-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpineapple.py
50 lines (36 loc) · 1.52 KB
/
pineapple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""Demonstrates how to make a simple call to the Natural Language API."""
import argparse
from google.cloud import language
from google.cloud.language import enums
from google.cloud.language import types
def print_result(annotations):
score = annotations.document_sentiment.score
magnitude = annotations.document_sentiment.magnitude
for index, sentence in enumerate(annotations.sentences):
sentence_sentiment = sentence.sentiment.score
print('Sentence {} has a sentiment score of {}'.format(
index, sentence_sentiment))
print('Overall Sentiment: score of {} with magnitude of {}'.format(
score, magnitude))
return 0
def analyze(movie_review_filename):
"""Run a sentiment analysis request on text within a passed filename."""
client = language.LanguageServiceClient()
with open(movie_review_filename, 'r') as review_file:
# Instantiates a plain text document.
content = review_file.read()
document = types.Document(
content=content,
type=enums.Document.Type.PLAIN_TEXT)
annotations = client.analyze_sentiment(document=document)
# Print the results
print_result(annotations)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
'movie_review_filename',
help='The filename of the movie review you\'d like to analyze.')
args = parser.parse_args()
analyze(args.movie_review_filename)