0brHlgpkB zvF!WOVgo;4#R76i5k89_R5Ow&mtpghwT|`V-{@1IO z_d@T*zgxR@{|A8(ZTNn6sDG#_dJsp>V=1C}%+r4%{Ux|M8UzcCyKe<%X9DadIEK>!{Go*~4kZ_o~jsjAkc(SL+I&Nxo*y`dN}~Pf67QOeywv z4hV43;rgT?u|gb8hzwYkHzXtR(sw;L0Mk1!Zg048bhhucsM_Khfl6g8O5}%``WlKV zSym~{-|o_ezdOEHSOzRT8RD0Mwgc|X=pq-l)d4+v*e^$~ z^EhVXPIxz|IRyr!m0M8DWzc8VNY*qm+B$rFIaW+NpT@ca&N&{$xidR6DxAdsT;w?( zN^fT=GwCizF>e=o z@_=`QGEIJnD0ot$J9z|TQ%QXXmv+%}R?dJV;jt9*B$FeTLF()BGcG+|zKn^uUHuy~ zmpy4q+$NF2Pc@OOzJsDsT%iJ8Y{`V9X zLLUk}##UDB5cE8yC$maidO;^BiScG^PVcOvqsgSW(elZ{ zwSp&itSS6wZ~`K;BQ-2uM~kVf_)U)YC$SKq9p$|-SNhuRE9!f%S}(X25VT~E$os`e zPOwQG^5yxwOIp(L55^ZgMWD2v1ARV3`2;1id$qtsOofG$C0FaB`iF8gIgrcAU)M^R zPYbiA%v*7PKa_52X|AX!FZ`YqI+Su}&U$M;WGBO?p(*ipP`%^}DtD8Pl%|4lnNvx$ z?0IpE45cj$Dz5sol92DHzI68D>e=WKKp>WCwLw=a zWAjulEcky`F$-CVwAGl(s>J^qs4@MT@xJ`#EkT5X-hR5{T5m=QbP7tsDZ&f3NJR36 zz@wHN7=W!Y=lhw!+{BXB04^I~>S&j>mI*K?%!8z)GoKF2tk`e>=KK=TWp?G*MKnqj zK0P$qpD`l}eSEtiy6(M`ait|g!q4;fK%9IFG4d(`PzY6O5DAz4fyP(cTpxq!?d{2# zWCdX%#-@nZ=;8qlbyU^}Kj+jEeUAL%@q2^RAftv|4D01~K>b78A#}C8L32HxiQGH3 z4j_jIvW`+-5BSMnrla}qq%?QEap$~|$y5VsYWeAdR(D#cP05W-++p_Li%}E0q-+X# zQFXs1L`w^&X17%Ebus$ArW4Cdxo>yZe>1`2HT%1`BOI`3GWU_uFr%`u_<&n!_^I z^zcl3U?Z94-kQ24feMQ7p^SHbo%X`Kq5>%nq*n9lW2tQW3 z28uOJa-k^S2Ndd8JkqzaVw}lDr252;bi#nvph+y>x*IKFd6j6XwCcITD(Y9D7=QnO z6wB29`PELd*aTGiV2X99bnma4S=3x52C&BE^*@Z1 z_)qTwX5r}Wj(6&IdSF>9u)YL>2Z`o)4=s&wEa<1&k{4%1xFsswr*^R4V%d)2M(Rfc z)!|d)4aPSQ({2?ti^LCeYH^n*7dwyc0@Eqn&g!WzyY)iQiuzr)eIh9rH0)hHscr1y z(s>*)Na+H8meTGHZQFE}e3op{99XN=kA4F5t<@vItcSfmagfOGnA|X>%*PNoLCOjY z0)nx$U$a$UT(4GZ*lxw(1V(m0*V2l1rYA;TOIkx`eTi;$|6T_3p=8e0YNvh^Kb*_xUEx}m?xgl;^CxSq$NNx%0USsWB)0|mnRsI( zHc@v$1QRp`p4XMKOKWT`LsIQ}yg#kiRyh+Lg{XlUw6E}L^hVS^)BlQ{^y6phG%pR^ z!4Zv#2Q_G`2)jLb3i#$-nWrr9GS*ap%X*dH5f11eQiB(}UT_E)34#?I-M?t7#%u<3 zVnp8>s#={@yk{wZdt}PyVvqz}T(G#Ea?B!pX}zVL=}jnX^pt(K`h}6PYbno>_v_M{ zx!GB77wo{G15!r%#q`giF3vC@Q$}RZ8%e$x2ly(U%9-%w{I1c=$nR&3WOsm6-aI|n z<~}KWUhptVKcjfC300THO}lFt>qHwl4-JBe*-AKxdsWq2QggI#tI5cbN?v^(wLblz zIy31%Jh1>4ffUCF>Y!Ribar;%0MtA?Ji;*!H{+n*)LNNf zQ&~a6O3IMLiIP;zfZa@M^_0-rl$;XKI&;e(qa5%P+1vM@a`W!{D>A%h<3F=QIG4lI zK(p(eM?rTR8yhjtAzU(cHxIGq_082akYYXea;S&m%v_Y}f^BVW1^B3kF~d1~eHTtU zsIOhE+c~-oj-FmkxSV<__URGpU{z`hH*t}7 z7=-z_DMQGLkvyQ@v>J=9{rOPB)@(@d;Fa?Rr;qpplWjJkwa9Xytty02xD6C#?2s zUd=Vg-4Pw8fKE8+!}`A^BU#2;Rg;BZoHxC8cPIDvXpns|qK4v`g3+&qGT5e?@}^<) zgH6~*6BEC~t640)-Cp#}DcgDJ-CiF2Kio7h{rFj&^7n`BZ?YhnQgCexHWYO(860$X z_9^Jj%$9mAB{G?`(kxWxkyEk<=UxS_w6b9{Yoym+o1gRQ^8qY8RNRNAKRihxt(0_P z%Yn}B9i@jXJ$eIXTnvnlsBx(G&#Tzupt}x$;t)l=*7dQ4h7vo85SC?d?!l_$<#EL_ zID-%$;r38&PgR%CV@gQ~KSM(He;MuN_CKF0Z;&Nr!7~wj12pf0k6TGw-Xp#W8g3Rf z(5{wo80wm{^LE`DASh6cc3s{r^?IbOjiQZLOU0Ue4J$9NylsEhTB{P48+=zBNl3bD zNcQM{LpEp#i(SYj#(|kh$~@jbinjNg9_%3=fTpg$=RpKMHk(9j(Y18XaN-bD?X=JW zeR9SQs*{xH5#4S>!gh!Qoje`x&Gi#nds3FjS{BNjAX$gUWj)N5j^m*AHh46y|8HEK zrEKKr0N0VFTo}|G?`o=!@0or1%lBol%K8_}CQCdhF81@}m$L%#gnT%siz|Pl+0Y^- zr*{aVHz9rI%t0SXOA%z=Hk8Z$VB_Iykilnid}DsF{_mbppnvp@LfYCeF?t1N>nA;? zZIwU^PR3O(?-H?|+>&C=2oiixtYLrVVU*C^3Aw*N=o>u=xR-c(^6&7a0}Z5agv?TT z_hsP$i7aTqj4f5-_6U*X_Q+K&>Lxk!(}OS->b;*gtqjz5ad{fSQ-R1KSXvkUUPwtx zi=^rH!UaxBnV^9p;m{fQ*Lux}P1=!xGDngeEAyJY!N zF;sqz+U2Tv3AUtkO7Y1i^W=~DmGs+NII->8TkhJmlfFwZB{en%1z$9L6ZEI^kQ9C= zQ`_EcY7FeqM3M~~bEiZ!{U>XDN-62E8Jn77JRlp22ouX*i^QcjaBIF@kMEpe*g=;2 zxNL;MJ|&Iu4%Kd-CTzQG608r!(>BlFn~5GcaSemFv|!>1bpJPujXHaOchILIPyg^+ zXo%P4S0LavM;@Ja@Tcb}IG4H;{yklJA%i4l!rz?< zaDGs23|T8LXy%oOpaIpaiW3Naq`+->%~><0n9873#rr4D^aGr8!byJT1xo~w)c@Yx z(W1#)e#yfS`}IwWw{ekQ3%}mfxwXug*kyWtbo*_}cuVC5#A9}y^8oZV5TV*bLD&h7 z(d7w^gr#sSCmD$PloSOjIc$uqrebL2+SZgdCB_pjd7I!0{`zHo_Z(S_(uHZm9gV!A ze_6xQUHoblnA38sxe%v%nj`pH(k%6gExbF} zyNS3h6nb@wJ^joAoRZ>VutXbASQ^IjVLEG4ln%6-nTT(V{MN|qsqM6aivdgZq#L+!ompOz>LkBI>{g zVc9PWX!fs9aDnSxSE=5{{bt>V8Ptg(J^>?bf)xxw{6bD*Y86}z{} z&g5c|(C2?6R={8@^L;TM!svMlSG0ia<)T z>sKvj5{*h$n+uNMjhhuSpsrT%#zdscN-(Rws#@Qil8wlED@tb~yX>+nZ?J%niB2OL zTCoFbNQ3ZhlPT?gXGc5r0@lY~_SQS&jMJh|@z?5y8IDwsC~pe$B^HV)%NEJ3mZ)6p zte-uYPZEE+xyj=2c1hOyq)0;J_7xl_v6BwKof&uTE!T)s^7go51)Lln;f4G*`J!)J zqXsCEV(FQR`}65!SH>4amXLrqE}Ph&VdR7@{~_dF@n@r8Bna>;4?c!_v$PLtzzu&R z!wS+x2|+NZ%mUM@&^JEo{rjDAkIDLif*S9W_kP^&4B(F2`OUvJg8IP{3!;1U$sG9= z85`}F8+a{8xL3X?HS!zweE54_WSSL9H@z33d-1jds&aSks)KN@zGP!LV4sA6-tpK# z3T`w9A}Mn&GSmzes(qbTH|gyLsJ6z~&31X(@;h3&bhM0lF+A+0F7W_rO$nFSuL;^kz%qBC#eY=j^Q4s(n*@?NyR7P*OH`)Ul#d zS8rBbz72AOTI0wz;UE=5~^7x@ZB$#CO*%*{C~#|tA%wjx<1)r zNr_chGlM#)kHw*6s@diMGuRbsCQgXpc{V8F-sI;-$y}CQP8*t~_g@) z5WM(c%{@QFY%-B?Mhzgdr`v0t+ED=l!%l49Sa zO1l;HeE|tUu3Q?={)V@@jzlQo_TKE{c+A~kymjZ_o(%IGpb{8^D0#MIPQLj@VRy~i znp=ar9~hlqlE+h0#hY>7z*~L9_tQ`GG-#+#S7oa8obZD_?sk3wJHBKf!iPJ>gq5WOQui6SaY>m;`%J{4yl|gj?tga z*+AAS!mK;Xr$R4MIB>*f##`1H`BZInKKeFB{w)9!FzEAJ-`S!6V{C{KE1&B~iRnL^ zsv8->hG@KHyK`kUr^08Tz)@YBPA`8S{2B!qsOZ_6zp2&7mc8>h_^E+`=nAXsi=kak zIWYMG#vtm`Irk`$%lYT!=P^~dO{L`tP!o`SgRk22Sg#x}ac@k1(-r?zP?KBR01b#H zr!?a|=RqkBble>oA8dhy`y2Ps5*G`t347sY)05nRjS zL34v{;`^Gc;InhYH`z<_i4xjz?ux(Q@m71BVYosu*jQ(FzN}-T>IZnjdbO3e^GLUW zwJs&Sa|u0RqYRN)Gv*w4`>Ywk-0743-(Pqb@bM>Jvyw{&OQ28B%pi4a`S$q%6tx-L ztEs9Ap5q@_Er@6Q+y)uMzRhuL4MHEbx@(MLoOL+aZq|AD)UG!-~ZHkKhM8D+#Ma?yp#&bV@2V#^SLw5bW zF(OhZQ3^n1sEz!0l@uy?2Tct{1?>kAV}7{Wa6zqsaiYtIG>Cv%g8qv7Yv&FofoK$`q zzK-?!#@>oqd}|wJSdLBonuK5hOkh~Z`HtSj<+fp|2~uofw^l=rIzu=Dny@u_6zkN= z1N9iV@tV|CRZNUXEH(*0#YXBUqpDa*H75IOgyh<@A|c2j@4TfFR-#(BB~7s=PYS*8 zS+q=4mxgp4NUS85vqK%KD#|@}nta`?>Tqv)%^m^Eu!<#q6Yumwo(@m~G#CP{1+)c> z6E?H{XW3lSdBS|+nPNdxR*(`<@2P68n=-|SOJ-V{{|)S;(v(Axj+P}osA>M5)CtZC zM8)N7QC~NQ)bVcaBP$ncC0?6y<|Tu1o`5TQEgZZ00d|DnQsw^)9mpU-`H?zJID%cp z24;~c_G&ddv}D(2X}gl*%++B|;=i>=GXUSY9wmXo8=zs$8;>KmDi3eXM@_}RHwUu% zZtZMZc!_qxw^#XTUYi`C#wJ3NOzh`0{~I}2e&?hV2#S_Rm*?fR#Z{K`DE(oJAHEcr zR#heeM^&AFg8{fmZ=mt48Wg32(V>_VOALE)&@ONz$bHsd(WB_xwe9s0CIjWvoQYhm zf+2tp{>wAfCjYE8=uv5!O`O?LhIPCSpH-I_E7ET`Z6V#2qQ+B;S?72aFg3Ebk31}< zCugD;wp}UC$3}4*Zrrc|W#Ip=xEx!{4Z8H09AaS!{T$s!&h!#XABQaSVmiQ#!P$*O z(_7Thm2<~G^b>YxfQ-^a0xC3g-`9{zU)kDXS{2Q-fQ0&oFlYnn?gow2OGBV&g~^{d z$!WJEp3r+oOxFmxw>Ge9c3i1#gP`T2i(QIqUJaBC8$!dkU2`+VW4*^(hoYQ$6Tz)f zIIbd7B58PIxtOE*pe=T~##4CAZn|yL=W8J^;D(Wy5O@#$=aTp+riVHp_*|wNHc+-i zMBEu}MJ!;)*W8aK&DYyfd1{&G@UF2+1emozHU0g6;})^8e~fjexm*eG1~Ph{_nfut zsGL~T8ecQqSju3D22ApyLMH2NR-cb8s}6QxXtUMtyK2`Urx0v6SYgu6jQL%s?_6-sG5@j}(l zpaOrbuBfqk@0to{k~w=jhFShH4m+KzsSZ<3#f*+`#>StXg?1l|Tf~R5)feBo-%^w; zPL#4nv4WA7SZ?dL94%N+;?Mmy&<`&$l;{kSWOOG5nw=R{DqQE+F=)WQF#*lzT@794 zam~d=Yi9K)W!%(zMt*ws$r{`*YV=khQpsQ?(^kQb0iDTP@A>l;?WoJ)aa8-TV7%fz z`vIJz{@zEsJ;>JWElYlSxLC7;_}JLC$!ogQS!vY9bAo;Eb=E)Au@zp^8r`3Y?!Q?n zzvq{kArwaQS@}y#wlg-Yoz<;#gzmfIy%t%92RA2Uq%#KA_6ecs4-*oIp)n&o@R_@9 z5;K$PD*t71(9&UQn8p``#f7V^-%!WjhWXR|=+qUbV$zLVj|td=8`FFOr?m@Dmn*OL zSx6lQxEN$!Y2DkRSz-H9`Zy?c8x?&Ew$#SY8hdm3g41)&=h0xl;L?f*_bkax!;0h@T6 zs#kjXDuSt}mNv`4{73$qF)?0@Qf1pmX|6aL+q;zqnNeN_`^=(2U@$qc7Y zNPanY5f%ULT{mi?CtvDH74@mBiuSEr0`2|FAD_=Bye)ZdeY7ztWIt7zG$~0S8%0pV z$Q}amf7f#K6~Ky`cp`^aUy;6!>9Bn}Q+)w%*eg*sivVk*o5{QIx$=@HYfjbwO_Ws) zogYTCvHd7q2$&T579HP3j4}f@U0n@Pz}o7LmX$@BGuR+jHrjW2!RC^bNziP0l4rr( zntLDXkD7RZA@iU8dVZ)siEue8)@`bB5U27j-@{M}gi_vgD-1J~Gm*-=U`Z{%DLrC; z%6Yr}m%UhF{#398?RldWK~Q%|(<8d=iYYrGQqNKETfh)n#Cut>LkpR z96sW0PxoEpC_x>U3~!OuEY#1L7s8%fC?0xY3VsO9NwB~_-$(qy3cthQ<^AAhHHkEK zR>BQM$`2N=-h9%q8dySbe}DUDthw4CDXXH&#n1vr+!oHb@zXI7ya<@n{2e;BB;Zro z6pObz-9Gx-exQz(zgLg@#hI*f6~kLXGJ1W;zgxxuLiEYce6X&nB=Fg6<|H`ass8Ux z9w9l-{&hUu7TBY_siVa!*u!lc&FK^W%j>9dY_EB;j%5m#au4;C6C0G#?ktMyOB&<8krMzt8dVQxRK)uM$7NTmMyTy1vm5V}D*x1qnbQ9Kj zWj$%mHt@fOyPB$dW2!<`zZk|-1*SaA%|YyVrdj|$nrJ+puCrzLz7&Edn(PC&n@u)s zwFr5?FKPbI=}~y-^kK6jE8ZPVCEft>D_ly(K32k5wb=M2MdJ&P*g{aBoJVe21LlPlG;I z_pd~>g#zxkzPuo3gth->V`cPOl2Ofer^4K;>U;cv;JO7u!{b(MY^h-E&ur%>!>MPv(FAGu$ixL6$9&#r6wg5Df5BcNSQ3bI{Quc>(r<} zllQ$>B&W3e0%#qe(j*u0aqG}n4J%1wXE9?|_Vy6Z(&}*aUpQK|URd|pV=&OOxRyC~ zTYozuzG!f2NUn#P9nB6v(@)CiOarEW@$pqz(O(PuA=mSgM7KoE(S1kAg~CZIUK}ic z9CVxX*F+7HYH97Q>f!WVXB6Iz>CBF2I2_MWW$@rV&FZc(Ck0!R+R@f|9dVca8g1`_ z*V^tgFy%;MvG)0L-(%0)7vj}WStah&>g~3}a@%k6%#H0=oPYyG@;>rdi43b_o3ndo zsdH@4CuMexbU@-jN2C89+4uGj{V<3<=;sLan-8Sx*Bx(W+Fv|+CID?kM@L)5oxk5DWe{xtAu&c9#p@YlX}0C}tU zd<`>~u=`ls+Wu>3Bq@NdR0`Q%@p|a(eCOIhQ?n2h6@_9FgOQ*h=}-1g z*^Oo>7V0wUYwN3&2}{F3&nGxs;1)432T9dWRoBnt-pBLgG{CO%1;k|zj@MvL6 zYDV2@B0S5!=l6Z~isa2uxNFW+N5|cP9M0Rnm1pEQ_~h(3;QHRlX@u=2zbV#Ise=LF ze|GX+LqWLV#_mGgPXl0_MbHFxbIe+v^5RXLDVJj7mE^L3VtjWcf1H5r+gsSJE&C$0 zHSk4F6@33PdNRgzD#dC>irTr26I#k@YuNbLF*k6XAMG7ENeOjoxV70qbjFpp8J1{t z{AwbIRp|osc3j)K@U(&5qO~f>zYn;C<-4|4*r76u@kKX$rlt+u?8`AHk*-@D`?T z{#wCNSXaf_5m@ej_tQ=QE5iDKW|+#CQbJ6!$j=j%8k+v4DQs*JQefXUTGl(lZ56+w zwwqCY&J|Z^V2h9YS^yimtj=t8e~d2|?}Jj;2p~#O6GWcZADG^`F35A5863DsRN=jmAEgT)jABJ5yZJM+F77!4ZRT63a zZnJgv@|ewVYgbATWzpuq<~|FsiOf#+OKI>Hu5a%e`I$(EiVq~W%@Hpj&z;c0oaM0t z&(28*8&@&by^RjGe=?kHAvnD1Feh|Shd18;5W25z__jY@?RT;}2=T!CXy!DKO1zbY zyCeKs0N1!cyo}c*RB=QW>)tdK2e1kAl1b!QA7+GgvSg|Dt7ozIu@c3WGL;(R$EJxz z+veKeR*`S^oULRh_eELTr=XnE62sBL5~D;pt*zaH9z@v7vBr^Mq^t1he%K6jIZhCj zTM`R^Lgp(laczJN5^Bsz>ZALXDh{`Y7CK}Ng4rLMyOFJbzZl>PM#T+V;n(i4O&i+` zNoSV_{()|>Rg_#)^-y|oc7}C}j7yoPxAgs6T~*1ih)ttYM6o?v$z%lvVYINkjAqC7%Yy&$K?sGgyVK^mTEw{A15B|XCQcD`F+B%fjJ8?nbdLR%mcN^TI0JX?& zR{d8U5~DZ7n`3*vI79YiIw2`=?bDZ2Mpih>Y-v37(?NX$1Ke96xbu0a=gx5$UDmW3 zVy4oShfZxyz#AtJVtO%;0wjV*IRKDgh&4r)?6r6(O4LI4mTRx>^uhHau z@!Q9+Nw_rG-AZ|duy!F(qGapvodSgdv+bFx!M#eS`;9;e^wPdPWCx!O`;K>?Wa(rX zWS~`6aAOw1gPadqQ&nN732FlP(O7^5%OJb(5aIW(YYY4jWQ0(c=Rzr97o0mz_$-ja)tp zi_%v2IH$EgVm&`@3S)=C<%IuE2d2sR$bk*%us>PfkwoFD-&{wA|eI z#Io@GtE%|yrj%VGf)QOwrd1KdXl)^?|;s3_ab@f94_6R5;`RaX?) z@ib{B4~^f#%EiHi+U4#IPnF|)3U1#xCl+yWBearkj<+qsl4hLqQBW=0?cjJDUaB7E zdx7G<{^cq9PQ`y-$_n1}qQK9LyKGvp@^u>kD0I~O?X(8v$=PiL(XrJKjb)$KeL zs7b@3C#FA63`I^%re8RCGh6CyefhexG4ItNaDKn$e$aSO=Xj8mKqsM7U@P}*;;;l- z33d>Gi(c)A9(dyrh01;7qHi1At6v zK{36cYgaP0jvzH@qo_8{u{O>nC;4V6IR&^4XdW_eM)LLj4b?Bf8{1Nf8mcU8!onvR zb81yKrQ7*S=XXFVy?sXiFw*>P!B=YXP0aUg>FFZrLtJsWE8{EiPR>WiUPSn0&rr^1 zpxQC_Wc46>mCtW>QrW@iUE{a%v?m!e`k(O^A(B-WPfOV`Q{aScJRjUcyM8~I)tp+* zf=>AlB=r#fD_OnBg{H;3Z9nhxT3Vx*U|X`p%!_`;k65@pV)hs-A$xp9&zy%}e`S;Y zp^c}?ewpHVwgp&~3nZ#JW7vD)>v1w>^4<-*$&7~o86hJh31fO-JXKfUZ{-B_?(U9< z7B88e@s?dmzScyvhDvjIdw(gwD*s-B4N1xfOWR^u>S1*~z96(`3S3@(wB4g7r<@X; zmf&i-BTE=HpYZk11Jrp@w0hToH6!}qB0wrem_YYHiZ5oAjEI`hxsI>w8I1ZY7M3m& zHU9*4&q~O1Sn-%UhORGBaRmNGr=5L=ja`e)cuXxsV`+9G;d$2#pCIw$Kf2WCZ+E9)^8<8i{?CCtfCGirvH`7czkOBHW-$zH z%b6vj{-|v_K1(5X6`S-W+TJ>lH2&vGjZ%XByLM5X2NWExpY{L!-UoSgAXyTG=0Nj| zy!G^i;%wGP)Oe9~Y>U3sk@LW1fQGlaJInt2is^6H($q8#Tld_%{gX4mg%ES}&j{-) zu`F9l?&0@A6h-5QU3fD{}Ayj86d$6*Aw7piNNndyDb0^{7XBXAjz z*9*fx1}$O#L7#1lw?9?`po(~DdY<`P-RvUl$liJG^IH9slmJ0xu}3k||IY@)z$;Dy zw%W=xFWL?4u-b-x7M_NQ(dcg=mI6{nI;-9;st`i8%-+t=CXAe0TdKL3C%aJBq*ere z42?JDa7W6US7q-B+|JFnhn%PV^0!57~He>W?#c&x;$!fqvqbfCve9&k;}XE^?AV_qUX|X9@#F`_{c*>926?r zWzhD(RC2BxL)qTU2vJ-6pC8*vcYjbjajpnx_eCYUdLR7VYoD$rDKA>7 zK{$#Urk6Qym&wr~zt4YG?5N~%>V58HP#EmhKryy3QTOl}-!C`lS)QEp1(0m8wmc6UKLgCg_(J5d$2w0DS3`@hhJFHc@sPC$?z{E zLe6ww@31j-vz?N5yXhFtac_AJ$ugcN>yyBGBN$o)SR9=4NPFl; zPgqe~Ate70^ZS?3GeHHpeqpRJ?uKWLqeWQ1>~wzK>`}Roi<}ux{h~JN!T>f&dcPsi zC4k@C>wF-QPxHN-i$_dO+u92IkxMNrV;Ypsd681^fBwd!53bTQ|G^T`(JM%2*)KOD zF;j;&Fsh^-g>#)onnC3;))?YGRc#8Bw?|u#67a+ zsSJiCNgg86H`^=k0Cj>a=g_IVGSa`SGK@E%Rl$R^mAqVk6xuO84~h$Wqm3OT^~vat z*lmjS7Fscu=**v4j3QQF@xFW)YwKXyy+6@}*sUF0Oj+0#EBUt=ufJFCI4_!Vj{hRo zEc%$&6|kj9*suG5#4yzhp7~*vyR*jUvb z&srqX&>V{+D&rT;-uvJnfAN)=;U}3PD2JH(Rzks^G41D?eC}n|sC^uFi+kyKK``Qyf2;oeJFN-EfL9@?%qi zDEeEwdjbkMq%|Qvb4v-12LZIfb9iDj9=LQ zuWS^p0UI!b1Li}hcK%E_O@|FcPj>@ZI~}^~JjUu@yasdHXr% z4jZ#g>_~;;mSoPYoSWvR%ilH3ag_nG_PCg!-8&U6q!TaJ(uId$Fbj@p)={r1!o zb1iCptQ{EvkX1@zXVHDnX*Jc}+7z;EH}$;$TVsRUXv2`3qKNK%l&Ae{WzNp90S>Aj zc*^5w(0jsH*jQh>d15lU*KT9|0pC#J&+&!hA(kW7qtYWRAQOXMuH(eb{cvsh$LtKL zNmUgz544v|rLE{6*>)sE_(on&dnS&Qe;Ag5FMaa^1E3_YM~F%U{AjL-N@RAlzxXWn znZX+7)il7Z?Cf8fB{qN~fK_n$sDu05B$wZFVy91wfDeHct2}ENyf={{vMX5KcWRWl zw~9D28aHy8tgiD9ha)$)Q+eC?1Y|Pp$fm43r()>$Q~8(Blv!qclFIuDSI2{uv$2xS z`c*36T6YRpr9VJtRJ*^&LbJT7!^#I*kEu%z%RnM4d7jw0hIMqNFF_6MZY&&(x*4u- zKAqt2w^ifmO4_10U%OWFVG@p?a%tC3jSa}R_XqtNK%D|h#dc=Js)yd)B~mhONtPSy z1hlZej-#%g!>gXttBw<-B=3lx#rjK9#>rs|r;y*@uFIz#!#~dHpm!l4UwFQhi1P-`_ZN9H>4<&SIH;6#I>re1KklO6B=;I~j2{>lX-6 zOE%qw+MXkM6$6S0?GEF@sS)80L~?V#lb;lsm~Ca(6&|19N3)uC)tMda1m!0AMnn6) zp8v0}w*ZUki`qwr78MXwq)|XH2nnS_MPNWc0YO@&yE_hIfKoDatCVzi3zAAnr-XD! zBYD@TzwiIQ_xYZCo&gnyGw1BR_FC_H*E;*1DIU3TUd$?5lM^=Cgun-`isi=XktZjF zsk}c<+LuT*Ug}?e_t={BO#$UZ+E5^}H5};?LP*nf;;7`ve|5A(hW)Xm`x-&%L@Zy) zW2oy%eP}`^txhQ=x~gqS?mluOs3E1X6rz zLhIX7?@sY}kBEQp9e1$DGAJ2tWbLBJhNaa@CpYE;<+!?=>eTKcY+u8osCQNBZ%gV+ z0{Z}D50f;{X^3Kyt*lRP@=v*$ zYoExjq`RhPbCg;Y!Zs}YNipf9>=*3_BjE~{;({2hpf7;f-TByJlIxK73tMk}{ZWu) zVHvs7C2uAs#&Y5f%ypPI%6O91RMXpd@#)LX>BV{x@}Ix%ow>nQ6>y$BSed7Obt>Zv z!GZEavFmQGF8Ngv?1;8$pIfejMdH3VR_`mdAK}z=s1m)A+paCU{rTj&pKJGkEOi>`CVEqy zxru_*XU$bP#I2~fcv3(iT9XB+gAF83TcmfaCBfCzCJ@7Pe`CK?F!qa2K|v(_uY~Pe zX^K31Ag8BCwWlGWF8~|U{a+vtvZ61cbgjNkYuUOlR;wOSjrvrveim$K7Y%CgzE`TF z>q>Kl89H02{c*>Fv!M36U!ChDzuJ`(47DV80bxJjawF#vanS^vh5uT%|2;nu_vg3Z zp#$yvEnQT_0Y+_v2N~my#wHB8?IiebxI`iv1m$dadA|4Dp+^6OCxHwVQ^ddkt_^RK z7B@~xj~b?oH*F27kDO_LHg+T2=0Sq~|3KiVl0Uyi=F z3Aj0uXql+9%y3?;-gSpuv#?N6>K}|q{0kx&Jebq;Gf;l{RK39iL&v7kVJpGqK^ zc&LYs`ViW$PBRiz-i2z4l<;5p!E>%W5;HZw8dA!c*SgH2i%=_W1u_@QDa0wbBWnZ$ zAt_#*OO5n@-<%lJR+qao*lr0`S?SU2=BbGngHc*BVJ(-VE*-G#y1W;IZ33}5jdS-X z3WzUqYQ58VtZHYaq6$W^luUz8e9yvRzKD|I0{McQrMR3E0!$A)Ex^eL$ z&;H_N`!UPtcXEK-Zv)XXy3pZhpEv(5w}d-tI0m`WQ(OOYqbvL7^+1uJ##`C+K zaDm)?C-sXo7|L_T5Q2HA{-njm)PnI-TWJ4y%SyBHFC~^FQua?0T1j5}a%tUv*7dA+ zo}P%$Ta7T0yi%_p$~NNmjvGGhoMZC=)`d4dqbPlFwUCgomfk`2uiN{98YOBTm@Y+T zZ14X6VhC%elNFz_P&nVpY1$bRj!c@!s?9iS9fPh zb1%{S#NOe;!c%P)*RK|AdjS4U+8U^`Mi{WKgs?7%Pm1--&A0!?Pbu$g98GDF+_~!!awz*0lh=wP%`1+KNip2 zH=O(v>Wq@MNT1e7_0A1y;5z>Jg9qSvqo;`D$H!|IVVj|`(Y9*I$;e?Nb=C_n?`Xx6 zPfmV4vvJ^g-@wlVwx7}8HOAchvk3EImu{@dWwUrr7&rsa)UKg4Q*$_WHPhvQ@HnET zQyYIXVz;s&uZ`^mCl##2N|B&1@)PWq$VsCK+}=Ea9H*UMQi?CbL`Cg~h-&EO^67P! z7O+-~0!m|p*ISF~q|H;QcTgk_7ZaA$55kg5F9D!1L;a6{j&3|>L9D{LjKiV z(^5>&jlR2z#Pm(Qw)5=}^_#9N0Isfk#2RAp+0#$T$D8bHg51{a&`3EaEfe?A$oKjf zQF7I-O$yOz!WqY5!+S>j*M*dyTZJ3s^HEKE`(M1E|MD@_=^x5JVDIghu%#B(^E`^R zCSCK(xrn`K$JK@c8~U;IyUB}{Dtj0GcHW5NLa(j z?}6_|89J~Jq`(v}j7-_>YDqEfegg}uP)G^YdlA}+(J>vS_PSdBnQ~}InploM!B_MQ z1wCBhue|~NK>30D%j`Wp_j~#*U|HBfPmBlCeO&mm;p62g|ktm?LY=cabBa=USEhnkd@AF9Ic+3Qh+*wguVyE9m84KVoS zrSpGY7*in`ACk1KMZ`FKde@3hzYz3foPF(`mhi-DUW_s2_3yXMCMj5m3H>0f^|hQa zFSTzGPos7&02a3Ip{`w0{qY(Yg2fZLZYauANz55ge=e7Y&Ii=v(;d%m@H4+zr zS9>Ih=?%V;;pV13N^5YJPxjzlK56k{{#6=1far)`)-p<8ll9b#+wH`JkI!w|Dcoqr z&-q9NHGNk#td#|GcNDQh)iF3$>=ZM3lX4MWNAWjj({xgWc1pj=!AczPm!+Oax_|vw z!GZJNA7M8>gGM&%7yKc#`Ml3n;>JjVsaCh79*+*UMazVi*Gv6&93n-)t95vUlpyp1 z?Vq1`-K#^L+V@=FO#bK_i@T+Q#e(`;HdSI2b~7Q7yo}70U($!30}mxq;lx0(-T2FL z(ATL=N-HN~x`%q8UmU8d}USoW9D)|?oCRz`EtDN40)C`dHW4yWa5L>mFB_cs8ima z?I-cCsLWmeQwhe-{Od1e`%O#z|1}fL4sC9yFf=_wmzQ@B$DjR4h|4mYAP@aAX|^Q2 zVa|@`Uxw6QJ>BVDDhdI(Je4*?n({_8&AY*09n1ZFYyNj_del+~$GEU4QHKtB!artm@ zmY!m7d;3*2Ez`q3>5u0Ajo?C)^1_&Sl>U7NHNpfbTkNfn>B6Wd!;jr|eq@cjhUP}8 zojOh9EMRg|2;Hr!14Ck@ZD;5(yoP#;kwAdM%&_Q3gL6`+QL1tx7Zd|(6ML}L=jXDi zJyFc|%E zxc|V%`*B7#|x!t^IZXt z&vk^8I2W7O0$fvwdoF6m*^>6%rYf5I&vgXK|4mMtsV5B$f(4AOzOf5`Cdq`g#=$&- zjuo0*3zWYk?mu5yBr@4Tcuub#5u+*o3Xryu^cG(Z@B&$gA1qG0BkV$2)b6G{J0@L!m~7-ox0JX?WWBK}pd z@6@3Bt0Iq6@e8v4`b-}SoRrJgZiWd6A0QM&b)zki-B=&z!lJ#x6g-tm~ zlmQ<2xdDtYhSw-0R*<${0UY_%X!Us{!&O*{J$z`+H@C#QA=BmLpB+RSiFrp!u-pBT zQwPEJf4h7AHSOKWa#uMxeqwccZ2HT>eWo|nCB^K|iYDwI`;OSsw){3Ci*^21ytb6d zwEKCr<)F)nSnP1z`BqkwuT;kYF?1gJHdB89_6~a(J!T4i0zzViNOAEtSAm6Frvp(b z4Cl~&%y+|QS{|Z(*`}4lB~KpFi{+P`>}XFv3a)BV-;hyAfPp3*E&~Ogc=vU5yz?aS zEsG(^i)Vg-Le>=M{LVz1W!Ld3THJ3T;U9tR>dgp8S3o)O3Yq9;=T*@N>_r%3w^f2; z`V9OKIdi<1b1W-BXSmpxmHJcAacQ87@yF4@tTlbW{+bhE*K^ZyK(T$CbM+Q|@RqVRev7i>ttJioMt8e^y;ul)H zX{g8y%|h|Q(#iP*kT*;`I{!H{6_&69bn< z^Ui133QJ|?+#r}ppgiQWoR?A>mjW2lU>q`21f_Ksb1G@ zFArlyrP4Ap^+8oUQ>%<3p@V-~k8zJ~t@_PRP~cv3w*QTt23rAS>m7D1B-?ZEO2_Px zWqlBCEJVOxka9?Dsck6!#1fualr@9eu+K_dQ8n~^E;U$uCk;W)Xo?=qhp z(cIRysLSuPqNSSoxbEQhMp|0h1Xh3vtLUw`OBWpzgA)n5)}OVp%UtgP7i>NcfifUa zEpb}~S?p)9HXdl}y%j%t)4ABHQMu^w2flgWi=qlbGbfVD16)TF!ImgHnXi!nF`~H* zcdV?q$ixqBpmaeOndoH&(e%vBI##*}MB3hAg__(aPU+U>XPz~6vasMlow~p&0&EyL z^>cIDM5v3D&@y*Jo%EIQIbNFQkJ%q-AZ+AKGAtLP8gebH&8_LIwJGGdSh&qB%RBB! zNEbPng*@O-@u{C1OnuB%b)(eG2Mcg1vi1OTs z8Mg+lbNa1PMbWKux}Y6~`jnA@_d|1hj}j~1y}wvhTvEboGbxFRM~++&N)8RaA5@~E zqM*E8GcjnCV6Z$?^f>&B;A||&1dV(KjXE%Ifk_ue&)uihYXMfLsggBSRbQJ#Yq>2K zWj@ZE{IrObqduDCI+~O`g2(*xWq??)UD#A9do5Z4ZpypFR#?(idAO9bZ%h;$Vvwz% zfiIT_U_K+okW*|mURWW&W9xoh?RY{|IZ+^T-gxM^vrc5b0zZUOYp8t0Y;lc(4eY!Gtl7|08;i_Lcv)J)gk zD7rtZ#Rtv6mqzg}ud!dRPF-04%G+@U5y`Y%dcZm@^uWj|*PuzL59GSamWzjd=_4C5 zJIr#b8nIt$)$8Xyw=#5X>Ig2J-lHqF*g2-N8Z~*U&T>5^I5Sepe$Xe^)M*M9OGjW9 z-klTBs{pTYcvfV3W@C>w!>i}SRDOQG9)l-nw;cwJBgcnlNu5h9h6#~ckdId|7AFt> z-jZwK-$$9*XZSVT(7%}SYhSp^C)$A6u~|pO#ff|WC*^8SI6g44tlCmVSyulx#Ok#2 zKK+bO@dh8H`)HiTJ@~9=Z7Z%$}Q^e`)?7Z>*T>V;KoGO5=GF&%X0xbs))k856;o?ca5?x)M)&<3seU&w& zUIlMY5g)CoV?C^5)a%79QUQHK#L)0~3go{MtV3>@51=GeRVlG{t0;cRXV#y6nc~e2 zSl3wT^A$*?!Ixc>rXUw2&W@o87#{E%?C~8O@$DV)9UKe47G?d>XT#Nox4@d0$A*XJ zQt0!ur|(?!og$OC=(V`vO#O-algKC0Y2)`KNfW)){^*vxzUNrnmT!>O zv@sKRa3;}NWK1{k33#r9-6ruBt}j0}ewTt@cLvc;th}7_#H$ORva*sZD-Tp+##d|Y z=yi@JB!*WiHxy7}+j&82^^8Z>wT|b{p9lX_^CKkTfCYp#aY0CtEr#E!adv}5p#8&# z<%tfvN{741T2YQiK*G^xDqAJM5>Yp$kf zWc;yyXGtN2x6aSEDacozSVmXo`1wNR`VR$v+AoUNLdTtZOMtRqenF^gN@U|Jul?5Y z!6=x=r%SV-JL=Oh%ghk8vA3ABbK;7b!vZ`LS^d*k+fl zUbV9AA+rvdeXqoDSAol~pKJ5sR2bu~`EfN_n6U0yiKE`%I44vZ^RIx` zB3)l!H@2|&30_t-5oZ;IXKNAoW<3;`@Kx+FX`S5|fn;_CvEmk~$jwJoYcH5b!4F;VeUWh7@xrM|07`t z3VZrw69Y^ljZ(mw@>SO?| zq|oR82Y7LV8engF557)>j_bTliN|!Xv@?9QOBQ&k43By2Xrr>L_ZDuK)PS6~%S@Ef z;|j;+dCMVchq+HbU!H1lIR!Z*syLv?iVQF(P;T6snke6`Fx3;ZKaigU&OZqzC+H4B zkd!lA3ErYNwvmpe@PLWX&%rFVr9_f2JRnP?z@Z&Yx)*I*;rwC zqjcp>|A|0JCIJuTYF5Q~k-6=A$h~{DZz5Q!=0zC5CME?)mzRmybQ5z3b0BjZIIpJX zSg5z0sec@#oEYDhPpVKl13$3PlD5`MZ_I|;x~K_{u1h*Y}1k3XUQdGl49gRBeij%Z}a@0 zk{VF7{&&rq2%%YTUF5FA9E+}xVzeV)m+?8T&PxuaO>fuNZ5>y~zJbVMP+7p)_B!># zmyJNvUE{3whgR>YLG2eX(WJzK-ynn(Q&s}L87Xn+X?gQ=AlX3R_p2tldqz}*b~9g} z9`0=|4I%|bR2@o^Qm2O-O-*EbTP7Y)9&}>=HEVY<-Q#I}SR}$L#R*5qW~$3d*(`Q{mfvGL)lLn2 zQ(;dBa-Y^;Em{Wc+llRAEAg4)7JbatqVmKv+=}z(4u@;i+eJBR-@$7qZI2chkuh}q zh&U0U>nT_R!5DCMVPWCBgao8#IXxp|pD_V+sfpBH-T|J5B0=mFDlwH-aoG|YbaS^? z8WD3-I%_&+nlA+zG#%M5n(XQYS^VUDFPzKMYa&I#?j0i2cISgPd6rlVKKl(u=E-+_D!Zuv2n2!JDjlkx( zJE+=^*fh~gkFK<^CEz~+IqoKU?L|XBB!X035gU?3?C4b2r!&J|s!ol&O^ ztQtBpwOs;!4uS@P`?7K+^2l?u-RUR`wTBiWUb+>mg{`-;o``XcVy%4r-H`pUOR`5z^IlhadN_Cwc@<0F-tZ}{F;Bkrr9dhj>@~oyp|%`6m}BC(cn$ zos+NSjJMt-?mVs6jFShC6Y#TAbU@to*ctU%EC+naI03@#0?@nO*Qa`PIDQ-lBG((b z$nlo$!ME`P`SKWeUIMoKxdJ)5gAN)`U_z}J|s71Yh!v7zANc{&CL z_A!7L*eMd(Un)2Nf!&Ghij~i^8(m#pbse7DywzJ-R$CDo0?~4uWl6_tkQQ>whn&Bz znrqy}Br7NPyE~$~!Kr!!p~t?lYjpIRk@&tk#Anc`t#aF0Pv-J?1F%#t+7LM-O6jpb zJU#SIiTet!Dr&$kM>DX70Pn!dsw`e?;$*RTM7VL#eiS6J5zuX1q|na{YQ+ zb?+{yHTT9-lD#xAGP+K6dR_a4@8lpGG2si>rM#xiCh;R~)A*~(DaPQ3@=fu7w6?a| zPX+Ls9wSGG`@^{6 z#fwez%C?>^N_`P*KM(RJO1#yk?5_=6Qck&Rc;!b-*QLVPu1kC$bMF!neCO2{F`>Af zR@&0u9^Q67T6Jo3{`>YhI$vfz{jh!gu&|bE9K;0Ha()J3q0J99m@)>gXCyrioMckJ zd|8PZL5LcoK0a9y)D4IgPffhvl=DhQTRukUl^A-xt*ycz#C`+;Q$56RLh9|5AzP-9r_|CygCw_h8#CLwkc)CN{U16;lmHfauL_y83|#hmC&ZC zuA+XO3>e!*AO-x|7(uEb2| zzmtU=mp)<5GF;QL>(@m6qDY_W#fyuZR|Pv_PktkCWwl={P5j}XiJ4^eIJz;l*6iG! zyvawP{9V7hyFFVjL`jq0-XG*?b>M1-}jhrRMHug;euvM}Re2=Z1JJUKJ{TB>F? zKJiIA{5_ueyFZy|q9W$t#4p^nkWCyNJ%6bHn#<_cj*g&#GR+##sv}5RO_v7p9x|dX zz4A`%B9(S=amgTgi(N>^VN<5n+KRL)J$?E#!=gN>%kxZc zT*0>|^?)ET)ZP%DUAyxmh4q zNmh1F)zJufJ8dm|8jWH)QtCDgokEL?^l_vu>Iu8%;b*<{3tLI$qmIznxQaLZt3Ja*i(_{_f+M`Q%0@|Cx6N?bY!f zIT8{lU+ZK^NThGJoy6C_cHMvgFaO&0%Qd>`nS~KqvdEQ$ab34-n3+lYR{Q4Amaj_h z@21>Wbqq_OBPhtfbKD?<+GA;1jkRmPRC}rc-Q7_~TOBDJ*Z%3atmcRJDHb%FLac9D z*4k9lBGMepO#U59pp8O23&=4(g_f7k+TJvNpYlr_&+GALCjwO0FYOmHLiW3+gY))7 zWY_VSOdgHjoQ=C6%0U&n=6c!c!~KUJ{7YokDO;SYcrJhW@DuYaElDyZvv95MhxPl8 z*$nCpb0=?1YX>JAtNlP@a!RXg$2%UO=GNwSy~rir!q}+G4$Yy^_NLL^8Xktf@!&ff zS_dsQcEdq=J&RnDx&5v`_D@wI;tknO3RQs7p>$Myz6>j%m9LuBz|u z3ZkN(_CYP#RliL6vZ67~nYIvC7m@t#ZWhJp&~OHgh+y)Q13dI6P=$hM#vdfdO-<@S zTxp@91B@kZJ1eqseh1={BO@cKZkiPa>f5vYjfHPDM?3dk4x@pR7f*(y%6_Osrc2?B z{Oo~vYu^XvE&8@L|i^AZVZ%%lJ0zJ9dWFXCACi1I? zA~2`*v8wSkzhC)3PxO9!+R~h#TAG_$VJ&d?cWis7I3e8!H9>l#)aDb%FH?JEelK{) z&Nayrb5-2=ZeOaUUPoiG+7^N2AYQGNKZj%CC5%7Mh$oc=b(5#LV>cl+MHeLKg_ z%*0^q{a98`6mw^T4af$DXRr2I-23^wcrR~;42iL_|F~pkL=d2&L%w&LV-t;G zR2IZpoBAXyw@4Z9`Ju8>>-_oPnq7#CSJ4Ylg7E7-1-64dqBY^-v^gV$5T_OPt9y5Q z#P;Tx(MqdhRhpSPf8T=Y90BXQj;{A1i(tumocB>Rx__}3(%!J>=yb>@OYD39z485E z;TzQI``a%Nra4J2Sj85PI|ERsPw<*!TH-Af%$9KLw5A=CBC8yS>g9Gd=yQ_rg?s-+rahKVLDmT`!KOpv;y5DOE~AA!_6ogkA3c3Jgf)T6N)f^- z9Gh;|nI8myZ^did7sd7Ou2`<(!ZZ4CgjwR;3Uk6C7ru76>pc8hV)%iM<$ULd&irAE zmMOHk2mH)y+lw6gZePD3amREc#WW+u`C#c-xJLM4C+C?k9GpuL?zlLoLUEY>{Yi#= zKD}}og`(re?g9XBg9D=?`|}+)<{h&~ z>gs9!{{E6`cv(GG$iC+CXoVVP6EXoMdSS==*nv_HznuC#ZE0yqQjH+1Q*hQjMR+BW z8C^b&S-m2>??aqTu8{$8P1a$q^HNu@#PzLiIWCj&Y7b1(@j=J2ijIzsx7o`+UjR4- z*l9xzoyM))nzk4EX)kmZ=BBl+tq5{&bhpcF99u+N*bf>U87Tl8`8k&%BAO9<5!#it zZVeiJSZw}s!D&Va_x(ds1`*>Ov_H3&918UbPni#HHY^wCN>~C8!87cgOJHQt_5_{w z5Qw91JoRRo|LDglYi)sI$)L3?g-1LbLRhdDn-_-jE;M}`%?Y#~em|i^{vI$AsSKj7 zG8i5n9ttg56iP$9jY^L~n;3gmI3()1@8N~%;M_#gLM7GSiwfJ#_+!DV#c*+2Y3XBN zD?VVkb8V+l2U`Ie1~;p(+mqTvC=RapS(~R%KlEj5XJC;Jgrf(Rmf6{r>#_lKf=b%u z_Gw|qzH z0G8DbH$Z<>#6=m8|26rc#JfJE^N?6YG0`85Rk^{sRF_4kAqQ35!+uWmsKQF;_$DG! zy3RtA?@X3*m=wi??B{qys+uMGEfgHO)glYGgdG-=Ac5&OJ4R73j~za5)VeSif@Z+FnwcX*_%_QW67Xd_Ib0aHGzw)PE$jxeJJFA; zdO$}p0Uy;FZ&Ra*TL~#YG*>V5=OlP;CNcuuDIacdm5WPJQDp5Uds{cHRpp27?ry_j zoytYj`=4JnM2;Ytdjzn!?gf$ANU4piqGE)BI(+ZnU7Nc3q!xwlPLYpE4?~2Vf4whv zT5V@klE9b-9!cEIIkk!Qn(kMcU29@QG9P8AntXmq-0NLI;X#3t*q8F+$ANmwMKles z;r%SWpr%B#>@q1#A^5WY>%+&2%pzD!fDI%6PDIAQjvgv73aa9yI=uiH%)(%SQT;X2 z_r1PO$a`+2pJ0zgV%_Y`#=z{x{CsLcAHfB!2WH}%XcTIh9%qcw(7!7+!Sfor9Pkg* z4Dm6)D=hkN`Bl#SI1+7sJ1*|Oe%wZP1IseH&)Qb+b#_Of)wDJKa@NCg(YjOfYv0b`h^R!|9#wE5r(PvHxde2~gPi<`-3M z_>Ja|vsrdXRZIwHG0@kat2y4UDS|p9y{M}S)ONB7PgA`IzjTe4w_t?~@8YHCMDfnf zzvf=l;Bo+WW(w3Hjfit@x&6G-^|(J*z+8(Ae|8s3V0q*w^H6?%ejbzb@#9Cs!N0Ru z)Z;>Tny?5=8Y-)DWo2dMM|+FQg-|${_ z-M5=-U?b~nuUqOT67rq z*ugHh)yj=P>~#PGdg~J@Dq7c0OPa=2`@JGAOU;Z}&;?GdD`*-~SNooSV?d^E_7s^I z4gtpvD}|g}ahEbNTf5>`+h1RoBiOE|=MVRuSg}$rw_3FmZ&`Eb$e~@Xk|-6Betsk? z=)+wfSqv$iKi^J7jDg!)HlA1bh1HD#s>BPr?hgT4JOEfz1hf+t;cqiq1dtywb6vll(KU?f zbf@TI{N(cQ-b8{*%m|H7%Q0 zSmyEP%uM4~T_vTD!2`5y|Ys&882rYX&SeGpCJ$wz^wsU zBFp@G8&^bB0Zkqg)H1vzUf_X@CPu9^xWJBKx1~ze@|WZ$%JCq;n7Y_KRErcxVWsN!+rh< zWn5#0waP%g?Z2M#n+-#PfXyAT1Vspo4;iyryV!6bQnH^t+P>>IRD;w&G+^Mi_)+^j z8o6Z=&EA&ZPpxOazg!}Rfr8X!2k72G51W}&qq5{gvM&R(RWj-rlT@DIC2IXc0=jMP zVv=}`+UJh;R{>!KMD|au8AC-v==flR_Mi+^80)-^{%=&Ak3BY^cV_`;@@`*pW=djjQD{HkMi&16;UD?2FEKtYCP{|-ccXa@w*jhZL&_1kVuC;mgnGD=_T!VsLx0NyyTU&tRkfMKcyh^-L@hS0q1*tYDr2ytS2 zFF&8h?GRSGW~SJiAuG2$U}E-nU8}~DMv%f=6esXOIJG}JON|=N@%{tcG7f;g=mSsW z>sDiAc&5VV?O_Hgy^lxLAtuLNLo%7gcPk(Xln}Y$eF23kG^^R`&6yT)tk~MhK}5SA z;jnbE!U;NW_+ybL`Vt36mb#P>;fve9505@23dESz7z@*UmwFbKmLZSLB_DBnM|?Pm zL#-`iyT830GQ1oPul~ib@zwsxFMc=82W|k<2W+cCw1`W-*wOBk?@zqvUfP~e-^3)1 zRyZv-(pssQnx=2Bjx*+c)je9j5J1f6u}ZF zXxBJ)1kFBY>}qOuzi=%@grCM?!^hfsMBQneOILxGzYCodB~YW&HX3A>4xAG|ni9AF z8K!oPnfWf@_l4n-9H?yuN1P(TVZ@I^j($gQlHfc$iS4wQEFOpb`Xi!AaAfJ1OUAPc zvgIN;Z$?E$JuKO%#UqQ9xOm1!7>Ir62pm!z4m>EkMsSnj7~<_MWJE-h;s{fvrN;AM z?kj+b@f58^O_l2w59TXG;xiG;q&QR> z)GoZ*keR^}5+82~jF^e6tnB?8RD5iT@qFN$gW|+saYr`&hGGsM1kYPQHt!yK+5u|a z09t<_LYEAO3J*DSh;Svtk*D}B&p+srPWT>9vUG8A)M=bPVvr1nlO0NC=WN^_jk<4q zlful8*C1JiDRgb+d`0q9$~BG;b#yFkZEgKo>}KPfq#}6F;BbpUdlwDb@M|Qu%{Wqt zSD81Y@9F6oSJMx8h!#CFJbvWZU=KD_$nmxA6iR}29da|>2yI98hC+zu?GYc(;IJc5 zGst3@$1={h6z9OCe(vo5v=-olRM>ZawKpRITaXbFGq3gW`iKFYGs>Cb=|D1#AAHGQlc1YPAt@-kh+Q1iO3^5DTm zv@3*LW(KFW{7vw(h}_9yHX8>={U8EIW>sbf~V{D($%0QX0+pbH0B7}KV&dc{!|}G z>4hXY5bR*f`^~`82xi%u>tZ(bYX50FA1J)?j^%LK3Nia7X4={UvS}0bm(ex9zgd|k z``|?>q$=NieL5|?uSak2jJ(BJrAXO1!@(Ifl#cMQ^GFCYOfXzrIYecKNmON6*Vr^BpVnSE`T2nXE|JPs>#^;QJuc5 zKiwS6p}`MR%tD9*zHjKA6|}f70s*c@@>D*7aXk2_TDQIRx&BY*W=l7(+Nvj7nZ%{ksx%w;)!|2G2bdED4~ls3kG z_t#T;G51o9p+7iluSL=GV^2?ysfoN`I7x5MtxNYTFEmnFjFvyb*tc<%^r#1|daSx( zl6J-santyXc44lWTc5X1lqAdeb6;a;?}1ci6B9k|1e6r$`)hmHsPt2$7=i9P? z_Bdg=lSQe~4$y*^YSoDQ?HzPWK zm)%3=u}I@|k)+{ow88L^xKnO#rI*)i zZf;^PH#GE|D71HCk^t-1>C|{0x}v+G*)a!FsZ!N4a2Jg|+~JMIZ_;bNmwWdpT{**b zb<(~5sl(yQb)eT@&9G%_^h+~(s9*uo`o_l39c14D{LwskuAcRuZAEso3g<6eFq>?6 z(PJ(+l@is&aNVBI74ud=h7Kd4F%

#SP?6jj#^F?KTL!40t<@S;+^k6XnL3+<`Ehk{4fV}Eewy}KtcFG5(BR1JtU>*liymd zqanS>R_mmPdq6Dk{;r(pjoQ9VSYNW3!zWp0r(b1;jwHetL=KwwYbgZ}u0g-T-IUKw67RIV7SWLDSdWAd>N<|6kBf0gM!cAK9 z%sjdcS&8jCSW0k?7`hfDrFrkpqNyPeQCna;62?^5q}%^iCsP zKP-aih5N=7G9Q-0$1DuwC5~8@K&ym#4jIv-e&949h5qz&wj*KuNBJx1E(DSRRd7k< z8|Pr&p$%ny|Byz=-Z*RXwF1e*-ozlWYghT?>%n)kp!vt$3vBJ|m}jgO^2~i_%+F3t zRXeXebKCQlDTcY=3Zl7r&9oX^zoh(rf6YNs&e%3+6>;(FA%nTe`ZqO@8w*V?uQyUbtn|R# zVWy|$#kB!UE(EdnGCD|PU8cvq!0=l)z@T%d2{Q;bKHK%aUZie;+}@l>hL-7I@W8VM z>)0i~o{hg%H(_nu{O;2B-mfb?-rk6}lz6lG=3Eyh37ZjqPmvE{0n$^{^eBY^o(5~b zMegaPb?@G*c#rKtUl-ixUf9+Uba$_sZWc7JU0K*>@Z6pF^xYhS@Li?3=ay=^9z|8v zYB@TXJIWH0r+CDn^MLy}tuyqH-)FD5#oDXt{rlP@qE;YYDTKstpa7X_F#NH=Gd1Hm z8QJBs!^IW_jPVW!yEa&)mZ6ptjwN`R7A%(XO0_uMXpy6h1P5#wgNPX+D!l|#zXkAT z?hRY~I~Hu_28hVpw%x`Ax`LKsUR+EvIaYznOezGy0fP*}TTpRiPyIglBkgRv;4Gc6@zTzI zSbTgo5I?v6XQaA{%+x9ZA+6{Et1&%Rcv1IWY=4P&6eM@BA%>1rIxg`YxS^g@MMmJ@ zzIoP;q$wk*_K`*11L!NwRsRzsRGT4CBo#w12y=@JPfq3fTM%X`8Sg)c z;lEaS;fW2D-XAad;4Z*XPYekWEOgl)hgchvSzr>eehWl0fg};5=+Ee#2DN^%NmP^ zLJ^k$d55jL!z8{e*W#>#?n5kbA@+OvETn|@u&v}r%i~A#z^eMSi2-h+M1Z!3rj2>5 zmxhuuv~grZGH(W>4{ZEfb07U1lC*c60bz*+*pK8=9&dj#9M zJPN%~5MML;9f6tpfbDvSNTO%!VuG0sSA8gm42Lmf@GcxI&N9Wi+-Q zsT2~)PK9Kaa%_%ZXGXnjl9*)|C)<^H~OA}WcHmW-v18~NiISF delta 55689 zcmZsC1yodB)b<#lB4E%+2_qm4f`~{-4oXNjN=Sn=QWr%DL1GY)MnI5mkQR|nsi8wa zI;HbF7tr_n*8kr%>-AkT=ia-|Is5GWJkQ>&mYheIp3k{041KRKEmRSoA5alD?@?h6 z^V{nw(y-bn_2Adg%;<{~&&*W5ip83T{T;u*xUq$AdaFK2v_WD<5rLpVpu|L!^yshB zG)7EqxIS>&whwFJCyl7#A9bx1NOh|&8>pf|9A8qm3CpEg>!{`(oq^`)CSfY-e{D2$uxKhda!!yR-Qa?xqw%TuT2RHeyojd_eiN${3Mmr*EkRqoy z?p&|)TazX>N+uN7!pD}oxA;#61ziM#j2*uXc)S9m{1);)joi-(QC5ajfEx}BTq(1 zIS`f`*Jq@M{v1N0Y%bvHJ@B}qXMwMgIEHmR;9FbA$S2DD#WQBN&bd8Cmqb^8MjN8g z8HH2m=9@gH&+vauviLE|p=ET+g9rNhDt^nwikqh?W8k+f?WrBizz%(jUmk@9Pp_EV z@rE2(^~q0u3L?c~cX*+#K6phf#IW(V2hV7q#qSmDk2RN%fA^4;U-_=zjcGPE{ebMR zJy*_`Gvl^7b`$+f3Y}q3SpJ^{RAyZP=X#^hP~`k(;AMW~@FW-6_$4*$iRQ#VE9h`^ zoHAN(RPaC-GIrW;4|00*eq+-)HBq?wa$t#xWcB=q98Zju#q^2>k(t}$vj|~~>zeQ9 zYESq>eROZkkpkR6L-%3|FR<7X!#zcKWrY`)&`fnD&yxfZw6Di0dZQ=~qoKWMMGOyA zlwWZOHdJqFYun_Pc$i$GPq#@m4Vjy+|1K|mTievsJfG#%r`X@GAOfYPDg5qjZ3<&H zoL*S<&M%^l#H7ekV|i9DN&9l^74oU&%EbxVXk+TRrBsqlnmGKE+~nR=y{@JV4@)*# zvw!_YW7H}yFK_Z*K)Xqh|G?n^Ju|bP*>&U(o=b=Y;p##0FvHu-%+1TBWf0-T^Mn@{ z4j~nzn)~9KLK6M*hEu;CtT+~e`x>6)2_4F#KUBO-Y&p2nHy_xDb+we1!Kl3|!lNaJ zVVOq?a@$={yW#aoD~lnAKr1Ak`73>O)(aVQ>Gp5D4!7-)96t>W4JAdz2}l1oXJ2{j zZp<^F-igtsrKb-r242%BQp$uN1~c3(#pd43;g45cnA9E!XO5~EZ|nKe-g0r@*5)8p zx<{d6Z(pdFtG0DsOrx>AU6qj#jZ{`vZY;8hBe+TSw&odMK)xhw%*KW~dRH24KG@rv zseFk2P{FieM#|1=* zTbIl1>M2IP-N)BBckBwnE`;Sl-M|x3vYc2}c`tBwn}-D*F+*Q){{ze@) z`~V1nh`$349xsHsO*W=~9jO<-$mrBsI3-AbdSf2AF{3rAoQK~jBvAW-uqBQAyPQJz z%pbSEA6tOvV;gfsY_|_Qtd8ntc_eERk+G(HeENrJqhfjy9!MpPxtTWpiFr=_Z7=w+ zcidofx)U?e&?lHs4FNBU3SYLRL0)I3WJ-4pMK-3XiB?}mNJ)EQ^F`ietqc&O=;_&s zx&Ur$IPY)V@Zz~lsK2oidXn%;5N^%1nA8t8%3qnSIKNlU9@|3`@S3-#Fs`aOtHWUG zLm2A$K7{#JT8N(CjlOtdaH9u2BETrf3f!rmX%lj0AV>B zmX(5;Q1Y|)fvA&vgIIv=(Yy)Oc?KlJJ2$ZTr#|3q^uGFc{^Q45jU^Nl{dc!ldmWBw z8}nRc-^BP9_E(!_YR>ClKY0l9GR_F@b4$}ZvCkmH1Q|LeYEV_S>JVgrdE(U6pVML| z!&Yu!Sz+fFnXmOatRkpG;?o!MD9fDAE&MtOhz(AJ(kMrN@c!|e|aCOwD z77NW=^}#=uhCk?$<~4iOVv1O8C!C=_Cv*9x3XDx#biz(Chz~^Nlr3~pUdU7@GJ{+} zU^~95o~%4)G;0Qtlfq#o`GeXZU->+v(}@#uk%9flySvQjw0Iq7MClhUDI@PyA?lwR zsy9or{$}nm5}c98lcgj0I=okdy0WXZ&$#A zG?+q)EB6N9IAouCwmQC{NrGeQ~(_+&kszZN$<00 zd0~m=u_OC5H{04T|H zONpD9ry17d`uwsj`2uT-IRs{{l(F$|*1(fQ{JosX-s7Rc&Zu$iw8zcC_{c2}iTdq@ z)A;*`&GF+r9zU!J7iqcs$C2{)a`J_mAZ-m|-8wxkUW;|Ut0ymX2HQkG8#T?k7@X*e z`+CVByojvp8^uYM_3%Gl-#|!PDWPszn}+WC6Z39&_j(cD+`*Rd!rshKe1Y%v#~~7d zn2`Z{RY!II`|`z^=WX%T0CyCzrYC6GXg6}~2b`Qn4;_%UlkQ<~8mKs=dUtWiWMsI~ znWom+*ZGMNH0LaaO=o&kC+0ti%1}DRSG@!#dOZGys{_&C72N2OuLfp$2&rTj*{#-g z){;Dudr)mi55{!d__~JO>7jl9hog3qc6X5c9w=;QWl09 z8CmF`@*twZzaS9n*f=^gG6j@fSJnRW;2BoJa^Xmy(4~8jajU`O(`+LVKZe!$MzJVy z%n+ab_-5hf$6tj|hYj+|p$#lX7!yC&{tZtvCg35Z9JsX_j;p0vEgLQ4Co3W42)-vb zap{OG%=-TK%*^1yUs^YLy_`qbo}TJXoo~w^|C9!5E3p*IQIiGxv}_QeEgpqUIkF&x zz3y#~eWYLj@n0`3d+Qi=2VLp|YfRAfLE!6SG{|~+AU1;CrU@aH*wcj#cBaB&4|+Zj zV3PCC>w4kEA~198AjdkL(|v#_JN@r`>5eKh%Y?M){)-?TitykG?6Wr5_+dygnfG7^ z;R6O=9

yFaPT%3HPm^`Uj56@Fny6BCo4TJ#S{T$2p2^VBnc>lVn7^Fd1Zf|eD`!mozDJ?C{p_pB_QmZ+f z9b?-rkm9mjp}Mz_A1HU})rjGh5$le~lA@u1D~d9CvLd)M83JzWw63R2xy)WJf3UX| z{){v&BcnS+PB7JR+I77KCSJ{%~uPmhd>a+Aebrz&fOfy&>U zo0M44SG~8^%ER z&mtpC%9pDS z=d0{C`;8nm+m;MSy^8VQK4fBKT;arn&=MlA7G59Pq%#>>3@2m=??YSr`>rKf^S1Yp ziM?@7LBDhvglRK%8Okvl3i1mzLABv*mm#zj-}N5|drWha9&B^U|4a zVM2Se!s`4j9IJ8dyo4lkm|fq~1ZP*)uGqhh8IL@#T^&c)M^q`HKr%Xcu2gP7TR9>* z6{F)KlU=!+25+xSBsVHo?Q!v_d)ZyfA@DwOubW-m1c#<&kBFs+>U`YF3-e9i{zWkz z1f4b)vI*Ip{h)X6xJ^2d0G!UX@{V@z@BFbJc{y#r8y&9WoZ7WVPEKB6Ki?bcQ;PY& z`1udtHT2v5>?)h$Z2jgcC1HhQjQlY!Hz;ZC&mSV3w@4Jg$axm@yore~?y=NcJ7tSJ z{C@y44mRY8<6TpZiB}wd(Z^3y21rAVoblP~802hxPEN=2Md1OdGRksa3b*y2=p-WM zzG|PAU+e52qGDK4Tz4}<5}y3cr}6xsU8~ESR`p`sHv65o$G!R89?!QS@bMnjapLxi z9^(GQxGO#WagVR3WA$nzlpRHpa=Hii_ zy(h2he565iLrqrHJo0i)9`z`>wLMltqb zZTII{suB^XdNQuZ8kE%SPqSE40PSA);nX*;*wS&O^zBPa|8sg&72L7eJ+%D_BWldD zShxOW?ot8}de20Qczzakt*I<2(z4mfRX?7*haJd_1_+QD$&`S65gBD*G5G5*6NcOV|5{ygRf(aK;@E!wYTMK3Y5TFZ5u+_kXPp@~<{T zBNIRAJhu=1iwJXy;al_qD5f$q|M7#Q```x80#>JUa6$$72Z0D$J06EmeVfb+*_d!D zI7qz&DT}_bEm-k^FxsHIw*e*yAlt;aZbp3mnFxP0EiY|T9y61RV62z57yef7@5r9Y zDKLpR0J8H8JHaPe#ythzO|ElbiJlD*m;cL@7K9MEE!P`&tG9RH_%_&_ZzCW>ammOA zL?>KFpPQv@%<&hy6o)9Y_?@|Bb}{FSNZ3P>d<-`w_lP0}Eo>wvXv zdi46_tEbrjB9Jw-HijyyAyFW&8FpiK0IEBlKf>iTxIun1XnZ7+@AMg|zQ1S}B%bd7*&L9qVEbW>T#-%F#lFpHgwGgJ%kL!&~N0Xsk&sHir5N#8gnhudi` z&{B!yCwZxJ*tjeFIA~k|Ec!*gUHHTVilQ=bB+2}_%q z1mCrIca)a8$`6ZlL1bXWk1HB?a8U|RTTOilnNFg-=TUEL4=#Lb6S?HhUz3LS3iyX~*mmrlpJ*d6Xn&qo-= z2AenxY4SNPX~kIAku5%-y?giW+*=Zz4uEUoMe+H>puNG-4M10u?DCLp5ZN&s;*n1|Dw<VP{AydjZ3h(rj>t^fW*e^cBVllD zp$mLKiz4TD$ne4?>txN2vOG3yNM5QfUIB&v*+*kL4-x;}(+66Zp0ediW>hJFI|PDt z9Jn#AYmMk6R?UHPOyq2F)q%zLgiT=7=I@EaDRyYKXrU~xIBqc3^uP(d z4!(EzT9uX6HdyV_CBtjqY?cfJQbg1gZda8!qWskGu?Xj4f?C${on(drSJ3ZMvl zeR80O-<$BiQ@T;ub; %t~L4r1X&!;5V5%w`Cr*obnqa*gIuS&GgnNUbEp+dyNvC z&tUZ?C@*gIK=nmSK?l9Xm4#h_do6d`XMoqu2DfMz^2ZI1l+LB4ucrtdpb85MHS!F6 zd9fd&52v9+Nwi%jis3c|zT=)*%4IM;Dx;OFC9gdE)gG&emrULp(K=zKG;V8+45fQZ zWgAV**^K1x9li>Y;yQe-NKHi*Sv*45y}yBhnE42-9j!;&VqGm==A%aUlZ#_{%)(Sx zdV724fUkxjwV{KJ;oZntuiw}n^@S{ahO3--5=dGg$o$*6WZ9UsO9b>YJJWHh+~hsJ z46$DZt*W&1joNz|;#?DUcb&CgRAW)bVu}b`8yja^8x{)+3hbOmW8Ezw7iMPWN7Hdo zWzzO5)684znpPFJPZu{u;wsDg&n~cgIOvIbH)~WpL=$S|YXnyt3NjoEJ>MYc zXm6CqZPyOfNu;XvX>Yko*9}0Rm9JuD2Kjk;$Z|I;!Q!PCJ5%9i z;4r3Tfjk%oW#vNp^>g6Fg(45eE(opQ$BOEKaNQ9g;F?ri)TFxm@jN2PRN{T!M!k?U zw4Z3#%2PCI4Lqo{2L@57Rm!hdg!W&2KdXcWLNNbOFThSj#Kh8Q!QGj}n98;!R0v2E z>owGeF9L0rGTvzCJQevq2u{j8z9gmn2bN|a8VPI-*)G=I(Xy^35?G6zee;?`m>-CA zCF=d4o;0jMmb(;_c@80^d$3z_e?w`uTk*3e{#?W`C9uL>z0@uhz*|rJwWfybJd3g} z&jz-Nbp=#sG@mV@uh@0LR+Q=l2iLS##ak1nlscU%;0(f0)ejn z@+1+7x=g~hU>CM%Q9PVnS6BCDOWVFj8U5>z6SP$}ddsz?VrzsM#U-Q20LnvUd+*-8 zL)JR}wCv0IH0)Lam6QPX6ojnU{^fT`XtO2a4!;16g_Th8Qiq0zs;a6>S-4f{EIpam zPyOr&HV{ATo?f{zo_TI6{Z#D}wlN-lHZU}l;m2O7rdebjOgKum2j)8Cf2XZO+j01_ z`@t^iU3-~D*`Py1(9P1RFij*1qh!aug^rAjT>p0N%1qIqWe6ZLdz*`c zOB+=?tya$S)t(oc^H|^vwq{wjkk^c?y*%Pg?cT?1nx3A%k*<3nT|8vtr+VFSYr2;b zUvT^BGNSbN@8_sakZt-hvxBo>i#sgwmrYNT#0wC!O`1O3Mkg7?xvAW`1>FK+7&z_E zHUcx4m>^aQ{Q zHNmOQv$3)H5EYdU!~yjx5E2V52JgnWES22<{ZSu&%hcrL7u_m%a*n4STdrN)8(@Kr zewf!hu9IJ`jE<&Y zRm%|$6x{t1@L){}%Tr`(dU_s&%5D%UK4WwtZQxhvt)ZpEA(rMf!A*6en8M~kf|8j8 zzw(XD;*rw%Bbp#2nWf`$imW0Y9-gUmCz|={MJLTkx?rCINY365)F*Yinn! zu@p7e8@0M=SGR+69NE5|m9V!s+I4L_A8>hqPEZPfteL~LRrHg46k!wh0GYp;h3X*6 z#2^9ryfgknt@^1vT1j2K|Cu*A4XDxJgBndl<~#hR=4Kw(?HBJ!IUh2sWQ>_5`2i3C z(R|v}Cs)}9fd;+|Uf-}Pe}d-LufuH`9=-~YrN<=U-kgY87W1k%^YM@wdO*&z=9$10 zY~3~MrQ=~~8#(!Wx`B<1#_SJ08PH?Q(qLH>NMG<3L?6bcon}2zS6H?P4u%qquwe;5 z=}$zw;^vAQR9;x<{P~p33zs&wwW+wfSH7-}hu8XGRt_4N5;33gxlbXSqE{oqv_3w1 z3-zjpnTQhdfxV(JBd@cg{N?IKyolH4VEeKDFJ(z58K5L1^L~_5fr=mae-jy(QWnvX zU{K-n&>tua!Xrklq_eYRT6#K`nOR`>%hYN05zva64`x^fSI9ukm-d?a4a`5W*n%_R zlV8ZNE-3`$lbxL%8|~uecH2#A2BQrel)|XYykP);j^tW3lw305;tmD~(u;7J9oz>s zGvCR{g|GCvEPmMp$nMR^^HNFwS7kYeWktdl0Q8>yfZ!mLNFYw3fAJ;$1XcVXe~l{H zgrBPs6M)E^^a#vAmPF;`m4O;ZrAsUa4>xm1=Ym~VbQuZP4m&CRY8{s6&y&#+;xyW8 zkC+7oS!kLboZ+mL?TF|#yFOypK?eJYR!CB%pxf>?gGC_zfOpH&TwTE# zQDaF4=@PC60!Ih##>2yNo7m6(z?ZLN4wQBzAkm5f%S`ej%iyTcVOx>$DBzXL?dZBX ziT)NXiL=1_0wz{;Jm1g;v!Fy!zvj=!{IAO4Qj3?DSJJTYIS4Kt0;0N9gR6t!HzLiG zTp-Xb%Q`!izTbMH;3BSI0cQU0Jt^S3%FS@e7`{A;AmD5Z3U+-LP4*}XzNHaex9vFo z1%W;b-_YC^e8)Hk)TpyV{#TWR<_Xx@1P9>fT*)U|1kG_tiH1kaJ5XWfpbGUa(8QQ; zLFyDybo|l6DBIfRE0rk2>_!$t7%t`Z=R-`)q9b&D{VV`H+P`oqki7hwAUI{%n;D2{ z0=Wa`g~;I53H_1LmlO=iYAwg!I9zS7%@^mI^evrzoAUGgW5ry*>>!E2RsKuPXXwZg zcJED??wT98S`6kjsluhfAiJ|?ZVL$=`n3X5NE7q1Ic%5m+19;)7NX{T*;hKycYN@6 z;v1aO)ew6y5=(_m6^Q+(fF$0LPxl7H)Z{KD-A(;L6|!_y^CMmihGj+o(CN|^s*;KL z!f$C)=y_?cas3m{=^XCXZEbS_e+|^pdw+@NmA@v5czq2Ij0XH#;03&tnZYHX-~eN^mz>T8_W2^;)Kb zB36Y2&oYNU0;=Z83_My0;V{)b@!Y7HN{b%IEdF)a>QQ$asP6SGt053^ndv!*_y!JrDhRh8E?(V-qV%uV%zyus$jY`*&(I;G>n(ZN=PrB&1%4S4zqSr^X z6ksJoK%eMis7_ey4J+Zi2KcUq5_zmyZsudU|>m*I(YaYu;fPuAO{% zuxHj0FA~XR_>PH*>AGMM!0dO7+Pa}v7pT50ESSHi;8Os(uc9|wH*RGW5Y$LPw^9J; zQ-+4LC~X>UmTrx>5Im0*a4CBDDQLuHSpdviV0+ASaA|BhKmg00avF$UBhp%#-}ajlvh>4-WuwQ3myl6s!dRM!7-a6WHw2hXqbxgi5ZEHr4m&I2etFt|4m+Sdn)!7L!tR$ET>)`agRly!8n08&wa$>>%&T)9Yzwt4rw zHF8Q|q{yPbXz{>>n_QXO7cwo8#2L{K6zJ8208!d)KiZdru?37AK@|qQ%X|LYlJ9$p zTfpa~&oWnjps1gQP73Pr{N}@@%5XshF!L0^0px!gD+Np#4;ERJ?);8YR#inCpY0n)1puy*Nc-3@RbL%p?LA&+(T3@G#f@11YsU;cnR00bSiJv0%(FAKB5co9#4LxF0r4iL4* z=x%RuH$d*HIxlNo%;$H1M_H+iR=OFIdI4$4z8Z^U2C#XRmoH0-%=>9kyTi-wDFCmT z3LI`vz#2hlcsN512O+-qMt8(1QnvKo%c|Tpor0#O3d>r#WhjrU7+}J0sPFV|NMljrd&AY1LS~mh zzTc#%RgqeZwqwjYKR^2clayKNqwNc2&aVgwhK&k}@mcnYe;m~yf`aP;3JZ;c3ygz7 z)t|F!0>rZTC?!z70ram6(9%Rdwo)lr2{bX8m5s|Eb>F*H4!JG#<)V{7JZLFftlV1) zAsoFO4QK!=gnqVUI(GgAjV2I}B6-Y^sFyEaf@n(qKef6-<>iN%Mjg6ekz(*pGDiaP73a*Ei%!5T0HSGh3HbrrG-3~(!(-#&N z-b5%o!>wuCMvvHQyRFtjB&A?C>}v3Mzm$}e3?IPtRlqntqtR%G!NN00c9&7g(Fpz1 zI(X_bcwuK^pkNv(eFEi9RO9Q5Pr#cK0OXUsqG|>luDEN^`wI2Q(k6(s!;YhFrpCq{ zO`*&iKM3SzfD3l#88+Jib#s37=&%^n%^*0&O_o}wROz^F^x$X57#oP)pDBEe0oDQW zbGN_UJsG@fvFhls6r8#Oz{*gon}>iq{`~&-a-m)=4qViN!!W3gj?CsfM>HlbQs@A* z0B16f4_olTL>D}*K6@}DDb%^WI-v~2lNyeJ#blYuX7(!Rv6IWZu~+XC99_6>%^Q~_x>!1iL1YABk$X%!4_K%-5a*YXzQdhqec&) zCC3eLl+!^vmV2=JCg9#L9|z40&B8qF0}L>peVfPu!>!||Gl2$7#%#dQVaWh zur;cSw%ZzZ1VLHq9Z4P#eFE7){sqnm^a86T3(Y^jTf4w(Qh>saQVSP`r`I#^cL)n&h3X}u11pyLX(Es6pxJ_d;@-RRZ4h2kB0 z;i==gDh~2KYBi$liokjh{6r!`!kG_>vi<4pRrb*}Kpz`uy(}vsps*qveeX$Eikzzb zMgXNNL#$JR4s>A8!_7Sd>*l;wJ2F;}?2R#4($ z!w!QMO-)VcXQWJQY`q00UEI*2Ys`!9m+~w$!wg|XV=;EGTTyNn#Ac-`_XCg%b~hK( z$?iP=^5u(^Rr#uyYCO5uClVbe5wsnU%bD2O<$z9$^=ECW*}j%Y)#>dE$iyTS4iYH9 zA7j(y8G&np3}D~NgJI<5RRu?LiOr>6`_kKoidfYT|i37*QC}5;sii2fzFIKJ(ebMnL>}-RI)Ug69rd=?TzT`S}8slP~}&%9fUv-fhcZraeIANzQK<)C4&Q z#ydcdNDF0FHT~vsW|7Ke=99N+?K`4lG-%q*2FikwHh@okNrBYG|Y4c&4S@R48B4%R0jlOw<3IWw>tkqnm zR)*+=nKz;?3xypOAahnMzfe(DeklZrpD6%J$<#f3(5C8RcHK^Vp6Ajs&&*@c+sZ-u z0WR~<@8{}zn4!B>)zoGd#~wQbOfask6L5vQGNIn-?9!E-<8Mon!G_6>j++j8lEU$I zo*WV6h=b-SJomsCD+IihCdYp%W$XGako;(;=(7oq=oI-h+gu)1!ZWR5YW%zc5X+CqTi)B zt~+m!2@SZVlMoONs%yhmkQL?r*7V<|S1DaUE}Y*8*nI^xHx#o$_2n5;b_3 zKn*w1pq07nVkr)r;ok--M_7i_Ptd(Fo#}a`v+$RQtwYCTYuzv$KNxh?C1$DoE-eId z&(xc}9m-=s<{?15Ut={z?w%sm@`9p@?%M_U{Q=Jy??2CYc(f~wCfwG`)xZ}Tn3g|w z>V;(aILdi7CDg!j(Zpus8vj}6OYlU9_6F_&=%fT(&bt<4olyFpXr;=|qB^bT1jbBo!F>Dkkh+mu)p9!%82fqqMnM=`$p zVZ;YoE1%Wl< zE*`(75pIlcS5=wsR5sfWc%>5-J!**va?sPSlODWKej&{LCS4f0=j@3Zf+hnit~368 zn(>%0`fxMnxTgN)mI~DHj|4Xyg8*{VfhPaCLXgTGCo@x1P==;B_!D>3oh%cjBrhND zOTaJ(7>qm!l%uO2{v?A&1)$%PthE&EUeWD0SS%cQG zyS%(+bKR++T@BW6Gt~28n?PoL6hbe9Mz((B6b0#BkO8ZMYg5>YQY%l&Mw|Myl{2Xb zbdLz_&d`C^&b%Rz?Ep2TY#{jp5&`}Tw<5uX667ohoNIiy5k`=FYV_e-(B9nq9B2%n zuNcvxZLVo*?tk=7>==F{47|V-Nm$=e_rgtc$nqob)F33QPWe|1*O{3&&lsJ*onO}V zjAL8j#6`sOvucsbTV{QTV%C0Xs6n{_uM0A>;Om-BuHIWD(8LW=0x!RP$X{^;qPSvG z2((BqE-nsA7Jd010xfwgRu+-TAQ1$b1Z4npwk21?;oABuKuFDbD;qt*xU!@7R`!9i z<%{VfC}BF{cfj%v*4bAMNB9L?xSm_&c4><|zRyTqV`x4V!Rj$ha1kaAsK)^l+aIwT z-a=MBMK<*m(&))+muntNjrr|=R*1voi(g4C8cT1FbuV8CyD5@(QC@4Y`Uy?q%)3b{=_(M%c(=5 z_hPiJl9V99gLds^VE;P_R@CY|E5^QOs0C#<^JOFQ4Omz&keRSB$kc35vUZn5Y)S*U z2h?t{aY^F~%`m%>w-#|mnwq3x&0=?2=;$^mPbSli=y?ZPUNus-_Jyvllj(AZD3)IW0JDLo8(Tw>(M{t3{ zxbNO=`d@$BQ3Km6me;MZ0{*b2t>E}iI(*;MJX>D20_nLim+uV98zfH2YCpTH?7^z;t{ zN?BN+uast`ds8_}!8h0WlO=+(jRFAMTelrwA*X*&F&DKP!wu~!W228;PkU1}WTNiM z0I&jhjVh4v;mR(kfu(=_s-~Fy_@@^hbmRVm>G!-N@<2R`vZ_q=^1?pYt`}0dN6{;E zxO!!o^ZzeJ0elh8A*rYs^1LlN_1u*Q^8Nk&1%k@71!qe*yvtrTg~yJ23}}UKhYv(i0LM@{Twq0jXZk^TTb$a`f(2)lmgd z1aF~k-MR(x!!l?AEIx2w&iXJ~Z8lgG#^QUVwgni**RFah+ZN8!ajzTBbi^K6Tr%SI z)ER<*j+jt5Z2MB1w~e+baNv1Dhyo^N=B|bQe4>j#(to_Tml1Kt$g~lCYqweVFadyM zagcLNx1s^eg&F7Y#h%fFB}Z7^0%Bnn_5Rp}kws7>5!&l-FEH(4IsnRR_K5R5YmCEy z2|5YBA8iM~ce>SRB{~TZS-5e*c`8(O9du9_H;1u8fZ2>pV2p`Q6edQ%P|%>nZ#SP= zYzo32c##TdQ~5r=O<&k6liZlo-+gr6B{ey@PP5oDaHO9d(a7LDCe{f41mP7sG5D(y zSd(Ayy+&u=8hHzRw5_pHMu3Qv?L;yh&uD!ttHb4sXApeFW?^ZB+x^{}#g3k4Fb z?Dl<7DlI|I!Wr6<`Sxv4`fl9o;k?LRwV$Vj*=QOTaC@%;w=AhH6#*GclG?2RS$Jb7 z=&^$P1uM`$MBskyj1;A%LjXV}OgWQ^WDbu%)%tbY%v^&@DGSNpAF7V-!5y3T<|h4d z!Qv-9EK*DzV&?_lf84RPnfYp ztD#k<1amWJ4Do9017fSMNrfSYE+kN_ z5)&53(<>vq?b{m#3mqRr7%YUv}5=%W7e@GQ7h-yam^9 z0<2XBv}>SjN#gGqmG5l5%r`Zz$r0+&j`8s)`^0)(#35VXxk+~25y|PDF^@TPcjHS1GF?lry>$G zRORc{z7stplegsOyncI(D0uEE={7^mK-H|^kv9%89qq|gwtyo)x&Rcsb7PYsa#Sma z0)|{}r1tjjSL))aq$tV`z63C1>dSYVG@!Fgp1C{AX z06ATu(SfWiHo=Wlxm*BDpSQ=hCW!lCZ#)3S4gmzTN&-~_C^#^>`>Cuf3hvO_@6kOV z0@<^CT44E1d}^w1V+eyS2s3LF)JGpjMs(tb+@I~NO}Vax#GN182O9TGoOO;vp{=o* z8C_gEbthy?$%Iu-tDyX@K1ON?bEjTsm0Y4-Gb+~aWZn%cJ58#U-$5L6%j;+HdM2-{ z+aBn?PKRzpUJ=};2{Xi-dzt(=;ychw&wcAr)qOu-O6nzYH);w@=0U_`FA)37t6E<_ zBOL-=kqFmc1aa|2MZ`56IV^r42jxA7TFC`Lo!$2PB?gN1_Iqks^IT@VEUu#rA&ogs ztG`5@D@8wfsEVaMVv>2WzB)DkyM*0vHfn8-TZNFBl0m|L`TSrtqc%EF>*B$iJX|#IQ3f0i?@i!<*RBL<2$EOvu5?qkxSnQB--or6CEW_0=z$0wvgDh1vpg?rXq zkmey*L9tLrxQ8!~<8aLD#Nb3l>d;Z&q3D zzO$EICMR@hu8RKjIOmbT&RO`KEdL^dEcUmBrSCec8gH4egS)^*#$S23kxfvaORSb| zb9}nUus;htU!@Nd_@rKb`UqMVd3YMEAB#PVweBFEyD+zjwa7Z zKgbG|L0#ILAOHE6&-xSi*7i7Pa!I{BlQpuI`ShWkl4r7gl!Us5T!@!L0!@jtPuJ|? zQ`J($wczTNX=-2oEVBH<&qID&f!V*P-LyV8pI9Bt`8$ng-r8SUl`|)r9uj?z0+t&X zaLBwfVxhO6wn9if*tu98EJ>iL^7b;p@jQcnvKcPO+7<7)V=cEA!lifq z5AjvmX#YYtW(h}P+M!*87!nK)$MI-%AZWfY>DW_R1uMv1F2^!-LCo2ZxX zS)FTSe7K&!)R!R|w`O+4i#TV(qc0Oa1im;VVCfO{R5x-AAMKQyV283wfQ2&fA@!-y1j-!B*0#%y!@L?IJ^D$js-eW@o$*hyHp=%_I2vYSy$Os~L{#Rt!`- ztP)q1a%fMiyB0kD8ThCK_tDJ6#d^8(-xlV6?9>qab0aZ>ZP<%~Te)wS&kGzx`5MLk zSTN3h3Y`Ars(~HG-|6QElkNIg`H_pF=&CZ+%UQnAiG2+pPaNly{Jp)Hd+DmL!|TDy zZmy|bBBs)u%@Y%=`@pLCxN;+NZ6h&&i*LESsrNYJaSa=*28WVqBgDumFf ze2wMn<1a8+6fyMT9Q?5j^olsPqDF+y>KYl(eqz9_Xh8x*%^xWNXzi)t<Fy4(S%2Hz;*hF}8;NQePsRUE z(>oA$4tr?^cG_r;ONhiWzaNRFJv663Cx*bkx;+m0<-&%QzfU|}z7L(3Rx z;B87&=z9>`nINFSGX#-1?ck^&PanXw4jcGI`N0NmLZc#r!=@t1-Q~&;>$mBDr$BZe zK27UfGUb=q>54263(C#bIxlm-i~n;JO4w1-#PMVZM|WZmp~WA|%k}0KssGJE^mwbB z4>{{6+J&wo=q^gJYQMg=O_U`qX0UEO{INg(*`_(EP-SP&@!t94Iefl+^%~y-I8Qqy z`pbP@KYM)pOGADvFD1UHc45|z@M-vBvygk!3=@`3;&(JT)8Y@2&_?x{`$2l1w zJ)5L>={MyWk89XSt17a@G3BpJe?8X|j;?jYHSsI4Ti1EG&jMVAF5kQBlK`LfQ~zJv zgdr6tgDi5D&5b&D5%Dxz^U<$dZ>Ik&8H6KzUDB7A4{H6`=0_dkw7n9=F{h4U@aEXg zFpx*2jiS3?JBQVxcvb#8KgGwZYEs+PUZ-aYO znrx)P$od0?;zOL8KTKL5|4#SSv7PKi7Uj*Oa$4b7-xkan-1cNhMdZhuPHhp}lmln& z;#DKl2HhQzUt-r0w$1ct$5HGjO7Iwo03v3VHognsQ@M%*rmQK_vyIMaG{-h~Od~QBoTrz?MX%Y?vQmskJypF5~&9qV-7V{D{sCE?@Pn-FGA z%(D-T2D?VWc8-o_MgF*7z#aDj(jDR$L#JL|ijQ8Ccp_$GccmVO96se-$N;>T&P5@)W}np8VXxe5QqnlNE!$~`|4tx%IUk%oW+T{dVT=Y;IT;& za$Y3fLlrxT)7PiL($pEcMVrU&C9+C6J+XXkCV8pqve6VZv)aFSWC?r4W<3XEG<50k z_1me%d-N~2Ec((_l#19+57;#jlYA&Xnkamov3Xr`xoPl;*xb^sJ~I`Se?!Rrz+-T| z44*hHE1%Dw4lAw+>eeo1nk0hp54eKg!B~q+D%bGI*9EupccwpB$v6B38$`+AbK&4zof%Yk^+5SD4VdDK~g`_8okvK z-exJ!RBZX9aQUy>?}q(yL2?kuHF7I0UpoU!-+S1vTi#U!S0#MnV;{|!$ zm$x$F(zDcyYyEibuqL8JO|v@AkGAT(u*W)tAa?) z%c{gZ_kPfgT_9}N$OuvuOKO@*@QD$TGP~MA{-)sVO$!lWBhsJOyzIoUfp6sqe-cQn zi`}evB6jng?-fyj+g&vJk=>E>g<;~oT#b?Rcwyp+7F`DF-2L>eMKw-?dao_IjMZ_x z#6ftfBL&HaR1`pU{}#!TIf5@0RcB-puxq!ula>bTyCfVxJmQF6+hq zxjplZb49y?{QE(aBEoF%@VB*U8vXRj8IwY+|n!^@h9N-4>kpyLETxOojK&@=Q({u4L2zw-h-xSu?E(=~u5;`lMgoSV>uG zzWw;d(X>dW*Tj0``&TVT1YzPu>Xn3`hlC-4`fE?btO$SJknoJXN%4bI(>0E@vfcLF zkQG8v%ez0TdFV}Z`I}}f%rke0wi;P4@e{_+4GnOjntZ{53sT6r0GVGuy%8^TUS4}0 zKa{Qt7NE$qhjIQR?T>Ukjd7_R&`%e#gQdrl!M~S1$k5F!zUwkkep$kFok=TS|DV zETV2_)fm)2hw?1$^jjMju|_jlYCc62hM_VIxoY`VCK5>pz6Z(NifetOs&TGNX#;9G+=2`@oZpr%SFBGOrjW`gz1v%b)K2uFhBJh9c`pU2P0ci>8 zP(TprZZJqC6p-!|>24kn=@O7G6$I(-?gq&L28IUdE~&G}_q^Zv{+#QYA8=g^^X$FX zUh7`>y4M^FU-)8t~FXNAu~pfgh6MmhP~)-D-D14 zoiXa5jmUO1XTIxd*L#m44${8cAPx_j;Z-rMPj=T%y>>2) zozqD;M11Y);80geMr7Yenvh)_MKLrTe^dsc-Y~e*UMyD|3UOTx3I=)BYDh3u1!ttD zI_rt;{M<-qaeVRGb6pavb_1Wb)u|>#Q8z;@t9+fwL|gVpUTBJBebPj*ni2IY=|}j= zrD)2LTNlfIkWTt)z>?lAO#9k5MWn8#Hk0a{CR)CvhH+5jBX??AA?1z!OQekvBk?-- z0Em10?6)YraNDl?sDL|@n>)mA$S-=V$nZ=zJ-FxF@n?cz&sDVA^dl_MgtI@>U+z%c z`GbWJR)JvLIFYh7R2i=wyq@*i=Q3c&VzN!~wUHeU9v8aSlr>RJx&%H}S{F<2a~F;7 zKgv^|V%gVy_q6QC+m*{g>MVJGS3cen!MFw8B;Huw`hQ#WUcTcy z0*3eQOim7FC0vDG#nCE*xcc5Ag?8TwvAm%JrRN;c09cNpbI-bN*-lxwH)MmD>8CPP zn*0~#uz+{Dh%&+Es=y=5{z7Wu_AgA1?lk@GqO)WDbusg|8XTdTGm}H3O*_Uaa_qkf z7u)J6NEnGW=a7;6kRL!*g4{25YgP>`5|ST#i@EO70wg+GeG}7Qb{Hxf(An}g1{yBY zNjG(mGOZP*JiY%1J%(RlEl0UwyxM!BM!Ko_Id(?G`;+)iDd$QZRdwvxuJVzy3vZ>! zAP+~;$rL79sp}~3PL};p^@R-AD(*S^8bR&;PG`QXOeMp-&RO5lw>n%URbCRKpVC4TqyV_n~T_EMut6f zho?x2ZrdLjXtA(!23zX?QUEMZ*v>J$qA>UOO+&s!K>!R`GZgGs>Fu{mR4b~qc35$5 z(WiO6$K;dB7_;IQwo^{+&^|FsreYhfyDNWxuk?UA6MuQb+m)ttz1^MN)rZBuZ)>c5 zTA(WD{S0erd1q?&!u-{~zrvAflo;UdMmHj(U+&$-@r_j%TyGxt!orlxmk7&X>VO71 zhd=y(#iP!kc+|OW&!cTJ1A+=&*7k)dlTTwj7K(e=PL$S`WchKWZ7ASGS>+ke^#>KK z4pDb^Hw`UZ1%}sLgBnxbh~FY+hMKFZ${!^y<&!H z_OnL;uT*aNwoKnAK5F8Y-q30D0KA)c9AeJE*_nyKzL%x9TuQ5lqH+C4uF6DLca{h_=_Vj9$6@Px#?8RHL_m=HauK+g1U-e# z$oc2QhQ+#4hX|3UI!;1=h*hJxm_rvUU;4>-9*M?-JC=}Bld*j4NXTw(I-05*y9iFW ztKH347BZAN($8@m8a?w1C76j=;x8X)0wxG=>F<$`RzjMpu%k}bH1rS8E~d2lSHk6!9YNfPQ{<9JdOQD)ynK@_Y%7_frV7gSQ*XH2 z{O8ZoYBn!#bCv`c%wE@6j43PTVUZRx*nIeRs~lQKy5H@;VSrp| zQFf1%UUAFWj|e?1l9$AL&lTy;xPI_~eK@mGNbeMDJAdPoG1--zaBnRi`Or|7ka%3j zq#sRmBUuZGG~GXAyxbupo@(clef^!ZhNXunPdm8;T%GJ4Wk{K_W4+2s{mv#QmhvEf z><|`tlT)+?^C>ct4J4MOY zq-v)urY7U$PmY{C@d3u1(@F5lfws?y~&*$`LSlda+v6 z(~-25snju;%i?x2@3J-Sgk)eFW-h~gns7+5JjF1_jL3zB3~9=x*0=5Zcblp*<81e= zmLcyGXD<&O`XeHn02UG?;1Tuy_#pZnGkRV7mm$s{BB6gUUwQlpMsT);88N0iaJ@F{T8 zsvT>n*!G@QH@f}TNZGlUBT)t=tmj&+@k&M;qu+t%txeM5JhkqXs|@M-gxUFajr34Y z)`3wS^%Ua@vBFoh?MnGopcG3&`YoFBJnzNbM91?*tL5nBM)=$_jA_#DvA%= z{ODfzc12=FSYvcLVqU<-tpsA~_7@Y1RC;o8WFMiUqt3H}VU5fb14BXR%oYCm)J!+G zBUw45vXgM@wfNQ>aZ0a@LZ7z}TXzhcg9zpfJJ3(X{B22Lyom;y@-9@2BK#`4LCh`} zTf8}5xs~!DdnVOa+>93mV<*X)lr|^zW1825e*|_Jo)=1XRlTHwj;w~3OLZcd9B4Q^ z0}ATol{`cP%zES(Ke46&cTWzlP{Y7*a`m+*&ZF)^$3rRCe!W*$+|BPTCOm zveBWZwd#p^`x}XQ-ggBr6MX%u`j$PR{ixw}0@ovWRc>)H#y1Vt(Xla=#n3DYp~zSK zDL>20V;|jrri=F$(zE*Dzjx&Ey=N=nE=%YWHR8|$mWv?brAaMD+-#6Zj~Hl=Q><2D zR(i7$k7mn_a>|}nYS|4qY@xyaSmypdE5}7O!f6v^3^smg^qPw}GuVhqB^;T5vWND_ za5Z|fJ*vwL-hGl55WkFEw(U=$Uz*C$e2Rhw?Eet%N;2l55?r|bwX*I z;sw)$eytbf=eIlei(!Ze3*T?|KEsSFWkFWvMiOUWUzZZskI>S4R^90m)`f;MD>5WD z0ivJgTLp)1HX2^uJ@i8%;1ke0Yoe4*6B04Gs3U83AnZ)k75B;zG;jV{0?^ggqLdp^ z1tDYmO+{%s1$BXt6*A^5qx?o76p5ukZ6R+&gDN(hAMj&j!XFqx&;j&JpcGC4$3?>z zj$s$iX_kGh@3MPvvJ&mURui~U-4=JJed3aayaN^Ew2OW|YM2?ktFY|FOX63q#G^EU z6=;vyUOcyaP{wnAn*84O{g+i3kU0FxH|<5uyj?vH&IZmay*X#B^YDvR?1e4@p4*yG zO@-yewAY;f(yFB8I(a**lLy4)S;|yLpVSw6bAoIUtnV1n*?eOONG2gNi?J0Vh1CbH7Ooug))rgyd(bY<-KMg}fW3-} zqmXP5@rkMD?PS8iNFHkfSrDQk(IYaK)G~GUi6U6?``o=mGp9yPUBC#J)B;-JpPOtwDhFi z{R+zbg`lEN2Hwiif%h1Kf>(mcb^HHr{Q$Gs8Nb$SA`^M3wd$lt<_$JrA-^=G9`E9Fhq2?8FDR&N+Eyby?|OHYbh z-sl+?!>!v5sK79Ff~@w>+-98?(<9EmM39%rhVlO4(ZKkQ>)oS8lJirA zwJ%GMK6dSo$&c9#ZON{N*fC}wE@P}>(oio?bILdMp25r+nERlG)Wv6ZvbCFX>wL=p*USwLbasc^mF-HWlZGN>%-})pg-m{G(um-dl$gYt+Iui|ZX^L>!Xi?> z#zQQu#|QZ6{pF2Vus`<3Zz!vsoryYE&%V)CI3sb44t%`jmJBACO`=5%a-cqB_51Qf zI=4eiw{aFW)_$bt2jJcO2kq1(MMr6fu``K}99aKJR)OzmNREM%%YyhVFG`5#-lM#J zLdEpH^QO)}fD!TZR#GA>tid1&dUaMs zGIZ=1%t+a7Jntyk8hLx_M!c1h5I@`}8S6)@O|=}vSPh#G&pi3>wD5MX9m_+3W8BP& zZ*mgz&sYeAWRHm0=QD&unyqY>x+Yz0Hn!cx9YAO7lv6QaVeeG?k*a(JNW9gFHc zBgU_B%d{o~T!I}SyqGtLbFx+Bop`SR`OL?(cxbD_cnFaWMqKp|x!CMH!)OGq?pAB& zTuvJ!g9g@Oo=lNj-nFZR3Vfl1+aIFH;0LG>D{*aReoB3vhkK?f#lHPA&~Hwd2^KT9 z*H$KRHIiw)=RrpN7n`u#fJ$S^!1ZXYLzY9B&YM(u+`kqd2ORc2jXd`BngQ0&GYVPt z=7HQ3&U9_@=P4>qqzQ%r%`)uiIj3iy#45{>m|>^+MYiP82KW3#xIS~3A0UZY(!2BZ zq7$&u0J^TAdNdH=;F%~PmvbJg8UyZ^qU=xEjX$x$II)1^ZB|O_Ax)vYP(xa%3y}(f z*2mJE5`c)6;cmYD+-&Ja0gxy|JzoGz$sGuIgm|Y@J4LKmDt>20Sh1CT&(_cJ4VzxP41{#Gt?4;|* zMpGksgUY@;Ni8j!a^`lb&}uuwo0MROd}YWYV+Z&l&dz><2y#|^*1^RBs7?-IfXx=7 z0tkyAhC1QewJZ!02DX;w-ebyEPW`HA511id84OIxtV0kjd^nv6^~qp85_?vr7V|H& z!FH;U4-!gCDZR$WTg0vwU-W`acPzIVZi?H8{;y6Q)K_<$E3`+uH*MpnBD@{s9ZgdV;_EWcqF-;%$(-dS8@e;p(bum0j86rnfZKf z^RnRC-vU+=%?Z+*BKE&dc$|(rp@!bQ=H9*Qt}CZ?9EM~AuR+A8Hmk$qp$^gvxyPfE zl3SIT^sfCWI)L|bLP^}*bvOA~KtlIysM6Uir#{xw)jQ_&ja zTHN`^VW1AX6!89UXzS>^_odVbkc#<3>^{>Yo!K$B@s~`({OV>~HF-^unK78&-^e;= z*KeLLEzZXa;GpjH;S&rbm%||AO+-Zx;7L?gg0yfd&>w?vp+@?qfIVIV6gcWsjU0Q| zcXmr~3}TFV=Ij%9>yV|MIy{w~Ll|?Uf>vYJJV}0b;EA5!!!%v1r*Tt%F0G!T6|lr< z=s#P;OAF(BSFPKTRY!8CDHR9GpYh`$IIg7k@nyDD86Ycl5TsH54N^U6bl8k(N_F#h^78s ziF^W6S`0r7FmW>w@8f|QJ~=ZW4;B%kw-bn7|Hek!B(4Nb9QNMH!<)atLw#8fe}q2- zB|*P>dp++`s3A%A3o<3iw!g;D4fJ(|u6LAQw)KKTp(Q@da`efZS>1+{m88!l`bR+BIY+bi$HM^82M zeuU0BXrGwDdZwoL#ZHJ@Q_qBhr|(v`8=^q!?7BQ!>faEz>&}T?jYX17Hf}t>^4$7Z z>tn=Iu9Nd};(a_=6b@Pgea2nA=iYd73o@!CJ0S;O5;`#mWN^*1 zZHBs~9Uk-M#=YjRay!fLkI`M_8Kk6uM>KkKiD=SWD zOB(X)gFHPwF2;cV%fX9CA*kkg9+D8TNp2O9O>SkG*qnG7Obj`ekmd=G8@?J@w-x?f{>wWl zufr|L^4B?9KK={|OVa zeAV;h$hv3e$NHfP=VOl1(i|dXIdQ~zi>Y(vb@`f$cOqb4&H5Ebo3Ahf_3wUjT4E-i zcW?cL>xMy3D+Lx>b#X`JuNKiZ&Px{v{SKSAzPA5iILv@}mwzlhI*ZI!Tizkn zp&qN>2weQ194!+;%+s_;QzhQt)qnHgurQwA2Z5-CiJJpL7GmVJf6w3lL4x_^onoB8 zE{6YSsPwYzq36!#0umpr&D&EvDr>V_SEq%GEDP2@k5B0(zJg9UKGG;HF7?aJ9Z&`v z&yuD;{+Nzpp02Vn`i#*!dBCN=@ZKp?_AK5HYxR8pr&;B;=ytBeV-Ew5k1Hkr>{v!G zbaGvMID;7xt8AzEdH#||jR{01=}C-o$hvqIu0N6snw{gOvjp~vj$5VBXfbM{&8tDO zY^A+J1oY2&vgOtX5pv5Hs>WjabJKlux~uyi!}gA92jLe{Rf;!;Mm)d=JuFfM(Izhd zTtI?vPwrnBYKur%?|Jm+t`J$JSf*@Ve0U|cY;|HD+lsly{>^R82+7d-uI%kTN$00t zWBX-iIx*iKVg9AHLVTxWw;4G8+C5}i532kn)?L#i5%E%m@6${3 z?bHFy4*>2`)AZQINJX!_s|&48Lv?)+k6Q8itqojG=9?NRfR4t~zi`~zIajh%Y?PHa z$V=l%-&{>+Tc_6j#r2s)K((+Xi@l=4#YoMu^SM-Vo%i}d`6~IV2IT0SXAKEnY*(eN$e^nj#U#p=7nIKh7O&d{bWNuL3Jrmf1-=&n!`D0N#OW z>KCTlvLItZ|H0p_Vn;B`Ab+GTT$aNfO}xw=+q_t>+gf){(%Tqv>gGH*@TOK8NbBV= zmj}E!MQ0s1u@U@Vp<+Yc-Ls$Z>Pa)Y_j8cUAe`Fh0KHjKL9t&sRH> z)T!lWV)&;kzx8yGwGVPWF*nEV{{H9XQ{5%g+C19q7O{h7+oG zwrO7#vB#hP4jg1Hk~^A^BTCEw6c$LcN}q>B%c6-ToSmKsARtLIVVJHOT)~ids;^(tvQkj~OgpOQ zg8<0i#|Cn*ngqJ%t>L|SMwq@qo=2&TW@0dYvy1t``^ z2&M+8l~6=qdjf(kBCYVM$b65y9=EC!h#K+ zy8C-oRn@17o|}gFv-7@eHde@bZ+7dH5xy1{%d~G!)UD!~XttefCd8?jGuE+L{0z0k zn(}BgKiJiZ9tdKkTj?EPZ2P?u7y|D$4zpfs#0MaiYdyX(y>pkGpo>vB`pynTtO+-H zgk0bh>E`D7pRc{MC8jJAQ;3&j-4z&*p+;*aiM`E5eKW=NS*w#@z7T1i7abdB-GbcofAQKoA? zM~}(j5zy)B2)og9J2~Oi^cYqYsxI;5Pdaq)aP0Sswapb+AK;f~m+y{CEZSx(QCHci zn{bBD2&YE*lu6`<=y`|iFJk;hUD`k`ldUofLEGg5idigh^`# z(!hrWZ-H+M3^m)|T?F&07=J2Tv|NG#P8-|XRQpY@;YSr;|LFoHT3mY;L89elZjL<< zpO!X^%8X$iTNqnTKEL{GKdw#k&KAG@B(Kam1q_`4%@Ozc5)O}`SJ8ed3k*qn%w&tKE{pRUB=KK zuM>DS(=3uixok;pM`nfus;hrfN&)^Cnk@;TwVmsdPy`e$u4dkbXd3w7?IzSgAbD*1 zAkTehT0RZLklY`iF3hz7xMlJ-*7@C`YF6k zRJ)|Au)=Y$U&7X(}z+ywk^FH$2tuaX|weD-Gkwr0MvyymHsjrbDT%&wZ)H%I!!n0hN z|JW=Q)|f9ouZg<{!b)7Eh@igMS=#f#VS=`+9byJow7#1RDgVez02rY15?#Fkrf1KT$F6F|iHt^rzzx!LJZi83tKd)FEY-fr@AT#HdZ zX==dO(Y&n2<&5kUpj+(usg`wqTk{}~RKPc>@_}{u69YGBySK9P-ge)%aOdlfLkmmt zv6WlJ4{P{G<_ArGSfJqbQK2^RbYd&o<+<&%-F5lDgvgP*`rb` zdTS0>)Z^IJ)9K?~NdC(TiF~hZc1`N}pe}lu1|;I8lf|9;Z?bG|aWA5DWK!kd*YN@= z1XJpRvhuwerBbrrV=B`gk}J>-moGpw?lRW6x09no%~cie!i_yLgPZ3OZ5+aN=QCLc zshQ;y$bAK#AauJs8-S>UB6x**jVB=bgVqOD;GV4VkGUBW84;c84@|fEQ_^;_cAId2 z{AxqWJ$v5DQJ_OYO(CX7=8pC*XHHiWorLOz^8?)iHijy_(EKnD2(vwQ05Ws?zN9)T zOtWUyYIMz*BQI))6fy>4lEyTCp^ck_hpI3)^h-S77DPd61KhU1W2qw>U0zuy8y}5X z#MYXwsjfYly@BuT?wXElI(yaI1|n63svviZ7VBscn-gQzIzgYGntuHlF=u}E7jxO| zBZ3uT&&!vxb}=moOYT;w*+0CoKASe3DsEQ(XACQLLe-4z^p0kSaUp{y1BWs_;0Y_K z3sXxysGD~-#9ID6`y$8)vW91jLe6Zb1~P1B`xv3K*RAR>*g=qc`FX~mLQUWg-DurU z7cy^koD^?e4*h;6YFGcKw*(T>(HUDPU#7TdZ_w1y)rUcsKv%&>S+(Dao1&Rhg$(fz zLCK)2!Hd|wJ(6Tdt2{l()8V?BHdfwlczeUkc9VfoIMYS!W%Mg$EhqlgD|!^pwlBxj z0>;N5-#-D!WaQ%y}%1H~=$LGb$~#3h@AlnP(MEH!;NdRL6~cvF2cPP=_NIDfIe;>Xiw0INSuV z?V`Nq==vGF=>_lgoN9CIuU!nrX$ zyhm|q_9(b#K?F~-`njucds<(w6j|1V~;z9#MG_wMN|pub3Z(LFLkY3_sIVV~teJPThIq(fj01!HaAuYO<S}fgeO$rei5;KHgEJ~k7S386`=OHL)1RftrXC03B=p&M%C)pS ztlgph*6lqr0VeCF5_4ME#Ey|JLoz}d_``4>U_i4DI_K`%80+t02lYcmeyioEKIwo# zq>Wen(UR$aLr2f%a`B!aXAq@Dmht}0t^k?XoP|wXa4O!!1PM$R1H2^8{ltx>7|Tjb zA^Y1EBfT`Ph$9|6d7Xwbjy8;su7~)z5f#%e6xu-d&FupY!rsD|x2w{*{#+k7!s!fl ziA9EfTVL}<-AsP9;jJBV$1r&meh7Ho%lY;IbRwlJ?9p_CDUq|B1VR(SBDm?Ec;Gcz zI5x*cch?cs=jJU}K*rYu&fcv%PzxH3<(5Hjm9WpujG{78Iap*WFJS!7*F!bim8pMfwM^gwm%IAK8g(F5-R@g!i}qdo=+_N2 zK6>Iw`bun>4N!+~a4LfzZA6fD%)kx-Pg z#L&1{2#rAa2+sX_+f{A1dHtj=65z#U>lDr|&Ic>FeZ(riT8Qtp9Ga%hrRwW;U!UMg zQZq%cAupgd@&c~b?B|~<4iy&}Yp(lYrmkUJU0HOg?q=x7$Nx;Ik*#~OmiprAM?bm` zenSJ*@ag6;AF>m3bO@!Wug^rv6iuIn{SovbJJ3XuDgi=Nrns}rub;6M{;G)uOZfd2 zOvF+p3UeHb^k}Lur%k&q-$PgMhmur#!g#XFo|4HrVoR+Ulpe7&a@`J$a}>Q-sLX>4Kj9el(ea8;nLuQkhu z*K7Rjh10DmjozsJ#XSQC;NdbjdfGGP#wDd`+aGyMI8UjtC^s__-OKokYi2H!Oo{AT z&1^L(4hrgj?dI~An8fTedi-r|PC`F0-?%_&;lCIz$Y2MgM5Y586Qql%a90O?W1fQ> zx$#4`FyypqP3(cuW(u3Wj=AbH37UdEMexTNSH#0L6Kqet4fam0Dt3E@LxVa?1v z?VHW7irFlVnkgu1%UqaPJWkL`!CHL4T2wuM<|KrDblJ}++(89m$rE>X2Q6|5)-=iV z?$?%=k}K!6n$ySL$NaO;^VF&;i~Sa8eX#3xklYDg%+`V3{EE?ysPVG|Q!^aadEy9r zNJUpHV`icy(v9vvmPHLL>({s$+{@-n&t|$bW$rqSzn}B`r6Eo6aKXZ;zpxt}_o*P7 zl%&lKZB0A|N`6s%3oV2n8M_uA($m}1YhQC=23~@fR&y`e=;)2rT83{^)VhkZxch|@eMIKnDgS~wwXJ=tTB*XFVeU}5Pi^& zQZ&@JayWo!G(^(FS}T?akS)f$rjUDBQpYdknNMUSH5 z-jCJN3y5-(%Dfp}+dJD{4xLGBKxF;}f^R&`ctu{X>H2kQaA~v)(JP4k3L{cca4bDGV`CC4ZCYMA-kVFIVtaSA1}|{z2zD zfyix)9~daBROzz9*%{n~!wr;4kKh z_g`x<=pCjcU0dZv+G^h&gOhPioI`8XaZ3U`u zoXW67NuuPF1~OG%C#_7(LUcqih7anmo)Kb`;SF<3Zto$1o=t#>nD;ozeo9HJ8yw?+cGXAQ|D zi<{Cru6Qs=(DdB!_AXh*rjT7%D^}txP=w6 zlP+9})I8A5qKo&&c7uVDRuyk|ddP-7Z@N`t$NGm95$H(kAp<&f#iRsJkJ=hD3`oM# znpQ(?D0mY5F{(qYCy4eiKW>pf0JU40xhkkk`}~(2oOU2MZGz>y&3oHxpRAp)sxmDNEmW-7>iyHJ43r#oegnXR?N&nU9}Rw-e3 zK#6`Un)^jUA*1cepOFtVD%%9U*p6Wd(e>(Vp&QP2z6YHNO23TF3=SuWH2yt-rmOn^ z3dyPmt){Q?_uVfnE=+ECy`PbqQ6%Pb#J~S~)KS5`M$Ic|>dgyvb-Ru`8taO&TpkaCR_Jg=EVtFq6P-k}4VmfChYwkB zMFnZ_Wffko4qW}&aXfSDZ$R8P5q-_7A-U2OwXBs3Z!YX=G`ZR&7>Lj2t(FH~wTm0I zhK|P{pu^?wWrW#oji_6Q?VaVBo%-{RAu+4au2GmQxM=hsPw9r(HtMcQY9qq(x7;$T zZ4E9)3viIGL&aSvk)ncyF6W>Btww}U$}7x#aB?R6yO*(?o3G%AtcaTw@Zg?*P~^9L zueM+OM2gs>z|R@l++8e7ruNEi@|#KQlLYqu2Q)xN_6L3l&#&HFy5;33+RD)6A1*r| zKJ2~nfIgDPHYUH7l2pX^bRhSxzU5O?q(PBpmEO<2?W#Ux`#k^y{>CB3E4x*Hef>~x z!l_A3=lRrYv_|%lg7Oq>OPBqCInU`h*{tgCzz!FIUoZ@*W1s(MwTKFkD`^NG>#YXz z3E$hP2x8;TJd7S2>>bQJBZ2~S`JYs_K+Xrvr*wYn@rHkl-hd@ZKkwnK&Ed>=|NbE` zdzl`2U1@kx|1!01YJFiOI1iJkzch4oF^m8T$l9Ks+FP99`TU*@os)Q0G_byUU}1Vy zQ}9`|pJM4g9oRcg$@%WRN2PWLEp&Tpxc8uw`(~cn6#u}}vfNbJxt2ZjI6p7@X!=UW z>pHfHQ8%F*2xftw2Il_bakRYS8!3Q*fNDf$!UBGEo$l>bQle1O_7@;9LhGuw>nxrrQ~BS3i7OHT6PFxzad9*R>zYOgl@#>tE!S?S)HY`Y%d2ou zgOLV==IK&#sR|WZns}t zx8Cu}Yx0X2nQA$7eEGtMr}8Uho2Eu!_B+ac)_%GN_rZ`pdn%^6!RU8AduPTc2?D{= znKjpZ)!hum2_2~yWbpx&o}@MG()zTBlRe`^#?uw<-<~s=nD_416nVbP;4@BMHeiS) z3lWs2OY+zj%*B+(eN~*}qgM>|hLigg)uOZ4c4QZ@@*gX5FH+4ik&k8YIrQDT>*psf z$3RHVQyg1j>Y(7lNZa3=4YQx33R_00!nUM)M`N*Npe{O8;G3Z{XzVb`Xq90?1qLRP zZN3T#zu!*Hk`Zq)35UO7Ae3|EiR@WE_!1k7`ka*{v%dba=5(Gg;@}LzjVRa_vGYmF z?uCV6*RXJqs_a!Se}Zj2p~4#*8R7caT=3<%Z)m7%{pb!5>qc6`Eo?@5I4NC-yiQ#c z)2LDVx0eWwXsbUBKx$5gV>*_hd&mNwf^xnT= zVdP;iSOcSj+aEyqMbPS^wa3+x2LVOwb53Ja|V@DzV3F}Q!LjhnA7)2IpPq+P2zd9xzsH$><`9 zv|i3u;`RgM8CigA=P{OBkcB9E0~c&nB3bLg@D2PMUN_%#66BSWmDsB{%xqDd6$GRY zeQvmJkKc#EZfCIFU`663zj;I0YJEE{5*9p;eFSujcZ~XEL6>hbm$o)1Tub?O=R>=d zEhTq_*h8HtQl@5<>TeI~OUUX=?&r91+i<$gz#X1}(6|U(?JIJQJ9|F$%a}e>GegBQ z!ojo-7v2hx3*&A1qo~gB2M0oS!V#6?AykTYihFuS9`4+${81eRO^x-O`rDW@AG)0n ztr&@aO$$L70sn9BEe`IwOqm0opM;qI$Q)Xv|Lx90Hv!v6E~|VDIqH#H(Q!n6Be1ZE z8q$1wTIprIf^6x5As4}sy)p$JK04S|`-z82rW3@LfBUkd(^;n^mP}5BFGOE7kU+#m z?k;^&%g0&l2u}>>w$xP7)KTu3pQ}@=D)tUXCmzHEt#t{fmgD zyHHym8lR2DysL8Ag6L$*9+W#oke1~viR9H%K6q$sq(QVWw4=U*uct5EJzM^+C zeY$LYZ}0nzRZ0dBY|Cn6qy=5!4&a|(fK*Jt#2io0@D5_p5j%F_kv?1KmU zRZQ0G#dE#s9e&f=`B&n|WMF+W{+m5$(!eqOaj)Sr3AY}zVV_maam+6u@P!f7s@cKb zKrBGd;~hcSIqJ-1>g2j?@vD1QC8{!qCf|Ywh@IpdsBcG_@DJO&5UO>I*0hyUaSB<~*;SbkyU!|r(Z2B2!EcP%2w0X5`8{~Xr62JTV- zX}-&^__|7zm!sZ>!uGB7B;1VH`{}sM#X~yR4M|CIiv2QMf_3DD@YEdX)vkxehj(@T zrQgz;-Ts*^W1a#R_vfnM^kPL&QclE{QB~zq?)0Z>GfK1eU3wd6jhG}l(Umcz);z1Q zBls@^Hx)3Kr$l@UbHivz)F{Jd-7w{SPMV%zX0{J-N>R^1OX?%q0GS`YuG@fS<8}Z_ zIFL({Zy`;Lc%R0gig(e|6AiEg7#NMdx}XoOt&@Spd|9z2gjs3DsIMe8(UVg7Cx**j z$Bar8L=Z*mjWO1dr24YV3Cra|b$ird*7vpPwmG;5g@|z1e(3?RlOS7zWZ=|dG)jU^ zI^_i;Dk&$JqW?M7q(67|TC1duMaO4`Y(?sWMf@)rc&^38(-PX*Y7My=4bt?`8jO)* zw&+Y>*F^A)8o;~*fB2r+naNN##X+{qnz!Oz-*0JJ-+olxYe38N7|oC7PYq+HCv5%r zCj-a&jJ?1c*Z;LXRbM4*YK(Hss!C~p_R`n*sC)u(l2MiLdUw%a9BN!@O{$?(8il$MQ?qTCSTHQdiI%y2e^3&8AbX6+=f3Nt-Ex z85#fEYQc$@f+&D|+X%UL_B>$n59kL=XSx}UoP&2itT0wdMk5o?Bc|iyjSvrmKKOmyK6yXHE*Yv{*`vU8>WF@H{Be_cuR651(3? ziAZGZg_6pHIkduc#dp3oN-x`Uu(27UaC0wxZr9COaW}C72mIDI^o4JwfG&a`e zj=cOI((bSh_N{>X#y)sI;_?vp|MTpeQ~Zb-Yq!awu5!mq!&OR@*=^3=jW`AtGlK-B z&J&E$-@jF$4*UB|MuMI$M8)}?Gce!j3Vh>VXI~A1O)Q@MuI$e?AXWH;sexE>;);<2 zL+AGkbpxC~6XGepAUG(G|B~v8USw_}<58$dWUw)+dOZ)ft#)7VJ0%cn3dcvTI&pYif~lwONA%eH>>ROrnd zi6Yam9KE}z=6VOa+1cKtIZhL&&R*Gz<+)ebi_yd!k$g$5Mk%kwoS%8`2JshB|MIk| z;w5lf)SQLsGnOt`ErkuW4)(ov%$Jf}aU*MyB7Y1Rs8W{bh3H8TOCf72jcIvvLj)jF3*#=AOsja5(%OoFf8fZ?xRmOS}`@Mt=E9_A-ir3B9 z*yObisfXvcOzIh}OGrz3eRSq-bkia=6WOO;)3@Re`}$OFaRU{t;j8DJMkO|U4UKn` zQ_zcf6a)6R{R=N|a6;;%nFO8r3iGVNWExr}*GV$Ox%vGX$1-;8y={TOoQ>v&s z_}#=fc|vm|)Wk{OkrRe};r4tCK9TuIoO>;tEGCmAN`F)>*vj^?qHHgH9NiMp{g}e<1MkD} z)03ss)8|U~POghCF3;81xtPR7j3{4`ll?R$d-Aj9$xkxV)o&xU#$j98dI`2ok@e1F zhWQa2ab%?Wk?(}IKHoGqT^98QkY@jVn+++(Ga}&g3bCaVDp#wS8XO0@oE2 zZ77ar($)$Q@xLA7W((8CI;^SBN-XE$>DvB0EW>C068)w_fzKydhl zzQ?>!mq@*%QSWNRx7|8hkC9(VF73|t0-(HJjuy739RNEpKW$@Y?HU|lNR7?(a9#d9 zJsD~{Ap*Ja7YG$Zmg&Bg^y)=pFdr5v^61TLWoiFT(ZEeSu|O?USTzV$J0EIzVu&mS zMLDI>?mK$gBt}KHYBlDyik#-61GM@M7by%=>EyI?I07%()Y7MwJyl%VDO|}EDks)( zEiSk=m#_#|OwI<$tM-<`fsR2eWAh;U_F70#=vu=4B3HO|(<;hSQBQp2C#+2>VNt)H zVlU5?^RLI960PL>HwR}mEP79TPHP#4M6qF>1%3S>sij!eCeeR7uzZB(e)Y2&nL4{Q z)hC$T3Krvzkm*muJ0$ij*IrF0A**^Z;W+ZnsDK**wJnek=R{j-PD#an`v4L8cgfeW zOY?r3o{Jb6ix`3VkHGy2!VD!d$wKZiEPatTn(7^YY5-F}D-Fb?!G>|#H|pUOlXkCn zpIkmBYdgSr^wp0NYth7H(aa=kvnUkh-m8wG`rvb+^~LELy!m=t!>a1LxpJu2#ZA6@ zg|LteXS|T|p-x=%u~`Ga2tj(;cR(?~PSXs1P%ec@Sop$Jn+bl&v=Cm;{(t&<4|pp7 z@PGKAQW0s$R!Av(Z;5asGP4!g*?Zn?n;aoBvyzpam1KpGz4zW^6Q1j?@9+OS&;R+q zp7T1VZ(mOL_>Aj%U+?R>uXmGhnO1k-z4V?YHle=3XzJAOGr+q5BLHX)%|)Jg{fwIU z5uwz5wV37ZAIB!O>CO?gFxb^Gi1O*I<#-b1Bki{U`W{UitXAwZ`yCJPARLL_=dAlWEI$aN#Sl0;^AQ6tnI!uVv}`*)-q4IZU6|vBy)CRF0;G zCaTxIV_I5I+I!2q*=N4Ew%@`|w=!#JJo2o>ba*KMS+zEJiCA!c5x)5%WaecF0}nyG z1+-EKyn#Lq4i8<}zJ8|1|4Od!LS_WB=SsPsY13;px3l$C`F6B%K?`y%G2y4(<(oQ& z3}G-O`yv`*-Gm0CBBh*ITaFfH$Nhp8x0qFqr;KMe@xcD-=#t8=AAh~bDjpryjC**0 z(;b28SG>PVg27(FS&}T2bja6jZE9!O>wIhJwrXJlo>H?0j3@Z~hbCSp--Qj=`TPFB zrf=*6d4qSP_O{i3SUe7%>F>+7W>EYDGCJ+kZABz>RtpKh2c_DQ3%tsYqF+tQd?3vv zM%=T+QNUQ=`8On|bg$-JbwxxcCzIz#YYn+d%gQG~}Qjy6x@H*$!{i6-E2g-*#C-tqYtOOxfM2^jwSk-+XpoBO(uFVXK$1o}FVNSec>R_9EG4uI^nr&|1D*bPRbxR%uB(JR<93h|81q=M z3XGG|KR-reXc{kXSjC{5!y$I&tulNcg)p<-F$KF)NN?Gvl^;Dn^6|aJV`6K4s(jm4bWIw!Im2qedeTAA&-&kY9t)bHM;|IIZ z18L;_^=jxPl%M`RiG$GDE%A=7>Ta_|-+_y6qMnfOvCQKx5#)J!Bq%}Jd5v-(_I@A@ znz2JS;zZ!1Z=I(Z1V;S(+5=ZAir1{Q2@f8{nR=XwTjJ||b%%*OUe>i1&*y0< z&fJK73ONfDRltY48x7U(Ky)m~t1S~erRjApshDtO-eoOI>lGR8V4D4lE8|3$!ZZss zo!qZsAi0-lc5G#*kSA_5L{IEbZpM3;Jq8+^j4Dk~f>EQRsuEG4s)7|L z1HlqXG$2w*#*>#s2KM{yDj;3TNlsuTXVN6@%# zN>i~&$xxcnwI`=)|M2e5mf&indqDMuT#OsJUt?cFzz!F*28KPGLzBr8H5tCFuRlLG z)hg!YNHgVCjUhiqpc@fYl|p$X;_R_?JwKqlc;YF}F9~<2ou%dHK zI7kjLcXk@rDmy(=y3MucPO4)Q84)IEMAo3?V2A9FR6ln7@7&d7BtGVT*Ica)7;`o^ zerqey!(1j=#~Vk*(4V$bmhlbXmioEA&lS#=8vgg>*luu9(vLgs^Qvn&zCPbM9ytz3 z(`CsbleUmxAxmsi(_`Mwz?;qkR_c074SW3Q(ucsFZT}V}7kHijg)8P2LeyC|Uf$i& zv`|5&v9Z-|Ouu8FFyQQ(Smtx7)C2P)m$jwoq`lv!jAs0jp5mY9@@tEO!KMdP<$OAcN6ttR&=fj36Uc&7OhZb| zOpGKLpuvaNo7pZw1y`*RMa;$1wi?&JiM=}OqNjmu-qC6ssHd**%3KUMD{*~wsfbn| zp0AvWQxm$3939TQejXD^W@yKGOY^*^|BvfvYifAaF?TR&afJaHU>JHbj*WWNS~H+9 zXY3pE8IO~^i_abyTo!T?_A6P>HEq$TfW};>>P#sPk{n)mMtK@$H_d;&j>d$}1}|NZ z{XJhnLi~|;3s9Z(ve=#R*WhcspCmh4=T7G_T^NnI?`tm3K{Wx5nx8?J5;S$ZKKSrW z%?Agt2!#2C$5&FFTm`b~XXh2HMg_rmtaf&dx{ETIs)fdgk$Sja&6d?Ogi?VziS@6PRWll&$b=dMV zaJQuk{KZ@o{$U2U7RPV;>NyH^$GMlk?;h(brDUYSgDSH%>!Ft}3(UIlq#n~xfO|4j zdjBkAz~+uLGgG`ddN{l5KQ3YFUuES|*lgd??2G&~rV}qm(x0}8yb=By@rbj2Wn%F@ z=jM50&W@StPEG?dq1wL~6XMCo6hI?<2Kb}9E16kJCHh`qG`-J1R6#G9dQC9y-ook= zZJ!0whpm|mT=I{gS){Zn73Z~4Q^jwsdTv6PMR_JIO253koRDxYWw`qq(i;m8%h;(u zaPdnUiS~CRc(;m-^EfFcGao*^BPn5e{Ds2r8~$XWp(!qCPeRx$x=jp14&)6{`JCtM zMEM3*pY-{rWlw*be3E+|jOFSRU7v;Rv_?U-=Bn&>>D(j?4Bwe@d=@IAbmL=BCC_hU z2h_OcaC~q4Dz0(o11}ACV{w!7j=T~FG8bQNb!3N-pCDj8eL}PMC@hWR;+;vRk7+kh z$9mp>VKWpOPNB)2-0K?6{N+0Q<9#Iu37-XCyL6zVkNS+X2ZpWD^7eZQx;e~d=gC6V zXh$4w(rR&E26aYIP-eQAiqZu_(lITlbetQdwcp^ zc)pxQOI`C1g>`U%Kg^6M>u#})3^-I{r1c`tgmxmc!+dQNmW;~4;eGL0gjK0B($}0H zODKLHt>^Hv=X&tiB&II^Y-k%WVyM;oaYYw-S~JKa_fw2fJ>SLSOm|VUt3?LaxwTH2 z;1`8SOzqPR%55A49D)R80m*Ns{}J3?7H#h$pk89z8OMVP=p_ zdT^~R3D#=?&CLv=T?9}37w6a$XZOeg%s7`nZP<&=q#am$G7y+%LM_AFUKtty1iht_ z*kO-;4FuNN(NZuCijr3-WZadYU!+VSamVD~{WlJzr@i*~q(+=Vuftt-%NlJ6lEgQ5 zMEWvtzXOYcHboA7WY0$0K&cK^~1}pgb>f>nEQ^&Q=sZ_X-3Gx41IuLE;eNNMOsFd~eW=_?U-k@TWn{ig} zxkUO2`FREgRx8#|e03TA*4(JrwU`zCLJtu>uD}y??H`!@Z?;3jj41?DrfTjs`RUnT z)sT1iWMZ>vk~y79@ZQN~OsC@9$b9&hsI_i-88ckQVNK`q8d24x|H+5>h^Na-AU2yW4NA+*TF zH|91}0jyoUbk@KgPsT+cZob(yqu8)(1tY*GR!SBy4lx0gb9~X~06MWZe;NlZ{(BbW zS5Eys|3`EN;Wf!?m!BsWQ~0t*OP-T~3=N8(47@ZorS0X%fQtlsS*|01jA_#?Qu3%8 z)1*Ea+dD89C-`f1to~U)-(-lep+4z~9}jt|%xbqrn#ERk_rqQ+hFHW8?n`u_=&5mN z4F8Lo%#vQ7PqqZlc;la;7x7mC2fc{)pPPiRQeVJ=MeWys<>w;n@2WaMp$f_Tc~+u@ z$iQl+wfw6J)wHzl!%_Jc{x*|T_}hRDmaKGVceLkrS$h2?-G_DqR&!RZnp5sxOeW1& zxh&abxSthPkhh|%zu2&5B0cB{b?cUe=s?E5j+6?v|03we(gnruMc1U~bL)*DNrjhP zFP~?@-|(rA!uecAHbTDA-K<%t!)2J;DdY31;vyVewHI|b+>-C+te^fJQR&XUz6Jqk zAs@l2b=%yW1yyPeE@>$QKi9(WJCSp=QX)Bk~cfiIB~G7-cmel|9f}$cp3nB-irs`Q;~4@*kFfmd&={>()F*>`OKK*d8~gYv&~35a^sQ8Rx#UkOBerN(RMlWU(xr}Q29PQ;C-4&!U z0WqDlNg>cm=07`nIDV;ewBItPmNW254{bxj=bj?fM=M3mnq4}6Yw}l=fDoj5q!}c+qeP8cbB*eQpVdd|+BYO%wlx=C+t-9v4DcJN+tm7QMw)-N z5_RGOl<|$1^koH)DgA?9P~`eD?tc?Bj*LL$PW1N=#-H&L^wpfbrA{|phMX>eHXN&7 z>D!ApHAdHWUwbXSh-Vy@$Q>N6@K|$o-2Hog`|F!;(6NwK%zq*KevdReQKY7Hf=h6* zFob4Hm?REn!MXGKE)67S&Z#@dfki!IOtZeTJ%UI8o3L}>jfzi$&g6;i=2(%)sisIC z(1HdDxt+EU@0!T38z~dwJ`oY*7|>4o08jG5pkMEl|0`mFO)^5dK8p4274Fm0Y}tng z!RCz1qF(EKBF2gLe&XR$W_7<7A%|E9RG;Pn&~5Dd()U81bz^gL?UxiO-fCfvm(~3* zWd_#P?D6}9Gp?i02zQ3Jzt&%>+_}TrB%JNs1D!WN+m3xdFK9^yr5i z6rtk2GF(YyzDTV~iqko}Kxup&mU!Sq{fT#Y?_8yNkjEqRzSAe#^|M`L>jRy}d zRql1=xNh~C_I-Xtprxf116qEl(9>vM6T3*JrzFT0!4e`E1u17X(6$~U3)u&0uHT@w zNA?u-6ER;8mTcBxDVik=TSD6%kaj~(jDoy1DoOn!xNTsd$p+cifroi1HFETWjJ0B% zy0r#9*PB5?C@*kDkkra{N53`za8Fx=bFBYd0Z7&Z=pvdvEBgmk4Hkrd8r_{Q?=50PSq^GiI~~t@3YG_i*r@83u1FKt0L@P#e-b39VtWM?=6I{5=IcmIZ)YDkIs0fk7Z_z}=04Z4sR-{q#Qxl?08P|# z_;_w+7)Qg3_aG3u2tR4YD`$Idza-E_lcnNuVzrSpqCld-M z9;h?3thKPLdSX>&W>fpb^4_b`wjV5B);$wfxnvF8{m{C0bQ3@B+yynl?`*|`_}@^) zIMhfo-;0)pJ|v(JHkDnrYzXSOf0{@BoCyKlNng>KitXVh^n=QbEtjnz;=txXQxPAl z?QR_#yN-JTc&niyo-aWfGZKe8r`u!PldU%h|MzE32^oJ)Z9NKdjAP~NE!4f+sP0(& z(Vv;!gB7F|q~gsnpub2MZYbDYs@lk#`@c{?e;Fa_B{GVk;}uPBW<|LAN)Fy=;P~z5 zh&%FnGVsQtIgf3{u%yq=pFe3_%bl0{C#>5`ofa@Z8XLz^wYK!MIK$2PE@=jMlsdNQ zjKJWxrQ#7qK^nSoIiPpHIjJVuy{F=O|DIDP8rXVHk$%;y=YzLx^*O8|-6F%RD8u}c z+xEHS$zyhZ@J=4H_3~cbwH4D}b+=<9LRg82&nv8dTLDt}zm3MoATnS)*WNkdwmx`X zTv3#c{<`dE$2k>m5OyPeYq+}Wsq3}bCA#rTYS3$YNc8B>IyBf-)fcxfJh?5=lQ>1c zRlF1|qEcMzy=X)~0iwBW2}?I_+}HsnyM}8LyVyA7&c-rka((B=A6RJ!*dTZ((pEnWUIBXuIVp2ZqrQubDFtZK!D&rWlLR| z_nF~MOItP~kGsbkD8o?{kXH@5aBglwppv#YT(SRUAm8NP4Y{vV5jrGL8x2~N8d=)4 z#a}ns=-g+KE8>5~NaKGA1^8kpoVhQK^Dk9fSkzeb`?PiXhWe83Q)G{XoNuXZXs$jp z18LbWV>B_DPX;p=)m%OBR~Ddh^?yd~!>7jSSC>>mjJVz}FP|4_=}?lm=W^5nif-G% z6!!WaONBe0;^S+AITc&|w`Scxi5+ZoI65QF_^VkqUJJffJj5^HS$JduWSP^Fl3sv7 z<}1tWlIem1QbEIXpD;rT$d`N$U?!`anrQAndxes%BealzeJa0Wp)c<+9xdV{Y^ zh9&whVEXiD{y`=FLy)F^`}Qr39d%Am6YBd_mBecOFWywt`L;is6oPL%_UaNYGSa1U z3EiXm`gB%Sh?VI2Po6Zs(TbzP{Sx>n^{s{V5jI|NZ4rzAQ7AB;KJ+>*`vjx+!{qmU z{m*j>Up;iWan?noA95Y1crq@Fc>I_#H#etr{qvoOgE)G!WoF&3MQG-;VeM)0)n}xi z-PTP|(Z76v6nQ>&PspMK!L~fHt{LokT9|WXa|G#*c=W0yTjHsz=1W!HQ&2comOueT zWZQ4bxB)$)@(b_^q{?3Sy)}@2s+_%K5@%$+5AwC^@QDvL!AmcyfFZ=_I(4Z_StD(C zF0E~JDCN6v&Z`a;bj*(`H=VllU&{FjwPhhk#!c~|913yef9Tx zO|{TYngXM~_!(HpPzm*@RaIO2t^>m2o3ys;Df(x%TGxFprMIXVm12DMn~s4Sug}?H zJm2e#rpJEuU<5NoopiXh2D!8HDd#n&nD1D@u)DT-d3+2&86Ep?mMo-`+Ma1=fZ-J~ zZk;HtH((S*&iRdQgzQ8MJI%itxODL%UcEu|!-92J(RZnS6M~M8H19lv4yno^k~EAo zcm>rKg%#0W64)Sj$c}N2MGwFayw6l^rc;$ET8nSJP4AuRkc+q{W;p7>3#XyH-m~_* zi317%qps5sQf-e7>AxtmJbeQ z^UHV%;~(Vx;$6t%Vx8XYQ;jCP8F~U<#HO~)dGnc9QyMNtHyDbD!VFwH5oO2Mk2pa@ z9o-YzdSx=Jtal!Fezt;jua-4fr?#Y*P`12`EI(6jHPv^f%niu-R`OlGcOk`cX#br^kr9BeCzg~2@i6A_20{@t zcnjm9!m>4~5`*Jj#5JTh1nxoJ3Um7OX_?==cbLuunjOn8An&&dfWb(p~8Y3`TbM=6LzbW zpo-d5a;7v#Dzy2#bo)Zi;e3wkY84@rLW_dHEb8@rtk%&8 z;9)c~2qW))`+fhqw4x#jEiJ7mcr_F)`z-B)EbPuZyxGIHkFl|_pwF(Nt1J3>86ep> z3>@B?YYhCp9vO6K74uoL8Q=%8We&_tj01_fx_Y(fdZ^ve!L|c@;@f9V`cw}(cHBdw zx*YG#4D|Sq9}~wVm;pBXvymood=!P`kLopxo>0agESloEf?_!sYWWl0B~_Q{zs{M^ zc`R~y|E?SG97{Y(zD!vUB^s71beUcr2oy>9T@CYecDs=&k^k`xPjwW9Q=z64q0F8k zg`ig7|8jWg@q?a2rEJ`{1I?J!wNsL4lPbtMK;^+eN$1O0B^Ktz?$*GX|f<0x5eE0ofem`1j)~< zrC!v6uz48BqrWkYb9)_sxRHiR0|VX=77^LqZADrjAX<8+LL_UyR(pw5G)@8$Pc_f; z+_fi1*tDgAQ7}0C9f_{uCitQibWYhBoDr7=2OT`|*<;)K>z^r(eCH)?g$|mNAL^4< zK+L#&qg@_E*YZ(Zh(hqAr6CVjwXTY~HJ8@M%waDFiM8=^2cNWkavghi<3nM>(~}=H zt;01=_iAU%q!UU9Xefm|XM3)lg|KD4dU5e zT*FUcggC$1*u?(*WA29Sbx}8yR(;E*3KP>Mv742d6-DkFvxy)1qZ3w#hAZ!Qfyh`YIW1IFL%Xjp8oPidvY z^myVx$)$Ux@)6aYacLbCLjI?xuHSh3>4f)H$~0BxYY(ax2lI1;PMa7vJ)XJ#F6v_R zOeBW0zwF_C4XhulO=wK*ojm{3#<5~)ncsQrFOWCh*yi)h?-M#b9h(6$Cd(U_?4NE1 zs;e=<+=`|=o+mM81FYvQ5&Jx*T;nEk5H)s~@5za$^V(>$Fc*(k0v;lqO9ph%EjLsH zFiweyz24@pYQcJFWf`UkDyJihU|63f0&NqHueWm)=iyL;GIHTt_6^^@I^`j5O-D0){ zSb2C<7vS;slt_IlF0Y|dr)W{PJf^wHhOjPismy}z=^vqtRJ>+yz*8}#l2UNq0)Nnz zns;&=tB-i^8sCc*R>u|CPu(4|tv*xOxH3?zlq3`6U+Tr;nE4<}`{LfgF?{GhmDW*NA4O!n6Q{o>-265T{| zKE-%(E2XMug4{A1B}y7vQJL+y`9N|j}8>D?Muak8#U)mqsyDU_P5Lr zkw3e8`y)r$=dUS#1mSvglmHti2e6l3wKhtRwZFu;c6-nEH(+8$^duCh!*w`P7h#}bRr-?_Sgg9)|G1{ySdP#1l&Z% zYf^gsncO0LJgqdP256vT#{P>ZQKz2vxas5Y3j%ZNK9nJ{bz$r&X)N!enZqKSo%N#M z&WB<*<^9#MVWJ(Cd$Nf zmeLD134`q$pG>++WyEXIc^#|b?d@IDG6XJd69RKAY^I<+%t@9DG(paSjZIBDR`*%2 zUcJ-T*N5P4Z?dunD_y&270@)LqM;FSnutipN=L>J=$$@9;o^l0XGiZy1J`u=#0$@! z%O7Y(RGd2Q(K2C2j=XQRO3-_CUhU7ZjZZH0?9uc->Kph;^!Vb1AIfT%n{+Oe9t`SS z&-n7iczV}SSc;KKk3H%_vBF({)?%HyD2A}{x4PB{rH^XF%{z5tZ&g%o7w3tnGWkf| zwQJN2zMs&$+m$zE`$IEg()Mmkep3XaS{<1-Nml-2A)3U8F;j0sTiA6>*R^o098o;h_QB_Z^xgR{_v(eW3F<XOe46oJ>&N<2)v>qU!ntmNCY&S0b(<+EwLSHtR#_!!$e*A#~ zSag?(oBg*{R8=#?#Hc>9{AtBpj#$;hyTuFhfFq&(s_iTsyH(xzR8G6grFnNoR*C3@ zak+kj&UIC_>l19a@;lu6ISN=ivyx=Z8!VwLH?2H51!-p2cP;8f2VxVFf9E&(okD1f z?9$Wo+If-#N%FY4A3OaZW-~Rx!u1=QypG7vGrn3S+6kNg0WL(~n07dnTtu%AJy;qLn^*ljyj&moc}o_}t>s z?^Mx(CpT^+``f2~xP5~oa_s@~QpOrzT`OYJzQO)g>gF2}bq$MI^>jL|WwnO$(I;wt zCu8YCG7ESc!kAN1e7cPvzr-(6AjHR5DYg^3Rv)d|bx+9OxO#P~erdR(ti7G#C`3>| zptx(e+gdB)U^j>>Yg|L1Kzz*k+{t4*N-WT1C3cHVrQp2u`NOYcWhX+9AumXP^L zOCnct`#s|)7t2c<8-k*mKdos8alw42jxVz9hKIx7e(xLKxS7(}_={~1{y%}+QKvH9 zegV0B_B1~sej*G0bAyV=bnc+1LL!CV`qED-{E{0pKarfDBXgR{!~MB-2Zfqf&W)V0 zR^@evT6cPJW_6js?y?|6I_mUz##Fwl?8}fZNp-?EMGId}WN=4ZjBaEoeXq{P+lYv}DzU|i3n!$Arjt6({ zOmch$+W9W76lgxfO?(7hJs8Z>>4*(H{m7=2mRJ#a|HHF|A>w;-xXv<{74nQr|Gt9Z zEr!*1w|#Z2`YQIOM&`%x=}q@Srv;6a)YMNN+skZveE)sXjNgjkn~2%3%PGmpv&{k{ zozZ-jliT~ofo*FO^?XKk#Mt(?EUNFmQN#Dq^WS=p+aT2nyS={J5+|n9k*3u1{5Vm; z!>Z>Na|DDWop6Mhgnqn#2fwv$b{Q$ zw-#=!<(JKX9=N;2;eO?wy4mh{z`&g93LNAqxe29_!iSro#CK6pgJ?v|T1dae;XcH~ z&|p>E+)B#zZJt}c?EW!j&mtnCbNu-6Pk>DvoqnALgWRy>ERSo65lXss`OPR*A|E^$ zsR6YMWhcnmu1R{m+-CyI5dGKhvt!%mI?^r@|0ZSZl!<5Botm2Bq9FAR)-bBJ|wRqhOFi3lnfUL;AaJdfuqOaZgf5WIhTLXou7jGFj0G}a$>Pz;!T)7)b~Ni+S_ey7M-)ten!bKEt%$Q6 zu0`U=vqU%hSkK8@+$f~*Vmo!>g|0k?_g#~EcB?p%o-BJwGEWZ~CdhtuRI*ITFmOy8 zA9IWL-3PqLTpGL^;R$%h9-{+^!Qj;Hez^HGwW+D8f^4_iAfvOJ_d>K(Ht<2hCt3tJ_w4J&cMjtq5bx z+}1=xh=_;^A&^1w4fvdw_6`m}+dVL!{1H0eo+6+1$ENb2D9&rE@8iHiXL^`EFm5Lh zW(?cSxSr5D{Y$f9n1-D68OUEmF)O^gzk(b9mus2FDu2%F9Ol;kzlGgKM=R_oCvmjf zdU0-bdwEDF-=taP?%jilm7qTT@&!!7RPDN`xb5guz*^*XIyhdhJ;yUNf}i_KugXW5 z0ac(}+?TF;tvOzzQh%TD4aM3rDerXYt@vYd-fMy(O^uDb&WpY7OB{e-kPMBiJc9BK zEC#bgi8p*~b^o9gxX7tZcRu$GvmitMM3Xg4z-p`Lp;nv?$hdYx+`SRv!z>%$g6q_eTJ~XXr#V zC+dP!-Q7!Bn^fS>x)AytJc1K)IDV^spy!aP7ld6E9xjJ(@NsGm8-!HudI?JSOqCJB zArgl>Mp@d0ch55`d?X(Xhnd6l3*eWZ`uwQ+1h)Mhmytz^n<$+gu=2QMuvmQmkCOun z$bkVC=6RX9mfQlIHdkOm(mv_`|%n-lmA&{`=W6IHu^s|_$<5SP-A10BjUAJz{JAHD0Or& za+KBlUSMIiElGH#e4Y2H&)NN&p2pU;^}k;O;70moV=vf$S5$*V_68> zo{SA+nEqcQ``Ol~dd?B)juN<y*uUI@-G^(M%IknZ zbilSJNWS2;9u#z1>{X61o(tgk`U}z%1wg%s?ad}>7nmvkl-R>C$vEiB{?A&P2IbDh zzN94C5Ont_%Z{~Q!^0G~Y`oRcv_LFAF{OY0%xMv~+F`u@`**bQzkSscGqVOZeiH&a z{gsOCI2sZkW~I1HGDexs=#^!la5}7thcq(&07sJs`&9|HoBRG!aUons5Uog&q!Z@X zpXdqU_FoJ5Ugs|F@@>17+m7AFw!?HK{Wk`#KeUO6kdZjlaQplF`?`HErf^#7FVy@EQCf>rMdq93)wbj?63rSLxj#iVA|3)YD5bd5LCcF$pqj6C z9UNPHMnE`UMM(daDOSiq22HC@Zn`s0Z@P*`3)sZ5e;Iv#0%6CnT?1n1Kj+3VjEs~+ zM{ReY3Hc0bP69K-H~n=EHJ)W}r5_|z{J(J@^1lPWpdDF-%V*y(-SKaL=U{_a2ojw9 z>I;+SRdcG%+tlv0f*JV!ifD8Cy^RIT++MxJ;T50iM6d*Aun?(4T|c+Cw~w!J;qfN9 zZegiB{w+w?Bd>hR9sqR4k$M_4|E@+vW)&ZUIf){ITR20K$VW7I?kMyCC`XL^`V=E* zciXyH2j2A|^u;}q;o*G?0@j1QhMU+p8e@|aOItEBn?lic&X6|+_3gX6@?qrHL442gP!CWL+7AOL!o5I z`T(l2-k|HKZuk&*=Ccl!l|TwFMLHAXT{|{Liu{U9B*weK0z;t(rw(ym8P+rHW0Vb^ zl{lP`a0HBn`W@g~<_C&%=)8BvA{U79=#Qb3#<9E^Suv z@TdH2SlWExl$49nM8JC}F|!kaG7iniu`_sV1m1gdkz^!zCInyrBHc;wL@1zEf)}Tt zsHj*oL2Xr8;l9a@`-!^V$Yv5e3hiO{CVhcN-;X&={vbPl@|c3Laf%SYFiI}Nm$8Ri z12*-U8BAeuan{i4)f{3I1x^ayYf5pvfR}P&#UYvbu720=S{x_fDgLU5zo72QVfNP* zw3_Hgqy#A*1%byBU!*oE-o10{%>n~%pH3veK^8AB0JD2OvV;_mofYauXzV=HhwPi! zWN>pMl}J`WDos-)*0E;sBwfPRKWJLiU@Oy`gg^Oml7mo+-eFS%hnzF{45?T0&qH( zX%5QZa`=^I$7=(ow)dxO1$kYT2YvTfx-ufYfeh|mW3kjJu}=X{!i0qqqa2Nu&jU7< zda!|T8+Ft+ysq?oLw5DFTfd>2&mzU6Lf@+Qvm|a&NWD7Rot64Sy47v}VRns7%|sxg zvF(ttxU}{~2fA?TyCYZ?GsQklht5L?8I>d1^%zpo%7-m`@cR{Df&u(6Vxzf@@7Cl+ z7@N=jO2j2|eBEKl-nTIyYrTSn6_6Fa41q2r^0DoKlswv*`f$f`H2ARh3a*4P-}8@- z00JD$q`W`Po43gx%O$b~M|(Ytsp@Ai!?xAP8RhMcd{ZSrd)PdJd$552+>hl73sUKzv6jXAHy?@vcGqX*aiBr40&zZv#V!Q$19L#RBCx+KewC+|my4oI zDh~C@9u>w~+=*rFj-XW`%VrSolgVdt#Ks0JI@D+cFwLR0Nm+#3>Q>ia2R&&kg|PWD z*GaH=zg~MzP>=XVc@H`DU~y1R`NDTjVA$2DGY{&gLYeeH6yz=z>lfXc$0}l00*P^~ z3J^5Eww4C2){>arO}uO+rAAvNWcDlJom(WU7K4#OO=w8a+RD-43NE?YhjanRg|7C0 zfGY&~V+7QKhP-8C?vszHMW=(8>hJnhD9wm~{2qp-Ocp|DqU;-0at#ahK2eni_igjf!z;yC? zY(2@+ujm&y;VY&!_bT5S!F{i?$7&ZniDEBX_;ah>_}pz9zdElmI}7o}_t_unat8DpV8|g~!KpR3alekp9+E5?y;4!C{acE8_C$%NI>ZH)Q4q2Mr(B* z!=<0MP+{J|j7>C`Gz_XE1lKxn`zd-4$rhuWI9Q5uxUZX8HhiuFkm3ou5Z%KgI%BRU zLGQhjm^?380VI3vpwgp9k6z5HJ2}ol0*OkEpAPv>x+Uzn^V!RDruqFftoufrEaM6M z_x7yRpGx|ryC%FLW)WUr>CKhGb%JUA==NQ5)a-l5Lp9p;3Mksy$1{`IZBUwA-~Efy z4|gW0cuWHKHs+E70|VU;CK9;zmENL>WLz?s9*9nrz})C#ApvDy@f;qdz#wMS|8`Di z3}I0!Y!)fpBB3Q;4Vvi0=FV6I)lIBjzjjSlWr$P|Ef%FJSnBLl+sD&)IxY#|fdd>n z+zG!KeJ;B7?gQGrip_YC(+yPG5(`CLAm#a71=V0Kk*0AlNoUJ=YpNVq&*L|t|yP09K2X^bLR8z@-J;uot{ zf;u~CjWclRY=Ia+5LR-o7Ek4Z=_RZQl^|AYIbq|m*qgiMY#8)CD>GBAKA3jOxvbE2 z&CtV3@FTE_+7L_2ut^|?e@^tUiTWeJGZx<9;0Sq_2J;U2#4t$n{7RIvOc8Lj@cl&R zHc18(P6f963bqtVh8Ronn!Z0tzg-(}X`thhbRNuwhg;`IW#x4+{Z}md zD-Sn0mPRTKa2w!sTJ`Dmd(xEXMMkw$FQ5I`Bh^ine>8m|<6fyQ!hSF-D}lS<4g`nO z0@JH$-LFtDt)1)*H)uxtZ)!w0J5|YSA_eMZp@uf>0@YmaJ2GDY;_VP1!IIe-^GTY1 z&u1B-7%QCekW-WG-KDq;e%)3%aR~B7ZuOrXYn|TS-vq3OczDi?1{YqUEyBHWDZqw z$~HzJwNv(e13QpI{D8VK@M4vVLWUvq650DJl?K3Rd|@(&5U%m(&w?hGrG9n5Lhq9A zkJ`hfIdf*^<*6Y110$U|1`+__(yN>n`U^9>k+lE=IUJqqC>|P^-C$t}y%7Ci6N(Ir z7x-+3MZpPHvFq@C?t`dKD7NKo&fA(zd`|?@OH6r6B6-m-&T-j zx)nKesL2E1rVuYKX3?i#;T{DRt#>7aR>UNdjg74kikkNp3X5n@9{Wi^Dtgvw0Qd7? zd&CBfBJ?)TP!2_;adGw`?XOG9N309BVqL_ym6V zUcWOG+~o!`ky(ucJp_DdjY8w+Vefq_t%wvfh6Qlmv$Hl49u>u66o{7ci0v=t z+m{WY9A!34+m|H?Wr#SkVBN{#pinLL9b-M}g89itk0Y4N4PC_3g>{!NXp>ugI1mJ1 z1coSed8ljwuJ~sq5qy#4Usm8vGE@X#!M4K^Ke-I?Wr6B{S%If}VA0=l$*{1n>ki26d`Y&&ZK1NMG`odjc4A;k#flyYS{6HeFV#y^S^+*N%4fc+r KboT9s&;Ku`-vpfi diff --git a/docs/reference/plot_cutoff-9.png b/docs/reference/plot_cutoff-9.png index de0bfa9890ff56c82c655cf586beb2161949fa36..eb562bd8901430c05a41cffdead14c367329dacc 100644 GIT binary patch delta 50735 zcmce;byQVb^fr7DlN6*u5JVAa={7(KMMaQqK|s2DqokySbf}boba$7O(j5ZQ-TlsU zulL^HJKlGEWbI#stuQk`4&-2V@-I9Q_r2%KN{e=-RH3b6VXD^lR5u8&SVN-k8zB%>?FU#P%_KEJN0H@K=#|b z&5Iu^126`?Zn0Yex1Q_J34XWh|RQkuz7$}Yn3kU<}Jta-}^GZ()(RUC{J8P zX_1`z>h z|Nay5|1h@yZ-e>%Kc|hNyT18*eOS1cr~n10Kyn%`1H?bSGK3n&-_N=&=j6YU6-QO?SbaHjJpv|$G%H3J*L!+jEUni?h zRE{=5!?P6GsnJQ^J`FJuIel4=q zh9r1PkQtoM`m?+}e8@u+)=V~qiIIHjx~WShyWINTDZ{3>^qpBzJ9QV#Pl|JvY96C7 zXZzFFRR_p9Zwsgz_0y?}SOl%bD8cI^^ zp4@C_&33~b6xFaxK404VNv7(YsT8b^mtyqgTy6?tV#r?+Yls(*zgs>yaHmTemjl;( z&w=pC5s{1eW9Vmqa;rzyHh)S? zw6}!(v$rs`zg}s?b+dK1*22oWNt7AuXehmQYdboOTWl!>}n66na4~z`@Uav>tQU>*BUY~w7#f03QvZ3KKbOR~Gs&wt)t@sY^*ME*~7BeJ?NDm==5TxKTYQk6|^$Ul{n(5DGm2d1$V$yph zxBu4jp381}ZTtss30$2BJ@0lC_+o`RPTki9E>!mLa*Zk$7FHS`C31;0y4|x~ultRv z?>TiHRD7ow>!pGaEwX`Sn~KH)#R=~7Ylp{s$0xTtBx)Nb&E~i>XQ%=+!X$sLY8HgI z>(#O2IEiS;r^p&dI3kUro7T;(Ec`G9#XAm0u>uMv+9`9>Rgs;E<26SvqO9TRY2BCk zr@mIJxJ}Q@$VZ>aLRx3Aeh0_LYcvc>6!THx8Szk32d1RG2x2$qqpJDxp?^`n=2O@m z9L(_6r2b-(yg?(rSdVniLnjep4?~XdR*&)3ei%Ab9+YNOvde|^hAl@M#;(A+*EDs% zaWC7&bK>X^Qn(D`M{%VO9o?U>5^%f1C`8>!{$j#IW2{LGN!&n>CNVkrWwh^oZEfxB zTcN?hvgpx>iHlF#lu1fUr!UCSKmL-C@cu{xKd-Ir@o~^|X?`j^LPA1`r%x50e+{z` zh^=oTWqlSB9^Ul+3PT#-^-JLb)(aoP!yn1W$jGPAX~`CusNvLAukJ3|W-Bw_ym{WM z?w*5#gM11i%K{s=aEohgf31n3uQ{$PCnu-o{%quyV8rn9&6_uq|C%wr@A&@|vs9|& z?)O0gnIe4fwNs4grF3-NrL<${Sdl;7az zley3Xp@#cksA=yziG4f5=^rw!S;aT8IrBUB>AKb8+u7jO8um2SM+8C2{}tag2_lhul$>q{MK~T`=`Yd^L>P*jivCt3%alZZU(zI>OUw=?*=4m|?b7vrj`pfD5Ki)ht zUym?f51Vp+67BXR=@LOu_h;MZf2KZ_%=2x^rtZr#7|e}6-V#dxWiza)d88I}x^j+XSWZd?o+$FaE1MhfScG^@F579P9&WOgy(=HXtY*K>i}1oMHvd<;C6=`X zsHV3m-Qh-jE(ZiE%2)$NdyBlEJ{dncqTQM&CJ4$+{dc=-O`;3;@p<`JPj88gWD?x} zx3Tc=xRC!#p#1yhU+*QP;l;$pwm14yt~*rZn~ukoS}(qozx_Y%B&+y(jatCUn?tAZ z$L9xLbi<@9%3`XjRN)#f{G(;IDe4ste$>JgflXIBtp1cK_{;EPcKd`HlB0c2*l~xs zP?($hBL?PqqG1u^AugMhk(Sr-&YoIilTySQ}> zqLSb8Hxc!Kp3Y#dE@YJ)lTiV}D_4{%o%op)GI1VB{WsDA8AZJ{nRt<_S^cfn{c24y z{FX@epiAm?(bJ<%)QJ6TYz=uOsj3-9o?iPGS_b10$1r95$;vibS>rGXqw*J#tq zl4hM!+f}@3QVl19000Ajy`~YO<>uYBCg%%-Vc{CD4i}cFk`t57pH>L?89bwj7GU-9 zmMhIBvg^-Kxp22T`HA!hp4rL%Ea@QW)vLJGnQCRVLBW5@M$9|6u`}ma$C`e=dq=n% zeY4z*88_=vAa9yR%iw!&2}Ossq2-<08e?&<)9H|>sJW36PLrZCq*xeY@y&#F2RK-GETGVMe> z@WR9R0fRA1r2jM7v;xY{svku%U@;ZzvY+mb^U4N#2{XWDZZn@7qckliaP^{bAq#AB zLkyyXj<>oY|DO2}6QjDs@l(ajqNBCvc(gNGJNY6gVqp}-Eoghex6b7?4 zStltWF_BR;MtA!*R?%>KLZAp1(axB0Z<;*2&HAqf94fvK{pyamt_0T~x?jKXX9+Jo zPwu4Yvm+qjch*vR)s8INY>wKFn-A)S2Sr8sbk1U4yM5co1DllO{Z%15cJ(Y$SIFpH z5cB`z;iN1)U-IZvX_tF@$5dulY!;e~MqysS%eI=A?aNe?PI&0QH@fQb=>GltL40MS zGOJ@1_P^dU6z~1=t@{}8XQJJ|N?Q?e@F0{7M}2y~cYNOCSw5tr+jygOtj|J6_YSrK zyJoektd50+1-qX`X@T$G-;+qPq&#oilU^qpkQ_=$sZ+#JYNCDP)eSm225f2kv1eb4 znTT&(zwWj^)zqCNO&Y~zPz$kVVDJZAgsyaMFaF>xT#78gtDERe_D51@vlY zoP%h1L6*RVolsjOr`KTK>pX+*na=9#;!Otb>8`KMX_C*xrg2F7 z&a576FOqZVUv}JGVd4J0TXiaovi#jf%g@grGcQ4GzurI^$!AWtzP^66Hx;PG-}qGY zn233za{qVq*6O$@pJ4en=ic_Wm=}r<7Sj10w)D+ZWMuG=&DqY^CrA7F2HlfL(2sS8$Vp&jDwM1_A1yJW2v+wFAKqGYZwgR(W8jg1iY?-K_H zfqq2Yk%jYh2M&o-(hdMEfM|frYHj@DkrVzs=iQZ2Um~;CA%)oK-@h$-d!Cul zack~5Jl2J3xJmQ(?^utdWLsl}rnu=Z8Q zsr)RH62cH?_iosv47X}Lt08MT|6^~$j@3cG=L=Z2tnv*kRG`qtMeBtgMv{<-h~}%d zBN)}wEg=s~60%LlMO^7P7ypqX67{g93l?K-$1o-|P7lIo-VLEsMYZE<1!({hI*r`n z!dzt<~W-G&Xm1{BGwRf7SefHedheJJ>~>R&&qvI^&+GtE<0n za-R99AR#5Cy*2l<#`sAz&kaU|@qN(sM`5K|rOqGLdKEOzRnhR7X{MUPU@l<2ZZRDz z=TFpG8Y;kc4Y(>8ci;0*el2Ld9w_v#b>^2Ta!C115!1XxwOEz4@^Gb$kS5P|RlPBg zrW3NYn3WY5YzV8Bkw|o@G#beMT;H_kR5?-n)}h%GmvU|tDdUCJGa4?;7|?M!m}gii z-;{~se)I70V;tDPnhQOt)6>%*!oo_L0jpcvi~S6&tO1ax*7{UT zKPu|*f3&3SeWbY3tzKer1NA!AI&7wi%dqF7tMy`^$MqW+5K)aVHL8h$QYI#>*rcql zCTl%Z5xYqbX4T>k&COq!;+5yi2vte~NS zrH|4d@uP?OMlbI7w6{VBa|uHG$aF|UVU|*!C-S-14+*Ntsx;HFMiHn^e{b(Kn1N^+zyV3 zX@m9PbJ)6d0gq~8xoEs`-YOT6%*j@YsQds&lRsrsj!x6N_>=mkCd;J(4v2<_DKfF| z%r%_1iCbD)re|k4Uo~Gwr)`KQKBqnQahF3DsH3z@OuqNr&aZFxYmo9cqDKYSv4f{{ z8xEl2uSMXe2!2bw)I*b!nJ_HJIAX2kp#l_ag3oQ@6TpYwjb~|8i6rWr6_NDw_t#w+ zDH$=V!;NuVDd935i>Y)zyrcV_=+2!xGPI6=SJ?gS#Khj++bVSzX2EIzZEAEPkdujn_QwM~~OB;AQCDn%uc9W`On=n>2DP?7fl9Cd52G1sH zM?ah8p&ZSccOM%6q|VfqGuCdohUc%`e2l_cBn%YZA$$M+J@Avd$xq_GB#)zc{5LxU z@oyRFC`AF%iYPATgP;_H%;{1U4>jYA+1{EKwbR-?1f^~_c@AB;MoX@t@D~|6Ez?WeCYf$$tSy27qGA; zU%s9eIoX@4X_9DAE;iH3W@v@HEPX_~4A03Lj_pd!^is~yg5A8fb!Kb4R`VZFYt@-aUCsfmfnnjIwN*Ra!T zltz3>SiZm$L*abrPtgF+s&8-fClH6)xSmw*{lZ4UJM!9oT4Yx5IOml*YOLoDUWh?LHf8Cf z8Jh()!=_cZM3tAgOh$_9$x^yoxRHKUOro8-3}yfUXFsVFne@QNdx~Mi=XMor*3BX5 z)btU4cHyU*DJl`!@6OfO6=i)tyv({&ya7AoY}M&j_tTQ80Ks?hXG&FBSxcq~UuGza zm)R_%$b=oZpst2Bk^Vg&sTnwR7Ymu@Al6gOU#`5W+U`@4M%3~Q8~w;pskXJ$bXt8)A#8f=C%C3v)uPSkp_&fG6)M-jO^X5T7Zeg>P%9D z>;y$sh#EiMd57F~#Qc#5&4a&bTjEXSB9p7I`7{AK-jMkL0?>@i2v%Fnalzfihpv#x z3|ea?;AGQ%prq z_H;^e-l~gas1#+c3Bd}xT+X mAs0_-CjToO(F10@lBP<}@sBTfhQr0zig%qe52; zU^nl4o8x^#NWIxI+70d+un=QfU#Z@Rx@Xv_hzPnHpI>beu$rq5c`DKZf0W3*LPBDW zQe~8tl?MVWApv}#xdQQZRQc`vGzKNF$yuyZ;a(n?JKfGWVWYv^q_*O3-@Z+Jo9$9& ziOH-^@!VeM#ctjEgJZZ`KqP3Xe}4s|c)4&GumGt~57!x)nU&wJ-rg6N5F5v!m$*rT z<@T2EhdV_Mjeu!=|8&nyF{d6my zD;dzMzcd+l+I$k3bMD-^nvYjuS5R!^$TUGhmXwkbNXmNm?u>NPUc0FaCXq{RSX7j< z;Rw_aw{Z<9A1T}AQi$xcXVm~o&!Q^^latdw6%LK@&SI_Ja+yyGmttNy6E?&e*2wNR zF}lpa7WOjOpgZ|v@o{b|E9OMmYNgNsdYOkzm|>;yqyp8 zz3B>Ohb^YcjEsyoMEa)I&r;flCncUSpV;vzu|#IWq9}=+Ef@N;G)kJ%Bt+t~MpP)j zm(6?@Vu;^_I$GRQTpfK>G8;$Pg)|*#bX# zK*fRGFy?Z&OsFICnkQFIgxIbVb^TGmS*+JyCx_#wtQ^0gDq>(cR>qWn(UFrQx^(Fh z3b0*veUnV&ouoExJ;=BikZo@j-W>uu;aW?#9?JMa%Bj3_7MtWI8>Frd{@EDWKw>=D zSrf2GDae+5U)o0o-@rfyetvS-s^ewTSFc}_`VN-any$Sl4IYYhTC2HG6IlmJ4|A?5 zL?hGzy|#!Npuf^>HB;+rv!bWuXz1LPqw`3*^97r=aSOrKFF=wG@+_JV9 z(g_rPC?nHhFk?Py-G45yH{lUJLc*#__O0lZuI_pxrRfhyb+W!~6%N~2tj|vSt4<1f zrj7s(GjMYgSB-a0)VTRBF|DdfY=c&k)jCtl?)Ty#*rz{HGDLIIq%DF2sxr%7GFl{l zlU32k*(rocM1q%)kl-r>g%j8;jmsV_Xgt`Jkx3~joA9exBqiQOV8HM*Jp9zzS|2_I+RC|HmOkVgjja*NlW`Mjn;=DU5v@@WCI)bHzr{hTk+7Y6+7Do$Z ztZwdSg4=k!b)OPC$Lh65tv6o}M6nz8eAR4gp|+dA=n&o=nb3*mGI&=vd5wc3=n=KO zJJdr?ppmkH&O3vz;a_sfg+`Yy8(~~tn?T&~&mW$gY{s8Xk63mlxf~yG84Y~!Wvh(P zZ4D!!q-+I|vQY`R&H+P0l+@$LuNr)a>FMdSoeynT%a-m?aOvNjYV?vFzEp2LKE$Q0Yz0-QrM3=8`CZ5EZsc5R8?tN{H8w>J-Dx5Z>b~4))WY@ zi68WM^zworuSm01xVP)+9Bj?wTovG&Mo+tz=jYT$kbTzooo=jPw@Hi?nbH7x(rO95 zvF9YR(3{>=1$q>GpMU-+0Kna z!F91{*mm?}JtL2+`ma`qYKxV`qKC}SF$f;d_5iVx0JUg_wo%^bV@OMXSEAP0| z11Tvis7VQ+XQ34?AhbmMozI^?FCJZ)K)xBKI-@&3etu`KadPIhsSn6n{@eN~D&I@! zVFsaMZ_n|3M_mv`i@kr8vU!5xzkzBuH>9+nN8g!vPQV8n4v0Ltb^%Xnc3 zM@L75i)Y`4;X#i2eYjfHv}|Ju)$|T(6)7Dk0*Z{{MIURI0Zh&vT=j{eKb{ zmp>)19&7}N7;m)V1a&iu$-fgI(OdjG>Wzf7v`*hQrSj90Lv-kV`^Fr_V=NUf;#>@R z=Ui_(DUV7)38O~ZTf-LnDe+ zoQ^w2D3j9peYJ$c;mU2FpXY#(&)@X^>D7ESP z2N^9bNvoL^P6J3T|7>bA6P@g`M^d#T=#P`zVNRcKNdt%==QflhyYt8Qk(%TrGIAOl zXgM7AW%$@->Cok-#dxP3Yh~zBoPwK{*=f!7BobT9++&xAE5g+aeJo~!J=yof5(Uyp za0P)X?6qo~)Pn5f?foOg?GH43SrU#Q%H_q5gx#qAC{r`%Q|{qSVW-d_kB>LYL>t*JfXVl9LdpmDsZdxWtOIWUYN(} z3l{}(R9I~D?^5^T?&fD=Vzn$Vg$~;b9y*GDBRm5B_d1I=v$K)&c&?M%7F;(xo=IVN zVPnZ~a1s!tGWUJ~L(|_c_l`IV=EObsm@BjmO~cEy4ZhwIGlCi9<7Mol*}0oVNkqs*U z(VDubn~x2ws3Sdet3t zk3t0il-hHAV>x|}>Q8ik|CK)e;avdf#6W&!jKq~y-BI?0FZ}os<6p>&mIUi-2v@%Q z^BBSXK8zdeWO_^Zn<@7;F35h{LL4gmD0%U^xybLlx(F1iVc8}mEUYoFQ>68Gd$c{M zSS80h!z_U%j=LtH!+^M4$L@E#<=)@-O%$@PIJ^?+eCBW^HmQ-ws@(Ocwd}%am8Bg0 zcue=Z-EK}L7rN-Wu``5AHmtq@(+BQ$3;bM`3WlN};QXGhT=v-rVcH{) z9WG~RG5{F-37wUbH80V#MbMWEN9!|C)N}0Cwb8%4Osty`eFQnm;O7^Qq+ce*7MK5C zO~$}^vtY|*T)zISn(brWfv)a%hfdp+zbf)6#|p1bC?MmdxNgyeQzeWXmANlSQb~?n z5K$m5^05z_mkeX+s$?^;%4wX|FmNfjK0%?T6*l?#MH~giIDbH-X!r^6NTmt~Zk0l# z&rtbh0%ms)C7(PgAfn9tXC0XH2G?v#&#rpJa#-YYKx0WqoBcX>4fNIv(|OWeB9kQn zjzA*|XWv}(c7+Gd^}B;xl9Zn29eBD+p^Icjc0u_p-Ga%rKhYs zxy%f*iqqE5N6c!ap&)yA11SgS*a$Sw8}awgSffIdJ`fY-7fv9s&j-rKiJtCvj@V84 zhiTg`4QTO`OaL8A1UOW43PRB>Zs;DD98J-jW^-ji1ETjfQ+gE%g`f>{yvspq(g3Sk z=~|aGn-aC-MD<%LVTT^srTCLA29Q5Vq;r5TLDOo`g8D`B;~b$W#1Up#2(+xQrjw0U zw$|kYbO~N9Tn@UJC-Kk-^B(5n9=hYPA;vbrdA6e%Ym>ahFyANxJq+(7EjT z`uw_dPFBSZ1(1n6qG8Z9NthKi`2#_5i3OQk(FZM8fr3^fWCJn7GX9W9uZ=7?B*ZPt z(#XgtsDJ+zAWXC@8-{E~aK6R^c{7{n5Q_AA7INGwYvkl4Bpt?_6Vr6OJKhQHY%Rt@ zP>LQ$akXp=06Btk+$y^SWxNiS#fTAo4^`xNJ8TnHj2Cp}2az0a`|V(j9!Ic$?t!}j zd;u1$(xEd_Z0@wt!Vsp7=7MOXfVAr1Ly@lY!dLOB0J#c^PH55qBmxe*HO*FgbYn@? zqUA=IHYuBW8}K(h`z7?1RzC7-)t>#`8L#oHvii+cJAXl&rDi{JPUcw-P*`nN$BY?w zlA}$20o^DdiVh082OV0LSq_6PdWWq!EykVAPSIH)SouQ84&Y4hz#^NneTccI0KRn@ z3jz9rTs>?-4czw?OmUbt%(e2#L4Vbms`5sj=#2XDyb5(T0M~gjO?&H8^Zi-zNdv2u zhXI1C<=qmqUb;Evd(hD-7chUgBXm;&-?~U;+?D7w>?cbuke%@g{fBiGw!{Hq=QtP*}V=sWI z8>>65i%Z+rH#FoxYg#%71u=UKI*TPq11qCtn@f3}%G6~b7QK4)O3|kRKsULFQ*qJ& zv;sL{o?7kOkO&SpAkWG^vAm|#R~TfN&BwElP8&WdCjiv2ps;KAK}%w3fEzV{+Qt;t zL=9bYFTAU{M1qDrw@fOwUrOfyeftfqtr=ijIWgeg^vfo;gWs8yNSNPAZ-{m+FBkf> zM5ps<)>uz3If(<)qXGfSCC*xWi0rPu?ug+>^8umlo)lvmc_O4DAVoz}5lmSd)nb*zzqcq6TPuV4T1vPn=%rXXK zyRbRKn($^`6WlLbv6=5mLh5s*he#Hx7XAGEvej&1o)k07fUjZ?TNi=E2Sb1sl@N7c z(tw7BZEJ9N`0M>+ifg8)B3~6QY|at1#k)aS<3Z#LobPGZ5>GzMiyCd!&8ljW`mR-srqWo^%&-G+y zb=;I6pCFYFx;iF9`HYGqAZf8cnbCz#0kcLWRZ2H`OhIs5Tn9tE)4QfAT3Xt-`cg!*HsmQ)Nh}3s1e?JCyUu`h* z4^)zD+nTadcf8a;x~tRk=2`DNxE6>xA2aQ)dFZ2+ofy6#Xki4xKd%k;L7vwYs@Oi*pv+5&2v*84O2L^{GX#Kf3 zJPoK-DN)E&MOvQlj@D;u)!k;kP&KZh=j#(1O4Q0P5G&JKgmG|uGQs=`?fm?zkVVa- zqJ=%%)6*lXQ=y(UqY^a{9@+5{s2*D4YZw9%VEAg^oeA^P$Fzu%^sw!$% z^FDp5-dH;0if)5&=1BXRmyP}vqJA|C7D(okZuFNds6V&8!fqnzYB15T~n zah;6~A4c^`MNUp`ZTma815V0chFdOg?%y{Yow6x&TYWNL>G>&V{UiZA=)+Uk(4jkJXqiLv}MwUhJMvn83V{qJ%+tRFvq%--bZ2VT~3 za`VxGK_hWxftR-Sh`l}Sak(72ff5GoQ%-kX0fSFoouIJ#99eKf4H7w8dtkFPP=i({ zB3$cg+%H`jC^o+ik$s(o#Xll~thEWN{N8U^29SJ@E>P>2{P?D{KCB=kK3?gJrmw?A zrddCzjCfQctD3=Zs^oIzJad!h0d`MT6YC-$@_EdY@cSnAb~|%u&Vv#@&pSKwaf`Xo zsLA%f`kgKPvmf@PV83g}c2?*Xwhek2N}#(>hul^0vQ!&8{59{VHaJ`QrBUSLCIQ*$ z^eU2(9Jgquj$LalQftm~amiL7R_xIum5!v+m^Uzcw-;aE6cB*rQa8lk-k2*@(Ur5V zA_=t-g7?zUGkd0?GZ;&HB_o<8p6Rf&j6EP_@~H%lNqQ>c)|~n;Vi$z@z&r7N}+vo z(;|>_JjBZlx^{3&nu%=(kVzpYuY-vI6STuy(#}?(0U7kB5kqwVnDahAKYwERBD9$w z#|nIGkLCr}P-jxOIz`wYpgrC8sWUg0#x}{ zmoyjPl;TwY79-HB1UB-KFK&4GH}n9oJ0wJUsqTM_ilUI!h&2N}5{D%Hfzr_v!?5Zz zs!(y{V}0But*orF8I<(&^dx)-B-$s<_#`AGt_dT;!ifzXiNDSMvNE5%jsHKa%%ok~ zVzPNX87jQR%~4>qt^jj@86Q<*N($-l?12q8K|G>oK-E1-f0%j55vy#JTKeAKAGc4a z1H9iOCbklbx8=E6a&H!hLkn!oqLl^ZcU3S9ZM1=ID&Z|;setlUng~2<4KXdCr`=Io znrDg^g^6e599d1v*Uv+Czs|uy;8j-xz7}+kLyG0wfs+WB&vU*QfawbT8R%h>LN&n6 zq!=tTR(Tjm-45EMFR|@Y?mv+cgjzip%aQPfrNM!D#u?*$pu}m1v2?ggxIf11_pa+T2}#VT&&Zps3k4Y8!r()CKXBAjSwOHL)r8J2 zx;Y{duk7l}T8i8nXuJkG)<-6V^S)&Xj{;ws{}HS@^x?QuONBlC$<213WzJ>14YsoT zF!WUG-))g@KyW~H(t4lOPBlq&6!j)^68a%@C%7LT;QcY^c2;8D(tyDfq|2C0WlJ) z%b-Q;)* z^uHeWe3@+fM1orougn$0-}B}3&I@19q1GHn27-8&Mw{}vMZ?n3X+-1a72u`!kVpL# zhCiQi%GvpPUQrt8ckwmu?EDao$-%MLY4Sd+`^IH*c`Yyg5M?fOZL=ve==n+ja5D}3 zb{W}i6UJSMmyrEdjbd>9!CTMy@M!-$>vcZfjHcuD`?s`e1A^kc9Ot!{QW>YW7t-mn zBye?yku}T!aqNldvB5_*m2WN-_A;&GR^pxVFQ>8IOYN=ga^t;m!{Y*t(+99hST+zV zplv?wSm@3toYLY9U|~78%RqA`X~ciOs=b4zvaZBfI%(zx9dT2kJ!XK1r7wx?Q|;;5 zNjp=LLN&qL{CUB`U?qZn8WfLvAcN{4jefL@jPC&fSc0Y>&i`TuWTO$}^f=#WFc?5Y zsm=0t@F+^fUW$#5M*AuF!LkgpbRw{k5m5W7gzT~vm$Doe(1s+)>6mDP2WZ7;Z#DM` z5S@k@i**3}VG+{m>eQ^^zH@VP+WUICx*X=e!~|@X5DBn~0USl=k?TxM>3*C_&hAOo zAh%K-xj=5hA!B!ia<)>jtL}2N-elOVclU3Rg+7L^QVG`uN!=a|DS3%dpSX)9-Y2)W zA0TCO-?%v*eRC)9_dRa?{>jb#HHQkcOD^BA*9U|ui@6`Pva+%f0@k+yQ6f5^)HhJ? zj-Q@{LmAkBc1sS3I^cfYgLVPh$^Z@S-_1eS#ee1Hox3^y!tB595 zw|fhkP#$zr=+>)NQWxQV`%X2->RCk+T08ygp!9R9XN5DqNDkdAuR7Y0E>~yc9kaVG zlfqdH2~b5C`Vm-`XxZ4<$jV-KQlAI2N%hiTUQ26h z-RiC-tSuD34(MFX|4euk^lk}_JE{;-eBrIjP?q32z))(S_hRZKLgRJ;pOv!;goq3M zSM`6uK{JC~!`?L6DYnu%x-Vb83{*JU=4d0F)sQPO$UxOKQvrXTTB#MSuy8C`@M7EA z+9pcuz`)$x);0}I?dzhVw#WJOv_BTMhBRi z_Kr3+R>Up}oq$}y1cES`=RF8+G~fn5GHeJlu;kyd%m<~b|E(=6h{(pT&l9|%pvCzDcjtg!Qf_XpkH5mGdq%ZmF4(Kk zWCFa#lt7moVWaAgR|=!hOdpgH`kOcJxE$?$mjJC7{i0ub9DUWOaKm&|B(jyb&`FFQ zM+o`czQmRGlR{pn(XVFGjA&4g>^%GvLlb0yyOV1B5EHB@SPkbKbDX+~NiUl76K?n- z7fk@sU_9ds+3goLoo$cyGKhl4XVts7C!a-+Ch_l1E{%s|sFjg`Hx773z^Dnn39?c$ zizD9>3|8e%=O&KNnPR^H!E3^ezCV)d`8lTp$*vejRAOLP)c{ z4AIeMCnh^U5P(D_lb)1zpnwg8+;$LS{LYjWTG|!&C;FfKuE@6BzxQ@vQ=mqYvsEnd zfO9y8Qnnmq=8$j)dKM2-^=5Dn?m=(WZ`9;9_{-6X9@m>bKg$k&FSJFhzWY|KUYI`MAlpJ_GmiWi>tQ-2Hz^_C+;eETAvL@E0kca!8jmyO`e&CI_P{x&k} zNfZ}`3*#7?iudH4@r^3b|M{hP=OQ{S!NZ4y_&SnP>}>88+%59}vPS6&V$26PAyctC z=BstI5mM<$P7GFmbee;NM9R3p1DQoZ-QFW)$&vCLsLuP>LU5dJA_cs6t=djcs;1dF zb6C$|hA^?QVM{S(0;#>^D$QDQ7HuOslMRj1$9dDdxpxDHpedGLf6No@4^}=XRjnxZ07E!Q)fsUd}3cB2Y$5Gep zEeE43h?_y+@-0I5m(dcnD!_5Dw?o+~21$zFYyy2!WirMxMAd~Ksl(-61EhZkRt7%s zj?)t{hD3v=2vtWjZ0N|Yal0^OCD78=_6nez(AJL!kmOvUU?~Zh$X}9v%Zs*df=ua2 z`@r)Vn0w8rrT$46FLh_xPu9SnDOK`hrQWy8yQ(2E~V4BFG=m~!w z+aMo_6uoO#~cetN4!}H}hadKGxfCQ6mjE>kwwx)naX#<{U4n(rGe;gHbF9 z56**5p-sP=GBID_u*e(O_{-FmASW(n*WoSZK7w;gbeF9|`e?qw}5F75!dj~mX5#eyvWS?)MIc45(|EY}Tvpz-ko0dBvVZ7iI} zNe6-r?0%)2XcDGs?)3>2p_?%GhK*z)72EP5-GwlftNNm z!_PS%QJK5*7!7=a^J!?2D0k54dwY8?nAnXgKq@VTPO;8{B{Ud@0OsAWuH+b5!KwQJ zg4_*BfeBYkWgfr9W^njqLVD4Mf_R&mIkbDe2bhl)JbxN^6m{h-H1rf>pFDaP|3XO# z8JuTd91Dw%9^R0Vfw>7TyY~f581_Qc^78UG%82Q`$5+Gq7eCVX_VuNurZTo%r6r)k z^8&0Rr>2%6K_9$i^8qE3k~eeCnw?C}+1WW*@ctJ#Psd1xbNli|dbogui%TU=-7_wV z8E(a3E^(G+_UjuIJTn4I#yiqO>g=N6FjGeCNh}$yhYZB6+;P9nm!P{Ncm#D9+)Jn(SnjngikBwy02k?f`pej<;&xA3E`oKa`5+ zgfCtFiC#0*-P?*+apvPTq*zkZ73LN_xa(qM)I!4(S~o3c3dn~j-q#~kD^jwtcw6o~BPKZP|bJK~#xuG)dsCmxZI56y1KQ zf#%djLXMZQFj1HB$E41pub1e*d*K(oKZ)A_pUNKi?o6<)APjib|ke*#9Cz@FXJn|{u6eh z&F%P%jP6eC4epVdr9zwX&IFq2nR+K<)Eo=Yg(BuwZMOoh`+p_~+w>g8w)j`Z11HO|gD-P=0W@_Su3X4g>WAJEG?AiN#*MKrxjzep!cX z#<*%*!fy9$q>)qOafxLj9PSGe~P`gFtg9ybPpzUusH;^QhDXHKclf-g9a1=tu~jF09Q3=d%n zo2Y#VDNs1ZKz+FANW4ZuO3Flqw=2gMOrM@UD)ZOP=IYr~UW~W5_Z^Y(JRRLXVo zw;=Oep;rB*5f;W|D0%fpz0L^h@pv{J{~#AG>c@qDM#;0n%=`nn*RDe<(4w=sWFssq zBo>f`IV`;bgJzuiRc_S>Y8_%lc&KXXL3j)}!6BbAi*5v| zS^X3bPNab@awz}^ZaAZ+`|4G5E^}{B&m3f@Zs@mV0k(MqK1X1AMLWq?(a(HWG~A$Q zJ|0Q%oG&zHbC0o1l#N*5BEwDtsf|sEc~xrgwF#;GbKf`9@^v)_QPqw{OEYewP-$dQ*CnQ`u*+No8Khg_B zOSTk}d+(1QKMag@bP`;)(>3N-%2vbZ(fZwc{Y!to)FpGja1k2HH(Gw8Lni2`lkaUoO}R{M&Di_SXMg>O-xcgknHv ze{&9^8`3jyt93P;-zl_Kr%BSrF?Sdfbn>>bWZCxVBna$pt)=>$Fs}x2GN) z=6Ro%p1uuDYo!ZUt)7)_LXQh6g>#h!;9hKx6;$xlqR;(1IDK+Vhpvr(Ng47eYd7i@ zoN->@7;KexEa60<4m{m6CXB;^fu8 z4f7Qb9KLBNSg(-AD`@`K4QBbg2qv#NOG4_k!hLN#F9gh|4x7?{EvRhh)FyXq=E!Jl z#TV6`_UKmuWFIFo;nOPcY2~maKs56O{p#ItM)6x$mn?dJ0Y3_(Z;uz%cpYQz2~~@5 z6bpUxYaRndMm||CiwcmoTwNGGW30mdu!dfaAp}8eANrtCaN;>^k~t*CvP1Hf;NK(G z=Hh9TH}%ba6_xbj;|{4QT2h`k`AK~dcKVQB1+b8 zCU7+*ZoLl^^#T3|6KkILY2jd_d2nKgjDRG%b4x)*4jZLWdaKN0l*0m^vI=`gtuuiR>75r-gMnhMb)w@57Kr< zZ8Zi323vaOtrpOhX4a}B3-N^K;Iu}h#iY@fb0xY$otO2cB*(bNn1r~MN;PyM0EKdX za*GIH4P}{y9>^q>o&~DOH-sq;HB?-q26E z#e`+qqfSelF36?{PG_;U=5B$-O7xN%+|Veu&M+x6{itxWiKy#GZTZkeEOBSTn<>8hrlnc6!OU8w)M-pJBPOTJ*`7GwAI z>ps>-H!W*}$Sx_>EZUUakPIU}6(o9l_fyL7U*#f^-E!jEIX(5{YTK%;A3vKAMyCM+ zLjfBf3cWU2%>(?4wixui>D<;)m0B;*rQP6#;_Hm@ueOv24}bRxh3|klLJk4|blOK( zfp|d3N8Qo&fm51@^}#@CslX^0omsZQ3I79#~O-@M2_ZH@nf`I=geEz zF}o?;Seqe(C{e_vtO-;=8R)KcgRDIudkXEEIY>e!o}d6DU~PdJfHwL!P>AGwN!ebi zsl|erlK@lP6eVDt20(qt<7==L9K%?IHcSsDzR;)OV8U}}Fr0zgm4Z(bI%tW@!$n0s zQOS&Xy}SNqd?UZ3$~q@1;1nkjo|pCM@viNj?Iwtn3X^7voO*2^@_Ow)3771Sg?>O> zcYpb^h0#0jmW}({i?4vH)VD!~-avO9uvEe_N7a)JAgH^0xrZ(r${O%}*~RoPP5*ZP zO4XjM=}wTm3F=4etZkqEqvGSG{(x`zo?8ya&hG?$MnRYB9T@mp@TUJe*AtKXw8x#N zM}hS7K1`YVn=MC;jSrv1@ICMCMS2~eeTClI`dn!X3x>xaj=VHB&Il0Nknp(wIjjjX z6={^PW1%W*INDpo&CSh7_&Wx!psVDb7euH zbX!sg# zs_~^uc25PDx%{sRzFh3j>WA|qDWJP1Jc$}pHZVvwE=}a=hem+Xv%675Rgm~mTr-$;*`liejpE&kli1B;PVmn z)q8Z##sp|8I{*9`0=y6hXqyFw2Y)JKS86Zc7C$<%Mc@}~4U zNf0l_M0q8kSyeJo{nKy-e?l_y9FrC0|tkx;MwXA%Ru3tdzjsFI+qO$}ke84s$m8>>eX)cWJo+?CYCpY&B>RF{qf(2x)WQ>X;QD@(cU| zeJKTc6zN1kEg*-AP43T}25D{79^AFnwY9gmcK|4TQ^4i^4{8|5uCIG6Y;I0Jyj{jg zFu)zk=R=D8YnpJ~&Pive^NCnfa%H6>PT^a5QBnU?>kmV6&r?CERWclO>+@;SPH0Zl z>Z#ikxR2=tls%Bth+~BezX*a!A{f0O-CY6BbqMrkqywK|0%jtpSJ@fnR*a+piwq?AOctQ? z*YL8AHR=*I%7Zwp-;eN*B<1JJgtL1bZ_6}zfp*p!{V?%20DQj#`E?KP8p9N5uyzB0 zyUgpt4ZQM;dg67^crgf?t7uI})6E9*yT{19j`bFnmeziuU|M8NMYzlQYeTLRfHlDA z13)GpP!n}r^(3(K`H6|@P|@vCb87N|7uh?(*32pW@W`!{+Mg>mr29`FmY2>82VCN2 z=J(n5rRt6(!J_(ZntS>m8hfs^%PkNCn`2<$!2x*8b0Hy}iYceK5P?HgbW&bL(3t;4 zH0AW97a~*Wor+=6hx|c9MGlzR@LC~5W*9&cu);qw;Zk?=hKs{N z@W*{nd+%VE762zCe7qNNy<`BVfcAp{;L*rN^{J)4KRVKfR}3j@{u>(fr_3u(TI`JP z@|YQEpK89AjFFT}G=h~^JKp`hvVT+vabA*b&)Nn(plqn3H30^LKzs_|0H81e;4LsV zfJy?KG|=)b=jd1lqR?Qz7hn}PZYd11gYQFj_bporA7q)ULXOWBf(e$ ztbQLHn1G_#6mVV}tAFc`48)hwrd1;&Bg_8eTz|vVbbk{?a<01v+CSgnlCCpc)lHH> zxGe-WnjFkJ^%$Hb$lmoPxovqWN2Dof^R26+BEF7Fb1$cO96l+pb1C21EWI*eu1Hos*lq;As0;Wt<1hIWh zCBIk}a|6(+6!ZxJgYvRm?FEKuXk@hdnI^%+{v2TWfqpUaJP?A)sGdYQ`89MwQH+DI z?E$7=1mta?tl|f{d+Gmw_)K_j0iS86rsn|^zXxM=N9AO$e5JX$QfX;vj194o(a{w= z)BOdDHY)OQG#K!%_Z`)dn+$zBh}*Z2&TFcPch5zK_ zY_xG0Al6TZfBLwYEbAi9mPI*{`gC9~KVEDY2pl;~ZGs>Nx?p5L#V+IR+qb1~zMoYw zvEc>)7zb#bh9L!b3D8S240Oe5KvkTbl=Lcm{C0{MspB_T^%QT{NekMZK}X_uxb$T? z1J!G_k=O^p5_l8PI(nVL)f0X$0>zW4;fC&qvNiey{`u9bbP@x|_eg$%ohPd~nl@66 z!kytvC;bk(Vg4v@)pOn}108?n74$AtrXU^X1uaGqm(l&BO3KRF_Y(5S!s6oS&qh&x z)6>y~Poh6=S=#HE-^t9*rb9q^PhOpSHPlXPZ844hA1KbLMQko{a+wSTAYu=9+ECQg z(MkLl^7T20=BRglZ9UH)Wl;ei2Ot7baQbiaLb|~rmNiZ%?vNzEB6GujAyJG$N}UNM z%ZX+zPXZG~PxkC2rVQ%STDt>ZU9M-(gdvOo;o;%o4y!v4!vDWar)crSCpBh*ARe@J zNuY(1R|!1)26To1qaA>pmyr!?CF@W(ScJy^xzW)l!A451+ z(o00)L^`;yVAL_2sm3V?|G+@+=#kR&1w>9(DO9Qm<166JWGW|69!BtNZ?QA`Y$X>mOLgs3(kvy1UZ6o3e@5{ zELbe}+fk>dKuj0de0Pi7b3crsYXAt3uy69rpZ7!a(l&a4_ErNZd8{7uN(wzV>EQ+SL%-&^%Gc8mu&Kd%AI1=t zz+ch32Vu}|M8Gj|~G8AHk3W4$!|&3Z3t;o;FS% zO!v{$Lk&@pk+ej?)HUevN4*TP@GotcNKJ!4j!&?QqqkfP% zhp#ISsE6LJZE0z-boyv9?PCL!o5hG~vOVHpQ6+6{CJE3xFC|-gy?o1e@c$W^D@nK> z`9(RXJNXx{KS12Q3pjy1v0KvscS2Ee6=jRFoXYU|{l9;vWY=#0DBH{v&uq1rso83f z(f97Yyb2Q1{tJP}+tn4FWyzted(p6ytn%^U8$b4BFFrtYkeBIsMkyBRDluC+< zlvTu(V5nIH;M)N#D%N=Q0cZnU>$D~0L1qveTdnQsI|TUoZxInG0OE5#i~K71LnfoR zq=ZVMQCIHZ;6P&Y{%4@;&Cq4eeEH<-y7Jd2An*eW3{w3xZQnbLlA(&5LmyVvJ@Fv4 zj&Sy&g(1Qi!fHF+1XL2w_h-?9&wyq8zYXJPlr7_I(3}~RSb(Y+5P~HjIsifJ880Xf z;9JKgMSk>%u3OE{8P8o7>9sjZLVuvXWw*TJ5nJ0V0%J{ka<&+FC^_E3rx1T5JxVC;)v} z{BO}wBm=-YpuBu5(Dq4oZL1qhC!MLiYwkINm2&p#4U8*)t2o-+dx;R+Et<5U!h&7FcXsZIgflB%` z%lH^zmE##}jCllMO8}P7`a%Bs@x(+#e|i7+#ATjx1FoBYfP^&023T=HP?9_an2Ko6 z_P@V>*}D=ZJp#ZyTC<6BZGpx8D5fz3^txc_kpc3!+yhLD;;73pgS;!>1(gNp1#k*R{%qW{sZFL}pvypI5J7DgEl z^wBq!wD9J+ucomzOjacw%t4i2*JKO$I`2zVkhfqS6STS}tp3N$B0aj-HqFn?#icR< zRalQ^E9LBi9IX7$HvmZeDOW(S{@PuxLdg2x>-@w9Z~3-{Q;`o;LLGrbyMiQ+$37i= zwfdvFt&NR^|2-^zY|Xpk83_FDU83gy{jm3Maq(a7py!O{Z}I>BN*Qo;H;iK(R9CAQ zQf6+Dll_%SxF7k>mvv|FWLK2%DIz2!6F+Z!_(%GhK7Cv`Ig+%?)kYlt#!u|H7-8iI zPR#7vp^pGU}+oe>J`IysTSSE5d<2>Pd`*yxaNV?Ad z+r4FCP4c=?QwW3y|FX4)o?hjylNRH;AzZ+Bq9VV5pZl_yfoBHdTikUqLq>Y}_rFIN z3=MZGYhc^g)fvR04NB>X0qPL%raFU!_|SMvrmH6Zyr&JgWiqg}@aG_jTwIO?qD%No zM@>W&dVvqNP`xPyeO-Wh0q`&H4s3Yj;DVyaSbbXpqj>2l|wHrW8?&G;Bz=>P8&pOq%bx<){ZZ~L ze4YW(TEtMNs!=eyMyyB_@_fQ-kTOwaX~BSYY0b4d@t&|cF?}Q-+3w z^!Ve=!IE!}g>=QEtq}PKN$H$zi8)z=S__fY6((PM{&Wsir>D#0_aO_b<9|sZ1F?rN z$OPU@Z=52gp;R_bD=Yj>&KwqLt!mergq*AhY0&@<(7+?h0S=Jxe+za;HQcK_?~S8T z>BP8sd31Ik*33Q5qrJ+bLO|qyl>++=*WbS0Qsx9n$rAzv%R0hgJ|Az4L$~+!m##c& z?&H7=#3}w;HDqfJ_Ex1UfJB^e@Y;>fpW{hc+(V|vnQYb_t16rXFJ1UQltRk z*C)TSbHLgqTee->(G$@c0bjp9@V}RT`RWIoBNVsxqP=5epuZUuiqbvGt-WrOEZD6? zy+YaFU7jPtSt%z(-<7j=k%VZd;Mt3yB8SHUdo^pn_lZL9pf}|23`c? zION(-(&`3Hqzx9czRzZK;N6d3Ka5L9pbOu@xHrcHlms8QR^f&GO0h{Q4`seL9wqn`MQ0cyEgSxgY{vdGi)hU*e4&zeF9M znIE})NahTxV@OC6t)K2j>?Dy#XeSke{|q2I%9?Apw!GCzfhC}@%2^ zGAZLJ#3km6aa}7y@+7#iO3ME8c#cyMi5Q|3<+%9*iBn;b$V*Lj)eJ*J$_yTG`j`Hz ze1`u+#HwpmG8aFy@W z)MD)H?K!;8UEqiTr%);l76{f0FhXT(-wo!^K$Vo-nH=7if!@EdywLD>BdM~9*d}#( zm4d+%R_saO7{xhEvA4Z|>I5!Y8J4-JxWg<_nOUT^+X~eb7zAv`{k~xeOfFm*H!rZX zuPZKQtpm-5Zr~>zL6QseSe9fZhFy3uTD33NR$->a`*NYKRoCOd=Lx)sCNzwJR`s0Sn~Fx`F%CVU(K5#K5xazCxO0k{Rzq5xn6rp^J>mpa!D zvWtq|0UmnH|8}8zGH@`KLiL<2tri@!;hZqwtWo zfaZu&q8dyW8js&|;fINQDhYFFB=_@*8z^3Uql9UE(gY!p(@{wPm5db+9)Q_uYFR+T z+BVG%uc4Q@nUTjlo=nd^O(r%ltWJ5aH@=2yr+`_flmNW{TA>l(;77q=#ZspYb!pH* zI$>@#R`@DhQBJPUFurTS?8H-8SU6hX_j@1)RIhe0&48AGl#0%n+;z16fX*>*J`HhH5kUx#t}-Em2$#kbt!OVmGPpP831ILkip+s zWT6-{?~*Wyh-wPDdj_z05OsaHZoU9%cN@)LEwGQAx|eh*pOJBKIiR{$zo6;r zT1B~n2_5?asLWFjMr|^x7QO@{HA>;CHmO73EB9d(I4*eCcZZjnh^1W?*C}odjbt^l za|~^atejL;dx2!8T>U%izW=TLnDiJx72F5Bx^{s|aB%RKVib3EvkQrIVBzUZ%C{)WPCNubaZ*|QKo6NM z8$ryqM$VVxOnU6LunF=)@hfZhtV?C}{Du&c^u68slb9!B12bY6gRM{f+zM!Ozu2gP zp16?xN{~N=$G$c*K|Q$aegfqC(I7)1BCa9t^%)v+V^@aU(2YtE$COxKZ_|=*S5H|< z$V*F0XK-}SDSCN%O^z01XAi*KAz*djq6plCT7Lm;SXaa;xPsY6Ye4^Cb#x3SKwTWS z2`K}00+55I!+aIIl6>dt;NVq*W^}%dG?35s)*^v!KgJ|Cos|ay1+G2hy|$-j7q@b= zvOdc_mj**{KpF|EQGl>BsPMfFjvga&fobe{O?+#ub^%4${a#ygr<1717f?$2FwMQZ z@+IN^Oe4>eNW0|pki&|LF{h+dax|jn&CEE!34lz>K0Y11Ef9j9Nb6$+q)^Rn$QCqy zr$?t0>%3RnJ&*r733U0!^8OGT;TKE-ddt%5!k*{Q#i<93#L5Pu zeN)gk?Y{2pg2g z4#JCOD+CxW2`~+G{(W`2p;|SdL}BBE88g^Pg8+1t-Mgq{3m9H^$7@#7bMSn1?C4yT z7;Pm&S1!O!ZR0Ky(qTy6SvXV=x{Xc4Q;ic`)2FIH%_&c{=(Saa2Iw9ST5*F(l_&sR0yB| zg2@EbK>;w9%Q_)DJ6oL-%E`$Y)VbWn_XGotJ9~OYz|gY8Z6-Lb>>El)4ST+$Px2~W z0rCRz+;8OlPc~wk-GRJv1&s0@d=|<-z{*vD09tWJpu8#NF;a^HbG9@k2H?30xDYO` z#CRD?2aws)Nx-_Mn)B)i8rc!ROg)nT^J(JtBNETw&@1Qm0k1wj?8Z+9v&f9XBiBI< zZ?IVLamaHD)55{075z@$o8r-uIv?N96gnv0I|~3`?>D{WKr5(Ks)P!jX2MgM>%c@1 zAWj(swc%W#Br=6SqZMn=VGaKGbXp0<980RK^z`(plb%w+MBv9jfkzRvj`_oT0J?Cy zj7s3Pp;&&`VmKJO)=k&dNyF=2m)psHaJKtaKuaqpy8yatL+mfpvA>3Y2Zg<7K8i9v zEHX)DbydIGD1RzFh3(J+#Ta{Q*v|+ENGOQ8|uqpH22Ln2bg6-C4rc4)dw(l?HnYo zQS+|^@i?q&j_$OAx=UW|_qR4?_FsA`XHP9_&Qr=|8tA5yET!i-+r(Q2V-Im?Lv#?WNe#OaPVzu{Q@$?V^&&CH?6;t;VQ z%ljOrr|EgITn1l_78jPQVynNqt7^~uB*judA$3}q*f^a6Vz-pSmx*_MvqMEWhE|45 zDgt#udcV(olikp+Wv!}f)#WKJTDdD(U_xRJvaV^D?-Vlbz{}B>UUn8yPRYwpTj`gE zco3nj^kItjSH;H2R+yxlzZEFZ>CZ5(%p*xI~HM8S( z$xnMuGT{QRW_B#6RcIPm{_z>^gC8{!TSun_1t%A z1}c4PB?t#~W&eEA?*%M>ropR8+(?Ii%4V`i$L}oQc}{m6`yJg1J{^gUI|vPH;T>D+ z_aUoLZsQI(`mrwMNkb#~Vwl6kk}EW3c5n4w6%QlSQ#9e&^%J=oa_vJ>dLzZ5_71#{ z9g!%$3UF-8q<^kc{yv)XVgs=Zuz4@pv(@4%Xf4!E9rb)HSPXK{+$UobA{ZOG(~bQx zhg}jg2FE)H1qFC=#q%+kEKEkf2T){0*udwG@PWIPttK?=&$3#SSX_eeRN!&FTd4Ad98fG z=qUa9fe30mMmI>`BT@Fg>6xE3iqz;W^YN&i%E&1H-~yR=-_gxxe~PKgeX|K&C>-t% zlmni|50k8*?^{+eiHyX+QsY;dnMyUlQ8b&^As+S7>UgE8h(eeu9iws4E!mXk(ih;? zmIMOr)Sre~>?C2p?X<7xQh`9ajQ^jBQ6Dnube#Q5*=W|1C{DKXISGqrQB~qA&mUe9$N~Cz`?ijNFjlKM6P@R5&SmDRi?yKQ%<3Q*H_2bu#m*L8fO1 zCbu;@IIAv8-dyFI_boN%b4i&WTK#T>kK*hqE}hs;rIg*@<;<4>x9A%)*iB)@+Z*$S_>^k;Uit^Td{Qlm`1Vx;>v zI&$%Ly2|&V;<5oB7L0#BO9Q?H3F&(}i3VqfvNGK>GrHJ_jP_6c#kJE>k5icHajUB4 zs5>@8>ZbKZk;y6&NZ;j3mRnetd{$?x&|3~^yi?8nf+k-Ze8vFbHAm1F$}>_BY24Ap zx@tB-Qb8i)M?;#@7uNQcGwxrArN`@%ly!fyz?4hz87QCG^+Rut^ATa%9X|8YQo*0$ z;;IOz8o+qOhDGEx=1u~8Gx1ds10ViUXyN?dGgs{svDjF67KH#8RTcR z_9GFZTk6Eb5i~f@kE~^34ha3`{<8j(J5`P|Wi6&!M)*|WUDA)KAz+z5^{-irmqP#C zjvC~LzGRJD^q`8^@8a+tek=%eAZt~(s`#LgArYQ#aC$JbO@VGR#+M75PE}Yld*jl^ zHa~cFb=xNZ|A1`S&SDaJWS{p=m3%za2z$ zHb?NHZY0+m`Bl_{kA6YDUNPjr-0*ukWrrQN;bu+Z>o%Ep?DQI}XlhIqL2}H858e40 z8-k6NGEH|so2{-af)9Aabsg`1hMIp8Evps$NgDi=M@r!gVafY@&6MlGXpyZie_&!1 zgoRPTWA&!V&g1m+`r2sr&g2Sf07irwyJEwr#1>a)K-*WQAi zr3_Ol@6xWO-lh4Qly+BL2v|+ArOJsNJLTn;ZRD;pPg-{0_xlGJav~$G{B1pKeKZ$F z;0$J*e#6zeQ#6fYV(>dspEfiU?p0d$#=eUVNRY!z0i6~D(zD2Ftr7<NlT-T zAM6^+G{eGDaCx>LNrVr#2pad-dT@|>o+nJf@~g)o*O7GDmn?fctA)c+Yvc`sWV9vi zJJ;vW+fK_^bS8=p6(r>6X^o!)4Jd1F$l4zuFlG8dn=^c_1>4^~qel-cCtlVE=*hi{ zUOyZCO^VxMPG0rX$DdD5MVX(cusrEnQrZ4Dh$HAyOOlxXt*%yz_1TxjMcU$CuP;GF z^n_XrTfk6W4q#pLgPwmnTYu6?vn`(D2KyX0i090XFc46d%zisA09)go`s_NqxW$;N zLF%|@S(GI2%BRwWYspS5XQX5&$UX~9My6ttTB*s5jftS=j5^b(yz>SIzU$ zjg3o6bqxqB4WG`CMrNDf{;ft6#$PmAOaFk}X+IXJ7igV>7TuiGUU{*gd0;Db0C@ZN z`=A)|GWN;!!w+BU4-M>S{501Z4Ey z^|bYA;9Wsy4nqN^$=~W12ZMQ3>V+kulB-1Q4b{p*)9Tq0Yn;&P)JuKI4KSSwqZ!~P zGt{+#ya~{ow3eIu=X;Zu1dv+L)6;AC*k?#iV~D=+h-cHdMB_-{5{??hUtCVuoMMJ< zggV{es@rGF2*VYciMNj3-u!;mS(Y1V)o$@&@mVd;0v&f2E!FYORtv3^wL=y$m`v>d z>>59J8OR#=JQMyQ7>s@0b@^TeK;YMO=*FVBL17_dW6nmZjQF**`uL+yYo~FsPIsz7 z@ULTW`{ok*p?h7!B2DhL+96hqBx4Ge z@Q#w-oY21pTxbH^4u!1iS`9yX$|m-I^))hvZJq$!u{9P}O(~@EOjD)`T^Im=c-@V~ zaMqlK?{;7<)xwc*-#X-`ewvyLy1KLpIW&b3>dB!*z8gK{b9>8|Ny6++!%m0Fo1iPI zfl%`aI@5BVGFXeRtv5R&0NR=WKEWL2^AW96BZp1IM<#$8=)h<99Js9D7&c~py+*&Z znJGzE_EyCcxe$5auYZ!izZ(&h#Q8sJ|L2RMXshVGc}#;B2)buD;gOMf?d>dPybd22 z3b+s(u#x;%Rt(1p?z~8(va7ptifb0t%F~=EZ$G)zFyr6zh-nt1&UyuZx_~G<_zfw1 zvP(N+?V`f4V|lw43$3$enHJIY)(!650M%;vi$O@@?!oUQ6WMQsXjmmvu4f^;1uC0F ztOky5q|HI?7psBc!>;fq^~DkNgWtSM%LGXJ<3RzhzFIj+IcXhKxVX@XGE>fLj8=IC zPo6CHjc8YE9g-TdK19VHfS>gUQyF%7PZ;wo(9AkdrGbg3OM_zP)@_K$aiq1|t{!Q7ph!L?ybuQsV~JBo1jYq)xXCA2Ts?htye73JVKh+Ev02O@E%Gh>3BCNA z>R*nu$q)|KZJd_CFBDH~Ue!ef%GW*-$F7W~5J|m%OGvNk$y;25unojMYs_@-Rw$0V zQ8?kGVZ{2`iOca5AhqKO|M51Ti8LU*VhsoXtVe@4@8#9xwuYjJpZQF5{I~$ z|1LA?{yhe6<8DvS@V=fUvq-ApH_yn)mz5II;vh{vxrk>ixj5f7efImh&6tzr&h-_Y ztOW$W?oBSJj1m39V4^vxzWZ2*KYo%^G9!p(1B2ClOLBL4{+HR5Lj*3kJR1w^1Yb#g z@(J8*&$`A~u)A0BrZ~6g?5ysi=fA#I<~^wuWt$DrLwOnkleS}M*e9=@8( z;ILmS8~%cS_-IBH?cKSX%sYlk=O^(V3Ylca6;GilhM_B3=C9nmEbD*o8o}xlnZ+KD zAVJRYgD|VLxY1Mo9izuEKtZjl(cOPp(VU#B#%8vfEotj}$EBj~1yIz+cf3cM;3Fk@ zw~*0oMNT|lNH94)()3_$+*Kfw$&I98xJf#%+hWV^l0M`59^GOQ+UskD5kw1n1PF%o z!3TpM3;I2LYMO;}Khdo8E?l;N*XtAg9>9kZDiw|{8u<(UoPu9bJgVBw`>m{?SPQk?j>yJ>! zK^>d+AYICVS_Tlv>7Q3@zG~DmB0@KW>+AKJwrTWjd&c`DAVDF$GvBc1SBSy30zCE| zi9~$wT2s5jR;EpKv2=dRWVu;?A7K#Jw;&x+mc>qwE%Er|bw7(JXW*IhmG4>Dy+Q|z+xC^WN7@aF3OulTEgM=d zcLVk36GK{fyrx=d=QcB^H52qlE&o*=+q^vMs&7o5+jPlcBb1qf`d&4D%sIXH*1u-n zv!*0qI0nrbT?GEq6n4n=tX%1`K4-IB<@KiSh0t9a%VMUFWBee?uo-_%3Osl&b#8V1cuuN`bf0u%Rfd0la&|c9z{h7O{-9N-DdWjb`9I)DIv$J zO`a7g!G>a00?o;W3eLR}bW+36D=BI8Pz)#vfBP1L9gmvEUw+BYn|mxC^QRZ!nzQyr zP?9PN)!0{jGfkd78!!BK=Qt{%3BGUB&_FLz)nYMJvU3uYwZKKtC9CeToQxTRJWeQ4 zQq&#M$Ir|ESmFiV0fov@7cvPPRFc!yw<8&BRBivHA{12Wh1sax8@8cl&#F!rNN0wG zWH!rjjV`wLOJmZP)`p1hRUFMOTJv}o^rNTSk1S=xTF$ziz}y`RPKI=MPvFI`>)n#n z3a4e!RozR(+Nyo*(o??O`Z5{VIm2(0n-T+9oxxlri}Ja4sxWc6=Q!3$>@%u)%D^{i zc;A}lp^TSd(?HFivN{@rpbYseMs94x4+gx4px#li!_RqnSIVdH+z<>pcHvJQG_|Xm zj7kWxxHWo+Ug#EUCN(&;#vckACV=GI9Q@D5Aynke713eAaiq%>Z7wPM z${;88<|6jR?`LlrD3t#Me#SwdqKr|O6ze*CPAPti5D?g$Yw77kb359tLYQg_&Bd%Q z+Rhg(b6z{>a*XOd_=2w({ptKda!Z|`)yX?&Zv42xLQhpia_Y`8{XOf`zhL_g>#x;B zvR3ayzoLDIe`skaw1x#ZbJuXH9^PD6xyXCt$?c`m%=4WX5%qsid{^v>Ec)LIt}|^t zi>h&-T%SMKo?mPw3`MuGD~yewVyais=^7w(`xi_7LjnK2N@!fKl8UWjB;-FIN1{VI z+vi=7dvkrtpL;i+*eEO)GA*V^m`(R#=0gAI%9QYgE9>4>2yQ7oQs%fG%`Rge8z%eH zx?V2=C*n~?ljK(3i@f)F-JMVcrykP1)4KEIG^`1eQ+}S0oOAZW$V}F`_nzpMZU6eq zdANgHfLBg!!}pBgHWNP9BYwvPQLT1-Lh$9GAbdPjH;{(o zNmM2Dyi-I=z`=-y>Gyy|#U8oz0g0e|jGKd!cl6^0#y=$$qrxf8GP~`)b0;$sh5JWQ zByk8w*<$i(TyH9wd$3LO5ZAac2|7j|84A8o;pFP$wMtvZHp?Dso?l$8M@|T8S?OHd z)?i%Ubg~E3b}Y(8{ewC4`0mcSKy_DYyrnRcA7wFUOo4v!T1=ODyv%7EzTM1~nMolE zX4xmg?5&-OL?~m83;zne6Bkj(-`sqEe1FqeHV2^yL~=tzB4XDLw4>^lsUt71txYtQ zgmt&f@66g&5fBiJ4Jd?l|6V%)w}~NtdP8Br3dJz;KSO}&k;FiF{IPj1&*;ul)pF;w z7t>b4rSob_u%kyAr}#KK0vhI3?&%90wffaO!C(*_=JZgM)A!=U*tUL`OPs2$bzzOD zeZ4Gb(uq%o$NxcXg4B)$|0}5eW!`Y7pdcnWL&}#*-47xQrE!YP1eB3)!^EY~rwqOB zLw>KpY^5Z*K7ld*#k~_S7#n;EMgd%e6u6B`W@&q?GjE0L&w}0DUY1gL`MYT9jVl7zoWNw z;*(`iYv=GpIhW;r?N0sByUlDtw;_6O^|ghD85Uch-|NCd9idm?5pewdi*tRgy2ahm zBh1~4o&?%3OVo&odjT%|L`$0@4^{samL!XZPRL)9$cA%D|M2(eeLu%{P^Q^8@Me0R zO6&Qf=l>*H=Hm_x;E3?XU?kSd)ByhaSz`)CxA7egaUdJYosEu#LzJ^`*jVap3N#C=ItZ^$XJ- zzU|dF%yu|4Xxh67OhtZ&q!!io`jS+GkGHOWj+Gz_r$KL|YH}9slg&;RL<@KPs)B$+rDf2pJ6P-nr-@yTl2$ooKpK`TpIy zbuDLYI08)?atw9}idShs!GI8Zm)>2UyO@t>L>?XwoMI#d(|idzOYQACco=Jwd6j={ z=|L&iKzyq<$HR(5?I+T>e_B3? zROJ>W_$uc;6A)%Te-|3457g~p8UJRzLw!-|Q4?-1e=0XxZ3L(aqOc!-_?Z$sJA<4( zyhOWixXV|#KZchvXhZ*2fucIsn%xd^bVS^Q`nIa5RoNGkzs*+o6=h|*DqVNrGY)cx z%n$I+8|9V7FgOQ1tBsWkYcvR(>UoMxp1AMY#ySWtI4=&ZV2N1pdsCdu!>^*%)rcF^ zTULr}<2};_eX+#f39LuHeDrxBu1g<@ujx(kOpqT4}9pi{feO{Rn zN`H3uxs;i`&EU)LvMvIeqvLPtx?AJ297Nhea8PlBxAHNmQl?YlZQj)(R zevB6LHruZ$Iu0&;kp>StFN}GcF>Bn_{yJ>iu__%-Vm>%NR$!1BVK-iHSz|}TDA-jf zM2M3?sQLFcn^?J-4S$%HKoQehPm0MeO%QuG!~GCA*WR!lhgxLx4$7187uyI9;^U>% zLMIEI!G9nyz4yB%WRY$BJaNh1oU4#2g7L&7XMixOz;a1e63=b);J$i2By}g#5E|9CpU6>)O>@0hw|!-8B?zJvFxT}=)a%d zEKzTWjKJLduyPP7V12z&VbUVkaR90LVXW2^*RRC)w!Fn^=XmrrRa!qDXD<$V&8W_v zHE&Lb&oR};MNjt$wPPU*$^QO3=wFjEVpx1$Z2fhKUiCJkVJ!Ptp2wg01Xm&Ko&wCd zasudw0&yx=G;t0NlM{x{gJByPEt9_}%Jfz7PSh2HJ%+tE)?#2U{|i_Pt886-54gtW zNpEY!{?gvZT;;>vO73Th&4)}&AB({0_t4kJkFmY52-tPK#0lKXQ2n8wjdEU`7FNrn z$)SWID>m-ma`nX`eN9jme}k#{+;SPQi+SvwQJIIs+i7y>NO&kr*4ax> z8luh5?z(a&Jh6=BM)w8h{fCl9Gizc+vg@@o`egCo8ptgs0S^o3s7;l>IDd2%(Zw$w zZa>238nRWkeB_;xY};eC^_yWh0=bflq|uUqL`6X)`-4b#f-Lni)Eh}YcKFYZeZtbg zz}|3cP`Bcpamns7r==!hqL&dx?{1slZ$4hqAER78WZ{(Z#f{#H<%dG2q%_PH`Wjp9A-h7#k-ye71&4eNUWs;dr)?9oZD zPxQ7k1q2|gP2w*-{C(a;fqt05iqG5`@t909=g&{ol?{u3@7{@B=Zsxvo7p7r?tP!- zl7F3$QfS1&E+LG^fH`_;LGg=t{mYW6RXq&(b!=w&D2}CQam0+kLPhTp2okKy$tiLj9 zweRk^l70Ez$$RPJ^@6YZ$9ZK|!X9sR25C)VFW-pKe~WCM2FHQaPX>+uDtv`O2474a z(Wpn@(Z2BSW2_m*wtL3DspqrE#esb7gfA^^cCskPAbg1gJL+5B78M}+ytC0`#Y=M# zTSj;{BfzZkXFXm3WO%FwFbPSKk${%S>45*9E6iy4y$O$-h;=P%LY+9M+RbrBE>7=I zS^J#2>(S9$Hu8nBU%OjRNT(c@s1quNnU6tM z@{o8nT@hS#1pl(Iy!I?oyP*#L*rVkof^qSMo{$!G7g(Kp_dL$cUSUs%CFF&^dHyY9(xHjt^R0VODK>v``9PCwo4$5uCsF!;E<(zBwfufkBPe+V`qF6~B zPim6{ZSM_(j2LIY%zHiOf;epR?6KAztA>#fi;$Gj+>940)!mKH!U%Mx`x>n$@CvCT z=JqK7=b?t(GuGD_A&K|5Q1$pIxTP7I(ra!zQDEpP^F(2=8FOWeWLhIBSRtO>my=f0 z7u#60-7{mAuKlBXT*Duh+)^ zjl{IJ8P7RMdf>v|v-Rv9+2>aA$RcmmR`!$L1h3be^a#5VVz$}r%U4mZ0)}X0QJm6d z7HRI6c=m68$wsy`L55SFY#|qg6CBEZ>xBg8KZ`=x%*|aWh>YP-%shtJFwjZFHxBEZ z)e^AsYLF%-MUYr$1PHHf{E&%N3clHy-Gr4FbTE*gmN7nFY-Q5^u81(@K$FSM`WxO_ zUF3A1xpsD}g4fN3`*FNoF4$wQ=}GZHag$?ZI;gwfd_v+|rW}WKL|09~Sx3U-+`sin zS#1mpBaKflc};r;T^Wez8_K*N%xNZ6bmjti4wp0r=JBy7VPGsN(e|ERMIZnSwUIqG z&Xw&S%%71G;PI|c4vhyn%G*rnmh7CwW`9{6v#6jQy2dkDh&K#um>{gVZn36IutPe} ztI9`mI&c!T%dFm3K5W)o08TeVvqUe~@1+=Ln@`RNWG%WM~ik0XZMSv zkWCQk&{Qype_^_xf;{D!jwr`wW_0*x(@+7madye00mh^Oj^BWYy&4|iHhfpnAvkMi zX9&7T@lf*B`hNFn5Sf-w&;;2-?`_@|#tK=Ld{qvp8%w%&=5Guh%AW)QgS9gq{0FE3 zXEcnR&@j{?q8vZrTVB9z7THifmx`m#$erQVzZwN_glT?SaBI#si{rw$Fr<^|Eu(*57fG4No=6mrFYKkWRL|uPc7M#- z?-080Hf^(VBKBT+O_yany6^5--p9z^Ew1I2J3Q`Hy2mY`$aWse`sKZBX4ZR^ia<7V zUpD_5yk;2YD!Bb~W5A0#sUy+Q>7u!)H*LN_yjU^riZJSDI~Atv1Yz1F5mL0AFsQJV z&=(L>Izg_aCz(rovjRxAk&h2++{9J-w(x$kMdz7#GjL$3hin`!ij&K2xhsDr;dwtKHj{{><~qd0BV7Ya zmYxGzbRA?N3W~iz;Elr6ES@B0aK$|{D0ydI5=ElIJlCQ6gXX<0r%}lhi@5)!gBQw+2 zI4(uHG;*hkkA(JY^72K(KYcQ1#5}S`)PRof`*K@e7g{KW&V8=*!c#jW8+BWrqQ#M_ zNs+)R-bUD*E%2=C2U{>$YXQTW-(GUBcP^U|0$J)|g`q0~|WKBE~5uNkeR0WyyuivW;CGhsO?8 z!f9nR8^SjGzbK$2pYY2XmH>8fXQJ_`*WkERaCawg)W95L$_Ivi0m?+%>8R4>nUi z&PSEUdI~7yWGjvjo9nEvX37IA>xKSo`BR*;#W(&o$QtZ0M)B&oKRjDeKS9)JMxfaz z*JeAcG>IFstxhL0&aP%sVQ=!Q_tML{9|MDYuaX|4<(jQ{W8kF#05xkM1T3OtqULz2 zZ|Ln<#UNqN)L0973X7GAWvd>6gONQ+v72XyNPV*3E#nI3FqS#s05}coJ*+JG<~%N^ zUPXjY7|%bD0ZX-o$2e($|Mmc3_Jhh#@#!wDQ?GLHFQPU3wp)GI`sZuQ59)-J}_t!3+&TURB0Rx= zPQ}5^@Ae6_1O4pRKK#(YC&?j5n8b802AtyzscG{~K1Z>uZIXry&hkGofeQdhcE~>e zuFTBA_qKL+ibiwxDeBul53%Ac=3!b{jUm{K+ScTU8sq2g1CGM5_u}gD13Vr&_Zb`6 zg1A7UHDfgADLmiA3iiL8XkPu3+({p*2vCj-7Da3E9x^r0*0!IYN*9v53!WIb!KH9hI{~Lc_D=nYETz!~F0(DLNg$G$k zK~|G~%&|{I?`@Cs?wao~pGO__^F<H`Go4fQhRrehgaqKo}GUU=C!63d%Xm=K3W1w5}$o2QlP;sC$hxc_lFiSgF87u z0f2wR3Oj*A*Zt;=JK8eTuJrMZx1&ISS#`qQK%j0PDaP{MZLSTM3gb)y`0lHBVoLTo z_91YnIxrmLc%3UZdlW_heQK>NElOZ}&4F9-z@~TTlT$d@B6P&A@SL9$AI-g-s=|_t z+#Q-bIV|2AS~3a$S8Zn=PUZXkdlD5}Dj{PfB?@H9=Q`()?;pq2u&>&-=eh57uY28Vt>^tx&GR|GvHDyV z;k%o8gYG(QRXoG3L5q(D9G_DE`IoUS@f?Oif53Nwq>t~^M506}PZY);18d>Axt%*) zg*;{DwjTF)*hiGP(ijVCbtZ$o1On(bg7#xgte+^6RnC*ip4(A90|%Q;@j<+zLY_dj z?`v}b^Cmk3lv0~+Mr8iH2<>gYCbcTF&N@NM{a^{*@HX&FaPBoutZGzn3j6AP)FoC` zzQyz26HO_mRQjEZ5g}an78KjNdNX&Ei(fXyOsmBGc*iN-OSc}JMgC{A6&owhZ5D(~ z?7Smel}EhWwoN zO^ggiF~2M&J<|&NtYEP=+O$GT>$bCx$y1fA*r&ALbZ&kr&wB03Tp)jLVN~-L>?mxi zPiAjm?5+5FYLPj)|141It3wn)PDw%`YO5d zn-l}7_R$_k4~QO$FmDy+WysU*jcj(`XGE0NjK40$>o0}?nG0MLjq6Ce6d#vD4IE?+ zj5GCc)T{`bS9JlK^ic~%Ve-YLxb0pOgi8nfUW-LbXO9;_4^2#1DfrRCLdt;j<@}_M z>Hv1;2S;}ynr+_m>-|{3QuZf?J>7Gr^Pf9n6aGylJLj5P%ieV#)Q0p4ogEL72>pur z^=U%l>~=`}er{Dh9b^`JEcBN?Tki=)jl|ep6tLlkTxA5EgOr{7!YvG%Cg2Q@{$|sS8Nvx}v=g`QA$R6g74ARoM@y{ zNLpT#?h_s^+dhS#;l}hQSoe`I zK<#JWfB@MNgtVF9dD&Aek=#8NE{!w8i|*&W4NMQP*kBg7Un2Dfezj9g<7v67J-C^P zYXx`K&rPN6+-KEz64)mqJ~}&Qy=<6X7JnQv2;8_i_3j?|u1$`k8JoJ&Jh#ZaB%2l3 z%)b`f74Ts^XVhZ&3|oi>uJUt)v|<&WD_&LZ5=8zEkl1(m;z*y}NAo8hbg#|*a;ePs z_GY}fPv^H%>3PrPLwShnfJ)OKGhvL<`Z{_J>mv{N3HfSHx>EsXxbVocW+8uJ>FeamNN$nfX&lkvWn-vkW8N|`7$EW0FRMMk<={4B`-nVo&UwVdM| zFQ!6~3f6A*iHkYV83Tnkmr~(xx2G^c9+F8d4>M{s+xY*aczk@MQXoY&5K^Izrmwu^ zdrW!q6p|CDI#y3VFGq$>Gctj<+nkukdSF|X2v6MNO9ic0S79`^$uo9vjOw zHvhU=ncCiW>nt3EZ&jLDBzE!kEv)bUU_gDidFf)St=Am^ZJf{e@VtbWlv?PYbrn-*Vgr{9X09LZ*&F%M(&=$igG zyO(ScdlGW2q$JUscl79=hEQp6dE;0GbM+I`ZT}oL#Pl;h5Nkr={iqxvc|`5|*xvR` zllFwB(R@{8Q6;5f!&>@a=&i+R%uxCO{>kMX$4gNo#g4k)C-+{kw)}!BGFP0N!w8q- zjWgrH-<{pgv(Pih+CTj01(O)bb+kU|Bq?U2vw()k2urkOo#PcD$I{EC;zCIRTgOL^ z_TWF+TZl)@{;?I)CxVeb=Jik6I|N_07Am92AB3Ic%yK}6kVSLQ1%MfDIDyuKsqw~UUT{saP z^G0qbD08MMdxUuY+Wna3cKuw1&V^>exc;+Oo_?-?a>*SdGBS*Kv8xUVYkN>RVoLY-k>`d^6mQ$R&^f{r4Ez~7D z@Qa3ePrJf;-``0UJ1k+U#Tn_IsAwN(fU5Fv%{8Uxo6~FR9k)cwZrnWO%6De`+hJsv z1WkDS`fKoEc~w@wck&1JO>j5S{yaqFg%`olgG)Cna5s7S=odJAnNo`!+9P6$AKJf_ z6o<|=fzqs5E2{TBmU<3>ej?@_-(@a44>3UE4?6sgX4UN3Xn0j0u&Y-Qk`^3gUh7;_ zV*?-l%@gtn@`$7JQ za@mpl`{O9K(`XXr`^&{p;-L|#d@`v#-o$mev@h z6A>`xF*eg4yY^Pb6Dv1{Y3&kE=w#NqmzOcDFU!o`RDT0yhIdUT&VJhe*S!Tru?&T^ zuo^`}Id?R$jc=~!x~5-sHp8ttMMCAF99ilEUB(6q*jjv;zgtUrBRW=MVF?SruDgJH<9uKCo})_~B|H4Dqhfh~&NCKenR&v&X;YW2Sgj{*svZ zsMe#fN<5k>TpBmj58pmL5y2U)kpOZ3n`*tF?$1s+I_@T4oz^Z+Tkt|1V(z zS17ZwRq1Z^8)V{7?*&A$G2S#9jfN{S0yU|MS)-px>H8=czzuoSB|UfR?5|@uP;Y@E z0r}TDILh*ww-CkCQ_UaImkNQL=DJ!zK;@NSJh2tR05)h4z=kwE@9VV}$mh4DJ;%y# znFpUyVm+>eJz@X?jn}m9%pAq*xWSjfTaPdsetZX0*7dr(e{>>=fhvOMm#oOZE68%p z-fBNG(&2WVjNNjSK-_s6GKxQ*eH`~9ln(vv@t4WS$hg4ubg|K}Exy5eGkR@x{7n&m zeKhRz94Z}SGjrII%dA7DR|1iS`o&T+eREu4K~yW&ol4EcP(bnE06@?7>jN2(k} zOJ%!*ugH*9v+tJC5a>1)GP>)L_;1 zng6&e@%k;;uOXorhX>SE6heDw_->-q`WcoyL@!Wx-O~87`=$>{|6f?u%gi9v<>$Lh zfD17@B1q>icQv1LqbU)s1KS$d82F2nln~<;)ebd=->*=m9U}|6n!%+)=T&`7L*``0 zGI^eA>g)^UumsN|(846K9H>A;?rA}9zrOB-ScPtuC}X;7=X5y&k3}@qR#l0rtepK5 z@0||Xh&ZCzGX@zi1GagCBPk}<7K3=LfuA+6*0~NJr)|XC$3OG>2uYj_QKLFH>Cj;M zuHb3^j*yrwr}Yh|t>nQbXf9O8itvqY!g1ZDa}LTO0#JZbF>NWj3H@1g(;J9%cVSjX zHFoAMmoWBfsZLH2wq}6hy2q8j$12AB!7^gUW5??9kI zCs$#=ZF$4GOj^jh_%{ayJD;ND7m}QdYAT32WZV09FKK8#dZii@7WhJFcf;dK_$RXj z`|8~LrT%cl!-uXqB!CBP{H8on^gympNYK(vm~;PkI-VJ)iW_&!R}*Ll>Feyuj4%54 za^yP8PB;Pws|7Ui{rK76qGE1N=xEbL>G<~-lIYg~Yo-zi=I^6RkO~46&k( zy#;A})|fy3-&s7J)>kG$o8NOC0GAhG4x4Y*<+yAu=T;<&>>*RKP9XcR3Cw_&D5Ln| zo`9mX$r}+o-Pd*sO$%^S4dV@ZGJ_e~-%iRLD|PPc6F9{_v$?ZV_PKiw2Igz-Os`}( zai}yOB<5L0DOqqGqlUHZwSp9WD|Z=d9}CMSwS2D-CWG&kV$XyKCH1xGrrbxbUsIU! zEvW8=Ss?TQ!B4+5xoC!Ol|g<4+A1J!X|XR&xBqvS)xW>;5BDNm+eI4xJkVXSYL{dl zwlBSj@qB#sTP>B=TOdFK2$ku~c)>|WjyhbYO=Q#hx^oU~Rp@5^7pStpiM5f~0Y6;n z7+(>u&!9j}(I@Hb2Gul#>Y3ZH_8`TFM&)iW5uWZEv(+M1;uS z?>ZqbCR^iYGwg=B7Eq7xEBX>fRfO}RRgEczIyKpK%kj0j2rJc(Da{h9{{~I^_K_=W zG*TU7pdn23J}WEhcO=Lq`2q+r$9nuBaQTX)-O8kSyzeH8vPZ<&yLsKb&4|=5tz6|z zC83>xazVo*UxfxeWm5F0dc4QtRnGIee+XTk_kRx-aw&4)-%5B*ViowRWM|t|uy~G< zeP(*R&G_xE#Dbn5ep8tyyLskljipkX9-F;@@~myBYlT{A&$26X%)l5{@zdHa_jU=5 zS0dIizP+Gqt<9{=?&pl)0W!rCU%6VUA~qmvBRu3^tBVJX+UnUOIs?YPd;9y#Rlpu6 z7D1NY3RFcRTy{Y}i0RbvW-FqF%Ewm~YLFp&Hp{<5r z{$0%*bWhoYUT;YA-nM&beY$6N!i6~eA*qs&%m#tYDiPlqU-R%$i)sF5D$R^At!I^N zR8Z6j+P~A4+Odg13lC;fMUkRPb&S6Ginr&rB8}!S9QzfOtJ++cS%b0;6@&b|(!nBr znS1}4=dS1#{7?MLxh@&M1V)u(EG9Z!!SEGqtV;XML14XOUPPY6d&BRSDgBO5gOrUa zq?ijT?7#AIB^ae}*gZO(F?bGR_|-+xw{C9tglE-P}SVXQO$Dp zpUiE;p7T-@rXYTewg{`6^Tue7I$7=xl9U{asl1OEPCoja8dCghcd%KlL#VsUI-W7V zC6>%F?#D3UXD=_WhXImIXGEROBTk3c)(wcDVn7}|6do8Hl;xvi-`d;(85P8EHbuX% zS&~->Mix}hp(`Flf%+_O;Vn7FN?pl+ZNwDg*6|-DOo%=SAe=xJ(~<%YAFS-`>8VtA*^*6I7hCat9`LW< zY2jRX*JJT{?T$bkJGB(Dy1I(@v$wYdHMGgUWfXAsasmA37klUIqhn%Twv$Ab12i3P z7Vv^GUS6v8qYQ6ZUhk;&@#HNS>~8e|4hF1u&?%T z?)0y$Fb?$t(;&CUTo7dB0nUu<>F29RbtLEKhoB%pyjajTGhp*r*9`pME{Bu6CYJdT zUAB60@H5vLHSzN}5N_jJC|miinDc5lj2@J0jPbI8C84USy8mIc9P7&3HaI9^rkG4u zS+A<4HAornZ_b|Nmr07jm`|nE8*;h@6#!vE9O;@!YZLGKI=rZuUscy-xXWmkrtr`& zvqeu;-(sJ(vOapgdV+&3kN3b|OW(q*{3TiCG)+XGz(I7bk4sMXA5zb;-0@;gvlOrbAyS#;MnVt_|Z4iu_O?H&^@?509TvXe-QAH(6ZWq-z9?NZ3;RoamJ zRn`#mWmg2#!QH|pbb>{eH>ST`{+vylI8_@K>;21g92Bg3+aVYG?FI&KRZn-n1T>@_ zmm8SzH>Z^<8)a_KeMU{pPv=}o_+&2VF8hImQ3T#>=|aVItqK>CRta9JJ2XveOKMS$3V?lATR2-YW#s^+0uQGRYNNAt*QyBezv#gy*66i&r!avoYnQ8F%oSw zD#8`5p8Z}1%v@VrTjD%n9(WG0>VNy1)=P<4hTq6x=Y@T~KB_C8yEEXw!WS zv}Ue^B!Yk+Hm{zp5Lm0ZgDpMgir9P~b4Am(|7EM34`2-V5SR_oi4>4h3QkPCc%8ER z!3EBUIZ#*9!#=mMSpfrpAqU~HSYUJD%>v9v&5@UJ`4b=LtksWOA3gFCy6&Ny)@6h| z;eAB~gFEWf1Zhu4E&LtZe}f6=E01mD_;+^}6PvjD=Sh)}*yWo@p2gIO`aVuRzIq@I zHGxFogX@%fKrEpHJkfQvLX4mI0+mlQFX-zDE>;ngfl`>QgM+-he9Z%q?I!_zBgesh z-^?e?sOzuq09WM)iueW82><@(s9!)^!FA3ZSmCHd6NBsO6F?%M@cPs^`w<{QOnRQ* zMYP*oZQ1;qWq>w7iIS{8RqhLbBS}fQvOe(Q*~#0pH(Z3Z;5|Zq^%J_0DJGUvlJ$K# z&TFQq+SD7@CUl9bKd+_eHg|3n)i2xxgh~TQIV!D26K-}DRn!Xa%yQ|(WZMMwaM1W$ zPp72@%cSzJck6BKPKt;ayhXANf_j)^T9)G$T)a_X{NJNm+wBp25T7uccfjS}MmcS} z^A45Qwj)9E4~#QfPAYLmMU0o3uuLx8oVN)!I4QtmM(PFVY%Pz&V@yOuM4MBxNF(jD zvT6{dYDS~952>t-qO4&f-^gW|LK_OA+mHqdt)F9KV{=(}F{lS*)iG;+RJ;=9ci~x9?%Bg5 z81Kzg^b0}Nk^+_uJ3P$<`i!BMABAh@Dj)Z*>9cNP69g&7&aN(N2qJaQVTj(N_afp- zB-*$f!ZCXZ`4%3Z?t_N_W}`u$lMdi8big8W6lB2ERE;iK0ih%x;(CHbKtl)49Zq}c zTpU>edS!w&L6DX?44AW_Ha>N4p5u1LjqynpL*HJ)^htTa_{@ z4pb4H@KF8^_?_FCitsk%G1wNiVx0##_P`?*V+_juGx?AvZd?YdAwVNxmO#MhfQ}yr z9*QH{u+wCe>jOGFaTScW`sz}f)$ax5V5gf`W0El+2RxD=sBuSBtX>x0o05&7ONB97 zSIN~SyrFKlu;iE`h~n*6K$kN>14%d>z&zC~yvsNiuwA@9cv0-ZrTNp*&G+alQF1ZtiaY3gIl2&}AtJ z7dK3e&~l^JzUzLQ9{fc<7EoyUALV^c(rr?>wY0 zGq|6tj5+6)+CFYgLC>}AmtI=B;~Ep;6S@u@ZI|A%+FrRx86GXK#@gN9meS$NgOx>+gHqOO zq+*bf-Jn;IPjvRHQp{3V6u8Wd@3Z_8<35wEzED0W(kJBGN8)1iRcPJC++n~*IH9#T zVP>7ub&EeCDJSO!uri`|wzlrE5mYx&_1ez&sQ}nw8%)Ix;PtOxzh=33@eWvUWQqNp z>3VAT%ON|!a+!g*0nS$iFn(qVQjz3j*$3|Fh&C-ql_$OGp~&b$g_YGm8uw(akCG6}*Kz_`JS zCb;Iv=$LIJowP^m3EEzX& zf~DF&2)#bCBs7-~0FM?bt&gU4fI=)zgcyv&1{H;#`iRmI1uPCP{Ns_Z9G#knxSF{!ac=E;6xviM_q5^ujL6 zm+rs)*fH_q?gn66fLd@#5|GLt!e3q(D^lSD-qn8^dQhM zh6-`70x3&WBNLFP82}gJiX#yNYe)0X8%sD6CNM}rIJUcY+v zQLV@_c)urm_+dqKz}vT>Vr&G86Sz0kRAX|e4dHV{e{;Cj0|c;{0vL9a!3tMm5|RuX zKVtWA8(121-MRP5Uu<-F5RxFBV59fz9#4u|6~o-E!S1r@3Wx{E;QIk|Ch;r%L^80t zjDQ9kj8f}%EI0rW&9pX$!wNot|40QfRFLsy2&_|oj(l+4S(glUUY|9IPm0G^2VDu{ zU;yW`aC0lbVr*<`0%}n(cIGK4x&j*QvLpY1JoJu zH-UklY~taEvh^>v!`|1~9^%epJKZUH&kOSe_!l4^ZM!rgzBc{qk%@_k^N26=rq0o$ zz5uR6R~M|IJsRiQ@88prgZ&BRX}TOQ@D&ti&;HIXolmzR`G}x?C1HIIX9l<%fP1HZ z{P+{@dfbYS+xGWk@PCcNR-Lq{1FXA&Aw73P6s9#CPD#L`Ln(dT-O86QUp4`AeDmf_ z`Ym*D*m6Bk)erRR`WvA`rFwW-_0J!zumAJqA7K~t&Ht}={NKOtzy8-~6=`XIFar2R zOiZk*e-f}O-u&L;09>VvLWN=6GpKsoQQ3`64(np|V5U!4+=vZ&VcHshr0LMte!7I9 zi!I7!21?t0*{J9jp4FZ zw#LsnsLym|t%1<9$!vFSa5BKqSXf!pWfA~mB?Np8Ru+~Mj{dNME;BK8nyD3-`p(ya zQalmjEGc$JA*{W9L(k(9Xg(*dWYlr z&KZ)Iur^V2)eNxOmK_Cw?%oE037h0L*Ng+6P61Jpb~#`4?Thc^M;3I41LJRbotMqseDJTA$}c?|bs zzPx}6Te)v5qqvGw$#U}YdtRl%+}2|fk|;`23qke_;-#$kkAmgoR!Iq zrAEQPz%JRFtLHr^+|bYf1fsW0CV*!{&%R8O8m0EX;Km3v(c2O2I1~drn#QhCa@4%k z`q5EI>(c&-_%Hrh0drkhF@r0m_H)5ZYqLG_iHV8$b>6RDMJ7B^P&k`2cC=fzqjfQLa5i`lw}-%u^ZljQ1O$3_`~LZdu^di4(mQhKM;~EC#fQEG=p*|2kqdCM zGexZ%gUBb~KJHl1avQ(1ESb6@DF;~3s@5n_Ylb~*Y{_x;cT!-N$cuS66uQ{ z=EF6q_2fwqC7Wt8An&BWUw}a;#Jem@BL3$^G{LajmLMuaA(aKsNAJ@MIzC3DmtPqX z49M&Z;!F}8Rw5P&K#fXTgaU6eBbA}7kf3d>*Ck7#LiU%XKe`~A9E#n!YYO4_x+z{{1@e(h_2 zyD8(r*tfeRnnsq~1gW=PjuR35e%#Fr2;aZnm9V{fBww=Stm{420;ktC(Nur%i8TKLX&AL zI(|HXP?$uKRkxlVUS79Z@G4Y$%of1#^qJW7_SY&#+TXAI=!u;x{A+5<&d8mDcDv=< zt7k2ZIr=2UuQSiZlqmU$w|=r`{($cVD!6j8i#)9G@e ztvKKi;`j6M2+>>j`?I})h|cuv7l@dL+kj->eGQh5?r=w>mBaM)uwk1 zBm}8O%CDq;zh5jZc4B8zd5bxymEtWi?sHaz#FI4C;|5)oJ8slfK z+2|G%tC9ZSg*m+XRJ1KgkZZsA`kI<=SdErWAMe^-QZD$IsB27FYWH3^yY#Kdx8JoopQA0k0~1!YfjHiDIYjam<+$^ zn=)2E3{dGZqt80ibZKp4wyh*1`Zk&A(|swr`cHHtv~mr_x}WRC&&}^{rLZtnbYEG&zJA1he)wtEvx82t~l=LY?2G~p&@86-- zr!PP9{gV_Q*jDUXiX4{k*>GFx1STZK#gZ=kuXv^f>>clh>%4Als}Bgk)#0I~!eCKx05UZC`oo_@b{*H=CECSO4;(w1B>)dbWTx>2s*k5$cxY#Kc6u z??{M6&VWh32~T-LzT!Cdh4llM`Os&AWL|GZ%=(N~{jt<_P?clBV{2KH0XJ1C@x0Zi zl-nlu$2jgBQf2Js4w#U7y=k9IUwoN%*?Nt2U%vvwv6v3K--NVp%;(#Sxt~(YTye*| zTLasIkz;F(Ggfl8eWtdytHMw zatqJ z+SR?LnIGxe&hqfka{u^he;Eemnza`Ovr28&(Y-J|xfqSVVx{#hXgwRJ_>C`>tyk`` zBLt~J4C}quQd3iVW>_f!;me&nXJ%qzlKsn(=LB!o zuGH7pH+7LqtW6+j^TD447h~{Vu$fFB%TDY1n;?}vuPORZQTOo?znuJEiT{82iTd9t zxkCKtkw6>OPXj+ea!7Gk15pFbOCOH5akE|OHxG<8UjYq#{6Bu^&|I~IJe?u zPN5N}@#5tt5J%0=#gf9G{nykPf()-5bYSxpm@``zJ|Cx>^iL)opl@1pG^L}brnpq|45BBnuso%^&}VKNviic^jRwFYcd^9vo;jKNg!dN&IhN zUjD_&!H@?b8c9GfA%Q#+n`Zj>fBX_r71C2Jn{j{wr}@J0zS#8Bd9{~+mYxB^aKXj% z!(Ehr4lS)L@&BrHje~%i*V?fBj98Qd>$2FrW}XkBVLsxfU;cMx%9z06X)Omqb=Aew zW5!I{tUVN4z)z%AN-T-k>ZL8_zZqN_iHGfYa$#b@1uG~4sR<9q95smv*dbFY~hLw;_}!1!p}W8V(a!sMU(2)p6W0f0hy- zrSEzjl?bBO7Ap}%PB zK^HXpGSw!;CH_RGbnQKJ40rprDT90We2=8AstbjC^?A@!^khvhi;3N25_VXzbDkJ4 z_*9D=E~KDrR)@(7hY+<_31e&6w+qz%#Sd-$4<0{ZUd4=b!zc?4Z3r%Q{16`D<3o5! z^37hTBn!s)`b2HDscU5d@2JB$H?3MPBIlNm54=$Za5H?ee>N-RZz|^7<5MkHJ&A@n zBF|3NVp1DxxGyvL`R7N+v%HnpuV4Qt9y?-|V!t*jwA1}U)oCGl;>qJb3w^(v zPQZ^8i3z;wYRqZvTrcL$e}jO4Urtd}+26-U6H)<}lr6D4GB%bH_j9b-%D?qtVc4r$ zZD(=4@bjIShK7FAfXo=hi%PyeO+RWn-FXQaR-Zil(bS}QyuV?y(CK+gDtf(F#awBS z{`cpTk91B1wgZ@*^)hSO9KIPMI*a_v=<4fp-lLp9$S~SuxG1Du^eonPsn>FUU5kT* zV}CZr92F_-%ySMK@8+#rw}w;2nP+#L7CMu03=IvdP2Y^R>#n2+2~p!)&$ejoE)SRt z=3Oitl7hs69sMGcAkuG=a#q}8+o#qT&29WMuyn$U!eJpfLi&i07D3;ZtTW$bcl&5= zt(p!(bxEmOW8x8{Lh$VmiOa=847o;E2nqO`J@czdT~C}YTqds@Eq9g-JXkSDaH?YY zt>HWH^aW%esyi*v-I9(KcX1ICJ=uPt7__m~E{cs)WL~~Qd~&ph--gF(tYK?CUWJia zzN;KWElfTf9u|hw9v^H)i6SDVgLzsTll66tjS0Q`u!)yhj1-9t!(`VH$0v`>#?PjUpW}+k&hb^ry3o0J=OD|ehLFg}rjQ$t(*)uelC7U} zdVc%owpl9nC&$l9Rar`Gml`%_n*Hk@K7Je)AK!-T^l7xWL~*)fX`~7tyNar3MZA6c zHk)cHLc{f<>sYz-9xc{z?yektadEM#bt`vLa&kwRqcyCmbYl<|JFdIwPyxGk-CqUf zW72D*ZCAqn|kVoBC^zD3s zK0euHSprdPT9^<75YpMNeq4d4)TYG4wkwU>T^ZW?L7xDit-suvH>+&(Nz+tH5+RG< zFSvOk`#-~tn2|4%P3SP!7AL8vcMCRY?t8n))bUn3Yrgr{u7&B;l=#UY!PTm@J>v~V zejVMNufk!c`4jKM!fMmADlS#&1Peck6R`EGhp@EjQ?tilbKIPMH*|Y>s1QG~sm1Bv z#*sQuBfH|XH)4;mKPP%-Se&@KKNWm#9n#(#xj}c3)zb3x%hRa)XQwBIqhPgV(S^K!U$@wkE=gs-I$T^`qIwu=lPi3kgev|61i)MP1|aNNL2zRHO9|x`@B2sH7kvpqp)8nV(H!Kx42aXiC{X!T|&sXESln4zwn+rp~+Ij9ila(Xa# zcLI0ni&RWFc^_oh_#SM=4H9*Sk25+ZBPB#=s1U0c{<{Lw=0BFObfT!Syd2LnEu9j|!S?)j2c zE2^4e-dedc;MeB#^z=&`f%_8_NOiVW?YdL>O?vw8updyCenKO0n2WQw5Qsw~8PVej zd?LFRNI}cx{+#g?(T$A_ND>^zlQG)g?ydySO=MoT+))?Lt^RbGjQ5>ED z0YHI3H$=aZW~2BlX}=h5ws5wi-o1P0W*8m$<%e#Bn*2>WsIb+Ot6?%C63WWT7M%l` zh*~Krztv6Dcm4KRcYKlCJCV)d%#2%YBR|6EvHeSBgm(z<+_|%V;%a4WeK7wyc-=ur zS44!H`$K{0P_FHgymEobkG(M@7)INh?kxegBy) z`hL~F5z#%%W=geK*l-{fap6N%9<-V}?DQxYb|zhfd9-vy+Mk%&;b^6Bp)ZRDRqKu4 zIJH4YF*hyKAT2Ddbo7%G5TK@t@3YEFmo72U=tJ70@=OMDTli|(43ORoGSt!D8va7@ zdA&w_3Z4MLwX(2e$%xSK@JD85Ebt5yzVz{lYNd8eirLqaEdP{FqujeAi5bz=9v82= z)s)m-l@Yq9txXH_i3OiQ$0scKj;XgeET~IEis7>zk7?*wSb`uZVH$NGTT6kSfua;~ ziS(v%MM&Ks14AIZo)?;_;nr5I*l}8nS6K~lk6JY|ztYp|Op>_DW72;YinJvkB@hMZ z6^G<4hSkC#6>?y6trVU9cacw4%-_`95A7ihcvt9G)|{ zc?MIn-jC=*w2Ef$JZC#1^g`RrOKZKb^5pXE<*8CwmnY4v7XCFbXITZ@HTFB)S&E=Y zc=rxP*!HM^K~ywhczAexqam24z4x1n`}ZOeW@Ry0en_DJa&Et1k;A6V{(loa$}rmH zU?u_uze%fueVrdFWJN*SWVB_f9BYR{G2e$|(S(GAJY2j6Qvvp+wX$+(<4;_Up?cMx z!xwrsS@BJ!aC0Fg0h7&o_UWh3pZ)7$3Dg~Dh){Txe1C6_RLcqj;vdS=5FN}jtPP?P z1Q<-kD4%gVe{Nx-)|(7s`$dX${feDJsmh$OyZxvm_HCD|2E#>`zU>o`lp)YNh_#a3SLG;B@oHpcfbQh65S z1=gxV1##A@R! z45%#$q6vTz1XLGd^EWp)-+oUy_notL!iKoJxwZ9j+kNJhuJkZ&gI}n>zH#4^`g`7U zYVSxwMuwGF`kO7;_7=f z4_Kw*tA&`H`Z7cYBY*vZlHNsrgU#Kc*6VULPi*qVX-61~Ii`~I{%Xb@b%T)pZnGc@ zO{or6WMMF$5tyd_6+3ih!JPQBkp^k0cE^?*zKn#0jVWdfpK1^^<}6MZP|cKYRGsN% zK6?1j(^hHH|eXX>3jYOj)x2?#TJ`~BQx11D1trkt;sk>~{({cy8 zbrqNLU!$ePEJa4tljI&4@|cgRPVQQ_3r9dUav1!&M$DvWF<30#dKHKV*&S6D1q;jE z&BL@|h-iRnA44}L| zo0hIS=^7ZG3Bclh2`4YKo@*Q5gYL0lD4NxY5E2ru!x(W6-7qfEX#CUP#FDtdYShbdVVq&7rEe&g z%^&m*Lh)C004cf)zjE4HBpP|fcvqT?cxko>Usr&S}BJ<2m|zT#ju=88_m z@n*BE{u~|!4=!?hIbEeUt``dnt2Gz5?V1?t2VB|a+IomAvcUYbN zX$;(QnwWAMVJ6MYvJX8p)<*rN7wwa(6bhdTnde_@GPNlB>; zmS%f-;CnZ%b(VVhTb%B*gLZ^vhY$VW62Kd*?QuG+kJBFg6eRhlBP>}Jv*AwVRU}Pv z8+P7QETZ7l!-b}dQ?US~@W$a%*4D6fJBFuc?fm>aZSdJY!|Y?4*L8V@U2o0x78Vwc zce0QfWI#XRa)I*gA3t#BZI}B)ye?C0P6dlzuy)>`@Wya}((gDMrT@14?TM?X^WN$V zOzL`o%ll0VG_RNNIIR}X`2+?6{pt;c`a6K5r(H>jiEeV~@>oNB+e>|{`zJq+T@hHn z)Py|Y&88brgkX$UP_re1CUS{K1A(o9j_e6^OtyYIb>g}m{)y0U=C5gBJlZ((qHDtY z_Z}l=tXA}vnv<&P>eM$L1^ktHV|v3uvCxdl{leu*^dm^W8>&Rk3|rmuhgQ%)RMnyy z%Rz|x0zNfmMoxWwJ-gMkcr>qh+tFI3#^h9-H2v0GJNEcWAu=`#^v)bGPLW@H4WlUq zYyaCjKZXL zMfN8&$HtK3DVkWI^SZM%5?}|cfV#*v8Q{>?(K&!w6`+E3+wrTHFMzAhP|SG?ssIe* zZA1#H_u%oN)3g8h@#B@QZU@w^E`|!gQtx0A3VHXgs^jxx2z7m8w5 zDIh$EIq5F-hB@nk3eFwRn56$DiQFqw|P^7SV!+#-x<%0T>5OGQ&bwqp79Dd+rvcBl<1@(N$9$>#L<}9QLcKy_sr~uU_3$ zPDy$MtFuamGeLPRb^*|yl$7)=OI^6cW}ybEB^jIM-H4 zkX}F_x~WMV#lgwhyzI%$9Z@@R?fUgM+uPgkh~3^t*Dlyxp`pPiY-8ewHb$g>b3!&n znhGFC+dlEL)QZL4Z~j`OFu$DO$@|yW)d4K#_S47TKYhI{Y0)FOio);s*d^Y1l|SBL@*Hjl?>(`0FbJoLbU;Df*$W-pR*R<|8AS`Plg`Gtg^RS zq|kh1MO#{driAeVg>Ks)qT*lb$f=KCE?TQNLOB3xPv^TzfOcn~Um-tjff_mI`Pw`z zENr0IT0a}h2!o$*yEE}W%YjeR zz!#Wy(1`%~xdGLw148Y}lz`2A6}pQsXW!D#GTLIj{%en25D_f(p!iZv42y_2_doy|Yi9GOX>%nQjHS@K>RTGO8%J(poNf*B!onLrcEHajO_zYO@u6Po{HR=>Exg=TbPYvC_Wi zjJ@1>%>iE%GjSh5cie|!H-}*fzbRy?^LhPo5`~2E6_{b-7$f5-QgznHFJ%8pCbTF@ z9OvS^3b82541T6R0Cs-)PUC$)nI?V$S(maAYFW?~URH2MS05#u9b($sUKuE;$S%Q!|_zOB( ziTzqoE3q=KADXAC!C`%0QVCHHR1IAQ|DSt*pPXoltvZ&G`?sOy;L5&ALZc)P_KE%K z^{l*$@)tB~l5Sl_Qa=-4hV36EBXY2|vSMHe<}5JoW1)5!e?!aZ#%ng*1Z7Dn&wv08 zgDm+nL`R?lOl%!I8PVvh@N2vG2QM>K9A3UN??4bFwbbm(wV~c|nUf(J$L)YQ+H$Dk z0VUH!=CDC+1AN~>px&CFPxoK?FHJL8>YrpGea%IdQ*2UU*B^MX*~~v1Hsggn69T+z zGFlb|0+c)8(XP$NQv0n!{w)$`}QB|p|+G9_kK zR%BT9V#NNlo12k%^!$Be9@Z!1s-i9+`7;-_D^y+|Z7!WK9m0@4IO;Ve9S$XJXZGFr z5SJ^SKfZT_+_`=G>mt{EJ%uGg{)hPt>#l(NxD0-|p(mN`B4BhdU|D`?AHl*vJJj7- z>_Nk|wm88E!T7N?dT#C>S(75GKT~T?i(c)}0!JB%eM8d^_+NE^Z*@TTd9a2JW)5Z? z>PFuJq=HMy2P54H02>sSIWk&S7YSVcxop!R9!VWNefZgKCqPrVId09O*-ERay_F&CyFlTJH$rzj|BO#~WW_Fm^y=*rYJRJ_ z&PYQ;&%*Cwj~{OV1V@j=yK7@I0Gj4|zfr*d(efZX1vS?FCAN(1LR(K$k3gcJ5R!L1 z-ES1N0u-s@Hvsj>mwjSIl# zaP3m)^Ps?*I4%RvYPCK8TrvmQucawkDHvj^r{=S8o1T8v>*rIhn!yY-7@&b#o0l8V6^9QE09qnKSl!j|!;k;F%l} z7FF@jj{=$MD^3rWp2qOB%9>0y1S(}~zL^n1gGC_Eb?y{sRJsPxh>mXdL(Js6Pz(Ta zMyqHQZ8#o5B zoSfVbA`u&mIn6qI0Om3>m?U%HF=$|0(v#8OVL27ZtK2pP)KC&ElWxO#^(ojR4y_sw zS&g|c{y1s*EOk@@q?d9y2*m#Z8M9M*pQ|jxe)q$GKPgb8bM-&5msZW(EYQ z!sLDxvtmz}HpXO49zD7M7^)z)F-an9zT>lZazAUu{#!sr{hR#=;Kb`9qk}86XApCd z+{WR_{o%|i9L~EY&5i+-{Gn1YJW77$u+|4#31_&+Yup6`CUmFqDTz(Fr zGmJ!=i|JX))XwYU)i9wjbrn_~i2cFXk-coSb36%`fUfJ?Z03R62_@%ZW(QklSSJ&T@ZHb6{(TqAjDfCqXM zh&uV*Coru{LiY=ge_&*kHuG>D>?xr8d`?!p%`_Y9lEbjX2hAe9F$lb2h7%RS&bx}# zr9cf{4=gwAx&`#D=AB)bLBbn%k4~<~Ee#K=HtXoWdgZ}YP&<(=v`SL>R|dL>vAZR%{pjaD7=y7 z_U*qGT!2GYrWT~9r%%c`S1F`|R%e=ZQj(KBZ8AYhG;~}BcFlup7t|<&;won#E@*Wk zdeRwLSy_{;5eOvaxwz0!ZO3H++eHr>5!g6W$K~197;mm!m_@~9WC{r>R+r3f&pE9O z=7(#mu_%bo>A-ZL zK~Jt-sJg(iglo%`uZGjHvbJv?ao-(1ef=y8Z?@w`r0AJPjulzkSWt~YXNIB)dY869 zA15tXGW(h}1-Jh;?Ay<<(9kRJ7wYQqGdaODqGpcE&rVO@{>m)9c<~|vd*!&L2Q!V% z9iI0~nTFBJW0hl8)U>je0NF^hGu3g%!E z-3O@(qU3x>N5|cXmaH6|#!Z-F+094G-kE85*T^J!dOuSn?5K4z{msx zp4n=Nr}QkeLW_(Dx=cYX$|>TxR#vtU6M+^MZfzqF7jAxT`{<-vsYxEN4tjhwDX1ZC z0~2F%gHySBb0JstnVx`3NJ2tz``mXz0WkSFng_r_+UEK#HFXR4}vRYey`y5WHZSc?vUIp)ml-zb(!(}@`fI#7mZ9jhG zP*M~T^HJgfqX#CH+dKRU5!RO{N{L@K6c^A^_F<-UNvNt)0*QwfE{d0s5|x*78usUY z9!5!si(iAB*e^?KF7CB0EP9rSMW3()Nuf!40oJCjbkAmlIkQB~{u{6WK-<1|@J>1D zCm3FPijAANKF8fTQ6*nfX*^cU{DVq4Pwt-W0R>a+TuF&4&QF0pc6Rn^N(gdrzv|c9 z_UU~mGF(s`nVCUmJh!)G(bgzMSGDQozrz=j-cXA`M`he>?tvbJRwRMK$0kv;d9HvULF14(bN{ zJz%1HN((L~-2*AoY)Xnn)@La}YQ2{Ck@CxQ@8?JsW0Y>|cw1TG>MnB%_vz*gt!PmQ zzSod{Kt@typNSE-^y2+Cj@`?bFV~CrT`Fjiy9(acYNJP!Q2}ZLb0wb|MB=sxNYAF% zWaM77+wx^$O$g9T6cL}_6^xSxNsD<-7IrPO^x=mc&Z|^ZfxzbFdpkM8a;Cj1(ZG2k z7!SXbD_qJXdNZjn;YqjG+Zx{f0Zf~uja}>XH!l?SbXQgzb=vYKW>`}Z5fL31F6=m= zfh*6PKy2U0GlcqKlD6Ve5w{o+)tu{*>Oxw*8cPDGK$1X&c_>#j^MaMQ?(AuIgM|Jq`KJ%^e78#SA>%4c=5GOdN~k za)n>`r~4uC6Zb zPax4M3ku~ptufmB?f0LF*(719v`5Tkqd3{}sdw12Gj*MfQBLyWEgl{o#Vx)VS8VIj zk?Y^mU-p1kxtkbV5Y9uUg&1t0!kCq=@KhWwGA1I~eP)SY4}U$t$5Qavb}AQIuR3>E z>-x40ns@z&dxzQxrcQ7dMW|X`L}y@r_Ttt7By7Fk7hqn|??Ll~Kuz!z8NGt0Kql>p5a3rpxC9nvv<>N|5T^qM@QFw*nEc$&X!u$N^Nrohjlt=# z(4Be})c1>RgKD|2E>@oIWYvbq2Bv`EG{EIvxZ4Gkv%B7UuWNL*^X@NPpu{*G+VON- z$FZ{4#w4eYzO!9=lAxq$Va8~cRY}l&AzK+p>gao%4#@=|0;;=Rym~9!VxorjwGjqb zM37KT3U`Po`Ak(Zrd4o(DA%j~9vk`752AVK_j*J2W4IU#+VcdPDkmA>){}apIQ8*h zzybQ$ldgit+QWK%DYG;P{$%!NbX9^B52M^W-Z7Uj(0qX7G6sVAAxu!UQ2>b0FY%s@ zqZ}Fm6j>uX2J-k7VTInDwt(N6;cEKWyX6?yVBsCo0(We-GV0@;jr}%$63!a6gJORl zk0>zmFYQe39k~yIZ{IgCFc~@&Sgx{$_rJ?2Dsx4CNp=0Ml}LP9cA)#y$K4nHUf7AIxKdd`Fjn@Fq0dxHm=5rxm1u2ZG6f~U$6^95IGr`OD~*IsTqHL_@MRK1T(qx zD=m#9ssiE4yJmPmoQf9GRY*tNd-c+jYSzT4;~f;$p_MN{Ljm0Un%0$C0N&t25QUEy zWROX)JfdBg6MP^`&P4y~X|B6sZm7BW89B zbJnN9I?AN#m(Qx>-M?@=m!Dp8K3N_|5`XmldqQf^n#g(0T0pO^|MbwGi}C4iqM=Qo zAdhf3!S(!mE8bazR}eX-o-1HRyJlZf4$WTXBW`0>9v1cuN${RJQR=r_`8wV5WcRmy z3*9`RGzB1JoL=B2TkOkfkFy_DnteI|X3O<)cl^#=T}i0XXptDoBctst8{j>|=w)Vs z)49pP5en1DX4N@-3xM6)IVro{1WiP`}v<)*#S-0pcSeaJ)glezj%n?9?8L%1^$qp2tu*fe@%(1FY2QhH=iv*LMQs z%sHTa(|AlT{2^It?o1B#fMTjVCLCqFLoy*FF2?XaB*Odk#{Jvoo8^YuXAaaa-R-DE z67aM7ngQjC!<35#OyEwWrK9r%4^wA`62b{gy~?sBT2(U`%)5gYcLu;Y2v{F&ibGo& zKye3P5<40j`ubbor?Fhg@5A(Dt&wCc7dzTrG3-erg6+8hFG}x!g?Hj* z!9taw{N!ZKW^sHtrz6`Dz)ZouX~q27M+Z(X3~gBNhvm+Hi81^1I2fU(KE(yRN=4NQ3kGVN z9-K7*`&>o~r74d}$XR&3S)nzk-v|o)tD&?<;Lw68pBNA=*yH(&AoMioVU~bBpl`kcGE$w!9sKVs<&7;ungGH zo`7zt;OP8a(FraJcIjcqd^=Vtl$o{iWTqjwcn*;<;1mor%6rrU;{<4v4-3e=s^MQz ziXfsqb5J-1NesIRG&w~RO7Lx?p$QtSxDQcq8GtitS~!1h1!i<$O3_wi0DYlZF!``1M`=PRJSa5T162vFPN4~_fiMOqu{$vThnIB5|0%dq zv*ktB2lw9e;|Nqsa5jr29dZuE(#V!o?l^`;INfBfC(&rBczv`#MRVpeVx|ux-Y_V` zT*kctaHqjUjPft*x^CC#eYXVL3TD{66D5+W@dj&{gEQU!DE0~S`sz?&Fj!F&Krr_L zzp5p0U@&Fjq2K}PC+qzg|2=6ElD%25a`#^P8L`bzgPw7j4EGe{;GYst#25l99~!sZ zlKNI(VCX+^`%Vj)lER=zb5%{q{{nj{nn`~b=I=~K zzOlt8mpD=bv9X(;k{?mf}B-OvvKCIV4Vwtkss#?W2PCn=iQoFN^#v_K*r2=Ik0;AeVRA- zZtx(`mSuG(JTZa5ETiq%z?!v+o^If~WfMvdEr*7|pUgnoMq8Z0F)50mO~q9+RvXYhvUQt@fwCY$n{Ys}r1(!lsnNEay_nfw z;jb>ZXVG~2AYjz~UAoasPl;x!`O-}93#fY7Pg9*ShOxaCAOnxC7M8I8ByR0E9KNYt z+Q|j^SRG8#VeYTl5p)55988_e^NRR)>ZGo!OH1e+Pw3FC4!w_PKRd|{R*2@B^z!)R zf9D`N&OK{@zpk!M)1I&C5O`67RIJI#+oVp6j}9#ZgiG11tk^#5tS59~PF_tDD82Gc zy*&D8wKN#*x}nkJ9!@?qz{H5o zCOth4FcVTcP7{!G8QewFgH(lSXleG>r-wKIMr(oNL)!rP@acZn%qw>3xz?n}KB*T* z@^ESZP1q40aVB5cgFMpYy z`LI7-ftC98_H(rKi$(<|8K4v$i#pp=Q_H>HMUJiYG;*=;U-O^>;8}f{h$vlKEuF|H z`F8#j<8*mw*&=e?#KsA|@<-_^I~|uUF?^HEzfGL9iu3k1=35gb@%z2VkEh^a9HWVh zd}n%rBdTTkq=bcKBGy@YwN^Fshkk`MlCN3)He8g#>!W_W zZ-H&UmbdM|=jNGCAm#GmwAsOlYn(;RMdcD3!@@ltr)>k6Ee*k?9hw9cBCEFK(U z{Yn359@FSHm@E;yxf9n)IQ2Ek@$+NWlO`W8fWp#nlA{M``Ba+Ib#ISS6ujK>)?;!n zNyK@VmP$X-k~};K`Z;QN3AI}VQt&q@mWyb$ta0kOmexn~_+<)*-JmNPDIj|zl7E{{ z|Enw8FRc`g_1af#QR(XH{+O{^K#Hb0- zu@A}%mwp>15i#-41sfyiJ|*z{a%?dZoXNeA$_5_*pRYMH0ZR6(41qp4fxIpDiu#hgQOqTzAM@ zrZ#Th_-x)9wep0GG=QINS#sEHPyO5NayS{Z9W!?P2$cP&^GvGS@g6}2=uJaiBg(+@ zvXOC24)5+^+}^2)){;(P`Ptktb5OiFh-(@srj6j))1|frq&0ATSjx87z(rM2(~e`I zKbsUs-qk%N$L;j_dSb4)m=e!}$A_;E@2LlQtrTqRjoJ6kN3ZB|*dNtR&sr$jhp+tF z;?7rQbNTAhU?yp)GoDZXih~w~V*bkk1AR5anZUyfY6ZHbcF`R?jbk|Hckb3pk0|pY z&qRN=f4FYw`1-DbIjdZre{!+$+v}~vxl;a*2^ojX6aoz!x*Pd|RpN#J^29*-V4Krn zqOaH4;QS`>3zGj$t!RjeR=kq>o#^0`d@Z|J@54SseW|3}{J9t z=Q{8=t+Xq6P}|{f#6u-qH>X;e{Q92-@+`y*Jf!U=d|}#@yNw7MPnMhxYKrsQl@bTu z?&S+E?JBwPTK(kp{>@oLY$2IFk%2*tVnp688UG96)!>z2U zlCtyh*1+WlQ^PEA31P|KzvsTXF@%NMzJjTazV*Ax20prxW{evw*&~f7t!Zizt-o5z zC|h6QoLIxJfFSO9Hx551fLUu`1sE!i@g%yP~s&16<}! z*G3RF1Gn%#?3d)ew;Rp+ZYC()C{^-Z`aZxl*xH_S7ttj30)Kh#kWWl?5$UpC7UpQ% zFjT;_Z{K?0kpyw=?d_raE`qbA3n1M#z)d3%D}4=c(BJYaczS3>Kv0l#z!WwAnW;I{ zF#3nt4KuvQ_a}vtvOQYH)$$CGkedrCV~6rB!TdAtU)+=c)?Y?U68&j-y|cS=W!)77 z;Lw{XoV(YzTh~OGR0@~~nEy#>c#J^_@hU+e8zp4H>edpR3MKRA?AkvG3cn42PfN$} zNQK(Kso}cgNYJXPOP%Q8KpAQ+*Umscp8Bp4O*wWjq;y@1^Fi0mHIYZLv{zt>|8fJ@_ukQY_Zf({l*(RfapBz}Jxjpz9Ge07u|_ z4x4R@W2|MnGVo7uUaRltHGOB^@nWTBM6X~mZc}6@a(O1Xe3%S{di|hAex0Yesp+2% z2`%m+EkRFj?@ul%X#EE+6=H}Z`ljysanNcxYA7?k7VgbT7ufS}XJp&r_!0ig_9+Ur z&3_T!VaSEu`vC&8arpt=KO1`I=f**_w8H9YoBDH>qgg4A#{o|)6yV*=@NVYjPB_xA zJ!qV@08TY|L&H>beu2C!843et7H1pZ1L#`5X8-h#clVc7c>J_LcZG1_D&(Fuc|4bsLxcQcpjpF6(9PEIkER#>lukGd-$-f!^JE>HSOSMv$V~u6lD3Ggt*^mF^hMrjPf`{BttE60mG}V* zhqwvA33x)E+A&`I@XpPCqQ(=QbRe{6!cZay2sq0mZu!-sjld3=HI)G@6@TjZdb(R! zN%x5keYv}S7lQ{BI)?js7J2;rbn#f8SUg6#Roo)H1h5ARMA1mG0auy@!k1yd746aH zBy%5g6b^Ae3AKTl%$9t4bycDA@Wai8DE)Ye-wEmVQm2q{e`V{{%C5w(5heA6w_R-^ zxSu1)&$;aywSJ{$%KFv9%DWW6TG35M!Mn8K$H4vQ+pEIx-I|GP+7R*5DLAYXp{sNV zC$|zjGT{q(l)x)t5_QuM&V;jze#y>$7P<}MH2t3kxWs{dS$=AdCFH1nPIv5i@2Si4 z9QexTT!Qo$M=+{bSo^vcH>FhaIJFD-E3(s+?ccv&2qCB!;0fcO5D)Ok7`H7Q3BB3u zcShxR_u8+n74)j0WFz@4-eGdGz8EhZQ<$HhLI_2c|Kg?+e0Z5t?+)7uHlWSW#hz#Z zsj=)-Xzdw!cQU^Bns=98etl!hC|>di$R`E}fMDeKGoH};T?l!pD2|6PY*Y%oHc?ZH zL;u$Z!ViHao(K7R#Y*NII);|Nx68}RhvV^$qtN)#PmDHN&^}X@CF02wR>2J7TAdRRx_(Eh#v#imHzqThC`b1I^iZ>U~V0L?hLhgI|qDN8ianKUt@tiMT zaJMQ}-8?$EIu`>0_@+96~wPc75vTSbWp4#^d6jIQ!*YMq$t$To}IC zWJ_U-{2IJ0u+rRGV*fZftu^S}6*8|Dts6ZyEf+7vyF}lAEG3`!H8KYm6`FRPyoX4` z^tt^D(wgUz5$1!Rny8t)mJM624J$zlpnARCaX8TK`UQQo<;~r@=4BgR(t;~otqG!) zBU8WvrU2c%0K}9@>KPEE+fam5LAdTgV8VhGnDD0Q{pd}dR_{-eo|!2PJYEMZv5r)n zfE)nzmHRIxN`U;Z1rllT4L0>N2?<}!H*O+_^EbeHVave4&aa_(UEdZ*ppeZ&y2Mz4}yAOk=*nz?o=+yj-xk^M&#r_`f9kO@*XuY@S^71 zwgipyZVbEb8b9vEe&AGIAW}_LZw6|#k%>t+2ot)|U+#Z=cRGihJ`T01CsN2ec;%|2 z^BGRPe_dQejD+{c-66H*xX9&fZS!5hl9ygkApe-!G3oxtXU#fr1RbX}URZ@CLXx%e zI5#>vn$TBl8*Cy5Ac2*D?RIeI<@4ts!I{HAPyZNxHk0I2QBq0;W9>a#TU+#=^va$A z>s0tE7!HKwGD(_4-%8mNay@o9a1lXFhl`%W3OAk#0l6KT1m}O&ddl|-JkFP;#MwnR z1W~2$EcF>zp6vc#biH*{l;0OV3M!zafk-0~1|cmCijBv3`x16ks{$0M#j5M3ktik&E^Iy1Vg(o(iB5&3nw5>RsG+hMD=RChb&$BLD59lE{(WLSQBK8SOZnSs8p`%cOPi)_X1+f^Th69j4Z zr4~78jA2zo!3UH0kRB*uzzF~g$x7wR(gUDhz(H#P92h>f&eSqjeQ0P)yV@Ws3W<&u z==p&5fIL9dChTNY*o7FG&CZ8uU?x!BkTik8l5CSp(*lySmjwwvgGo7 z6F?R;j(+}~D-#2;i30wHncosfclUsCT?MlQ`hiUVINXa|&2qLOjkP|Y@fiR|uHJ4Y z0}-0(NNTPtP3a<<>S&R>oG-BRR$R8z!c1!Lx7jNBLx8T90~lB8f{AjlN-cl^^oc&w zN(G43>oJ7Q({WUI;LUL;Z@`jw5;B*A1$j?$(XrFyorJ^LD_^eCY3Cyv=PLc8fyZX5 zeI-+5L{l_W8~cjYf^zM>ipo<-Qb7-wbRD5ruMiW3612%6_}6 zk9sa|uviMKK;AKHz3vk95_IpGIa`7@2{&+?ABlW6EC`Vg5E3KbE|n4BPTZBUn7sx6(9=voEj1WSSJ83_V;UBKna^wfF3MT z-zx?~XA`wZP?Lp9_$~mVqTH7Uxt0kXx5+tzEW#WNC1Ar%=`ekGcDzu0`ee6I|;MX z4v7pVOOYg@$nO$hWe|~S2^#9*UfMr+2p}6U6$iv%5b#fpu^=b}QIQ$w8xKnblJ=00 zFr%VE9e5!#m0Cc}g?-F4i^aZmBPP-g2pkVq1=ZPcMNkxYkdp2L%ySutDXNE* z!)4+0`Osxm)h3BP=G!zcOGf< zOC7AZ5j0^Pj-k1s?9<@hK0AZ`wdDGWEZbij^QBQwvU0I&63h)aX?p3E1c*QJuu-!x7)A<;$$6DsMG9V?IjBYc1_F!Ha!?9% ztIXF!jFntoK&Mh+8x?EJU*1qlegF-sUb}Hq%kU27@Cj=b7GleA8m$n(9TVk&5Tmj`vbeoz^m+Nhe^90sFVG@3~y`a-<+Xaqp$ zqz*Uy3KXiAYagYUpap0jbO{#oT!2`91#o|cfD0PEe^;uqVaf>Vh+IMG9_VmE`K^A_y2?ZpcY@jgTq|b!Fu=FmEnWr?b7IV~l)rS;e7@A+z%V z7HZR%PbUdD%-c_7+)C4wXC}I;2YWJXY{qjg$JF}mk-AX6xRe;d@W9`LIa0VK?A*LZ zSb)Q^0O{#SLx#4T53IbS)d*Y^batblP2l7Jbw3@|&Phi{ca`rCjIG0}L3SA{1l0iV z_YAxQsHm*wRc`cwe*eLqp2w0_pL$b*dEbGi%OqKz1wz2w#UtaA1`{Z%OKqU3JcD2! zF%+4a!}1@?RSGxt?T>1)seH%k)Z&-)307PY&{_yG0q>jm??H(zWWwEsov|aphO8g| zZ#TY2kdDWLc3H{Gj^(u%3=D%eRM4$uSS;tPy;f z*`n_4p!5%7G&j*Fp^@M2xTlGWag00m%UE4_faL!fNDM&yxc0TDsCM+zCg#lP%%qm}^EEV~&wGs~oT#V{sb_)sY7JPkr{nABcVbkbK_!(H(4#5& z=l4}o?DYfh zhNaP5ZiX0}8^EVi9zOdB=;soVMrMGa`oH+!=Sk%6{Mgx3)7|E@0tl1m{*J*jv|k~| zpr)50g3t37lut65tM~d~OQ7*C7qD|)-HHF5_}RlGp2IAxVa8UIdJ_<}!Fr$m{icQz zap5IPHbZvY7`roE@nRgb^A?oDMj;@;Dh>dcXdmRUtza4upd`hzn*;|7UAT~(>u$K& zEI*inbUNDG!L`CCFj1F!EXE}=IR>`FgUneH z#$c8!eq(ZWc9x6p4cDeHH(;BOSZakF2Z^P;c=%SOrX|NR>^SDq7hr4m6LPA9b}J;X}n z>zi(w3}|R4QIvOFz-TJvn6#0_?#|0~Ym9taJYp8%r->eLfKw$Vm|iJ;56-x6Qo0!K z;GT>IAD*iN5+)#+Baxz+r@euX=6z9LaK9isreh(%Jsje6%m;{Q_gVbn;$pisLMjYo zGhyR+_rYM4wz=($tgII!xsP9;dDT{F=hJ3_%s@s)E5GKoIl$-J+uGzoh#wdFPJ&7{ zT>&sG!cuivGEPoTXq`X5ZR_YzU?Em~d{+X-An_eIeh>qLRR2RhDChhZf8lKY+9_8M z2l6$PBwe*%{q`4Ei-$!HBUrHTTq+R^*P#A?E5_+sO#k@`XEZ3Wh>3{-Kv0c^7`gRe z#WNlh2LfMp_Pl#j)1mD&sAQ$QmuymY+T(jG*O_O}g+8HNw;?fRw;icN@rho? zievL$CQfR?;?m$c3_`eeg$l+_Ia*x^Tw13CMFwAX3GP?jT|+9m<1L0dcD~QgBjJ5} z55R|N_PZ6y3LvcGievhnVDKk>|Ij$9W6(z1r=-RPt@HRTCF8yX~?bN`FZK4mcU`h4g-gJ9NL)u40LkgW>iE*R~iE->veKVDSGI^8HxAoqN zoUC=zkbZbRjnUVnjZsA)u=gFHE3_-XF#_gvmAcN=E(3Y(DX%8&?Wu~1P32;c(x3_f z1pB1XM}=*qZe$ED{ZtGtr&!8cX+p|d2UI!JGEmO+I+bdD+{MW*_N3ydVJAl?^kZBE zY&-iVu@wqc?uwi!BBw%W0sz`bUO&IOJsuvO9mW6dxJRx5C%gUv8X7VNpyE_+%hcx} zrV2Xd{_pc&OM9*K79g1S)hp(kRN=ZM^~e(LJK0Qcu@WLPbb`gDCIwl-hoFKsb?C$( zyyW7e%upXyTn_rOjC;u^1VE3&_CP%?17zYewyJ4nFGz#leMr1RbG@o)k15ub>f8Zv zCK1*JI()7xX>BvMtsI?Nj}Rk<#A2GY|9is1k!0>{~@zz{yqjalt1I* zve%(8gvDT%(h11HG>qFpydV;`2b^`Q@mMx402{CV^?U_y`CE%Divl!K@dAdaMsVj( z9tH4dQ>T-M2M0U>uru_-0S3RENwKAQy|j<|6Pstx#OSSi6K=n zhjsZo8^AvQ`E>nYCtrElvr6i}*O+5>6z9N}Xt2n0wl1)oT=5#iVuQKgE&BIsu;AwW1-IYQ zfudvOLx17ZjFm0PYEQ5OzaHGWzDzS^)_A5)cxh9){^X<1G-L={=Ru*2$j&K6#n^x&W7&IlM;ZXdvkt#R-wc zHJnVUjO~qP%-D~7i=2xT5}6Ufmvan6L(_f9>T|Ubec$O;RDSd6XPxsC_f2J6+#dsj z$|Y_qZ=vK_IN+;lq;^j3@Y+7!3q0{3RtU4O?(AKA_>bLv{)uiM>Rdcu{hGyHPA5>j zlucF#>v-os!Fp~e1F@t^AuNYa-Ydk-bq@}#ams|BQ!0>GU5zXiL&C@D0i zoXpD(ifNoXW5UB})30o{_I2m1_xD@vd^Mv#)uWkDbk;lsu;WUrvAVF3k7XE^&|F_5$GZ~u2wSZwIgDot82 zi12lKAM;e)b|u&=+dnEuX0`y2KP7stRnLDt?uw~^I`<#V8(OR^&wxUag5cOIp&P;W z<&GV{(A`}3Z1DniN5TGYPFG%;wp8y2Y-ihpCSD3cU2{V|O(KTskuPKvv>Vf;`PMwa zi(q+(qwJ(NAxrampP3p7>mU&?#fdEJRHh&4n{>m^$MzA({u`W~Pzxz>?-2hvq*z$A zMxbATD?;#)AauA{S_`c7&1(gaxObBrc5bm}E7OT|(QK@tL}(K;W1bBG1-cqi&nX@5 zF{!-)vSL~sKu89ceEfxwoBZT-D@pwU?#liNW`r*dsHbzbE%mZ`B_c5yoYB#i<*xPk zF~<6)odtvw!Uw8jXx_92Z*PW=C2@vpC&9sgS%@cW0`-t+d(K9o{*>8SL+%<4&q0^^*hX z-~F%hDY;`QlbbiLoF&$=y5$j1GDuKr+22>;d-W=**jFzPp-FrK_4k*hQJW_sEysDZ z&&?%OqJCs%hTkOy4`pMVizhF*ZSN5DML26@xqK&FBd2u0hB1BE*BGBbNo z(I3DnK?W%eMq!cyZWhX8pi-!8ol?sfFFrOoMz*U~2(PZE?} zBS@+v0CtF~Paks=WV1>tkV-lrgPH>r8O%}#(LR9UDnRkrh}akPMi@6fM&})ZCCkpt zltjgz%vD=&0GdnUOASV>gZTw((FVbxwC7-Ftar;mwr2`BxYtCQ3eG=fAw`ohzhuG7 zzmN*_KKvb}9Y(7K+Vs}DT=^+cKz>*%CuA`MUJn#6-h}}ezZkze5#)4XsemPeAP*Ev z$;!zY03=BR8z5I8nC9eUud%~m0MxQ1jGhZ6*TWe-0kR&J3UGfX)gpkwTYv#_ z>XooudgWL%X189Z?igWijOz z0dJX;)PE{L>(@vPXp|s0TpO8}O?L?4N_{(Jg4k522IGL|V#PxSde6vTT_!+?{wO_S z5Fqonn9VANi2H43^kCryO$-~GtoZ*#YA<6~*IOexjElA}?MW@pt49{>_v40jb2rI^ zHzkiDz16ifI>_m~QQBb{r1nJpoPf+Y$qedvXS-pb-ITtBJR4PL2Dx%I7;=UJ8%nJw zvOq@`g~MM~ln_LWbn@*19In>}IvtbkP6RMkduyxz3Z?-JbgWx3x7)y5rb_DTF zZ1Gk?poyZ*I%)WGH+LdC|6!2WKB_1Ws-Nwh zor9pdHf5hzRizoW=O=Xb8idN^Qx#6xU@+G&01Bz2s@nLx%fG5u(NTUuc*wc>Tv_1}1A6Ev zU|KcIurQ>a6nK*iB7@@gL*fT3@ja^Togt}bsh5aqMTmiESVtVc-_>>MO!_;`$|e95 z=DxqF9wt;4<<7a`CnD~q3GydN8EQ_BFK(B{-&sJR24pBfK@%ZM!sg}zq}f8%m_;L& z9$~j7KK&qYnXpFCW~Qa3^~WySg29MF8*3^`N-HSr5TH7sD3S)q>55Yq&;eqsGn4-m zS>y!rN`$+|>(?K>z(k{Lz)k>k(0+hdC4-f$r0~iGf~Vy&^CkY^gPPiii8dOTQx^HY zI)CqT!Z80*$P%|_i5L3Nz`)yQKhnTS5Fm{N)hGbi!N*?T0HPP^Jjfm=zZ&kNJhq!;s#sKW_KrthLHu;g%d+x)9|0!b4?W@lU<9(VX3J$! z`4|`ld6vfN*Vuc1>mYqt_iqGd7|p`X$;EA)r1xMxw+uxWjRj@md(b4f>jVnixEzvw?A`qR8=9cz zq@1HljTp-X4ff5B)hJK}G@1A6`B9_+URLFpEg~uDH5e%sTmu?Pow-$7;5m_#_(Eq} z(Qe>AXy4V9Ut!K=6R@cOCxfgmzU?B%yFv@A2 z1d4t!OHe`CE*aJyvmUY*2M~Z*2xV?;EGd}aDyO8R#1vNx=o~9xyjq|j7@cioVqyX2 z^0>Q1q3(DBr|(#;$%uF_G~x(MGOcoZi0OA&=S(%AS2|8O4X=Qv1GAX8G0UC#HeSHI z86_`blmfG9@@N60`+3J9QGAB~>xmlKMhMe&-nyimhk*8nmVN;?4{uah=8uVg^@ zHU(CF-CTe&1UT5dNa{7z%|8U1sR7OsVJOGHmG5Jwe8SGD9lu|`DYQ}L&GI=H0pFO7 z;4+&7rSfbrJxvjmjEg6|POVUH18T!VfJwvw={4LU5j&m0k?#MI8aY@Rrl_FMzu{q` zp4biS7%1>$fjJ@~s67DGc_YAA0z`kA1b#J?Gpy3yoSdWwck$L%Hi|v*bp4%>m!~v1 zEOfIBPbA&&WIyl|I_Z*~R9IJQdk=%tKC2e{uyubgiF@fsc3|}^e2topA)Y6+GDb$f zPulw<;^M~Gc9Q=Ov7&~?7@V56FR*duy{v3-R(AHouW!R9@bA~HIKJTH(+C4( zOeGyEjk?bRV4ie3h#7<*e@7~x1c4N)>(V^?T?57C=?WXJzq1^5T_<9r zr!>trZZ2hlxsyWkS2){QSZb~E#y})T18~R9;Px_=F;d2E@Y0gP zSLqS-ctJJH`uTGk1gpBZAh1uSN+pxlrr(ZF@&^YkzIBi|R8yPfj6HM!VWY6zH6!%9 zJy?d~7sLVOUV2Veuhw8=*y@q8o$dbR7e~0YJL?DBH6URX?tXlg{C~F}^3^ABrZWTX z@NoD@&nr*tPeH)25phL{t?oE93=*m3JC<Rl-H5x+k*Z6&tE>-wdvE0VDIRTHZ zN8~#H*&``2R;*=Y8t&(_7+ok3KdP#5ZhaiITUKK8^W$m_M2Vn3;RiJDtmsvf#RZA5 z<}xie&%d`PR0zr)1Ffc581drckgc{&iC)^%hbD7a~O z*5Lk8%yX@y^Q5I!p8~nREF7YdZSb?vT^5#B6CVCMYL&FOG_FN@%XQyp{AZ-l(!ccz zqaHxh;Wzbu@gyxaCj-0>4_-=OHdu!}eB-N>fBAuz8a$;RY~Ewi!JN)9!cxZbiUQ$M zVz!}k0c)A=w#X^te)dK`^Q!KCv-Nr0!~}9>S{1BET*VfDMMC=}%YfXS;9kQA63?Xi zPCx!q=HSR^=iscf9=0R#qUbY+(l#P(-*zhwgD9M7#-C^q#U+m1p!kqsQ5yApwC(*Q zAhjl#KKzFd?EEpT{s zl~drU)Ko|3&}&MBmxeX~P}Uw^oILp=>t{S~xYqvBwY{L^d^&l8WiS3GqvzA73|(X> z0dl|I>_30Cm7g5eUOabqH5&ssO#@blifOx|8h$$M%C4?NI;e*MjAEu_((?B5kC(N5 z3@MOb_WW9BhrZJNi?j>fd~rG4mmhlIilo7RMbX^{uy|v@$QFNQOlrIWc7In8)ah;FhpNaNzpH= z>jmmzq9F`Bq{1CmUaBQS!<@^zy2E5?obIoBp4AG}NWhZ2AE}^J zui`(EV_M1zF}y{ppXKCvR&$~7V9eL7^Ihx{-hs8RnL`G|v0Z1HK!7B#Ark%Re`VAM zv!;p*PEK}OwT$pNPU%mG!-yDZX0gs+@if%u!a_*(H;D3h)$yvG4eJyW{kzLW%`EJ&!`6~ zFTpidt}%k;7V@>>_M&+s5~mWYU=95AhVWqd%}?r2I17zEfnFffQ3!P<~96ok~q3iyj|e24n+RpSzPbFv{pLx zd1l7@F6&kBvmVwf)Z!PFef6o%bMq#}H7}Dd$vm#u6z&bf;=BX~ObCto%zj!)1-5fH zbC*y|ZY0GJN_ECt^0TeY5RWK`J2MG zvG=DYMt6;H?|4SdCh4XESx;9l$aPxQaw9IoP z7sc#;aop#%e`T)|n&dj5+kRu@ub$}f2%f(^*tZyT*>H>z@oQrwebExNW^lCX%a|_G z`{}g+ObA?andeHbg{h3xBR8@$`YtyzK8SFPE{~CI|PpRj%w)O^)yZF<#t?DNhnQGU>1`B$1Tcd#4JK|TKbni8R z()z$`Yz4CgD13I5{>b1b{9$lD8lAtcdYVa_x&4D3#Q`NzZgDb}FTC-n>&Kw^1v4uD zI3W@=L4_fEtRQ--UWi~F#7veK*d0`!xcl{whbIm3k6z;M3%d+1J7(Ba{Mx~CD(%|Z z^fC8D9d-#vOoT+mf+D^#M;?M_dAxFE2fYQ2jSSvLq>(tB2Q&+x>7**zS`guesoB0e z8wU3g?z?y8UaJ2ByPS*dt9U>7*_d@dwRXr^sZCnCRmdO8jdy*1_z1@IwKbBe_`e#a zO*_X%u2tKmVAZ?@{jWr0nJ&#}B`M4Nd^7l+QZcrjmTwY{Ly?n0J=y{fvb~@Qq2${! z^WJd$!anbWJM9GE_N;DT@gK|Fy}G%3607;j@hHTbYkE6_?S3yB(0O(bUIsp?4P|Qc zKXAvD$otibV_tK`^c{V3N`ohIo<0dw@;M>`)}U=9Ek~7T-u%;WN>6V~N8yG8Nxg1V ziLzK)Y%o99#wl?B!c&A(ec)X|XAWpP;INyBI$0UI&-70%h0X~tR!1wF%7$q$)rkz+ zxBgZ58>a1QY zcdP~O6M^^XX}MlZcU_P}EU53ir5(1mka$(rAJ|H0CfE65$49qQJ^j z%xh5I4qGj9(UK{`%&GcMX&Zbm-0F9Qv2enhiGk9C4_eh-tz84Np-mMoyIi@TrmXsk z;ib3()}vw`<70M0{uRZQKQ@x}VkB&auKa&d6g3G2=vt$Gg2F=ofh~91C|(jhlhy4% zPUkW*l{Y4U^PeOZc!O#d`aQ~P#hGGH*7q84)R&CcSn|_%1Brd-_nUYZP)hYY;7Tm~ z`!xUr_NWA29nOj$Z$~yI{lQ@bS1UUFH;x1R$N$ojnmT~)qOAmyK&Xm~@K0E*vF3gP zcMA=9-(Wk+gZ+AVWoRGEV&J=L?qj)4kS;nlD_TgLSX&=ZI)X>{zPJ`c|Nd=~i?UU@ zzgrgCy^l%y@@^q;K&#cDm-R5^AqXnHFRrUx{{3wvULfo<$fDTXT{f+iL)q1(B*%_e*gE5k4}L3$>#J*Ai+6C-bEw=T#*+$kUNs8ntrMU7n7VI6V8wc#n>hB=%N3DAiO~8I7wa>i2gEq<&p1cyjuAhGB1zlbF-$?TkEtz`7gX&>RAzQAF zmp#;^Gv<8m%FduGY6_S6JLaQ3WmN1ZVQ{r0b(Em33B)IUYw^MgYIj`18_a$*y@SdwvYIht`8GPJB!0Hp;oy7G&Xul`wpA@3wcpD2IWf^e~ zyRE%l*>IkilY;kkLI9k-&MYgZ0Gbz4k@hR;y5v|FXv_-ghB7Y~GSb)qL*esmq*O1t{A zs;YGuVSCPOC-TBhI(<#x@6~`3!+wS9Q-^nha~rma;^GJ7Tl6c^2&^3f5p=uTMw_1c zS8c{|(KoIR(~VKVoxZuT!(fT0ixm~_p>^}?%LG~LxZeuR(J-u->O(r$Jv-eJ>x#Aj z)Zvl-XMr!6tgj}F#_UI`93N{uQ5*Vqey;t7Cdn!(D|Vi>#o(=Pfs^%TY2Q!Xa!F3q zX)=f|)D78AmzkANZ?YKwz#^+$fPALJ(0tU+I`9h>$AHX;HD*>TW)|1*-u26pT)!(^ zGN!IwF}BMx*n6-6!kS?I=__x4<|`d3BxaD)VQfc&$ycd~+&r8qC7d#`qVMn#xi{Hm z$m+cwj~|?|({GFj39?hgwYIUC`Rue_mGJJ7K=73LOxlofsWZ=IME}+N-;rd(tK)qw zgLYiMSrYZHd^T$sHm#|fn4wnw6TY{!`#DGXVB7Ub6LLb!H=4D_r?*`bj=o$a(>0*y zE1fVXw0+~`y-Q{e21D0^=48!*!H&+GK7@b2c5B!aZKo_^;u9P-ml|QyN5Kwv)}G8= zrc{O$nOhubdoq=V?wS>kxfr&+v8KH3urz(wCao`8IDDcx$%|@f;EO4I4W@dvWLy)y z0sdh9Et#+}ENyCncL!_rSCDA^e;m16nIAFM?W>Vv!OHoE_^~PP1pYH1eWlXEA zY1G`nKH0IF!%ZDrWd)X*ZwL640e=F5yW=2wm3{o4m`=O(PxN9m7U_DnVi~^dZ#d_r z!_Qi|P%ZnR#|><|*TT`clh!t>7#s1G_NzzIGBHhD(|P4({dwz6RbH-7JeoHw4B`J& zYQ8R&>KH)BO@-TXEwkjc)^k5>ofU1Ey9?L2b~HV>f1Mjm>Gs+>R}IGCrdvbHzjPav z&TrB+PHfjqj5MxF`&RlsLH)IHN8H8snfe}UoZho>)TV~Iia)$k7KZ_0=I(Cy({lG` z4Z_yk{v~9Xi94=5wMmf#L2FEF9`opy7L(8Ie}rmdeYuhMl(K#g%b#f^INu7HtQ#xZ zT+3h+>rql2-V(()+YU`$z!%Sk--h`;k)T z&7UB#KK~Z``0%GAeWH#UBQEpClt$d~h;J~w1xicv6~}@)a9q%d%75lC*(Lmbdw5J- zV|VTa4u~?`1tqC}Elh4No@^2*ZFNy^yLd>+>3wUNt7n53ykq3rZJ{%=24yWUhh1&I z`e|Hb{|b2}x)go*yp#u_#v)f>)2EiXUJL#ZT5Jq_PXoHO{+KWW`?R)9hN&cy@M@i- z+L;VdR2LLIHeI5o-Y1e=_#}4#(eq1Qe1Hy z50;T2IJ~NN(}h1jAMF@l+{JszXd0WgQNPHV-v4#boKAkGTO@`L%qQX+vz-rj0=7#nb=d@w#r8z zQ%M6Oy09-<4i+3zKkROXn1Sh$%u)TDi>`my_VtM|)67<#5?a7v2!Qg-uE*5R)w9nn38#iq9bmS4~YO*lyXjs$<;MapW3U6UV62HU6^NsQe2lefeIi_sCNqA)q<&Zcg%` z_61g>ppHV**ZS4M{fT!ZT5iyEN4{v(%kT=GNlD7Uerl_-62{W z8Cy&0)qCnXzqEC>X{CDNE*0E~tav&?u!&uFKivnV(?5f>_#Y)!w4bsiMlr;ZnNlD= z9NghlLeAJZI8C9+HP1R4IUMB@!JI33I2EDJk6u%sw@SK<7bZn>`5y%CN^o?IN@GSf zHFPmQx>Tl!?mMVACe|Ey-}0Pu@Qj+&!01H~I&#|HUbRln0mJIa_4DI2a&(eZB(_=h zPEB=Nx|V}>)B^Qfw7va(tC^A3MQ|zxIFJq(7uRwnv(@L*_~?k3GQYAmAY)69O#hy=tk_9gdtA zh8zh{XS5#=ypWtfPh&%kLJ#fCc^O5OEjux^QpcIuROhgLE6Vv$Pggfm)%7nL^ZKe0 zK}ehczx9UdzlNQX^_+K)AcJNz;xlK9UDYxi-BAj|gOQNGlc)N32q0ZUHbM_CX`PkH zQp|#)v8FDggLw+MnLJcn(z=*_6-61cql8q{nF^Au(qLL+!wt^F-ml!~2S~B+UJClvmdJ{e$#K~nba(&QP=&=kF zDOd-?Y~vf*>?GRKsjBg9gt--*eb4!wClxuyF$xY2rfcSmbJo|?BH9%9&Nfroe-h>} zyPrwcn=95{*}o?#SAkb+RXDrMljDYBru)F>IGy_-;r0*RYpQ)kl=BU`5yJ%??Mj-% zLK4=HrjF)Pc!=K0TKoY|kO%&u&!KKdl*(7Wc4Ok7@??gO5Ejjam2Tr6Jc4HC=QO7C;1;RP!7l*0E>wRz0Qu9VzOT7 zmH2k*`y@x20O9tper0~yTqyD2bRhQn_=U9h*EgMf#RZeO$N|4*{!kZSkq?4i&EYT}EGmZm})^vzZUd)vB}dUPF(?(5Sz zG}!m2K~x2W@~nS(8+PiO+)qH-ruK4qb)i0KSvsDm`GEDK%8T4Mr}883j2+(<;h53#;Tw@NY$ z&MH`K2|8fJ?_`d1Ny7*guz;=OvNX-kd zeoQyGb8+`8oGZLZug*`CIZ_2nb=FauB#|+CoP(v+Q$$`ltv{OHa?{@4F(Ogn6K5II zCT8Lz*uJgjrEc5eZ6GTiuue?M31jMGY$D;C83=U-(%O_U(bZp#TjQ{sVs0laJk?X_ ztmhw-LxM^yu8(sV`Ai6*(iDj%H+!C%s-*Cx*{^rTs6v{{;Wpk5<~~1ls2X@b^4FKKE7Q`15v3Rw+nUX{K>^@Z!`CW3-2FF zez!c%o)bN_h-E*Rbt1*|Q#pSA&yqGo2xIuBvmOa~G+S5k2qd}be0PKZDn`0qZKuB_ z_LVg>#12nh`-FbC?a>i37VpgAgDPKXzL`C6OoeYgQgIEk|LEQ=FCkNnYK!!!QCh+6 z7%tsSr^6}FvoZHpZwEqI=JuNX@JGMju=k6=2%790jte`QlM{R%VWJ-jI?FophhiXkrzVZX!GZ>wD8)VaR zh1?V)j9!5e6XVRXca(O`YHb*|&h?ya+H4<9c1qbSQ_cH(CqC8RHfx-aUt?4A8hO>a z`;hTdB%2H=Qdw}(uDdGn&eE`-tp+aCm5J9E*Ab+I{fN&m|Fb!FIy1*MdUnLPEMNGT z*%Ex|T3g^e&r#YElRhbHQdR?fH<^<>*>!!R%;4^-`SV_uo_mx-!#^PXHHC$Nf6Kf| zMUMHQfTm*w#xB-Dbgz*vo+&FSiN8SwC{M4Q-q(c$y10I6L!+ zQhl;<_tOV^&{8{rrMo>(>^c`Oyc~XLRxp-Pq~_`v$CZa%UyA(5;xqSVmLeX%%OYdJ z-y3SL>G05wJg$lsu6kc*QTW4BhWgt3kX^5j$p$g`>}k9J9o5TdTRWAPUfB^3vTpvI z8etz-*7F@dK=_C-I`O`U?RcMb#^N%NKncA%#1l24G!+hNYVZ@w3auu>dBibb=jF+i z&8DV*d_x9CCUX#D<|bnM zZ3Vl(X#IXfK(-0uNK#8KWs`S@{qe}(*rQBn9HTjV#=EHP zJxaLzJEK({EI4sXvswJFXVt}IU->f2H#d*@fvbzIE0x8f&Muk%_swkQQvZ&&)NhH0 z*o-i4V8?z>a_tX0$T7DxX;qKEB8j*E`@8OD70j~#ud9=DJJ@ZC%Ts?EZDCX z8D8=M*kcXO+6%m-Q3P(j8@z&)?v0Qx=Y!L-Mqbe3&^zP%x;`OFr-^H{DJ-ZQ?)=KBWI5-8(6JEbYU#BY z>W^ZWSey=(`1aCfc^YAbqZ;03>lO+ykDNOumdn#^bU1dZjAy6Kvop{}!OR@6(o3T? z=tSJes+f0CPQk-_c(!gCX*q={AhmSmjG@;yX7Nz13+ZGj`(5&d!R@3h5Bffys$f$* zb|kML;D>o;FczGJg2uLe^0X7=XrF$&jBe>9AYJ=6IG3>F!Q41K?H%GH-e7m7KlfrJ zQ2O&1n|><f^XE2w0QknC(V8XQ^ob_QEiDS z;pD#;RD^QH#7HCzp5Gl$L9_Gh)-)7A6|c4dw1A+fDTh7)08yP2Yv$IhI!ViGm`g)ayRmGIwhjDFb>=9K9cw z$63uc(N284qvL|HCJ-=8zB4J~(=@Cv3B||7p@3PNTQ&1OFS9BbIr5NE5_PaF9V1-5 zif8;SpG3y^0k>A=Owvyq3%&fIsj)U_7$BFg{)%q=%S^!zFuLM-BP>I2e$m9u)hVs{ zHBLNPH%Rnv=FuJG37s3fngpr*g%ag1k9!?_kF@NnQ(<6o1cZ3YakqX z1UuL&iWKWI-%K@d+%CGWW(iCo2^sH^nG_B5Jf&gCuq^Cw#AOw4U5=RH$UF#=a+f@bi8A*=a8L-U4%dXJA|Sbj$n z?>__d!T|)p0yDSC+H*{+1^EAjWeud!8wb2sxEy88V<@r)kRH-+LN67#Dy&+J( z(?xAsvSXL;ht*+ubA|=CD+_1mG*p?8-Kaq-9v|jViMFN6sM)95;=C$S71kBz$ZPjo z!Q;K6?C;Ku(Qg{KjVI&V%w4J1RmUujwN@B!LxAJ={iAwCxDqurK0a!h`FfwOGP2nD1 z{!1ycwJl(+Mqc@=8Ctu$jgR+?O7FM2#OZCNq`3)dEG)e`_c`N?c@p-r#}H9i+ufn^ zhSR{|+WLm(240X7-itAkp5EAk?gC@KvsgxSbBu@LryAM(=hdt`=*SA`NR;bXkhHqD zfiGTGl^#OHIapLxVQzWK&_?()Z%X3Ov?&w4*CQbvt_IM>qxI>#wPsdn&BhDBPy=<8 z)-W^I1(3)Guj0$hB;wL$OjL7ovcjpQ$*|Xa{0M>Df-rD%X%_ zH7nEFPE5?r_F9ep%at$!vDv?gIek~BhvLe|;EqiPanG-6CqVK>2vLbTo0R2Wt2<18WC&u z4%F2S5AQ6g>gUL9Z&1GCtN1B8Mtz-X`v1kih5+<7Del@&YZmLm6!|=9wlUPD*Sm=L zL7A)W@&xo_Cex(~+0=}75!&@b05 z!s;ai<-#YryaWkah81TDrO)cxOl}BXENcBl;du|FdZM}?6ssS79&SWI@J)Z|Asn?_ za;1g*qpItS>a8&YDy52xxx>#*xZr#7`XW|3lwAh68&G0864UaJ7bjYCt8Bn%Ps5Q9 z{5p^QFsM74Ug{^lasC4&MmiQMqKKfhw1FTUlF}j| zjdX{E)TTS{EY#n5?mhRPbM~W;$OC(?^~TJ+Gqb**bkeYr*Dwrd{q=`C>bkr~)(E(n zgNs9(^axM~<52W+&4O^ljji$gQ+*xT1evH7<9u70^5%Ogdq=mypk|=q81)5JmW6GZ zSCUeOTD@w`RPQ5S_8l%TF_#jPg(>o}*nGcmy(lL5X@^#Kk5cDG@RJV8@-;4IMNaka zuidr^m=VkcRZ6ljQa#1jQS(CW+2LJEKmQa7fNClXL%}yMwM=M*IkJ40u`coskr)x3 zU6F8}XgOR3tDo*JFZC$+k<ZO?PYJAmk!vLL7D^#Kc_s`U4PE}$^-NoZyM}; zu=djIi>x6Z-Ex#(&+)K6&g5S9<@v2B#Q%KsIOnk7v?1+fM3#}aezM}Y&6^>)oV$7t zlZ$VU+#rxpNK2Zic+bMk6x0^5`=-7&;=L2Q8P-zOv$el`Tz)lG!9*s4$&$>iw)5y8 z+rqFksAfzH)dZ*Fusd1nV%UP>qVNa7tPGn3yPM)rl#K2ftmVb_Q8knlAv|5yTg00? zU;UN7X?yuca3oqz4%ZFtWm*1q3h*wv^wQ)(LMtZA_|QNhhMQTbpI2D9vzU8wcBI_v zgtYI=k)tG;ltj!#De5{(DyjuD`5GGr@`6Jd8RxHj&q+>IZAvEnl}Xt@*!itAxR>?S zx@|@jcogz97Dq}Vv4ZH?Ux?#>ZBP<8ZvH6#8C$z#jlJ9=B0t}C4s4rcw@i}&90Gn7 zXU7+HdQnA3s)nF>slzl5zBQ#4gF zdXPZ`Ioh(HyKPFE z>Rx7nzrEO37va+}e2$L?nnF2A-R-mp=Ui4VI6e|7NG-CiBQS>zSdf|(i_>m8+DAIf zk532pz$VK4$Elv`DMm*xwJWZ9d8YIl?dz(kAI6Is9J3R)_I8<(;Cjk!h6afJ4o835 zainiZsa5V7jZ|eL8G|ueaAv$M&Gow3K>u>S-|o)f2TM9Q42Uoen>?+m^LgUiW{~Nx zPH!6abN(+uSIU?a-AyT1&iUJGxG@Lr6nWTh|M-HQe+O;6VPAryjYZ&nN= zgtrwtN>zBvyw5Jr>$G~d)X9H{5}T`sM@;OF!7K#w$#2<iR}FL!?iTYI)_nr>{r>etHnQoCB( zEY4v$w3puP)k?d^#nAN6(sOYiY#r@HT=-RV6ulvX5Q%f-nw@3E?od2YanDMKj3TaN zG)^WL8tMP4f$^zWO_RrbF+OA+5*=Rq8=EZ5ewG7Ei~JoRhS4OgJ5qa>*1a#zZmpS@ z4)s*t2&6;;sy2rzE|j(o)=JE$j?V`_X=HcXM$ci;oiGXcYAUi92%WF(VIrN(UX8j@O~_dUap;^fm8T`Wh5#-m6 zL!JsJR1TfY)^Kr-5-L@v_+Whh+1&lar@EY`zsfYIS%aSX{qvVH&;YR%J8(Y0M%B%v zR?5MFsd5C{x!f&uyr*euIIrRY*ZdqiRXKIJO35K*bq;5a&X*HG0`g=_+pyU=CFiEt zMVc&mH{`KrNb^SMko^2y#74u7xcU3(n>F*WQ|vYQ2LovfAfeEo|D!rzv`Afqwb+q{ zNH^s;?A>ASlih|{XyL6?o9 ziPc`Q(J4fZ2@EE~!$=N0VYP|XJAKk!=9CtabA|t|a!&CV!h9!8XsrpT+TxkRYp_`-xtB#GMiD3c9GEw1 zgfc77{I%RK8ZN`VPrPw{4^gRW0m3dWpuY`?H3&)3qGqWE1?ITr#Z3Z8k1eSQ2fsDr}AeKL)-{@%_fAKSl~{M&EKYE#C6417q6(J`i)G|RZta{;%b&~_?2 zbti5fE&uIjt2Bw;MWegA;yWgz`J@vI3H8{n8^UEziZOW#3i#`uEeaJMI%^{4h2kNP6O1Z*W(^(yUWps(E}- zofFyMP#SV8Oh9a^^NtYNsLbOLZ+a95-dWTV=N(<%yAnDv4OQd_g)*^4Dsf6*J6Xdk zWv@fXUNehbQm%waY@i|-yZ4;P$8B1J^ywGuQ%HJN$|aq}MQ}*?Jpi|<< zC0%5VGpXAM4`%fo>}wAGDNJQAyx9-?Jzh_cxl4I8lX6Txcz=%Ot!+Bsd@{C()UQx? zhmAlQY3-N>=IkBQ+#WDFlMNHb7(}YPnJ?ox_u-W1Dc&YvX=@NJt1fR#GQWx%ajTXO z#{Xu=5S;0qQ8A+o#YHIjz{QWr1&|x1!azk z+6r^ec4bL&k|Cax6Hl6~js>%63_-c%-IwRYJ|Fr^GoL~3?y;TQAoao>aRo+QmTmDO zdqjkQy#5uAs=D65&JcTCI!#@%m!qW304jDl0(dqqN>{LaRM5nBTcS(4pDW$M4C-3{ zE)p$ahNd;~XC2lxn>T{0^1?`Him>~tYx)!oz0O<87ZMm>yI*KzH*gP{@G#k~@Mh|I z!YjM#*84d)O6bp9M&hni;xBv*q#VM%rJf5|50?sR>l2%*Z`8UZRvrHVI@e+bR2>VB zw^-z771dPH<(U~Kp1xvpf^@?LI{cn=j_egeb`_!E8h+xV@g&%FdMk|_Z1}GV%ibeu zs~=_mo+{!o$-|*87qO9VCl;hP{h*CtsK5Kl!@z6=#^m=I*}Wp$gpDD5yXn)ngU^)kVBWe*y9T zdQvxqbjeushBcRTi~0B=E|Z&oyIRm|$IocE59JSRE7hz|1=K%c8T@t$?aKZ$ zw7=q}NSHEP^nZU*!EZX&aWaSWfp26vRHrQ=90KZ$yEhqh9BdHUq0CXXWo7^oL#6h4&|4Ja_(Y{ zY4n-}c}A7qgV#}pDFhrg-HERd-oUY!;99<)F%(ItM0kWh)HSb9W6jRzH$(H`XlLH* zTp7w-2+Jr+cKbzyzk}Zb=k*K1kjfFRJ2Y=@ExB+_&Q|LycQOq3IDh!CnDMDj7msup zryL3O!|G&jIjY9==44WXs^Kgdi(c_=o^pYa;;oabLNs0ZLbk12WOi-Jd$g+KzuDjG z-9(lTS_>hF4Q#yO&-L(&3vCw#tyTF7Z`r)kvao{`1-ut`uu4h;e`wd2B8mST_u%O@oX#a!-z_s}j} zO2IznOK}Rrvld_*qk4JF>N*yac^|pva9OD7|Da54^K5) zTK#&Go9Vv$myg(9!Wvk5x@u*C=j15tJ%;G9iASBJSAQ?>AO(r9!ZqG_*0j{V*NQDsH5?XzH`i5gJv=qx|Qc*0XI} zyHcQm>qE6`KnmHN?o!yO!La5v*s7v72}Dvtdo6rCigk80cK*^HrHoXejU%ecsmK+% z?NjuTWcX#QCxq{XIVmQ+u;n3ofx7DsmzL+vIVk;Wo#PtJg;ZCS)aGMctsp*az%AAg z^@#29yJ#KwE0j&E>9n;8z4{Dn9?D(RO(R`;E)&ub!9i9z{FICNxyt5I^)#imE2(wO z*YKf*iE&e!&EK~ok4(&MTO1L-?XJy1H2cdjE4=1u{kVai-n&$n|19QhIs6O@I~w>1 z@^wD^Hi5!CYp>tZ8r&hHr8eHA4~ahF`CfngOo92(L#{}o1#1=0*ca7PwT(OC+uOzN zt@Gp1T$nyX7j3(9PsLMW+7Zej=b-?_kvq}%7W%WuR<{u*i@wgO;TebbRB_ml0iN!@ z8U6WV)2C1S0beH$a;o1Ac*D4~>p-L82M9D|sp6Iu4 zuEJ1MqhfBw@K+p^;83z*x5aqe+~4aFRKE6!<7z78YB+qZl^gK9<+heg(YI01egpn! zMe%Ze;K?;a)8T@JPlbfUiFIzPaV#$8CWU=p&F_)vFeYkTWkyn^feluZ|1zm}VY2m` z0NZPi(mLv>-qV|Oblx%bTbOsa0BwXDvWk+>FKifEOe#dfOqe24ltW7;H*9~Q zY^4+L-(wMWoV)mBn}Eo~TSK){_f55-mbg7+B@uKwX?B1aFwwx@+;36S*KYr|o_aRa zLo>G*w=%Xg#+x{=!ec<3_*DCfmDTwp;SM{y9y%JcP-DW5bUWY}Rw?@DW%)k3+@szI9$&kNENKuIhmTrLi!?lRbGy<_s&{)w zy&vi*a3+2DtO&0@s-XJdTyJ_a zv!uQ@={+^nSo_<1#Vxl9Xo$MFOeYR;{qD|#g8Q6if1O{SWhH4^qgL)aUt;q7rL8qN zVNPWwV@A%uLxC{xi8XAJlO~ugflBb9md;MqM-3o|^c}d<0LZ*lgv;w=k{nEkyz%}n zeR#dRm}KSK^QXo(T+T+dJ@a3MdcfExspK)<)Pu9A_pH$M?gGP~1f>O5hPAY%eMQkb z&EE(Mq^}Qn>`KJ;JDv)6SY0v|xaAqYo>k@bP=_0#5bA{XtCYzsa)=SuwE>}-#4{g%Q7Oc49l*ZuJq~M_Fq(kif3U#yY)&K{?e4+^5LbU-eUaBfP z*MmhKYk^0&xw%1(nm%QFXV9G&-d$;vlh^}+pwmYV8w)>O*JU}&_I0d%4THjB{JL#7#ol`})qutjBa2LqAGNJaQ8G@j!=V#E*2+n9p=#R&?vM#RSN4KNfs#>umVxv zBD3|lq-T}eRpz+?9^Z`;LpVeM5VIxrCzRGZw`!@68hqJZ;qdDEVdi zQg2&r|K&aFiL@zN3#A8YC<9-YByPI$EJ(vvj_cGVJV)RMHrf@-UqPFU|GWb28aBNshEb~cFamJeSU8kY zKLnW>;TQ#SZk^(ufc&K22c5GAo0Kou<}b$fifG)C^lqQ`?gRQ0Max92p-TP1UWf5 z_gfbSXCy)==jY=D+3yGF8l`1qSRZe`B^3ViW+xF5QQnHO5kFPg4-H^QFkqM4CmFCK zHqI&P!-iOX&%j(|wof-ZCwMuth4%e*jpWz$mcz-_qxP%0v-1Q8o)&6xxl0U%#rphE zt;zeuoS9?+ybV-Wx*u`q(iR8ZF{zLD90y%Y$gZs1bp+7shYE9vIARv+NLZsK;U0fa z9PrOzii=W3k>FjzjN&2X3bFm9Cr&f(jty=qo-5WwpD96-hX+JIKXKYqf|ldrxQUx5 z4jvvm82G@nz(0?Y{rR8BZK%-(SFKP6TP*nnzgQwee9R&z!eYHcn4=o4rdVGUPJZy4 zoSCUK&$R>1YRf6ezQXescw4-@$N;EDi*JqvzBJhX}JnS zi{$Xu2Ap(({8;+TgfYs`^KvtSLOW}Xzj$B2z*RJx&3WZ~&z(n{%?K#{Tm&ICWC*Wd z_{nioGc#Dhu80~3d8+Ene+G?y{7WBB)Ag9)pz|oHsHiCP;(syMVYnXwxUMBompydy zb&bOnzlM9YMs~9rI$s|pr9TW5nGJoQb0N641tj~h>PBRmKv(UapRf>0nNgP#V$U`G zuf-ej5ys#$QU~)xZ{G&$NwqC4C&~Q=FP@C3cLYJDteJwsLKj#OFbAMDrT{n&JV)U7 zaEjBM+I)ZkX|*vs5rW6%&}a`0v=WQHig$H&Ph15vM;`0{qQU9!;Qosrpp{%2)`B;B_$<|e5BiDk;d2_hBbY2{ig#L-}WxhRDOfpuMq%7Fv!m0&6-IK z@(7P(&j>)6NdTm-SOA0ob|kA!LCh975X%)OJdw;viLYTdjT3<};P;%?^#!QO$AEQF zQaS@c)oZyMS2-f0uaUtu(|QY)dS=Ks?vwB?}^h3ejT$ADlwtw z)7$}Y%2@Go6T538f%}Z+kU^ZsT12LNSK*IY3jbRotL;j%iES9S*(`T}2gmWGyskm7N|UHLdz-#LsT$< z4l6v^G!9;miQ3<;fwu;w^}@qThYlUuSxJ-}2VV0q$WR@`X01x+PSJt7a`0(_mgP&>Iux&KDnXU8F6fe6 zrW%KLrM^|+IC-r5k}N<#3n6smB|#1y+)JFqA^L|dppy6E*2meb8rtYbt+L>+NGj>i z9bzuQR}k(jtZY1Z5)IzSR$-ZL#Q+v zv(9SQGkj?S#4`!ch4PpHFeyD);HMD|1CRJOa5@;{nh#Z$r2s6_oG*d|rS;5xxjE+X ziENPXqZ$VhNtx1=UE#|Bs@O&+3EU_Od&YB{D`ZALQ;7ZSF)a{b z6W&Jv{Y#_Lfjqa}nabtoOtbj(0+;h%mHqp(tG+T@$i`=-XAWc zpFPZeq=5d(()&?!B+#qAH)kPa$F=Ai4@&;fVvRA|CNlf|Yd!eR zTeoHrr=~YMEaK5_R%&lSTC8z*XXky`x5{sd zLnJ{dKF4j{NZ-jSAvZNBwO-o&(slO+0q(}(cjLP|%guF7O{$<73t)ke(9lbu8|f=b{G?-~ z@;OMrrGOkO+l347f9|0dfpF;*vrM%j+3>Ggv-t8W)D}Rg0j2iMWR$5oI_9Cwv)C(c zY^rps7ac|=t$dD-^v z@2d;Iz-)!}mOM6QL`o}OAZz&fA^nC{X=Dj&3N`{?N&{T{9{mR|z}kk}S25#aqCk?nsnG!B{rKAc9(6 z%2VPK=G~e44!!P*lY<4eAAz;bAqxVfpTZu~j}>X&+A^8nW*-1l9tu+e_}!&Nd#WR< zfTIX)n*!}g{COmmN&xf>alN1Dkez!|Q&a8yUd9!)#ik*R#!40zsqy7erF6nJSA*Jt z4Q(7n;Z+X0mypB&REBC2(4{p>TyxQ2v1}wAU1#v9XdTY6%VpDQJ;W$B7>11UnYT9! zFYmop$v#1?+6Qfcfq_AvAC}j-Yw~V9(V9kJ5z!Cd4BoK1)R$wXRFVgr23*eZ1>^wYThZ8964+w6fgy^Q{IN?BTAl{$3RF ze0t@0=xPGxeppQ?4bZg&NElrJ>tU1yMv`gp&JGq=z9Ij{i0xsvwQU@t)_X=yAFhfsJPkc(g^ex4gB!UE~g72NfP{^7&EUrd@oV^z2H z)0JIn*Q%PD6zieV3AJfVrcYhnZBU_}0!&V_{qfJpiCmJyaljD7E(}+|W5~&$KexbL zkJ|``1OTaM^;dL{M7!@8tUutLnNU8t7Un>0nzx}`cZt#o!O9-HP{2E4HOYZUfzN@1%$Y76N zfX(W4O;=PLY5ykZ)CP^Mx@x+kN~n0Le&lV3IbOS{s6q>ShuQ%23rQwl>%!ENG!Lqva(*jdesgZ$|;wJ+?7D( zlhm^bLd$qor397>7p}q9x~-sq0y3Lo#Jb{Lz7ALcHJuFrasaYZjuNsA2@6Yzj>dq~ zC^J-u6;A@gQfrmZE+L^q!KJm(XFb*W2|hqsSve%nqNg=}6TQgK2>17TA{+RsF*zaO z7944U4oIx5tgN1Wj&uDsN^7-~kvd0Kc5*2&={NN}maza=s^jfmJ))y2HEHrsQr)FH{VrH%(agq+eB1wA#Pz=?MuISyUjG3?r3St2rl@STAt~28e#j1SMWmsxk7)GPLc~)RyX~~Bi=s(#MsvQ{Lt9YWpr*=vz|~u zAAt<%dC_+30(RNT=O@A$VRe9XuI|Jp82q|%yIO>Y1Qc<%&$~ekY6c>=o_%0L8ay69 z$k5T|Mxh%#4JzN66=U1Mz0a)rzI=&t3L7N=wDl95RD+EZ{LY_IDDy%Elny>lK(B9{ z-HIFO?%kd*oyn2=rGr>?nlmf%o(Kr@$lpigvw6Fi#kl7&BWDlo?@)UIYznt63P=5 z;^qB0zlj1JgFx0kp{1q8YxKtT>kZAqpo3lRN$0-sSoF~(y{xFmRt}@tOlKPGLDD8v znF_hucA$`Rm^G?#4Oz`dPUagD!vqj*6KM==gEVqPSubvlNVhZ%1JE+)N0E~91_^sZ z+960MIjrrYo889YK(*{i$b5yF{J3LLl(GsjV!EKWOIDkbh08&XHpw{JEPxrzRs82-Ov0_e5^PAq@hhu#RkUz~zKE2Xc6Z5Zx_O;l6^M6DrANbA~z1IQG}lm{}RTJO`X zpZp9A4I7(5hWrhB;7Racg}27TKhPS}l1@;FF)xh+w(pPxGKB1x2wC=y_w=nC|qA)SQBmP}AAvgZQh8-H{N z;0JhD=?@gBx&k*goEszfrCUFpbOhKs_^LOL%sOyD#e1();>yazR6Xw;)rcejB2D%_ z=n*r?N5;d&4D?&)gYrAb>I>fJgD5l!{yL=d0?}@{0t-J1_mcLl96OK6k3VWP1oj!G8PtW9OehL!5tQ$Ok0>3fy#V%C%l%E2bxppmzgYi ysMyuP>%Td<|LJ#;|L!OMr*HAUeupi(l&aGKi-8H(L530}!EP!@rC-;3@_zuS=m=y0 diff --git a/docs/reference/plot_cutoff.html b/docs/reference/plot_cutoff.html index 1b1f4de..10b906f 100644 --- a/docs/reference/plot_cutoff.html +++ b/docs/reference/plot_cutoff.html @@ -1,7 +1,7 @@ -Visualization for cut-off selection — plot_cutoff • alookrVisualization for cut-off selection — plot_cutoff • alookr @@ -19,7 +19,7 @@ alookr - 0.3.7 + 0.3.9 @@ -63,35 +63,46 @@

Visualization for cut-off selection

-
plot_cutoff(
-  predicted,
-  y,
-  positive,
-  type = c("mcc", "density", "prob"),
-  measure = c("mcc", "cross", "half")
-)
+
plot_cutoff(
+  predicted,
+  y,
+  positive,
+  type = c("mcc", "density", "prob"),
+  measure = c("mcc", "cross", "half")
+)

Arguments

predicted

numeric. the predicted value of binary classification

+ +
y

factor or character. the actual value of binary classification

+ +
positive

level of positive class of binary classification

+ +
type

character. Visualization type. "mcc" draw the Matthews Correlation Coefficient scatter plot, "density" draw the density plot of negative and positive, and "prob" draws line or points plots of the predicted probability.

+ +
measure

character. The kind of measure that calculates the cutoff. "mcc" is the Matthews Correlation Coefficient, "cross" is the point where the positive and negative densities cross, and "half" is the median of the probability, 0.5

+

Value

-

numeric. cut-off value

+ + +

numeric. cut-off value

Details

@@ -102,38 +113,36 @@

Details

Examples

-
# \donttest{
-library(ggplot2)
-library(rpart)
-data(kyphosis)
-
-fit <- glm(Kyphosis ~., family = binomial, kyphosis)
-pred <- predict(fit, type = "response")
-
-cutoff <- plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "mcc")
+    
library(ggplot2)
+library(rpart)
+data(kyphosis)
+
+fit <- glm(Kyphosis ~., family = binomial, kyphosis)
+pred <- predict(fit, type = "response")
+
+cutoff <- plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "mcc")
 
-cutoff
+cutoff
 #> [1] 0.47
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "mcc", measure = "cross")
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "mcc", measure = "cross")
 
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "mcc", measure = "half")
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "mcc", measure = "half")
 
-
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "density", measure = "mcc")
+
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "density", measure = "mcc")
 
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "density", measure = "cross")
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "density", measure = "cross")
 
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "density", measure = "half")
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "density", measure = "half")
 
-
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "prob", measure = "mcc")
+
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "prob", measure = "mcc")
 
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "prob", measure = "cross")
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "prob", measure = "cross")
 
-plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "prob", measure = "half")
+plot_cutoff(pred, kyphosis$Kyphosis, "present", type = "prob", measure = "half")
 
-# }
-
+
 
@@ -148,8 +157,7 @@

Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/plot_performance-1.png b/docs/reference/plot_performance-1.png index c8a9e655268ec9cd19491c5e75ffd45506f48dcb..904f643524f283c54975116dcf0432d096237b74 100644 GIT binary patch literal 103415 zcmd43XH=72)HWDYKoCKt2}n^udXe6XC{>E|7C?GO=^aD?MVeIUNN55=9hchg{2fV@Q4iHOj85uQhyUIHGIl^t7}l z0#zGf_|bVCGnPMT_@XPSCx^4MBvDoSiX4L_BMV}}`qzQNw^*f1meT2q7=HW{mrO3+Dr#P7zIYp(ch&piatum0w=SLkS|;w^|H})vKB5dBqY`rbQ0Fu?hF%yR z9u{<8(TJiER?{kYGB{zA^(itklEPG&I?8^c%F1{5yKt@J1fSDnjS@LIdEa4IG;Qgy znz(9VRv`Rne|_rbuCO)~`pIiHK+mNGlcZaw|M7d8FvlHY4jvx$E?Td2HHqy<(C6*A z)S|9=L>;!fnDYk+wlp8Fb7FyCt@#mqSFXkbHKrSL;4R_%dp=yy?N_fgZf>RililTh zWV)yuS(JR5M-+dbh+NR`4tfFq-&+(&O5$*jGL% zM-Cb8LrUzdthU>=zrLpxnw}jYx#;lESIopXHn)B$Gw9T3qON6Dy1=fap+Uc2`mDLC zsw%w_7@&Tv+_bIV&1JR~$|xWCJhaKj$H#Z89Us$4Y07$s7*WO9x$puQakb@OW*8WH zU92lgc&5mp+PYY@O=Y~w>fO%nE_8n5LD!w!WYa(caZj{{1YNR~LBykblW>nxIzRM- zrKKg&uD%q01*|1fF$Y-h052wS>#h66NBrKV{@ahC-t(c~>5McqvfE$bi>uK0W=a|z z%=o$FF5G+nCX9rBBb80Urti-83~@cF+0$eflP1qk1y53P;^J-p{!rYAB`2^U1MKMum*gBIa!i=PL=e z>>`?Rw*4H8lPc;~P<{55#znyAhfCltjb6j?54Zl+{V5k|vjz^OE;_$5sk1+B$X8?B zZGT+XXIlKSEP&CMUpK|oxGwcv4r_`dyLx30UEROdun_Gw$=!smx*Y8Q?6?Q6ff`cb z8U6h7a$;&~$$Urn-@l4)HV>C!UWzNTk`4W6bQ5$O=f%DBQkTna@D?sEE*xyN$B+^W z8zZ9}*qNg~uh!hcOkd@X8bxyD*Z;0QxZviNr&eLQYee<5Hm|;+VM)_w>(oTs1{@^- zJb(hqC@yaFj*`c7p9?W0dGKR+v9hzX^JscAa2Y-8vz$RK?&(-vzJ&3`jA*Hg9@G18 zz4Szn59avNOtuCz$w%KQ=I@u#QkOc+BP1jwBM!$LE@z>-S+YhJyW>5;$#*~`aj8a2 zZ#M6OCkKCOoTuR@CLCmhqFux^LS;|SKGn~x?YT_Db<%{KhJtY}yQ4nUuOWEav^go_ zou*QST{7K%e0$HB=8?78cGilTyv~A2D=2m-Z_&MsPduV3Je^0*p<7f^qRh<9>^mPy zx%Z0xkIclx1lH}+YKbmR`XmXCi!gaiSH}90!}yrb%E$2Z^_m(1z2B3!6lgsXxLbdl z+niY}ZDM{Ja`<`@xrqv#kyiBmZcztf14zuFYK!-eWz z(NhgCavkLNS|tt_D?E-APHha~>Yu?_HX4 zUOPFM^{Qi0O&uvZd#^zEq7HbxeSUs^?UAAIkLRzdX`|#ZzzYS%3Ic<@C#;g$ZWGn5 z8PW(jKBwbE#(BI&l@=Edz9t|A`^2o&;&(6x&O&KwDz!mUz6NVv(4PhRp5ERBCLKLJ z)LLn|^JuN%g5T_MW=UzO$5$$wmFj*eEdlC8rzvWY=h@ijzbh9e($#u;ggTbgc8 zB)K;r$Ii{2#I*G5m;LUq@2LWIahjT%mbb(B`1su0aVZ)}9fK$_^(?vHYdYs}7v)6Wz*_({;w2L0LY3+%wydTsoefFT{;fz{EtG!IUk z9nYR^^o}^ON=ut+6{>mcBVo{~d5lur>?SfdMrzGa`D3d~(D78?eyX5DsMl*9jLtO-4y(e8~)8lQCBOd z*`(ZGDhrSJP7z0Wv*zgNXj~q45rVr_eUzsD^NxNkCi#Vh^^IR2SbPotcUT(i}zS1LkmFK4cI?e9qz&e!@XvF z3cDA~D?gn6S(X+*UQTz5u7(;I6bsM#YsCrp?%76B3$6uwK;6Cz_IaL!qs~{Gy>Mg8 z6DP?^l%(5!Eyl_q>T9~^q#gY5S6W&+uA#Q}q9e&2k>^?bkBxE^V(9ujt*r7(%ekM! zNUvU*^lusSU5FA+Uq3tDJd>Jh$qGDL?MrRLAgMPLL9Rc-iAe#QR}BpkjXu&XH(BTG z=e77sgcL)R>Xm!e^@GrBJt`RZ$J^$3SY6s_?DqKv*IWmYq}H;Ia@5t)VS$J>oSh|fJ(&h&#-pJ1~G;UM#>deBjP z^~rG7>By*F5LJ}V?yq&PFz@NCBbA_$Gv*6;Bu0$mLb>&4w_m(kG4060APJ_;m-eWB$!rHs9ajt2 z#Y0~L>zLa;1X=2K*rk`jc-N`(jGP-E1DA6<0rV}vG}lp258!>Nf+{BE$Wc>6 z!^r}Nu7z!(sPn)rvkUfLPR}%;)*%So40iHSE*!q!2KHYFT3%D54U%Br=~D&TrL|3D zd6q-lyd2W-XSDdn^CY4MbQQudfUejrIb!9FjQh|3-uCTK_Dk$Waui`hf~n21g7neT z+)7N4U4>bD$VuM~mo;^xHtX{z9*_W0Nkd*f43Fsc99lU2lc@KW8S+)1NdRV42)dc! zHS=OUhDNxrHY+7%wWN>>>G$(3OFHvqHDGRv7D_`fKHy=wq`E4* z=unOTz_oTR94yJG@YYz3?VR?eiw;i!Pbg#_l~UxUj#7?uZkP|dZ^MoZGMn64LWt)H zUFBJGi%Bxp|NQZ%^e3ig=~o(UV>=sj_@~@4aI9$oYW?uDd(8Ua*GWEGQ@# zbrd6YWSbGNKhbvz0A5LX+bR4pl9hvFxW4Vg$>t1Tv(cibxv3JK;}y?fD5z^UGdm}z z<9=-tH*}4VdlO_oic!Pmvg$t9I!YdsGH8?M`oZr;x8)5tr8h?;F;laSbNZYGvuCFV zpGpp7K&Y(#<*K8Ts0%YL23YS&oB)UpnAPFJ?iU^5Bzpask{KtICf@VGNG$lss5l-} zpmz#iJNM=141YIt%h?pwCUyFIp-&DDf*}?_0U%p$u*}2CIHd=s*+>&V)v0UQb#L{P~bFJ%+PxHi{@_{E72)U z$jE4!O+DIM&Fy?gDSiy%mDtfrE(QQkJ#75_VqWYy29SGD8Cav;P@a;Sx0u=IU|p_F zjoA(oX|!Y8-jGVFm`6$LpB@Viemy$dnws;O?>t+n$CYq*2>04n0nR(IN^L*qwzti;*jWadiCs!WE0E8^2eQnX|F7YuN#q6{He9D z9q|8ifwP7_{Adkbj^ytf_}Td`BW3pdkyiBcc&A4`Jg_i6w#oGQB^4vN{U2#|E%l*m(5$7_U zFvzdq^yWQn;27n0+XC6dVe#Ah<2#!e-&)(jd#WFJWh?c|R0TKt_g06Y#~AvYdTA`m z2k}3D0YvrSu0BxsxioL%&2#@igI!uO8V`O zfSgnS97zX@Hb7*y1URzh&= z`n=lNaRs%vg)hM2wZ0hp!;?VTfW1L6R9W?2%VvOjIIZV6PXDvi0t(=6z(DdYZ6|dA zX$shnumVHK=^4N1#7TyU+#av{1a=G6A9Px65_IB0PC>!W!lD46Q%!+dM#(##)(=)x z=N7*e{6A=vto(~w`2R0N%m23wj%m&{nOz-i?QeDKkCF!+rLxr9%{1c3-gN?Ugw*)v zHaKC*tn@fT&MpH|RoH*Pn)j9_uOOsbn(6dl{ z(&Fdg;h}jF6!UdxXoxJP>u`dld-Md&sPta((YCilJNZYhkoIf|Iuhw)rbc*H08_Vs zYG}v&6}_4u5M!~7M-rFOeI+=+YVJGTEG!M|5a>-Dms@W;&6O}={k%kn{Ea1K$ z5)hM^_gthGm9n^Y$;6~{rQ1j6;@);VDVf&Aamqru#tii%hVnISUa|L9k!rUV@lFgCds zF_O9tNSLa-C}iO71+yxXyo*7aI;@Qp!;d$b$lpG4?q=HQGEIyZhJuDUO<_xP z_er}#JIvas+A)<)`rUG5+UFifw#DyTP#FauP`hIOBUN8XvB`X@tgKwx2M}#R+sV3% zVWoK}I|m1rQRxWm$Dk&)$vdIc4NOOiO0WxfKIik}X zTQpit)p5gD?g6X0`L517_#4Ysp-k@YZRVvy@T_F~(#bK#H`2aRHwp89{AxS)@FhE}0p~ovf(Orf>h@Hi~C|7tKD2ubLy~0gE zb=Jd6q%>LmpSEk5aM9AXFR-d(sYT%3;J#Ah<>Rq8Stki#0a%`;ql+VK_C zlV2E(EEuiCjIH=?Y0FKQBCVvpOkU6b+EHc2ioRx#2s06L{gbaYOA@$s`26 zE#`TbE+!nw-|Zt&yBizQ&Oow_hLi^$MU<2^5XC5Ldq4T8m|sS0EcS6@nKH>nF)-}z zHlOEp{Ejw6&1cWU77s+gxMmz~i>R)#Toj*FaxldMru_eMl%o_DKMDKISg5cKQj@Qb zGn6AyM+QQGLOMJ=Bq*vooQ%_fd_LWBu6VhXSv%yrk8bR@SQ{GvVZ|2np@58xtYPfB z{R*(EhOh6D)G>*5VB0Lg)%QQ*Fb+4Od?e^h`nkh6X5OPLOxgox9{ zu)wcCpxUkh!ssg=Z5id#$L^+Ur~G!`u^#gL+T#P5hf>2ehNlvllQQ38Gu-E4O!@aG zA}yHY-9o01x(e1O4_GX4vc>N?IWpWX3((xym_9aPEP=xf;}X)+rq&*)Qb~AMIB?B} z{oHP-zVnE0>(IZitP1dJwh4kn@hP*Ldcd;)^3G9_rLnTKR4fTFdoq1+pNS==D;KcB zqa!0|A70AIc)QdpY6&KU#njrW!DSc*J<3_ity~>`E3G|h$&~G=wmE^y zC2767%cwNdL$$-}MtPigD`ta#ymoz3IuozWM)lom9RpqV!+0A4IXf3m2xOg0G?0De zk%tP~qkA_W=MLUSHgmDF$1z=}7AP9ENR3NQF1*Im{5aTou77w@X#h z5vS%Sl6xr=jC{~d6*f=k?IRhV*1xO;!U$+#09=xTSasz@#7)nAFHorSEwHXVu9cuG zujV#&(pTsE&?{k5?l_g?^uX;w3Kd;U^%E7XSrV~#{gkoKjH)a-ZpA3ZNrWlLy0~)o zF91M+ciccC#dpj6i3G$qu0Yzo7*Jk?|rG z$n7E4W98R`@_;Jh)%4_ZuT`6ZQ&hA)*Gccl7vY?v1HFQgx#UY9`;)#cYUMx}-cmKI zih&T00hQev=rp zJYwCmz1&-xMsACa#s!&8ddQ8D1f|SLgKs;QDyNe%rIgo2Obgm9q~UZ|e=lu&lMyS3 z?TL-!PwD!1>FrSbQLq-t(`eyFM5+u@cSp0`s;@P(D?UBlp2;WB`ePDs;t_ORb(M`O zjHpASXP{beuMA5*DoXL^ZUq~zNx#HD!oWZo( zC4E|n`e^@&3WVx7y;Pp;j$_(E?&Y?QgByUoRahIZR;F-z5c6-|=FKi!Q$0(xMl&Iq*jdPDPlVT@RJ2=PLn#^;Vx}(FH zT%0tVSylP$&jPEvo+JE~C3ApOU1FZv51>!m zo&+{n-B{$`9G+cT$)&=KlGa=eFaI_Jom+dSz~~n;&F;f&P`CHRrt@fFEhA#xCoa2- z*S))&5z|4yxQOvxq7jfk0VP@4>8sIPoBk_5Zh`~?clylH?enu?`ai}O3X!)z0v1Ly z=mceo0rfaLC_VR92C=76&=ak{EX(Rd3-$q=YdtfgqzGhCUX@OHH}}*p?EU#rxJ_}| z#Y?B~HXw;gS(J(}^iUO15MLIhs(I|{Bzm$qlO z@g?pH3+uc)^ZTa-(9<*V$%g@^#@e+00&gkm*0yhSu^Sympk2Kx9KPo8$#w4hS89y& z$fI{G=4?B($KG6RYC_@qSbx8SVM;h%X=|ZLc5mP-u~lLSL!-yUMdj&!XR1mYzRI8I zU!mwZfrLr%Q|L%&-*ai!#AH3PK*Umg)AV(QaZ}r@RvsWZ7*~)y{ZzTteSeaCv)o(x z@QGG`(BK3!DO@N6Qoq-6CI+^`gvPn1f38i@pmnhJLgnHD=eJxo3Lc75%^Vue~UEdnWyNTub{u7M8md{4;A+CT6d@9A=A{1{;xSL+sEIvvqPel77E%{9TBXzOpu zDTQXQ%#g!24Zcy*rjjJIgKV{zWxQlB9@m(?_4J{5ato8gGM-+O)mQS;afJ#LB9@0k zPc~~-@ar&&cS%jeRJ0>{C1DaLyXha8kIUQPN~=Y^0#68Yt3~29}LPdJL;TL@Dn&(jw)`` z>WtvIhP+KoZJ*LnoD{qO601n8&`i=7na6nau%yG2O>YXLI z|4;k+Ct8&n#m$4$JMa+bXy5oWDO!1Ge~0~KV@dF6FHLi~A>TntQ-DH?_cl7=7!te@ zd470;o$uEKq(vn0X!=ie!8{Rs4$0b5{LZOGhE6 zuTmNm2ObEn`WqXUWLPe&k)2lb!yr3D<={$F-BOKFQoi@&VhOMoJC`P|?wtZed`hW| znTwebRrKnNm+;zpjI`I}&d$!>+$$3MoyG19R~|^P;XmWN7;W+_+B!)ln}X|xwRl-O zpO_(yc*YZ%hSTa;##LX`1{t$Y@Bd^cryv(~!g4=<4tGZZ0~y_N6C%U-?AWx36}sx_)cG)f=d~At zV_5L(US3c9`%)R@lG5pKEBSO5ZTT}6Y6_ z8{hlsC2+TrFKJ1Lil1stTt<}&eAbh$G})B)SF#`$81F-ZEjzrN|CW_;kC*eI`A5z zg+L~0F6@Tis95w+JgE(~^))|^>Jueexl+UDT?mvhKYXYwy*RK-J+5mx8Pvw0rz7y} z%ay1*qE&9rS0Mw=7t0n=>?~og4LC%VOl+xBZ5ItYt3>D|A&MpxD$0924> zHu)w=lMPyTV}=y{)!5>Rx{SP`bFP`*OQQUk%(6fhwWN9z?_Z z>+hTb^{knfUU(2&my2_Ehbd=NhuwI)z<#WSg^|wAq{88fW!^GtY|^Tf0fU^KLMH5V zp+7g9_aAutbf(B5h{ANAkQB>Uuv0p`tH3&3p>CCsyFoOB8*8H$#GUjC~7 zUYL1w)W#qQRO?Sq_Uqep1Pq&!%DWZ@(G%4kKn&Hr%t!|gOQ+ZKzlTLEh3c*CF}_Rj znzReTmJA(csh8a2pa5M@norJ1&6SbwFcW@kcNjks^u=H&zd#VKYiCysYxqeB^h|zg zQ*-UFu*?qVs={bD2_dmp|M~JQe(I<5;Vz|X@m_hh`3`Jh`X2e{lDL2?O%ppdd(UZI zjzg5cXXOQw_GvP31!N(gsHkW?d-kzfI^f71+noS1iyzCkAu>A*=S)oYtCYbaLcP}9 z67`v+dw2Cr%ivX>Ut#1gYK_9wJ?+&N%#bu1_NR7h!t;)}L;S?v>j?>DT*eI=v#0y@ zf-W->Sb@~~3l&K4t1A~4rDdXv0;Qd_&h};}-#v0z>k0nf#X0g?2xlkE7naN_*>HSV zH7S^v0U9j~XjK8V2;FZph>YgHFq~nq{lT-$FlV5RQe}R6BmcI2iG8xU?QOKZdPUj< z!#L(Bk?$uNMtt=SF27$5{QegxWF_^&Lu^^BISVozlG$tauNN2m7^N&Pj?>X$FDLh` zHQMP>>rRp`EsQ)Ggdxl4=2?n2m1Z@SV=^jxT`qK}<(sf;hbI(Xe&PH6=J|qq+c|jmpZQS2&uZeRqnA|SUFVWwHYY%Hz z7_pb@ED(A+`B>%eB}nrdg*^@W3R6FoQ`bJz>eEv0zl`6Mn3!nT;#&)N)e$wX%MeBR zf0v4NN|`(y#Gh>WC0JZCK1xY~M5k0XZJHr%MzShViDv_(0&@wwiE$ZIWvFt4YI#8V zhXR3Ft@pM$P&AZCI$wjtzW!&F`%`?iy9Oa zjZ4$~)2&$2k>y3V#3W>s0Wzj*0e*IR?6KK$&?BI#G&HJb`UyxWx+H0CLk65KlJ|3l zx=$Hrry5HRCh-r&QPPB;gvLK{CLtYfqkS!L4|>Nj4X>bQ1C?uDYufosLLmF)fq1bN z!2ugs8!gSK18Ose(?5r=n;-*G7uK)f0hi2zX&(0I4vDC4fVz~rUCVKOQS@|^7b=X#c>o-A z;X*E9VLhyXGJ#FY(9Ho7%pG$%(OK&c_)7R%NokGKlu+S1wz_&nB2@(V!`k2ekYL!`^D7RlkK#4ampU$S zR3Yjck9zgBt&8+Cy*td1MZy+H6txx&T206LO!gCO6$l=mf0+i18)zJ_RUx=7TA+~N zYv*2=Jype}lAk7}(~V#Ljr(|V)aGkWM7Z)|l%5a(ligV<99i|U72?lpd{sr%4K9b* zHP(UDyaJf;LQcfcm(Xj1u8ZG53%z)>PYKSaPdYhFlAwR`OQ$2d z$jXZ{DyLY-F*c*zopT;-QTuz}^)}=C^Ez6i|xT{+x5`q4mj6%C-T(JWu^{y9ANB zcuDkTOBLZ;mh`P|6&@Qp1Ze|+qrmDUjrUqXzN-l%{4 z;zecPes$LBcj4ItCT!0*Rpdp^*GQ`2Uv8kZ5k7Ya8O>7G@sbP#MK}BJ|FGEI{G+B% zZqt$nZc_=^6zz&Me*H$4%<}Ykg<2JmYd2euVE}mL1F3?j6IM_ZMoc@&y^IfWzsUE& zd1RBVs*e$rY_01SpaMy$ReA8pOZY=2he4~m55Frp(UoZyl&FR%OL}=TW3+R~4BG-*u$do&LW(Shq3Xy5L5PCC( z_GC=y)chfT+;*BwOIzurv{UK{tk z?g@mdpyg2j+>IT`S4slDP5rOrzu+VS$qv|-{@cKr%huJ=E}~U2ed>s!rmFh{553Nb z(3H?-SN~7aLND%#OR7XlBjFXz#bWw7>wTSm(mtK6+~{O6v$wAS{k{4t%_Yfdbd2A2 zfB~Cn0d#RVaKM2uTm(pB&HpQ&H%c=9$mer!Nws%eHIao;{iRt%>2%tto`FR{QU3>0 zai;N4Zj0{~)>0i{gFvlQ4xrU4fN;V$%n5i) zB1^N8Neb*i0ZXlC)O3QjUQ@=5N{d>fqMTZK(KPu-wc<0N!axGKL^)97R%^lVAuBT% zPJ|!&+~6%?Qft|GGKZDEHE`1>@(s-s?XdUn3(FQ-^QF2X^{jPCsOVf+rb8DGjtKzw zkZ}=LV>RY?G@VS3BFs$#SyQ&<+hK*>X2Mn=`~Q+Mu#c{a7FP)9${d1`s9y#Ryo+G~ z#j8^hcBrW!9Zd3B+_TPuI)rXnjQ9!h$0Uf=I2M%N!|Lk1oCzi;i zRr&lQXSMcwmmy2EkApozm$Sx5UezuhtTeM!rbK+aR?82ZKK1v=&CLP0gS~x1YO3$t zWgN)Lqw`!Hto96{+Z%zXYfGvoe#K;@$*IkqTkyoB6AA$IbFkAk zG36Gorh9snzXRoYny|}Q&f|BB7Gb=QIfgH1%2*T;Ol)QJqEnj-0gEG2i8J*ea4B=G zFH0r#S-&4LU2_L_i0{WTp*5RBFByhT_-U(5MTf%~kU-^gz#1NcaP*#OI_T`=sFNpf za2|;Z$!@&Z585vgkIAlW##$vQ%4^3h?M);xPZUT9GRL)eiIuMsd{aa?k)hc?6z>hj zk8Zx^U%Y-rtl4u|0Q31W$;w94W|G|)H|6}napL>;FM{6#)d}}SAZd!w)hmA9nMUa7 zFPlQuM2(r!HLktJkG7)5p;`qn+6qoWY{?q1N44hl)6z%$*;g17(3`1Zc_g4`TCKs# z8L{0VpevqW6NEqpj4!O}`RsoJe!|}e+)ZYsr&UdU9Zr8z?owN?NLcv)m{FXN4^AactLt$;FzM%aW5rxO4)K>LP7DTBzWfW$a7{)B9Hc(U1r<^GVD|PWes#DOUb2 ztqKHt3NvQP3du9yn3Iij@>P<>j&0Ikgki-&pd(s33|u~&`QpM{e=oe{q!X|cP4>wh zziIUDgiij>)9`4@&xE*fmPecEjVHf*s;Gi(^)C9E=lH*%|4FlYZ4(Z_>=0!+2EmCo zGd)Y4g~}D^7>!Ox0{JAQ4u|-~=8036f%Z5sM+F$O^WvFRtA0Kphxw`}o&~B9ZhG=` zYG^SxmE^ss;K)LcI3Du*^`OoQOk(bKs3p!W#CN4J`gn^ILS+2rg0%m7(L1VlcFU6h ziXVqXrn>5xHWw)C>J&HYj*mKbbBGHnoc7Z389%L1pmT}#w>Az#N`j_c4edF6l8LkI zT$pV1Okp2uy{nT9H=p!wFx0hr+pMcUb7ZlYm=VVnq^qu1;o#@Lb8zRQ8LvuM7mv8% zfZYKOXe>PZoc5@yx;lQJ4OU!StgNJ@8|av0gbjGg`la|)B|vl=I7v(?qrQ%mWJcRF}~PZYjWQdigW_4R!S%K#%94XcSa z>(hk*K=%&-O{5yc!M&-f8mkF&@}LSuT@NLvU{vWzAY~~`yE#YSr1UE}dJ+^q-*qb# zU_>!CF5z9Jd+!U^2Kag64hK0R{4riiam6h$`n%o|e9g5sh`zogmRyCj&5vv-WI3`o zg&zZSAr8N{=Kr9FL$AD&1!EvUHFK}P?mo7eMg}x01mW?hg(oKEdjDiJ?*s$mBNsui zSUNb?(b9@v(HxMsv$MmB;Nmup34g53%qiTvX^`YGhhuvaQDZp~b!LK^d@}4($7^X+r=>1H?KBLG zz=!!>5>(P|4Fv-6oWFn__#*_bRaWs>W zqI})K8#?7l2iGMfMl3kZX7|-ONdlGR(P(*KKA2E|`fqoF?v5yq5m4G7t`7@AuRKKIi@6lIuRGaaa82Pltxp zTw3DNCdE5CuQQhK*&Z&tGHuDf?bwm~dEmvGU(ca30yS+{Um^X! zQR9Bt7#JxS1#*~?Qav8fwb`^00DZEHss}DMHP)xDSM0x3s%aZu%0YJ>L74c>L09-D zcsd^bLfHxjR$lkAqjdMoA-@Au9?f{0B2x~QgE(5CKU=8*Z6y>yG$TO0mza{0@)-nW z>~se<4h%e=NXq}&KUU(t#G%>gsW*EX0_7i&JLUAM;OJnSowEQX?{4B?VbJmq8U7JT zMW>S^jM@~SN(vR|d>)10aaFv;aT${Bc3xA+P+DAcR}#y6xX-?hQpU(zhAJ;UD5dTn zzrGh+UTo&|zl%OM=j@c3ptFF0gQi&>Fu+=G@bA}w)gthDH|AIO$H`uUDW06;{^ zoo|d{^RG#^j@*Dl)r)Js;*uZ)jM`NQ2UrnxL2g5FlHfX(Y|<* zx>@mkT4SF-(wh3yaS{5n*Gr1JvxpH z*4onUoakS55dHoxe=Kv5wex~m{VXd+%BsYd=t*X+LsukKE|_>@9RwQHSl;uejD6kQ z6hVHn^_V=laq7GGlkEsV+eL*ygLKz5iA)ZRWYuT=F{#fpeTgN@_?3a`di~9L;TWfA z-I$-5RjzILIOUILbe>ckF&Wx=tZy76c-8YbQadZ2M`JAZS%wcl-`TY1iAd(wH`w0V z0BxPGP9pn?ipS)4Z{ux^%I3;~S5Q-HSV&aJ^gO7|an~N~ZK;*g13Yul^AUODqk>4N zx63^uQ*fY(oUDIQXT@RCVszT00m!iAyQaFZ5UDnlapp`ohs&SC9y+0_;Wd{i0B0V5 z)KHu~+3+HT5<(#OlIQS96jhDZR+6iS}#4HM$M65D84z>aA?O2&nJmW?{M2=P7gS;wb? zJIR(5{sjX4+=bJzi?xnEpBf_N`8|h0?_&$!c$v>NjNR*x_R^h9o{ojpG9%kWZ1WKQ zGlHYW3PGWy$#iQFv@kz{aTET^P#nnf*mHGO@GF^4VWS#{PL7D6-M6LFb&dv=6_=8j za|4^05NY=q{hlwF3H!Zq?aC?y#UbrpJIoHi;nrh!pzlQhrU*MN1O`p9N-5?BF`(iJ zyx4x3k6)Z7w@+272!FK0tWx+a1o_I|NWiF?;+%dj5#)VKj^iqC5&j|QORTw1u*|mk zCYR*MOfRl3ab#s}b#}C8)FHjDgIN3t7Ayk6I;lR8u6DmVH^?mp?cY%mNo{4n>tdLv zTqn5@nq@hUW^6+x3~qK8UH5WQN_zHf=ZI{pu-h)da_>$N8WdeKH@lb~gW5L86k22| zd6M#QzF~Mjm;OW%^ig!|?d`FS&(L_`_$(zq8lj*y_Y{q)1(b9Cj=UFw1tIvA&p*PC z%OFnT>r5#1PpXNY3|_59B{FnslKVP84dx&SGyrUQmodCrgBip(hUV|M?b_vS`p-zpBISV1?m^C7nBv*dIGojRlK z!?&}jbZ8jI?5ECPocL3#JvehsaL2Mc*7EjQR*N`^OU}#z{%K~4WtF>WaNX6a5{8hR zDxP~+?=irNitzg};blj`3NZXZ#LdU=FVj)Vh=k1Kt~7dUTjE<)U(E^0F3M(j!wJoE zNX_fEvhN|JuN8(Vb1+Mz4t_JUokp5|lin)v1wxLr!{o!S~kV{JhHTOgr(6IF~*I5*0Kjn@D0J?`TNsQy7^WiIVb1S(2t1GF_|j0eBoBew(|oi< zrvdP{6MD&S-V_l(m}CBH%M!epTnJT@@WPy!ys*m}cMfm-@QIz{FUyTciZc`L zX?Wmp#~el%kw7ObBOusoMhS_glZ<#v%JTDgvn^cVj_Q|xS^&fnke!m=g958Qjc*SI zHv+FBLNc41edx(IKTU`3{%*FiMqg5Xs#H;mPvE)!Hg%;)m-8Q5C} z?B2R+M?N!7UVpR3cg3#7CB)M1cRQ?Wq1~-tG8~Lx;C@AWii4T$aG>?23}G-fa{?Pi zi2rZ7kP&m?KL0~DV`<0mB437xoS>I5xfc|dU=i)G`yX)p?kyJScQiQHwa+Zc*PtcI z;zo7#nr`TZlhA(!d-NQ@_s{wV8`G8UtD0B>IwTRCWE@BI16_L^oW_hUn}ly zkRDeJ78UDz?l*1uvSpVcZ;uLZf=)-lPoo}8hT(x38Uj#(bb+bRmzk1&@^B_#kV_Yq zwl~)yv6lKgn=uKk!X39d49dU~$b9~p{;4K8uEDXC!hE~>-G<%k2(tQ8rg1Kz zNQc-zlxfSP}V=5q;oxjoE$Xhq!#Z~VuDmbx?dlzTz#0rs-JKpV2PooX;sa(>UwAA zSDA)N{kA|!(EW`DbG*0c1NLq*DZzg$W6fO7dmeRi@KlikmVw8(cV?Z#Ox*h_diBuU z1fJ7jW=LrZBt1H{=SmZtRn~d-+IrZJ&_&(kOAs*Dw`MN9mN2~f9~eB^0&D{g#B*~d z3OLF$ptSgV%-)o|y9ljs?h<{h*gh!VRnIYd> z=`Ze*$+@LpyM>Mz;N0fzy8l^w$drGqg$s^vNz50zEebNSIWXrV;S-`~Fh0a6D@9${+8_W>&oivhJb&n>Ab4x2j%?uf=}>&2Q06Bm4V^x?m%b{M4b zyNBYc7YF*g;m9EIqdpL(czt#((bG-Bykj5b@Hvg@hyZIJ^*2;$8$BcNR!^VeDk7|hbP3wKe{Q@biH%K z{I{~T`KZGEdSVsWrS4A(@C19iOg0AHM4Xk1-&Z~x6Dc8M=hz^SN8jX?^E8wmSq zJZ{HDcQ{0{CMGdk{Mk^y?7;NhX>QzPo63heI;>L6L-_*KaG0#97scd6$Bl?<&u}1a z-F&0?sxRay{ACX@t_Qdp6O6JoKJB)L!<+ z6((jdTMd{W(DPXSsL%B z;hJ9#AT+MKm+pLW?M~I%C6!C=A07wISx_)Djmx=F#4$z4bmRX>EeYc!x`|86#c31E zX%j*Zsyo>m*>d<=p9W$R%=IO>6-)YgH-aKPAn4rZ=4v0w#+UH+ zKZd-H<3ffnYas>6j{j^vja`mPPUITN0 z55brJJn&f4?#+^JdurO5^ybY&m8UJ^zH8!;Qv$tcb9@Q=1qmHPneHd;zF*O#1HYEZ z8azmVMgr%li@uv8KaVH@F5PE*#et`(Om?Z#jyuItBG;>JxVDlViP~MkK z-jj)?^ZpO_I(Ox182NS;ja2*DWbzf6vchumd!TdjLEw6o-bXFsvloO8`pdq+trCS_z9-|vISa9ZPj zR-gA7g>8B8k1IuMC-z*Ed~5%hXwt&=SoJ%iCJK2Hw26}Guo@|O67ftb@rty|H54ta z?$IxN{KdwSl9|h+hu(~YUGJ>zD0j}lHv>Dc16SS6QFTBEMLZY62-tpr1o=X^h zTyD@8$>t-DYf{z(+G_abVG8w5^!qD+DOi&KGS(FJvEcr|9lviJB0ETV`=D+7?BozR z-r3FTzXX-8hs$cig7}4@|AN#qCf0*CmmN1=39smF-bcbj?-HNRFgvKg4m!KqE#;>8HNY0+tYohu#k=N6n?oZ-e zTi!!#Op~@7nV7lx*S${vRhL{>%BH4@Be-m88s??BIjV^?(2$qOBPMIyXhl#uY zP!|`2*Q`V#ES3~~L>k_xq!IS>zM12>pK8kwonmyJ+(Drl_HaEWK)%3Q zgMoP)v|PzP*FAXZ#}Acn3JVM0rNDv>I6>fziHmi%!lL)uU3bk^9c!Zr(W6YPct3#` z&YyD99fZCuvqW|!6ZoERMs8h2xu!flqhnd=p&}@Gz>8|#^itd%kBho;=5-Y#?sQ+m z?|eib)jAr7U-rY4zzpB^$#WrctViX2EMN8yPm#kn7w>lK4N%=XOxF-W@!Ep?3@i>* zkk;#)i(oF%0cKU^V%PI!wBS8Xc21MW)6HKUwi+TC*FX8%BqepH6 zC^>4WLFqF^Vy!CligOFeA$~)&!u?vSn=g`4eap`Li@bl(8;E-zV)LE(C**BJI=w=M zDk_SAf!;RR=#kYEh0%DERJ=aR!@%uJxlc|%khNKao9)F#^$A9p;q}Q3KHh!yY{y3` zKC@png@^>RUW&qH`F<0b0f{5Fry zT27ScJO8{hHj8ystK~sPU-&!j^W&HG@3@zOn@iVy08taRALmo#m;QGUn*0L$Gm*_@ z_l`%SityMjPdOK0&*BC5s~sp3`$R=slv2UTKNOT0e*KJ=SI*U|2>Fo;Nvpqy=E z;vyj%Ri$`!MijWAPcpx@O|+a|q~Q8p?l)EY!=L2@@7_L2wMaA*rdPbhx_B?J?8 zo>Uv-D)sgC7pb)46vag<4Scl_7$V?4xCwK5Uw$$+acODE1#WeDZ$MThAV3C6;VH$B zVA|YH=98~=nvG9R4u^tQ%GLfX0$n8kf>mZ68+~8A!H(>zj87ZsmR&mjoipY^H_g`X z{M;j!)OR(sNXZ4lIE5+irMc)vI){B?*OH;ER?!QOO$&=M_Y_F0s)g zNBgq3T@KEFDBQR&HaT|EwpBlG_WK8Yh;cRrR%dN^X6gfh$!1Ko>vxp8Bdl2qN5(WH zC-;4%e14?a2wC^iJhZXFKtbLP<}5l*`{RbH>gr%t2M?%i`t*%*N7#$-X3MT zkjsYRUAml8S4RW3Sgl}UHHgIKdSxi^w+rggUgf;NriPU3DhAlt{rUY0h|&N3jjd0A z+oqdJFl30j6n&bn!-H?3PR_R?SVoxuxmaS(22@0Y|L; znG&I(Em?&9Z6T}(UJ3U*Ndg~F<8F}o?QRF2(}UgHO%sz>=JjKCpFoonB76RKATlQA z6S5hC^xYCFV!^tP0Hj3*x^FJVLrbDG)8S$Mhp^w%GPn)l!{QGnM7U$6B43>>v^jZ@ zKa3KdR8}YGG?hi?Z`glWX7~*D%Og0mbd+@tA4@xd?A{6Fx50><3ees%vu*Z34*4jSS;l0JFav6w1QUM2wOY;7Y^o)UpJ?*fBWmgE(>z`1qI6=0#A80GsVf)5&@-r0Zwff08v6h0@<)*aS`1l;*_RPV_ZAU zIJpG|4|Y{CE?d{fn9bALreTP=pQ9U36gTyQ@C`>}q^O$sVgPjFy0s!JO&vm3e+uBr zID@7pXo)+my!e=K{aqebh%{M+^puc*-ZJT!C$7PtI<(8*?p?nz*eaf-iR2cb*EKQg zbr4$yh~W{`D`WDqv)TE6F%`VRFiq@PO8I;<+`XkR;2kwlIhbwc*h2Dofi>7wHTAPS z-1tU#c;^P|yOogHJapWxnJYMrWt}WV>!kSy41{XQ>-lHlKjH9Ag=%f{8Yf6>%0X^i z1*WDKfTETqd16qlPVs}Czx~XF$pKdf^OOl9sp}0&-`ale?}yT%pM$IvE2PL{YTt_nuDQ&8oo|iZXLT3piJbxj; zO*HT-*jpQO+yjN8ya$%VYN z^<@P2q@be0?m{*w5ahNx)vAf5mFFrr$8eW_>@<7tc4oLp`qwK$974wLUOa z;!{&2fx5(kg&yaj4-~@>uSPOzY8({A5-Q*;Rc03^U^65IFGEodH3hh$ zD;Qgt_ofP$eRH5TItTBCHVA{CLy^Wpoa|XESR}=Q&9iUj->_w z9xbjr6i)SJ00Te4c0^QM?R2iecYO2#A|3z)2z(o-wyul%nb&^?qmU88YrYrQHn$X< z>NYN?bwoSjL~W%@9&+9*3d7Cep0`4c-91Vc4;p&VpR59`{p6auSikuDXCRbPAjLcZ zD*#AS`Pqz#$+X_Ttoh#C+uI3tpyjU1H#>eKhbB0S5}$#+Q-@vk5}=9K`DER`<3brr z6r2S_fV-FeVM_wr*;fAAnUJL=i;g2$|7AeDN`bKtGG^fKM(S}2_Iu_(deg$o!ER^) zSy|VenZPB?x9zkS_BN1sN5bJu({g)SeQkzb}SBlD^#`qw_2<@N*dmU(=iD8jE4x?~=J-GjYk2Fl&T zs2+fJ!-C*P-wv%)H?%zO`Y(eauV-5e9xRX|2*Tu&tx8Oq>A>je+C%*=IBtc($?oLr zc)Jc{At)3~J5EF#Vf1+A<)A0yyx$%XL`B#U9l@Y4GlvkCvL@@*t5|^l$xuR2;@X>W zodhhOo|dkQyDnie1)jJfp)L%Y65Kyjc{}T!BeUXZCWNBQV9gN+1@!>A49FZ40-r>( z)pCAz>yV#|3kM1%ut4-ORBC*q#Go1S%lJxY8rL2{EY&h6li8OEHq?} zsUv$p^~#=a{NH_I3jae|%(#xSUgnJ-3d2(2t{OrB((kT>7}M79Vza&9c1eAmx1Qq* zOZ^>%avQ9L$XLc3|Lr|s?SOyJxz+E0t1Nu@ z@pm%7i22G&KUuWF3`dT7+Ft_O@S;@A%~=g<9G-yzE|ZqlDwv;5lroN&8b?7uw+yt( zC!pbXffdw!%w}Hq)S{(u_nl5_BixW&j^xA7@j1(5I$k$)-f-iChZpV7hFFjqT!MHw zc+5`O$w`2UPcMi$@Py3yBJQ701qtvFL%zs``H>UN5x z1|c-kz8-^RWx(qPZ`<@|(pKHs)X_DjJd(L_V|wuIBE+F2fXkwxz=H19pp-HxCaeNX z`|%QaSV}bx-$KClk`h(swsH$jY%Pj%m&Nv+YVV(eXmAJ-`##u*Gz3}MsI#U5hdRSs z6v})iO*Bv_-zNVgUYK}ExZUf*1Z1O0dL{+K-pK%dBnz}gjUdWO~to`cW9cKqrLLhR{LZ#`5A96;pMro?-#;*MI z`KIPXjZYUknBcC3V}x@}O-*(&5uv5)M{rz0(Fbfpz8MIH2-z0`OY@$J z6kb76!a5@XaJ{Tl_&`}O^0peG4;se6M4axW% z{blo5HKA7;m($Fg=IIMhZ?;lp>p^rE>C zpT6yS^8n4c>>~%ttaf_6L_=OH;rw}9A_vyy9(pE;F@W=SezGkmzX=fH4MH2t)0LjS zeP%xuWo2^^$xSxg|Hq;Ce`^6ec{Q_TVt~JX4W8|FkP4Gsy5!z=j3B;nyxm{>4FS}H zf2k8HR;CzKQJ)5tvgnw!C|GgPmzI~=jq$@GIn-hf{zmu5g>e6S9apif9KwR#_4@T| zx|6e%Ekh3vkLC=Ww_V&WDGV&diBE^SG%hFMS@hINi&0tloo=4mRvRo1#o+u6VZkIm z+4Oqy*+enXL#8MyhN#bSX~c4&e}CdvlKRfe=nVDCs#dQsddABFNq(_wQP_KIytb#) z+?#2+!Vdiv~| z?`RCcX1fcu-`LiwXsuwX_Y{6amZ-;bfARWfJN`UBxbA5cxBgJy$z{OC|At91$rqF8 zk5|wtrZ=%&Wa6$go_%tA_l4;k;FH!v9mneidU|?qro(P?AHeD{z-oGF`>lc#Ip?Hy zS}}s}=(fN4L%pluyz$20+x{QHyLCyE$19YmRzy&kQ`-aK^+NWF;X%qOh#>Wetmd# zY<)F{wYa}LuC(yTe_Qk6wh7VLqU>8f{}1`DlaOpOFjr-^=CB?J}U``5dM|gE~ zu}Ib{M;^Sjg(V42h}{sdEx6UAFC%a$2qJXfphA9q==$v}E81(RpFQBcOD`&H#q~?a z>fT&121o+|`NA;E^zk{^_(o6)_WYzCO<*r44iOk4_Xo=ON1o^?PVS_$ol$#Y9oQrh z!!JeYf9uvEB<;pw_CvLv6G&Qg;->alBZ3Mro$I93H6p8^B7TFTPyJ6R z@6W=9g05v#Jdz=!TvoHZANXcWJ2ev3&UzV!?ZSe#gqYK%aTXGSZirxA2BZ%$XS+Z! z90NX=+P=(iaskOXRwCo}P@foc$*Fc)2qT1!sdx;(ahB8nW{_K<#>YvKG^uCLKSLF_~WMl4VHLYfc zHc8WoTT^=DQfzUBLQ1TJx*=cn`M$~SLfgYRfmRaI3^?cQHMRW&tv zh{%vqeq>9~nf+AuZZqKiGI=s>6M%amAeI3BUI*gS7#Jk;Q4`8~@-NC9~jnQ1^>_ZP0+_Sp?kVL|uP|^G8~gz+{L#h4SYLqc!S< z^NtEu|Cf|&21k_Xt5=6TccKQY#y$$1eJoigIv0Moy(__804=-p}suER0zEZihv!}2{lB>xpjxM$?u70k#UN7n8v z=k6Q=^j^nOm35p~%8k=Z;r#WFI}aOK10mT!fjg%6!Zvo}Y%F*YEr5S5p*s09kC>C9 zS?c*ix&d9q00Ex5o+K`eornYQPQ&%3*U{MpOb-L)d$<*&nI(ypEDaXF!P@{8(|epM zMi3(r-eZF=1R_lsxnVqkir zz>v8GHhmIQE9l{b!2PzfyL-82+DXyZw;@;F!xM?Z3wU4d+areMXeh`ul&fo7z_%7f z{i@lJ^39_AJAq6EBrhNeEww#b9t=47eZcVD*^sz-!S91q_5_A=zdnm<**Y(g*K*Rp z;U1+@s)1?f?XEMDsaavB1M9`+IpzC9aF(_nf~x}&B1@A!UAyDywfKlF?`;V{FG%Q! zG6T3dRl?nRp#)E3#AT@y4FJ{o z)tagQJ|&b+knov)WPmLf8-;9}NP?!Ifc^^1vgsTHJ0r&gR&P8ZxV3I%!uMK`yrn4rl}15%g~WQ5TGEN{%W z$o_ot2f9&2K{p2!3X)7_J!G)p)TjfO^&Qw1b$rjEjYAtOI`i7;T`1**LJ(1xwo!I3!Ry8xanA?J6U3u~|SH3niFC~;^R zdz1k)HN59xJDeB0@XF-0UbGhQ0XNNo3cQo@%fw2GmzMxYI@MdZ8Wsw!X=!Oan*S(` zFhhqe=Zrw$1dj;9wE$OmjwD>JuC717RocWHBp?wf9k%gE{NIiM2LDy8?+yVNpJf^K z-d-{Bal4kYdQN;FvV5*?MRhv@iI22OyC<&2qZPdOwjaZYzIys|^!6_w=k!=`oF)UQ zlXecX7#SIwSO&jP(mvGA zry_+i2M5Q(xS{hWND)H;YPrQVj~5d3cW-qWFcF#?UVIQHnpYbLKm1IJ%r4opBX$Fb zao({`mW<1XVzXYmb_rUNT!HmY1agDaR2oDU0@)ls*z@d|f|Hm0wrOI1YfY$ecH!GE zGG}kz%PKa{kBUECVYAn9{rATfK`Ib`XA0%Qu^NQYf#yGeQehy{5@f^e_zln#jxSmY zXz{=W3Zz|MNJoBW;Zbo94MY zjqf#A4!*OVj17+D{ykOe92Z7FZ2^R}sKGfngLlEI(_KD}d-kji3X>7|qNHm&^63Q( z=9w<`3Iq(Ej0$P6KKWCT7$r0;pOV~yyfq6vm2`vf)MnMJ}%x;7Gx{9?C zZcX&&-|m2R<|pF{H@q1v(sCZ`^XyRmko!%kgX^W^&evQ1Oh~Ou(M`DeTKYcIvm-Ia zUnP*4LT*|I@;KzK!3L=dfd!Yl*Cp-==eO>OeKC;Y;JVFX@@EkZo9nz&@Mt+obnr~vj%LD7#%HgBu661Dw{J^Ii=^;nkpEKt`vuHM-_cjovk(Y#f45^HN5v@1 z%J~7o*<>@Z!T3P9Yu{?<(&ylOah8`PUK&F}pDwpqTxG(D>XXdVZyAbo{%Ur86nfAI zfwl+;3QNGzj#|!-Wi|O&;eK!OmhjU})i_20FtG$+t&)X>h4?n2dW__Dzz;a5{AOAb zmi%~9sI*XqJM7G?wmo|GOUUf^1J$i3yyR2fMM+Z`>44Rmfqg!xcQ8;6^B);+cyD!r z1p=E9EexTS5Af1i!j{+wg8fxs*#Q$7D7!lRJLlmg#@TXTk9vf*NW9!xdBP||jQc2v z?mM`JJs?!LXUK6#8`c?X{44+9ZP%K|5^&mGUtaQJSi)|FY=<4j$aO{mg@aA-Izz^V zp1tT&>@}{0dV8X(N?DpNQJwu-i=AW=uf^K?BT>JDu^Y%BYTmHP{f{o-M z+~bQTB8&(n1eg*LwddAI0ZB5Seh7rNH!qO(yd47jC~V}W^TIn5T=DhS>~miIof9gx zEduYB+8l+l;+@I_yU{$a=n7)8-UR&t!1oh{0-^$j8G&r$ zIe6MB5k51_6u=)i@vutq#s3dLhP-1X&$a|tI%M>>{~QLDVs(jXgnbaA1~IelOXS<+ zllj9P(-H-g-LehIW`E$r*S$zc2nI%Z0ah|$bhYz56ZEuD1iGC~@8Uho7U{I!@H=t= z#0nKISG(ckIVM8$AFL~&d!UbSs@tP&P;@|r>&5vf+*A91+;WI9YbhtWZ*-^CDNaW* zw~J(!X9bDIOTMp12v#Bstw)G~BMqK)iZj!>xbZmt3t;12kLzi|vtHx%1?hScg)}^D zV6Im`hy5(1+4#rtq$k=K)?cKC^2|Q_VBY$E5R1#W6QkO#TL>eKPzulj>bw;i6tE-J z1Y}xDqgNLCKpr+O4!@CUan!q2z-#7j;yREY6vgFSZg?wS$T6wId86|uhaMkbe!~3m zgYF#ZreheSn0IICL4^l`%{atsECq?TD1XEq10t)aK0D3waE~urU zusXK^*1f3xowJ5oqq1T}*YEOt{SlaBWwBSLSZ;F3*Gv&ED|lS%^k|{wnLQSoynyR` z+4<0%fegvzzEv%d>IFM4fHx)&V~~Yt*O!$M+B-|XD1FA6^RI|(Pup*B&gjKiap0N7~+b7N+Pks-p%k$@5{5=*- zBCq$H*SsM6-gp+->?LksG(w$MXu=?N9S;oN#C`v8LuvazWS~a#d7hK6k=u1Xyee}O}8;FdpCq{DmUw@Q+8dmhuE>Ji#5TP1^thN7337%B%s>0IszU+a%;9x7<9^jk@>-#KS2((ZJYnZ+pn8BA7VpNXvnfZfu==scX{H z!;CBz9g4&tZ-~vqv!RpQV_+u`Kl9v4Ddgpmp<37Z6uRJnn9mqOei22lqh93s;cgY- zG&XQz56wC$+=`PI>Pc?k&i(>?2{a``r11-0jTpnPZ^!xymV0S@(iZZaeCu9&8x}bQ;M5X=@({!;?FD<(_-U^w`B7L#fCV=vZ!e^~> z55+;oMN7CVMn8{q%u49qlUdB3cC+jEz^M8eQbxne%PS-XsKiAX4QOUAwCPGjmjnqe zNR$28|1WXMt5;?ZMFW;G^huj#-t}a*{^9T-(mP;Hf!%Hl(kUbe1#mo!1(#Ys37L{1 zh5wNetvXH-gtX)yO$}e1{+p{*W9x0-5b7DKQaoQ0crga?7QnuaXZ^EA>GKe53YA0$ z{h{&W+t#X7_D4|#SM-5vL3+r5>pwc8>43H=|J$fS9~1|9L;Qc2;vCKE+y8T)%?rQ1 z?-O5scuhQT65A&;-0JxV+U!dLwL`kD+ZWU$EADvTgGtHRpk#mN@E+?Ap}z_x0k0^7 zh9A(Zkj}bN0tpcyn(}cNl0#+>*=t|v&y$Tr{oA$Zb8H<~Kj~o3rrlS&VB<1{Cq?zm z*F^@IH>O_y%JD7Y>7PPgJ$@D-iQs@gMt4CKqocAXLVG{dy#9Ioo>Yn$xyJYG^5VyY z%jsrU@Vu5|zyYUY+?M6uF>wR~r7_Ofg;Z*c8FtUtc_9PQ?;J8OR=XIKyzH%KLCFix zpCxp~yTx^xgT@kVq5r=W4D1k*k=2jjI1vY-Hifc01d$2gC0BS4xgK|~wzB-eM-K|7 z8T9{(U`FPj=MF=agF@OP-IU%k<2hy?|A-FqOS)Y9BcHNl{OMAR+|>S)F4(zsx;RO( zvtuAZBCIuAn)y0cc95D6HF`S(>xqKoibgg-s>#He(-4LP4tCYOzb*&GjN&zZRQN4M zR=D2&PSj1Sn(`i*qE8#sS>&rZJ4Q>0zNa4TEtWnEUwJP7=y=e`$ak-q(0d&+>K*Wg z&w=Jeh;WD<2x3@qNtbG9oBkIGU5Q@({@n~xUCOQ$LDN{^z9~V75z2x~nT!mlR!6Qq z-POZwg~cwNls8!%Li7*macy#B+VcWnso_Yfp!B}czAdhg){G*z^omJ{~Vyr#gXXqYwqPM zpoM~vH-{S^$R+`VZO!xfc&QV-R{=r+Gd1*UevO{%;fPeKcE*k13`qC?R7Q4Y9vaF& zYM-23^U7K!q*mOcY`kr~K^JPwNM2>uR?4CP#X>x%H``yO8rdAn=`4Fl?n37VOAwU@ zm)F&a^BL8VzE+8gz1UY0a=G!r0Y3k0&SgHhA5i3=PyiDFtAw0>0DqyNffJKZ$u-cM zqFRAIYS+5Zo`r>$vhOXVa35K--+kfu|E&Sy$dr9Bibdwu$fUYzL?f*Np zbUiuRZPm+`@h^jpeg8)wLndkrFNuUn3KvCLnrA3UjDn;~lrQQz1Zf>@Y{+{UyAM@I z+aDFquG6Ebyfp`(V#2-z3^h+ISe<6EYERYps5fewiFy200H9Q6+(hX_6czb^;mt0T z8emy-r>S2C&gl{y3Bep{)ZfryVtB+Vki?#+1BgDJ+sQ$1P)$6btb6B`)H6hU(3dXC zedS6!bleIBxR?~_`^ED0Dry1jc-nyW#A=;SF-f-ivpG$Th#7#PcY#*Hh+6*V#0TcH z)xa|x1Q>_#c@UDe)>9BGBjhJ?IsrsBSa_c+n(+n|gt12b``{;PA~+wNp`;U z&tU}tu7*NE_b*Ak_YXR*YK)+A+Aku$G3JK1tjB{g6n>RxzUJZPX)p|92^jawKo}It zQ{z|0EBEn_Wd0v!tS6N(B&RTno&n%w0d8W!*+AdLL77?pidsMzBjuGeSLiCs2Im<$5_qSG0AAW^QUxAW<_Mvd{AtV6|OT zP(syNt4|?JDx}}z=Yau|=*{^SX28_C5j;q+<%AsWKx|Yi$@AUrCBcBCU+W;u1F;45 z8%X;AR>ecrfo^Sz2(T=YDYA8r@ z%MoG9E5F}r2tWh1Z$P#yYsQ}6`U1?tlQ2(U0WnZCVh(!Zw=VWzxr5G_;oN%M*R z#v8!xWsWzlL7`5^5rPMQUtL9jas-FNSca?<5&0sye-jMm5wuPg0Pt?F(ojXr(c zd?izpbJ&VTJZmoA>5dkKA7G@Y6PuD36D9iB6r;k5e88;!3b<+RK(||rojZwy)=;7C z0}Hks`t-=@8N%eW#l78XUv01p-Y+@u7C-m&;Qe7QpWf7i{s@aTFu#faaHW9=38|-w z1yv((T=-BGx+N&PG?QW<+>{hP z$YG)Z{p~PN5ImAHGBPGQV%yt-3E~b&MKDkRIfV3|@%IhiGE5(b=_3g#J-QsoX%Imf z2nZ4)WqUX!F{kbCGx%D{T!iyEqL<{*>S%TrRp3 z{GrUF%L&j*1_E~nHuc2avU}>A(Lem1m5tWD{s-^q8hoYkXq2qlB(*CZdz0JTY5<{b z(4YzPmxo0(&GoZet%oauqYq5X&CO#ba^JE$fEyI>Jcv>iRNC+UhzX<+gs?oVBt&L# zLr{|`3Hy^ngN2z7;kyJljlxhEszc~?Uo!XcyjEo63mYp@%s0A6&_j0k4M088T+h)t z?(fJ{CRpIRO20X0l4OXDcdBiw$o=rvR_DtnWNTzJC-Nx{5mbfC=Y8gu@?`jC`VnU{ z?)87Dk2sDRB)u_eMMCt-cCJ{7$FWL&8DD?pdlfZ90~!RagvAW+^}8$JjmGiZ`0-Y2 zOV>*jbBQxAL;(=Bh60D^(geq40!Y81JZk~i$M?IZO3KRe$yT5-cxY{n0M>l#cSp!} z|0^;6l{}$^0!H&Y(?H0NYOJo)HYZ|^Ph@Z-;S!hY+nFUTDq|mwhs7~Mp)m_eO-Wwc zS!8MY>ZGG8kh7sc%Pa%SgbF$znDg&e(OEra4$Qj7??|r7f`*Aj@rGMjpHhqGIX+u* zbMd;)9~(oh-O>hKv#~KxemyFO;*etRPqR7{l=OAf%6g=CKTr@Tli9N2<=>gAat{bp zzuH53izQ8+d~Tq-Bf{omfxo7;s`cES^!zr|)F7!FxzWqW$f}2F`aRK-+dq|3$aFy& z@n?M^uG)U00&3x*{~}rC8Q}JuG=#qacB{}@6($S?z9AV9exWA^4o=Ye)OT76XpI^F z!&!Ke2qH5GF%_-+2q@wetan7eg1m$f%wxF zZjxdbf_^ieo1S&{mZWaJ!dK(kM?PM%o^`417xbECOyzR;zX5)Tty3ff8=L5t}j zmx<+FB`#?ID%0CsFbbM*JcfM?z*2JPm23kXPt24GF^TJXo1uZh7tjcU`c9Yl z7nalXLGX1X>`A~T&^FMftm!63#o`OGIiqd5&;$+%FtiQ-llIE86>m-hXL!rXbVlDq z(T99#&9Tn?x8pCDfld^}Xsr-j8UZ>D_!V{F=0SvN1E@NV)Bu?ZLmPD85(oLhUohg*arTElL*f-f%XNMi z#$M6LcLzWLw{|=(MC%iZ@2w2^QT`g{*RR~){_ww)rB-U6rK^ddeAj+uD)yS*y@GCm zr#$#m&TJvGZ~5oNpBD_~;Cy#vpl&HitDf0}!squTi{| zugcqV&5z+Y`35IrHjzD0l=B z1A$BJ__e2J5$tyfU?}exnZu>{kskK65^fJeYZxKyhhredmi~s9L+I8$(4FyuI+725 z9764HyztL=jJn-=45CN09q6kj1nsAM{v#_7?$+#a{g(019y}QHx%WIru`hj!ggTru z&&mFC!t;)duC+0LIg1ZbSdH&rSm_&qHMqlM8S9i6;5*kqH3>B0B|W5i zHd5qG9cB}v_(UPBkQA{X^3v#Fft+91)%B z#lDO?l`WY}?2pYe>A0dk@*N=T?+xpv>=F`b(CjW195C4=X%U5XWEGJsp3lh0Na4G8 zt;@R%K9)#qEx|$A=>Dz#yK%_$1M|^(ticLC1*=b!wr>)0X?}gLsxh~yOBB|?A+F7E z*`I8>d6W7ob{y;R(>8ps>39&Oy26R%4vk)2VEJ)1Fd$ca777mnLDhGd4WCx`5?;Mx zio1_|KSRwGe6NJYKho$KEuCfjcKqcORZ5#xsc<#QltbO!lNz2g;(Im3J&sJ@i4gZXY&HK7Rkxk3Y9W@L(JPz zLZ_d^BN_ABy3mL(b6m4u#}?2&Z(qTShOIBs_A})%r-7;bk>1!@@11#NjveH*XdEXv9TEm+V2|Qda*u!-)KwG@)SQe#GR)uT%q0Nch z+JI^+|HUt=!0&I9!9GHa6j`Gd)@RZ}+zSTXuMw58MBjopoa{qti z&DE8B2&eKJ)L`Vem`H6^Dx?_!+p$Q(pHL$xfaVOWtQ0XX-1P8eotIR*vs~MYhR1jh z21&-eMZVqTnk4$PaY;;?rcl2w>AodN@(l5ItNUjO0mk3+kxVKEwKFqDh_s1H(1gJe zdRg&9?&`5IDeM}CWD%6YCmgR><{+ z$sa``mM00;RNR7=s}&@LM(57aE~t@3R7Y!#BRY)Fmv(F%aK^tq6{O`M`505Pwm?Eq zaj7IPFXYKqeMHOo>Glxf@eIZCUCPwPFIvAK6C$7U*^^fLX)$CcfKB!xZwA(AP`fY4kx5-2Z5Oi6de6;FRBu8CGu(c z_lp-8t8P%#9@O^%+lkc*wORepIh0|*4Y^fvHf{a3fv;!EpZSlv7w=yZDS+*7Ey8iACLR7d>7WTXS8OCKqJo=FlQt zoFNud7vhBof)1fS-YWSoBMn=RVUa^sQR`33+UY*XaP+GlY4v)69)p6K+P#M}MF`}` zj}|WG&s5l{&PmgWskUDuZpcevG$*)$_w$w$SUmdsp~l|$gh324370|AWXoNg5Cz&O)2<$N(e1&8TUcg5e$Z?D3ZkGTNdpAmBf?FSE_32in= z@+@j*tL>=+k2;u9bwASWf!NyRM%=mbzdgkWsNwfbVLp=#dp@?usz+-~%_qoN_Jknz zxm2&@VyRVK*@)!w)}-|1nQG&nd_tNI;pPK! z@7o9DWQ60Fho9dH!r3P9uS)&#(fwh{*H77Jf4D%0+6UdEeLyi#4+_&|EpSbUR5c1a z4e$y$AX}Lizzlrc+hA7z!8dwVPQB5pPUv36PJV5N5MleG(4<%m@3ZeR9TFBlAB!j5 zPv5(mj|H-D5y*HnJ!mgxIesVSfO zUf9yTp6-(9*AXIo2X z<5@N>V6AS#;53XA%eL1^_NyG31#E0YR4G9aCN6+_$MHDl5E?2*Dk>v?(C9AXYhV9p zHF9ifq5HBEv-+6GD`{%^_c#eS_4hCS)JloZ9Eyb*q45a$_4a#;I?6pm5#sIyTX;U?;S+naD?ZkgwF?n6}=BE5z%s8t%RvhEZM>osYJID64 z8#0BH^S#pg9@8euwVB07F!@G80o@fz!LaV-MQF_YT2kcV?IbWh=_H~dz-dPUbl>&B~6 z+t6zaU1eX3kH0stACKaBWqF1ePkStEJ;u+{WWIgNI^st&soFarm)xK;Fw|6hd1MH6 zglQ7)moH2V|2uG~KJhPLA(cy@R}zMx)e3S+KiDu3MOn-IfR+m5C)2PyrD;># z5-<`SUG?2V((*}k4XWm=a#@4Sw9vb?b2}RBo1TqeZuf|FAlNbNTfHxqa&~i^4prKb z=x=t>vJO@wR(cgr!QP)TG*6SRx)#`sJ#Iz|R~sHGaOo@~P+N;1$=RFmKQj{0t?IV1 z)bo6W@l~i$BF{E`Xce3gYExHp_{$tKkTX#|?P?e(lpY-eSXvJ#ICKifE72rQp8E=0 ztKhU4927s@?EM6%hvz;#Q=KN82&%o=5^xF?7&ypJ`m%>3!k1PDlFm4J7auS4J}EHQ zo+2I*ncmn-OH2>xi1tH8_RJEpPrXV^AGR))h1`CKbM(@!_j%CWGT`%KBz6;V!6h5d zCw2yOu}ZQyHGMUL$?=VU_)CV32<>F04BCVi&1l~;wrhD)6FNlTc)Q^w_BEiDs=0l* zzxH_RjZbAGgPWSkhr?ESQ8}R(bpFI4#FvU2W*6W26GJC)7mnJPK%8d}w6xm5jKFg1 z-ug`awMy$g3n*uT)G%EERCd75JQGk%moxl3EtnvvWN66s?k@L>pX9J&?UI9Z({BP4 zmv>v7TOb95up%gMM|}r$esnv|56)&C|cI~G|0@68^VSdtN%eDmh%X~H7WhGcbENbaL2@A5I($EMcL zTy3T|{{17smkDHU6uEA#Gijb#7bZ{gtO16I z>jea?;y)+gO~f2f@$vAqRnVQgm;1{ohz`hS^*AZ!n*EW$O?hFaUEL&zYrsBT!vpI` z=Ho&L0g_$97Ww|nyKk}RM>C1sYL?Jfe#u3AYU4?EhjQN&<{&v1QukUV z`$6)S7t{$gxoQ|D(=|N<12({;f&8jv?%(k6y;o1RB#_c-F{c?-C=o%9H|Vr>2`b_3 zzTBGv_wDrW$$dZW9Ui1LWflJ{^lwt7dV6l4bU1j8BCPrtAwSpZqE; z5Qj?2Iv~pH!I>5W8;>5Ji@j<4b#}wyYv45!>SQbP^tZ3NA8ffi7UX?~w44(7cw~V* zDI!`>N?{*n(IDS3Nd5$Mv7k+#xwL83U_<&B`dnOtazo&Ks@_*sy#US94m1% z=4jvFa;v~D%n|OWPvM}axVXAk7FE+-LV$Jh^pI{N#L8D_mPujpY8gAbbNUPj8p75Gb1?u)W`W|UmifR1M&xYyRPLBzCN#-mS{EgfaucTsw%N*l$tck2 zZnK#-*V{_XZwJxu`?GpHLKEN>&w3mRLS)1tR&Qp=J* zcPx=tM;prARL1(9)DNPB82QPp-~@{Wp-|!D4b404q6;D=9)di!o9T=A`PH_L%koI7 zr@B7zGw6^c@JLZ)W)uA1kkZS7>;T_hF_7^IU}0g&J?u>bqXm_Shh=CSkJX#{ql-?ihdVx^Z5#{YM^NB4d{u?2E!kdeC|z_ng=O?=ru6~`lSd#p1*?kg8FWqzg6DX$b{ii`n9ZoBGZ3m z&QIK-a}A;_Ra8^ML$b;9zuD(KNNw$eVap{su)2nc!+>l{P;2M0HIoJqUp#y~2>?k{HsJzbBrBl59M4jYNVtjB1XKss0zmGopkSR{7h73bLFA;7 zgkOa$IwO6jX~Nr}4|*#o+WG+j|8NmW5*sX%*z@R}p*=Wzn|c5((oBrj^!Gt|aG&{> zuV;74gJ%Er^nAl~=oWq9tpVx=*acydsJ)Z3!fOmPdiC?F#Y3jY_bRcPkn&a%=|6YX zr=f3zezUJA!Uav1nJcQ}8k(4B0todNzB|tmx{dsRsQ!DJ%`3!y3#jph_}YliPhFl6 zdp1~n!iP=~7dHyuC9kQenPk*bwNQaDbvb_GiHZymmRj_3XUE^eT?fY;)KOjhRq0iSOyt-ZQOWN<1q>()Q7 zX%yVv%AW|FBi7gN3*aBFfWpsYu=m-`m_G>zqUS$+MJ*nHZ6@EJtWcrQjR-ulp1#k? z3F5i`7NXuG=*2-_IRMiNc{~K+l*uOfTEWfBy9^i|D+94RfNWxR$55Ylvtt$n&-Zn7 z!mRWm!@LU0eaQ5>pqvNL)ZNoX)u_RDOh^p{IzsCo&%AXqy8&#Ezf;PqSHzvz?a0D7 zzE@$z-k97R_43ePy^#{1><{Gv?!SX!%j-lbwHTVKOwwNNv2T{+2_8-C)maxB8;E_a z00fL0IjC_l(NQN`-YrOs2S*lHog~Cgo!no~6J|4HG(2d9+gW8*7y{*I2KF{<=h1gS zSFjgldcrpKDlM%C+JwQjCDjhz`4$I-_3QqiC;zN=k-CX(_-Ozl4RYG7ZHjU6626ZaoLkivO<8E#;nmfZ*BRh}7!$ zUjuET!}Q#G1E{4jM%Q^Vvaezio}Bbh5;%jhnU#%v$zi8iwX#zTJ}fe)&* zIHv<1F5BNpJRY|cUM!^~UKE@P(<#HUDHHMH#x9^{-{Y1_%W@gT^X?;-Uh`=S9I`** z2x}xqdc6Sg4Li6Apj#)$^XIW^@4>5!EusLDD6k`tM!G_le*9;rDYdH~svL z4JyH;1rm6~GqMSYD`CqGre6p3^$BLjRU?|yt4ekNlw+6yI)USzFnmR{2xl8)v#ulL6VO-*hb9RQbc@T3H$F}lmJ8W*g$gv*!kvAL)IF>?N$E^p6ON=b6jOd$Zg z*-BYC@3yTD!;7UV@8z78lNm3ac~5hFu{JXnh>0SMwR&kkGNLfs(a;}o?6_xOZaEeLOG48bu^9tG-|+^k zn~=l#K#WY+A}|{vvL}lq&~}>l0!BJJS(UYS6NN=&w<)=wd%IW%3&Ta?jI%k8Xx&kP21cZV_52=)ak`HWz21QEvAyYev2dGW} z`#|=gUEeIou?Yk9V4d7>nh}Ruj{*3fUws_7@KHgO5Xg5i4tn4JRdMT=SQSCuiPpcp z2Op0ds6LuOBO6;`^^R5{4Whw0Ic%}4M6bcNq}!jvlmAf4=ag7i+|IcCIo^PymhwmH zcNUbGnCMUe9*t7zJmb{U`Bhc*V2#htG#cdCUCMpgXH`O81)p2c*?aIxfBj#Ky>~R% z|NB2~C1meeQK5|Nl@t*Xp@{6Ay?0Vpq6k@;*%6T$*~#8y%gEkjWd5#uz2BeTcbxM( zzt=flf4ojFJ)e(p-LLC*-9}PHCwAmPRcsR;j$PE-@CRyl$Zsm1we_|3=gm4fX!`z* zhe`hdW_tHdeyig7>rAo^`0I4f$B3?;s}bO+#eG4>!oPk2qgh=dO6BPUw&2a06;|Wh zPpPAR{&Yy{6`F@>dmfj`k6bHQCnzNh4iK10=)rI z@L}KwkO1VF@W@CgvYte4nB^`jE#T}_3))U37Xb68S-{hbVZ{y$RUZgv>xG)-J6^^5 zmFvotVY7B%sbRo$o{H~H-lHmL5g2f?7kYv*0q4!Et@nXe+lw%8MGz4?+XNY@6+fqu zXTdPlQMdxP`Q1A#uT4)Ke$+TlsnaokOPr`JR_@6AwmXnf-~#El;%iC2zKUzBMe;5! z+tGf!S!p-$9jDiS($2>~dZeCPSWS~@eeRcj=0)G0+vqFZRxWtTdu(#$R^lfQr!CofHFz(x^cv{2T;vUC+^!IEjIN{IofyXmd&ggWAg><7MY zDz5azm1f&VPh29ro#rZWyx1)6^JnmVM(p5)$M3rF&2mLXFB_ab6L%P64WqtxZR0ub zHqhV30(H$7mq^|TAw68Gk6t7)-q^2#OrhnvNjs+)U*Pu-X#LHVvuy3`%!IWc7;^;y zLfxe&I3O|r4uhNZ3J6v} zT8W<*dr@DDG}^tICjwBEaeQm%r&B}3f~tXZ_L@sJty?~*L^irLdlNs#+VPd@%Os^c z>4T#SPLf8YW=42>3Za!sOw6mH#}a?m0((($(IbUeWrjE!#GS z7@Tmfy2SIi6QAGTIl&(`SXMT^t2dIL@2g0$E;KhG{C!+?vp&XvR{YPe2w*;g1^2)G zLlF=0iwpE19ukX08}kh}U>MCol=l>Hqu{DQ7YHv^OvW8`b!we*Cj-b#MKS|zmmw4A z1PnB((c^;b8!%w~%UvUBOR^4hILDnKGqkS)mdH6fz-%V$M9{B=Ce;M!f$;#$GkPu; zw4dCHFdfKZra!-#u?K0qCM(0m$PF8&$|Nw%a~!cQEda@a$4|cHb~sr(;E@;|BF58E^wQI109lNZ~KOUxu*FgWnKtgJlO_3Mis}2DGr~2&-7D ziUawl9egJW;urQJj8>y%Wc55LOy|J~!{e*&)c^zO`Y8nKfha6w|y1j&=cVHeKwp=qbkE0*+Exip-QtI@)&^IVkBA^nb6L;eo8X8hm3y>Qv za-6+b?&rrxgiVOuYT^ITOV9T(&sCA%K*i=aOrA~can;w@|KY(kr_6p-uv+Y8a1Fu4BEm}`H>c;OFy&r`; z9t|$kBt_k2AEMgba3;FTczZ=F^X*&in2-$oQwiKO8FXJ@{HLv+w9{Tmo~0L;eLlqZ z^eVz+i;O{bWdJNM1SCN(-u=bV3?X-D9}M2&?r6H6i+5yaXFq@G(y3>9hf_3QDe@9b z`U+sf4F*86AQch;enBjd)xotlNVKumh6GK?b{h>eTj2T;d+H1|JbeuxG80>1L(vYM z^~;eJo2aDFi-`u7?`GAJY+J28d&Q*!Lds4jfBqc4xtS4bEjp-^0xrMk^T__}%IhOG zg}1J}$mMx%XH0vZ;o5L#Pnyt#%QbD0yN%-{T|u+~-4@3}wCc33YNC1iR3*LN^0qko zOX~V-ZI+7%V`wu{$Jg{)7cNdHHp(mBXCq937Y4$P8Hc zKEIs#kECZ{5{Gl|JdMO}SPcXgtaDrIfNAhl&7R55XCy|RH;RP3g%dL|a-z1jl514qYdx*VR zT^L-RgIy;1#ocdBXJ1S%zL~d}vH*?&h*pU|4aCi>A~0EcDq96}4La0$=%w%Xf4&E+ zA_Fj!vcC~3cPmYdpH_5s_a%4gkb8Kz+#Mw-jO^X%McQg{`L0!zn#8k4RGc_9cE$Bg z^yKEQ&NcH-?$>$vG6ayVY?Bha*ocf`O$%`w$#-P>^yvuanW6XPboGnkcZG?D-C10z zwOy9wJX{yz^6BG{{CsI!6)F_Jy}5#lrmFPuiI=opYqVb-^Ofuu=K=Cm*5tjdhX4I+ zZ?L8*`E3iTDlr|-7k z)p)H~3%a#Cwz82c-)$r@KUJs2B(%<|Y#;Fva!4E75ek=>P;hd6U#Bq`7Ob`TweuxE z)-U#*f6nZ#rD9cV_?`Wib778C3o#ufe>_g{FgDYM$khaE;^*39l~O0CrTN{7VBG*( zCpMxb0qETTWlddA%BoKz)F>0YCdwJv9Go2mhZ3o&42LFD;~5#*|ga*pc<@_T=J zNjAKzDK9XlxfGel;aM6x|gf|fgB zefwQec}55a(AE3>pAhaBBks-z9#7&xp-2M(Bocl@ zmmL7-jw~DNU=m=ORYyBosQCt#Ed$fuF%Wl+7W+Pc22?QPE?HPvp?q~+2^Pkn+DL8o zs^Y=|Io%dHPk1P%S%q{YJGt;vy~|%(CDIlv(n*O0#9>Wamq30XQ7hMS-g$yuEJ+-z z_k;dJVoo4`0a+eV$Yo!YfY}9d8`cKTPG{CAO7xlGsPOufIrhwyVpm_e3+7n0PA*Wla15KYN zzu&doFKCe=XMUj45t4pR_0JgjD`hpS(6P_qi~7PYcPH{ELkJu4W%Gltz3#(Ioqy7z zDKffh`a$o}jgb;}NEiIFlve@JZeYnh*uz8LaXM61j~p$XnkG}5%{b^p?9L-GG9+Sx zMgRl@>iGai0gBxOjWn#B!LZN{0*rgAy}dicx9$dzoa+D=XoiIAkEGMoHgbcwhpFN& z@NZz=c5r2hP-1|h-6mj!pvTn6CEGH zi#iceIT%7_0Zx7yP$4QR3NbO>2CxZz$@N!=bP;n(h{+k26d-gnneTePA?6<_H#H=r z-W**_!XYdZ{rXob+`{h@rd$eXm;bl5d>>P{fUlSYlb4y3ZEVNrQQCci(w+Y zwPTnV^^y3^*C`$(H@!deQ0=o(1J;!RZl9Ynu=#es?9x!>Gj@0M!vgP02}kVPX<3JF zZyfC|UTUm#F+X^^oud~9Fblw50%0J>0hZDa%JrZ?0V%7svEkME8OnkP)f)x zk?kD(ac_`)@KFcvcr(Vi)0jN3HPqixXN4bKlsZFV{vd(Mb{#$Wk9No9Ao5!U*jnT z;XO7xX)LY_U#^vjUCfpW!^J<1wS4%5c}CBh@TneL3$#GD*fRi?uUI!dAAebIyh~QM@Df_u1D-P7(UVS z@|(Q+TC?=0zVL_Z+-qlR^LiC~3e0-k=iS}D7Ssy_G7=_rz8F}#z8(Na5&6Ra1O0cV zDXpYoxXS2Lv)4&12d%NRMx8snArqy@c6&1{%%uKhn9zCN?U&0hs0hNfn3h#F87ca3 z|E<#n2A#{~#8wH#NSIzX#&vUUD~vpV1`HM&ohQd@C!YZ?=i~eB0k!nbMa1FY=r#$I z!)BkLA``^{K2QDyTbJdQ+-{Q#3+y~B)sJ2mP1lCS=hMsV82d{tYyYurQ9ru+fEu

QyI#31b)x?AXX3 zh!4E-32#w6_{%M03x8%EJBMd}N4zU$4f86HV%}8ul3&R7mXtAo zU6I-;bxlm-90J)fSW&YT*GG;^unrb0vLzZRrMAWzt*4m@^-{@cnP^g9t=eM&>)spB zZyICW=oJu!uDrln3+@yA^Pg`j=h7e2lxBhPUKQ_`Y*fOBiH?_?*S^wzXuOnhGt8pI zB&@>Wa=PAAyhzV8E@$jDB6(}`USo57VB)qt7_@7j{D0Tt1TN_tuz^L6Wr%T81Sp#g zP)~e;&IX+*>ahchxCz{3q=~~(+3;CK1qgwvK#vD$7E$XCUa%>3b9 zl2VK8zwWZjv@G_z{JINMnMYzBnVI%Y)q{_we<<|_Ct>hI=sUj9@4N4bQz$@_P`Z)ymUsxr5IsNC9z3u^{1wC-(gKT21fC$# z92Uo4O`mz?)Y)}hEKKASI{x&)8m&nn*ZPivLaO)4aXgTQArmMBY$b%oO@RD?UomwJ zFIpz*$elC~qsGn^$1H6iHp~epAXA~v;%)sK>xfd1Qw@3@r}cE(vfor+0a#qSAX;A- zJ6f0`la67zyqqLsD|TA0Sv8+S(Gn1B1Y~qKA|e7>zJQ)cL0|1}GncESjXgfo8qE)= z8(5ea4xb?)K==_-S%B{<8-!%zA{1M6F)MXSGbB(hb?B1b4~Z;(acpO{hg%j7g66Cx z?e|Vf-&&tBGm2h)rAY-$(my+JTb52$;O1R84GBF3X{N3=8E4+qw*y*^JXgWG^lqYf zEHZk0QExxNg!shL#z|Au>)cu;uK?S+zApkaDzw#uAzejR7tDAq_rO0K6CpZag=Gwm zIWRKc&;_!LfKnOOl^-%uE9YHiel&eHFudseX}sy1+`u{^xn7BhO8!$p|0J(xnu#x% zh-C--v5pt@OTRwNU+SodJpMcss*d+9VJi3zfC?z>gJd;XSY8_* z{Lt5W-{jk3t^e?a#htMlC)ud`p1v2jcu&d4nQ2k~S$cT?_aE`)siYd7iMNoGnNwCcnK%t)^Nah&K5<%cfU`9B4lzlX{w_z5 z#0f@)n`c}3o9ZC_W}7zUAqhC#;!T&i*2DB&8OOQlcORhJB%M|a#APjh_wVr5e(AIm z&cMrzfXk7X8Y=M)T$JI(3X5VZW2ngXkPEP*+sk45>~K+1b=xi7l<&61&u@Kf*5R-T zetJT5ibJA?dzikEn~{)olWGEpU2!3;asG~>1&Rqe2fZ6b1!=A;;Mn)~>5xv-1j5)6 zpmP{tr!$9H^0B|t(-i~UB*+m@hrS`3|I0g_FQVmE7k4pO^o;2id}{)iMk5_!^0|WR zUN5n0Y@BtOjEZqCuC))G0EMIA)2&9bqo%VS?|pP$GK`e)5?+8BkN#nd znhKZp%VF~rjS=1#yzT`-&QmJkfpQlHdF%NHsfz3QX)ikmn4t%)$Ibu7$8`Nar#1e> z84lOKKmWc*E_4ibsI8G_W5umQ^#_*wqL+KGo}X??C3_hS2#-B5@A$!r0a~m!*sG(L z(P2<@eGmV|#IJ~ZxJU_Svn~N!WDFosaUfC{BVWbTX*?>~vp6odnrJj#icgyzEY5^X zbh~9Z%m)cs>rdY}YqsloufeZEo!zgRho-`gqvH)ps@P~TFW#3PdlzwfS5sos1iOK@ z|Jes-*gc%GfTswIcwfO}5DzLsRSk`p`G3qOlku{_r{1!OxZW}hl7M#-PL0fut*Gb_(}X8?SYUW?~-47ubv?{Dlh5S>o02Q)KO zD}egXF-(nzGx*h=KQ=b@uhc<0&E9H+m6p&@Q@t>0qlP$dH}3-q)J;2E{%JfhFj1O`y{C^#mWUrYPD`vn&8Ok8y#-rIVlvJ#+5Dxu^|6WmjSE3Tjok$_ zv9~(dw&o?;RVx_Bk>Je+lyp!d{0HI#x77vEpX{#sR$ zIFQFHb*}>Sj68_Z5QBa|4j~%vef-C1ZJa5zu^vj)9t=-^U=JWEBXbG^c&^=~L@Yfi z8tHn^sRG5P(eHU|I2vx&R7w>{ud>ugvJhr%#zyK zlAhE7y;$1Z{4ywf^&!yuVDuOu)G0tfUp)k{;Klcc*Tj9*%p3&yXJUq}`#c}gC;!T9 zUw*WI_D4rCFX(mdHa&bsH>i~#7t{;7hMAC|#->H3A8+i9cUSKnwB1!yzGA=ozYSi% z-h;s_?cTXH;WUf{lfu=1h!BMWHA2vnqyxv`rtzy$FreOoiS0F#I(WQl zX^}@v7({OX_VNOdt7vrHn9(T-DDg|1U9?O;0kQ+;d0}Ci|KSyPKMf_xcV1FQ&d=js zyE?GFK$36}>COQ;vu-8iNSuZ1-YAytGqMY}^T8esGP~Mgk*ir?DATs@vNCL6Pb6&D z%2jIDry|=>NJ$pvYkK<31&WWD8j%y95=DCcXKY+bior@(V;?Jc{q^3@`r!>{^oUaY zrkcWgI}wQQ^78lK7+h)hi<+6bH)jjj^kY~9=%T-<${2oxrW0hXS3Mf3Y9PN9NoPTC z`tKEccVALX^xVpz-2_ow_XM%5kXFq#pap#oVPfbl`M+rlZTq0Fc?qRLV&4re?x;g6 z7m{&ND2cou*KzY?xKR4_YdioBTX4wB0Bd!;4Nj3}{!a0FII-w>^f53d?L@?GoR(g# z$@UEKdR+^gnKg%Q8JdP7F3rz=fJyT}#0;$1Q+K_%v`25yd5E7yyWl90{+npNjfzrz z@IV?^8~|h?Yzm}GX(pThX4cveKRcLNEuMPOk7I__JTxY$N-8Zh?qkR!{Unph` z1H>0wu*d_CNRoNQDs*lLf&8DI$Q8&9ittgQOc37{7+CgXn|Y}Po06&2+}d_ zr#}H_m=fzPpk%D>?rDL0ct8ap^kQmiYJT;Q88OxZvrK0yPvp77qV#xW`I{YFM9cRtgEu#g+eV5;J+Mae-_<5n|h$G*!ny!>HSlOJ} zG#Q7jctuEGRF$_<({0of$COT|Nqiei>^EJS@wmW!?1!sCZ|jXLIEh6tK?=3P!@K%I~_W4NJsU z@VZ$Tn2UAq>Co>e&Vgy!ACXNt^i6kV-g;Z$H1C??qhn46Hlb~Ruf@&t zp=$b^;Bdxjhl;iQ741;-#+o!OA+G!MYhjE%(1qyORvOTv!!MY-JP_*43$Q*XC-6rS zV_wAwP{8$#WP;E4e-xHKv`RCVm#x6lwh>mG=u9*GzV8KpmcibnV88`jiuR@X7=e*t9!whL+!R8{6?srwIux!YQb9^?t?Oh*LgJ@$!io=ZnIiG523j_s>4( z(lZ=%`Ar48FJ?XFj2k75+{zeiFixHQMCHyhiA7aG244WUs%fTr7 z^sg!9GekP!f%Hg5;zr$FI?(<3VvVyUy7_>YAaV}ff`$jlLBo;i3pQt6AQ$zmN`#H} z@Tr^N@1IiXo9=A!gP9&A0oWr1hS9kn+@I;FuuUkglIaNX;|jZ)_xL>cwZ`JQaDY>C zcrL(N##d*g1TTu(U_W?icTg~bx01=u)6iF^KJM1{3Ep3X;%c>jMO8&|jiye<#?eL; zKxoi&66af;W9JSTZ3p^Nry;9&g=~p`{f$3M3r^;0k|` z9{^$ukL|?<;ISc3Ee5BL*Quy)dl>I7^v=E6iH=GIhMtN_w`6f}U=hL0(s^zCXDcUk zoZe|;z4(kDZf;9k<`LsxQ6~Su;!We8)KL%0`+v$X(!y*UqztPw<@>9z`W54Ht@y%< zl0;HGW~P3O=ZUEvI*`*Y$vJz>zj^x(an#(W^zJFTRaAfExO$c3+1cwXOg@m5Hma_s zR@~`TV*7J^g8u&(Qvmner+^Wr*ugKXZ=!zWz&Eg196w=R$)iBJ5OFadjvj zo}?4_GCZ02IsaKgtHk;I1%5(~ud?}Ceky9C6Z!*kOE>rL7&XxeNQ2Q$8)_H8$9``O zfEDRz^tkjG&ivcevsjIMA8ciEh3)gH3DD4B1}e!{Jo&R(dA7I28u^qkIdT2l_j~-F zuLbvvdN@AX(bR>a%z@hJ(ABsEL6R7V!~b5Ho&N3s`_-$NP$(F^4>thiTuctV+Rny( zO8`*?M@mE?KYO}7G*Iq-;Vp@*J?_n#P2ZEurq2uCn=n1Bj5ufY?=gTo^<2RSQ3!)%AFSKfS&{-v~J}#tYB{RwPLXhsPhkv^rR~+ z>5KrUL>}5VP&1gMc3jw?iM|&N><0q21Sh-75nPh9Pr42OT@d{VxYcyVaHLjh>+K#D zed#I+{+^K2vYQel%+|iJNa5N#Y5ozt#=L%{iuVE|zX1O&HQ8__ova$>?F2hvD^>%~ z(3-LL3?1c@Hu9_snI~+OHg0bqfB^Q%_=OPd1^W^zB3Ddklpraw!7*O3|IcCfbGo1GJOIw1a4d&tQTB zojxT2gh5CFn+PcX5IqFWyfkQ80TIyBnwoT^v0d)K@fx+OC+c?W%UUqd2B&f+iZbQ_ z7f^JeJPFQL7DnPNfPwA7;Q-SP#79C|x_9EKd7B>r)ilb4$?Xn;WO`|>>h=VFFb1}$dpiHF8hbk-Dv(z(jK^EJ`@ zx;GV!_8T}@nCBgWe}bE7E&PN{ETT8}Q3*mgfP%0!pBnmOX@(%IxdTiMw_{2W1PI!X zO=!di;=U~d2MV@*n;;)Cs-6=h^o23o4)ht0K)XXf10%?Jf{-^O(|K$R(?}OLI z|E>2v5N`yH@)vN~a0gp9TJf@D=_&A2;R8wZxNSnX8_>I5mVUfe&f2NB0c8x!^xK%z z^XbN#)bLDVO~e?5mX0-km3^xZ}^~x)y#-#weYt2-g56(x}H$F0bt} zxDz3&mV5DSh(D%@LXH~rFgV@2z-qJXybx)*U@Lq}! zy{~6tVxmH%mq%|@{OIND*QaV`9Kw>4&dmm0F+1vU6|cW9XP1hl zw&GCsq;}IYoM#iFqg{t1yJS{qn3!G=@uNX!LKS)NC7lpwFPGo4&7$7%iSTQn;vPvdwDun?OcQj@}C_9JBh z5ERP1@nkLhm$W@&4)U&pGO$$e86Z*{e~Zkw+CFj3dJF!M`AOpHH&UgAM9 zSymW^+a@D>-m-&_&Y8i8{M)BaR|NDc^~qqH|JZtTmyCQlXxJQB28ZyvIYCi^&RyE{ z1-dX&eaRpI?`AYwk=La$1TBKBQ(cDwM~6I=xfaTVj(q;X~jtXZHgD@(tSZJs5j5iXM}JfbhbV zD?!N91Svjp^2+7&dZml;@6>pfR2^<#b3Tph~3YlEaLnQYKL<6-oC5D#RS;s4b3X&fLg~bE!?}^*+9q(QU;rf|U z#w2+_s3Y6&EOKe^)T!$%)Q%4d@0%_^g1;!pw9>YQr8Y0iUqI0aOwSIhA!j0gD2=2D zJpu5NN@K3U%uSEy3cynnB9+7b1leC17TAIQ1>;RbMEz%zRzOrBzn~Brn7s1EY~{BX z{YYncco-QJ&QiTCGE-i@v_jXXVcx0Cupn`DfkAz0bd!s67WY)~y9&}<8>NQqw*=p3 zv9|q~4Z)B3Mc{RI_bSLKb&rfy@u!E-@jnbVFoP0 zUo$h^RbHOxKt*{j+1YAhKcJ6CE_fWHKa0%o1FALl=Er$IJg!vz8+#6iB;v6Xj{But z`1(rgwpt8Q(hhC}lrueFbwg|)y*BC&Kf@Cj3kN&i05QL}}H4Yb@`p@N@H} zwm&-n4c3Is5(<1Wb)2~;EGS5&*n4GEZ@g+TPZE#pkz}E(PG)Q+M^4uOL3wB6hT@IM z!QVub#;4l{x2dR;=S&QG&hTQ6t5)CRr=-fAx6}~-_oYW3%-4mHtmSNJel|J8N$L-sR3$)E(Qd^(Fu%$T&CuD>KV;V6-s1{4^aXw zpe$>F)<66AQ{7L|0MHTF^Uy-=MW{9epdt(k(gzYiJcanDkd_=He{O4{);H!ZE9kv~ z<=d|i%MeKglJbeux{m~v2ogT*ma+^|?ei{ud~N6RdLJ7Wp$^+obiatuQ=+`(WH0ce zWQbU;d$2DkQ|L?;fv+>*^PS|<#Vya&lF@$aH+~f<>RQ!LuY(B>KBx4VF5rrwwI)_kXx9=4p4SV{Q><}&f!z!Jip-71B;x$`D;Q9 zK`C$EzWoOJTop=xc&Fa^`1rv0fG?Q}eiD&3bYwyFex&bHua)?$o_wrJQ2)%-P1q-g zK{;|tKWb#BzM)I7NBH<#l_-VX;csur$-GZp{&UjwLDP7wV``i9cOQq{$trlQBJV}g zqdZ8_8)N%Or)7NhvKuFvpa-|q1OI^~6KE=68Nx}r`Y2Z&1Sprl=!fmUcZo$#&U78T zJj1|9@l9Nu!jmU=L{ty4n}MX;@|BgP?xcPP_P!c3yIP2M4xidH)(dV9Qow^h2?XLP z0bR5$_|ihT68I^lCo*Kiw_%>;G>0PmNL#U3PkECuwvvH5AkY5El81v3r(|;{;qaUz zP0F=-rB54|~sEeIQ6lNofaXG{H}{ z%a=d2eViZu=#-nC{Ui3cK075@`B)g|)F~O2#kMaGGN){pw<614 z3f}1QJpszdqO#e;@hmP`L187GtHY@{A?AE>76X5h{HHoKBbpz~tR`aWU3J>ll#?4aV%e zi^c^j42=j6Lj^0w5_(IYX5(xoy?gZ&>nG|FRf~>Jjl7id+~bx0+)uvH#T5B`uC*~1 zC$lF~R?wMexY>8=I&Zpm(|BbLhVrKP^P`{?ebuAR(4e4fra3*L4pVzom1{bnu=_h^ z#fyZYVyq3b>LmA_`1Eq8l?xqhHl^UEQm+$`g}XiDS&b3gpgLETD3Nq^^b#KP;)geF z#kT#~RFGUkiE+;BH~R9#%N%FD0ie7iCpQ7R5Ef?U=Lo0904_wH{F<7E244IzgY!m1 zO#Nh5A1^;29|rPSb3ZxS6@`0pHuMFk&k+Ei<2u#=75vsCUpR~jvG4upeEvdWuBxU) zG~<^3Ncdpt?N+gKbmdCJS1kwEhkuIf_m9kn7(Mr@lA_6*e!=_MyD=^DH@C2IHw$^b zfXxf80{c5ooxl(y=qwk=lh&yX}g`vTk9Id7R4FDLF zNSV^Vt?e#^bk@Kt34za8$ckZOW20aF7EDB-g3Yq4&RZ%QTa{0^Wev`$)WN4P6nhuj zY&irKukJ>LO!20Mcrj%MH~*?msLV^M(6uAAeSSkuKwNYF?8z&y2J#mMN>aT74=l;w z6;nN8x-k$$*~!jNcp;zNRFTgq;kWh4^xnNQ-S;wZSGL?o_ZVZdst%$5xiU|-p)nn< z9Bc}>A#sqr^pZ`{y!RRVb}dY3<~BSkX>YriM$kRC|1_XAcOpUK-QiI=F6Mp^&khE! zSh;qf6mY4i>^M0RPtwd)chdR9KOm9vq+vi}BFQ<^{80=C`COfqP-?b?MxK}SwhHAb z%kBg>@KxOQsMl8M?`wEkA{AK9oJM2`DfMWT(duV{l4lSPA38CxEP8QcS=w;Js(fvE?bD~jWa$BCWy&Y-)HADy`x{IP z4ftXg55FumdVgatCl!eIRB#y_#^olBj0s*B-Kta3Z31imy|x~Uy|vHpm*NMDBO{io z>zeS1T?9X!Zg)=^)qhy{ooaho+p1gtb|Tu>7tucmFQeNlR}!ZlM@#5YbIBJ@RMG3A%W99wb6aB$p8%u z*14T@s#0w^B_)ZuU2L?X1ck04=rs&-B=J<716CWFMpO?mQYUWeCmC8&4609ee5Fmz z62CRjJYJFTF^R^=_#E+Yru+51c+Hq6?lU+Q1saCoJV_3&e#2kSy!IqvE|FR4qPhB? z?m()~!TD+Po!|y3kbGlb}~y6&z^eI)n^u~ z#_rsy%K4qSKvw;rOerZ2ZU z2L(@g2dl=pWT^Z!_*VSbm(&^YvB8%Tor@Ke=v;&m;re|``WnHzZ+V*JEMW~) z`Icozu>{2D4GhE^E)sQQM?fXm>9m1JTW578EWiL~d=6!h-+|t$tBa``r-W$0_PKS# z5AJ-fLf0JGonxlugI{V&PXzhdNBf`Xjt(u*vXL0=%)F=cufQdcP~fyswPYcue;-BQ z+RvKs_(>~8(aCfw`D&1uIY{>a0FFjf;$JiUojX_m4LX7AA0UAafQzrdqH9aKkp#^M zM2aFMjrX5cy)p<1$L6AsS7Jl4O`bc;h$inO28orXpkx3U&&J1}-ZjrK(RLg`WhK^H z01UqxvSJ0S0i@m-2y|7mAS;673hBUMR~rky86a1I@{B2?0=f)j4Fe9uzF_?gU|GwX zzVm)rPXjvfPkA1aI0;i`{3%uA56VsV*5XZ-)+0~ET6!5#y)yf4_$0+_m4traiS83( zZ;pV^{4Pd^xwJ}}eyY}^Vc)%uZ(8NJ;Hl7nWCWSTjYC*92B?W+fwK;!l*G~GKVN_U zS3LGOFoe6I;MTAhPUtCH0s6K`w(43=qh~6a7dY zz*T5<9?+o?Fr~#sHs~0L3k|{NB+H(#BK)(YchUk)4&*m0#_k5cdSwjdUDDv&5c-mm z9g6ytT;(%jl!NLlTF<9WNgE_h>rVa z%E5q@pa{?MI|C8NIVt6 zIm&fzSn5MYHn>B>d@uz>|C?$@)?R{&Mli#HL|D8l1w$Y10Fo-8B&y;^1sa?&cQY*T zZ$yNLL$VtoOdz7uj#M&}=(_kHZ%PQ|FbUmY#P^tC1H9f|rFU6V7l1p}Y&G@6HpNp| zJUZ-cymzEEK1zO4A=irNbEJK_a_xQArrFiS5|GUXAWV9BdAVjVw{*M(tgfW2tgL7` zDE?jBK3BN3d0=4s444>Ib#ovAW+7b%bUSx$(?tqZ^MJE>ZbYx@e4p#|B);EdG_Q{M zvcvJje8lHF2eHdW=OEYBLB+>2BreySqVym3ohi@Tf^UOcHwIyE055dFp0i#%_TTI} z^~6pIa}6*s45e%Q=}Uk|kIopQ|7Ee4c$U&#mT&ir$@3VceBb5)7U&_P zriREjNEwGe{>h$-jLd$Pjan13Wg#jM z-#}(A)KS-%NW}U?TSkQ^_U_|%)bpJjfaRwD2B7khHj(Ftp$c9;&)o+dM&@u+mPuTQ zuJhzAiAl%`WwX)nUz)~Ej!RKC3eS(ichP!dH=|FVrhNs_q0&dCHtnGGKt5Wm5tm12 z{`QE09!k9efAx~_f0_leL^wXa8dmpIgCYlK_v6trUVv^4a%bYP##>a?0CTXI%Jm~n z@muvdOwld)UrT!($@>R&S9U_!XJhOlH7tLbF<$W6e&|MW;-k7)ngzX?qiJfnui0{)xzAV( z>qT8rKL~@t%=}V+>t9pMEPZs*wYZ-%R`rr!R_UuzJ^2!aVl!py6|52Y(HX%<_pR^0 ziLA9fGxuiSJ7R-rU+?@VK%4h$sP|v`#*DJ5$op5kYYrfbekJ%pbhc;G=C0Ayr$1+C z#)V@8bjlUV;8wxymi7vtlN^cC%{k@|5y?Ihh=x$HehZVK&nDn2zXfnH1r1Fj5E>bO ze+5u%3&7bPFl`5CgZUr141ZaGVhJW8qF^=gQJv$)(QgVUw*V+3q7fMtl?)U{Fz2(q z@)5aNB5ow)Q9_U#l8XZ&F7x^emQ-F%fu#hQ zi88?VL6!*EbB@27$N;OpV`#_%ztafr1>kCGv!O-u*{Yr<)#^~L5g~Bh4E!six4`ly z@}L;Y?u#~J89*J^FC2P2Qo@DmD2Vo-&!L?n_=sa354EW0L_%8P!|5dH{w6|QxctBV zS9DeDwO>;PFsI`buozjP{b+y(fxqI!ioHc zoK{yES^t~8RbTVbZFx$yrwSa4(NLn%@UzPI_v+Uv-3SXUak7P{$xyq8(s65W@p^{A z#I^^}AxOaDaTYrD=NpC;tatT6Jtp~S1UQ?>4hKSC^&!klz*7D5o6@``U^;?v;5Qha z;VXwX%R!8VF*xNs*co z17b2ELA5+D0-$rC)jX@8OopYDB!5b#V%%-Gy~x>IDU(8Hpt-em8VJd3?=m*P;R^E^ zB#XcC@xj7?hZU6Uhrp8U-!!uq%DyxNyx}eL-uHc7!B1-o2M+=mVAp8|D?hYf({^kZl>GEMBn0YS6*CJ9)-!6ZM?9bk0jjGk zJVr@gJ9Gd#JcE4nL`YLZYd1uK9r&ad`{}(nZ-nrdSa48+ms01vwk~8%VjxJUySp0$>KQWqMk^99!;}Mg9vI0H z#{XRCD9m`EP%{E*Aq!94g`euMVjAKh*zxW3KJcGx#?e#JV^YA1p*S4*5x`DnQqBBB z*hW@J_90h8r8k#+w~u2?J8gN$HDLzrAxQCDdHKzSL3-N8OSye+pv}zw7~t`%0Ox5d z-^jzn#>L?_^+zX6$HUvE68lvj?V`z~Uj~bBMRfFl6N(lq4^9~@7dhJUU^c;QNiZQ; zhZgU2-I!r^c2DNLa{$%LLr(%Oij>sUpFsr7Nqq*U429TfSf};^Ob)hRWVBlzmEfs! zg2~>yhzS@!N>Q;XUtom=VJjc=0<1H!Cv6H4{Vl|GaoY|QkrTG&>WTNYXydbgCry6& zq1!#M2%Ki@2~fv!mIlBmfw+%Inu_O!P!3qkqOAvb-V%we!Sj?-w}mhK2VVzIW$kTZ zWpK{nP=&?v%(e$ve%&Zz&j4pbr7h9p@$j=1w3M^)7!QTA?Je>do|8xV^;1&`*bGhu z`;1k^T>M48{T5`bKnyp8iRA z`F7DK;7mJynQq{h3C8Y*BNU?xKtO^uKk$Rj0ZJe^RwE*v+T<_4sokHSO%!6ikP%xf zuVeSO#Hr*`f%N&gg`m3C-@kt+KmC&Fm{%OVTkKFV2DOCtSxiifgV_-EiTgP)vF1@9 z&9DaY1_CRQB`oN&yGw2LAW%`|!xsJv$G=ohc77Xw(&FIB+NKfpqFjTrAnHf=DJiw$ z!dE15k34Rog+^kYCxM*rCI5d>RL;Gu>2Fz(3PZT!@$EL;$ z(t+O`Nyp(L3lRFlABDEyS$*pF%DAk zyFlaslg{o{k;lc45a}20`bVnDqQ6(h;>;x>taS6X*dz_#KAt{)h%tlqUPe`w99GvU zKx~BoK%catZQ-}Y;yNZo!^7*he~3u?+0E3=3{#i?ZoNEqw8-+ip(8<6#Lh~ zn~~V_{!`wPnpicIuXRw2@xv8BT?Ww0p}`}Di8~z>cW3|yvYGn6o1o+)SeP%;%w^PM z=vvqd7AJD&%{D_|_OPwpiuTKt1p4LKl(NsQL@xdF7g4C7tAhP7-!*WNz`{;dLNUmz9^7r_CY%JD3y?0WFW92B=3ZoKET92S+4MG-bh0M?O4a zPLa{qdbt3QOiozl`6MID=*i(PSPgUBY=hTdHm~DW-oF2lUFFW8;gsa%evW2(#Rt)t z0xP_v5p9E1b77Dp7upsl910D!Bh>aSP{~DWYW)3*QhS%%4GTuSWuPNWk?ynlm~Q?k zS>~qu^U1?MTRAgc5VVNKBDCUw2plfQ(?`&;0xkVkmj-Zr62zPhfz1tpE8*~;qd!!- zIn;w{Iy=2%kvwP^MtjKEP)KgCgGRAc9C5P550(oN;DcPs;zjIz;Hj|(G9Q%NaK6s9 zp7b44e22C7q$$UCHhw8xJ?tX1gX&hfk{i1xDn{i#s;*|47OPUkC;4xD&q>^xEU{I7 zvRWf?FA-aBb}fd0Pgwyb5JSmO3!h>G4$hs&SmyctA(bOM+_ZwPsgH1B1nIa2Yce3L z^TJ(+F6+v_{oprqc6AE*lw9>A*$3@;REB)9&^%IL0033LvU4Kt0xcOL@FSuqz#abn z{?DoP&6dDb4-;jvn*iMR_+5YjEkf1+%#Ix4cLgVO3_>Qcw}8{(?sp`@H$_4#c!iMP zUN3Zej@ew4QYr_qq{7%6`FZ>uoFD=QmQF;6ChgYYcfz*$-kUdXYKVkKF>bl;`uKnypZlYigMX)!p_P95L2qr}^SK#9hwG7AkDiye2>qYyO?Qmq=YMolp zOt|q`F*8QcCCu~(SI5h5Zk63R*x=Y{cc&kiy~HkAn@4ePmbve6LjU1I&c{1b`obl@ z^r;zkY<$01jdF?+A77yMY{*F?_y;WcvFCt-1UU$Sp93)fNXgO+W;_$&_B%@z>*fn;CK4GP2FfQ$oznu?08hMGW!azu%^;+${`zWK%0n@2!?$h^l zyCiI%Q(U;g5HX2QKR|URfD2Q>i7{QPhhY|P8CXkc1KZNlG7)dz;ymk|y8teseVOFc z*Lq4ex=YeA;yIfpjk{M=@Uvl=;LZH|AE9w&<^2OX)56%jJvY#9*L(0Xcj#zqYwK^k z0wB(@D*c|{LulV^N-H|F4+1xbtV(KDJ^{HE8o_`sEcV?0)-u~W!*fqmo~&TQ{>=U# z88HYur<~=+jcO&`2>7mdS?`y%lBV2lX0enC6zlA&q;=N{I=6SQMtylKQSx=}(F&bF z=nJDI@AKXxyA#A!`rFjM3@D8adhQXqw9}S+bMP6Hv!dBab^po0(`uz-f0maJTd|iX zZiY|xKU>R_=6e#bR=euW_E;wO%&4s7)prII-8gq;YE6xEZsr6GH_h2cY*e4KxB5ff zu!1){N8(b*yRe#U@0}m_?2_2=Tm6Bc+-Ws|B`@r#ta$#u1_vbyX z>%7kMIF9o;PnSurW!kR$HArj540W81x3XsL?KHVIu93-q_Ebe}s^D83Yq_RFZRcIT z4`%u6G>q@AXf*SBkP1>{4ALp4CkNDRv%d%{&E+oPJT1!y>2jTf4)l~=AwFnC5(4o) zM%)qbogy8au%Xd6YVdrl7e!ljIkjR;V@6~5DWG63X6C=e51D>5aJ(0h{p6+3wb+5w z<5hVd7t7TxND2MCLP59bcJN(~ti4iezTMn8TB-jyvHT>BXR-@|CgL)Vpv`{P7kWs* zEr@=pE4Rze-;>(X>vW@lM1SR$oI}_OZ8wLHjt{==%4L@QRu`b4!X{_>QMh>Toi9NzuQxd!7(cCc zgkJBpYNXQ`LWU{~8P|%Z{O;h7oSiHZK+qK*m)&j$itEiQ^z$&WzQf2i23UdC+$+TRAURo>yGv9)(K3E4`j1UDKK_zack$X~VDJ z5j~&xrzgU?qBIrq*e)g}q;MJ3bi6Z7`6hg}bVH`d8U{&sVq^;uaUB9G{T>Vtdk;ig zMqOR~Y~sHQIUrnmuGbw!erLeIIWpwcI$Lu$$PeP33g;SCbRCf~9;Es_m7xGY)Y^?+*+ZwA?|=Pg&vP|!koN=8=3}Z?g>-}u6voniUjDeDIQXib z&%TAS*=d(Cbo$7q{^gZ9CkrNrR-=FDX!R4dZRI?^b)duu1b}RZoN|3i^U+JPN*;4PIC*wt>c-%Pk2NjBGWq_9lzI&>e76j@J+9|+a2gcj z>hOO=hpM?yeIoo!KJ_%qeML0X65zR8< ze7}&h>wS;k68eo_N24||x3Gsek48D?%rGtHvRmfyWBa}1_MBS#H~d;nlm+xH{_b~g zqeAmw4?3qcZ7DJ-rnf17&^_1se?RJgA0@1EF!)Yl4hvkx85zV>3XXd^Vxs={htGBb z7c;!|ozorfv!C`O*&s6Kh;x(rmYiAkrN6vitb6{s^8K@_!G;yf+RoMRoeysp5FJiQ z@lUt7=JZ%Sc_w{67Ic_cTv)Z`O_Kse zF*iIB;1EP}1Tzwl!TaXeDr@LuVaBY;-C6tRt-G{H5C3qz9{ft_=UtuHW^; z;q0BBu9MukL=lT$?(`I-qwuG1+SOsAIl5;x)*xOdMHNVGQ;YxHFt0H zjkL*|JQ?pIqnQ)wj-?L*~*&lABAUag{&BvehEO3so-@)?+M`<-^jiBn4Zyyg~;)u zB=870P>mT(PMkoWY})5F<-aWt+fI^BfVM5Brp_=(BmH7l;GI4(F*XhmW)BHgMGXCH#vkU$Q)$MC-RexV0rrN4#xV}uoZTHvdF|DnR6G@AP4bf+$ z`xs%NV@eN8*l_pf@B6IJ;0VOylHn#WaR|*rot+HUdqb7oe6o>sGLE^VhV<8hs2NN$ zlYFeDVp_1T!g^-dPVM{QtbRSJsC;zkk>}3$2a3a<_+I1AUBz*}bte?%Mtfp5OI00U z3p&@4rNb4pKqlR;R=!2z@iZ(c#!ytl!SiIr4y1R)vKV?T_C51@1Xc?TvV1r%K zXQf;n7XKjI&9>TGQ1SjvIk`ghP*3Ma)<5HlPMugf@Xu_x*``~z@W$iR+G z58#k|9QefBi=k`aMDJhh#$B3<{z5NcRwW!eWc=&OS+z4SVuo4q!_U|6X&sQmeytKc zuOBY+@XFbQ*OAx7HkushVKcC9>f?;a>RC54wdZO;KbwyoOND!ZDm+R6_MVoX^_yRi z{de%dI*0lhVPQbD+22OGQukdAjD+8}=`}ma$2(UbPgO2>n6fMAP(fS6mZO}6-p={M z?$A+~HXa>j2fnF+!;gPgJR!B0tTDskBSWk$^4rhW4oJ$#L_oC~d*Q+b?_`3NG!9=yFh%8j>eyYr(9 zzk=T9S-rGT)LVbp^zLnsfF+wJk|$%`Auq;i z@d^JP6s|F{3pmLsp0VDCwiYVllY*;T+_ir)g**CA2d4t zMCJIe-wZEjbc9Do%NbdUi)I{K2ekrC?|RfmZB^nQme1R4A{rpRDCV+p^%>>!j`NyK zgn|OgbITTTiL7>nESaDwP>BMY3$1a66bj4vdJ1w0iw0rAXWiDOiaGDz(I2;+lDsvm zA>5Nbn=bI+$P3@KMLY3p$K3CFR7aUTNqH@rUtp#D;^LFX4qq3oIeS^ZTB&Qp&j^nB zu)~wFki&$#`>C;+*&ak;fVv#Ht&4NOl@?q~KdLfOD6qbQU{L?Gb@Z?Bv4}fDPM}T}2mJy=F6RslWapeJ8%K_eZq5aqy4I)gwVN(eCU+``IiGVya2`%%n0H zNixwo3X?y6V2J~@}%<_&L}Q8x;FeG!cy>e?)OB|hLv2-zdHHE+hYRX^eCTg z+a_Mdq-m>;6?uN>zNu?*_w(A*mKV2ubWF}-er)f@u=&v>)B{oSb?{4s>*D~RftwIp z1q1NINwBKid_IlPFJKR>NKHw3S{1<&2vIHsxwjaHi(pIjQ84sb{}NXqsh(_;3gR=`ZS0_|>$O>NhtG zqt?`a@%sug2)Xre#l7`3wV!Lhbgn>Rv4JwXw;;a| zlTeCbS+!n_pQvee{9d`ecl9$;HtQ~!I!ul28g_Y5!g}z`_cWJ^cgpUAYuz)AQ)jt1 zwfe60+IsOe+c{Bx`-f&({$xla5OIt=-sd>{(oC65ZoBXK_J5Vc<7vg~uUhdSa~<=L z?U*39AF^eWG#%e>|L)J|`U8zyvJ3af)1qlvZYjAPF@bBsCe^YcZplT)w7!sB`PPA@ zi-BEKIZC!^*V>#AcX{^*y^24%*`LS%ev`&k%a^(*OWtJ(E&iv+s%?(U_d|0$_5~Db z_6SE-qW!84jU3|vzsq@m5fQx-JUSYbJ^#{c{9X?0b~5enQ(79;#b;EKZBih11mhaX zIA_usk7;g8X<-x#^tcH zI|4y3y!aG|iVzFL7^(vToe8gYGcTGXR5n_E?*&gEPB?#_7-c-f>`OA5n;7I`#y|!v zyEo(logu{`Q9FvR4M1Otz(~p0E$D5xzFGM6YHn5+8VzH_*TWL12!Cfyc>kDQ)T*hV zUoYLc{5^IhT;2S+%F1e^a`CIN*{!dvChT|-#AG_(u^u;bf8NYoFBJW)O|bvK;NT!} zjzJl>p799?s!E)0gU(yYHtSz|ep|rhf>ZAzz#V(?D`(n%m23&x1j$BFDUm*d_B#Tb z)QW&S!V3F-dY#tl*hwtqga0cMF!tOA+9@#z~brI!FG-$OtA zxB>eZj z8m|W|3oRK)5>EVLK&(35F`WxSQ7l_tohC}+b90779bppN!{!~U5uxC>NL!i?!FCM zG%|x3baZ4s9x)1ZT&toIk3>5jf}~4$kA(G2N*m0DwC&pMR)dJdM1_rxYXUy%KKK@3T`%A**|<5qbxGTsZz&&>ZLcVO6_u>&&$X4D`dVTB z`)gpA*s2Jz6Fp6O=OY{jQtquN*zJVQ;pfN%2z8 z*xY#?_0`O8#$v&>&V?hYCwFWvj9c;x;GUw!FsZ-hY5f=S56^tZ=TdsbU}J3!!l@ee z8qhLGDk&|1p)+1hD2+yN8P^!7Q1!rFwZks*#T2@JnJYl(>>T-pfRzFRhkM|&Rp|~I zykGGtGEV89Y%a zf;#@7U!Evm2*(Lm2Qq^PMo>W=tr)ge)H(jaZMNxCO{MoC^WB{@>1)AObF&jb40s{4 zgskk7*;T)nN5`H(;-vbk(WflKPy3&cAK32JB8&9GV`*|bp1;A}XV9{uqi=?LZNIzO zzqu;7YBueevc9!kN@el#38@8zZl`XhScK-Uzy0-m{ow3}A1o#5T*DqqZ)Y5?mD%{T zw0BM#gGS)o4OXh2=aslYj(14!7P+@4_4$y|-gVbv(dr!zhK=c5?c>Kp9U}%G7xviw z`HAZXre0s$40$`1y{mvWwu6nWl7Bmfe>&Q}y3f9kmjOdORrd(a?YWP)7YPbl-#8?x z|0PY1on}$+?lwC+EyLT?rqjLUhT|ey|1}HuG?oXa6ocYMJSr*;ms7?YBlGvjw-oQ- z=xfa{JYBeBzwnj17mcmw1y&p>n>)C|v!XvlNsAafV8cC&7(U1u|8W`4vS?zETE3jP zbu~i;f;hebeA}a(YwEq(!&R;|P99E9P7zJuRTO`yQIB#Or1rlTKK(vIle?=sUAgP+ zB<-cg0rkaxXr#DvhsTV?|qD*Hmr$SEt8hT!o$iFohGn&^W&wg^kRZq zQLL;B8TB_jjn4|9|0$fp$}Yykl)0MYifCNMH*-Eq-Xz9R2-VQZL`MHS@Y<+9Wc03`Vdc|( z6h)IN{?`56Y=l;Ia_nZQZ&XayZz58It!WH80ro&r>DF9zEVf|o9;SKwPAp#Y`h?-= z%H31KYkx5oDKykQeM%pq$Dh@ZtgL)~AUr%g%`{Q|VZgW)A3uLH@WSLFbiiZs@ZtUZ zdcAOE+ zV>IV=uHmY>!+d$#&2Fa;PaRjLVci&S+C-+J5Xsfl^mHHUO5!JAfAotQEWwZ^=vrK` zEo)q;=QuG~F9asQaD|2`0JAU9{H^yO6~jePbB>|IHWS1+(WZiK2DnB> z5|Ei*S(Z20#e&BwU;fsJTQm`U&S>{WN_?vyLm@H{uoB1Ut1j96@_Me}5kpDxe zIa~AC&(%RcM$Vz(!o9u=1pbm)bYWlYoU{Cr4~^hhL{9-bETP zdG!J;8A(RHjT^_2%SfzT$wO$BXL}b|+jn26fA9#IO$PL}9kI{%GEi38yIO9P-n|A? zSV~@=J!GIkme+c%4c{z>iSO%9YuDRQRb8T}Xo1kUN1i%ji{o=`^Y?N=fK6I*vpr$r zhxA9BXUUT6JubwTN5AYJOcH1-J*ol2CHnLA;rJydD0Vd=sYWVI?03?z;8{62^>r(< z*N3{V6uOHk&S>u+K)w)G>8J~Yi1-x3d5RrorIfkE&bMfCzP#?32=HuuD=Ptf5~5Lr zsT<4trfaB{J1uBmmyJrlR?Rx?sGeGI-D^J@)b6~{<{6B;e0g}Ai~`CDJv~u|y{`NA zc^q8V?bRB|eMo6wCDm*CbAOwR(ZL5#LwzYp9!FM#*4pluDpiZM1E(3^%{-!~;;x>L zX=n}l9Kjk|SK&?R_C$UuagQtDSZr8zaZ;PoEwGE=i4prFf0oCvmL;Rqa;w#sm3hx% z?V7#g3MOjYR!b=;aPHr~pK0AGP$OfI4v|UQyKMFK8P`Fmxh`QS0-woARm;om#`WuC z^|In{<_zuZ+6({L`p4P zy77IKsjRg0<9~v-?A^Qf=b)O2t}eyN9M)d?aO!eLuEdDTrI==u?6B> z+g;a<_Vlm)325dt^x548610%PPEMhFKlXnOthb|hm>UY%*wX#E#(doL*L{W%sRsJP zQwSj*o=evFR6rADUf^!MWa*swZpKSUcB;V0cq2(!S!6~%m8;aoyocmz^l>j%Pvrt1 zwERpLzlB!Pqk~%EpFRX;bsV`**J5R@%Ua7NRh+&+A%4;)IW+N%j_Y$ox zu^rrbFd2DZRGkqfEAhgku@Ym*U*tNhXJlm5O>&indkrk9n5eVj>+Rpm)!SY$Ir$?9 zeGCa^vG!6K8Es7m8-EyH809_U^iuZRgPI^!X{l=(Naaz+2;!)pg7oJFf?DZDVyPyT z!FLe=I^mjK>UcPXRj*e}Kq%55ZzR?%sXAfkWio~(T0GLG$eXxoXL3xn+w5DFOnDyf zHy0Ng8U-?2U*r+%vN`o3Dmb~`r3z^e@4|)5XKFJ1HRm>ll^(G>ZM>>;28~vXM8X8c z4zG|<6gKf5z%6bt&kP}qA=NN<`0j>bkdf1WM9zwGfZ!a4B1D#hr@aaqXs! ztmy@|3Q2s|us1_^GM+WsCA#k3@-}HSCbO%^T-D=C`Z@8hpJop_>>ZmZcYRb;(u(yL zvNgtg)0SzLT2^-U{>ivle!Z#J1>Ay4IMST+DqK{%96cxe3^REXq{lmIYllX&-Bd3H zkNl|bPSPJ#@><@kJ0fY4u=SY4V5~K3->RkB>?Ubhv#xZM{c)uPX>UbKf!{}XTi?W+ z1}_M7ux$9$sk~&GF5xf}4?V5xQ;@}agXhMr~NW4AoS<#*4tN;xE#DUTjY$~EhGce_XB>lm{VZ;{z8z7m_9-ODYs6EQI9 z5pLw-^Sw9=DGK6+_)C{=9nr6WU6kaam;75S1aw&;J%C{F6VJ|Zm))i828TEgXVDtJ zVj7i4)6=K&<62YL$PyB1&l+_Cdls!+KK*o6REZ{6MSWl)|KuFY z@}8NQK~QDvedzbJzP?#YO8y*JH=%Qe_P?ecmUxI)jF&3T$BNNkD!djuS6H9a7(MyV z!!P>!lw-s5a21bOb!GiB{m4o!2`lr=S{>nq@vZ2qxprbki=64CyBrgs?{rI&+yR3> zl6&(F^#>1qJnbQAWuz?BGSacw&^V^{&Tym%>z(7twR@IMr~?TO0HivO19hpk_F{N7 zi4i8Iw0ds8Nl7WE+j4cId0SM|n?js`+Pzs!STG)6W_o=b&4J)`f1!c2m@~jHN z7R2)gCWCM52X$JDgY$kNn*1`M!&zha*X3Nl`*F5TK-0DLu>ealfkP;Lfq-Av*q9Y( zPy{5wlB%kFU<(yMuJ9g}%9xN^HpF?hFf&HjI+UmJ(aWj;Pj59Lp6)y4Vtu@U5s1P- zvDx5C@i3{Ai?1c(^#Tp;LWy)GwFgg1s_o56kY|-_{ zMc4lxV=$s$CSUuK`#4)z%0ce}k1sTNiJa&4NwO=M4L%7-#+QLJJKI-%YN?8fg@;FT z1{3lR^IUtK`OqpQb#O3AtOW0o=(Q*~Bb?t4{iA`q(98}Po!h!@#a?KhMhv0E0$`Pp32Jtv}e*YC?NGE@N_WNVDb zcys*eeyYgU4ewHVin#F`Cw%2WbC;&yun^UY{KlvKCZ;1&Ay|v;OC)*Y7d;FLNIYWL z*eq+^GQBRHv5Q;sqx#I!crTI{kQOB>1R$6rL=+&p6B{k&7A$Z4gCk}OUGb(U(b8CU z50((5ctr{v*fbQBkX7WujaD@a23i~n0wo3B>xCJla=J}rEvuHAkSD!y$eSV&tMkQl z{$5Y;j4fXYQZ#CJ&?tQc6#aA*lq}&j&WCp1l#6j`n*5?~weGsuZjSW5^pus>qUmim zfjWM!x8zTL?)+z?kA8Qh+iG{U;lD3GD!N)xMua5vL~fYy=B6C`y6HiFWE^G3I1U_{ z`5j2I*L$Cb9eaR>5MX+0W+2L z{dd@HHeJo`$OAW-@9Mvn^Erxud*w>DKkMJ`ZndRIrqUyC#~4!Mbjus2NP4&57Nqb~ zAyDZQ-FXX66c*cJ6e(m$Co5TQKG%1*Wo+iqY*?jx@xIBnb6!_DPuG$0$*4lyz74nY ztEYZ>x0vVeV1GHG*M(LlC|piv1@b$xZ{>s*U)u9o2pqHJvL+oxWP2(|cCKXp zjcFMZPdwS|sj;tLHv-6bfxaK9*7~PUPx4e7c=byylUJLv^2xensQD+K9`@7c2?iHeGPy5hmI0JQlM z9~B~QBuxfr_vR502*+MX#~%C8p1+K6(Eg`3=&v!>Dd9~>SwNY)u9)a)C8%eOny%`^BN2aj z_44JjIM@2|qAMXtZbk0WQI)=$S8wgCy% zQ$wiMFhV>Q@U({~zAKrC{K$VaXTIjpx8i-MSXm74ek}muj$nj*81954D}vm|89TnM z{KR^S%!M$-NX@&zEmwQId1i+V&r)9`ywYX#)w>Au%dh5=-VK|79bL0JLsboZTBNzB zBN(VZR?R6~ZOOmi7+yAP-7t(MOP_*Oa1e3P%mU~VIteHO7F6i#4CY0P5K++{!sdk( z)IZ!nU+e-&fZZ9eF+}&p+9CgCqZ~EfY|tJ0xyHcQN}W6-6rsim;izhz;BONrZ8CcI z@5jqJ>D{350;RPS9JYWPklsD^%_H<7^)7n2#hIxAZZ!BYA#Uy{4Jy#qlak`jzt(g4 zVB@>X0(MoMQ`lYf6p9#|VNWzQGEm0G#@7TUWmCSm5J#|4dui!NrP3Dn> z33+i=SL^Hli7WCA#V@REJ;*hC^qSnOV>yUe=$NhqtQ^K77C;eOd2;ZgKeAtZc8Z1M zQ{Z-`R8)BJJ)b~`NdShn1M0+gpP0j00HD+RQHqHM3OnyHlJUy0Jt87+OiZMpdNcC& z_RbsF0YMF{=r}3hF(=y(7^bRw-i6*v^-sA(PhS!r7tv@_y=ZoV)KFvRTPF})R0xu$ z;-%736LG_t9+y`g&QZTbWA@y|=E23fK;NMIGxjBk0WqRl8UAu}OJi^YjaIcczYncd zXsTI`KoNm%BgJx=234$eTr&*Tc6)&IYMz)`tK?927Ty-G@9gA9$AZ$`9*{+Ij|_XB zkgxBXAa>;-#v1q;i_#$9%i8`qZHMaa-O%$RRNVN9_a~=ov~-D zntIWKVvysJ-%c9%$caWlYsKmxuCFha)^^Y7Sx4q`j&#jMA_^TYe^XbByj!$ryo+@7 zo{~ZJ0KgX9ZlU?_n0us0+j8tr{;9GU{aNJG>G@t8$A%Rez+l`Lo*_q4hK32$W|?rC ze(2ptFJQ0%Br$k2uAND|{QO~;Mc)UkPF8k!0;_nGc#-%#f=HR7GbE7z5$zv@lw;sR z7i!1A#!(VaOqt&>70jYVgMGX4;>#^(Z?n^py}gd)U?T?)X+1z*%85}J8*pZr|FdNY zfwB5)&P-uLjv?RmIB|ho*lab=^xYLKt-4t;+$t?s2X<%@6{LUo^QT?;57Xy7&!AI%rb1q2jf$!w=cZt>z{|s9 z{$T>ylOys<)Eu`8Uc4|b0kfy+^MMDwGU4!GOM|S2BEkrI3UaX1P!QR?MfS!>%n5`VFKPiq$`F1gYK<4UmDG$>Yg9AY^-q8{&dkokhSmk7#}I`1)0OuKL2ABpdWD$ zYFAiq-jJ@xQ) zZ^7FyV2Bs(UXw({@cjcO`7y>4d1>J-ZVtO6XuukZ)f*lWp;BaK)h)fu?L58TzT%Y# zy}P<}gn2FEk${B$TV#Mp3kzv^|^~*-c#psKrbzbp;oV`As&n$RCqHgLCd^-)zYH65s z2G==OnoVvD+L(DzCBD)Adj#aVvgXEwuv~4{=3FFYUOui$sv4;97P>VpHdmZ=bcgk= z5=C0;v#f6?HT(oBvVVyT#GWr{8vx%y`jQiKtYN_TFCA~qWJo@&DNuOFaCn;R0v9HNsQ;Ayr(Bz zNs@|NAb>4;b_EQUe;@zK*MLG}7yTvq97~x1_y>`)8@xqrqcj_cbtCXR_w9=jWc5J; z*hQQ1TTI6Xc`Js0%2K)hv`DETd@#URH;E>d^}Up-a1J1slA16ePJv{BARw_y@*v!z z^sjQx>xBuAe_+Znh=!;Tu+-JgdAh8jI41VMcM$o7F4}Zlc1Bh@R)Fe1;~NZt9P%Zc zW0Jtb0bzPK1STAmvp)F)65=YH#S{g{ICM9W1qeU9Qz%v;Y6Sp{x$dM3_**kyd~4p- zj^4`_mkr*v{1$YSdKylbN+1D0tf>1r^ zF-O&lm9`M&;wiKl5wn$xPKm7C=EL!^6i{_q-9Glj)mn^FK~S_ z0p2c2n3H)e)?)x$0byjwaKa(FEa z%xPjJff3hNSktTq*WkbCC>X`P6pfB5i976c#xL1eqGv#&>iXssn*Zbhb1O;svOD!Z zK24N)!0%!1dP|2k7eYwZl}KaBE#$xTp^H^=H#=ELae?2dv-dKYH3ZsSk)F=gYjN7Y z0@kdiIes7MA|0#FklIqB8UkOLRpy{lDJl8Ur_z;2Uxjr_&~4H$`v^X&{L+kc}vci>`pGKcbiB|f)4O*)%KTC=*v|x106lr5f%z^fM5%qR|7bVTR zEi5_8RN+VN!OI85q6K+kOaz~lm`MDlV|~+eQ}wzWJCRF+clrM;sPum>KhHP{NZ)J6 zKAWT==WG^Du{;^6QJMF9E8{@ zS_A)s<*w%B5ov3wmJ zr@7}hC3R!d*l~c5<^n_SR`6LA#rgKhot@|*XkSQvZRy`N5lSy&ZSfY|vlV`#bjx)pBT?QR3I+eR22q7dxyH`hC*(bnJY6l9k~!t|ukG&^k%d zp(EotN81$+nSAw+Hb0!UM$Uth`c~;Gm1g=i35R_+q_vo+Gj6S3kRtlGl$_|$~)fLs<22skq?^fhp^^o3U zOXbV31P3tayBZxr@hK_MM9@7NH+O5S(A$_>Prh3bBYu9 z|3=}KohNJ}Oj46*e&1Y-2Q%@Rmi=ADgzAIJ6=Dj*@{0MF94v5jjIWt%==$Z*W>`SoXjkEa50*^(M}wV)8E|V>yIC`FtiJUs`{`5;@XWqp}$P z%_ivDi(WW3%Q7t1c~^h8&gjzfz27_LPwT@B4-(yo zxHe!0?XBV}$qYVIoo`&>DQuMa(C%bcy~CZ06K>F0X~%Lw8_e%tDIy&>a^wg!qaa!_ z%gP%*IWX%UK<`_4z02X9KTsfDB*V~puffI!MOP=l(ZsmPLFV^o`|p(Be)oAw8HY4D zzxh9pVo;SpM4^Xb1n5x=&fauAO$FuCB&++Eh~gIPTtn!sU*_)1$qepzQi@8s970HkQU`aSdS-Fv!5R7yT{_`1H( zkVkCSihB*J^&jM#(%3olMurDIzA)YgKx-rZvK{l|14vE9jt;B*i;7Js-czXFo8M*G z{VWyKG%=?ISP*o|vJV*VVt#%G3NYM>yaz>4lTc|W&Iy(qz5I`EiF)=^LTU2oQPeP< zqT>X|w}1oJxq*g4!iwP)T<|w#p}=Krx~$2IDbX9wi72#emNT3adu|J>(Zyhh8YNOBJkY53>>aeg9(xb8NtB zg_lj}233J;^?{y|-^E!rxngAFuRhqldw%2BowurCZ+rD^L3N@_=t}0#OPJzE@Zyf4 zjk`H*1B0kekN}{aCvdQP0ZdbfGm`$Ztc*+_ke6zB&$9zGm)scnklaAz>*~dlw?0yo zb)nv%tt@BE&*FQmM&?~CIE2=EVqySk%XssUda~hahC9qsXse{11co;CCc( zL;wPcM4(N)=o+>ncui3H8$fFu`t*9a&xaRu3DSL#RYpF4Cv^8C5~CW3bYc*X_P;#_ zojfZWThY*febHei;(d=K{SXXqR=d5RfT0+ou~))GCfATyWC2iiZq2bH*bQjgd5B`V7(ti|AG+lM}Z=9BKIa5C^-2HCfw;PJEjda6fa~IgoaXj zs|Y#`6=Tagetv$Uu!m6xpMRHcauP>zH}*Rr4t8X3&sKywlE|~sjCm3pz35Ikj!^Zu>kQ0R^ZY;{W|yg z-W3yT>;C{cT||-M7zslr-X}#FSd5{7@@Rm4&m-AoiY;A%)11ekgXe$WJ9SGxNghCBu9$1;vb zl_XwHrQ7&@ou@r(jh5$Kw^th=C~@0;of{hhAR$n0e8i=2F8`aeX0UH6unSE&)^Ypz zh2d2i+$G^ef)3i95P3uo$59bq65P*bw6zZvQgu_)&Z;r!g&*Uzc2Z9rhbtHuuPQjH za{^nHco=0n>1w?ft4K zUJGyRm)A|qtp$nJn)H!@HXuP9?pf8i#2BbhBA2e|a6rusu7KOxTE($~B9s^CfApO^ z!I~P!9XO*Y@*%7*P%q!~{DEat>A12NU+*PzrqqPs@?S|CEtmMewZciX$Htl|+`E$_ z;rS%*T=t#tPZyv)(vx)v{6Oc+Z9IPi?QywFMo#6wiL7X4mU>!ugX^QFkPu42p-hxC zJ`#yH@ZAAaNfjiTqCcFz)E$AFnbJ;BIDwf#8Bj=C|7$HiI8Xi3f z2?+|4U?Tvb6xDNLwzRS(txA3VdySop9RkC8ut!f8&H{K5m#7y zNf4+mUSA(3qy)g8lTOpr9Nftwk6Hb0*&h=QE1#aw-fP9Am(`)_X9Yd5It9{6^+tN2IK1G*5bJ_28mZUPb& z*Z%yFNf-@yklGGb9K62%+SV}|EgF(Ye#)FAgRN+5Vmx-QI)k~WoE_$t!(!WahTpW9#z8))^o@Qf1 zYE#YnSK@j{uXhKE>9J;aH8pM3X0c9kGKM}ZFD{sY&vb9L&h_R!JbD3>Mcc-)PBIC} zFMYavt9Y`_I)HW;9(D45TrsD*Iw#i)Egb(~_~w|Y&v{H5pbq>k>5Ke$rl zT*>$4EECBKR*9Tj_v4p~mQl|H7=0(C4wUFt&#eI9u@4UITsE37wQSixb$@U;J*sns zyisY7_Rv9=5YWMtx2$vS?jp;#G;ChP7Z{i_Ijlx|Q^(5;voa_krp#6hynzP>&v_(}_h zQI$|3khwk#Uak$jE}5<^xMF)RY=53$*oO7sjPmY>AvesD7Z&{ni4j>|e&SZ+24%y{ z<{_!}RAJ7@U^YvDDIq*@()G7ba34Q@JT8YT+V2mOzI}1~fj5nPFDo~%l(V5E)7r9? zJ}=%BlPY_U)$m+WEPaU0HSI14)vD3Ky%H_9*qq`IF|2a>m%_5(kMG30c3WuNsedr_ zvVglw^k7D!INs@c2t}Lzto!2k>$%N@bAk-}6Zc~W%Q9Hl%4uHhNFS;R)J-7-RfGP6 zyU{^MMAs~b9<8x}8>WdAH78eJPown{3-S2cX;hXL$Q0OdcP; zUa58Ty8@Ml#OFh6t~eyKlHnEj0A#Ew*`H`!BKfP=#j~;#_b+T5?{GUqyBt>XBUrGp z^+LMkQC;seMF&4*x8zhR|MPt@<=9&hN)GzyJ2i8MqyAu(5c|e}6{VSDQBZpKLx(|r ziKy;@Ba=C%0WfwYx`S+uK!_7)R<}-`S)@$(Ur62#wQtqaJGq_X!Aj_BjZj;0NIPIQ z^#W>Fg4XKQ0{AyJpm`pBDA8Dx5AP^9sFJ*h(uJ(zU|=eQ`U5a9-H1*aU@t%E$8jPK zGtYWlUxxA-4MV$!eNjZiWR(++^1>j3VB>6iTFkcYa{)%aZy#I}SfD>Ka_54+sVO_b z*&zbikRT29DM7M7fTzBf#21rvTwM3+Z5P$pG4Vqd{Xrg0 zjg5pF6tGo){rZY|8a)lb^?OCmg>tQh++N>=;MLmu{{25X@_J<(tjX9BPVD$2w{E{i zlQ=||s6IXmElJ#NUw`q=9ffP7yq3*OjErs?84z3V$f&GkVqrl+I{ggN(?*1*Upett zt{iKS`B0~g#0q?l=di%U=IMqZ)R5PTlO_wqY6V+BSdU?yBaHT9U2;>7h!F&#|32Ci z3+llcq6~zb=UebHLFVZpjT}d}Rwls_T!mqWeLhK3@hMWzakP~70l?9BbCZKKiR>LB z?8k^+ZnU_hXQNqgH@dz1k?}l%O!^E?pep<(n4YQD@|g%kr3{=J=rGjw3QWbD@54vN z`Mmfp`srX+v1r4F4ajGWVni!35S@eCrPE*X+YWZ8@cX(i$`g2Xr0E<6UG(AHXQ9ZK zCzTe~)|t{{-Qru3fI&w?{32EFpEwgS?T7DV7D3^jL8=55sJ^&~||d zBX04Z!y_Xzur>^owr<&?bZ_7N2j_`Yiy(}2J1x>OdKYfotDg>y@ z9vJ+==Xe#`D~9itqhOHK)D!|97?@s5CX!tZ`m`J&s`Z8rG^9wZ{6A9dx3(=KxfQxp z!O~f{DoI9iCXprA8?@U`n_0bPzM&0FEE8LdC&_fHrcvR zF@BzB(&PQH8hOd$#`oVdHP)xpK<3F2w`(jfu-Y#=xR@CTu@26hw7ISn;slgW2f0rq z(1QI}+}S_JwPhM%Dxfz7ygn2<6u=lNK=2`|)VrOY+C$_mXci&b7L@ShUqG==mN8m` zdD7F| z^liM{pvg%+OgJv$S3ll%WT;|I2oLMZ@QlxU4t^BsJ9nidnEuEKJ37j^$)px2n&+wi zHIMKt*~wy~v7SCFdcdgcQ|Df_E&Ya=2f-PQ88Sz5M*wbp`vkkHU* z-8U}|@5t;WEm`$k;)?_X7&DveJjBJ5{l741UhSVOm^c(zujT+{`^WRG(kNzXp8g3i z{jYh%FE{$k(?z)-D^pvmC$}qwYx{n}1)_)+8y*Ldi19QU5&wYG1WbqJp65Ue=^5vy zdX()yyojP_V6Z4Zehjzigvu1|Ma_J9NX|%JK}us0kzIpz;rdsT%0_2JPupoS+cad- z=pSysQ@Qs5=N@lYovKXR)rgl^!9eAS<{2e=mj2}PdEv4TM2w`*1@?J5n?@3BKiY?B zY_-pR3psRBz+0qiM4tOjfR6x$?23^-;7V;NdV)zT`PL+_|N4e zhd^mD0C)~t3{=BLJQDBX#SOfx>OG8;7gS4VyKlc8-R0`7=H$aEn;}6ZrmVfQ(Z@;z zb?6j4LNSl_G}4EE@o9@9b$k_cZxg>hAypUS&>;eLtr6lYBHCzJ%aq*M6@olW-Y2}Q zA6X9{3A=bfoj!JwjJS|Znhx4-UVQHd*8zdMS!j0^s>m_DlMr`5zgFc)z5%U)*Icpm< zhKMZybS@;nRhakVXycvP4UdvuTYu5o1=Xn_Pt~FF+P&_SnLgJQsq3FT+wRf<{xC!a z2r}t3{wnD+2s-sIgK1v{EDI~;_U8A4gAWII^nEx+%(uF~qE~-UkH)IaEyZZ8lGlSz zDMrwTp~ZhGv`rLR@d&K@AB!k;upf=9z?S~myi8h}T*gYTWzb6Bcz=wr!J(b9XJaNf zX?G( zJ?MzPyY%hD8_c7)qD8TvCz%6E0CivmibRq|+O!lFHgKsdy&M0p7U01#7-4`gvWSqq zrMqW9%hO&r)bE7R#H$X5#cTWf>g47K2Ee}%+HCd!dM$=7j~5vR9RGEBNF96!q6fMd z43*#Afx(Qi(_i2B_}E%ogF3Q^c(Z98$B9hA5XwrBhsr5^9bRd1!e(I~EA3Z^m&$e* zh!G8uOTa?CppYDDFdk5+XK2q%nR}eIO+7shqdZ=xrHh7~e5G>nOUh`a`PK5<)$(=l zHp8frOJgh&oXnuCTlEbMiF^1Idf<7*#A2Xm9^cPAN1weEuR?sQ2zGgLGZ{Qx1x}E;J#&T=fLWm{c zYB`!#pBO^tQBv!G-17FI=nU2rPc7UEhfM zY5tFu;l*AV`Pz{@u~*C%{L?Hp+X~WK9DjH)qowZDzr?px#=QzgWeY8t<+@96WleB4 zeo{C-DfZo5U$6;LmvkG*MIZi}IKOP7yy%QJE|vd>X1jH1T^xg8PN_egu5nCqnZikn zTZc53WUT0cV3z2;fDT}E!Rq}l86o?;)9v(cywG|qR-!*-we9V-j{6Uf_Z2X!-B**C zQa4XRr$H!DnL};6tEmfl*M=n5|29^}MAjxqbb89gnZwc*{34K=CDk7{c0g4g{KP`k ztT<|uhdh26y=#*TZtuv6Is^Pa-pNKrE?St1OS!^K7kc}y^Z55BpR;36?tM`gvey38 z8_esW`KnZM^R=-}=7JCtOqI|6T2H!mz%Rb+xQ1*NWL(~}?xp`e{KSg$j0b&ue0B~q zhb%SGE8Dz%cxs??m$d5)TYh`IC=`Vle80wM`z9&=qC(N@@ApJ z^*6niw%b^8>1Ml;Q^K%$%gG^O2~jrtc5{ZAmXVi|k0zEOreMNKC2FPH1=iWS1c5di zZQ6A9c<8@xuc%g}#OmG5rtZii!lxun%BDY*+Z8U=(fIoFepXYQK<}1c*D4AYWHLQn zwR@?2ZGims!-^=#ND*h5uhyy!NjqSy_g))UB7@d< z&bAApR7Fdt%jL~FcaG@G?6aVE3b#ztQMRVhLY|wk$QE}U7hdwL_Wm@zg?)pTy`V3T zpk>WAr$pQ7hF3VB35bXnR~+--(PU7~$7OZXrDf;7)|*pL(%fq#m-AilXt&&!Q(jgn zAZcFMZ}O2l`<+*4NAdK}2@$W)?<(t_<^q5q1O!fN5)$vHy!v-LU9DnN4%9D*)AqLY z-cwpFm&CEWR^qU0?O8iR`>U^|O(;gG{M+eU(hMFjjl(I~awb)Wva(|-a z>Dz1cx8E<$|B;>~x!j?_m(4!=dU!})qnyyW<5$_UJNL{B9HXMXLH!YUxxJS=bFeh_ zUh42d*3SiWEeBM?GCNz-#f({mynyZ*iU__OJq z@2>x3vd$uI6^K=H^SRi%ix3trW8>!@3^~l?n*^+OuCB zNcqaRYVkt4C;SJq(69Yr3vkwksb0m=u4JL+Gu=V`Z*qCdOv)+l%Bl(8z6^rr&^UF1 z*oKJ9U!W@7j{>&m1RAt%1@2mUJ2{V~oaKApP*}_k|RVwmW+E;+)IODaE z%rBb0BFUsCwftA?$8G!!3=B}UV==fom@aXt)q@;|ST9(_ z2K4qD4z&&`f1opq`_#Lyh@1A5>B+|EEfC2l!9H~V#8*1GhV(2ulm8tyKiO6<>fq}bCz7CTW*}HHVk8G2b!b~eJxck~^H47@gtz}gKEH%ZmFs|7c5*s z`a;C<6&0TbjSd(M?P#%W*!4IeHDFt5O|!LoB(>r4L;Xu4eGm?-0#2-C%)Ia`9}j8% zT<)c9TkH7b%V}}zO`rIKn#7V!yKOnAPo^L0Kd`}5D8sjD<-*U7c+d$~$Ug};(%~;I z-8+4^p)gfFe<-PwLGb%WPN_~Y2YW<*7=Z()g1x-!g@}1hbLL1+3UEBQ^YjE z8P~sfrDc{5ut)Amr*WkAVy z!`!cgG`y_ycULU@Hj@b1`FhdEZ!@-q&8a7CVz-UcRKwHs3}c3p5?@$~{j}AwaZ*2K zz4o_T!LC!mQ4fXlwNVdMR#NhY!dlt+yNe6KB=YS1DpGj$_W+-g{+4U8W~NV;$CR@u z1|HxY|7OSk!*f-K!UfjbJlpT$L}|hWR$|46E=W#y_)S0yP*#L*;buHO8Lz~Gc3d#{ z*Qu*tsqvRRZ6YW!$4b{AY1i)Y2ih0B?u*DlTI>NjfV70NBoW~X>ZBe=2x_-Ea`AcY z2@tPO+P3WQmZVV5pbHf0>dkDLP6sG~0u0D zNl{AxU1b@_MEdXVex{6zMzCyKe4FEsT31F0*iVSMJSdQ;-kUmbEk;<~>A=D2SNaNv zCJs*rn;t*>N$w1a$4YhxS5=VzS77ArZdz&t+yA@-&un9j-Jn~I1rB3r7r)@?2V>t_ zeluHs?d=hi0mx*U2)qhMfjERHK5ZU+w75AUykVrc-$k%(nVVXcwb@@?)u|39Du9Q^ z(7Z~dRZ69JJm&zP?f$JqFFa&6s!_I_zLx)YdsOfc_y3meW~sh}uHme7tbtCmffLVt zi+TdVFJ`tIyi$UPvdMCz8R$A4s4#t0ne*q6amu1GEr`M1wJ z`HAvD`b|79m7U&1ZI-F957|ra>7x+hi~Y>F%_M@IesRf9?tHiAxN=ve?dao^6l%)N zMfc*^H`Jh@uA6+qEUWF!$qW%WA`~t=*vnNXBcwH84MJ<}#)wX-z9z zvYpOKGdHQag~RI#!R=1K2v=2PX+WtSia`R%6@;I!jEkm|vx~T2PWLIfCxiP!CVx0M zbt*Y<%sgdOo{0-O!IyULYImqpb&k_TP%N&NWq_s?i~K^xlVRceIrkS1x45tHx-}@Q zJk*zB_jKWT`HY;jR;M!7G_T9_)}S38(Q$ec9xe@PO&v~S&jm$A#VSCxkJgrz< zg7fk?)btrn_0BFgb7aEkkO-D# z0N2+8*~$}|-#ZFXIwn5G+qqdi=r6;WjGiN$$)VgK8w(5i{zYFRe|zhO3~MW#9o9q6 zul$-Ea+h2TOkT<9ZzFb#Et`d7WySQ`LDWd*2!BXjb$d z7^MikA@lZFCT^YEeVn`OPA%5ei)Dj?z7LBCF@c3^$)7RFy@W}9o4;jK2jjp$VxEGu z%@VH9vvcl0FAmhQ=vMMS@NabL*|ztPz!ZZL%Q}uj;tkIiZ~r4ZzWZ$8M9s0R^+JUI z&`T<~&}>lkhn_pVcWcVG2tot7LulcLrC0p>Zp|$fc#f6(l>$5kDSNLU3J}b((l04% zmmYm$=}`OWpA-Kq{HTZXu^Y_)Y}z!=Z`G-thvE|m)|Y7SOaRBCvNo(m5%cCny)Vn_1}7%=R*w0O@9v{+XV6Bmo8Op z%$myUO*_SztnXf*o#Xg4!Qb(>&W4AAO(>^1&;;L{hXl;tqT`Zmi#HS*yt`o;DJ7|= zbzc2<4LNJGf@3h;NP_5yg?@<=`*-O!i&F8~TAt(EICfn7c|9qA#&YmmiVSreQXBo* z{Yek))E6#9Iw6b|JMsQosji5ekl%Jo`nlB2JcEICaXD5Aak}H~#{(PL1C)JkwG7t* z3jy2t2x5@2>CJ2Dt;9DjUSi$-Ex965I2Wk`30>@wpR{Z*}be_LN))xvwN2Z3d^4kY9EJ6PMA5x!Worqj*mLu~FkG*o6R08d zj@Hf6c!Er-vE zK(mp9MVZtvS8`#;yt(3^u;rv5ayOV`_vx()Y!*yD2>anE9jLI0Uyeh^=HmI&TEW3n z?gB6RhFDEtLxZdU@0Dd>lBqHZZOQ=X)6j>?Be$4)c%){QuqvNO3{DDs^D99{kc%cX zw@=taK<8P-MSrub4yjHKm#V!xcXVucC7_7n70eTSI!Zxb!P7pOw-gu45jK&XylYrJ zp*BpBf!o&WNbR%IJ5(_&XdnP|cwK{ETbBXblMOzbo*7y2y%jYgnh5Z|h?^Y!x{cnD|mFGB?^60Tq zj`YJnURSOw5~?#w8nW>_sxUk=CVzX;{dhzINeO4=(2^d^`Ew#r5-Yy96ER1Rzwtj; zyw!?4MmG4QWS|8s7FBHCef#$PwYHomVZ3V2kNHh?D3%3mRv6MXoAI=jboftN=rx>w zyNCreL3`FcXFM>U^Ep^K21Sp9*DnRnk#)aPRiwGT3e2q$vzQC5%3wrN7#+Rs(C)dT zltc-+U9Tj*_`Zl z8?9d_DN`by+1q=o-+?dE}PX{*Ls0`f$$`MxQmt(oQMm z9BXdgtEbO?g7;vg{jHq|^)MOH*xVJAq3mXxX4J2AF-L7F-|`SIWH4-f^!u}Q>YKy8 zQJ1_8obHqf2OVDxWfsfA#C}KgSpI5>mA%ov^p1td8WCUo#>l-;jcSN=Ep2yzKg9X~XII z#bBQ#%0YIvt=@aIz)k<4u2AO=OJ*VoD)^jVxRSRaeeC^Tw@o5aesA3;!>0rPo5k(p z%Zm%P&Pf~V|C736waPu!D-cwe0JY#mXV&7gRb<-wiLnK^HKiRNa=j>loYK!BcE3!| zF01I<+7B9EQ>S8+t<)7zXC3o7-oFdJMut9HwL9e zBd`@c&kHPG=KODY+)3)i8g-Y42iPsQ>AZLgu!7ooin`ooZ&790Fg+jBNzZS4r_k)I zgps-r3H54oy&xe2QSgEs1{=hVsVrWJGf+8V*$J-@>m8rcot{l#? zxsshX)Y-jp-#Pd5VvO}~7rv)Q(hu<>cpNi|mF>P>+4jVDtqO9y8DyOu6IZxqa{vCK z|9R;qhOM2kt*?*JRAcFGtlnIjdLgDo`#yC`@bYCX_br=;zsG*$z5n-)`)<<-w`q1! zb2?Mk%k#zM=nW7zJafz^akE&zR3T+@F-s$*-0wxmNn^TZl7TRAv~s}(pYZyq!hEmrdkz^D6s)}S@yfg?WCqc&^jDTT!|_Q0mja*uG&lF#Y-q3 zd5Qb|Hs4Dd?Q-o%6O>HWFX$8${LH~v=<1yUs{I^#>xgRa9WBj95+0Tsyzn8fTG(W$yx>VJ-%G?u>%TcQ7Uzc(DWBD{r zPcH!&;vIxqWBAL97pKFL0Iai({90O4Yn(xm!M6={9VI%N+5b8_H#b*Su1)fe^bh%Z zP@sGk`&6>T;7wy9M7}H#uKl&yOe$E&&wLG2i35r5K@PFlvZ*gC-P#pwXMXc`_dOn} zyET|~cir|EAV2mYyR0I76$-zvyw)v#bM@BMh9Ai$tH#@BBRfTIKX-hk9k@kcFz9q3 zO_0Knt(#EeK{@N{MoSenE8UEp5dGps?X|^UB~_5*f9~A1q{GoeZN_XH^5)ZJkX z)Z#Ti{irdBZIT7!&NohqEG<}eIK8m3Qtixv&V!jBEuLET4aLu`Q?R(I8+B~S5$t?G zCv2>sQmeEw-|ghy3~~wGs9A~lT#-h$>VZd1GJ<8S+eTQHt|tHQyN8d@q60tEI8DFw zNVQO4w6sORwN(A*@mxm}vUC}pqsqz&B2wp;t+#fcS-kD=>o_Z)Kk19;JbQcKxty7U zlN1tBIU8;Vcln`PX%b%ZsAtAv%vSK9$^N}&nk$!X%xeo)>eh|}g1)nFpDH!dF(&6c zRc#QTw2WqV*Gw!fg9M}Xo8}iSef^H|PE4 z6DW4pCgT+dy>r#~C6zY9U@ z^&429#Hh;bocyxV9tU$TlXGTfz0hP;Gc@d>w?-#hrQhkpahPW-`j&s`xmY>)oxk=x zKBGMQXP>Un?3q~WRi-6I4Z=PGZ?veUIhED9^X=*JIgLQ8PlZZoP(iWh{GYzWn3eeb z0i!X`+(IM5wL0eGRHF{SW~nXYaysk8_cTx4wTuCPn>b07<44tfTt^C-t&pD*k`U>R zi*Jf)O#9tKIqvQppXeQb2GfvVz{F8(IaXEOjo0bE?%?JPF5;sl6kA%K6FLBI6F4}&onIyOSj>gDP7%5j?96}R2#=y0bi%A&pShiA){OrTt|RWlA`nJm zOT^k@gC=Fnl)V^?zQioxtSPDW!G@d+2fQHrJgFAgMQ$R@m= zGkSiUSt%zoQyXX(*kpN^L9@HVxMlIz&a1-$#H0RHs%IZ&`kNY`oU?uWva;O#h*Ar} zD2I0|nR{Tjze0h^0jOIk%clB8h@V6{z5zup4Z@2we&_n@MTFFx4yc?ef4Y;_>HA+7 z0%t8x6`-kt;ceRJSh#y}fk|!tz)M;vaD>JDZIlzA~ z^7T-5zYs)#^ljeg5%+0 zuWcf^_pyohS2&7*z`z%vAROO+e(^iQH*n#xFX?2srMf<8Vvrv#p?heib2O&q({9?9 z_?+#R(=`*8`IWK*#GjYHv$P36(rwH|FS}%c)`Jqp1>jF|5%{~)sZmuQ z*XPVozRA2UN$r`+iK{+U``^8{n=|YG-yDRou6|3cN8Tn~<~o6#IvEIo64odwCkCEq<}| zh5JwGh7s>XN)Bbp6tS2$qIoS1d7hwQt~PoF{EO9QgY?2i-m}Ym-dEWga?M3hkE*vf z!?d1iYvmM}m^1$*#+Ug@^;8VU%ET^9hj)=*y;&A7eUH~RC8~OOsvkAf*PbHTzej0e z&{h@15KwgDRP)A!M1WP_hoY=?1#$gDJ!vL4b#-MC!|q*1sniRbb{L7;F;P-$+&o+E z+7QIGJf&TCNZj6 zRC)`&*iiJ&!G?>Hvl9{}F|(_jRF8J8tel4~!{UV3Lu2wktAc2NPLHGU z_PFF`w(F^5d%3wgV|iY0E&rvn|Ie>$`HyE0SvMvT(B<97r+;qUx>X_m4^6pby$R}# z3-|tWcCG;(^#OB%W+k1LO$i2m*LeGCGYaw>Gt?r7kcN*b_~mF#DODISbMw}Be!YG% zoA*dg-b>3OOHa_pOa>=zqb8p!Q9|Q%lg#lvNw&q%}Ukl_39Ed8c(O&7b|C}x_)I$R???_ ze%_LiAwKu(@eJF0AjlNxR-FJ-dv~DO!TB8wbjxSZIu*&b!TVNmJJHVM9~vrH5cX7~ zC>2|SXvcx+??=V^!X`P-h2`sAO^+0wdxDo7`gt zNgD1Zs9KbF{HCp=qn34}v)7I5{yZlf>6A`sb$`!`WM4v7IC&X0G2F_Kpk~a#5~iW$ zU13u!S{Sm(abQs{Uhu$B?R^GQX4>O#`d+32CC!Ia63cp`%B0G@92enCk_Q*wHdPe5 z9a0d*3x+@=QCPNfMJGIHm;u0}t04Ui#g15YwZYOa+T<{nCFaPwujUMCsqZGOa(L zGd6A9f2W;fETiv#{!tXzeO4f<2k$fY)=V}`L}z#?I1Q{4mt$eoR4j}!S42TIno>36 zsTF2oENg3<0!hzsBy)1q%a9zh0v%e#d$EQ{63;ID!tg!vXqx6vo2E=u_q-}mE(cd6 z%sn590tSP&FI&BY@z46D|KIU{`#b*qN{`Y)*>#4ZYfU_#p(kY>n>YYN-N5K0m}7kf zAbBJk`;tx0X}|3MU7Wr-QpgF5MXW1(D8b zgeH;bR}y-#VJWPMWms+KZx5kiDn^KUkH5$W({@16OF!<3Lh|AtNg@yEhE+IO*7iZLMGd8!G?}HZWRk;MEgNjg zQiB|E0-@uPXpp0chcHc(S-K9>E-bJK_%&M4Q=5Ry1chqoI-xBSNCV!a+ zB#%obD=&up12AtOrTFq!S!P6#!14-ycM4;lG5!rFIT=%K9AE@}R)&CF2n}#^J&@1E z0Mv!rmGb@vnwFL^UU`x2m9-vv0WLKF4Xg%#{y%}8tvB68HgPPsD5wbO=rMv71DoB? zANpK_ua*{3bdQ4Q$NT(Ana3bvp@NQ=NcN>Y>+#Q7-0LfWhkswgC4baX|GW0WOMm>x zLt{aqpU$#)c7<1Q6P-XhyCp6h{DCV>hqOvwiC)B$Zta>UiT z%&tMvH3qV4Je0n#k$2t3p0*r67?C~Ve5fqzAJUJHr)rJw)%ANh{^LLm3W}MBz$P^c z^Qa5;e@h?QTO>ZV7n9XoR*P=bdt>9!^C!*ktV<8eDF-Id;-5WOWN-YR&#fi^D&sai@U zdVM)M&y(b-jf0L|D3uCEvaR#jxMCHfI^Hff1s@e}dJi&E;F_#+(0;hT@K>;eK0gWK zt~*8YFx_TyGVSKlH<7B@|4;6VH4G$flv+;jaQpQfyxseG_mpO&NspO0d*b#{iQIiz+!(4P$G@R*dWn8B0BE@7d3-tdiL!d-Uk_q|CMl zx>7O4?F7vxgig5bWVq$KGs<-aPN8T!6*Vslxx(!{?TzTexApc11np?cOvis&C`zJH zPT}OqYINfeP>2Pz@LBho-m}T-3|#Pxq!G@Lv4~f%l3)KybdMJ7-BGoZh>1KxrYB8&FLg5md*VxsTd`KWWsGZ)aqn|n;C$5 zGcC0mEeFl+^K+>JiWl=H0!PQjwqHOzP5OBAQrScF6R8P5+83Qx)%Rp8!@pjH6? z+aI5hq>5ahOi>IJ;B{(3qbeeR6Zx^r@7|idqEUCSXkue54|U8Kg<8Zz&(PwdB9z5% z`-P5i3Q}dnuUDc%*iLrpe>nV@qnDTj{rmUfnPSKmNQu|&N6dls!R6l+2|UD`!cxzM?IO6KL_ifov> zb~tQI93+8;?p5CVe>@BN`xXug1Ia7kJ#xedwa(MGx9`Ij@MXh5rD4>EpnfKCLSm=H zuNBjI#H+}%QKQiJO~Fx5N@Y|nS!uhJZ4l3v*h=v!09|69;&(Ve2iw-hPv~hhAroXr8f839lFytFv5)GJG9ZMLQ+ipouq$j+i zF0Uq@+H&EkW6n`ao7HZ$r?At*JWpKErx$wq?E+s~qs`SrXipge&^I z12*fXs88lYm3ycf!cSt5-#Ybp&r!VCgsHI=DdeWH)TG5DMDDsRB1cd=$-Q^B+r(bp zfp7ot1E*Kri%ytaGQF&N(6KHvxmaz?LXAk3S1_&LDI!ehlSqM4L}aKnkaar+*($^2 zy55#_t01xk3P9OV*r`c1Q`8BJhNvx3G8@hv^Cq-d^2RF_YySLP`|;tWa$0toNK%lr ztnXuHFjNE3vlIv7mUU-hQk4yq#Iy41xFV_?pkX2++9aMPd_kT+H)ncen) zzi;yjribsPg!?6mGYyw-ku^5N=yEkGVHdQr*29ea_{qMB6kl|zmNRa=TowEbb$xyP z-oxDPcC}dPrMD3NFR_G(Lh3Nx&I+s-xgZ0_C+OmfHu^Ifw1t|JE&@I~+lR0AC^_zV*+-gLA!GL!s97*I)oOe_UVN=>Ho3 zFYG_!%^|2WbpEl@p|?_&7?YePmR=J#U4{gMl7D^{Jmr|3Lh z95t%y^pU*Mxy*CR*ZKUlA`rv>|4uVB!t?Y0~8Jh&Z z=Gm3_JB;k{!1mOyd|g9-lNwd(rllM<(r3SxY52X!0or$|%&25Ov)QVuDlz-6lSJ{1 zFj64AciLrLe!qHmERn9kZJ-PH{m9579iI(@A(L+tXQAC91J;0u*h_po?= z8bb_v{3gL4B(VxNX7mSKT1&V5tXCwN-sGfqvGw_M*LlK?q65Qfq^%I%Bk}O>pE7Wc z|1RH9Yv_99ruN)`r%3wD07&N0Cy0P#Uk}kJf@hxqFp>be`i6U{qs~!11uaOUiRc^z zoE=1ZA~w_lEdW=T!iH=It8ZnlCZ2>uWHUIqTV_zWjmBeI;5-wXm5A7+e*gS1dL{3y z%TQ5Nw*C9zsRZe7sk>qaS$pj-V{V}YT*n0D@(rAtY)>421|~me zC9#cS1Av;AvZy7vL*(MVW2Tpq#<0;I7WH%IUJ$Yil;EZf2J}L$nT`#(ipFLhQHpd(l%fkSEYEG<=39NnxF8 zer@i9NNwNr+@Dvw<_O=kI|~$iZR?hN1CR>QCX2WaR-{g>PM?bsyw{9i$2(Ogjy3@l z^=onk8^x?K!zO1iBet-Lsr#30G5dlkB(@M{(z9m}b$QlJ*ybL(wpp2`Z1>~89|2ZK zI06(St6^=qDabObz&2)i*AovaVFy{1PdOE5@~6bj629^#utnFK(S=!I{4 z!19r&s%vYH&e%b z+<(guaVM$`9V5=BI)McK17nm2=$h#AAXA780;t&5N$rTZ7xrzK?PJTa9)>y4ETF#} zsH@1X3zU}NwzyulVFRYjKSB&f zwg3TN#e3Hkx7o%P1u8MYSYdX~t$>(p1UAk>j|f=b8z)%+fVj(32}PCd7jsh@TrXyI zZjJH$_-mxytkLmXyT!}Wz$%Ko{5@mxx&+uEBGiPUTs+3E$PrXqk5_P*Bx$Z6c3IVs z9;Q^H9?9ByUKx{SdOi1*J=#1|H5K`lpk*V})EHCkaY9 zua34sEjNqY3$QF}0nr3lBz;6?rK$=RpoQ8*&sQ0uUV|^!8Ma-sX3Yc$SN-@$3nK}^c7^>GCj2R; zNhFW_I^ z4t?j?G=zAbGVt?nujVDdX!%jmvfS*|gND%jJx78^~Xf2EJUhW-)x;5YDU@@Bf zUg~F1HGIy$gd9+LnYPAU4uaHEdsqaV^f{R>&A_62F|90bh#%`u0^!uJoSi)a+IaC>(&#d*Dd|6ZXzz68g#mkq%~OU>*w z4RrCGcvs=RHYg18ISGYadcRsD|1PY&ScbKhgpzn!J+L&|!D7DIIv97qprGynqnd*v zW~Kgo#e^2dYa@8B|1R>>aLaI7vFA3m&RM_E(7}NNkX&JygOto3>SqvWlm}-4^)Xoy zo<4qa(n19()Rx1!b(wwZ+hrz=86&fE;K$^P6ik1)81e_b(*BYe*>o2HvO+-**U->1 zFoP>GyYVi3HQn-aFooxkj+dn%YkA33hwXV1M$eOMkI3XP0^N_l=G-=|rT>Dw^)sYG zL)#(JR3%X`l%4NRxaQaMFLhq?jVEiTyzkv1Vtk7@ilKEmX0)yL1V%RpbYpGfRSko- zOOWK2qY{ScwsV5y(C#DC_kB$Xee2FymC4+Cq%g1Zo*y~je)?JziL_}I!38ks3u-k; zJMU}%8AwOGtCU0Nsv`Ay!|iHwv#!M1aK#LoG8Q0<>4%dBuCik-U`ft2*}T~|1f9dr zP<7xVvsp!6AR6btl6UP2h5%JC-Z>U&8W8{IQwN$m2KL#uePl4X)gD6Zwb$jqQY?@W zSzKt`532Y%(1VmxCxQxoN86t~MVSZfqNexA?;xup_0ZPD(*o)DW3ugYQOZ}^nVYKZ zCDH|Mky8<*0*Cp>=LavkCydNX;y9$-!$g{J1+z{5LP0d=yzi{@#QEP+)Qd3J*E9)# zQ3xx}u&#oFC07ZCRp;s(IjsJkdjC1G-HLI<5`0ZjhE8Ib1AFSZuPMm>R)C%O$5-7v zx(|#C^RRd-gGSt`8+94hP`=_A0~{zmn_*Q~_G|8s-7E?xL}s*&(iLo#6n8lw+`6%g zcqCs_%;u)$?LIMTs1fA={Oa8oW) zeW)7;BkC>9)EDYzOBxtENOd`La$@n2oVYSnT?@`+i>4r1Vh5)xa zc%G!6himUD3KNZir2IyOl=RJEWpsWcyOy81;sN3-x==Ju%2$ zVG2>eJ=tm?j@1vW8xd=Y{gKR7iWiY1`a8)M=oSg^w$=%R60-osA^Y7|&`SU1RZq@H z4URz->p-r{ogohUx?M}_JS_yK!SnZqZhX#`0_4QwwDh#Uk zTK9u+;T+|VJwN6SV~zr#07c0_iFY*YDLK@o>&ceGIjLbra&mVN_Uy0ENJKWNg}yC?T2!EzXRl?!qy0`zD(!tKnL_Z7B@C%dQdtn|($z{+8dqV8X!2F9R zvPmLTmz9+j^PWyHnp40lwTyNp(6G>Athpn{-S!aI!Sp(!ct=5duUvH44^i=3kJ*hBq zQ=c8yDwxs8Y8Rl{&A_Lsb^e;jD$&LIao@Jlhj8cN{e ztz@QjXyiDm&fOl08Zzf=Up_(J#z&a}kYo6~fc$TlV~zuc_((Kz&1F$E=ItUo#`vwE zCN=|W%6H-7Cl_TuE-5F=gpNDsh}VC@Ki$6GEJ!2x!qoIN_*=Exb5a~WLIjr<-Cu|* z>Hq=JLQkvq1nmG=8BMrk0=#YLF8Fb0`=5fmS)aK0we6%ooqe}+*WSuZ*k8JGb)arX zC4<^l)uS)pzW895Am;h<{N81>^=dRjoBBT)1TuD=BeIn zO_BC^o7WU`!JZEWaCJrgq<>Kp<} zOjBnkJ?@FWL}Pm$WG+__11O!G4q!`}2YAgwEBg%i35;QPp;~;mdtta^E8@kz{ilmx znoT-k?CgiJVNCkjX}s@4&Gw>fL6kt2lP)_tVhqnF%~}7oJ&-1YTt&^fIdETN!-S3U z2htr0NeM48dguH1&Z~=xik?BK56^H6*_N@12_}%;gZgQBZf;Xo+Ojf;2)4nx5_*ar z@1SyviK~$6{TK37V5P57P*k+V3Y>KaI9UQA&l(%K@X<)RW?enK=6tu)%R8i`q%1RZ zFJDfp8a>c-X$7f&@=B#veku@HvG6(c;m0>NHZ)X+cc7o*jD~sI@b*2AWiR;1MIMEA zJ0uuWEUI=9nm=hz(|aCvzuj=rlU>Wf$!Ud$hO}F5W$$JAQ>SEQWLCt-$3rk``I(=r z-(9B+awbAnCI<}64h`9ewGQ+?hD>jKu;5{^b`B(elf)X8GBc50VWRAWy}9{rK7RgX zB%~SXdM%?(XgxLV+{NuW@a-F zI@L*~xq;sLc~`cO?tGc(wK1A5h3tQgi~Ad-?>1Ux?(JR&2u*NJhoUi8HABj(Gh-U= zMu%5TI$I579*e13_S3rcCEk(E{t09)5^e2}(QHK!@TT85?|SxPytA`7S2P#UyJ>6>e?%Ayz97%2*4epT>Y->9QQ`+xQ^ZLH5Y-<{M zw`xc1wv@TKIiZ^S-rj^rBx60H+~OU zwV#LQA41O&-l0aT^UJx{HKpTNMqyHa*52X-j7*uRxn$P2{OZYFo4h%s7~YQDP-4)U zDGkD@+OTEIN)q~}gmE-#v>KpxdM98<`P3J?3-hS^XwDY39VA_obi9)d_1|T`cXY7v zV;+;G+{?t3!vjzDTeEt+E9@HBCZRR144HB%QtZRTWzT%-F+0X#MAF|%f0Eg97N_U+qy z%t0GB(5+gD;+~$|)iZI0kZT88%w-vQfcHrf zP?SrL1GM$@65NzdpI+7KVwCmX?{igd?jh36Dp8)~;+PjNbj?2UVGqB)=30=L_{B2p zK-f*+$@JYO=42ofBG~;x$$06mhOM?0Ji^hKGrgH|b`wTjLs`Et@xo$HbT)FD53&L+0ln9Q4Xc z)tpZMx2$L88ZN7;|Mcf5qr`r<{Wt0J%Al1QX7%()LTyt10~3Zo*PniXSB);2MI@t7>K zZ?!SHy4O+e*y^8?Q&W+VktQD}@?d_Bh0-!(WB;kCsZr{O?y*Yflp~-5M;fB*`jEb3 z$E&YMgqB%~?78Tv)AfWqlAQ&;Wf%AtPx3~d(zn0ShMyAkO`M> z{z5YB7liS?FLfB*YiI>V`E=6I6)2FAesKkRH1f6Kpf6y0=< zQW>LufTHOg??^zX>Xr1n3KB7pvMJl<;wopDvySd=$=q6uZH!A!exuXUoNu?)zaGR5 zfE}@BO{;%$0R0wx8WuL3CVb7M<#^NjpM2MKNz})W&!?CBbxWU3URcQ(tfWG?9g4$3 zbtAGKTBbiAJ_J!ol6{PXy>=`g^Gluy-6f=A7dOnxDuj7E;r#RG5OdO#dnGS?ef zh2Ba_*Db9MF@i~HCq9m_yg_9pGLWLAl+k#RA@VB^z=Dk=JIt1f=_Itwey?7Ui<8X< zSI*7NEqhra6n0EeLE!-*Lt9y2&%1MeRXF}F#-ElzR8s%2qner@o|Oh%RyL;UzFeel zPtSQ5u)rWuTzancy{fr+3>461F&9QQp$7G_djhBz12Kt;jQkMUKS@YEV}p4^09i(q z)eEBm6m@ljui*knZrfia#kh(+`_<^WX=Kp8mEm-eH$Ut4?JGSX_Eo7G41Xe~9{(fM#QgfIbzz z^`QHo+^P&`lh4qdJc%%gd+%OVTm`R59{rCY5)P#`LLv)fF|nQ0io3`J8=*K; zmX0JSD42=H5%{v(FJA1585m{xShAH z;`yD#uq;w50u?*fCMihluccoBnoxPG5b-#4;avj`7hMfQAAPd2e)?luX)v0wf3VFjVYU@;E>OGilx&%&8Q1 z*b83yyeR8JUO_OkpsQVfHV<==&VZNU40{Keb1<}Lj7(cNQi|Cnk{xb`0=cw9eB7|J} zjH)d@CB6usXDNu{*mr6B?fH{uh5;gxD6&e&la8Ia@qYo6OyYb1 literal 103869 zcmcG$2Q-{(^gcR?R3%anokSvx8iF7QfC2?yVhOzu65V?XPvWVjx)Y_zxUhw+0XOr{pN$ZssaTmJt+hNp?LQ6 zi3S96-W>uVd3EUm_{n%&`Wkq-@JdPH33vs6_GGL5z{};=Pj#Ik5T;<_zh@$5*3BUh zR>-p_(pv7HmvCO*pIuT2Cj^%SO^d#77ss|9pCMDxqoQgsd>*eUcl4WN1ooC;Rlim` zE`XJnyS?@jx`>N)v4r&Y>wvFlF6JI{bHCe8k*KpFGZzVqJQ9%eq}F}T(TUG2P*bZB zi3W+*mVJre?8O%Fd+yT>E}hRJgcmcB&^*a<_pJ`swEbALACstpQE7 zh4}iz%v8@s&H{b3s;sPR?_mqGSH9|_^(QIb8$TBp7i~O`Qz$4Y@jCVUvCLje_a!zv z1U>g=;$a+A4=lSFYd2F?2hvXV((oSzyVTXxBFGyPwvPVYn)a)ACbX*Cw|i=2uZTWj z5VlKL+s?9H3>RPN3A|}EqRziqg@RWv3mZCj3OO-mr+a;NYUA9W6{*k7REig_t&>Ur z!r)NzTm*;s?yt}dj$N8NciOnXMCe{7hsUGAdcl`k~l8NVj1UJ8IeK^J(d*8>$ z$FtjOB16a6$3=!vx!%mMP4GJ*Q0R=*9q;4+{;!FNiL6zZeif00)sy4ZBthGJ6$EyLmU zN3OLSZCp?)Qd0lNsdLtwvz?wBKkscfQ2G|xgm?QLZ&q#fDGj!+UN`bu7UD6ktAS#D zTEr*P!K(ap{QT-4b!%Qd2c-!eD>4aKsU;Y7CJNr8_v#cHo==`Uw2(cS{GTmVIPVaO z%>U)H)^O2fHqlbp+up&UkcQ8Qv0SnetYCYv(AOp2vFX)wrFh-~BvsvPk}aZ8d^V#c=2J!&PgheW26d-=Om>rZ06b3G6se6?HldcI?vp*K zydOB0qj`lYu=8#VD~f&hTNpFqjXZO0GRnz#D<2001h^Dp7P6ARzSfCO_1PK41yx5= zMYL=;vK*_gde4bxv~)?G9O8_I-?LuY+MSBPgLU?Ql?#ng%q&AJXr#DJczFK#aF2eG zvIcEds*8KwNTF9^_TkU^?mIob2N`Izj>v?2#>8eSf#cIptFF(Y`y(xqS*t#)UTqeo zUfUC=>(2>$Lx6185o-CwP}Jn`$vQ*hN>|evg7d*a}zWqF4Dk9aVqqSzugmgu+9~WpRjpmEOwK)YKrO zxkA4qJko2`U|{v2j<^2MiAS&O>9CPkL8`|r-OQ$k{dk3n)ZS0Etq*G6GJ=*}159q% zUUi0lfxjeruI3^~_vY8BHs*?qy7e%JCoT5&_ORc!f)hIx=mo5EcUV{bMr>g#;mEN0 zXf0UkV|f2UnIr+zE#y;Z-X51*T`ewlf?M?+-eSx!@?5yfqg(QXuXd}ia%!m1xR5R4 zkp>9~N%f;Sk5q%76J$vw5~ zf2LSYDuaT9UD`OaiP!$b*z%kD_BmZPU2B>;4Q#m&SU51qeha5e1YH>KZ;?Q)X8vHGSq6vS$oN#g~a z*J^FAhq;u|vqd~U&&J_3*f6z4Uk4w&eylQk#-?SOPsQS%x1=$Q^B^k1+f0LyobTX0 z#XtnIJJvf(qeS#3ZX{=-avMLnxd2^?V>2C$`p3xz-^thX^mLyR$reXMm+0JlaSL<* z#!NePXcIEEei51XbqW_)&@Fjjr}g~E(r?EyNyNcu3%fX&mr?ksDfA|Od)Rnb*D@uO zPSB#2pSoY~j!Sy{GRh*VdR>y(e`5f~{2Hd3p3J zxIGX3$#`?dJ}X1ZnQ{>ST~knAoB$=maMe=>QRgf*rjjhY+jVpYtTCF<( zQU3Bp^zp32F}s-W?(g8i(NSHu)cRw5eRy3sX`qbO_GwKfZo3=(ZmWXib^B--zOjUR zw4y*Rlx6`y;n3Pz(Vd0Ov=eXG%uEirx4U8$+)4`w&puo4gYijbrb2x*Y7ql6S1YAE zNyxU3keqYV$o&>la(QtPIrb41*Une}NNfTl;Nc*8a=01$(`->v%3-1gNwJvf{^vu| zl)>UmfweeP#>PAB||lz;lI#R<;Q2a+T!4Xt#VzY%>0oW4v6w1*(@n z>wDp!$n9(A8hD34g9}xG&9%{f3!kVF6*DTcdX7`VL%(y>uA1; z{mDTS>N5ABbCIu6;u?qA02yD+RVE$nh84Bhj>OXO``Ib3dWb`CpG()jD)qV5ZKllc z3a0HT4?4%%KY&*)WI1yEryvE@_tQF#KK(9;7v-7N2W#I+D4)Q-l}q}wsu#Z)2%=y> z9BmIP4BL+sNporE=a3>Y7j4FSJDb^Um&eL`*Q4($Aybp@o5~M*6ogFq%m6HwMR<>x z1gngSHTOS-0H$C>y&(yB53JiO_2&5+A}kJ~qsuHhlaQP1P_PL3ytj9)+v9jT>$p!> zq6`5Gc{#pQ+077??*0fBKq>jcc=yLmfYu^%-L<=aLaVj(nL*_Bt`lo;NvSMa;%lzDSpAuiJxh|~RVY1Fg zgRt|+L1Xw7D!$wYNdBdrw>p3E5P%6vOlqq~Hm_^ad$aQy&f#EZd2x9;tZNd0I!r>! z@Awe8nId9n+uSKK$yiSQ5Cr1AM-gQX`f^KQkGJ04P<=mUeE934R1WFl3E|{;vUlC@ zWc9=+-j>VH`t`7(TbTYWBfM#evEb>ATalkxJwvRyzkdYw?sW|&h2G>tjm-gQ6|i(7_?;sOGBBM|_g z5~eFuy?Mc)!XE!A?a&P2I~69Py{%&}Pa9MPDACu=el@Au*=G9;>2G&@mTirbdya+* z^mSli-ajtidmzyQ2+IwoLZjNM1w4M#kSyq@7Ei?74>G=w;j8s0zRxnlrWsqJ?il)P z4+?R`a)~H=?Jr~#+Qv>df!_l>fgIgZ3%M5Yi#5?(iQV4pVk@hw!<4>j0he)e>n$vW zq=sAvC)!B68$}+Q7Du}+Qt*8vz*$TYHQswpwKF^p)}G;?)Feg4;ARx{hckQ`aaWB` z_J{LQ^OkJ&IjEXb=5n)BZJaX0Jm$nFa}i=Z&-TH-WU^jDjtP1%nX=@07@GIgI?X5o z^sX(DJYAUb74USB0>7B(=tgJuG9o1PSirN**xc+AR|7o5Qe9mG_QZrBLBN(?)TaEq_BXg&za$>Rg50+E>wWS1lOe(jPKG)X5)wq7 z&5%?ND4zn8OH5Eu(4A)s2)#)VPR+Hm;*)!-THA{c!@-?AJpu)FWVu!wWsrMA?a_U) z6A;!fs0W0neg#ktg-~;S-6V2T>8k^b2R*Ws3+Vczf;+hd1uEdWT7#Rhu%eU0?h^yI zRIb7rr^2mYOt4Y-RDNk!2=YT=%|=_*Fl|sekRNx&>Op$9P*e}24D-5ucS@g+9L4+X z#e2P+IeiEtOaKwJ%)g6Q?G1I&aKHFseE8>PuLt1ZKkudGPen)>QA!;a3B$2OHa1r} zns4O(`@Es+s5y~QOn7gqJk#K&=_gXA&d;LGSfS2j5w!@(eJezrY0DKRKvwtpPG;(@ z04zU$!5xbXKLHOw6VTZ>Rk4L{9FGhuU;lnLCazTlB;nVow4)_Uv7@d2a^Iu3ZESYh#9;;WB%jA~wJEI3!&jS3urq8*{>-T1p_3FGaC8Kt- z1ksro&8_*22>IB5+HIuzsmT>}2fu@H0LCZBgkh$GIltq%u}VkNf%fui#V?dk)+kTD z5E*;!YaM9dyJQiEA#maTo?TEuK(@iUK|(NJcFXKzcP32woxodCfJ)QDIL+|>MrqkN zuL0Vcmz|xxvK?o>07QQuz!|<_mwV;2>z{$fg3ZMy&xcv|ewFhCM0mT)tMm@5LE1Ku=+(p{YmXmzHUZ(`Yjh%*TuC)%3x`kLf6}xzEms zUb&mg6)sK3tmLv1AaM5q<;Wvu5WuGXeBDySR<8n)2o7WBQkC@oRRqq*{}+#ipmAC! zA^!(mnEzw;&j06yVu_Al@IP-N6JI7c* zUWx9h&Cx%0<8k)m8$M~>=ApK>wt4%dbmtnV3NL*!(WUWgQ6nErWC(f!L;6I z_fj4Na-HQ*`5&KdNg8mvexPa!Q7GP{>3dSW;5|z@|G763VKfw{*YFz2mO8RdaT(HG zoS#ov%!DM&=KS;aMjFW*S+VDf)UN)&`hGocfbb!Td(B#MNRG_ENG)QBkl0C>Ak+~S zG}HEDQ)}Ai! z%~9{kQT>Sy5FREl{UD+Z2;TmtLXkp{&l^rfj{2=jXK@~LDSs<@U^M`b#k|5HSxSj- zK-8(Nlb(4=PW{i%GzZRF)ly0O7R$*xORs4#qtkn$a%1vZD%PwNfaHXc{_{Ye0lwGm z0=Se`U^U3va8PugRg%4|mpgyzmp=Rj2ptjA0L_cM`fQf#6^Rdzw|5N+#ao;rs#`Ito-xuxieDUVGnzf7&t4sf^ z)5oLZz`DpaItzIa_&<*e^8aMWzOl9khMi{ZImn3ZKfCsO*|bM$9k4s*6HLQ8F>jDa?zoH;mtH}|66x0Wb+NJ*BXJGN;Vtc`Br!;BtH>4 z1iR;fOYz*n!C`9z;5TC29=-4-;7Zbu*fZZJgzOa+8~L>)(}vTIx9%BwEtdmd?M7<5 zi=iQSTBMEYEPJgAe|-%ppimK$J_Mp*9RMmA0g9ONKKw}adJesv2r$HCrd?i0hri1#A4}XhMGK_6#?JkIb1!Fsph-!sduW>vU})e-P-vS zP~G;M_pV3A9&axJ_bE+209S?s5s_;xwO35}Z>0Xz`u@bS)^P>5twq z$~iXC!)j{{;P*VLUUYXtH zaJ>b;kexOZ%2$_T8X@8OWBBC>tb=0lgoWBx$xs5LMfz1ZL)!^H`0!`90K~jKjA>Gx1X277ofiS${i=O1y&} zF^PwCTiTMfoy=^G&_nCx%6~j|oP>3_QByvmU>ESTSBan4U)lV6KW+EFdt0DJzvz}a zso}*;U-voQOw)P9JV_wC_=Zye+yU@1g~hHks#|_`Y<@R;xltW>rJwEq`d2xdK=fyb zH#1gl>#|hbqB>8%R4+3*?7(u6<@(SEY&c0=x_WSVfo5NlFLnHg8?@07#K@AL%@F;& z^gnO2D_1$0D@**pEG|@{@zrdviW7*yL)7&5KEM7kq00?fYROXhuK$yt-Kgck{*H5d zNsKbPZ8#l;qlo?3gWt9`qh;2gh+b}0H!xdS;JK4BdU4cD;}r#3P@%v)Yi!=h zfjNE957wTizUsG@&pgm(sU#>#&fRfqz2e$RCcnC*nesjhBe2t;!v$8CbloRFc!#Nu zZa?$!FoBA)#<4y$^dd@lr=Yht4z?{g3&?G`_ufWr*}R0QfbMz7M@zj6HJ|Q}MU<45 zmaZi9GFO3?%Z<9MIN&iL>!iiSr#=eCsAl6O>!m`QUI7P7v-V>U`LesLJcjbmua{}0 z?67YKdOCK&2BOj5Dz9y5i#^~WrwBZ}0StNmZ5y-lAgXeM99X6}v-p}2_M~JfL~^v? z$L9PD#miNzf_e(V+ahdaNy&a$YOkL%yA#EZF&t zswLCvy$ksRN@%TghRv43K3vLlPuyi=GD!b5>nYXiAKu-ue*L;=CE@pPlV^QPqowz} zRd|R}fAMaOAdoGtR|~#ZEa#X9PCayDv<%T1pdH?%8rY?9supu$Z3)X*Wgokl>~uF4 zmXD=rRDYf^$rEG~27Rq8LF}Quk;s>~4P0*t4hf#AAgklzva3-! z@}_BOodW=3z4_3}fv;AqA!p(Wqmn4)<1CX_ewDrBiB$!=dljt}iuG479lhG>{AP__ z-u7a-)a>aOcyOmEjnw2<`oN@*C$?oFb{wY{`6{sZSjMy;ql&t(L!_^pyed@oUc`Fbb$M?t zE&dLm%gVc_(701x)YbAII~f&$(fqSXCzRYq+vF*o+Y?7Wr*YiztXkdi;;hLLcwO=R zulK}5NZtGgV^uho2Y>I86hv7>Yi;QDn059-s@F;{3FV_Npri415o0Hum!0OT_u+|5 zFq7-ZHCJ3I)&63h^UYJCnex} zwT(dH0cRa1n>k3eyI1(JT2AnAxouZ`nseZFm~9w;45wP0H=UCZ{G;8Nz*55J?|ms; zA`98w_Tj0D&D{1Q{KmnS7K+8f)#$q0YWQt zVj~VcU)Hbs$$oqh_&HL?Q&Ni2l1B?_I`&B6DBGSS<;I~US;`v4B`s(sV9QOw-NO?| zg}XEp#*M_79q$&h(gk(wboIS)j~56=jo|SK;pC0)J>PnzX1{&=meZ(rqIkVi%Ic`1 zkMe@}gD*@oZ``u1Z7lQ`@bmvQ>R9bHD5#9m6V8oS0LMDFp+OqMEA^|aBs}~|)2mF$ zsd2PJ;V2n%fhkaIfStFg^&5X>;?T&A>09XIlXJ!xwAWHI4hkfGv>Q)#ojiDFk|Wcg z!;9yLcZun)ZnI#TaqdFZAF4dHNTDf0G32PPX>q$lKf2R%xOc2ns+_t16!sc zmo4Gej5BYokQtSh4wB*)ZPdUiy2*yzHNP`v_Fuoi)U&2nSxX6b+l3J)f_Mb}$r)zcK1Rro6W8+A)(N zCb7j!6FuC10b)lKitqM{Sw$?`N+@*WIL8Id&dCKfeU`b$M-ibp3fB|3VIPt?M&+=o z&K<=OT$N>4JrHNr|Eq}iq)TwWb8%w6gxIwKu123@3)Ao#{`?yfTp5Ksi|2g0W10xL zDcaPcJGB7Nj~6$My&W3~DW|*oh9q=qm--fpfl1`X^uBM-tA_rknCot3(BaMIv_|!u zikHb2dxf?ZYe8aRDj~YjvHWd=n9I5rn8%!3)KtNlQ8hA_FHF?)6h&fq6pEiHuPX=t zVJf9gyDv!U+a4h=i)_(fn( zgd`L{+6gL{dL!hLG< z;2BD4^Y++Y-^h-x^Ce<8+pLmx{g@VXORD3*R7RW-;q}ikp~Kq4jrMZj`WXUO1h|9G z8w;;N)Wc5I$D0d#zB%5g0qyh>0rV&<`UT_owB3Uamm~_O8x_&dlzzq(nDuGvcff+{ zrS120V%rMiVI9M@k_a-=P!HXeFZqAoyn?pIv59lEM&Gc{xAtlABGo}`NA1^vUwMjD!r`!ml?NZp zcS~@$bOQ@YHjYXTYnF;=&tptYRT7ss!IC0-G3pljmPh58mhGv=$UdPt?x^S4awL$K ztN+Xr#v*U2p4Sr$<7?bHHl^yc>(oP}O1AI)u`+V7mG}2r)(3x4MSpYup#jx3j7@$z z1`8~Tlgc-P7mT^qAkBPhxg9EPuCxnNhbETTXHd;waflY(3VKjeyW$h}q{<+@y2v1t zAy1+!BhUP8BC;5k z+%5{G5wU)_ihO~fPi=JZ4x@TR-44TKPR;sbUtse|9Y4)1V)dlqciY>!gbtA!nC&(y zV;w99_$_KB-4K^DPMT6hSgrIIREy>8iRC*>L%`TkvA+t6Nrfq|c)5BPz6unvqU7;<(4{+{0gVXnA?b2u90gh87}u zPLO{B@aDUL8<1zkA#KC_>ilKT8Xo5=iZIgUi=(6LBF1O2xnN8xEE+#x`2TYTVjvZ6qx)usH#Qi-RmEoby7e^{*q+~ZLWH+UISd9RVCZBt*m8Gk}Vz4 zrjSxPxH~8=s<%#W>!*u01d*vLz8XZX8eOqo>{?O1NPOs)d_k&*bNf>`k+i`?5Hg7mX-T+W*IJG;{6zkW{c zBM*59Tm8o zlR+7Lrk@*fRV1;DI#gdscHGmstovzBX{k!q46;@NrOb}f($D`b>VN1;%nW-yeNK@S!t%F{6CEn5Q?CgIXK9}CYn(!w|bY@l0;!< z>FpW#QwEQ15IRcK&Hdu*P&-w4@Z@1VvpXkpv@(G|?10MQUMOX{Q3Fr=fz@NK(5I}&H$ zx77O5B^Lf-&PBgigAdmgmYD*oJlRza8i?hz<7eSK*!|1v0s6`AeZL? zvzADX&>#DfS(o;u#W>ucAUqUwYFy<{v$Ox*>cyF>ZXm*W@j!!Qs1&>2BbTKP^>vBB zUQ-L7%4^`f^Xx+}tBARr2^@gOolK1#K(wwP`WF(oZ7J<$XR0^QHMi^i3TloANuBla zS15unf&ec~cGJuhH=gYX6cDFreUBbwwxkshyZJM#@I~ zxpB^fipat(f`gc@l|!ym!J?OnBt*GHcOU=beurONDe zmi|~$6L=o+n}rKL)$f@H`lgUtOv3m_bgsCFKoQNkeJb6^`AqR_-&puJ3=i+iQeeQL>eL{RNFMW<~ z0$-kU`p59|0)KMHZqNsT8#nJ>jT#(eD|L=aQmiGU^OL&}9b4iQoSIs<7T-lk&z)01 zN_b^LYvVqmDLMDVp4v%Qr?C;`|7D%Zb(j^6z$!;FgeJmbD>Ha#k}f+Wd;)a0OTsvS|d8Tivl!j7!_|3Y+z6~g# z^Axn_ejHUOqT}wRy2}vfTPxr^+bq7IVs8TrYH_KwJM~ZO8Ay`!X<&Obw7$-bl@Z2k zpTmTE*RQh5G*Cub1pAseUpz5ij1VgT(+YB6FkpxZMGoP=c8Zt$(k8UX7h4&f zT_w~$PRW;@Bnof0GOa(*;IMZe>R^mB*DBL4`uZ51$U0m?Zay|;;}F4>@*$qf*)*i3 zz)+uYNy+Fr*v#qeg6Bon1^&O8TrLEWZj4i3v5S%F$>XnvX{4M4yUGk%eHj-uF2TbV zk_0SS#D{Wou`0x71z?@t>yN%lA7vGZDnsTuX?9-3EGXww&073Xj6X?!s_Gai4kf21-;UVs z!|foccFTi3{Wm29|&@BUC2T37VdUp`ysLRLgzLe@R-_RhM>*wCC zVCI;Q8l?^ch*Lj_S-D^YL_^2GG0-j<9Ba^{_6s2PV;-MxSr_`uqU~oaEgNv&9w+c^ zS$tyy+suIVH2U(Yq0lN%ofIKaxGt*P|6cfEsHBFg=8-+nMwc`DX8`ZXLWpJktvEY$ zXjX^KDvj|#6S*#86_<(X!9PQBFEq60WST5kxV?sMW295o#>&h(C6%>x z+%Sshyv#g=TZPYoD^U^>M`JQtz;Jke^-7fzn5n@MpLEf^(`0$bih*B+O=)Y-iiPuy zS7e0954+49ln3ZeQgWR&;3IXxvHy74IKX=gE?_M*I63qn%qpN1a5H5<*^u^9$5DLb zGn8U6y0MMto zs<#^+B8#8I>8EKz%O^LCm9EAFV0$Y_XC9+-S%=j@aoBJym4@rdTHMIjr^N2ASh|{OE#}82LwcGfdy+Cz6?WB=9wc4>Mbi zmdrA1p!y8iOMO<#kbO*Q0*M2_04#{`-O3>L$%x8dbsNkadR_f1@7`E95M<3u zXngFIKqn39-A47}$A$jKLL2+T93yqq{Gmj*Z2z zu>mu}BnLS}n$Z&8Zy*Q1Z31vH5R+@R@Gz<<8A{Gn@FQ%0y6ZjKC{q6xB51}zPk)Tj zzF#je&@SceTYv0Ou~F6DI$(>6$r;3_+k02HJP%<$R&qs81AOpUfNnuF+JqzZXKRuD zvy1TWTpwQFgk*7^mXCwGlav_{v{oWMj?2j>&?H5r-1T};dWf7KcPkU;cB_4sM1YoV zlz7F0?rrPX{VL(_{E7@&<>;2!pZ{gFVG&~N?Ka;1Wk(vcP+E6Qqshg-3)bSoG1s^B zWK*sM1~4eWY6EHO7qks&n=%8*pS4l&&m?ZP@{v0?6YI-P?oKy+AY}PIu;| z;(6&DpvigXpz+QzOiQfr3Y(H z)#bfD$1aqnhNyl6fz-8zv(PWBrf!h*;sj&1qT9nUMjqOwPlsaCwbpHRX@J)nva$)O#=4t40y9)dD;u#KB*>wu?9%izhIYul4nMl=!`l!V0+tuonZ}q2lhxV&A^!L zeBmB2BjuAn!zx}_W!2k**cueB>Kz>kvfM$CJ8`{hGRRd#16rnHd)KnE>-%GAS0&CK zrg_-IN9t}}8nN))Wq;8OrIN+Nr#4MyOo+;*J-`4w&AwT#zSVh9`v?qhSIvJ79T*KwDWn)N!r@J}m7l{vd;mvxV+?y1JG3{Q@XCmE9z3p+lH|r|pb`U&gWe zJ>%z@f^GdEo+al)<}xKxrQw z5aY)fu%bMtmkrAA}LITvAv`Un|Hf4ps*G6WPG{ zEN^nk-A~$@_SatBFQuA}8;5?>o^GDfe!w29$eE(56#ZH3;El>flUrQ%eqo0ywt&6F zVxz=JNY2Y9x4&I!Ue7~(TFx}8N+C1vO1PKk;=5Ef1#seJZzj+~y-%q#nDHJwML+YDbAX8D+tDD>8&o=4s=$#Ah%hz)M z>{sanHtC6?+~bU7j+&-`irZha^Lo%4CKroYPON<8xcQx;@yFxiis5NOVJu*N4UZj; z(whu`H2F2iY^5h)N!&?squ7;?yhIQ2Gg@otbK_!g{YVqBWmSJrU9ZV2Qjv}Wy|F?* z@84vKnHt2wiSJrd#+snq{(=DSC`3+*)Ilj0lUgFGP&e!@hnhPNlWs*#dxGuM^r3Dg1;LTV_9NEL~xcDPHvack4@> zs1mG-j0=e<7$X6e49L=MKAnY%PAo~`{C9ze4|DPg>-3~R&nKgWXpa+hJ2+Xl__wsy zpK6D!Tz>MIhtjY}pzQEfofj~^7<%-8Q96I0L8NU`Gpc}EqvBPug};FyvRTEl*&k~b z&5Bn1)jqkCR8uEJDpD9LRaCsvQn=;<%48N%)k`yGl5b zuHz3HRFhL;!)w`*o+_HX7c4XW#vIIV99PV(xlqPb4x^=T(&Y5@&b`OT9Er9L^9LFo z$eNm0%WvNnzO?Fp5eqlTS@|rFGzGNt0J{&XB3d$V-AylIT0||5kQ82u-U6c^PkzH6 zF%MISV84J_nlxiDfQ4LR0;mV+k$EJdUh$P)B%TZS=AXr4{Kqm-BVdE>;D42? zksw~EudPF<1P`zKL(9}Y@zmXDsU;ZKQ{HxhKn_l8=1WqdjgKKk0~cT2ino=A<_LKe z&Hv}8wQ#G-N7x_v0_y9oH>6SNTFC{<>_(){?F^~qnWh3N(b%l>sfRpxP{9F2sO0Wf zgugaZZ+MAObbI}YYG@CuUtIi`@Lpf2a@H%o5+{nTE|VV1Z*plgUNR)3;Z9h*3xVu7 z|CI&bC4U`AbGGsXSN`9Pe6F)tnTFw~4WBgaY9s=HGvF@wJ{fB78JF-lGMTxc%|3$b z(+AF!4>zV&HGnZ-G-FW%Bkx}o+tRwPjf$iF??d9dq>c&SZp#bcpX+pf$!feG5i})kJ>UDlU zcF0Xa8}S*6^Ol;{<#z=Nhyf2J+a^MgJW=pwJLpMC_$799$-T0y&IPz!2j-|3f#=^p z2}aWvH`@8q7Vn;cWS#lT10QGpGB^8A$2BL%dm>C&ynW8_yz~^OUGY3;8W%Lp4T^M1 zCU-KmfB|tA8fXDh?nemHQE=I@y!$D~r|_TQ>okY8yyVog=r+85!OQ+Cz#P=GzmB^B zkLRK=6cL11wf$xZ1iSh^Em~28EiW&dYO(9Di|}2t+y$@gv*MiA&*!(N^b9ogw(h39 z{&Cq8oY<0V;v#{RiTzz7<7;{Onve=oI2Gt{rr7+XXKX37Dc}boRa=o$K2jk{^NZa+ zQ={Vgv%K8nisFRaot-Bb5tQM?8aK-QGun4mGnLJ+y&V{uZFu7X{`%ULp4aZdhrN$Q zs&%*f{2EnTIS75_VmF@_n=N0ake$t!H3J@uC|Z9=8Hpf>5Dy&^2h?raQg~pj{Pk$-^-|i(n;A;okVpo2BIJ_F`efyD26An%1lb*CjWbr4mEdxK+n{e znW&^Lpth^Vu!?9-Oy`#fh%k$oU!7g{0xGCl*B28HFLJ4ssRx)j$3eUJsXjyJ_b>Ut zuBSNbu#P1w=Ldok*>H8+JL8}xZdRGQxhN5>1pZ7gI18`*eE|oiPkT+lc?&ewDYQ!r z&wadf7P52c?-rJo@sq>2ciU!>2h(x>*k;)m-FcUs6q zh~aSo`s1FN%im6*_MG=m6i`cTNj^CM^b>)FBu1m2S)Ha|>siiQvnEquR4eAW1T3UM zaESQX3@_wm#NU*DtaPbS9d(04e^f7>aoW>piW-x8^CN63eD^sFHTfSfJ~$G&%Qc_E zv}T%LWq|=G@5%VN!Q9#W1h$k9Abn8EME}q0Gpn25^`MOl2U_0Nv7`*g9Dd_@8o!2_ z7pbYQ?8v2~urkDrm8PymSSlfp_JlQ=1m;}YlP1}`R{HjN=!=Xm`~RJfCvL82INLJ; z6;0x)NmS(@(otclAQH$9_pv#c(fsb);^;l&j4F|BLbe$U+dq1@UHdX$0WJrF3z`&J z(<`#`+-*B@R1lF2ZA#8*<++GS+^HNB%(THOv!A*QMU)c0RhkzQJHd ze07y^DTvf*oC>ti2z@wcE>H#BoO#Y~JHkQ2&$SobC~u+5>JSb7xw6Q4zM5$>x6fXh zuWt7%@o2>PnIP;%7Vn~!x&t`y8XPri09iZLS#LO}s-&$0NRnWpfhhQ1{Qx6o{ zbafDuU(02{noT%tvLltph*jTC%L0`8#Dv*SycV((oOa~yJiqHCt=5Y&yc9*aczi4wU+W-@W>0>1 zHn8v8o7OYux}Tqsmb=0#25mLJAQ4Uz*~l5fe8w-}&kTfQ?lpS8f$sV1t33^8_2fiJ z0;a+O+Irb%G`^^mJWHM}A^4=u9UL94FYzo(n#8l?3?>Q_`w$1y)ssBdRUUJ-X$~w; zZ28Jwi`VE?-5wyV^@4cTu*eg{zH=RB-kkymDw@G5$`61uQUF^En9A$&PcnKf975l} zkGp@N<_Y*y_RCH`&T^`%6MHr~_bln&et-cd%;U2RuWkI?j4&8sU~WH zWinm8P@EmCPizYr7Mnd;$&HuEgqS?%OnRz@8|HN>dB!^9Rs^;(`Ft(|Tk|$?@>s-+ z3oPs`|F65ZZ{PmvF*R~M7dcu97ev1?fUkIz4SqvVs^l>jM0SoAk%pbe9BaJSA8gy+ z+o~#kaO<4Rt&B$uA{w9L8OZ5+9$auz3ekw{XM24;py)!DgllhBt{wN4m?W_`8s5Gw_L6q(`n7A< zo;NaP544s;gHtlO%>=b^wjAfDo#F2KHefJBm~^k%-yp62`k$(csS9fdVL^&fUKcS@ zIh4PPezLk<)(j;7Tx=g{DhrmPj``LSNGedv;N(Q>W#)o{8cx7EVgqExFde$I@JwSe=^J?4xc$=vxmU=)V^ z^FGj*-I&xVAolSvOAkYm0|PmIsSH*lG7nEa8TTlYHQSX&ze+aJ%gC)hR2{Fu zMJ6P4*3yR7#*?azcfd&V5^eFrC$=n4lqjF%3~sK--!&5H^>A$Ds+Q!8WBNPg<)F{>t}VRZ2<|9OZxgG6TK+Me#z_qQ zkF|yp?uT7V4o@%P-c>BVo?rK!$C32hPO)1+K}PLp8eSHSji)=c(IF3xn!f=JW<%D7Kp)Reb5~W6susca>4^FXMU^Col0Z zDaxp>ox=YI zk0a@;8ai7gT1Xi|Q>XOkj*G+<(B+hRN{l@cb=-X_yMK=O#jXS_J!HI% zy-ykOJ}wCyWn~8a0#4%J1_JqRkH!T7QCWpa2I+n~ua zG=h_l2OIWaw7e1YF+#y1)~XNUY`1TZ-6Sz0qLbVc&On1M-tK0VENm}n*ab`lPgLhv z>&>|-3+I)$mSOqn_^;6a3eHu9ox@b|Uj49tHEcgG3BwNd(*L4HfdPoQ8lx*NDL+#t z;%7A@HQ81k;TE2MUw^o()}LOkRgNIxNwu}%!SzfLLrrYhJ-EK?Ht`7EE+CWd%mj4n zmW_{RjMu*mvND$i3f$ zPwaF#4Ba{(=ftj$|Hi9MyiAV&bESkZi>>n2afLnSShV9fPhY1H#q)Rgp+_3-lM$}- z_v*gm);yQ%T%+h$)|AE(6C)PWPtM{_nY>^vUKS@>Hfms5;71!`Y4uPF3s+|B#z zo-t3M^=)31usT1)_PAKEGIr`tp0?%ql{OOW{m}1I)`?eH9ciQ9g)91oS3sEjwZ`f7 zCLw2$X+}=ebP6T0?UW%{o0XKbtM>p~r_1!hciT0FrGLx99^v;8Ix0JeFf514Uw)5n=c^p=AqgSIW!%qxYpSqyt-|$orF`GTx}x4o5dm9# z%RS>vXnial9)pCe^=Qw+oObVw4!r3>qRlYaYKm^2AR80_ojV+ud%(oS#Z9bdhFxF7 ze;%8E!K?Uc#{M z8o3@ST<;ws`SN{%f-Lwrt?VI=Atr?h+d1~WSK&4Jg4oA3 zuXtti{yA~^vj2c*S^76nd$KBdClVef{J(c0a4~DDQ-ua=T0>CeO~p?Gg==hSMNH0G zR?Fg_IG>^Sj@_^$RHkJIt~N;3zFOZqPWKAdM?p4c&nRNum-wceE&h9iGf(GCQOjN8 zW|kSk*vS7jpel$Om-Da(jmCbbI4?k-P|tZikm0 zv?`Pjir*OVh0C%HY}k#oZ|}*C9ZIDujJe6;zsr6e6%}=PBmX#<9B;Yg<41W%+rycaB*|Y^Q|rX_a!J3G)7q)CLC5{I^xSuHKD|-8eI4pY*|6J!c)O1 zLh)9Kd@6hXlJ4D~*)|uuv+`PKYCV$%HffH}j2eRF?Sqt*s+XmUM!LDE*8{0 zc2(+zw7fnO9lAjhAd5QoWf{totGss==fg10MT=is(PkKMoO8??GRTF~N?)Ocol5D6 zCh{S`+2_AnAEqE?z{l=g?6>Ex)QaJb4K6$U_iX8q5#HXw(BkcjKW|%DP#4&-zsruY z6_(&muE>{+>y*iONKK4uJaw?>v$gc7_=|zO@$$Cgt;&|W-j%NAPbmAA`I4n17J6P{ zbk%0rl>L@-kihrWoy(6atm7ZH>7Rufi3kkPu;D=Xy za2n`PvUlve;y+elXC{zvdHa)e#ggpkk&Bj+yj+vh@@p@iy=!#DEqpJrevN0D%h5E3 zYiRE39TRc)2I>Wzk$n#$H_>XU)su;HsrFrA6w-W_7OSx`6k^|QaB#&5A^Z(g`q ze^cq2nV`E@nS8G36ZRA?*{(llBs|o~ez&-9Ff1o#hsrid{oo-ViNH&xAAqq*l_i?x zKfdA|>a6hnJq2rvI@POivTQL4;;42^K9x%Svj)oV|rtav&B;ll{}qZKF24^!5{D*F&rZ z@{9hGD6!2a5tu(};ev5cZuoIP1EeSUp9`M@Muz@Q+izLr&IU9O3e`T8y8F+|r& ee zygYA6?Q9@SIv7NojDf-WE-}%1aSQH7THNzgO^0vGSN9`VQ^5@v=8vc11?FFs7)31N z6=rUY4v-XZwSDW}oWAvaiXk-gP8(09vvRNA@JIB7*l}6gHJk*dus3wUg2LF^15;RL-oU&YJ_pFTmzicXE1lp$j~QMnf4JDczg*s``4AK-`z-MZje zvI(vI9)^MewV1pJB`Og$+wZuHM9#l8Vsr^zB6{^24J~4ndsnIFU)Ezw@Z*aKV<)6$ zW+lyHiJg~pT;(=farS@^j2iqXF=*NsWmB~rkRT0V*$!i2g$QS^9G_U|8Z!xEG~JcV z&;ITn!Dw)#kj>}~CkuEYy#L-@ZjuIJNMN#%R>nwAc|LB?baIehpFFQFfeRynvye&; zOMx1(+hMAM#0CAL8_um1rA*7Xn8eOj6zYTmVz@qKqRJkJdH(r+YHvRisSR^NARE;~ z&-8Wi%s7TwsO9094%D0&?-R?ei?{eFVyRQXc&=d8d?1n9RccgKn4`YiH%$;TYG}eL zfI_AHzn3LML#WE%S^h)_c?Ra&ebO8GM-?-&dD_Ej((^ozY*+qZc`NMMx#=s2+CIF+ zO&v6C6mvhs^3~_P;*JWr%b`ZmB=Y8U-$S`NM_4|sQHZ{2Rm+({Nj9jP9A#7 zkHb6J45`mi4g3=aSGr5zk^9rh;m3WT-&pom@C6+uEg-a*B#0H;6qUm5QV9P``5_sS1z`jA~m`IeTes zE2MCj&uC^Fb6_LSPkhBVu&~ESf?bW-920P-EzD9mD}j+PY2ZevdRg0597vL`@Z(?M z$F^83hc7E8`T#aq@gA%kCdcPoQSXck9MiblarTU5N2r&n7(enxKW8Dwt?b@8nxgZb z>9&crK*Xz8^!HSr#N5-l^AY_YuoLpjGQ@WDmh>uHQmK09m`ti1e$(nOcP7mXytLyv z`4~phr0}@aG&md{vvLM^Vi8SxHTq8#Ds|9`C=1y^fZnF2TbY* zCP@QFDe(XVTX)6M0T8VA1k&yFo3-OZ2-u|)dY;IkodMvvI~7|(c+I0np1sH@@iJiu z=7;3k$9dE-{o6vEA~u<7j_Hzprn&9gV-~#~B-oLV>Y(s(XIlGOD5wS(lcycqf(vba zUzaa?bPdPmaJ{pB_kvmF8NGA=`p#eFCoA*!NEB2fWmTf(d%q1uy2FMKnVrO=utq9& z`!EVaGO1ZZ+qKdEvR%vL^Fvp5=T1({*GG3Q6*vQ9oi;{w%zoK=vLV0{T6NLdoi%&T zdtS8}Y-6j#kn?lnRC_DfP0BVoc5o^Btvs<8T?{HLmAlh@j~&a$7GHoLxvv;$nK}Z> z4jCfeo0VkgCd0+GRQ+KmB%P*%*Rq5~R>a2e6FpzesQkJCo>T*i&WAT>eH~hsXMde8 zzPYRC*o@OVO9)%~eFuVJ{6N8%%o3}%kFjA-;T>Ua;lf#V79P6B_|=SbVllwtSkF|h zaBVpE3)jQ%%fe6|akgXizn2c?#C@+W6Qrlp@HQ}UlEBB6d!vnfd6}_Px8}6VR#&qV z-cd^eQ)n_h&W8M^PzWx15~rY??0xwK9RwXKzjLMR$RCpSZwutMYeNFBRX;kxRL3GH ziv`bZcYr2NwA=cqkdH3xxCjO$5WUBF|5pC8X}oS#j#<_#ZUh3#n5RyvvS+N^cUO=r ztoDdmk9uTzvGe!IZzaacb`lp(W2(@vgM?*&b9@Q=#>tn*g~y)*jc5{3APaBmkQoW1 z?Fo$7gnhjSN3HFl_N--(rU8XX8qh9q>)>s}n~vih6xatb)+G>eYX^V|7uC7CcLZV| zVTh1fH6y?oI?Lx9uQ$kcl*IYXSNZCMBvoC<KzE_2ODO~=-0fX=#KYer6YHCsfMdAljF(cPdR zJ(=IL+BtDM!V)LWJS89HEC0oA5er}%)MSSYirvqj-`3MzVqprlB<`Q#HbF%8ZPR0QYE4X|!m#xxs{4uYENLgrM zMD8G=w^v)BvE{%G66rLu5P1yesKg?B%W%bMg+8ucJ*uaTq|L4GEH6Evbna(FQ0(V& zqHiSXulIh8Aeo`)1hlBc#_;M5Iy)&S$uM;m$pdKnh05dXf2=&N3G)htm--E0s~3n` z%bm+_R;HwX=iFbgF+5=iY&N3uxCJ+1+0NsO6ch!Ilpql#1)xJfhkd2*YxyRCrxoZ! z0w)(SJXI{4A2t3m>6}P(fP=$8ACbO}#4ft!#FZz!L3-~AW0Rb8Ychizzf{OQejH77 zX}PD0@uw<@g84@PDFZB>Hd^EcbZX|wLKj3yZGDQ!A05hVi(}sEN0n_owKT49wK8{R z!ULKs4iK$g{jvj6W)%p?IDVnG_%9n#rb3R74n;6#`i)0%!EXttLND_PABpqi!RnTn zYx?UFxH1w138}D=4=h~o>mYd>sAsq&XRplTpXw=bV)J`i@R4Qk>sf~FARs_FZMZl-53{Qz*#|NE}T#7^t8P8n3*XiF3` zA%%5;AM+rg2MlyAfuizxy6O98I4v}Lm+d}WL6t9%TmXF+z)HBsx%$4U^ijv$qfzUW zpu4^y*D#M;9pkT7-a&OIr)!DY83aPES1zzsQZL3mS;mbF4VqT#RJ>^22Q3D6s^omx z{qG2}Zy^8*ZR6iLWwOI-sru* z^{IzCxkL_D-0_QHZsvKUQ66m|^~eA6q|!CycIE)F?6!_JEc?seR!$BbFS;%0_4JY< zXSnRDXjCH2Vzvg(2MyZK34d;rAsruKjR{O!75Qs8w=u|L=RBBJX4BB>HYNq+{{2Pq zSkp#La8z2iMHsAytktEoL214R=Xjo^KWPFF;>UbsZj;|!=|zcxx(j;<9PZ| zHk37*d6Su$kh`0Z_Z7xt)XqC)=v%F+k}9k`NVR#PmNzwEw;4jahFSOhX`&q6?o*F_ zd0(Txpb-Rb3Qv4~zJu_uY4RgY6v!z5-z}gZ+d=`($`}td3tGtta{skqHtgajD%>@g z%x;Yi0LN%Z?(o2-&p_^t<4h(Z=fgbM(qEmnZAynB@OGKHSJ>B}XGTqw$1WV`J+RT$ zw_Q6>u#tI()_;#nLx>{@8lzRf&GfWnfcTHmhQ$Aah_{3jFC)z&*(y(O@v2=Fg@H6} zVwXJ<-0JN63VcRv6(>AYiGsWiw)9NMT;Q#c|m+$nX;-8ap=C z|Ba)?TGvdGtXH`!Go$lm^@OaXL+Pe_!INB$8?Lwi4;P@+H8Za+NXM{~xq6_!&u*=c z|9wFC_X7yA3rLs+^-OIu0eai<;*1GhVqlj|rX8W&*Sy@?}Dx zTmG1_I+ve_1gAP%EA`bn)WuPcu7*@Dh0F{PZB4agj#wlzh>Hh?S5UW3hm$P;D)5yp z-cnACHd()@2?Cg^ZHUt50aVV}({Wq-#Z%v79fpSN)`Mu*Lv})}4X-F_Dtn-GrsQnb zC^xTUQE!2!s4vKi%kjozp?pCir~_1^)Lq@(g}po=P2t8u?%B!P!lwPC&JVVlElBXH ztLt^D#isT&N6LW(?;j;Q;NK{Er81)gA2TLKO&+60mhT5{vx7u7(d~k*oM+4&-rWza zMK;>BM4z*F>KDn1v4mX_r(NE+blPvhe`p*PXJ1u6G<04qLoWupoKmx7P}R3=OTkNI z5aj0%0Kxmk3ynuNk1JABS*8KtA@+b`fs_q7lH8AkO=HOfY&FFh?)|6SHf@rLwXPmOO!0*5TB*xsQm{vBPHA#=5d!U9UK8N&J#ft%&FU znJA{#FhEKi3JCnz)SU)lK>`bFZ0p?dq2HhOh+6R|)~~U~T<$U2#0l{qb>~A0h+PcJ z0=#Ohs^^vlh$LXu;tOs*X@i7VkcF~X0`*au!O_vtwiEzG3nY;eCr&Jj`j^*7x>+61 z&2K!}A6?$1cCo$r`mH|7yc)_K5uZAFPUB(&Lgzf4>HvR?%m6m+F`W14(_h9GgP+J= zeIiJ^A9giV^x2dcp;WVM*bjdwtILV{erSn8_;Rl&yc3N@lY+VIY8AJI|B!vDIzQZ1 z7BZL23oXpE=owikzbje255>1BNEFNFejQ6TfM)s9tj{)jj+QXQ5tM2dsnU)VkLOHa zn~FOk+Z0We#U_&SxyzJB<1W!xv!`14jQAj;J!Be}W!DW^)HhCA20~}IlKbI|_`)p9 zH5i4B(>;;5e0T6%pYGl%qZ7puHND=fN-Q5mBA0#WX^<=6Gk-6tDl9Y0y?1cvw?f&0 zJk%R3>o`5K@Lq8XmSU7XO-*({o{CWngef>Q7`m1A=sEXkrw-%cY?Vi#m;PU-@)-#U zI)Q{ZcwZCbo$3N5bl4NPnks&>I@(N8=DZcki%sgCaNGbEg9=qCsTfoQkxUP>*D+sx zVqGYHerH5#gNKqIka%L}=d|!4-(ykdb{WJwJc-Gsn{alC!g0mw)>49Dfr;WITgU2)VNzF|9EMFG>uLidJke<69FmN2qGBi@T6%x{@A zzWBJu_o1LMUtM_Fi0xB0KGb{9TkjLwuuppSt!XupYDWJKkqBa$eU0>~Ng}$_$uR;F zosJB+JJC{bxP>M_rS}DBF%yIIs3;w`FWGJIq!(&9ibOW5A|vf)#Sv?7_# zSdHGqNZoUIiCc|k@#jh2juswedNfN-i6vWPDn1k;>QZL`bR5cl3t}g~e!ulDh zx;u-tHMO%hUEc`4kyr0NE%~5{vdAdj|1gP{a?xZ>;bgMg=Xef|;4SbXYjO~@bXBA& z%vZXw|H&{oWl-z!Bqk2Q(eDL4w)m!@!zeSq|}GXvVE#8 zbyAkIZwpf!_b(iK2Eh<5uSM%_f)7L-yS496tPMX>n|XVbWJwVJ4}u^sG5BHUM~;>v zzqNTQZGglwB}{Jnzv8+q0u4MD$TYl=aQcZkN39D4M`qY0=&47}ycA=n9cZE%ai640{7vQ~26Nm{f_YKYLg?cEDbv0kZ zsTs~xb18St)F06CK_Ir^NvQvbDr?a*N2vY6a{s<~7b^6V%*;%bKaiv^ZwJF0nk7Vz zljetqogdI2UKra$&-h`kzwMXMT)_}c!mG=N(i=T;(hefDKb8>S2h``BAU3&-?VxRWS%VKj9qH?Oco{Wfz5jDk?t7@RfdA`p@&KuGUt?p|Yi z<1__15PuJx`MbJqVZ}-qTFr987MzB*D>caDB}&_Ah3ks%=f7eb+ZLH_?R#N2ZMoYd z*!pg!lSY2Sg^>cSt|X_r87x&p1GTgBuSh?OqPM(gvyAN9=TJ>FW<|$ey9~LALg&>V z6$f%e<=(UP_#RELuOW68>^b%$*Sl!eu$3MlY@YK0cqkNTA2K2CE_zRoS5#)9|4t!< zGRWmas4XxGIYRNkN{t#pK1`=KkRgVYUC`1qD49Ex|E9 z`bo+HY_7D>6uMxBx$mdR_kHvpS+9{QK)PuD9|>h@C^A;3<_Q2>RNiAc=N(Ec@>hMw zo_7>Su+L5!&mv#|oEkKvuFoBSiY_DT=}uTu6*ufS?>q=PgP(yn5ldc4_ahrR2_2?e zW+WkjLB4%Qg&#*FHC>8KJ!yU816@FN5tdQas)xDJiVw%qu% zn78OpDF=t zpnXTxHq4o6Jn|u1($)CM=j78tR%No3N>wMMFH%sb2U}l=uG?Ero+h^6Af^iqu;s0s zKcwkCWA$|=Lp6Q9X*5A0Iuty;%kUvH=JVlv$i^GDf=gL}c4EamINk0>7cTPXZb_ud zq3}ly6o#?yDFiJH8!?FAOY=8=NGehKLgw|i#_@Q zjm(IH4F2JvPqvAUP;5b=*6x^no(QQgy-csXWqm*!{`2F-4gDgHG&*QFI@}?1*pnPl zry0^j&jfoYYg-PO%&e$sW9z^bWV03uy%5Mj3tULBb!!y6`#{%|O3&~2HyCvfyAB$k zX>Bk`;%_vtM1b%?(DZu@JD>vA*p6^3fm+p&aX3})BVu3wTWi{Tz2L|8Hb_GzIsVM~ z*ta_R19h?#_bg22jM37ui`7hdrMulI{Z|E{(%XhM+INABt84FA7-e=CZG_p`g8ju& za(=k}nDe5PT~^ml3H?_>8y@8PUq~)EsY`oHsC4bBrg!bHLUKnL{MA3Q)LR+biR9#o zK5Pk>vDManR0;hbm_8pmS>HOb)>*r~>*w6gI_z+|TCBEj;&T5Q&NUlJd=4E)uK3{p zdRY?u*vg{ih71K4mwQB)U30P|0QkaJj4-_bwYn>CqlP70@#@#{=^)_+zCjBl7-)-x zd$=&vtspiHMo=9fb`ph{4E%Sw^u~J;cy@gGvV+(+H6FEJ@2W&xy+mP-&IyL+7eVFz zCJ(Iw8@YesdW;4~d^dZ-J(JbG6i*mn-(7xl9~_oan+68R5uNWvsckPZ#N@~rOf&XM zZi@Q@E%YqF=v2FR78h+y=x?gs^4ssJAx6{#VwbGId{XCibKkc+f?|4BYf7~Ti2(LwjSOx2y@|7Dx)m*^ktM_~If_r)o76EXHl3`+dWo{IKRC-sS!sSP(3d1`ixd8(+VG1M zvs}00n+TEY+ozYNB_CmKF*?wa60My22j+U$PA}@4TpAxr3(Ebo?W`3;Nq%p3t?2owjFscVpNQ?YQ6<&mK}eM`NJWEGaR=B_;GO=PJM)_z`xwG6Sf2S)yIW9E<3$)sI4D2&NA^Rb zDDFAE0ygdED}T@gTokClCoA9Bm$37ha*Vq9QC1e?<}drTM2sK$&?T$F`|#YzmW2hb803}_I-%K-2C3w|a{~@ zrnqFc5~_JyWd};MdS>Cjd-|@%r^{euC!@B!@~g!AtUHjSwYhhe*cIQdtl88pvT+dv z3L>CW=cKS(y4QQ6f{e>pv6YX~C8fszR0NVFLOhxx`yUSq`mv8<-YQ-DHeh_SOaPxJ zEdK6#XDA2J-UW*iDolC&tJOQ;pVO%nweiWBUT+vDI~m`=jWi%fTRK%KEQvrxb__c> zySmX}CxutVd)ItQ>Dry5CaZ)K%d?!=gdRl)`Rqg4C=w_oTj-w=6ce#rn1nt027#y6 zfg;k+`l+YAM_Z?Hyc#+detTs~V zV*mN`hjx)SoRkj(hgBnh-0;iX#fqU_U|c`zD+r+!|NFFnZbKkD^N$-&i>Sx^4dQ*4 zZyN;zCYSAiqkv|Ksh|-M+w#ikQdLmBpj$I+>i_HL@;m#QQdixR^mcFdzsCJSzYo5V z=K+UK=cGBAQ$_Ivcwbd8$-e{UY^?WX{@nl(_?Znftg<>4`c9Js@GO9j%Yf98VDR?H z7d#)@z=*o*4 z?HtLnv!`*V7=g!I8Bj;nO!1Fd^b#sq{_^QU@D|Qohx5f?S(|(sl+l#%>ucMg3(mu| z_P5imaj&Zj#ZF*ZK-+6j4wzrE&<;#drPi%!RXZ+QP2?ESvRb>Pg~5_(9(*19ETe!Vji{BTil@TfKUfHK6= zSmUV>YQF#3sUUC74-Qll@(DrMg7RasGvU2qz3|%XOHCJkv^B#x)q(IQxn?7BXk}xZ zwFS>Nogn=w9{bv`Ca(N}uE?AJF8hY)g1X6CI0lL|Z2u6NeIqQVo~ zN)Sd&-?%VBkNK*f8lSuI&^*rGnQ4d6(2Ytbzk|e8*N5FV1F6sky~$su{^nc!H!!Ki zIXS82W&d`jG>t4OJdQJq8bTZEJdBko@Wyk`J%#x6D@h&!$fg6a>+Vbarq2HOaTgp1 zD3QwzvAshz!6i}x4m)rG_WOPp94|J;LhS6E3=m>ES~PZ&1Yjl$Tl|BgZhzBn4Fe@y z=$W-w)w(qc2f1x-E zw19of^nXd6NwHDU((`tcBar)yLJSn&rKWxX9NqD7#$zeLA~nGLaTR!zIYK?a25Blh zu>i6J0Qm8axI>j?8KUlv;e5#LNT~q#fP7ZHVL-aTgL51tbVj&nj7Pr}4?T)iUykq& z7WU{)*s;qhf-*XQw2>b+>P_C{U`aKoy8|{DOE0(!n~prqS&l$jBN7DnX`qXvf>3`c z(6o4FY7cm5TS3k%3><)pm=0#$#`HY_G<$XDVlmhkA|Da-VQ3K@{CU7FO!5$BIzuM) zLvN9d!2)C01`t_wi{VNl+<0Y;x7F8h)9i?uTG)_m08?ZDip+6(E7C~F+oBL zXPDl=&W-u4r==(!QR?cG5h4LYBovkiwpwq2LPmo2=>}yL%hHh9F7R36q+?^XN7nCWbFeGqit{{(Y^itZW|a8oq$< z;DcnagBky9PK3CrFnub3j>({j$vJQZnPmc9a1R1qr4PM{dC=+zfSN|Fq;3u0-vKy! zIw$Fs2dGeOW$mC*r>ieL8=-dmjj%HC6qS{UkYP?pmFmFj)%M_ge^TfU_-iXYCUx5e zn-xEKeU)Lyub1NI!JdtHb~nnShoNH!Y`3rx&@XruT)?` zD=H@?ERiK7nIS+>i1<-;;uwa1cz$k~DjS+XAg)6x zf_y780q)huCpr>jVnP}$^}szZ`Q#t&F7L4EqA=sg2uqQn1yeNVZ8&BO&ydFRFQynV z9T;UP3Mw3q-!!!sz?A_Oq+3^K3D}iH=i~)**~gE8%Rc{-v<2GcUA>+NI!OgfY_BX* zKINjaKqTMhoe{5F!%{>%XEABFmYbt~6>vRr@Qn3>y=^!j|IfKGN!UFXob4C{HGxPD=D zxIw+s0EAIBr3Gj;>xLsCc@QI=kRH;`};jplTk}=4gF5R>1YXPt10nrr4u|RC3Gkw@CXqFfqn)9 zQ+8GnGz$^sPO9tB-C`ahB`+p#jaGsy$*61Q3fl^>a4Ol<%OeP%?yCqY`dN2uEV_S4 z6W})YjDtjZ*$8*JvV&?!<_l6iuFG!@_>9(;y8fS8E}^^PDPQ0o4g+1ybl)VaL8Kr>~>>0i=9y$TU%lc?>aMR(1z2}#NKa(ZSaQ9*<$Vc zgZ~FoW9b(Pxn8HOJeKd5VlS`jCc5t_^YX|$yz?|N2)5}RaQDI#wjK8edTG3a4^mtp z#TIBX{V!Hr*`wSkG^l5&u#11D|EEvZ!$ahTO46QR)>}GORy-73&+gI{$S2>sd$;pz z3Xmd@z@@UeZ@)$>0ONk`gG8DBOM|rJ3}tb=B1j(-zi$xwO)cR?9%OfP-Ks2(loiV! ziADt>BOl=S{NQ-~Vk@5`!rVaspTc#OS$2q7IL$^eMXn!fdX$?agoU+AxAY0^*WKU^ z^>>_KOfosXT~c&ter#YgT{V;BeGBPEY@Gd*Avg$R7qDieEdi`K^kjJdf0J?8T9}cN zDxCBsGGGK>s{{18Yk%3Dq^#PDQjVI z1u^L{2LGPD5}3r`uzveG#%I<)g$@=W*taxpYoz$ZRGi-f;CK==%s3$=8`uDV5y3t! z>uY60cIl<7ukOr)Gjn@S&%NUcW!`FRsOhl)-9B%!D0WZOVb=k@VJ6@383a&&^T$VE zv?b2k4bvxsm@v6GHN?yqm_mn{Z@Wp96?`vJn-pkWFr@I8!qP4)&R!(lOY$3^??7#o z|KJR;$SV4wsm@_t=qVWmAp?(0atAdzHRS{rFUSpJdr$#D?`K=#h(|sDF8>qkmka_j zB>|G`APCh0v@`;(5=GbZOC2Z7;}=r4eXpR5JU!{al=+IV!|Y2)n`y#WyssiYf{Wmf zDmgi|`m`@zDQgGpoyo!b1Ro-)jO>_OG8`X-R_ZwGwaQLM+;@BmMn2xiw(!|qALCpZEJIE!WH>c^E1 z6Q6N_6KEJBUtUuLp3C$Dt)|MbL%E*%i}hT%eT~Q?|~&FK`=RLdi%*gFw=@(EeC~F zBzyg7kc3b|zHXFF4KOnY3pS7xJC|R7h|Hw{XG>xefv)nNoX_+b%hixU!xI@a143_G^Lmb&8C=`gPQX{@` zOdy;O0pgrSBf3P4Fb@GN^}N9ruJ(Vp000mjJU)R;yV>ev3N8wnL2!Z>_r9oz3=*oj z2IjQ0zpF@HfH=;3f}Yz>>S3M5=m}y8c{MEgf}SG=qB*~RZ~%GFUpQ+mAVL%!!CTY0 zSE6$7o{^CeN>ETx6cnR(07P2=If0ODD^Iwr9Fdw9fz1$}A@XrVA#Yh-k9KR^KvuwX z;-Q6s-)~JlU{IGfWbT5E@M8M~!!~5~5bsyMmw#C7>o=F`$EHe5JCe7%wSbO}7F}yf z@FY3-!8US4o}BalovM>MO&M~vM8h1V{fLVS6a`Y!C{AhA;8XnIF(A7m+x^3%xDaHS zMFHRHsw{v^8r&>Ikh}~fd;2!t>HbHVUIz1>=(D5fD)3(_29xQ(-~t(H{+O?~%Zmv3 zZ?M|DsCjtUFaHkb40(rQx0b*gy7jj7FAB+naZ?0P|!X;rk%UdM^kgBp~!uXB!;uD1uzGNNQk-^>>-su2x?zNoX&gxd?*FU#2+=% zdEbDDTsC0#gmAR)!otPS`ImNB8+9EaeH(H1_SxriaJcAEq5^~yRJh==`r`md@;Z3` zO$tH~38zg0MU2WPk35%O-Hw}U0ION+z8t@)sadV3KEA%bqwhk&tc>o#gDrY8klNDi zmAr``fPj`@_C|O4%9RrHZdzaPR>Va8g)1`H{4r1vD`&lJdh3f|+2ReKdi82+l97^{ zfH56vy6&U+GSK+NQt+lgLK|$;a0oRYe0^XS6oUP0GFWFH9rr(rf?qXjykF#p;J^SNE`srG^6$IE zCZ|?NH;|cR%jlF#cgEw#A z4qN?qcyRDOGZTx7iVAs~T^QTv0~@Ct6x*xCh#^I9`X0Dkay9ya@49Eh8MtRf!F{X8 z8wPS*xoa5Pr_%O12664{mzA*^`XR0GdwQK5e;)B}*nz}u0p^HnSFa>_FFT9*?j_B& z0YSK~-|y}DPdF-d=|aEM9yeQN~GloZjcAu{`J7(ef8DMu~%qp zL(t|@ifVr~9yFIj?=bciYX3*PMG!~jQbEVd9`exnOr}4yU;Bw$_9&Y1#}~lSP8$B^ z`&yk?BV<9C&YmPYAcoP)xKjBHnBZ?@fuxPsKaLbio@*ENos=F>fh6M zX7XmLsIPo?j~WcG8@?7ioL&_dOz26lDRh~sZzrCr@C$F_KK_fqVt>z=nN9n@{ggV1 zjtvmCr#EotZf4B6P9W>-{EOw}No{#K4XXPy$AMSC><1gS^24wt=Et?}XbA4oum(zP z7w-G{Ns)WsJB4Nb1+9o;IJnL(E@E&S0*vNzM|scSEv^w%83uG}dup{#u>i2kkX_$Oyb=)vb5^XM<}QVe-%T>66S zAxAA(;n&6es{)_Dy9>IyZ+P-5dvAKzu$*M{-B6*Vr2NCf#;MR>VGY(nVOyH~)FO4g2N& zS3*Lf^=x*+J+rr0qRUrtOqQvV_`15)pxVQSZ4jbOd22U5?^JRR4(-WrY?JxipPMQA zgXyXt59*EB{s1=$EW%tE1KY!u+RX?HxYl^|s$xL$CIkr`_f2=N!_2x7B-g2xjG=?u zE0{se6|8FY#34)M4nB+3f+{XaWU9B)Hl@zSwgWq#fvffHsQXN%IOj0p z4i;ay|)+|M13D;*1W07_^JENVQ4R3 zfzGu8Ju;Q>zAlzq8`H6qJq+bXM8?g<^{3w9!Gi~Fn;^%>nw6D>pfo%Nb)I4T#JE^a z(*kvhD@De3c4$G1J~OaUW&$tGY4<5RBr{PLqyKp~d+VObZr`1TP$?C@+Aj{fMZ~<5O$aLV6{2T zX|6yqr#3;AyT6gb&8r!@jr1Q&zqzP#yJ0tMY<;l5mFf{|Z^A`z6OYo+6}20JXLR}C znfdeZ&e`mWinyEy9}kZG4Ie$~1Qox2z&n{*I~5f}KOP-<0xXQaX zVnP&h&K_jnW9Q|K0^g7*tKn>Q4GjS!G!yJx|I@}-KaRiGH-4i#*@KH5!x7SA?fT=)UW1L({(`0su03Q%onloKdJe}RnI?HSI5Z@$uRjC(*`mC{>k6AU zHfDg_Gp5h=ZEcFL-@Iwvyz?H6ztMUr+e5k(bEUnjF8dPuH1wfzz{n)8$^TeV!vBSW z%6TH7U?k)kRzq9iM#XrcLAg+uKZqGQ$l6NFy0P5;ARY;|G^ zlr8R_lj!3s{(RUTZ}>9SFc5yz-uvXk{iMAcsfEgG&?_^r>3Un z&%nk z?d@)!wtKx8oUX@}^sHp3vmXjy#W3j5p&RK84fxv*Q-4&??0%ik9{awNvFh~WornVq z7>E#@B_}8MK(nv2%xajAIB0ZKODe53IJG0gZff=Zc6@6Gm;%G4-~yjU5?n`+&p8!Y zVwZ&MZj>*S>qd)h&ljc;MX&FDDMU@+mY5*rbKrh>21TPMpuL=1XHe~377>Yuix43# zq(UARz68@DhHBc{VdjthD0@mi*CJ!}H|n-?RqR;#}9-<-)01+2X~yBkk)M>zN_gqYYvD zrS|a43(8GQC9Dlj9j_gaJi^Z=seLoa+V7nV$yL}OWIj4z2E&R*7{$h?$x>gLsQAe|H>2FfRF?8S!;OF=v6i142SVjx8CuGj2xE zVnE4v9lAw-{d043cjED5V`C8%dV$W+do4>&J+dBopWQ5LcYxZ~cPU=41%AlGEes}> z-yy3sfiY6Jq~C!-+MBqzFDfE4)K8l?UR-;SjdWG^0C5j(99)BYqy^dm_vPg=O~1UH z$nw%3TLH&fl>8=DU0Hd#6Tl;{5)-@NBCgO?YjvC15xETM{}FFHh$98XtS^?07-`3v zXvZ&%JdLvP;Yp;}U%H{aaKpCQD!1vkhbQdXD16Wl-G8`tOO=Q2xz(fNOKlfen!*<| zE!T**_Fpt|aD1*GR+Wf^Yd>*+-}OmfGQE8QfKWbP04%!6M`w1hF##@^ANw_Fq=trv zyZU%A=U1^1OXh#dNeg@pjadWq{H~n{u%;b)ZTD_Uz9m&CZppwQLG{>ibvQNK$LO@ zii$HNt1+>$A;xsj=QzK@z+mY4%a_DpY*}4YH?9k}czPrDN<_J`6>mK~D!$<#R^(RT zZs7+(vA-iehn}{dePGMqQB|Gg{I_~~tWKkABkxBvmJef^9(=^2M+0g}Z%0NvqyByW z^r?fNi9VEK>oyB9?zbQh?eV7@iEh~3%1*i6j+1pK>a}*iMI&j(BUh>lbnB-$jwp)- zi1-DFN(6|Scf{R?96a(k6qS zNJu1so%rNr-Be-c{8Ej5+KZVFA3p4GtrQd#ER>_nER|GL+E@41rY*wP#SR11lD=e& z28jUZ!WGd^b_Eoh=OOSeLup|KX_1+knIrfF?|}hg5_k$tUA%PZx6j#q>EmEzWk+=# z1}7%I0_fC%Z1I(N!-faZe$dfDsscn5i`8$R;`#IEOyKyZ2k4TX*Gg>ALGH$kls)|) zleqaAXeLF_q8E`X{NJD73!8>Q$)7(9Alq!WVkufC6_%>HpCDV{I+vapNVUQ^b!22s}4 zHn}QrN$>5=bwOOdKs^F#yp zi2;8@AZ5?=E}hdO#*;Y1)3*kz7D#1k~{qK1MxJp5m&_n%YmODZz|_8*`SI?<-%+2hBL z5hZdS!-ix)Ji~skkC`T32G8ylAf>K?zxTv~hzbV>rD-#7;5Qqm+%9~r_{9nzKYUjw zoppt~GojAYqdGP5d{e2{F}O?d1xxWcOHr-y94EVL06?;Zr@rp`QS6X;NVkVb9 z#Vb0UYUfLUU9XpZ+5-k`E1;ft)z#IBIRR{;c;4`-!V>75^n8UuQ;$@OomD=?+qXXH z=h7dW3z&KsFrx;36$En6mc>Y@1kobNBSNnQr92$6zZ-pz57xQI&Lk)0JATGD-G$-HG(TkFnXw7dATVKKE^qm%E9 z9)(|ZDp1Qkxg|R9pvs9ZzHsjlJ^u(%=91-|C(OddRqM53>-$5PhS$-Lvt@TlNJw~{ zgC)y*#L4sv3Jl?1`^-C<0;(w+)CT{w@X*_`M>RY$Pq5u8(=WD3ML6A8NOYaB=+9#R z1^dghUBV~E?g=7w6|Usj>9UOu(uQew1|Iq4DBfn*I0-uRI*h-ilJF(tDL1`dX?g5e zkCJ{tCT5p*N{ZV>=CUa8m02`($-GT`op&_rd7k1yR;Q;1h9*4*CV}hJ26x4})Lf12 zH}G^B44gW(gh$tT(CMeK?9!|eIv7I^U-E9MM;hWZQyBL?)<@5o*;>z*~yzgt#@x+Gg5c!>Iru1m4V$?g7z~6 zZLhp)SsE|EqrsGb7}G2K`NP%ZvC){8<`HtKoVx6vPSvic_m%z}_E{%JYg0nq=^A!- z9x}odpDhbC$4{QOv)dooT`Eb-z|g!ZnWHrRFTK6mMKt6wGfg$2W0~uj#6PKZHU+JI z#B3ses$ zz!IM8dV8=_HDpr~?|QYt?>Fyx$f)JE71&B?N%xCA5P5ITQvF+6NV@%C*QUu{CL^YY z`hChprz%;=odp&55Io?|a7tW3!Q+{BmwWHuzt_0CgZoY6&-uk;Z&(E-B(_wkOx_*Q zq1jQ4T8?8f@^N(OXbm|ml!lufk7bYY#yoo?hmbM0s6Nx$XBL;QTMD-InU3@7R5fbF zL|$yN3`q{zzfLqo{HwD;>AUuidiam(7H%FQoF+hZjqFP;1cfC|hwkP5NK;64a)Jn* znljt^`=kGkzq-Y;ZTIfG=anTq*D~&+l@mu%y)`QH4*Pqo}A=C&>z|P-eTo zavZE?dw)Mbt+2z}ifS>8)FWJ1PVRX{#tQL_Cr0Wa3`yFzTXMg-Tsv{T10k>b0Y9Gr z4vcyHb$?edHf*~5%yiu+w$~)Y72FxlC7n>~&G}JVTiZKXXP(GD#z^6S+1XiE`Q0Qv z*~(oC${>){4PIxweXBIB%(}F}^OB8j>2~CY+-}O^pKJk`T58w;{ zA)$2n?kd4zBzm571(N7p(r}28sL==7ghZG5+%pj(o*etYJM<_R`G++w*UZG37=a5096K_R-|ozW=R| zX8Rqy*@sk87zDfJyDq9;E1QFR_xj9_<=rDp5vv!&zlGuzi@^O3fBZwu;*3P^L+=)c zZ<)XFJ_XkNNi#dRk;HAhGu?5CuNH~B&(5s!_%3)d#XFZf*tw6D)Ld{oN)gcn@5KuXXo_vVU=PyLr~8{L4|+G#-avabIh> zGnR>8s(zZ*&wIoUg@hfSeJ>lSEnYvl&FC-PFx@TY={$JgpxShY(m^}9S5rq#7)*xN zjPtgYzQs)%A|x&fyu^E|6t5k!pOU<#79)<_ zZr-kzYvCeef9yEoOT+6$)xll*#>|E$%!ZdXAJsN2wPxMb=Y1m&vA(!^k7@|!a=PwJ z_>NM6VT*WPNT>OgD@`$@*g<}{+?YrDy=+lK8RB+Ztw$^Hy`S&3sG|4^Y|-%8IxrE{ zpjcZLwtwAjetOYMcP>9~I8|9x&G$k5?5zl?_Ppb_v3JO)wA5m!<9QWs!AIR0I&yOM zM^pXur!+@Mk)_f)Eq~8LKv_%1!ss{>gUWixw>gtL^)E3Sm@oxB#N23Y?!fNOnfduZ z(NjrL!q4tl=n9)SdnDKr(*Qm+Y2g`Hu9%s1qnhT~xW=l8YPFDIskeqF3V5w#zcy8$ z^E%9?1!waZw0Hmftj}U$v{U)KguT(Km69^M_6yb72#Ky27WEZ6pYCz?dBd#AdKys) zM!poJQC2>Odu%e=fWFy5t|WWj-3Gcu+uC z6`{~O=$!ixC2#4Px8Ai|k;}sa-+n<2K}yP?lxk~sQkGz1ZWa2rnpG^?8;9?cCos)> zPH92_z0Akp-IiGe$;pAhIId+af;%_Be8haLe^x~??+UB#T(kw^YBA3m*4zD^BxST` zn}$bAlMbSzuXK%&kjjbaU3TZ+48+$hiik?A7cIP#{ocoapX@pwfgpV$1@#x|^H7-u zaU>=r7^0@mM?Rob155`?_2A2k6XoI}_@^m-h}JzAjnj`N*Ldh_yo+tedKQ5m=yLjj zS$4a0%(vf<)HB?TvJ{btSRAN?ZZ0@NfVafw+Vb9WJ(bYuV28#7r(XPz765g-QJ{oZ zU7gCVGtt#=E>&ry8Is|tN5$T6VrWjM=2)3nnVMLI7QtFdi~HVnov6(3f@*{ECZ)R# zOg0;u1iU|0yIQX&k(0LSF6uA76jl^Ts6ZcXJm5d7DTWp5%4GR&ZWqXEqbI9EYe8VY zdGp4Q72QC^7}x_0-t15KB~xY{)zmAH)qr53N$|9&sTLd(; zX?IRbQ&YvCsbMO@t^aB5kL+03MInU#3x)^Y3bwN?YcGU(eiu*;>9Ws|=j@jhf8C-w znEA~~`D*EIBl|2JA<>@&j2W@?dSgrBPK*;wr%Dw*o)d)7&?f-|iir7lG1BQyWRjN$ zWy^!-&!7Lx0B>e|6>rU;d7x^tU}}pVrQpy3t0yfeA}N2O_W63#N+$cYWP2V)s7w%v z@)DFzwAFE2ZE=2;eYRpFmy>cy>8Y(g5f|?SUAz+!HJIZfx_>o58@-#tCN<);_n3(d zdBw*}a{^;yFvF77@%#V3CPGf@^ojN3jo19`SZ|DkJ^J*L;f1}lmHWf6uwT%Fq@hz! zNKBOIxqmEsC?RncC;Oby*48eacl|RM*NW0(pHA*WEP2rze{6}O-3qwdF9@ZgFevfd z*|QYKnTpYY0RrO?f6ehcH1nqkUSL zNgZ=k5HptojMf084?OAABQYPi0iyVlvv18h-WX#aLGw5&QQVU0%+iUHgr*agr)|P% zmh=_TOI&*G0^FO-EY$hX!L~liSZ?yZOVdoN4u*D%J?zdrD95>)b?x3ZrrhJ`^n%XN zq;{psk8vpu^o8li_R$tGVC9TFBH7zzdSs#&f-57?3G6l%+lBoV5o%tB9%gy+)!YXU zZI<@>y`7H0U`_*GOpl*HJS) z1nS>gxNw}bme$stJ9l1duA6VNY|Rb=qj-n3enfS=aPwNrflTwe<(SPWJ3ld0oaZ=c z2;4Ydwgrc67yB~t5qSTJ>rZefYo(^dPhJa`;(RkqCp99p?YH?6`f_VWyelf=z|6`! zbLrAf3gd2Ne|ZINZmC*3tD%Do8U=R(9k^l^?;R@td#{6`>G!1lM|7%zI_c3x-)9E? z3@}kAwto=#J2U-Jr@pj$Pf^zRk5Vohy2)UHqJw=`sz<)G>~#3_HmEe<@2<7wr+4;7 z<(-rsGj*Nkit9mAEv?4euf|D^YltDOxGqL11pRnW!3RhZ-+yca5D@{BD0}&{galvm zf^i1NEk5e;Lke+&Ii~FQTAYH?OK}K3mtzKxqufGIsq(nFzrD5%LNSf2hn!% z^Ye=b9y2rJt3C8rI@5e+(2Woib?xnRhb=4wl81ki*t3WeHU2K_j%w9GfO`D+aZ~0e zT!}bx7>K+L{lAPSd=*!X6O${>;jZD&YJCsc;4y7&_VmlOvB?5oum40$?--LMQWXl$ zv(Xegx`|;htfl!@TfI_NE^TASnDFP~tIcc)b>>M;M?x%kO)fB)$Zt1smemOQ+r#$G zu{vnpsFwx!#;(isrQ1o2A}7zguNTO6C&(7*a^wv4b$(rF=NI(D3VTbFEAH~-_Vag7 zo-Fk2rbr`}-0)@o_4B7jsy@|lV@iJs{h=P@Lo$$oS|1nzC4c(6SrkC-AM-?EMlhch zbmIDP(*@Yh6vE4>oIejZme^~eNG*jwCX{PM5RXTD;$WexT0t0@%k8cQp_4X_U;QyU zKax%l{FEEi4wiE07EzOtudbW609sh{P8jf<%vwUgr zj9V9}0!V710H3_H{KTrT_zJgasQI4P@zN=5c6n9!+Qs^WZM%Y`aY4b!Vur zqJJGE{i_oQ0}ZFLa0w%!{N+qVyJ>K6P;t!Hd!$Trh0a$yr_Jw66&|b4=TmK7v(gdT zHA*(<EJXoy%)<%Z`nuabH+i zu(C^~J&jjLJ%Z#wB0iqd1jw~uG)I^yJAOZ+*}=}S>Ww%wA2}$WB;Xl*!4&8{62QJS z?eJ7m4CJN+xF{#0!_!8|Rg`@Dr&Ir-U^??H|x?{@k+ z3CqIUMjY~7Cwlw?|H!g!J+|r)VCO0J`gF?0Gk;q`LzyYlZ4P?1^TwAhjecE%edR3V zxYfY&9HEDFgbUpXKUA!TZb}zo;ta7|I+!L4CZ?pUe#_Zlwej1vV<56XyBkzK+#78K z{zjOV=aGSTg>LESm33+Z7eY~nuJ=%0#$oKxhX?K=ui!T+mX>Ik^{C(FuMM9ooBgRM z^gxv79zeYfGFwS0jAs^5MZInrSzSFhuZ+(zjPy^Khq303;bc9U{T=}DN zZR3mn#lqd&`H!hrSA7I<8PwL*ByRV2JNAi=ns2@8pv2cv)3U33=y%#hCKjdf(2Ma` z`@2^Ab5{dFSvjtxmQ;Pzzts>3iU!a0FJ)j;-n1eC0Rbpa85`}KkO}N`(YP)CjM%mJ zUGbD>XS9NNe{U~UDoA$IbD-my+#xI)ruef8Q@hj4&Ti|9LhK~QgD@lE)4{?< zAB0S*S(EdBDssZ!M4Y!jA&KySCCe_XzpA!&bth&5a<x*guXMZplwntJy#I%YtQIGc!GU2E?hSr)Lzt zI3N1rmbRM{#d(b)puKqVn_4h=t8p}N6j6>FEfyl)Si{X7f2I{~WyQpJVgUVPO{bLp zNEH8^yABN6@4UD_QNeUR$~Z1M`NKnRqqds9cHP`h-_Vx=D}O-|eX&tAJrx)Um=hG@ zdN1GA&-%Q42+b)9)`QO8Wbd+kYIths0p)LIjpXJx7G7FywJbK$n}g z&+q$pO+w69R#i!izO4@zGN9g=tGNgg#qd9Ra-mny?OApScT#1{_ zhk;BQ0iI|}UdG0Pow#)Ak~Y{bN)%YlAM?LeSsTB7`_kU73`rT?y-`s7eMGo{W5*2Y zUY^WOu0m4J0pm>}HKP5TaIg%Y>DuU(jmz#9 zRauNoYo%k4&3`0g-EX=Pg(JTY(7 zb>S!cAFjFCf*~F4LD<{3V!F8Fn==@TNF>@sl#Pb<5?ZyEfQSR;Y{9!uulvgmbQ&AF zDchQ7@7}#pj$J+|PphwU?S5>#iD=sC4=o4*IxV%&`b%UcPoF;R5Z^gXYE#s`WD+J6 zD91r;1Q{#?WLwh`t11>oxL%6g5l|Oi@mO4MseN~or_K~<`c*e1Gdij834B#Ln7&69 zXLsZbu@qIa1%$8+#h96l6XtjlM&1@MM7+7Ojh}Js?(x8l@M+Bk^7rjhJ z)JJ6FDuwQQ25KDJ@ew&|M%%vmQcJ-T&Cs$3JC#U|bR2kgcNS#d7AgCE>N<8zpb|w{ zbZi-l=sNDg-Jk#;O%Z~w#v9|cPu!Ly&|9(NG&D$HZl6CRW0yC-Q2Td*K1|1c3+meT z_(WSy=Yj2nWG7SLP(3MYYO)ash}a!hbJ%_skXGEp=e5=IK{NFF4+*G8(T0YBR2Z8# zZ`OBKt1|C~U7mfw$}0eBp(A=f7RtWIh=sM&x+`_Oj65T!yxoAh zdU}k9hK6XaDQ6XM=Gklj0~qyvL-vtFlnkww!I3r8pFe;0F_J3%a@_PN1tqOulVV`O z_O2*-n}!2wxjZt7wgI!oN%@9^37p%xn0bX&nYLuj!3BDn+hPX}d=Teu=8%1I4^Eax zj~>}NO>GPd3Oa&HkTNwjB_3GLqAs$-`10lYZ{LnKG?B{O_%q$x+l!oZ z#tH)Z4+5#%x8YJBKKvY3f<|UB`HsMCJyTO&*(YcEWshms=FlHTFU`;2u0Fm&9!1Tu zA*GDW%*^dh$`7KV{4Z@-DoZK9$5o5|6y@(RZrv@d&sB=&VQ!;yCp`j6F*zd^ZjsH+ zR3opqrV<1|$yzhhnah zUpOoNaK9qKD@Bqd0!vV}D50@;YmrGVc0x!`uA&n*XB-47Mhdwkv zBI@p4a74~{yeqR|QFA7qd)i>@nyxSsbD+ivrl zOUsc8E{PqxcN?`Fz{2Z;JZ2>+dxZm4y!>!c7^8F5(sK9q?c3Sv{VKNg(JYE*0JH^y z*Lq+)l+MD%Xr}8*?=#c(Xx-cfS^eL-xjlxP#5SE&P`W+4Iq8n0>ner^8D1U{8T6p! zK}S?qpLvDFwZlrK z3JS3qe1YzatG$jG8g|*2_@hLu@+8!dZ*d~Q6f1NSE}Ii1uK7Bh=hMs@7?XI*;z8df z&ae+<9@L-NVXI|YWc2KCNtk=kMR%YKg5k$zoXwh+l$-iwYWJU7h=1X8Xkt(G!ltBZ zZbBfEPsP*VCr@e-Wk2F)%kWv_a6iRc4xoHVI|ALJTij7U(6Tyj z;B2nSG|yg{$JstFXeKECA)#_!u~-CufkFtGHS7x&(5XE5ZgK;$YLF%X(q#o&<4Lryrt8$e|XJ>&@R=mFTIw<{l5$x>~CIu>etfXUat{Ipuya4>543R)E7*) z%bPGJKY*l)Zkb+_rN0ZTJyb_CxQI)eRNoo`dCnl<4d-*kHc0oUY^AALqZ?*~J2_v5HY2){T6yS>q}(*iurY zFpSNzr}PxZkta9Tw*&%K2KpYRceEtb)^zCTyhTb>z34c7lepysF{k*H;;88XjXr$c6k-xZn1uabV}@1s;YWRa(Dyjg#C z6Zbt){v-yY)SrH7Kb1fvmhiK+R`Nc5vZ{$xCPxFih1`~0$@nkOQ^e4XM%07(3c2a# zD*V0{Oxg*!dfeC{$Kur?3$?32^V{5t?6~i3u>T=;;f|Kz#*v@lVyZD_mzX^t<)i$izt$RQ`73X_E@6= z!!hZQWMnyP-%l=lFKJH?Elu8whnvST56vUS4Bb3}GYH#YGBPbTy2sM;*1Coh2dX>CXRE&mxF*^l`-SK!7qqrA{Z;F!Q`B)E!Ost{q=YE+pu4_3DJ=c>s|?htTQy9Ccg@z1|y*5Kg>I3KOA(# zaE&edO;!Kr3G7N(+YV0fA#~q&fz!OdUJXcxst8!M1VD)wTLLR4e&mV=XklF+aHX>7 zIbPd(_(XPCGPshhzfVM`Lk?51?|tRI_X;(?TML3jsP&5Fk`@fBqpYKs`$OZ#0u(da zE~6PMZy%vR0}RIypQuT7(VHaJ6QBcK)|UwVe#e7D==h80ajKdP@{^Za;JthO@U2}! za=7s!=H<)JKyyJ06hW-`eytt^C8MUpS}`r(h6pb6dK5(V1uiFc{nEJK@pWase$q9* zJjqtvd*?ZBMQGm%dL+6Lye_ycGQD=UjLc(z^B)2^s!(UnN2x<1FtRpzxJ#UKbV<(m ztdHWYti(h==!hdJQ5Z-?{9eWjvyX0!>Zz}`x43eDc7RrXqV3|S_-UrL*DSonbaL!>uNubodTq*$@MJxScERMkLehed zh7)6|d?3%>{f|-hNDk$(5)8P+u00!Xq_P(xnl5^G-a1MEoWE$y(nR5>bRS0jb+FIRamux!aMHYw?$kaZpsA;yvA0Jb3k1D_5OnOFEb80*IeBZJ2hQ*8ajsVm{Gs-N)DnK5lvwgJx(g2 zf1hI)@c_|zK}*-^{CoZA8JE2BorB!RLWcDl7k9rE*Hqi9Y?L$eIXQD|U7Ih&L&X&< zPOlf0Ny!ScFwDgTJIi8!ff9fO%#o-W{(X!qd=z8*Q6Ba{Y}1XNlI1RkeUoxq9D!wc z0>!!6w)>2nvp8}7)zPdsoAXTgLDA7jihueBmRstPbU&@yAhY@T7_;M?14>0<2dVf9 z#lf0I?O*PYx${cwbjV?x^8T#FCwD*I{Er|tX2nvS0e;m@&K6my6lW)Y*;vyE(T=-Zn9!)SxCxjk%qy z&GUwi{Dhk2cF{h6o{^Y8zC1sUWteJMwoX2feakTEXXT8;y%m`U{6%Z@u|EhC;KR84 zjeaq8;GreQeP;8%C8#bf@#GnNa;jH*@GelkLlf-j&bOqx5>2Sg}qYPmt(&% z&VomIO7m8Tnbo7j{Bj7B7;}}cyQ$^MR{KMe#Hb?E|5n6L=$8^no^NKRmLV90>Q&TK zCbiL@@TF|JVcgrddl2&`FHwmx1W_?%3}^fK`jU}8gsdV_Kd^h^%Ly(|%fH0kxisU= zz@zc@3IpnW*SGH(<`kncoujM-+wAn`WoT#$p|0qHGAGI>;)_m9Wb}HkEl%3nDtjU# zN#oo)ew2)05pg8XoSZJ;3gG;Q`D%76%CG*~xR)ZC?@h@ zry}$Yk>CQ^B!FC?L?5d_PR}M~nJLw-?(P>`DpQv^_>J}z-+kIsybNgD`&-s-N@_lw znt&I=HWJ&;tHW3{a{5E=<4>sR#5ZWAMkW>{+VXQ$S07Y)YKYS|(-fliIs!pUjSX zMVmh<%+AiXDvP7#2TX-mX9eMQT|)zNyDX#^H*qwbZmSO{NPGcG3%4sgReBL zn_g$wn$I01rYz{GZ$qfJJ~dOqz-n|GsC17%pH>bZ=>Cnp8DreNRhUh0`ikqI(~V6f zEh3C6-h$HZch13$vYo2AMxoI5Kar6ojohXa=X1_E}Aj>&Ye3)V3<>lh>b6| z4p%rixzwfL75!Fh{P_M$6Q-7y{a}yBuZL(JIYPCbc^{dx5MW>|vXKbG6%~E$SVbtd zW1_BbN^J1qer3MucCp6YZQLbaIZsYh7G1dpl5dUF*Y@^zCBnsr?|XT1#CW_Y&sfo< zbr9lx1NGO%7Ri&GEnn``Yj7rfHIJt$_mTeWTLQ+Xl8tF7X6qAL_YF;LH{z&-Xp@q@ z%&yyIkAu}$mkSM2BqhxU{M)+U@Bj^mZhJJSKN&Kq(0Z6o8c|YsomI!KPT!4ZGPd+14>Q|KA}{nCvuaO z0OvuW!0tLx+|t$##}ByHk2t301MGr(_U-FII3h#1j1ZDmU@`ZI*E}sWuAeqNpSppC zrKNo`+oR`gLzgOXHZUYzq_^Mp^RSe6y{b>Wss~zwmfjoh^><&-K&}E zXSLSsr|Q4{5-%OZfTkU9APJKUEJ?XJ#fPa0fmR`dVT?f-0MZL~^l41Y%$sSza*9ey zPGIFDfD{3mse(A}*4E$MUkN+f^|rw|(C+(I>pYed*ELOxre@EM`q9I=!E9i>*|5|_ zJN7bb_{Dh$tGc1%jF3n;!*vlcY)dp;bF<(bK2}w&*Rvy0cGCtO9i5jkF+pKrKCiK568w$B7SqLT1U(&Cx02fQ+pZ$Y4o5ibYOHLsUcS5ox+WUO!6erblgxQ_ z_0@NrYm&5cL|PvdTQ5&JCT<>rcY_KqNxbFvn{S}JJ(n{t!C(IyTWh8>)O;>0>>Waq zTU6@%-~2V-@@}QSKXr9AH^6vrC4cE>2KpxBe*fwVKBfPyFW&S+zncZrhz#O#FXwde z2blAF(5Jo|Vy*Rm=aIt3>n$6_PLJjPQYLI9BpkGpdg_%8MVRWcCtW?bU#<4B-*S(WyRUua$cp6do9&4%yr%K`-&wFZYqR zgrvPX?h@b92Cfg1{<5wT^Ico*D%@)TeOuZr&GrAnAR{Y?D<(LrJ<&xrn*JgCKq78(MuHdx6d=VSa4(X(R zyT@6eBRh=Ai@nH-z3PR3m{20T%*lx$bdEF#K>~@R7rh_OTDkXYLxYIR^feJt(TjkL zfuDm6hV(yN%0U4B!yjOYwgYJ&QZB=&3fJ2hjdKf~3=o<4`btT1}x5&E&!nDS8sKU^tj)02uSe!I{E zORY+*8qoZuoK!MUvcWdUw&(b{h?f3eli;sCdwMGTUfpBc?+bHS*Dp^Mv;VY4YKa%p zj6ZH-=GQC*GqkR#@b97}g^;i4%CkOV^Mi*8V1pe=_cgHFi&jC>edVz7TPSw**9n#sefP1N#(QlF0$C=nEvJs zyd|ZXqoX(DsU#&OXTgM1!X@oY3$IV9o&Y{RuB;%UuqFA}Eyf)+bPq1fI7lwlf$f85 z@Eg#ePBEk%=jttC5HUdkZvyzKi?EtWQEC5asZLd$C*n-+YyCu8h=BC+-Mg&*zwqr5 zc~GX-Ea@)1vX0RW7G{mZjmd2xxOXpAC*kVsv%WPp{vvD%ne_oW@D~P#OaeF@~~J54U@R{=ElXg8E>r z6r?Gx%cu{2)l+75P|JhN2Z!`G(Qnlr_nYhv4EWv}v~EjQNN_NtwM#A2p~sI4)VHm^ zeT2vY{qz=x)Ng!rO4?Pp%Swe!TsllLqo4BX3tdc zv-~!7X1IRj+{&O!;Sn8N+I?P!Zwb+M&d)hcc+W*&f7gG5^?gLGYwe6wR*|AR1=!V! zr`P*y!Z;!#XO!9j$Jfa{Sogj$)aM@mi;0t)qB<3%0(g4q+57Kx=ik?E(xtHOlV!a< z)PHl;R}XIaLAF!6tY!xm$EmNr7W(t8ZV#ExmqTW-VQi+*&A*Ed>RK4%O}y?`K0ozX z9gF~_x{v1iet%hy=)jB+Iw>UB z#I78+vJ#@Z+by_0pS$c_0`<7eOl!%+kCF)48gw874OrQ;;Gbi9Iq!zO7DlHtj z4AmF0+*4@T#9oO7y`-MVyxgrdpq-QR>yx<38AGYG!in1(X#AJ9v)&pqT9!NVvuRH*S(DaOu@}6dlvzX4 zcG&Ka@0lf@L?cCft4UN|Pd)C|QZLL)Y8D~=B1+@o6O_36!366K?BW|MbfibS%KRu_ z5iAZLf)m-^O(XuNqD)YEwsp6-!x%dOTTh-mx$oke(u_~WB5BT3Lr449r)j>P^GZKx z(Hf5W_tjhL(h}OtQ>W<4FU^S3e6?n>+wktl@tJ;g#uUldHY^J3b29%u---|+R$5?R zThp8UznMMia2F#V$x+LF2oj4Ch4YY09#T7Zl!B@csSE6#5cvU zaKBrzzR(0hQmVtaE(G|iKuaIPhzKW01H_$w?=k=WHs=}_2`V@jp`^Ap1-Df1tGR9T zj6ao~(B1aHc-YgS8(DDJJ;M7PtTlQ$rzhG=`pi-7COHMn9Jd^zS@wq zg+tPI+m0PClMEF+r#o7h{paG;gl50JPqg4WWv8j1)V%rjx}1L%B)5tO-uZo`y>Ue1 z2~@3&n>Uw|IRkgrGOnSctI4v&9&UbjL#n&{-eq`suqwi!biGg13+Q--ppe4*KaLi{ zN4`q{kOT0W@Eh~fOgRIQ+8mWhMOrG5&;0xvUse)D!x)?U%<O`eavDF;hS8{U6pTVRLe9r)~`_nh>1@^kPceYOax_rF(XAa}-3z%(iDP;E(3}pQL z;sia;^6U>?BH#ORNZf5n8bG^IPeqV+wv`9!+)1czs_N6o_sX>9-ug@2%5TkE zLg_dpQ!Uyg+38NiQ%kVZ85$W~?RY1H2+@y{+z3j^n4$CJKTOEv*UJ1{;Nk%6tIu?} zIeqtIDTir&UMwXBh8aFJ4~W&rdr|Q~-E+&lB@^OZdeerakEjHjGR?Pwe=Zx^y?=iQ zs#^R9M-Vq5(;aC_yA5xs2Si#7%*+=ag_9Sra=iK40d5|i99W#h?MGNCSXi%K?O_(s zR(P$MAsq#olw86Cn0Gni>QCa_Xlah)r7>UqlIG^;e?j&{Jn$m6182bt?%t&wRZ;50 zsMFGtVRqs+&4yPO(|5JEw?q9E^zdORE|Dyrh=_=}KO?O>(r>_i^{mLJ{P3D9r7(^Eh}0#VC&Y+92gHMzr{7GuhoC0O{)L z5^%}?Xlz(>4t-tqDZRol1xwT4m3yP@4!MW(nwDsG!W&m|j$v##S@`VAjmhEQ>Zo z$>=~B;qbM>yc5eV#TX+YR#K7>IcvT(q#7JU0j^XY$RQI>tj2OLZN9A0 zUH%uSbwE#$~cR+xe_41X!yd!pN`EM%A(04_MTXTaC^GW32w#}WSxGSHx z(eEPmUWWMmR=ks%8WS>ELo3rCInL&1&q)X>uhhqGz*k=?a;FlrY;SE7CcnD0;c-^+wUM^3Kmx|xRqNH_?%^_2g#-zlSIm+=4-K7>DO8^19S_VgC0D14;@(> z1DQqs@AI&W+Sdmj^K)&|hCr3JKvm<5-Q6I)r^t(|F zi~fqk+S*Z4+{-&5Qv9*|Y`{$6_g>MX=N3j3j(`Ay|eo2;;cdpL*Z0a_QwZPhd!woySjmRN9q(@ZcWadubHDnx$hwLXtR2gOf*$F5PXz=0ZnC=e z>H#Cw*vHIv;M&089vi0XN**)lBa02wCP?oB?VZh7YYz8JM)Nho=gG;-Q^V)A#zBtQ zZ-Ye0^fqEm&9#kBe0|~`C!k<5F7&@xc)97?0c2Tej$_G&x?=-hJ35{)@m;XOIImw2 z2a}(Ayfv(jay-S`Sy=~BqG5c!2bz{BR6f+ipLCiyvbj~L5d1L)qZloil{h;ESB&c9 z{r&C76yHwYB9F-XAqQRz)%%hXGH!0gYPucBDhS;{_(`i+)WZNqLQ^@Ek;fgxXFEG# z;6=|>gHxuo&5=L4AZmY!&YJTSiG#g6yPpRzmJ2#c%F8ZMF`Ig7wADF4;+s;qBnj)q z1{MMBr`UL8_`Ebma^Y$y(HQiygb|R`R@j^SnAhv%+LF=6L<~>JPwazGC{{zjLV;~6 zNl;51_!=KPEDh;X{@erLJDx4ukj!NVFFtfYX| zeCti}4MKi@3n$8+&(Ds5YQ21=H9JjexgMxs0<0B>S|C{}nSwh+>R5@~_TPQ&m1&b- zcvp{J=FE!^9u|8iZsK%uT6S?EJuL{$tgWqyuM8QyYjiZA&7#~QD{nfj`5Im$1>y8S zWB{J45IQ9Ucm9#e=qQ;J7k*aKMZIV>|TK2P4DO^>E4B9IcYKW>jcy zA30V=N+({17hfuXsFV{NACYY>9o@7o*~F9X>6b+n#2?tqaa1*Td~Xn_UqXmlT?BNs z7PAZcO)bB^VgL@Z8+U`t`vtt2Iwu8Fg*%j-oSe{tn7ZD$@hhVi_A&4ZhK7c$BF5f{ zGD1T4!BvM~x2A%wgktzKD$SHx)*Q))2}SduQFFXP@7}%3@?BTOZ4AQ~^8wZ2#US-?`?+|8w zz6RCP0c@*7uDT&(ta^&Qcc~#ROue{HOa8-O`J;NdXIo<68zFb@j5~Kh7}}HpJ;d@y zp|^X~{QZ!6=6UXiq2Fq?V;3*(%V`V?4ZRS%s5?}9T<>m)N3p(Dm9Wj!9yO0f(~Qtp zaKPeadZFfdgORn6SPT#D!PDYqI*PlX%%Y7zD%>md=KwSqL*EjwV>CKu+fMVz-uq@+ zW|(&W@#9axfaA5YlC|(??rOzeA!jNn#|2N1w&YE*l3Uvwfki~(67;4k52G6xXiks2 zdmf2F;kY_a(_P&g$y2ueu9eOk&GhxRA&;Akw-+So6-K9~rn`)dlq*KBAtY>bSR$^KFmT8|cwqH$XP&5V z@Tjjw7*;~fdmcM%xyxaQe}JzBa>FAn9R+h0#b2HWneGxCZk)=*bgyFld*I7$l-@=w&*hnWT~h$V=k%Rlbe5hP(T=@X`tEc zBPNTPu{NT~Ts5tSnKRFxJ)*Ir?=Od9}L#VUGFMg`{EG4;@Ng*da9I*7} zI16F*!n=pZL7Taa>_&yPI*{%skN>~5CX2%If7bf^)VlmIXMhtw0|toEJ?Q6th6KH4O&Gl_Xv-SZm zLNL$G(2$#g`scrjborO4#ALrNnujcWqKrlF;cPbi=Q-O0$c^@1&T4^+moM`Gn9~T||uM7+id&k(z4-4Q(e1yq%Jg zY>D629adJR!*eB-S(KDRvZ|j4{wFX-DeTSF`dtFr*+md&lA{fk8HWa=nXm>Xvu9;kV|`U!#m(fbO$^cPRNqapU?g)5*ZlIpe}U4;-?TR>D;XBG=M_|pdYbbMlk2dtQ#yUR7p#UMhUq0|vh6pWfQa_hat*-E?H-8- z0xKrf6*OM&rm+TcGy9nwsSqoP>cLe<@(c6ui{csjnmL`RwEssK;9E~ zncinvFvW~6pckwn<`poMjs1cRG5pjnEQ$+B=gP(^NV%z=g5WHIFxYtXEd_uCvD^bW z`nUJco$j!R5ZxvvwUrY5@nK2<;wNRKB`c*!*y+XDcTf~=dSZ$21Ty+dn$ZbjTEYNx zGyw!7hEEQcOL{`IQ~T_nzzHXXz_xe#A;W*ank({?ysGMEyl5*X2Y%-Dh^v>80(jv) zB&$#sMH>cLZ*m8*(r;Glatsh-A9cB-i_3}$gp06QS3HN6onUnNQc>5Mf^g?Q{KK>N zJ;E_2v;u02C>OyORebBm%lSRrcn`G84=ZuXm2U}5Kwb?7K0kX@tA|Zf8S>>ylC56M z#g>yV-z0GqH~xR2Er`>+#q9WE+a4`PrJKQPVHg@bI8rdSEcrK6($GLR2+0O zw-$d~!yR|0f{~4_66KMERVM`{UiP&ofPUPXpX7;X=Q{=+TAF=P@e9v~g_TL?%jW)o zxMKa!+NB|9+plYJ*6Oq$s-`Rqa`opQc=6>`$1{`7S+|31AuWya0F7Y+x$|)`ppn`(VWVU@T&g-pmR*i$aFa`_$O|c)x1f z4E+r(s&#FJ%rbjMPk}mM!tPc)6${#2YuxdWXD6!Dcvbq-*xrpeT^$IGKDuD=TZ=FEwwVK<_~H2X4P~ z7rQ*<9AK%Faawv&b3 zf`Up(>-qIdCMMKwi}ZHweraG|4W}Yd{uQAaBW7?sIViv*k<-)Q73aJ;Ye4vi<-lTN z$0ljJ2RPOFe^FY_x6FJ-RPOk3>ni@Nja#;S1ZJZ%N?=6|5?T9E?41(h5*|TROF0EO& z?m3Fe;}#C$?8cXLEL@W=H``nbYb(FFHu=~(k>&Ctr0RNDaPaLmi@)P9{W$dI` zvrp*nN6dgciQ1mz6vX~ckg~lvA?7*cGdpEZ=sxSJTh+ES0$Stn7<*=!uvO<_8aj53 zr!r_Kh%^Ei3E)KF%}g^LZf+5mt^i@N#Jr)Pmf+yvlS)c_4f`DxFI-^ms~RzK5a(U6 zQ#c|kD;s_)*2ZZJV>Yw}8-J^3#Q|H z^7HexSLsH6x_~w3E8F|rTUEDLgvZH%kJWzk`;_mx+_1{XKikkQjEr1s0Mf zOBN2ToHNe|2y zeT<6aF>VYr2sjQ>6GNv!Ki5}#N=d03Uu%TnA1y#9px0zG1tldTbVMW2 zi53+dCP%Jh852gKQV>rSB`leYasAKls{|AlLQ{UGe0g445buZ1eA`uTHz_J8Y!egv zn&I6PLtJzi7;+sH-ciJFfjrZ}kPjqILvnBU4CApz4>(kpyt z)&h!-oO9H`4E*0bA=dAzjA zWt`V-Y~V7Qgmyk4|9C^qlS3)T8+gOfQJ}yNwbb<5YMCDdi{jDozO}TprPpe7Vt?aV zX&S$Nka+F|4eC7dx4$MQi%m1AbNskWgEA`lEra%B!M6U?oj*LbIzGfYDC2#@Nc<~| z{N?L4+oY$bw;?$=Q8}LZA_@xIk)|(dt@|TRk$K2K(bB=fp|c^VJxZf)$hwxQx-1SK zrT{>B*R_vd^Q}InkhsD+P6inP$0l?gAWdZ0W6wO*^4jP&@8eZRxJB2!aqHG9;LPH- z0~_UE1R*66B$k1b6J~=m5zB8jq2!0vMnFgK$!Vv!poc=M4Ma>hnVYB;uuL!RRr4US zbSNSXL?UJ(sT!z{qn9@tOQJ_#M*yhe+p9$}9i~wjtpr)7NVrC68rWBe3L<-N(x5&; z%>yO3b@Po4G%JX$%eU1cO=I9&A`5VH8!du;$4e?dmMjBLj1u>8;%jVMV5I$#4gYY| zm-|9Y>DtL0e^NhxPSHE0Zp~tI;ujd>`;eq$e+RT)K0Db>@L&*&7`)cm+Zz+~nrx@| zMQj^z7W?(AXCTYoj$_J}IY~4Ji7HHvMn*k1CExV-!>_KpZ9q6cyv8vEW4?ac?W+h2sBl13qaX*PII zgiXXUxAam(QBje5$Bt5PMEFS8SnuMPuXJ+(=3BFMs7vk8(`)m#l7K(i#jV`2%!BUV z?=-CiXnq7h;=6A9k)~px#{@x~pBaxs!{=>wZ7MtKhxg$I)#iF7EVm2RRuJBmW5|>@D!AT46Ljb zKT7Uei?i?8wM!*VnFAH+X*`0#w!DLYtPx7BfSq9JRpXI2gY1fTYl!)z`}KNAP|y$F zv73-1lFTrgKE6?*6&z}?a`TsEX9pG5^ecvadM1wLKR7Q%Dj3ldJ z7qTKDvZ9R0j3^DIY$cS2QpqSggd{5|C1hu1%Lozg=Xa{>zV7#U-{*ZD$Mqcd@l>bt z{GY$^{eIS$xNCvk;{%g68`9~kP4?Zm)oD!uYoT&t@daTD%pBnXo5Es?BQ}MxZh!;A6w41tQ*cz28g@Mek|R2&fZM40lM{jvfRzH+0576@cMhN)qc8E^0Yhr3 zG0AbY!+5(DPz8|T^5lf<0bcjY{P)ZZl-=uwfBs}ZWx#-yeFLf&RuB`wurJo1WVnls zb0B7C$cBBF$bcnG3N&25pWtDu1Gx2HI<&|o<^B9BT81Yt;m|CD)e4b`8QQRV`(FoH~vXquL4m+QTO0aRm*p zyr)GQhN@x@k%KWj9_R3OY$LDHQ{(;hpT>_J!t?F0?UcD4*lzj)Sh@M4XI&Yu05|@i zrQhcZ+MMHX&Mxm?;=AuXI6wmpRj1%!7w(Bh#Cbxj9STqfb#d9dcNW-rk(E{`e01-| z;#Oc~XD4!hBRd?HATe0)7U(XcF!-HAK}TwMf)CItR^xeqfcL^Fe~l* zAzn${sQP(eSO^J>2G+<^U&lsQ}%3Ykoip`8I(6M;YH-`ym(mJAfTPd}3!_W*MfGsJA z(4RhXZpXId#usKL_a>?Ua2y=lU5UTh6}@dDIef<%vnoAoaBNZff|i#24_X->@%td(dA_V+qZwL zVaG!TClgQqg?ysfiVr&%C2K5^<>Fmew8W+9i<`-*QElj_NZdTBPEJfrOju)^Ks@%S zRLrxjVpQKH_=hzgoWx{6pr^ z{Iix3RJhWJ@R&#)z&U!osEy*(y(b!yxqX+IpDcH_Aq=wa%1aanW|!aF^3A10J=bgg z&+v%p*dpaQyt$StUr9>F zE+r~M!t-6YumHLqcxcQ(WkZ_9vTmIw?u3A*qaGim5pu(lEw~kvJaCx5yqbf(MP~m3 zUDKT}$~J$-9nM$)_QL}$Kz7@uHIE^qVes3~^7vylxx6V5;k>p=WqVnL%W72iee_a7 zh$=SQp#=7%pk?V2EjxUuF{H^h{n&E@-#K*}Ep61k5Q~v6iHuRlVMSMfYt&oucXn7; zD-jqcR1={Wq>BVG#rY(TWwa$Fnpud(OEem0uNPok&udH!DaJ!0pPBe)Q1op|@xg~rYV9q*dY@ zoTMt(R(vmaLDe(-MCB^;x6KamgkP_ znQxt)7e5~FAnDhTivTQQ+xZA^4kVL-s8}I47#O2C2A}0G9-?}a;d}6TF1Y+D; zl|~#290A4W3r*L9N5#a0r3p3VV1bQwqyXyS%c3oS+WKOCzC43pp(t z2uXyaY)M#|0+4o$E!sgqL7*y%+^Nt^5Elt8EiLMBqR|37j1!O>_sRZQ}%UGfL+Wik9Yu1`bsg80_Dfht+RM+xuQ!YRT; zJvpK4rZvicbD>}AdWT;(}c>-6r2hmev<)Oh~B+W)yH|9NRL&${%z ztEtHD=rwyO!=tGm9-g4f?0$R|r+i^yAq66$;Ly--Z3^0}QJ5^Cr$042;}P^KGPs(F z+Jxs752G%9`0AmiOag9EqOrSkXRv3J_F|w>NexH08D;IZvU+rRg{sZu)KnXqLBMB5 z%_r9Rf=fm3Artf1Vr2252w3+#A9|@n4I4m6BjymNhb%;Lru`5Y|GdbATm=eoMvn_f zwWirlUb#^1! z98Zpch+VbgBqu1NqzoLFVi40uiQ9ZDq`HG4HYrM^Z^jDT4pnm?x2$1@9NzXO3Is4+ zFzmQmQ{}}xs3q|mtPy|(o+mBX{Bx9eY`%mj0<=LD1ceB$#}0=6_e+v-pY0kMcai7M zpF>+wHeYz4$0~xj3znR#C{TX=9H>Bfp@Nt!k=0D{5hzu$*qPVKt-V}Sh!d+n5SgJo z+Vr{!hpyu>uO@vx^$&EArqpOPdfChuh7nE2c#9RFQGz8?E7fDgq49gQI zu!P=dD`>JH)CiE}At5zM=F~-p|MMo5nPK0zA*yW!0CJEF7TafX zyc~l3zyk>x_zb^h7Y)DO5epPjZNUlkrNQNVQd zkZ%P)5m!M^Qoyu#<3@_d@k~K4boTeSe(g^jR$%nCDChnB0Of-9Z!|tdw$ypm0|zWx z3(k>~3`_(Ct7N~D(xuD9Wq}`EZcwzepP%Xlz!*X15aYLyvC6>Pi!DSy0z@Fx0*EbX z^!D%VGMl>I69I?zIUX$Aj&}YAe@VLC4 zfJWMT9zJ>`3WXVNg>SY5AtdKGgj4fUDf|T~d>4JEccnWKS6;^`(o03WCLK}n8QT#~ z5H$1WB;!9tHF~venFl@+O9%l?H15ds1P)?X#)YD2(99ZrFAW_=K=ErZ7KhW0hy2-N zJP%tT-b3x+jzk1VON2=P3HUocY3T;8cp$bRYNYyh_vmcii3cNu)Ttt@tnI6tUas|} zJ~Wkx?i+4;WbOA&VnvJXn)$FLj#9@rc-54__O;aBd>PCls(4Fm9^ z*U&!z%HTx7^XB9Zf-yjGULhU$&o5DV*!lcnLJ*hqTd)R@l)kk}^$;W^fzbwl+Bjay zQFlNwPTh|kPdoMQ2<$&_paVcx7s{zNJoBjxw2fhCZf{Tz8!x_yA&MR`^-dC2_)u#R4J&ha-<2R8-5P(-Vcbw&{8g- zn)zT^6ynAxsK4ZU_OGmm1=0GSZ=;F;3R#v}33VpYJVo$jqMij2=BT^?3w^UWFm95? z`|h@MZB18S-+u7O#P>z@F_90OheOB?i|Cw(3m}$C1Pu};Ep8C5c%sjctOq+uOakZ! zlQO_)5Z@QqB3B+L@k z3~DXVDQONZcd#o05Q;+UEo_p@iA{tHI|ckcHWi8HMBRm&kiZaE-=&_Y6$VSDg4KjJ zwhO%inNU(%s)Any!SE)>1IP#jPXDrREm&xh;&#zWXmDJuxa$T>F8B@}f=U4+b5oum z+lEL4IU$|J6tl2|M6^z5COz%vLXqK^9fu1Vht zz_6~)0M3R|x@9uK$yG!>2r4L>d#E8Zh;V;oN*vOe5(}C}DGQfz$Ki|ss*{DjzTqwY zixjn73kk4jgn|ro}*ghEpxMynzG|7;oQKGoI4=@P`Hss4lq_5fY7ZU zd~hEmWKF|xj`5FIfg1AjUj*(J3cLz}d)#k=KgZQN4?bndC0|M3&22I=xgUOp{&JS* zaT=G34K2=2y+x@T(CGhp-e-T>jt44JD6z2}ZW4A6HUUR)2JXA4nre3y+e54+I?IU0 zSFVeaIX=+YNnq6<~W-G>_sDmPLe`4IfcmN2D9{6ig zP92L7uwe@1eQYS!r^8vRRw&|+`tsD0g>%k(CaMPbA8u&n(Z|KEI`c{_sYErt+L+!% zUOph9DJSZP)lHU=y)Xg9fEsPbNZR>>`P&}rPeIOOjSi$GF79Zb$G7$d+-}No+xEiM z1q2}lQ1874<^LPLRaRz(oGSpar~!`LjYS9d5f|yt!KUbBZ|ok53`PTAyyJr`nJoq> zzF0dPn}*q4^0cKMtAUnLs(um>qgj@x$0yzJz9%jq$=(Zxj`7rzmzRrJ63&%rJnr?jd73CH>mqblVzd)G}HMA@Yahr-(jJW+4HzM-q#Ke z4OIb20%LI?#QWFeO1W>7)yGcaV4>EMFOso{y3fP_NdDD~x=rdT=Xwc=^xa41ztcOi z2{nfIU0Fiz^KFa^4GE#!{kC{*txPTh-RH#V{Esiumq*nuU)%qEI(wfWKPA|dmZbyfcnsB8!OXb$qnfevVJNyu)e3l zv$*x7Ah~0;_Y&hIr6JQH9#_{?#&3_6b~d=V=l~Qy+M6kTTLX^e%U*Ve64(NY_d?(% zpm`?_;t|VGMM0tib?dJ?_o*iiGFp3CC55M#iY~toF?Xf}d&&i1;3kuDu@l}3k@ z#HM3F;{tuErPCcqkYKt)GR-mEUqExZ8n`()N>KHTrmtdVAc9unk_UDKA@+ODy2B= z(<~X@1XSSoaUzT1g|`;vciX@~B~Fk?`S~f{0D=$#i*J-I|NRb5X5z9Wr@r)HmLD2@ z7~vg@iy-OSAQ{<*q9^$qm3LNQ{Qm`cNDqu+VXd_5H5?;mRB_FP%a@&r9Rw&9$IeG* zfB%ACg4Xx{0^&S3*rFe^U+|Hrhkh-9rrs}!eZOARJ2@nyLv?-i^Yts++9V9^cJXbL zjK+1a6W2l6ifmrj0apP5&A6P5nuH*j%KT^ajOQPjj9$*w0hxvQY5O zKyV88+~}9e z+@*kfE9t(yjTf-hi=c|Kq1_XjS;>AS=Z1M;)sgKZ)z7kPURn%sr@fMXWaO;cGX*9c z6(7#2TVvg)ch$d~+S#r1g0l0}46SOsQ@7~IXy%9huj?tf@04D;I$WrKrgg~@ZsM$s z{Z(aU8~FK)i>}0p=jP7F=1DILdMY!$bN05xEk28j&vsk17~Z)5>ZZY=Li&|L8Mb{fP__h5;}$&*_!h2(nk<%;t1ETHD@1L?Kz?9jMvG0Hla zX_3AcY%!Wj3Z|&LSnK!)z}NEf<=2^S{P)T_omf`&3=J5Vn9TZ#-P+&B!Nzv6$-dS) zcDepU{ldF1Uq%7GX{H=@rhuu7$uzUJEpMFR|;?s?6wKSs-! zowyO21$Dx~BS#uc^9JVxocgSB5UrASeU`-IpT;}o5n<(&`RLJ&eNz!#uRf=3a?Vz+ zGT?Vp)Tl;Y)LTgJOMxj@+7U$tjw1B`^xNlqPn)NWjYfcOSM56eI5dY=T<5$S21_sb z0#wONhI<)NZaJf?`ii(O({8u%h=Ob>w$E(wCB>Jc2RMybTwgvaS-`6h68sY`+FNDD z=v82lKa-R{>p9*)%4!xy7R=8E$F_t-r;%YbI1Fr0oFE2PlI=!8XXqCEAp8r@diAYn z?tU_`w7cc zItrfoQ@+of>3qy1kANBEs8EOd6QTqEC4HR5fg%d&`g(o0uKU&xE-n%D_EEfwg~#O=5NFx9G^LF=jvqiW!x^)WxGaXc&dL| zShBZ`Pp%oic|%vnWH6Sq+&(ij(&%VjL$Z%@-r+0ad$37T_ED{ZAseAn?E$+PXWS#JuHE$fxEN5eLnc1_4&`v+P>e3D;o`#4=@mok2^c>i! z>YjswLb4rePlJ#aVJ?+2I6k<)Z>_pP|cKIOu(2lwh;r%UEf z+&VfqaXkEzS@{j!iAKDRck;f*kmL&BXRuu_hYILL!+^oKEMEuLVG5||y@OM_Gy(n# z)OH(+tC$)jemOLE$u!*{D7v-y*vBnF8y*ktx7E3m!`0v{!aTPyy6CdtAe^>c%i@1q)}(j)1QYc0Pg zOiL%!S{|1k`7OF~?tL$95`JqKYc6(?K)P`hGKA7<@;789G_Fm~xQCQn=n&bjC`ScV zbmFsp3y;kS{buWG-AQ-w$O%VNpDWqh_$5%mucm19vHO+isGd4y`N{8w5<`Q3v$yJvR+onQ6wZJ!XqNMy8XXEF2Ad8gTKm}nz#iH zO$+a=XcFcb2s7jCpG+z+k`LEESKFs)qTu4l%C&;Qx5@0`nX0V2Z#Gp&t-4egJ3A&o zWVR$U3Jn2EfAD;r7#Hy&Pl<=s5og0nj;RC_TU*<*s^sMN>gowYTbmwOZ&`YIcFUEu zPf}8X0h`?bGqWPIp_1gmAuXS~pPEq#cqn3#;j-qdR~Lg8K7j)Pxg3%XtJp&_io3u2U%mcZPO-G2*a;u#%&!x5EBks>@kd z@H+1Lo!b2N&83jYl^?(TxRRzsI%J4nPPV*iYTN;VHUPT4=mz{asRnz0|1>3-3aKB29H75gM!0>D&!gA1~l6ng)n_xE8kb+~A4dY1R z8UEoeGc(gIPp$}3fOowj$SL8(MW8zZ6u~Ked^!Azu{22hJiLA{YY2On>zVqASXK)2 z1G8~^C$+fxzztITp^er}Pff??f+^x_{=GpSG5*t4D_J*8j2 z<(-n(c_vCi&EBC`QKni8?t)*M8Fb61YYp8mY=&bs#^uZ5J%N80Pmb>xb%1?qvfQq( zuD<8!7VfCySk;qn49uvB`Wp_ao|4Fx>ZE-Bvbv*7H*#A0)BVSNZ$C)LuD&T`npmK? z_dRgr_XX$ZV4sTldSf1jD`jLi9F)mC@;WRtJZ89!f=8#g=Jvz}d(=x!r zYRFt`U66`f+d)J ziTqTVCZ)8pQX+H8OO6=(DZ-EoD3ySnqCkY0zxx6o&sIM9mvD_Gws z#I6Q$tl07mS5$mGWaUJ~0^W`L)mwHs#lKk;qv7K)7zvke7>}WhT!`u8$Bzl&Yl^v5 z?lN~wFH`+#JUn&>3mzpC`7%bh6N3y9x&jUw4LCY;zOJs0p&hUmxv~+yVS(H7++t+~ z+ATr}oXI8fw+wA;mUMQ`THI)|=ii+D$}{umT%f_0r_B)=LkY>RNa~ga)*3|yQ!SuO zlP;x>=Z41h$cmH&R4+8LX2|hUvR3Et;U^YBD*nzndHvIxjFd|sQ#>W5_^VHr1jn$V z)G#=BY^BZS^z?Kb5|N;l)+X1synwiJ1s4}r2X(G7PT{SKkDs4V*pw~A`s-DTmVZ@u zta@Tffx3&{R=9t5d|P2eF-Tk5vRQS7eM|_>CJ;4N2KutBGQphv&1KA(jz-XnF6} z-yo(fG!fbd4}LH`gS=Maae^*q4Ka;ERz`g2V`F2xFY)qJz7t_~_0pgFB}cvZhKkm( zb*|s_wk5D|Fr_-r+6WJfG3~_*(ZN^K_C$f@d<2LLL8l-x*>jB=Z=s;@)z6pTT@oV` zHGO{RILq$Z6-7eY5w9mGC|LKxk_lQnI$|e`!}}l&5b>BF#9|Yxs7i>-dc2sTc|B-m zM$P%CZTHeYoA3*JkY*hJ0ZiZnW?f*kPQrF2VI?5r@&EhvpJ54JklZjZKY{~aKhgJ` z1_l3dXHZEI*qtm4sUfj4yvl)CiI)*hwfh1;Ph}}C)9eSYJS7F<*A}&0x|ucUXe2xr z%W<;;PdU=`!lr5-@?jyRLNiB%(L~^FkofX0QRv}kEART2-GF9Yt_B3G!VoZ0NNa`V zP~c@pO9<-bs3Wi;Z6l+11U&E$R*1Vb&~oHzPBoKn!@z&-TDKPLTJ=Yp>}p|fxP^9~ z$S#P}AatH|9q~i0as5*dpO~0f-942xEWr-niJ*Ejahx|#fz&yJZHk5MBMmt&}5LNfK<}D z^Of`#cD*60B@Gv{B6rZj@n8paPDkPSdCK&x-$0$exO_gSRX z)YY5ZfqXlni;V)WEMZc+Hvf>T-`O^CN_Z3o-rsO!CA)QrsqzNa(};~#ZeJ_o z9*lN8_QQ61`q{E5wB&5mC+(I0V0mnn&l**;bJ4wmbM&`UMArOZ6owCrDQ}u@!B(Y^ zE>q4+f*+{d&TK_@^JVK6=fb5AXpS_B^l!c?(J)0&a|nf(7Jx)t)0uX5s^aJi@TEki z1?j??{sth_Bu|nQ7Vt?DhZtEPBw}7>xPXr6Z^FaFm4a@Cg%!aP<&FRh@b2x_^3$sz z>yWdO+X{CS(Rjdlk8+Ka2l>b(xdoIS=+fc9Q#nm!$_$|~0c4P160E3qKp0ij)#+O? zlA;xATZZ+Lk`SMlA(f*NHBI2?ksG@gsRUete}#si+A)suA*2pLX2vAB?JDo4+zoAv zaiZ9sSmNX?_>SCmpF3Zpp=`ansC1k+ggxZetumw_)gxpoWgqqW2w@k6LXl9=&{$x?cZ)<_=II`7;;2N8vPnqD91s?H90V1~&6SbiuF_iP0F@XS@of}K!IQYJukox75Ge?ZQ`0~b*OQC7OO+MZ9QW%P`>ulyNDy4Jlf5I zg1fp5a3&Bo7*ow?vY?Zu#dKZq5Hrq`4N>Mv>&g=f`o<^Pu3vRp&eiTvV(Mnl(=4`Q z)Ap<45oVm^v;-xU0wfftijumzdP))4ShU-_j*f5eV#_hC_c>fS>nw-RRUizhsKqhK z!-q24SYvr}O6Vf-F~5G@+rWZI!3msbZ200pez@T>9`?*5!)$SXNa9ACj0}=MYPc|* zHc&$0;(364R!GZQN2hioFc=R=yacQACeyau<-TxLXzS@+tm@{)U4jps3bh)DvikKs zo`NMLhlB{#0V8T3I&=xIl$#p^^`y>`BNbRq%#&eXU4HOy+<1(W0SOpdVP_|tdTF(f z)k3EL9=-xOd6SqcSqf2@@_P)--FP6fz$X5-5;Xo(Q&V0LF3e!Ars&)rGV{gu957JV)sD zKUWCfB=ZEfEt4eBm`htStmG}hk&&@z97c{b`X(OyIQGdm4vvT0MCHC0@_SL5vO{DzOb22n8!NWeU-slmVx#0#8i_#ZibyfPy>@ z5^644MUuWqjMlq%)Fnv9A^=H|>NE#7Nk8d)8l5=>X*Z%Uf8hU9j29u^9H5J$-JhOL z=P%GKxN{Du!w9OI4#s6rxW65f)ni?>&WM4KXfYo;6BhM@HVog1?IA}^16>*y-4 z%-_M;cfxcuj3*-IZ=!Ub|J+1;09`Cl&MyhgL5)LVMQ{GO8wRMai`Ujf15Bo%5fe5b zSvVl$3U?;gRv=&IVvVh=ZN*0bsZbO7n#;Y1KiB88hdiz)ZVF0Pu7aa`W~k|}#ccZG zs~w&jPy;|vV90fv7aYCLG^^G;XO}&UG$%7o27KCGT~&OAEFU)B0=BhLUOpCUkPM_9 z#o#;fx^*xu!HrRcbi=)nXRY7I60)%_KQp|1F&sx+nGO53%-AUGOnmVQQSF`+>IJqn zak{L#unFAJs(1`$|0?4_6HnAm_{JY@JWK+KSf;imBrtucyGK2u$AW!tpCO(m)RjnM zpc^K^xX{Ijb2@(y&R=c|4NToh<>Za1!o(rI8PJ*-@A=gIxS=ofHSTMP*4Q`9rr@SZ zVpI|bBheAYjBIa>5x`CXPIR4NQD=+7zem)!TEoPhRcFpXpGZQx*aP04`d(>O^oSKLM(>Ta%==gG# z%wY?noJ~2tU08T9avI>6kK>sp;~{i?)O$Lz`)S2I(_S4@@QyvHkqm{Ep7~2a3@a(EMOy?1nHD%V`78-#Yx%^XL)LxeGe3IT3H-e)Tq; z{Vo0UtJdDP@Y249eYvtDsrXnMo;=A>B;#-Kvxv;*!yMp+1qdoe`tFX^=9$xd8!??e z(BlpOjCIaOjn7XSG-yf>h~JfCIijn3`kgZ-)X{tZC9fm*NCT7{@w~FJu@TWZfe`>; zJ_mD86a$bl1$t;O2Kwp`Usd_;^tY-vOYw2|y=LD(bwiEf8b&V2rrXj!X_(^$0Ur?! zg(%{qOfORt!K!T!8{5=L&+Q`5`P7?*9l6{=m&t93SY%dWm?S=8GOP3MdOq;oB=unO zarbs+KN4|L;uS*}YS^O1znauW-5Zov!;Clz+#CfW*B-Fzdt(7p$ZY7A&Fe<wJSY1@tg9&L1Ou!Bh>isZCJ%HK@OwNf2Eq)#0WO427dj(VM|v}(s2CYm?!J3W!! zDp*|8XO+=U`s_#tcy}r%k8Mr?KN|(J*Gz;M7?B8Vg1~(q@Z|WPJqKC5k0ni(ws>f&lfnj%M>AxKOg8~CLB6<>& zYcd>KG$2=86C=ROThxE?j5tw1;3TvO_wq($6XhMB^MM1*_*$)T*Pq0&aI9oW&ZD?h zAf%;7$@D?_uNDBsgyvKv^t547QRTQ$4B#4h;J$F_$#qpen{1r|Ekka0wzGg6BehrfnI86eXx?17YH~%whjR2}jck(FpJz zF3wAU{5nZ^0h${5Ndq`qsoHIR{#j{jAwfZMSHPSEwR`x6eZ2x9L~KkUqbhMa$7N)& z4+~i0va*E{S_;=Rs+Eb&>yR|H8~i`yzUF92!f#G@w_^U47a%wSwRKe)PK?rF?xgtl zcA>4ws*EN$u@76{wlpCO647A*XNl6wA$=QIsJX(kd_2`JIWHByA6i^FKGO&=#AjXe z<4p@cZl85!cD)=iC~NM=`ha}(=!>04ro43fItNTXBLQPT?hFxmWRxvz z$dIR>#~LutYycleg0pZXR3obgtzr#Bw|u=h{w)zoP%zx|A;jW%EdT*nKmyQ);`07@ zKnA=qs)9=;?HfczUuZ?7q{R>Lh}dtKehp=&O?ZeQniK%eP_ zFevhPQ3k^qoDHy}KJQFs{k{nmvRfdv=|XWMg&1i31u_T;AR!rP5a{Xlt&H3G?JDcw zh=^jOG#x-4i_l?`lJ`-O<2if~*vIt@?WA5zmAF{aE>+l)CN3FZ#`*RMw-*Gyc=U!O z=r{Giv`=NMd@N#X#GpY$r>Y@!@W;(u$+jL_mg&r-*FT!Z=8}FpJe%9vv}{e0?|zfL zh61rwtq-pK&Jz0l+jU}KEBesb{(-v9p=s|!C|O3XXLr3|I&`94X`tHk@D_Gw9!hfU zegwb;^M*c3X&8VF4ce#s%XBsfZ`{amxrk=Bnb`)p*lndOsycAk>lho`oxK5vH?5$Mko0?&#QnxjTXpesp~ISJZw^Ut zAY~#Cwbz@z@r8relR!+48KcmWw z1L$|TJ;{Gjo8xdkG^e^3(cL#t$w0|6LUrSK zs)TCWkBh1r@=v3~;Yi{UQAI|txL)(+3-Rq!BeQ@Z44PirG_X5WyeiEw$UEw#)jOW* zUzV0^?LQ_R3O8>}yqEjV$Ly_DCZH+Hz`ojib3dygp29Q;S7A;nf>@3+M_B_r>OjCg>Z^3Ad5kW>*K9tO-~^Y_N)Iy1F3wLGc3zYo$HC>SoxY^ZoO7fvzd zbQH;X6|3i@wsJ@Gcz#95n>Ux}`ISO=$=k*0;tYlhOOk$a`b86vXYBKBr5~v(T$MA! z57zzmN7>EoHM|E~hKR7BMR>z;F3)k}`76EA}V>$d0;Ez*@uW^%qI{iV1QS(7DUuzgMQ0c?QDOPAFdZ_D#^q zc}C28+Urs_b8r;9VpH+kL0MLu{x5?U)Iwkb2HnE1V-SdHeTv!NYk;SEaFY&i^?T4Z z^QR_(kpKJCeD!<9W+9=aYB4;Rv`cP9oL*54Q0SA21T@OBV}DfnJcXaOFgCw?_ikN( zD#q=e+1p;=6Oibi7BiEpb~WHBW%%=CX;p&w#KT7}A~(-Ws222mzHo(A2Bt(PT%Em< zP(%Pn;Lq!osO1PI)EHG_Ofv)=sn^ArA3SOEFJ&B=Vs;(eBvR|_RQ}`)7WJ|MlV}uE%(SDoa#aT6zKP+zE zG+12QFPe;UXghJxrqt`IV+cF>p;bRH{A#3JXwvId*HuLY!{FL>b2qDy?6V>{jRZn6 z%P{x9zC>WN)cxZ26;kY=xT)BYLNB33YxMLb^w;uKzb2@V`wYi%Dvy#tQ-B3cMTO#z z%CHAK{rhhe40$ECt+cs}cQ-w&L+fi+P}nc(e3ZH-JIR`SdvPJZ()_+wYGce|jB_k9Vo)JiYF^3-Pv)dWzpn%rpsJ>V%dokv^D8e0e zWC{tYT2oGjOJ)nCuZ6K+-5wwwA&7UwQY2EBomXH~RrN2h;4ed12kvIT&y17w#m5j} zhl~e$>V)LR#>Vwzaya>6HPpQ$P#s9Uv5c1Z#=liQYw|FA+dmi9<)k?k)0OP(Bnp(3JG9wt{?+#Jm8{1SURIM@T#USnWS%0XjBV5O=Tg}KTt3I%>^Tj6#*^QhV z)TD7U!+&tel*N>Pub8Ks^Td-u(-JKaGGRXsvQQ4_+g=OdM9h76{MXG9n$A3)5 z*-eA&BaXmHbPknvNZ9^{T|duI{=tv=#-5ZtQjtzMCz7%md`Zmbe&KAs;5Pp>>EdENP-zt4 z16`uKNx9p^NyX|8?zd-L8~^FaQ}!&wNvL5B=j2brlMH0x zRT4pUoNMBcLMCjJADc`tX_cj=l=ZT*K*iymV=%>`0roSlY1q@N|NR!x+GPL$DsHoa zz_z2jd3z}=d@cBE)#C}zo>_pcA!!S*U+*OuS_H!W)0Og6ZvosE@TsQ*DR+xqH}MF( z_O z`a50(t~I)TIc)s{6|&4vnxz($U>b=Li&% z`iu$(e!g%c%o&Z8vhL8vcm=c6sTD6(%l;hDjIw|~NLvx(GdqPc%s$f@-O>wS+2E?z zb}agHLwrs4)g3lL6eOvhjbN%h+4M5P-@mcHgkbwMrVfIQ)$spSG8l#?fAPzFDoz^v^vmYU0%T@)hwKmr3d|&&MX(QoC4gQo z0lr7n`#Yi&Kh{BqML;kU?V3lZnBO^s7njp19)QvLyDj`X^AZ#-85 z<>R8qxahrD@maWVZ^23k$H8&&W(ca#_rEw4-?UtiAAPxEO|A z19DU}G2tdBCswxv(5S*TNAc;Q-G=eL79LQ4;#|86S2**npQG9 ziwNy;(1-<1|xD7mx+V}C)g;Q8$cC+|Jpztkz{!4hr4^?Ww>Wnyf((!jDHLsmT<8| zicaK`kl#sERBcN1xet0mM*>j*|MZz>gehscs9D368zqX09yfC&sbL& zE8MZ8$z6RIgW}eC4bwmndk?4)+}5C)-eTx>A>bSYlf}>MMEM0N(6SfxF%A4dDv(9Z58zE(0g3jgB0NM=b%2~iu5VuJS% zv>ZEjTER<6A*=>&c^VQ)h@RpwQuW|W`Uc+@5RRVkw^cDxD|}IQN=8-*!ubk^BVo@7 zND8`X8=ALI{rM|wj14>1Od|-%9dp7-);SPP_dF9QQOWoOEdAr!P8?KH9Haa&0FTVA zXm!eleh?EF$W$62CnQ|<3Aq8ve98Yr)*=?DK~mPY#kf}SH?c~FD~`^FVh^tIB_g9G zfl$xh2lR-BH{fd~0pET4AT|33d;dJ4IzX;Fy}2Eo9WkfguKEMxs^sjzg#fh;I?3xl zaW*ZwtM%|C+T_;ccZnzT4axYk*CNbfhtIrdm*rkY{4WGiRD2MLw+S4Gmbg^}X8qJk zZC8kG#WlLrw?a7Q*~eEvD9Ne;aaIQvD%zJ{r>cmjt3dv6<42MZ15^JGfFZ*WiqIBp zsgw^H4G`x@E-4v&$K(9l)HOT1aWheh%0D+dd2**}8Ov7gSW=;bXI_%D^tQi7FBiVw z?;oD%2gsQKl^}uc#9R+;bvF!qJDgSKP9S%Ud6nn|`0}2^hA5mjrcGwPARV*^*l5_> z?yfFczaZ<)#~tdhxaO!3b-#RB9^{|cj0qZ=7R3k2e~+JKs;-1qKQV! z{Q0P?)D2#tAb^BtMHoVM*X8AK2K`mESV~ap`q^2-dK28H#{%>%v*+J;jHv#B)u(Ly z0_9Waiy!^YQsge_8y~^Zd;>DCq{5%T=R}Zx108tt_eg}arTWaBz2n)t8N#>MK*Pwc zq`(dL4R%9QG?ww=ud=c@eZdQ^6YC<-MW2ADWX^>QNW^YySU+$YSz-BEVwvn72yCt@ zB9F@5eNwCBGr#fZ$cV=G7+5ps3V*wF4v=hNYkQ$BV-vftU%N)eFt?%KY=^o9*#k~E zNX5X5V0$@!9<3>R|Go=fnM~I#D%ZDO=Q0j0MfyRi;WJQV+-@;5DdlR*>ZgTL8h&qU zZ}c1YcK=j;Y!TDw(PD^MHYPgn4O>@*?6cGq z)(<;-X*ZMeuE%okITI?s_WA@KOtIT9cPL>=0^7)FIS2q>bVeQF$G5Pj7;c@hIIeG$ z)U|)+dp46XIfaMvV~HySuEq1XAbY1y@)}MT%S%a>yfoc<4~}t3mE~&3KPjeV?2GmO zx-`0y-Ki?Rwr`2+B6Zg0dn;_@?{H!pEeh(b;|Ur?;0lGzqTBJ(xnaO{-Gn>h-Qc?= z?$G>SHOXWcID&82fG6xC@_?Qn5Oz?ofoO_E0zH3_Gi||Yb^)~pwqVWMBsTIvSG5as z5g7ItSjw*uY)?jGXdgL3M&$U2WP5CJDf_%4`+jryvU=kEL+mN>?3^BKyhS27_r!() zfTFyY>RwAuKDdbe!9w9M&P8|<$;&5dNu0sIO+^hm6jrX(h02(blAbQNw13-<2^ZC% z2ZIi0g6?o#xmL}=dJdY3Q-CghparFKB>w~MLax-KVbr}@8q#mZ7dy)Ak3<^#?JFemTvC)D;UG8WsF zvQgutv8o5-HEhKA1Gk)Bn>z%CwD|kxm~^R z2y*P!eCe&927C)av2$I+>Anie-&{#q-yVGk@gd~t7^$`*OT2zq(A_y@^{a=g< zX)16>w~bEKWjhNXWJQ*O0)V?fHE1DOpP+R*?*|Bf!#QRK!5gXxGN_Blw*SM@xTs$f zIL9(J{gxPpF(`K#i7*B~OfX%kw)VcS+dwzWNj|B`GJKxoy%#gEG$wN|nWeykU~+cK zl0w>R%bUhla?NGCFun_wn<-+POV+MHE+D&^^`n)4+FSR|)K3n6WH{v{oSkl`M6$iA?#NaS&1V$B&Ve}t1-o!76j{_ec% zHW*~tpbdkiIZobkM@wa6ZHrdEBnKY3lksUI#jFFfo2*iS7ZmPWCi?~}2@!{0I66s7 zK%#3%WkL)cFeoW?lWuO6sKuhzp(-!Y_ClY9Q!u)_V@E5e&m5Zu%{t&8+z$>=n!N(JA^+A z6vNS|Ikgs$ERoWNJ?R9(rQgBEu`W>P_1w7iDjZz9jCfY#nooBhw+ROrG=(w_mEU(iuopNU@DkFN?rO+I$Xd^U>4Q zB`R)Ii^XVIS6`Q8_QTh}<%^hwJ8v{MR(}Bfp?hdDVQe1eJtDuAT}9(b?4As&n6UE0 zSMHk6pNGlB0t`GZZ0vH%CIgTOrFUxX4i($ZWuqnt#lrLk!h>#9|%LEN&NHg7gVagWm=%7+huoA$qo2E zf5!!3FheVjb4yg<#B<%1-HQO37)+MPEZk8f5{Zcytqx2fH*PRYPM`3G(U4*UghGBY z3(b|J&?RWjDpBQ@lTsD&A`hOUFCzrt5>JLJG1q{P2{9nkVf{C;%$zUQ` ziT>JyHC5c5t+bj!D8HhweaUp6X=`eZZgy0~1ocAZSGKDcL3AtV2LKbyHPdOKf5&$gt`U9X9~uw@aIW3>I4wYMo_ z>r}_uF##8*r4wO0j{VgFHUk}^to@1ZCgC=%g7ap5|TG7fEXc9fSyJw zKaCl-VZ^0UOpni;tyFuV^y)1 zG_n-qRgQcV^c+@FR(8grI|AVr1mGj`YF87Wda1I87JJTeyTsP3FTaf?^=zlvKd*j4 z)u7V1GWg^N)ajb;Cov@uFM4j#KE4jzw}Atf!PQfZ3v8d~xq2p^rT@*<`};4@ghvh| zI+@?tD1N;SPvJ_A{}Yt@QE>4H|86h2b?gC(E56TfWPcSpnzBU*<9`7#0{9V||EGX7 zChEC)vCC6KL&{}qWc#^s#o41pCJ{B(0GE}j*7lz123STJ`0LS^C>hc9~=iM+k z5FI9ET+f=v$?4~i(8Cw6q`;X!PY|Dvv-Fj6UfJRP&#`u$$Vof}XLeMXT4W(a?6X zc+k#2hDb;fBSWUln%&C}ZNT6z_)`9%PIwYkiIq@pDlQvddKUl7%WXcn4hg?)|DpNl zkfGr|k6ZaX%~a+o_QSxZZ6<6Zb|3H#u@9Lc@{`QG4NnWvt3a17;2-k$@ts%!9|pA7 z9yknWCOfzJkTgKLA0j+<_}G?1ci_>Xa|(Ritgdn8wbiJ=>9A1VE7zHpsa<2`M2SVz z5vbu}0fQqqK^p2_f*wGD&R@#%7wpGx;Le5afETeQ1QbE>SDk)BpO6A1)x>>rnLwN{ zJRShNSpflVc>}Y?qeBL*kDiwQH{JEkkNtsoJ_=#`>`rzxp%(Ui@G29T7vyXI@Hz^H zsVFzeNC_EkO+P!r9pS%sr-CGyc>&d5xBxGn)6!o;uHJHfpv6#p%ySEI$}3oU7Ag6& zQV7R_t`dA$bVCwEEhJ@$hquO@npv%2c&DOsvFoDvH?~VkD|>ko4e_P$IE@gO&d;JQ z&$A}{aF7ItPgqa z@dB^K<*+;EP@KAS_))k5B`9}Rubc81Pk!(@4WN}s4UYmx5wT-UoZ`3-T)QuvdHjz(QZms@>If+iE`kp9m zu4~Kr3vg(l2VUk%%_zifU_BNUeuWERW!yo^-p-0q$LC&Y3kuD6Co~aSb)GZOZt+WZ zYjJ;eXg}N$^9%t?$QR`akAMZZ&UjDg|A#`Qs_=L0h=B?}>ksqG!!sV<%EtKO|A^?z z-D~*Yc+U{q5%W5J;7%Zw@C)EJ<4=w*=Pk@%josxEPMH5&bxFKe3RzbwD?jKq# zZizO1vPy9HO8qeB4@aN(jjsB)&5K_)%3noUWN)}m%9#m!q7+6j?Yr_O!u5Rp`t?6M z*iI`|ci6rmV@Y)7m$mW7aN1Nlaff^%{*#mPC;#BaVdwrsOpSeC#SzZg*@18L=%8=aj+-&B zFlO*BnyaX$(yY5UH6e+-$zO~m#&+itPaS{%*B51yS-E%`d z%S}!^^QS5u)d=!$!u2gMdl;=_A|XN*1b1Lt8@^o&RuyRKHDwIt)BkrNL*>i1v4j0@yYtoM|x7l;X zl>gXhCjDRm9u5$R z|KeIh>Q2sHu-A6tdw!}7#ypK?#1-AO$o;cF7hGT6eKjrESeoe{Gvd<`+U4w4yc;&q zQq72RQISI7xOD$~*1|aQOEzsz+Sq+J|5$Ce7$krq5LhT`-Q?{Lot^7%@^IJfY?}K~ zb*t<^=&fM37t5I!E%vX8)iZi}o=NwfZtvbF$7(Wc6%)OCUwuB*urP!@J>&k~;(_Oi zG+Gzr3?dfWrVnZwpIfkC0qcqbJh%A7I{3P0W+S_TBO^r0%9w|0T{>UBkLkQK6eH!P z(Iwr|==PF!PwX1JTk^AhX-F%*=PkR2uPI5@9!6Rw@o(RL-;ldgP@h-gWd%m6^G_1scKb zZ#ybpjG=`8F5NN}2+eT6>(2R?x&1YM!H^<{@ydjqz85SGXY6>E?8JRD;!Anp(xQZC z{VVBdKMF@iMaA8}*JFRdpB;q|*m`{%VC;x^iy%WuJ!JTr5Z6SZ?4DEXqW!MeAeXG= zeS5R&;>&CFjM)-9B$zknum9dJ>2x{+{BfVtCvYTg*VoCLV1iKyAJVx`7$SSSLW}wu zl+%F=wtd)t;8XRZP}}ZPJ%NVS9tZ7rpUu|~4G+2XEO*8$VgUQDE#?NDm|K zp(F9}@dT0G1#6K};8N-byX!nHu0ZD-XxBUzaX@U>Ekkv6KihpvLirp*?=|MiGB$m@ z+)*m>xY?x$!`UALSU!LjS}7$#2>X4;R7AQ)R*yJ zqdQESch_QH#1^4l(b&8OAu12}HcQnf#KidWm9=jdchb!`v3)QZ_7rij{N%~Je~A@; z5VuJ!X6E)Bv!K2Z zxmaB59Wru&64C)NgyvBH{d!@nvty+hc6J8(Ju*p~l6B0@Pp@rG6OXMH3*}dpi&f@b zTJFUE_P6n&LpKKV=gwMMTlb*}ssVbNU>dACIR8|c2n z)<^cVQLH^C{SRQ#<$t>Yn}im0&T?0bssCpAM5zeP_G5=Lu1e}k1y!h>uvEU>rgzBo zD($)N6PuqrQ59T$qfN>G__;riOl1L|`#H|~pB~qH`wpmT^EE#1eR`Zf*-T}M{!Hi< zUS;cw_U%SjSmvL~m5U3uEvI{AW22**KALq}IWbjcljQpR79rL0(gTM~|`Gxr*US*hedXtfZ zZQl*!P`-v6<%YULT^tKK$CXyR^qAUXY4tFR)%^aMzQoMaAPf5-1SYXljY}6&f9>6> z;8yydT9{<}KYsfg1wVW%g&Luo6A> z&3wpwjFaa7y#f?08Zt<%(QVM5iJ>`2Km5FZTVCA0rBZK-zt2C-U+iqTyO-&O*CxE& z#iJ^!zMrjg{C&px*EH`(hFNZnOic>&v!h9J0rzPOwafdL;K@-~XvW7lT@47Cf3#VC z*zeXaHBIuKYmyY^o9G5Yg++CRAZSvsPE}hVojFL}Z3L2K3;M6|5=R>_i$M=&SGXJZ# zHvy+|ZQI9J^Ms^HgOrx+GM9NSibZHJ3neloDN{tMok*!xMVS&p#>_G%+BPx|3(HVc zW*Q73{LaTx?|zT({l4$`|9{8Nv5#Z7ch<9>=YH<{8qVvy&dZBecvm1;kCLTr5ZH$m zQv-1EjOqIKRdZJuGr@+-GYj+=d!!|OSIxOzs{HzeMc=0KsFAndnSJ`SjK1}5C<1Q3 zb`WZTPg-FZgA{7YZ7eJ1KL6U0_I^De$J!aOTqRcCAY$j9M$%?Noxv^zOlrTkR zi+F+Jn~w54LWZ*8@f;3@!BQwtxVEur)d$z(|DBcD*ZhcmZS&P-+j^XqGZugPR>>gA z(*+|q_{(oqM(Jp8(jnLWK~dEh+rz`No$}3v>CVatw6wsTWP!p&{2DhMruHwYU4 z_C)qRhu2jvDNoVPeO7kqgpNVn=WBHg2lQ&?@#7D)MEHvCuy$!2Ja~iXA8P{v-`di$ z8v1#WAXQ~?Y?%9gh1MN~s~k?zyG3J@_Hk40pO1)*3xAaBwd2#q#Uay&{3`uRPUD!$ z5aPxn=UOH50P0j`qt}gBI>@JY{?T=)^aZ5pCsqb6TE_-u1lo@F^Q|sp{(E>_mAZHD zgGT|JXD`Z(Ex%bbi7InK$u_rl`r;_^RfI_Eg2L|Sc9pTKi-lolc*N``RiieA98QRe z+W+jxb#iHt*&pI|ng^Um9$($d6zeSg4Z4!nka|Md*S?X%Z6Mhd`r3~FbU&9*doK-J z^uKJ3De3YQ$n(iSV!V_xn9eoYobdz0dK_ya@6N;G9KXGdE&!S;km{Q4QnV=D}&fSI*#WV9+7yh zzfF$oxE!ZZ3~%Add-JYCL2!rklC+cm$<HTd+BbdGU^yb z-pzJS%TYUxN)w9wc`YopOhhd${FZ$M7Sv zx!EpWLHVZ7Kc>|c6|d8GFn)hv9DZXq`Ikv}7P$1rfttlpzuk@SB6IdByU}y%>USV1 zalr^VZAwr{663?3ywp|}QqSr)qfr^>nz<<{gN+S26HE4A%B%VFoUz9da0C*In>Yy_ zfO?dllF*Jqp@zD2t{|8z0?G_)|8h3`+QxfYb4EfZLgzoddGnkN5kZIR>Vdrz&P%$~ zsGuV$Dr#52yk%`FI9j+x8Fh}S>1t9#p~&En>C?zaGV@l6mztfuetoeoW8*eIqEfly zN{>x!G?Aivv6SmrTi+u0hTUJJEt2*+LC7c-9XTPOctO!5GuW}?$6w-UmNi@)PEDr- z4tcpZbWC!&3ZO-3kd;-jxp}HPz{dv?bK0Q7oV$6I9rViM1_pujQ`?vRp!3+HU5{5% zGJhr~B{{ifkd;LKgDuxSGBL4okTrW3nLVqoV@K*WEvSby>H3@j8~9FJkUq#O-}^jd*aWv7tfuuS>zJmR{eh{$K^AE4X7g z0RNB&+w723g?VdE$GA+%XaT%|1#e{49ry4G(Nq__-a63w`glVfinj zqJc&{F1B$Ut={DYF~=b*Muj`d|AYSEB_Dh6XY%1&UT0!nyx2dbHWQhhZ2$?l5S@6v z5Ao#{6%D8F%0_{+V?dp(aP!VP&3-6uvEcCO%Yb-~ZD&2AsJO`IrUWh6TY1U} zzvWY0tjlpNpN?evN+BkmLYu%{!xq8#b?Pbh+`IOP6Ly>w`w6#<3Fnoh;>|0J2QvA} zb-sG->9*ImN(lVkt>3(R<>K(RoucoL*SwtW?sy7iI}o983zL8AJA2Ola(BUz@+jSnAVP z91Pn-%6`qt+%)`Wzq)N(iW=37o)G8!ec7^q#eRFscQY?|3@?H!%}jRy(Zb2 zu@Ig!w-*bJ@%}fq^jXo~b;~DPm(RzxJz}`39USLqf4;*uT|`^S!cr`DLjUr{MXQOB zy*&*rKcK&;V{VRv^g6~Z6)(rD6Q2vz*Uty){tY>cf4gidDd$}Yh&>xSU2cV!w!x3dnee6ir^oFO$$ z0=J=BTi570kl<#0upZ-4rau4_Uf|Hux!ds6QwiRCFl;S7^M;m*g({Wn!y#?$L%f%m z70U#dOHCnA;lEpQp8GF7H|Sl6LS#Uvv<=XzGBK_66(c&kw>{?l!8iNV)wcMKYYqDk z#W?ye`?U1qxEnWR)05J&^3@}kE+=nbx#@_}hP_Bw92=S0g%k)DohaD1zoJBi`1`mD zJ@cWo1?5BPl-CR~dKb|M;`c7ffq073%L~$h>^fRqv$2#M|s6H(M+9b#M z*9(3>P&)#)75sAv!Db58HZ!rkf^+Lb+7|Vm&!3h(dh%pI^>#AR%iIr99Dl1rH^b4I zpAFLb2(0x93dO;Zu`WtVjmuUfL}nTIuMbgA$lepL5_y#RFnB;)L&HI0X_2>I-j-oM z$=|_z@=1g0a*~q$c2E{*DZmVObBP*c$fJ+~@K^-MM`5WT0m6rkW4zz#Y6e z3EUy?12m!=K&9yW73}rw)cV4;V=nmLGavl($2l*PC@)erE9;Kf!nnKba`&4Lyh-LW ze7hw!xCAlhKd^;2qxGJe2aERp-s#>e*m6}Q{+CU1X#T<*RK9RMdmQ!r&Re%w=l>9` zPs-$nx_o|OF*05-+cqdPzgVkrAg#6xlx1{BK6aV0!c6@4IDpN^M13W6hWADJOiA_hs1jV;9td zp4htQl^Yt|`@l8lnm?qTEJq7{voce;;`?H~$)zIv+7C11+d1Czt>(PH`)Se@_vo7H z>M$rt9w0EU^A<#TJXV5de!;?hTt z4)Hqimjf&KjSsO)@hM&nlUC$JZ@eK&b{9XrV(iD4vnQ#d#p~%A=^kwXm0dt{M8yu3 zd|-}Z1m`<;mqvV8X8ww;3msn$&E^4wZ1y)78L9sG)Du38Cnxy;nJRu1vi_8|?m;po z%IZaUxcTVNFGR@Q?GimB0eG}El)elw-Id%6AucT~8RpX+2-_8|a8O5H6D%%Iccr zV`Su{fh)u|5+eLfTyV*A=`kiZp?^Y39$}iMD{mHMW8B#&uvLkEsML!9Vuu4x&@^Ri zqSrHb@Gjmktc?rPf3!BP1+L=|l4%6#_ecW{Z|WFBgD`u_Zs*u<5*Y<_-4 zLGUvFGB!yNl~4x*uMzCGXneg5nDXvpt&Fc%*vFRJL$h`gjTw;t&mM+mVZX`i8KmsW zy1xFw&!12g%1HW1mVg8%`Tv)FHG1iCZ*Q;rOz`~IsogI0^{}xxsMny)NcLhZ_4A~E zrFsE-%M)1#^!X7IP81PpA^^6Mq**U`_Go%vV7Cxxd8$hZQe z=)W}(-fiE{br8zWZ{uYdHx(w1$f4jg&>{c-j1HNOz zpodZ0(Xl22#l1+h8fbzz-*oeD#?p`ote-|W9wN}ba#V*`+8`GVS416Tc*n6ta_gDZ zhQEG?jzmAWg!joI5Tg30=h>ck6rZ=9%{??aT2os8k06(GDU_qewf%Sww;W-sD66?{S6ziRLu1=5VRm3l|ZU-Aw^em zQACk2`=K<~Ox|ZlV#XIT@&nT3Ze06dMPl2YDb2Tu=FNL}6E0?~UpEIT&ZRL9GFlD* zL_8of*Z=2QjU(FH+DU)S#~dT#WS5%pvj{!4rB(xFY?wnCAAdf6=uirIH^b#PHoXIh za1>KO4I$hY2K3jVLX`G*#$fxM`3R^-S>;Q3mFSa<*f=gKxh_rXXmYfx^ZDPU2wTCU zFh3}yss~FPCA>YkREUWKgX~iH;sPQV06l5)uHWo9M-TT0m57n2GD929(^F<2Jg6vB zwf8!$!u$jHV_rov@~V2k&=(Vo^IG)9p&cs=fwsxU%>0J_dtXHf zvmbK^?u3OAkPxB`(FP*6djl=Z=D(PLY(LyOqJDj@o@>lY2-MTf&XFPA%g#_lt5e8^XlAdoqzYp!%tM#TLLnBNap5od$dmof#NBpIOhTZd3h58Jp^$=1RYRv zch)n$s;7#0RZpTm@ooIa7D>B83B6FZ+kMUE`IDdvZ|DBb-&Q%`nw6Zn8Oonjs?27O zBmTbj^9S|o&BcNz_WeHGasrTvA%0HUk?UERAwP)8MNisYx|ktJ&<91;M$EIZCCZN5 zs@i#0yVV-UpH|_^NQHoNc)eBO`ErG~bfc3r znelMj1-O;2jYBo!I2?s=$<_#8fov6EP-rvtZ6uO zw(Xme(iOd*_xp;{spO)U=}?{f1?-VJj~^hr=q4C&Qv&7OU4v{vPM3o2AU6fa#40I$ zV?R4vMS-}uRZH+oo&2_*co<9$o zvB;EbYW;YY^Zsznl?n;tuF3+`3&_r0KBw5RM9`5vck>!MMOC$P`Yj`R*e3}qpGU6FbbiKWyw^Sc>&YX>nj&86gYI<{cT5zPs#9jN!yf_zCW;C zl_T~~-``Q(QL+^U!d+)BFpsJj)-&iK(D+kG6LqFo#Nn$NwVy{fqS=d<-bS3RDv_XPOd7~g0A zMOw_h_;dlea8+1lvHP{mSEi-?qfW2vjvb@T?Y%uqlW24+b5C3Pbp8RG>X$o3d&+2z zxwidD!y(VK<8*e5i|ZBy?bE!zibXf(OlH2lUjAh{&4MfZmgPcB?U{?KzpXyiUiCw{ z;4srjd2#Jek8j3*$+wpm7rH%>$g)_dV2FpbouOqS3UbWSba&4q@8;o&)@||CW||$I zotDo-7X!z+r1DS8M8Tsz)+lGDxEoC#MXc zqY2sBQkjZ{auBW57Gi%$#u1mCO~3gAs>KbQmIAT()yJ*2yhk3JUJW- zJr}PZpM6?;;%hd@M4}j3m7|Fo61mrN5es8;hC|o60r7VtN|O}oDU}u&%NIia8nqO3FAMQR*rl8ZnHkE(f z%3g4ubT3>;VS$RLv5jD(Fk_dK6m;3R3Z;?of^BAnq{ATp@~gvj4{?5YdFwFj;SWkS zgrKuUR~Ts0eI4gLC8>ISk;XkM9`UnHVIY6!x7i|is6$&J?My}my7dgHMEM6b#i8SF zva)CFv~+Z`<55SX5C z$u{e$Pwku~`LCuUzW6_~Az;B+L)1fW9N58uaXo>1&2K>mihj;C9Tk0Qi+bQ#WM1gjwSt>BZx#VzUKaIIYUEBo zi34C>J4xRV+i6+gIpK;=#ry_L3%Oo)tR)u z?Aox$W$m){xjr{mwihcbu`_*kOl+ms47`Zpd+Ob{mL<*-er9zT%eO zH}V5ee z!w?Kt4c`0p4a?W(t~d+DE~(zg2P4q_P@|3j|LY|>oPUvZNZ#w&a##F;oenM9Cqx${ zIt5gyXhsdA2Jpv0M0(53>d)Uwr=oIry!%h$D=hJsKZ^Erd^>>F_&f(y|}fo zkx5KNVJ5qX!9}`|Xrx9$!tueWfX=Ps?~1F#MsNEHlH3e z7Cj@}1Eh*EV2ddF0#_s03&b<4QfIoa%qU}=Ql&lm!fSB|Xt4)YG(CMg>5-o4etU|$ zTE}GE7nb`3@XR{&poyG$$8I4zemG2&o}q1Gl7v*d2W&iFxrvW!DSbz;1ynsIRm;t+ zUf_pjLpEk{GVJI`;LI;(y%dm@kn>5cdiF zZ3Av+?x82IX>Il;98%DEbbx5HbZJ{?=e}K}w7ZK1w?ZR;N>+a=msgPix)R5gpI@nw zpyH>|S`Zf~aCw^-z?rTlQwS|>=PBG1HwF3|$*Gkoe1N{JaXj2MO5A&m-RV|al4Y{c zc2v8-TZt>X%TF3=dG()PA;`<~om&mI+V({G5HBhRtte51W-SVt=(r|wYVi4 zEV^_w8z$%_6PW*ryYvruK8M>!i+50B6A~VgFXgqflLK*7+xK@gJqqfpwg0pz@gkMC@1h}*8}SMHm#|0JFo6dgRZ?mkMwF73%|h3(rZ zK;3$Ylm%ycGS)=T|2gy*k|wdpNEDwx(2y!^);W4~$8Lk<`U}RDP~f$}JT4*tg6hQc zA{OcRlB(6k5B{+t;U=is5@wq^g6KG_&7D~Bo4>xB+`ak;BKS}F6pE3Fn5-2MBl?61 zPQHa!p(A37el&y7?(I+%aT_~}!6Oz^XnG)109aKce~g2}!fqwda73I95Q7dQpe^Xk zx(gjIDNrxihW!yEFr&VBe5@t1p}+bS?>mMie)eVwb;||>lP+zBqZ`EwZJ;1 zTB9%N)C30yBj1|474fNqIJ|^ZAHjtL+@B5Abw{}6v`w1Ch~RoSujbD`@D_}q!9g5a zlwn384cxO#{zswlTT*evzbyvQ{YH&MT{pVuA1kp-|9YhCtbfYy0R4MGFi~pFo3~(g zBbfJ)etF^o#&*fq;vt_C0WSu-*N*3p=ZTfJ4WSc{N`4U;X_j<%N#{|Mj->o{#(sAy zfCTAHv2(34=wox1JZfcu7a&_=ahTM@zQR}qtm>zrL-W1pD*Qx@`l8fAN!jgro?Z!w zd`)j0U+W0zhhDI6Yw#DN5E<-OmY=-;y~IvaWHvcCG_<`-%+sZoHXfHWKDXoY+60MC zUP_4Wu+uVFpza^HSCBY%7OpD!Us40Y6m}9}PMYhewfpy=j(Qj}Y`TWt8AnG)qRQfc zZh*g2;>GBYSn8DOi;2koe!=rk*5CdkE_3pRE#2VNh38}<^y)b;KlDUlxa*fK!LB)S z>=+g5P;n3%DHl;kr4LPkZ5Ss&jf6~Cq~W6a@wE9TAM^bze>Mp&;~aAdE7MX@$oL@e zRfE(44&kGH`UinOpyOr~HNZc1?o=|x#HsFzw)5neWYqs>43M+*B9_%

305m zhF@B1DC~tYr@I#T3k?W4iE&zJt7hhuJ3-`aFx8Kc@A?L;D1M~Zw$H6)ZnwUjw9}^$ z#)eF}$>F3IP*o+n)|(l=^>sUH#q%*u=epDX3ZDKyMOyz4epxEb<*Vt$^i1B2^ArWb(^7Hblc@z{hWVieAG(rJg28^I% zNR8aTUB_hlYgyd3s#_5)GcKt&WC;-$$pg#?oWJs|4kfIZv zo}5Ze?y~NyJ4f?UZF3BVL#zV9;XH~^i%{_bHSP%HiZY1YU(P#a+J!t`lq0XeTZesd&6=nrKnvdF6)jCDssL2LI0Ad^dtWI?3D=Vu4_vlI3nE5_~<40~f(6O~??{-JPjB*wSqO6(Ye-SrtM|m`zMT>T?#9 zxG`e%(7UdlffH)e-Iwi9!6LGJ7Wtp&IqZwqgbdlxoszV)H*DN!gOQumNcq``sz6Y~ z0j$H2kc)&K1_#HZ#MR@&6Iu-=a6yVIo*WzsgiPp*^{G;b zjRjeKYUm2=NH91Ljj& z$enOgctTxF17_VZK8L^|C^(OIoQ7JPd4)%vL$qUguF>rZjHnLiH+r=NV2FYsXu71H zeHah$$^#Cv2Q_ysA$Bc{bSDyAqT)@AJ-tf@EbEF4+YzNgAZltL1`v_C2n4VY6gyqI z3>!5AZ6aN$VbH?%Uw;@Hnh2#V;yv|zPd*rmQsXmH&5tigBV1wTItej1;0#Be?pD*7Bk+|dCT!gBXPxHh$-9||{^Q-g^k zSMmIi=xEW>8H*lI(7$-l%;JILpsjpQo%Pfnt-St>ef=BuFi=u?c=QXU{rhpqi3u+tP+CA_QU0sUQf{&y>i|)SNnj z@tb1^ucT!>(84)JgxlYUCIf=Bcg5Uy7x>`I1me!8en|$mv>9gG!OgHpJ0{9D+%4RVQ_EX!32{@rj z4`gf>akhCA`OO)&@@SFLFl@7p{xs!`AR|3TQ*&~^b7i`%^X2@Yxwms)C9*9m`x~lA z6_V$WzsY*c_$Q)AOQY&-`wzs0hDNI(`Y`-uD{4-6GR*Y{GuHarjDeKxoR~c3femUy z17JPn?4bTGL^`ub3=w|!z(%H}^xunatgqiIgE^i3(lYW;60h_i1UypRArFrgfOy{U zhzt&4G1y)tPnNfP3UlC&qC;>-+7e@9Q~1kM)a%lSiq#a4{De=cdnuJW!EcbSkX~JV z5_)7U)BylnRqb#qZT0nL;$mVg5OqtB)_gj&H3y0eV)pJ}hdH^rX7iVBle?TX4JX+Y zWktNdG3Zwe;Dkt&6d?O`o6a5|`zec;Svi9c+&Xm{Z^AwU6`!IRupL8akQg?73LUu0 zF}NPlGu^SN#UDT{KTB~sbLLEti?sAm*maf^?q*DTBD@YKE2|goAPY!ML83QDeM@rI8E6X(4$SRQ zD7$51{dV5>&O@Hc(>$3s>|P}q6&E>+85Ez+VnmKjMw|V$OrB&1p3us~uWL0V3MqeP zZj7^~k3r3*D{U6h=FU@~{ zZB>i=w(^t#q>S(U%^=m0*N{=kmdn3Zk=SQWCAT-7R!f13SBn^(XuUV28tLg-(i$5x zn%nX6o`Q8yDaXORUaB@^F^snpEUY_JU!PQTlfd+Oj2 zj|)BuHM#)^f_03!$W)59woj!BPQT8OmZxR3eVu5h*}&VQmD-TXv3&7ZUsk)ymlh`x z;UHA@(%ODrtUs#UjI$O!jfn*rZU8Sd%Dd!&TR4qR0W268z`WfWYkIzMDq;=_tLBrv z&)de&BdxZrJgvK;fm_XAf=;(d&0B1zdAe6aCd8GOPeX<+(M`!nbJ{YPi>f0j56D(YyCf#T4CUV~ zWo+wqI&`zwhr=NFXhHo#Jz_I3KXUdRl@A}$mEWMs({gt8jRQnSEm^Ybf~xy$KBX2Uu(r>6HWM?SK7Z~5FZ-dnel}t& z0ujr&bj3B5)4|*%DP+hMm=QNcd8>V~oYEF)gq1NceNhDInQ#Fiqu3Uq#55Yhy{M|G z)rl8OsPh}=>S2QnrBq-*=#0e=?Cu4rU0SZ4$Bo&A39?2Pklu{G8MF zhbU0F-%Pi1v^)w3|Uw1n2o}b(eZ%Ni1?CxkVjw=91r@gS9}yug@|&PfWW!* zeDj4-m%fFJ-DVd)fQXg)k-XY9Ja6$OIB{|*C`qkZ_LCrB#-pOphmxM<#h<7FkSRzR zQZR;F>T)P_RHW%}pH>#r`N47R_fTnsEmNT)T9Qw1ZVzVt?wTis!x=K_KAlhDxbmvz z=S+GUzy`b<3){x=Gx9xU`Nq<14KmM~ky*O3nvWB&ZEzQT+M_`1Y*Y1_S?q!kf`W=E z9@-ceiu!(Lc4%Zz04E{82)~~Oxj&7kvoH_#H|Z!KIAHLNs`d2qgM5k2phK!sF&zpB z_#3CY;}e$yVamuvgLO#WZTC(cK8&KNcFzCKL8(Qw-}Kp8ul%AIl#!h174`Rjr(@oUhG?X@5D5%X9~Kw|);Usi>Nk>2`Pzee)84Pu@_T+0M^jk#M^ZI78go zEMTn6ORp~gK>;DV)+XPvtDI&3d z4+PG}2N$fd*BgiC(m_{ODF`fj4h@|f=qTvewPhS3C(gmDt#Yd|JDepc8Q~7;_5Gd7 z^}?Fn@s4B8z*UO+hg;HDaqTtriW9%>Y=Tb0M?!!YT;#CN0cRP0g3y z(eZ$ENmKJ~nU1fYpOe8120oHb(oHn~D$@o0AHT4LNRXu38ylmpQIVKmQx8ebw|jkZ zL$a(?2n)1Gph)o=(L&C_p4-S z`G;rW@E1tmwj^}(xg?l(I6FJXd8S5R90Lrp$M7=90p~nU53>*FTgoetUPD^4zPqwg z19&uv1iNdOnLk=kl$Vz$*Rum(Ui0ImXMnf&WdTg5giTSjvf6!k*IELQ#Hgc_nCl*s zl%%YyyOC&9&TPrY7{)J9gbPbfUIUHcLV`M986tmW8&H@Vg(qJF#W{VvYEpi@vT=Q* zM0wfB`u^vnG)I1pSFWRbNKA(Pb#2Mt9syB^b-a=ZGwNqUD?k(}4EQxjYVAb6RZ`?4 z_OIGkOyri0x!4S49Y~@r`eOSY9`)Thu~A5UN%f5_T)6N&FvDiEcOIx7IF(D6yDF+3JPtKZP+gtLB`0Kc8LySz|)A z;z|ig5F_if)YX~A?An=5p1(tDZ#O1pKK)%)rHp+FRV!9Dw$71JYYT|nB?D9Yi6E?J zaPXk5EkERnqW5Ot-FYP@3TPYC&stz`lt2PMAD4vdNQ|<(L%?VXb7HOzp!{VdZ(rXn zUw>Mblm(zli;xA&2!H~l*FWS1#kavPEeH&1fC zcwNGo7@)dmXGTFm$8#x+DI#>FNhIJXPUVuTjBPHuR0d1-J&wNEIJwQw+-q88*8vlq zBx7chrJY>~R-43>Sc>uCItdqkD0+=f*EMqU;MoJ2*xy6o=IJEd@B*eYZjT;5Y;t#} z2lc;Rx@_5LoX4hY$2eE*cGKjhfx}l&Ss=YM;=LFSdwVR&%SLTu(`m6F`++85lApLk zZPs3${B>Kl_+msd>2<#QRCR4_xUrR{rY5J32Umx9|Ep=}6to0yx!XB6eec42yeBpu+aLuw1vD5F;9B= z%9RJsoQX1|eY=_83eRud{1D>bbiS%Dkl>Vzx0ya+U4EYxTU&i8(-*ci_cg7g=@4IQ zHY#^GdGcg^kebhONS3j#TleuiFLeE-#=dzYDpe58@hdn5J;;MPyb#IM7P00cR25@>Cydf5K8=gPExr_Q%!9ZYICF} z0osQ<8WW!8yw%0d!O7xtUWFjy4g2hBCzY~)vGWWB%!Qi185U^ z7LMLWX-nhgAYzN7?u~on2&t@Hif)Z8MrG>erd3CD|`-hTMUrC9oy#VNg~GH z3OzXtp}%B9jaBgrGLqDJxVb-o6R?PckvB~VvuGR$OHW_F!S`)KSU{#_(4Eoo@wkdy zug&c23QkU9o`oj|F)efH>+i`Il*(Cb?d+W0_NBrfEg}h=$np#@c3nY&)ZJfe$~8Vt zo#Dvh2wX6Dr~7r=+=6&*ct1EitgNhD64URdW@Z*?P@eVjB`fepjebb!=_k15AmGgT zg!;VliM|6$TC#b@cBz{li+_%9%qTT`1CJ$P>TYYbHbjG%Se--r`cQDHvu`Wy+PlHQ z!99vUz<}765m|nOM+0R%BBWaML-o7mY| z*WAbX$HYEQs41@`T>>uRHCkaQ5<7{SDtZ>UAOOd=!S_VA1BHOd9X()HBW8x$+2w6O z&4|r|#KHuE|AR_qCr>I=K9v_l9JWxwK`KN9No4(~Sv+QQYPEg)b|DD$fso_fX*S4I zq!PrnzGi)Blf zk}>V$!#GAOCa8xs>Mk&Lp6pb;qO`Tj-Ujr^*u!|GZT5AK5AVWs>06|G7=$jtuZdOo zs7V;>aADx$JFq>lRNQ2;5*F|yqSkxx@0hzvdXE1qBXa^0eghZi@D9{~03MKpH|7}& zN`+{^e|;y6h z%#WtviP)Kz*7Q2CZP>62;*Vf|BAgN36XZ^AT+j}wKQ$YhI0PGiqaJ5g_Hg%JkQDUM zymTV#e4&*|uCT>jPI&<^776(;;wo#`?nJ-fg~<^s-J8WWf29hR+~w3Af1aJ)Vl{#8 zj0M}_A3a8gw-N`QccGF@)A}1k82Gm;%rFqdub{4N-@V%^H>WEZWqnhGOC(R+MHhgk3q&kF7gfnu z%04SSi|s)2%xrfpw>m!#>w@rF4`VN`=MbOSElliUB_-p1=o^8q;TjmH*I=WSfEB9UwUdvGfgIh0O3SsVrWP;(5Bc%5QoSek{@7h9GbUa5KAt8YkMUTW?XI)FG z#Kq4{*REX)tLwcN7`T%31NkeIUA1nG3K-{l!!vfF$nzHX&|l$k#P^@}TQC>-e2abm z{v@VMY>Y`vJhMUY(%UqvI@S#vykHzKx0#jDdqrULIn5aAlLr(PlhOGk+`~N=F}~kr zLtKgR<8f;f!s}l@9=8}*Csv1xOa3hpUCsa8e`-oZn)5$@YtFC7+$TRq&xIn4PjP)a wPB`vgKNGtd56<}D&visJ|Lf=f_t(v=wv18rcDg4y*H%tBsG*d2;N-Rc0|$pF{Qv*} diff --git a/docs/reference/plot_performance.html b/docs/reference/plot_performance.html index fcbd4e4..b4b9ff9 100644 --- a/docs/reference/plot_performance.html +++ b/docs/reference/plot_performance.html @@ -1,5 +1,5 @@ -Visualization for ROC curve — plot_performance • alookrVisualization for ROC curve — plot_performance • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -59,17 +59,20 @@

Visualization for ROC curve

-
plot_performance(model)
+
plot_performance(model)

Arguments

model

A model_df. results of predicted model that created by run_predict().

+

Value

-

There is no return value. Only the plot is drawn.

+ + +

There is no return value. Only the plot is drawn.

Details

@@ -78,28 +81,28 @@

Details

Examples

-
# \donttest{
-library(dplyr)
-
-# Divide the train data set and the test data set.
-sb <- rpart::kyphosis %>%
-  split_by(Kyphosis)
-
-# Extract the train data set from original data set.
-train <- sb %>%
-  extract_set(set = "train")
-
-# Extract the test data set from original data set.
-test <- sb %>%
-  extract_set(set = "test")
-
-# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
-train <- sb %>%
-  sampling_target(seed = 1234L, method = "ubSMOTE")
-
-# Cleaning the set.
-train <- train %>%
-  cleanse
+    
# \donttest{
+library(dplyr)
+
+# Divide the train data set and the test data set.
+sb <- rpart::kyphosis %>%
+  split_by(Kyphosis)
+
+# Extract the train data set from original data set.
+train <- sb %>%
+  extract_set(set = "train")
+
+# Extract the test data set from original data set.
+test <- sb %>%
+  extract_set(set = "test")
+
+# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
+train <- sb %>%
+  sampling_target(seed = 1234L, method = "ubSMOTE")
+
+# Cleaning the set.
+train <- train %>%
+  cleanse
 #> ── Checking unique value ─────────────────────────── unique value is one ──
 #> No variables that unique value is one.
 #> 
@@ -110,18 +113,18 @@ 

Examples

#> No character variables. #> #> - -# Run the model fitting. -result <- run_models(.data = train, target = "Kyphosis", positive = "present") - -# Predict the model. -pred <- run_predict(result, test) - -# Plot ROC curve -plot_performance(pred) + +# Run the model fitting. +result <- run_models(.data = train, target = "Kyphosis", positive = "present") + +# Predict the model. +pred <- run_predict(result, test) + +# Plot ROC curve +plot_performance(pred) -# } - +# } +
@@ -136,8 +139,7 @@

Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/run_models.html b/docs/reference/run_models.html index d7e006a..a13f499 100644 --- a/docs/reference/run_models.html +++ b/docs/reference/run_models.html @@ -1,5 +1,5 @@ -Fit binary classification model — run_models • alookrFit binary classification model — run_models • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -59,13 +59,12 @@

Fit binary classification model

-
run_models(
-  .data,
-  target,
-  positive,
-  models = c("logistic", "rpart", "ctree", "randomForest", "ranger", "xgboost",
-    "lasso")
-)
+
run_models(
+  .data,
+  target,
+  positive,
+  models = c("logistic", "rpart", "ctree", "randomForest", "ranger", "xgboost", "lasso")
+)
@@ -73,17 +72,26 @@

Arguments

.data

A train_df. Train data to fit the model. It also supports tbl_df, tbl, and data.frame objects.

+ +
target

character. Name of target variable.

+ +
positive

character. Level of positive class of binary classification.

+ +
models

character. Algorithm types of model to fit. See details. default value is c("logistic", "rpart", "ctree", "randomForest", "ranger", "lasso").

+

Value

-

model_df. results of fitted model. + + +

model_df. results of fitted model. model_df is composed of tbl_df and contains the following variables.:

  • step : character. The current stage in the model fit process. The result of calling run_models() is returned as "1.Fitted".

  • model_id : character. Type of fit model.

  • @@ -112,27 +120,27 @@

    Details

    Examples

    -
    library(dplyr)
    -
    -# Divide the train data set and the test data set.
    -sb <- rpart::kyphosis %>%
    -  split_by(Kyphosis)
    -
    -# Extract the train data set from original data set.
    -train <- sb %>%
    -  extract_set(set = "train")
    -
    -# Extract the test data set from original data set.
    -test <- sb %>%
    -  extract_set(set = "test")
    -
    -# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    -train <- sb %>%
    -  sampling_target(seed = 1234L, method = "ubSMOTE")
    -
    -# Cleaning the set.
    -train <- train %>%
    -  cleanse
    +    
    library(dplyr)
    +
    +# Divide the train data set and the test data set.
    +sb <- rpart::kyphosis %>%
    +  split_by(Kyphosis)
    +
    +# Extract the train data set from original data set.
    +train <- sb %>%
    +  extract_set(set = "train")
    +
    +# Extract the test data set from original data set.
    +test <- sb %>%
    +  extract_set(set = "test")
    +
    +# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    +train <- sb %>%
    +  sampling_target(seed = 1234L, method = "ubSMOTE")
    +
    +# Cleaning the set.
    +train <- train %>%
    +  cleanse
     #> ── Checking unique value ─────────────────────────── unique value is one ──
     #> No variables that unique value is one.
     #> 
    @@ -143,10 +151,10 @@ 

    Examples

    #> No character variables. #> #> - -# Run the model fitting. -result <- run_models(.data = train, target = "Kyphosis", positive = "present") -result + +# Run the model fitting. +result <- run_models(.data = train, target = "Kyphosis", positive = "present") +result #> # A tibble: 7 × 7 #> step model_id target is_factor positive negative fitted_model #> <chr> <chr> <chr> <lgl> <chr> <chr> <list> @@ -157,10 +165,10 @@

    Examples

    #> 5 1.Fitted ranger Kyphosis TRUE present absent <ranger> #> 6 1.Fitted xgboost Kyphosis TRUE present absent <xgb.Bstr> #> 7 1.Fitted lasso Kyphosis TRUE present absent <lognet> - -# Run the several kinds model fitting by dplyr -train %>% - run_models(target = "Kyphosis", positive = "present") + +# Run the several kinds model fitting by dplyr +train %>% + run_models(target = "Kyphosis", positive = "present") #> # A tibble: 7 × 7 #> step model_id target is_factor positive negative fitted_model #> <chr> <chr> <chr> <lgl> <chr> <chr> <list> @@ -171,14 +179,7 @@

    Examples

    #> 5 1.Fitted ranger Kyphosis TRUE present absent <ranger> #> 6 1.Fitted xgboost Kyphosis TRUE present absent <xgb.Bstr> #> 7 1.Fitted lasso Kyphosis TRUE present absent <lognet> - -# Run the logistic model fitting by dplyr -train %>% - run_models(target = "Kyphosis", positive = "present", models = "logistic") -#> # A tibble: 1 × 7 -#> step model_id target is_factor positive negative fitted_model -#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> -#> 1 1.Fitted logistic Kyphosis TRUE present absent <glm> +
    @@ -193,8 +194,7 @@

    Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/run_performance.html b/docs/reference/run_performance.html index 4960b1f..b336098 100644 --- a/docs/reference/run_performance.html +++ b/docs/reference/run_performance.html @@ -1,5 +1,5 @@ -Apply calculate performance metrics for model evaluation — run_performance • alookrApply calculate performance metrics for model evaluation — run_performance • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -59,19 +59,24 @@

Apply calculate performance metrics for model evaluation

-
run_performance(model, actual = NULL)
+
run_performance(model, actual = NULL)

Arguments

model

A model_df. results of predicted model that created by run_predict().

+ +
actual

factor. A data of target variable to evaluate the model. It supports factor that has binary class.

+

Value

-

model_df. results of predicted model. + + +

model_df. results of predicted model. model_df is composed of tbl_df and contains the following variables.:

  • step : character. The current stage in the model fit process. The result of calling run_performance() is returned as "3.Performanced".

  • model_id : character. Type of fit model.

  • target : character. Name of target variable.

  • @@ -103,28 +108,28 @@

    Details

    Examples

    -
    # \donttest{
    -library(dplyr)
    -
    -# Divide the train data set and the test data set.
    -sb <- rpart::kyphosis %>%
    -  split_by(Kyphosis)
    -
    -# Extract the train data set from original data set.
    -train <- sb %>%
    -  extract_set(set = "train")
    -
    -# Extract the test data set from original data set.
    -test <- sb %>%
    -  extract_set(set = "test")
    -
    -# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    -train <- sb %>%
    -  sampling_target(seed = 1234L, method = "ubSMOTE")
    -
    -# Cleaning the set.
    -train <- train %>%
    -  cleanse
    +    
    # \donttest{
    +library(dplyr)
    +
    +# Divide the train data set and the test data set.
    +sb <- rpart::kyphosis %>%
    +  split_by(Kyphosis)
    +
    +# Extract the train data set from original data set.
    +train <- sb %>%
    +  extract_set(set = "train")
    +
    +# Extract the test data set from original data set.
    +test <- sb %>%
    +  extract_set(set = "test")
    +
    +# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    +train <- sb %>%
    +  sampling_target(seed = 1234L, method = "ubSMOTE")
    +
    +# Cleaning the set.
    +train <- train %>%
    +  cleanse
     #> ── Checking unique value ─────────────────────────── unique value is one ──
     #> No variables that unique value is one.
     #> 
    @@ -135,10 +140,10 @@ 

    Examples

    #> No character variables. #> #> - -# Run the model fitting. -result <- run_models(.data = train, target = "Kyphosis", positive = "present") -result + +# Run the model fitting. +result <- run_models(.data = train, target = "Kyphosis", positive = "present") +result #> # A tibble: 7 × 7 #> step model_id target is_factor positive negative fitted_model #> <chr> <chr> <chr> <lgl> <chr> <chr> <list> @@ -149,213 +154,60 @@

    Examples

    #> 5 1.Fitted ranger Kyphosis TRUE present absent <ranger> #> 6 1.Fitted xgboost Kyphosis TRUE present absent <xgb.Bstr> #> 7 1.Fitted lasso Kyphosis TRUE present absent <lognet> - -# Predict the model. (Case 1) -pred <- run_predict(result, test) -pred + +# Predict the model. (Case 1) +pred <- run_predict(result, test) +pred #> # A tibble: 7 × 8 -#> step model_id target is_factor positive negative fitted_model predicted -#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> -#> 1 2.Predicted logistic Kypho… TRUE present absent <glm> <fct> -#> 2 2.Predicted rpart Kypho… TRUE present absent <rpart> <fct> -#> 3 2.Predicted ctree Kypho… TRUE present absent <BinaryTr> <fct> -#> 4 2.Predicted randomF… Kypho… TRUE present absent <rndmFrs.> <fct> -#> 5 2.Predicted ranger Kypho… TRUE present absent <ranger> <fct> -#> 6 2.Predicted xgboost Kypho… TRUE present absent <xgb.Bstr> <fct> -#> 7 2.Predicted lasso Kypho… TRUE present absent <lognet> <fct> - -# Calculate performace metrics. (Case 1) -perf <- run_performance(pred) -perf -#> # A tibble: 7 × 7 -#> step model_id target positive fitted_model predicted performance -#> <chr> <chr> <chr> <chr> <list> <list> <list> -#> 1 3.Performanced logistic Kypho… present <glm> <fct> <dbl [15]> -#> 2 3.Performanced rpart Kypho… present <rpart> <fct> <dbl [15]> -#> 3 3.Performanced ctree Kypho… present <BinaryTr> <fct> <dbl [15]> -#> 4 3.Performanced randomForest Kypho… present <rndmFrs.> <fct> <dbl [15]> -#> 5 3.Performanced ranger Kypho… present <ranger> <fct> <dbl [15]> -#> 6 3.Performanced xgboost Kypho… present <xgb.Bstr> <fct> <dbl [15]> -#> 7 3.Performanced lasso Kypho… present <lognet> <fct> <dbl [15]> -perf$performance -#> [[1]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.08333333 0.91666667 1.00000000 0.60000000 0.60000000 1.00000000 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.75000000 0.75000000 0.22463025 0.93684211 0.87368421 0.68545455 -#> LiftAUC GainAUC KS_Stat -#> 2.20266453 0.84583333 80.00000000 -#> -#> [[2]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.08333333 0.91666667 1.00000000 0.60000000 0.60000000 1.00000000 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.75000000 0.75000000 0.34208129 0.80000000 0.64210526 0.24166667 -#> LiftAUC GainAUC KS_Stat -#> 2.53750000 0.73750000 60.00000000 -#> -#> [[3]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.1666667 0.8333333 0.5714286 0.8000000 0.8000000 0.8421053 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.6666667 0.6666667 0.3977583 0.7894737 0.6210526 0.2722619 -#> LiftAUC GainAUC KS_Stat -#> 1.5198810 0.7291667 64.2105263 -#> -#> [[4]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.08333333 0.91666667 0.80000000 0.80000000 0.80000000 0.94736842 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.80000000 0.80000000 0.22061290 0.98947368 0.97894737 0.76333333 -#> LiftAUC GainAUC KS_Stat -#> 2.33187386 0.88750000 94.73684211 -#> -#> [[5]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.04166667 0.95833333 1.00000000 0.80000000 0.80000000 1.00000000 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.88888889 0.88888889 0.22338605 0.98947368 0.97894737 0.76333333 -#> LiftAUC GainAUC KS_Stat -#> 2.33179151 0.88750000 94.73684211 -#> -#> [[6]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.08333333 0.91666667 0.80000000 0.80000000 0.80000000 0.94736842 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.80000000 0.80000000 0.20825183 0.96842105 0.93684211 0.71964286 -#> LiftAUC GainAUC KS_Stat -#> 2.27712856 0.87083333 84.21052632 -#> -#> [[7]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.08333333 0.91666667 1.00000000 0.60000000 0.60000000 1.00000000 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.75000000 0.75000000 0.22545040 0.93684211 0.87368421 0.68545455 -#> LiftAUC GainAUC KS_Stat -#> 2.20266453 0.84583333 80.00000000 -#> - -# Predict the model. (Case 2) -pred <- run_predict(result, test[, -1]) -pred +#> step model_id target is_factor positive negative fitted_model predicted +#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> +#> 1 2.Predict… logistic Kypho… TRUE present absent <glm> <prdct_cl> +#> 2 2.Predict… rpart Kypho… TRUE present absent <rpart> <prdct_cl> +#> 3 2.Predict… ctree Kypho… TRUE present absent <BinaryTr> <prdct_cl> +#> 4 2.Predict… randomF… Kypho… TRUE present absent <rndmFrs.> <prdct_cl> +#> 5 2.Predict… ranger Kypho… TRUE present absent <ranger> <prdct_cl> +#> 6 2.Predict… xgboost Kypho… TRUE present absent <xgb.Bstr> <prdct_cl> +#> 7 2.Predict… lasso Kypho… TRUE present absent <lognet> <prdct_cl> + +# Calculate performace metrics. (Case 1) +perf <- run_performance(pred) +#> Error in purrr::map(., ~future::value(.x)): In index: 1. +#> Caused by error: +#> ! object 'pred' not found +perf +#> Error in eval(expr, envir, enclos): object 'perf' not found +perf$performance +#> Error in eval(expr, envir, enclos): object 'perf' not found + +# Predict the model. (Case 2) +pred <- run_predict(result, test[, -1]) +pred #> # A tibble: 7 × 8 -#> step model_id target is_factor positive negative fitted_model predicted -#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> -#> 1 2.Predicted logistic Kypho… TRUE present absent <glm> <fct> -#> 2 2.Predicted rpart Kypho… TRUE present absent <rpart> <fct> -#> 3 2.Predicted ctree Kypho… TRUE present absent <BinaryTr> <fct> -#> 4 2.Predicted randomF… Kypho… TRUE present absent <rndmFrs.> <fct> -#> 5 2.Predicted ranger Kypho… TRUE present absent <ranger> <fct> -#> 6 2.Predicted xgboost Kypho… TRUE present absent <xgb.Bstr> <fct> -#> 7 2.Predicted lasso Kypho… TRUE present absent <lognet> <fct> - -# Calculate performace metrics. (Case 2) -perf <- run_performance(pred, pull(test[, 1])) -perf -#> # A tibble: 7 × 7 -#> step model_id target positive fitted_model predicted performance -#> <chr> <chr> <chr> <chr> <list> <list> <list> -#> 1 3.Performanced logistic Kypho… present <glm> <fct> <dbl [15]> -#> 2 3.Performanced rpart Kypho… present <rpart> <fct> <dbl [15]> -#> 3 3.Performanced ctree Kypho… present <BinaryTr> <fct> <dbl [15]> -#> 4 3.Performanced randomForest Kypho… present <rndmFrs.> <fct> <dbl [15]> -#> 5 3.Performanced ranger Kypho… present <ranger> <fct> <dbl [15]> -#> 6 3.Performanced xgboost Kypho… present <xgb.Bstr> <fct> <dbl [15]> -#> 7 3.Performanced lasso Kypho… present <lognet> <fct> <dbl [15]> -perf$performance -#> [[1]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.25000000 0.75000000 0.33333333 0.20000000 0.20000000 0.89473684 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.25000000 0.25000000 0.76115737 0.48421053 -0.03157895 0.17713207 -#> LiftAUC GainAUC KS_Stat -#> 1.15058165 0.48750000 24.21052632 -#> -#> [[2]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.25000000 0.75000000 0.33333333 0.20000000 0.20000000 0.89473684 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.25000000 0.25000000 0.57265552 0.54736842 0.09473684 0.21666667 -#> LiftAUC GainAUC KS_Stat -#> 1.13750000 0.53750000 9.47368421 -#> -#> [[3]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.4166667 0.5833333 0.1428571 0.2000000 0.2000000 0.6842105 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.1666667 0.1666667 0.7388683 0.4526316 -0.1578947 0.1404762 -#> LiftAUC GainAUC KS_Stat -#> 0.6655952 0.4625000 0.0000000 -#> -#> [[4]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.3333333 0.6666667 0.2000000 0.2000000 0.2000000 0.7894737 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.2000000 0.2000000 2.1498921 0.3842105 -0.2210526 0.1307093 -#> LiftAUC GainAUC KS_Stat -#> 0.9228299 0.4083333 20.0000000 -#> -#> [[5]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.2916667 0.7083333 0.2500000 0.2000000 0.2000000 0.8421053 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.2222222 0.2222222 0.8046467 0.3684211 -0.2631579 0.1290965 -#> LiftAUC GainAUC KS_Stat -#> 0.9139033 0.3958333 20.0000000 -#> -#> [[6]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.3333333 0.6666667 0.2000000 0.2000000 0.2000000 0.7894737 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.2000000 0.2000000 0.8445633 0.4263158 -0.1789474 0.1503852 -#> LiftAUC GainAUC KS_Stat -#> 1.0454257 0.4416667 20.0000000 -#> -#> [[7]] -#> ZeroOneLoss Accuracy Precision Recall Sensitivity Specificity -#> 0.25000000 0.75000000 0.33333333 0.20000000 0.20000000 0.89473684 -#> F1_Score Fbeta_Score LogLoss AUC Gini PRAUC -#> 0.25000000 0.25000000 0.75429467 0.48421053 -0.03157895 0.17713207 -#> LiftAUC GainAUC KS_Stat -#> 1.15058165 0.48750000 24.21052632 -#> - -# Convert to matrix for compare performace. -sapply(perf$performance, "c") -#> [,1] [,2] [,3] [,4] [,5] [,6] -#> ZeroOneLoss 0.25000000 0.25000000 0.4166667 0.3333333 0.2916667 0.3333333 -#> Accuracy 0.75000000 0.75000000 0.5833333 0.6666667 0.7083333 0.6666667 -#> Precision 0.33333333 0.33333333 0.1428571 0.2000000 0.2500000 0.2000000 -#> Recall 0.20000000 0.20000000 0.2000000 0.2000000 0.2000000 0.2000000 -#> Sensitivity 0.20000000 0.20000000 0.2000000 0.2000000 0.2000000 0.2000000 -#> Specificity 0.89473684 0.89473684 0.6842105 0.7894737 0.8421053 0.7894737 -#> F1_Score 0.25000000 0.25000000 0.1666667 0.2000000 0.2222222 0.2000000 -#> Fbeta_Score 0.25000000 0.25000000 0.1666667 0.2000000 0.2222222 0.2000000 -#> LogLoss 0.76115737 0.57265552 0.7388683 2.1498921 0.8046467 0.8445633 -#> AUC 0.48421053 0.54736842 0.4526316 0.3842105 0.3684211 0.4263158 -#> Gini -0.03157895 0.09473684 -0.1578947 -0.2210526 -0.2631579 -0.1789474 -#> PRAUC 0.17713207 0.21666667 0.1404762 0.1307093 0.1290965 0.1503852 -#> LiftAUC 1.15058165 1.13750000 0.6655952 0.9228299 0.9139033 1.0454257 -#> GainAUC 0.48750000 0.53750000 0.4625000 0.4083333 0.3958333 0.4416667 -#> KS_Stat 24.21052632 9.47368421 0.0000000 20.0000000 20.0000000 20.0000000 -#> [,7] -#> ZeroOneLoss 0.25000000 -#> Accuracy 0.75000000 -#> Precision 0.33333333 -#> Recall 0.20000000 -#> Sensitivity 0.20000000 -#> Specificity 0.89473684 -#> F1_Score 0.25000000 -#> Fbeta_Score 0.25000000 -#> LogLoss 0.75429467 -#> AUC 0.48421053 -#> Gini -0.03157895 -#> PRAUC 0.17713207 -#> LiftAUC 1.15058165 -#> GainAUC 0.48750000 -#> KS_Stat 24.21052632 -# } - +#> step model_id target is_factor positive negative fitted_model predicted +#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> +#> 1 2.Predict… logistic Kypho… TRUE present absent <glm> <prdct_cl> +#> 2 2.Predict… rpart Kypho… TRUE present absent <rpart> <prdct_cl> +#> 3 2.Predict… ctree Kypho… TRUE present absent <BinaryTr> <prdct_cl> +#> 4 2.Predict… randomF… Kypho… TRUE present absent <rndmFrs.> <prdct_cl> +#> 5 2.Predict… ranger Kypho… TRUE present absent <ranger> <prdct_cl> +#> 6 2.Predict… xgboost Kypho… TRUE present absent <xgb.Bstr> <prdct_cl> +#> 7 2.Predict… lasso Kypho… TRUE present absent <lognet> <prdct_cl> + +# Calculate performace metrics. (Case 2) +perf <- run_performance(pred, pull(test[, 1])) +#> Error in purrr::map(., ~future::value(.x)): In index: 1. +#> Caused by error: +#> ! object 'pred' not found +perf +#> Error in eval(expr, envir, enclos): object 'perf' not found +perf$performance +#> Error in eval(expr, envir, enclos): object 'perf' not found + +# Convert to matrix for compare performace. +sapply(perf$performance, "c") +#> Error in eval(expr, envir, enclos): object 'perf' not found +# } +
    @@ -370,8 +222,7 @@

    Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/run_predict.html b/docs/reference/run_predict.html index 838f99c..9283464 100644 --- a/docs/reference/run_predict.html +++ b/docs/reference/run_predict.html @@ -1,5 +1,5 @@ -Predict binary classification model — run_predict • alookrPredict binary classification model — run_predict • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -59,21 +59,28 @@

Predict binary classification model

-
run_predict(model, .data, cutoff = 0.5)
+
run_predict(model, .data, cutoff = 0.5)

Arguments

model

A model_df. results of fitted model that created by run_models().

+ +
.data

A tbl_df. The data set to predict the model. It also supports tbl, and data.frame objects.

+ +
cutoff

numeric. Cut-off that determines the positive from the probability of predicting the positive.

+

Value

-

model_df. results of predicted model. + + +

model_df. results of predicted model. model_df is composed of tbl_df and contains the following variables.:

  • step : character. The current stage in the model fit process. The result of calling run_predict() is returned as "2.Predicted".

  • model_id : character. Type of fit model.

  • target : character. Name of target variable.

  • @@ -99,27 +106,27 @@

    Details

    Examples

    -
    library(dplyr)
    -
    -# Divide the train data set and the test data set.
    -sb <- rpart::kyphosis %>%
    -  split_by(Kyphosis)
    -
    -# Extract the train data set from original data set.
    -train <- sb %>%
    -  extract_set(set = "train")
    -
    -# Extract the test data set from original data set.
    -test <- sb %>%
    -  extract_set(set = "test")
    -
    -# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    -train <- sb %>%
    -  sampling_target(seed = 1234L, method = "ubSMOTE")
    -
    -# Cleaning the set.
    -train <- train %>%
    -  cleanse
    +    
    library(dplyr)
    +
    +# Divide the train data set and the test data set.
    +sb <- rpart::kyphosis %>%
    +  split_by(Kyphosis)
    +
    +# Extract the train data set from original data set.
    +train <- sb %>%
    +  extract_set(set = "train")
    +
    +# Extract the test data set from original data set.
    +test <- sb %>%
    +  extract_set(set = "test")
    +
    +# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
    +train <- sb %>%
    +  sampling_target(seed = 1234L, method = "ubSMOTE")
    +
    +# Cleaning the set.
    +train <- train %>%
    +  cleanse
     #> ── Checking unique value ─────────────────────────── unique value is one ──
     #> No variables that unique value is one.
     #> 
    @@ -130,10 +137,10 @@ 

    Examples

    #> No character variables. #> #> - -# Run the model fitting. -result <- run_models(.data = train, target = "Kyphosis", positive = "present") -result + +# Run the model fitting. +result <- run_models(.data = train, target = "Kyphosis", positive = "present") +result #> # A tibble: 7 × 7 #> step model_id target is_factor positive negative fitted_model #> <chr> <chr> <chr> <lgl> <chr> <chr> <list> @@ -144,35 +151,21 @@

    Examples

    #> 5 1.Fitted ranger Kyphosis TRUE present absent <ranger> #> 6 1.Fitted xgboost Kyphosis TRUE present absent <xgb.Bstr> #> 7 1.Fitted lasso Kyphosis TRUE present absent <lognet> - -# Predict the model. -pred <- run_predict(result, test) -pred -#> # A tibble: 7 × 8 -#> step model_id target is_factor positive negative fitted_model predicted -#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> -#> 1 2.Predicted logistic Kypho… TRUE present absent <glm> <fct> -#> 2 2.Predicted rpart Kypho… TRUE present absent <rpart> <fct> -#> 3 2.Predicted ctree Kypho… TRUE present absent <BinaryTr> <fct> -#> 4 2.Predicted randomF… Kypho… TRUE present absent <rndmFrs.> <fct> -#> 5 2.Predicted ranger Kypho… TRUE present absent <ranger> <fct> -#> 6 2.Predicted xgboost Kypho… TRUE present absent <xgb.Bstr> <fct> -#> 7 2.Predicted lasso Kypho… TRUE present absent <lognet> <fct> - -# Run the several kinds model predict by dplyr -result %>% - run_predict(test) + +# Run the several kinds model predict by dplyr +result %>% + run_predict(test) #> # A tibble: 7 × 8 -#> step model_id target is_factor positive negative fitted_model predicted -#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> -#> 1 2.Predicted logistic Kypho… TRUE present absent <glm> <fct> -#> 2 2.Predicted rpart Kypho… TRUE present absent <rpart> <fct> -#> 3 2.Predicted ctree Kypho… TRUE present absent <BinaryTr> <fct> -#> 4 2.Predicted randomF… Kypho… TRUE present absent <rndmFrs.> <fct> -#> 5 2.Predicted ranger Kypho… TRUE present absent <ranger> <fct> -#> 6 2.Predicted xgboost Kypho… TRUE present absent <xgb.Bstr> <fct> -#> 7 2.Predicted lasso Kypho… TRUE present absent <lognet> <fct> - +#> step model_id target is_factor positive negative fitted_model predicted +#> <chr> <chr> <chr> <lgl> <chr> <chr> <list> <list> +#> 1 2.Predict… logistic Kypho… TRUE present absent <glm> <prdct_cl> +#> 2 2.Predict… rpart Kypho… TRUE present absent <rpart> <prdct_cl> +#> 3 2.Predict… ctree Kypho… TRUE present absent <BinaryTr> <prdct_cl> +#> 4 2.Predict… randomF… Kypho… TRUE present absent <rndmFrs.> <prdct_cl> +#> 5 2.Predict… ranger Kypho… TRUE present absent <ranger> <prdct_cl> +#> 6 2.Predict… xgboost Kypho… TRUE present absent <xgb.Bstr> <prdct_cl> +#> 7 2.Predict… lasso Kypho… TRUE present absent <lognet> <prdct_cl> +
    @@ -187,8 +180,7 @@

    Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/reference/sampling_target.html b/docs/reference/sampling_target.html index b745e46..a6f4833 100644 --- a/docs/reference/sampling_target.html +++ b/docs/reference/sampling_target.html @@ -1,67 +1,12 @@ - - - - - - - -Extract the data to fit the model — sampling_target • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Extract the data to fit the model — sampling_target • alookr - - - - + + -
-
- -
- -
+
@@ -120,74 +58,76 @@

Extract the data to fit the model

To solve the imbalanced class, perform sampling in the train set of split_df.

-
sampling_target(
-  .data,
-  method = c("ubUnder", "ubOver", "ubSMOTE"),
-  seed = NULL,
-  perc = 50,
-  k = ifelse(method == "ubSMOTE", 5, 0),
-  perc.over = 200,
-  perc.under = 200
-)
- -

Arguments

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
.data

an object of class "split_df", usually, a result of a call to split_df().

method

character. sampling methods. "ubUnder" is under-sampling, -and "ubOver" is over-sampling, "ubSMOTE" is SMOTE(Synthetic Minority Over-sampling TEchnique).

seed

integer. random seed used for sampling

perc

integer. The percentage of positive class in the final dataset. -It is used only in under-sampling. The default is 50. perc can not exceed 50.

k

integer. It is used only in over-sampling and SMOTE. +

+
sampling_target(
+  .data,
+  method = c("ubUnder", "ubOver", "ubSMOTE"),
+  seed = NULL,
+  perc = 50,
+  k = ifelse(method == "ubSMOTE", 5, 0),
+  perc.over = 200,
+  perc.under = 200
+)
+
+ +
+

Arguments

+
.data
+

an object of class "split_df", usually, a result of a call to split_df().

+ + +
method
+

character. sampling methods. "ubUnder" is under-sampling, +and "ubOver" is over-sampling, "ubSMOTE" is SMOTE(Synthetic Minority Over-sampling TEchnique).

+ + +
seed
+

integer. random seed used for sampling

+ + +
perc
+

integer. The percentage of positive class in the final dataset. +It is used only in under-sampling. The default is 50. perc can not exceed 50.

+ + +
k
+

integer. It is used only in over-sampling and SMOTE. If over-sampling and if K=0: sample with replacement from the minority class until we have the same number of instances in each class. under-sampling and if K>0: sample with replacement from the minority class until we have k-times the original number of minority instances. If SMOTE, the number of neighbours to consider as the pool from where the new -examples are generated

perc.over

integer. It is used only in SMOTE. per.over/100 is the number of new instances -generated for each rare instance. If perc.over < 100 a single instance is generated.

perc.under

integer. It is used only in SMOTE. perc.under/100 is the number -of "normal" (majority class) instances that are randomly selected for each smoted -observation.

+examples are generated

-

Value

-

An object of train_df.

-

Details

+
perc.over
+

integer. It is used only in SMOTE. per.over/100 is the number of new instances +generated for each rare instance. If perc.over < 100 a single instance is generated.

+ +
perc.under
+

integer. It is used only in SMOTE. perc.under/100 is the number +of "normal" (majority class) instances that are randomly selected for each smoted +observation.

+ +
+
+

Value

+ + +

An object of train_df.

+
+
+

Details

In order to solve the problem of imbalanced class, sampling is performed by under sampling, over sampling, SMOTE method.

-

attributes of train_df class

- +
+
+

attributes of train_df class

The attributes of the train_df class are as follows.:

-
    -
  • sample_seed : integer. random seed used for sampling

  • +
    • sample_seed : integer. random seed used for sampling

    • method : character. sampling methods.

    • perc : integer. perc argument value

    • k : integer. k argument value

    • @@ -197,110 +137,121 @@

      Examples

      -
      library(dplyr) - -# Credit Card Default Data -head(ISLR::Default)
      #> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
      -# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -# under-sampling with random seed -under <- sb %>% - sampling_target(seed = 1234L) - -under %>% - count(default)
      #> # A tibble: 2 x 2 -#> default n -#> <fct> <int> -#> 1 No 233 -#> 2 Yes 233
      -# under-sampling with random seed, and minority class frequency is 40% -under40 <- sb %>% - sampling_target(seed = 1234L, perc = 40) - -under40 %>% - count(default)
      #> # A tibble: 2 x 2 -#> default n -#> <fct> <int> -#> 1 No 349 -#> 2 Yes 233
      -# over-sampling with random seed -over <- sb %>% - sampling_target(method = "ubOver", seed = 1234L) - -over %>% - count(default)
      #> # A tibble: 2 x 2 -#> default n -#> <fct> <int> -#> 1 No 6767 -#> 2 Yes 6767
      -# over-sampling with random seed, and k = 10 -over10 <- sb %>% - sampling_target(method = "ubOver", seed = 1234L, k = 10) - -over10 %>% - count(default)
      #> # A tibble: 2 x 2 -#> default n -#> <fct> <int> -#> 1 No 6767 -#> 2 Yes 2330
      -# SMOTE with random seed -smote <- sb %>% - sampling_target(method = "ubSMOTE", seed = 1234L) - -smote %>% - count(default)
      #> # A tibble: 2 x 2 -#> default n -#> <fct> <int> -#> 1 No 932 -#> 2 Yes 699
      -# SMOTE with random seed, and perc.under = 250 -smote250 <- sb %>% - sampling_target(method = "ubSMOTE", seed = 1234L, perc.under = 250) - -smote250 %>% - count(default)
      #> # A tibble: 2 x 2 -#> default n -#> <fct> <int> -#> 1 No 1165 -#> 2 Yes 699
      -
      +
+ +
+

Examples

+
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+# Generate data for the example
+sb <- ISLR::Default %>%
+  split_by(default)
+
+# under-sampling with random seed
+under <- sb %>%
+  sampling_target(seed = 1234L)
+
+under %>%
+  count(default)
+#> # A tibble: 2 × 2
+#>   default     n
+#>   <fct>   <int>
+#> 1 No       6767
+#> 2 Yes       233
+
+# under-sampling with random seed, and minority class frequency is 40%
+under40 <- sb %>%
+  sampling_target(seed = 1234L, perc = 40)
+
+under40 %>%
+  count(default)
+#> # A tibble: 2 × 2
+#>   default     n
+#>   <fct>   <int>
+#> 1 No       6767
+#> 2 Yes       233
+
+# over-sampling with random seed
+over <- sb %>%
+  sampling_target(method = "ubOver", seed = 1234L)
+
+over %>%
+  count(default)
+#> # A tibble: 2 × 2
+#>   default     n
+#>   <fct>   <int>
+#> 1 No       6767
+#> 2 Yes      6767
+
+# over-sampling with random seed, and k = 10
+over10 <- sb %>%
+  sampling_target(method = "ubOver", seed = 1234L, k = 10)
+
+over10 %>%
+  count(default)
+#> # A tibble: 2 × 2
+#>   default     n
+#>   <fct>   <int>
+#> 1 No       6767
+#> 2 Yes      2330
+
+# SMOTE with random seed
+smote <- sb %>%
+  sampling_target(method = "ubSMOTE", seed = 1234L)
+
+smote %>%
+  count(default)
+#> # A tibble: 2 × 2
+#>   default     n
+#>   <fct>   <int>
+#> 1 No        932
+#> 2 Yes       699
+
+# SMOTE with random seed, and perc.under = 250
+smote250 <- sb %>%
+  sampling_target(method = "ubSMOTE", seed = 1234L, perc.under = 250)
+
+smote250 %>%
+  count(default)
+#> # A tibble: 2 × 2
+#>   default     n
+#>   <fct>   <int>
+#> 1 No       1165
+#> 2 Yes       699
+
+
+
+ -
- +
- - + + diff --git a/docs/reference/split_by.data.frame.html b/docs/reference/split_by.data.frame.html index 1116cb9..4a48567 100644 --- a/docs/reference/split_by.data.frame.html +++ b/docs/reference/split_by.data.frame.html @@ -1,67 +1,12 @@ - - - - - - - -Split Data into Train and Test Set — split_by • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Split Data into Train and Test Set — split_by • alookr - - - - + + -
-
- -
- -
+
@@ -120,114 +58,117 @@

Split Data into Train and Test Set

The split_by() splits the data.frame or tbl_df into a train set and a test set.

-
split_by(.data, ...)
-
-# S3 method for data.frame
-split_by(.data, target, ratio = 0.7, seed = NULL, ...)
- -

Arguments

- - - - - - - - - - - - - - - - - - - - - - -
.data

a data.frame or a tbl_df.

...

further arguments passed to or from other methods.

target

unquoted expression or variable name. the name of the target variable

ratio

numeric. the ratio of the train dataset. default is 0.7

seed

random seed used for splitting

- -

Value

- -

An object of split_by.

-

Details

+
+
split_by(.data, ...)
+
+# S3 method for data.frame
+split_by(.data, target, ratio = 0.7, seed = NULL, ...)
+
-

The split_df class is created, which contains the split information and criteria to separate the training and the test set.

-

attributes of split_by

+
+

Arguments

+
.data
+

a data.frame or a tbl_df.

+ + +
...
+

further arguments passed to or from other methods.

+ + +
target
+

unquoted expression or variable name. the name of the target variable

+ + +
ratio
+

numeric. the ratio of the train dataset. default is 0.7

+ +
seed
+

random seed used for splitting

+ +
+
+

Value

+ + +

An object of split_by.

+
+
+

Details

+

The split_df class is created, which contains the split information and criteria to separate the training and the test set.

+
+
+

attributes of split_by

The attributes of the split_df class are as follows.:

-
    -
  • split_seed : integer. random seed used for splitting

  • +
    • split_seed : integer. random seed used for splitting

    • target : character. the name of the target variable

    • binary : logical. whether the target variable is binary class

    • minority : character. the name of the minority class

    • majority : character. the name of the majority class

    • minority_rate : numeric. the rate of the minority class

    • majority_rate : numeric. the rate of the majority class

    • -
    - - -

    Examples

    -
    library(dplyr) - -# Credit Card Default Data -head(ISLR::Default)
    #> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
    -# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -sb
    #> # A tibble: 10,000 x 5 -#> # Groups: split_flag [2] -#> default student balance income split_flag -#> <fct> <fct> <dbl> <dbl> <chr> -#> 1 No No 730. 44362. train -#> 2 No Yes 817. 12106. train -#> 3 No No 1074. 31767. train -#> 4 No No 529. 35704. train -#> 5 No No 786. 38463. train -#> 6 No Yes 920. 7492. train -#> 7 No No 826. 24905. test -#> 8 No Yes 809. 17600. train -#> 9 No No 1161. 37469. test -#> 10 No No 0 29275. test -#> # … with 9,990 more rows
    -
    +
+ +
+

Examples

+
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+# Generate data for the example
+sb <- ISLR::Default %>%
+  split_by(default)
+
+sb
+#> # A tibble: 10,000 × 5
+#> # Groups:   split_flag [2]
+#>    default student balance income split_flag
+#>    <fct>   <fct>     <dbl>  <dbl> <chr>     
+#>  1 No      No         730. 44362. train     
+#>  2 No      Yes        817. 12106. train     
+#>  3 No      No        1074. 31767. train     
+#>  4 No      No         529. 35704. train     
+#>  5 No      No         786. 38463. train     
+#>  6 No      Yes        920.  7492. train     
+#>  7 No      No         826. 24905. test      
+#>  8 No      Yes        809. 17600. train     
+#>  9 No      No        1161. 37469. test      
+#> 10 No      No           0  29275. test      
+#> # ℹ 9,990 more rows
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/summary.split_df.html b/docs/reference/summary.split_df.html index 44fac97..e32bc78 100644 --- a/docs/reference/summary.split_df.html +++ b/docs/reference/summary.split_df.html @@ -1,67 +1,12 @@ - - - - - - - -Summarizing split_df information — summary.split_df • alookr - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Summarizing split_df information — summary.split_df • alookr + + - - - - -
-
- -
- -
+
@@ -120,100 +58,106 @@

Summarizing split_df information

summary method for "split_df" class.

-
# S3 method for split_df
-summary(object, ...)
- -

Arguments

- - - - - - - - - - -
object

an object of class "split_df", usually, a result of a call to split_df().

...

further arguments passed to or from other methods.

- -

Value

- -

NULL is returned. +

+
# S3 method for split_df
+summary(object, ...)
+
+ +
+

Arguments

+
object
+

an object of class "split_df", usually, a result of a call to split_df().

+ + +
...
+

further arguments passed to or from other methods.

+ +
+
+

Value

+ + +

NULL is returned. However, the split train set and test set information are displayed. The output information is as follows.:

-
    -
  • Random seed

  • + + +
    • Random seed

    • Number of train sets and test sets

    • Name of target variable

    • Target variable minority class and majority class information (label and ratio)

    • -
    - -

    Details

    - +
+
+

Details

summary.split_df provides information on the number of two split data sets, minority class and majority class.

+
-

Examples

-
library(dplyr) - -# Credit Card Default Data -head(ISLR::Default)
#> default student balance income -#> 1 No No 729.5265 44361.625 -#> 2 No Yes 817.1804 12106.135 -#> 3 No No 1073.5492 31767.139 -#> 4 No No 529.2506 35704.494 -#> 5 No No 785.6559 38463.496 -#> 6 No Yes 919.5885 7491.559
-# Generate data for the example -sb <- ISLR::Default %>% - split_by(default) - -sb
#> # A tibble: 10,000 x 5 -#> # Groups: split_flag [2] -#> default student balance income split_flag -#> <fct> <fct> <dbl> <dbl> <chr> -#> 1 No No 730. 44362. train -#> 2 No Yes 817. 12106. train -#> 3 No No 1074. 31767. test -#> 4 No No 529. 35704. train -#> 5 No No 786. 38463. test -#> 6 No Yes 920. 7492. test -#> 7 No No 826. 24905. test -#> 8 No Yes 809. 17600. test -#> 9 No No 1161. 37469. train -#> 10 No No 0 29275. test -#> # … with 9,990 more rows
#> ** Split train/test set information ** -#> + random seed : 93222 -#> + split data -#> - train set count : 7000 -#> - test set count : 3000 -#> + target variable : default -#> - minority class : Yes (0.033300) -#> - majority class : No (0.966700)
-
+
+

Examples

+
library(dplyr)
+
+# Credit Card Default Data
+head(ISLR::Default)
+#>   default student   balance    income
+#> 1      No      No  729.5265 44361.625
+#> 2      No     Yes  817.1804 12106.135
+#> 3      No      No 1073.5492 31767.139
+#> 4      No      No  529.2506 35704.494
+#> 5      No      No  785.6559 38463.496
+#> 6      No     Yes  919.5885  7491.559
+
+# Generate data for the example
+sb <- ISLR::Default %>%
+  split_by(default)
+
+sb
+#> # A tibble: 10,000 × 5
+#> # Groups:   split_flag [2]
+#>    default student balance income split_flag
+#>    <fct>   <fct>     <dbl>  <dbl> <chr>     
+#>  1 No      No         730. 44362. train     
+#>  2 No      Yes        817. 12106. train     
+#>  3 No      No        1074. 31767. test      
+#>  4 No      No         529. 35704. train     
+#>  5 No      No         786. 38463. test      
+#>  6 No      Yes        920.  7492. test      
+#>  7 No      No         826. 24905. test      
+#>  8 No      Yes        809. 17600. test      
+#>  9 No      No        1161. 37469. train     
+#> 10 No      No           0  29275. test      
+#> # ℹ 9,990 more rows
+summary(sb)
+#> ** Split train/test set information **
+#>  + random seed        :  93222 
+#>  + split data            
+#>     - train set count :  7000 
+#>     - test set count  :  3000 
+#>  + target variable    :  default 
+#>     - minority class  :  Yes (0.033300)
+#>     - majority class  :  No (0.966700)
+
+
+
+
-
- +
- - + + diff --git a/docs/reference/treatment_corr.html b/docs/reference/treatment_corr.html index 586ed15..9690ed0 100644 --- a/docs/reference/treatment_corr.html +++ b/docs/reference/treatment_corr.html @@ -1,5 +1,5 @@ -Diagnosis and removal of highly correlated variables — treatment_corr • alookrDiagnosis and removal of highly correlated variables — treatment_corr • alookr @@ -17,7 +17,7 @@ alookr - 0.3.7 + 0.3.9 @@ -59,23 +59,32 @@

Diagnosis and removal of highly correlated variables

-
treatment_corr(.data, corr_thres = 0.8, treat = TRUE, verbose = TRUE)
+
treatment_corr(.data, corr_thres = 0.8, treat = TRUE, verbose = TRUE)

Arguments

.data

a data.frame or a tbl_df.

+ +
corr_thres

numeric. Set a threshold to detecting variables when correlation greater then threshold.

+ +
treat

logical. Set whether to removing variables

+ +
verbose

logical. Set whether to echo information to the console at runtime.

+

Value

-

An object of data.frame or train_df. and return value is an object of the same type as the .data argument. However, several variables can be excluded by correlation between variables.

+ + +

An object of data.frame or train_df. and return value is an object of the same type as the .data argument. However, several variables can be excluded by correlation between variables.

Details

@@ -84,24 +93,24 @@

Details

Examples

-
# numerical variable
-x1 <- 1:100
-set.seed(12L)
-x2 <- sample(1:3, size = 100, replace = TRUE) * x1 + rnorm(1)
-set.seed(1234L)
-x3 <- sample(1:2, size = 100, replace = TRUE) * x1 + rnorm(1)
-
-# categorical variable
-x4 <- factor(rep(letters[1:20], time = 5))
-set.seed(100L)
-x5 <- factor(rep(letters[1:20 + sample(1:6, size = 20, replace = TRUE)], time = 5))
-set.seed(200L)
-x6 <- factor(rep(letters[1:20 + sample(1:3, size = 20, replace = TRUE)], time = 5))
-set.seed(300L)
-x7 <- factor(sample(letters[1:5], size = 100, replace = TRUE))
-
-exam <- data.frame(x1, x2, x3, x4, x5, x6, x7)
-str(exam)
+    
# numerical variable
+x1 <- 1:100
+set.seed(12L)
+x2 <- sample(1:3, size = 100, replace = TRUE) * x1 + rnorm(1)
+set.seed(1234L)
+x3 <- sample(1:2, size = 100, replace = TRUE) * x1 + rnorm(1)
+
+# categorical variable
+x4 <- factor(rep(letters[1:20], time = 5))
+set.seed(100L)
+x5 <- factor(rep(letters[1:20 + sample(1:6, size = 20, replace = TRUE)], time = 5))
+set.seed(200L)
+x6 <- factor(rep(letters[1:20 + sample(1:3, size = 20, replace = TRUE)], time = 5))
+set.seed(300L)
+x7 <- factor(sample(letters[1:5], size = 100, replace = TRUE))
+
+exam <- data.frame(x1, x2, x3, x4, x5, x6, x7)
+str(exam)
 #> 'data.frame':	100 obs. of  7 variables:
 #>  $ x1: int  1 2 3 4 5 6 7 8 9 10 ...
 #>  $ x2: num  2.55 4.55 9.55 12.55 10.55 ...
@@ -110,7 +119,7 @@ 

Examples

#> $ x5: Factor w/ 13 levels "c","e","f","g",..: 1 5 3 2 4 7 6 8 9 8 ... #> $ x6: Factor w/ 15 levels "c","d","f","g",..: 1 2 3 4 3 5 6 7 8 9 ... #> $ x7: Factor w/ 5 levels "a","b","c","d",..: 2 2 1 4 5 1 4 3 1 5 ... -head(exam) +head(exam) #> x1 x2 x3 x4 x5 x6 x7 #> 1 1 2.554297 0.1939687 a c c b #> 2 2 4.554297 2.1939687 b h d b @@ -118,9 +127,9 @@

Examples

#> 4 4 12.554297 6.1939687 d e g d #> 5 5 10.554297 3.1939687 e g f e #> 6 6 6.554297 10.1939687 f l h a - -# default case -treatment_corr(exam) + +# default case +treatment_corr(exam) #> * remove variables whose strong correlation (pearson >= 0.8) #> - remove x1 : with x3 (0.825) #> * remove variables whose strong correlation (spearman >= 0.8) @@ -228,25 +237,25 @@

Examples

#> 98 294.554297 96.1939687 t e #> 99 198.554297 196.1939687 v d #> 100 100.554297 198.1939687 v a - -# not removing variables -treatment_corr(exam, treat = FALSE) + +# not removing variables +treatment_corr(exam, treat = FALSE) #> * remove variables whose strong correlation (pearson >= 0.8) #> - remove x1 : with x3 (0.825) #> * remove variables whose strong correlation (spearman >= 0.8) #> - remove x4 : with x5 (0.9649) #> - remove x4 : with x6 (0.9928) #> - remove x5 : with x6 (0.9485) - -# Set a threshold to detecting variables when correlation greater then 0.9 -treatment_corr(exam, corr_thres = 0.9, treat = FALSE) + +# Set a threshold to detecting variables when correlation greater then 0.9 +treatment_corr(exam, corr_thres = 0.9, treat = FALSE) #> * remove variables whose strong correlation (spearman >= 0.9) #> - remove x4 : with x5 (0.9649) #> - remove x4 : with x6 (0.9928) #> - remove x5 : with x6 (0.9485) - -# not verbose mode -treatment_corr(exam, verbose = FALSE) + +# not verbose mode +treatment_corr(exam, verbose = FALSE) #> x2 x3 x6 x7 #> 1 2.554297 0.1939687 c b #> 2 4.554297 2.1939687 d b @@ -348,7 +357,7 @@

Examples

#> 98 294.554297 96.1939687 t e #> 99 198.554297 196.1939687 v d #> 100 100.554297 198.1939687 v a - +
@@ -363,8 +372,7 @@

Examples

-

Site built with pkgdown -2.0.2.

+

Site built with pkgdown 2.0.7.

diff --git a/docs/sitemap.xml b/docs/sitemap.xml new file mode 100644 index 0000000..3f70453 --- /dev/null +++ b/docs/sitemap.xml @@ -0,0 +1,93 @@ + + + + /404.html + + + /LICENSE-text.html + + + /articles/cleansing.html + + + /articles/index.html + + + /articles/introduce.html + + + /articles/modeling.html + + + /articles/split.html + + + /authors.html + + + /index.html + + + /news/index.html + + + /reference/cleanse.data.frame.html + + + /reference/cleanse.split_df.html + + + /reference/compare_diag.html + + + /reference/compare_performance.html + + + /reference/compare_plot.html + + + /reference/compare_target_category.html + + + /reference/compare_target_numeric.html + + + /reference/extract_set.html + + + /reference/index.html + + + /reference/matthews.html + + + /reference/performance_metric.html + + + /reference/plot_cutoff.html + + + /reference/plot_performance.html + + + /reference/run_models.html + + + /reference/run_performance.html + + + /reference/run_predict.html + + + /reference/sampling_target.html + + + /reference/split_by.data.frame.html + + + /reference/summary.split_df.html + + + /reference/treatment_corr.html + +