-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsits_func.py
77 lines (60 loc) · 2.09 KB
/
sits_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/python
"""
Reading train and test files.
Pre-processing steps.
"""
import os, sys
import argparse
import numpy as np
import pandas as pd
import math
import random
import itertools
import time
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#----------------- PREPROCESSING --------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
def readSITSData(name_file):
"""
Read the data contained in name_file
INPUT:
- name_file: file where to read the data
OUTPUT:
- X: variable vectors for each example
- polygon_ids: id polygon (use e.g. for validation set)
- Y: label for each example
"""
data = pd.read_table(name_file, sep=',', header=0) #-- one header
y_data = data.iloc[:,0]
y = np.asarray(y_data.values, dtype='uint8')
polygonID_data = data.iloc[:,1]
polygon_ids = polygonID_data.values
polygon_ids = np.asarray(polygon_ids, dtype='uint16')
X_data = data.iloc[:,2:]
X = X_data.values
X = np.asarray(X, dtype='float32')
return X, polygon_ids, y
#-----------------------------------------------------------------------
def reshape_data(X, nchannels):
"""
Reshaping (feature format (3 bands): d1.b1 d1.b2 d1.b3 d2.b1 d2.b2 d2.b3 ...)
INPUT:
-X: original feature vector ()
-feature_strategy: used features (options: SB, NDVI, SB3feat)
-nchannels: number of channels
OUTPUT:
-new_X: data in the good format for Keras models
"""
return X.reshape(X.shape[0],int(X.shape[1]/nchannels),nchannels)
#-----------------------------------------------------------------------
def computingMinMax(X, per=2):
min_per = np.percentile(X, per, axis=(0,1))
max_per = np.percentile(X, 100-per, axis=(0,1))
return min_per, max_per
#-----------------------------------------------------------------------
def normalizingData(X, min_per, max_per):
return (X-min_per)/(max_per-min_per)
#EOF