Skip to content

Latest commit

 

History

History
191 lines (119 loc) · 7.42 KB

Java并发指南1:并发基础与Java多线程.md

File metadata and controls

191 lines (119 loc) · 7.42 KB

Table of Contents

本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看

https://github.com/chenjiabing666/JavaFamily

喜欢的话麻烦点下Star哈

本系列文章将整理到我的个人博客

https://chenjiabing666.github.io/

更多Java技术文章会更新在我的微信公众号【码猿技术专栏】上,欢迎关注 该系列博文会介绍常见的后端技术,这对后端工程师来说是一种综合能力,我们会逐步了解搜索技术,云计算相关技术、大数据研发等常见的技术喜提,以便让你更完整地了解后端技术栈的全貌,为后续参与分布式应用的开发和学习做好准备。

如果对本系列文章有什么建议,或者是有什么疑问的话,也可以关注公众号【码猿技术专栏】联系我,欢迎你参与本系列博文的创作和修订

1多线程的优点

    • 资源利用率更好 
    • 程序设计在某些情况下更简单 
    • 程序响应更快

1.1资源利用率更好案例

方式1 从磁盘读取一个文件需要5秒,处理一个文件需要2秒。处理两个文件则需要14秒

1    5秒读取文件A2    2秒处理文件A3    5秒读取文件B4    2秒处理文件B5    ---------------------6    总共需要14秒

方式2 从磁盘中读取文件的时候,大部分的CPU非常的空闲。它可以做一些别的事情。通过改变操作的顺序,就能够更好的使用CPU资源。看下面的顺序:

1    5秒读取文件A2    5秒读取文件B + 2秒处理文件A3    2秒处理文件B4    ---------------------5    总共需要12秒

总结:多线程并发效率提高2秒

1.2程序响应更快

设想一个服务器应用,它在某一个端口监听进来的请求。当一个请求到来时,它把请求传递给工作者线程(worker thread),然后立刻返回去监听。而工作者线程则能够处理这个请求并发送一个回复给客户端。

 while(server is active){
        listenThread for request
       hand request to workerThread
    }

这种方式,服务端线程迅速地返回去监听。因此,更多的客户端能够发送请求给服务端。这个服务也变得响应更快。

2多线程的代价

2.1设计更复杂

多线程一般都复杂。在多线程访问共享数据的时候,这部分代码需要特别的注意。线程之间的交互往往非常复杂。不正确的线程同步产生的错误非常难以被发现,并且重现以修复。

2.2上下文切换的开销

上下文切换当CPU从执行一个线程切换到执行另外一个线程的时候,它需要先存储当前线程的本地的数据,程序指针等,然后载入另一个线程的本地数据,程序指针等,最后才开始执行。

CPU会在一个上下文中执行一个线程,然后切换到另外一个上下文中执行另外一个线程。

上下文切换并不廉价。如果没有必要,应该减少上下文切换的发生。

2.3增加资源消耗

每个线程需要消耗的资源:

CPU,内存(维持它本地的堆栈),操作系统资源(管理线程) 

3竞态条件与临界区

当多个线程竞争同一资源时,如果对资源的访问顺序敏感,就称存在竞态条件。导致竞态条件发生的代码区称作临界区。

多线程同时执行下面的代码可能会出错:

public class Counter {
	protected long count = 0;
 
	public void add(long value) {
		this.count = this.count + value;
	}
}

想象下线程A和B同时执行同一个Counter对象的add()方法,我们无法知道操作系统何时会在两个线程之间切换。JVM并不是将这段代码视为单条指令来执行的,而是按照下面的顺序

从内存获取 this.count 的值放到寄存器
将寄存器中的值增加value
将寄存器中的值写回内存
 
 
 
观察线程A和B交错执行会发生什么
 
	this.count = 0;
   A:	读取 this.count 到一个寄存器 (0)
   B:	读取 this.count 到一个寄存器 (0)
   B: 	将寄存器的值加2
   B:	回写寄存器值(2)到内存. this.count 现在等于 2
   A:	将寄存器的值加3

由于两个线程是交叉执行的,两个线程从内存中读出的初始值都是0。然后各自加了2和3,并分别写回内存。最终的值可能并不是期望的5,而是最后写回内存的那个线程的值,上面例子中最后写回内存可能是线程A,也可能是线程B

4线程的运行与创建

Java 创建线程对象有两种方法:

  • 继承 Thread 类创建线程对象
  • 实现 Runnable 接口类创建线程对象

注意:

在java中,每次程序运行至少启动2个线程。一个是main线程,一个是垃圾收集线程。因为每当使用java命令执行一个类的时候,实际上都会启动一个jvm,每一个jvm实际上就是在操作系统中启动了一个进程。

5线程的状态和优先级

线程优先级1 到 10 ,其中 1 是最低优先级,10 是最高优先级。 

状态

  • new(新建)
  • runnnable(可运行)
  • blocked(阻塞)
  • waiting(等待)
  • time waiting (定时等待)
  • terminated(终止)

状态转换

线程状态流程如下:

  • 线程创建后,进入 new 状态
  • 调用 start 或者 run 方法,进入 runnable 状态
  • JVM 按照线程优先级及时间分片等执行 runnable 状态的线程。开始执行时,进入 running 状态
  • 如果线程执行 sleep、wait、join,或者进入 IO 阻塞等。进入 wait 或者 blocked 状态
  • 线程执行完毕后,线程被线程队列移除。最后为 terminated 状态

代码

public class MyThreadInfo extends Thread {
 
	@Override // 可以省略
	public void run() {
		System.out.println("run");
		// System.exit(1);
	}
 
	public static void main(String[] args) {
		MyThreadInfo thread = new MyThreadInfo();
		thread.start();
 
		System.out.println("线程唯一标识符:" + thread.getId());
		System.out.println("线程名称:" + thread.getName());
		System.out.println("线程状态:" + thread.getState());
		System.out.println("线程优先级:" + thread.getPriority());
	}
}
 
结果:
线程唯一标识符:9
线程名称:Thread-0
run
线程状态:RUNNABLE