-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
89 lines (73 loc) · 3.12 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
from dotenv import load_dotenv
from langchain.vectorstores import DeepLake
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
def load_environment_variables():
"""Load environment variables from .env file."""
load_dotenv()
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')
os.environ['ACTIVELOOP_TOKEN'] = os.getenv('ACTIVELOOP_TOKEN')
def initialize_embeddings():
"""Initialize OpenAI embeddings and disallow special tokens."""
return OpenAIEmbeddings(disallowed_special=())
def initialize_deeplake(embeddings):
"""Initialize DeepLake vector store with OpenAI embeddings."""
return DeepLake(
dataset_path=os.getenv('DATASET_PATH'),
read_only=True,
embedding=embeddings,
)
def initialize_retriever(deep_lake):
"""Initialize retriever and set search parameters."""
retriever = deep_lake.as_retriever()
retriever.search_kwargs.update({
'distance_metric': 'cos',
'fetch_k': 100,
'maximal_marginal_relevance': True,
'k': 10,
})
return retriever
def initialize_chat_model():
"""Initialize ChatOpenAI model."""
return ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], model_name=os.getenv('LANGUAGE_MODEL'), temperature=0.0)
def initialize_conversational_chain(model, retriever):
"""Initialize ConversationalRetrievalChain."""
return ConversationalRetrievalChain.from_llm(model, retriever=retriever, return_source_documents=True)
def get_user_input():
"""Get user input and handle 'quit' command."""
question = input("\nPlease enter your question (or 'quit' to stop): ")
return None if question.lower() == 'quit' else question
# In case you want to format the result.
def print_answer(question, answer):
"""Format and print question and answer."""
print(f"\nQuestion: {question}\nAnswer: {answer}\n")
def main():
"""Main program loop."""
load_environment_variables()
embeddings = initialize_embeddings()
deep_lake = initialize_deeplake(embeddings)
retriever = initialize_retriever(deep_lake)
model = initialize_chat_model()
qa = initialize_conversational_chain(model, retriever)
# In this case the chat history is stored in memory only
chat_history = []
while True:
question = get_user_input()
if question is None: # User has quit
break
# Get results based on question
result = qa({"question": question, "chat_history": chat_history})
chat_history.append((question, result['answer']))
# Take the first source to display
first_document = result['source_documents'][0]
metadata = first_document.metadata
source = metadata['source']
# We are streaming the response so no need to print those
#print(f"-> **Question**: {question}\n")
#print(f"**Answer**: {result['answer']}\n")
print(f"\n\n++source++: {source}")
if __name__ == "__main__":
main()