forked from uclnlp/fakenewschallenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
303 lines (241 loc) · 11.1 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright 2017 Benjamin Riedel
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Import relevant packages and modules
from csv import DictReader
from csv import DictWriter
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import tensorflow as tf
# Initialise global variables
label_ref = {'agree': 0, 'disagree': 1, 'discuss': 2, 'unrelated': 3}
label_ref_rev = {0: 'agree', 1: 'disagree', 2: 'discuss', 3: 'unrelated'}
stop_words = [
"a", "about", "above", "across", "after", "afterwards", "again", "against", "all", "almost", "alone", "along",
"already", "also", "although", "always", "am", "among", "amongst", "amoungst", "amount", "an", "and", "another",
"any", "anyhow", "anyone", "anything", "anyway", "anywhere", "are", "around", "as", "at", "back", "be",
"became", "because", "become", "becomes", "becoming", "been", "before", "beforehand", "behind", "being",
"below", "beside", "besides", "between", "beyond", "bill", "both", "bottom", "but", "by", "call", "can", "co",
"con", "could", "cry", "de", "describe", "detail", "do", "done", "down", "due", "during", "each", "eg", "eight",
"either", "eleven", "else", "elsewhere", "empty", "enough", "etc", "even", "ever", "every", "everyone",
"everything", "everywhere", "except", "few", "fifteen", "fifty", "fill", "find", "fire", "first", "five", "for",
"former", "formerly", "forty", "found", "four", "from", "front", "full", "further", "get", "give", "go", "had",
"has", "have", "he", "hence", "her", "here", "hereafter", "hereby", "herein", "hereupon", "hers", "herself",
"him", "himself", "his", "how", "however", "hundred", "i", "ie", "if", "in", "inc", "indeed", "interest",
"into", "is", "it", "its", "itself", "keep", "last", "latter", "latterly", "least", "less", "ltd", "made",
"many", "may", "me", "meanwhile", "might", "mill", "mine", "more", "moreover", "most", "mostly", "move", "much",
"must", "my", "myself", "name", "namely", "neither", "nevertheless", "next", "nine", "nobody", "now", "nowhere",
"of", "off", "often", "on", "once", "one", "only", "onto", "or", "other", "others", "otherwise", "our", "ours",
"ourselves", "out", "over", "own", "part", "per", "perhaps", "please", "put", "rather", "re", "same", "see",
"serious", "several", "she", "should", "show", "side", "since", "sincere", "six", "sixty", "so", "some",
"somehow", "someone", "something", "sometime", "sometimes", "somewhere", "still", "such", "system", "take",
"ten", "than", "that", "the", "their", "them", "themselves", "then", "thence", "there", "thereafter", "thereby",
"therefore", "therein", "thereupon", "these", "they", "thick", "thin", "third", "this", "those", "though",
"three", "through", "throughout", "thru", "thus", "to", "together", "too", "top", "toward", "towards", "twelve",
"twenty", "two", "un", "under", "until", "up", "upon", "us", "very", "via", "was", "we", "well", "were", "what",
"whatever", "when", "whence", "whenever", "where", "whereafter", "whereas", "whereby", "wherein", "whereupon",
"wherever", "whether", "which", "while", "whither", "who", "whoever", "whole", "whom", "whose", "why", "will",
"with", "within", "without", "would", "yet", "you", "your", "yours", "yourself", "yourselves"
]
# Define data class
class FNCData:
"""
Define class for Fake News Challenge data
"""
def __init__(self, file_instances, file_bodies):
# Load data
self.instances = self.read(file_instances)
bodies = self.read(file_bodies)
self.heads = {}
self.bodies = {}
# Process instances
for instance in self.instances:
if instance['Headline'] not in self.heads:
head_id = len(self.heads)
self.heads[instance['Headline']] = head_id
instance['Body ID'] = int(instance['Body ID'])
# Process bodies
for body in bodies:
self.bodies[int(body['Body ID'])] = body['articleBody']
def read(self, filename):
"""
Read Fake News Challenge data from CSV file
Args:
filename: str, filename + extension
Returns:
rows: list, of dict per instance
"""
# Initialise
rows = []
# Process file
with open(filename, "r", encoding='utf-8') as table:
r = DictReader(table)
for line in r:
rows.append(line)
return rows
# Define relevant functions
def pipeline_train(train, test, lim_unigram):
"""
Process train set, create relevant vectorizers
Args:
train: FNCData object, train set
test: FNCData object, test set
lim_unigram: int, number of most frequent words to consider
Returns:
train_set: list, of numpy arrays
train_stances: list, of ints
bow_vectorizer: sklearn CountVectorizer
tfreq_vectorizer: sklearn TfidfTransformer(use_idf=False)
tfidf_vectorizer: sklearn TfidfVectorizer()
"""
# Initialise
heads = []
heads_track = {}
bodies = []
bodies_track = {}
body_ids = []
id_ref = {}
train_set = []
train_stances = []
cos_track = {}
test_heads = []
test_heads_track = {}
test_bodies = []
test_bodies_track = {}
test_body_ids = []
head_tfidf_track = {}
body_tfidf_track = {}
# Identify unique heads and bodies
for instance in train.instances:
head = instance['Headline']
body_id = instance['Body ID']
if head not in heads_track:
heads.append(head)
heads_track[head] = 1
if body_id not in bodies_track:
bodies.append(train.bodies[body_id])
bodies_track[body_id] = 1
body_ids.append(body_id)
for instance in test.instances:
head = instance['Headline']
body_id = instance['Body ID']
if head not in test_heads_track:
test_heads.append(head)
test_heads_track[head] = 1
if body_id not in test_bodies_track:
test_bodies.append(test.bodies[body_id])
test_bodies_track[body_id] = 1
test_body_ids.append(body_id)
# Create reference dictionary
for i, elem in enumerate(heads + body_ids):
id_ref[elem] = i
# Create vectorizers and BOW and TF arrays for train set
bow_vectorizer = CountVectorizer(max_features=lim_unigram, stop_words=stop_words)
bow = bow_vectorizer.fit_transform(heads + bodies) # Train set only
tfreq_vectorizer = TfidfTransformer(use_idf=False).fit(bow)
tfreq = tfreq_vectorizer.transform(bow).toarray() # Train set only
tfidf_vectorizer = TfidfVectorizer(max_features=lim_unigram, stop_words=stop_words).\
fit(heads + bodies + test_heads + test_bodies) # Train and test sets
# Process train set
for instance in train.instances:
head = instance['Headline']
body_id = instance['Body ID']
head_tf = tfreq[id_ref[head]].reshape(1, -1)
body_tf = tfreq[id_ref[body_id]].reshape(1, -1)
if head not in head_tfidf_track:
head_tfidf = tfidf_vectorizer.transform([head]).toarray()
head_tfidf_track[head] = head_tfidf
else:
head_tfidf = head_tfidf_track[head]
if body_id not in body_tfidf_track:
body_tfidf = tfidf_vectorizer.transform([train.bodies[body_id]]).toarray()
body_tfidf_track[body_id] = body_tfidf
else:
body_tfidf = body_tfidf_track[body_id]
if (head, body_id) not in cos_track:
tfidf_cos = cosine_similarity(head_tfidf, body_tfidf)[0].reshape(1, 1)
cos_track[(head, body_id)] = tfidf_cos
else:
tfidf_cos = cos_track[(head, body_id)]
feat_vec = np.squeeze(np.c_[head_tf, body_tf, tfidf_cos])
train_set.append(feat_vec)
train_stances.append(label_ref[instance['Stance']])
return train_set, train_stances, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer
def pipeline_test(test, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer):
"""
Process test set
Args:
test: FNCData object, test set
bow_vectorizer: sklearn CountVectorizer
tfreq_vectorizer: sklearn TfidfTransformer(use_idf=False)
tfidf_vectorizer: sklearn TfidfVectorizer()
Returns:
test_set: list, of numpy arrays
"""
# Initialise
test_set = []
heads_track = {}
bodies_track = {}
cos_track = {}
# Process test set
for instance in test.instances:
head = instance['Headline']
body_id = instance['Body ID']
if head not in heads_track:
head_bow = bow_vectorizer.transform([head]).toarray()
head_tf = tfreq_vectorizer.transform(head_bow).toarray()[0].reshape(1, -1)
head_tfidf = tfidf_vectorizer.transform([head]).toarray().reshape(1, -1)
heads_track[head] = (head_tf, head_tfidf)
else:
head_tf = heads_track[head][0]
head_tfidf = heads_track[head][1]
if body_id not in bodies_track:
body_bow = bow_vectorizer.transform([test.bodies[body_id]]).toarray()
body_tf = tfreq_vectorizer.transform(body_bow).toarray()[0].reshape(1, -1)
body_tfidf = tfidf_vectorizer.transform([test.bodies[body_id]]).toarray().reshape(1, -1)
bodies_track[body_id] = (body_tf, body_tfidf)
else:
body_tf = bodies_track[body_id][0]
body_tfidf = bodies_track[body_id][1]
if (head, body_id) not in cos_track:
tfidf_cos = cosine_similarity(head_tfidf, body_tfidf)[0].reshape(1, 1)
cos_track[(head, body_id)] = tfidf_cos
else:
tfidf_cos = cos_track[(head, body_id)]
feat_vec = np.squeeze(np.c_[head_tf, body_tf, tfidf_cos])
test_set.append(feat_vec)
return test_set
def load_model(sess):
"""
Load TensorFlow model
Args:
sess: TensorFlow session
"""
saver = tf.train.Saver()
saver.restore(sess, './model/model.checkpoint')
def save_predictions(pred, file):
"""
Save predictions to CSV file
Args:
pred: numpy array, of numeric predictions
file: str, filename + extension
"""
with open(file, 'w') as csvfile:
fieldnames = ['Stance']
writer = DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for instance in pred:
writer.writerow({'Stance': label_ref_rev[instance]})