-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
253 lines (212 loc) · 8.97 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""Backend for running ONNX on Tensorflow
To run this, you will need to have Tensorflow installed as well.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
try:
from itertools import izip as zip
except ImportError: # will be 3.x series
pass
from onnx import defs
from onnx import numpy_helper
from onnx.backend.base import Backend
from onnx.backend.base import Device
from onnx.backend.base import namedtupledict
from onnx.helper import make_opsetid
import tensorflow as tf
from onnx_tf.backend_rep import TensorflowRep
from onnx_tf.common import data_type
from onnx_tf.common import exception
from onnx_tf.common import get_device_option
from onnx_tf.common import supports_device as common_supports_device
from onnx_tf.common.handler_helper import get_all_backend_handlers
from onnx_tf.pb_wrapper import OnnxNode
class TensorflowBackend(Backend):
""" Tensorflow Backend for ONNX
"""
@classmethod
def prepare(cls, model, device='CPU', strict=True, **kwargs):
"""Prepare an ONNX model for Tensorflow Backend.
This function converts an ONNX model to an internel representation
of the computational graph called TensorflowRep and returns
the converted representation.
:param model: The ONNX model to be converted.
:param device: The device to execute this model on.
:param strict: Whether to enforce semantic equivalence between the original model
and the converted tensorflow model, defaults to True (yes, enforce semantic equivalence).
Changing to False is strongly discouraged.
Currently, the strict flag only affects the behavior of MaxPool and AveragePool ops.
:returns: A TensorflowRep class object representing the ONNX model
"""
super(TensorflowBackend, cls).prepare(model, device, **kwargs)
return cls.onnx_model_to_tensorflow_rep(model, strict)
@classmethod
def onnx_model_to_tensorflow_rep(cls, model, strict):
""" Convert ONNX model to TensorflowRep.
:param model: ONNX ModelProto object.
:param strict: whether to enforce semantic equivalence between the original model
and the converted tensorflow model.
:return: TensorflowRep object.
"""
# Models with IR_VERSION less than 3 does not have opset_import set.
# We default to minimum opset, this behavior is consistent with
# onnx checker.
# c.f. https://github.com/onnx/onnx/blob/427ac0c1b792363d373e3d7e4eef97fa46458420/onnx/checker.cc#L478
if model.ir_version < 3:
opset_import = [make_opsetid(defs.ONNX_DOMAIN, 1)]
else:
opset_import = model.opset_import
return cls._onnx_graph_to_tensorflow_rep(model.graph, opset_import, strict)
@classmethod
def _onnx_graph_to_tensorflow_rep(cls, graph_def, opset, strict):
""" Convert ONNX graph to TensorflowRep.
:param graph_def: ONNX GraphProto object.
:param opset: ONNX OperatorSetIdProto list.
:param strict: whether to enforce semantic equivalence between the original model
and the converted tensorflow model.
:return: TensorflowRep object.
"""
handlers = cls._get_handlers(opset)
tf_rep_graph = tf.Graph()
with tf_rep_graph.as_default():
# initializer: TensorProtos representing the values to initialize
# a given tensor.
# initialized: A list of names of the initialized tensors.
if graph_def.initializer:
input_dict_items = cls._onnx_initializer_to_input_dict_items(
graph_def.initializer)
initialized = {init.name for init in graph_def.initializer}
else:
input_dict_items = []
initialized = set()
# creating placeholders for currently unknown inputs
for value_info in graph_def.input:
if value_info.name in initialized:
continue
shape = list(
d.dim_value if (d.dim_value > 0 and d.dim_param == "") else None
for d in value_info.type.tensor_type.shape.dim)
x = tf.placeholder(
data_type.onnx2tf(value_info.type.tensor_type.elem_type),
name=value_info.name,
shape=shape)
input_dict_items.append((value_info.name, x))
# tensor dict: this dictionary is a map from variable names
# to the latest produced TF tensors of the given name.
# This dictionary will get updated as we build the graph to
# record the names of newly produced tensors.
tensor_dict = dict(input_dict_items)
# Since tensor dict may be updated, we need to keep a copy
# of the original input dict where we track the earliest
# defined tensors so we can have access to the placeholders
# to feed in input tensors when we run the graph.
input_dict = dict(input_dict_items)
for node in graph_def.node:
onnx_node = OnnxNode(node)
output_ops = cls._onnx_node_to_tensorflow_op(
onnx_node, tensor_dict, handlers, opset=opset, strict=strict)
curr_node_output_map = dict(zip(onnx_node.outputs, output_ops))
tensor_dict.update(curr_node_output_map)
tf_rep = TensorflowRep()
tf_rep.graph = tf_rep_graph
tf_rep.inputs = [
value_info.name
for value_info in graph_def.input
if value_info.name not in initialized
]
tf_rep.outputs = [value_info.name for value_info in graph_def.output]
tf_rep.tensor_dict = tensor_dict
return tf_rep
@classmethod
def run_node(cls, node, inputs, device='CPU', outputs_info=None, **kwargs):
""" Run ONNX node.
:param node: ONNX NodeProto object.
:param inputs: Inputs.
:param device: Device run on.
:param outputs_info: None.
:param kwargs: Other args.
:return: Outputs.
"""
super(TensorflowBackend, cls).run_node(node, inputs, device)
node_graph = tf.Graph()
with node_graph.as_default():
node = OnnxNode(node)
device_option = get_device_option(Device(device))
input_tensors = []
for i in inputs:
input_tensors.append(tf.constant(i))
if isinstance(inputs, dict):
feed_dict_raw = inputs
else:
assert len(node.inputs) == len(inputs)
feed_dict_raw = dict(zip(node.inputs, inputs))
# TODO: is constant the best way for feeding inputs?
input_dict = dict(
[(x[0], tf.constant(x[1])) for x in feed_dict_raw.items()])
ops = cls._onnx_node_to_tensorflow_op(node, input_dict)
with tf.Session() as sess:
with tf.device(device_option):
sess.run(tf.global_variables_initializer())
output_vals = sess.run(ops)
return namedtupledict('Outputs', node.outputs)(*output_vals)
@classmethod
def _onnx_initializer_to_input_dict_items(cls, initializer):
""" Convert ONNX graph initializer to input dict items.
:param initializer: ONNX graph initializer, list of TensorProto.
:return: List of input dict items.
"""
def tensor2list(onnx_tensor):
# Use the onnx.numpy_helper because the data may be raw
return numpy_helper.to_array(onnx_tensor).flatten().tolist()
input_dict= [(init.name,
tf.Variable(
[tensor2list(init)],
trainable=True, # True for prototype, will be based on training info later
expected_shape=init.dims,
name=init.name,
dtype=data_type.onnx2tf(init.data_type)))
for init in initializer]
return input_dict
@classmethod
def _onnx_node_to_tensorflow_op(cls,
node,
tensor_dict,
handlers=None,
opset=None,
strict=True):
"""
Convert onnx node to tensorflow op.
Args:
node: Onnx node object.
tensor_dict: Tensor dict of graph.
opset: Opset version of the operator set. Default 0 means using latest version.
strict: whether to enforce semantic equivalence between the original model
and the converted tensorflow model, defaults to True (yes, enforce semantic equivalence).
Changing to False is strongly discouraged.
Returns:
Tensorflow op
"""
handlers = handlers or cls._get_handlers(opset)
handler = handlers[node.domain].get(node.op_type, None)
if handler:
return handler.handle(node, tensor_dict=tensor_dict, strict=strict)
else:
exception.OP_UNIMPLEMENTED_EXCEPT(node.op_type)
@classmethod
def _get_handlers(cls, opset):
""" Get all backend handlers with opset.
:param opset: ONNX OperatorSetIdProto list.
:return: All backend handlers.
"""
opset = opset or [make_opsetid(defs.ONNX_DOMAIN, defs.onnx_opset_version())]
opset_dict = dict([(o.domain, o.version) for o in opset])
return get_all_backend_handlers(opset_dict)
@classmethod
def supports_device(cls, device):
return common_supports_device(device)
prepare = TensorflowBackend.prepare
run_node = TensorflowBackend.run_node
run_model = TensorflowBackend.run_model
supports_device = TensorflowBackend.supports_device