forked from uclnlp/fakenewschallenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred.py
131 lines (96 loc) · 4 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2017 Benjamin Riedel
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Import relevant packages and modules
from util import *
import random
import tensorflow as tf
# Prompt for mode
mode = input('mode (load / train)? ')
# Set file names
file_train_instances = "train_stances.csv"
file_train_bodies = "train_bodies.csv"
file_test_instances = "test_stances_unlabeled.csv"
file_test_bodies = "test_bodies.csv"
file_predictions = 'predictions_test.csv'
# Initialise hyperparameters
r = random.Random()
lim_unigram = 5000
target_size = 4
hidden_size = 100
train_keep_prob = 0.6
l2_alpha = 0.00001
learn_rate = 0.01
clip_ratio = 5
batch_size_train = 500
epochs = 90
# Load data sets
raw_train = FNCData(file_train_instances, file_train_bodies)
raw_test = FNCData(file_test_instances, file_test_bodies)
n_train = len(raw_train.instances)
# Process data sets
train_set, train_stances, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer = \
pipeline_train(raw_train, raw_test, lim_unigram=lim_unigram)
feature_size = len(train_set[0])
test_set = pipeline_test(raw_test, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer)
# Define model
# Create placeholders
features_pl = tf.placeholder(tf.float32, [None, feature_size], 'features')
stances_pl = tf.placeholder(tf.int64, [None], 'stances')
keep_prob_pl = tf.placeholder(tf.float32)
# Infer batch size
batch_size = tf.shape(features_pl)[0]
# Define multi-layer perceptron
hidden_layer = tf.nn.dropout(tf.nn.relu(tf.contrib.layers.linear(features_pl, hidden_size)), keep_prob=keep_prob_pl)
logits_flat = tf.nn.dropout(tf.contrib.layers.linear(hidden_layer, target_size), keep_prob=keep_prob_pl)
logits = tf.reshape(logits_flat, [batch_size, target_size])
# Define L2 loss
tf_vars = tf.trainable_variables()
l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in tf_vars if 'bias' not in v.name]) * l2_alpha
# Define overall loss
loss = tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits, stances_pl) + l2_loss)
# Define prediction
softmaxed_logits = tf.nn.softmax(logits)
predict = tf.arg_max(softmaxed_logits, 1)
# Load model
if mode == 'load':
with tf.Session() as sess:
load_model(sess)
# Predict
test_feed_dict = {features_pl: test_set, keep_prob_pl: 1.0}
test_pred = sess.run(predict, feed_dict=test_feed_dict)
# Train model
if mode == 'train':
# Define optimiser
opt_func = tf.train.AdamOptimizer(learn_rate)
grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tf_vars), clip_ratio)
opt_op = opt_func.apply_gradients(zip(grads, tf_vars))
# Perform training
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
total_loss = 0
indices = list(range(n_train))
r.shuffle(indices)
for i in range(n_train // batch_size_train):
batch_indices = indices[i * batch_size_train: (i + 1) * batch_size_train]
batch_features = [train_set[i] for i in batch_indices]
batch_stances = [train_stances[i] for i in batch_indices]
batch_feed_dict = {features_pl: batch_features, stances_pl: batch_stances, keep_prob_pl: train_keep_prob}
_, current_loss = sess.run([opt_op, loss], feed_dict=batch_feed_dict)
total_loss += current_loss
# Predict
test_feed_dict = {features_pl: test_set, keep_prob_pl: 1.0}
test_pred = sess.run(predict, feed_dict=test_feed_dict)
# Save predictions
save_predictions(test_pred, file_predictions)