-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneuron_analytics.py
510 lines (421 loc) · 21.6 KB
/
neuron_analytics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import catmaid_interface as ci
import scipy as sp
import numpy as np
from scipy import spatial
import scipy.sparse.csgraph as csgraph
import scipy.sparse as sparse
from collections import defaultdict
import copy
import json
def neuron_graph(id_list, proj_opts):
# Build a networkx neuron graph from a list of skeleton ids
g = nx.DiGraph()
for id in id_list:
g.add_node(id)
g.node[id]['name'] = ci.get_neuron_name(id, proj_opts)
cm_edges = ci.get_connectivity_graph(id_list, proj_opts)
for e in cm_edges:
g.add_edge(e[0], e[1], weight=sum(e[2]))
return g
def neuron_graph_from_annotations(annotation_list, proj_opts, anno_dict=None, append_annotations=True):
# Build a neuron graph from a readable list of annotation strings
if anno_dict is None:
anno_dict = ci.get_annotation_dict(proj_opts)
anno_id_list = list()
for anno in annotation_list:
try:
anno_id_list.append(anno_dict[anno])
except KeyError:
print('Not a valid key: ' + anno + ' (skipping)')
skid_list = ci.get_ids_from_annotation(anno_id_list, proj_opts)
g = neuron_graph(skid_list, proj_opts)
if append_annotations:
g = append_annotation_list(
g, annotation_list, proj_opts, anno_dict=anno_dict)
return g
def append_annotation_list(g, annotation_list, proj_opts, anno_dict=None):
# Given a list of annotations (as a string), add a node property to each
# skeleton containing which annotations they have
if anno_dict is None:
anno_dict = ci.get_annotation_dict(proj_opts)
for anno in annotation_list:
try:
anno_id = [anno_dict[anno]]
for skid in ci.get_ids_from_annotation(anno_id, proj_opts):
if skid in g.nodes():
if 'annotations' in g.node[skid].keys():
if anno not in g.node[skid]['annotations']:
g.node[skid]['annotations'].append(anno)
else:
g.node[skid]['annotations'] = [anno]
except KeyError:
print('Not a valid key: ' + anno + ' (skipping)')
return g
def write_node_info(g, filename, delimiter=','):
f_nodeinfo = open(filename, 'w')
for id, node in g.nodes_iter(data=True):
f_nodeinfo.write(str(id))
f_nodeinfo.write(delimiter + node['name'])
for anno in node['annotations']:
f_nodeinfo.write(delimiter + anno)
f_nodeinfo.write('\n')
f_nodeinfo.close()
class SynapseListObj:
def __init__(self, locs, conndata ):
self.conn_ids = [ dat[0] for dat in conndata ]
self.locs = locs
class InputSynapseListObj(SynapseListObj):
def __init__(self, conndata, locs, self_id):
SynapseListObj.__init__(self, locs, conndata )
self.target_node_ids = {}
for dat in conndata:
for skid, nid in zip( dat[1]['postsynaptic_to'], dat[1]['postsynaptic_to_node'] ):
if skid == self_id:
if dat[0] in self.target_node_ids:
self.target_node_ids[ dat[0] ].append(nid)
else:
self.target_node_ids[ dat[0] ] = [nid]
self.from_ids = { dat[0] : dat[1]['presynaptic_to'] for dat in conndata }
self.from_node_ids = { dat[0] : dat[1]['presynaptic_to_node'] for dat in conndata }
def num(self):
return sum( map( lambda x: len(x), self.target_node_ids.values() ) )
class OutputSynapseListObj(SynapseListObj):
def __init__(self, conndata, locs, self_id):
SynapseListObj.__init__(self, locs, conndata )
self.from_node_ids = {dat[0] : dat[1]['presynaptic_to_node'] for dat in conndata }
self.target_ids = { dat[0] : dat[1]['postsynaptic_to'] for dat in conndata }
self.target_node_ids = {dat[0] : dat[1]['postsynaptic_to_node'] for dat in conndata }
def num_targets( self ):
return {id : len(self.target_ids[id]) for id in self.target_ids}
def num_targets_connector( self, conn_id):
if conn_id in self.target_ids:
return len( self.target_ids[conn_id])
else:
print( 'No such presynaptic connector id in neuron' )
def num(self):
return sum( self.num_targets().values() )
class SynapseObject:
def __init__(self, conn_ids, proj_opts ):
conndata = ci.get_connector_data( conn_ids, proj_opts )
self.connectors = { dat[0] : dat[1] for dat in conndata }
def annotations_from_neurons( neurons, proj_opts ):
anno_dat = ci.get_annotations( [nrn for nrn in neurons], proj_opts )
anno_dict = {}
for anno_id in anno_dat['annotations']:
anno_dict[ int(anno_id) ] = {'str' : anno_dat['annotations'][anno_id], 'skids': [] }
for skid in anno_dat['skeletons']:
for anno_info in anno_dat['skeletons'][skid]:
anno_dict[ anno_info['id'] ][ 'skids' ].append( int(skid) )
return anno_dict
def neurons_from_annotations( annotation_list, proj_opts ):
anno_dict = ci.get_annotation_dict( proj_opts )
id_list = ci.get_ids_from_annotation( [anno_dict[anno] for anno in annotation_list], proj_opts )
neurons = neurons_from_id_list( id_list, proj_opts )
return neurons
def neurons_from_id_list(id_list, proj_opts ):
# Given a list of ids, build a list of NeuronObjs
# associated with them, if one is already pre-existing
neurons = { id : NeuronObj.from_catmaid(id, proj_opts) for id in id_list}
return neurons
def get_adjacency_matrix( neurons, input_normalized = False ):
# Build a weighted adjacency matrix from neurons
A = np.zeros( (len(neurons), len(neurons)) )
skid_to_ind = { skid:ii for ii, skid in enumerate(neurons) }
ind_to_skid = { ii:skid for ii, skid in enumerate(neurons)}
for nrn in neurons.values():
for conn_id in nrn.outputs.target_ids:
for targ in nrn.outputs.target_ids[conn_id]:
if targ in ids:
if input_normalized is True:
A[ skid_to_ind[ targ ], skid_to_ind[ nrn.id ]] += 1.0 / neurons[ skid_to_ind[ targ ] ].inputs.num()
else:
A[ skid_to_ind[ targ ], skid_to_ind[ nrn.id ]] += 1
return A, skid_to_ind, ind_to_skid
def group_adjacency_matrix( neurons, syns, groups, func=np.sum ):
# Adjacency matrix where the entries are for groups, not neurons.
# Groups come in a list of lists of skeleton ids.
A, skid_to_ind, ind_to_skid = get_adjacency_matrix( neurons, syns )
Agr = np.zeros( ( len(groups), len(groups) ) )
for ii, grp_post in enumerate( groups ):
for jj, grp_pre in enumerate( groups ):
Ared = A[ [ skid_to_ind[ post ] for post in grp_post],:][:,[skid_to_ind[pre] for pre in grp_pre] ]
Agr[ ii, jj ] = func( Ared )
return Agr
# def sort_neurons_by( neurons, sort_vector ):
# if len( sort_vector ) != len( neurons ):
# print( 'Vector must be same length as neurons' )
# return -1
# new_vector, new_neurons = zip( *sorted( zip( sort_vector,neurons ) ) )
# return new_neurons
def find_ids_by_name( neurons, name_pattern ):
# Use regex to find sk_ids of neurons that match a given search pattern.
ids_found = []
return [ nrn.id for nrn in neurons if re.search(name_pattern, nrn.name) is not None ]
def number_inputs( neurons ):
return [nrn.inputs.num() for nrn in neurons]
def number_outputs( neurons ):
return [nrn.outputs.num() for nrn in neurons]
class NeuronObj:
def __init__(self, neuron_info_dict):
self.id = neuron_info_dict['id']
self.name = neuron_info_dict['name']
self.tags = neuron_info_dict['tags']
self.nodeids = neuron_info_dict['nodeids']
self.nodeloc = neuron_info_dict['nodeloc']
self.node2ind = { nid: i for i, nid in enumerate( neuron_info_dict['nodeids'] ) }
self.nodeparent = neuron_info_dict['nodeparent']
self.radius = neuron_info_dict['radius']
temp_root = [nid for nid in neuron_info_dict['nodeparent'] if neuron_info_dict['nodeparent'][nid] is None]
self.root = temp_root[0]
self.A = sparse.dok_matrix(
( len( neuron_info_dict['nodeloc'] ), len( neuron_info_dict['nodeloc'] ) ), dtype=np.float32 )
self.Ab = sparse.dok_matrix(
( len( neuron_info_dict['nodeloc'] ), len( neuron_info_dict['nodeloc'] ) ), dtype=np.float32 )
for key in neuron_info_dict['nodeparent'].keys():
if neuron_info_dict['nodeparent'][key] is not None:
self.A[
self.node2ind[ key ],
self.node2ind[ neuron_info_dict['nodeparent'][ key ] ]
] = spatial.distance.euclidean( neuron_info_dict['nodeloc'][ key ], neuron_info_dict['nodeloc'][ neuron_info_dict['nodeparent'][ key ] ] )
self.Ab[
self.node2ind[ key ],
self.node2ind[ neuron_info_dict['nodeparent'][ key ] ]
] = 1
self.inputs = neuron_info_dict['inputs']
self.outputs = neuron_info_dict['outputs']
@classmethod
def from_catmaid(cls, skid, proj_opts):
neuron_info_dict = {}
neuron_info_dict['id'] = skid
skdata = ci.get_skeleton_json( skid, proj_opts)
neuron_info_dict['name'] = skdata[4]
neuron_info_dict['tags'] = skdata[2]
neuron_info_dict['nodeids'] = [nd[0] for nd in skdata[0]]
neuron_info_dict['nodeloc'] = {nd[0]: nd[3:6] for nd in skdata[0]}
neuron_info_dict['nodeparent'] = {nd[0]: nd[1] for nd in skdata[0]}
neuron_info_dict['radius'] = {nd[0]: nd[6] for nd in skdata[0]}
pre_conn_ids = [dat[1] for dat in skdata[1] if dat[2] == 0]
post_conn_ids = [dat[1] for dat in skdata[1] if dat[2] == 1]
conn_locs = {conn_row[1]: conn_row[3:6] for conn_row in skdata[1]}
neuron_info_dict['inputs'] = InputSynapseListObj( ci.get_connector_data( post_conn_ids, proj_opts ), conn_locs , skid )
neuron_info_dict['outputs'] = OutputSynapseListObj( ci.get_connector_data( pre_conn_ids, proj_opts ), conn_locs, skid)
return cls( neuron_info_dict )
def __str__( self ):
return self.name
def cable_length(self): # Length in nm, unsmoothed
return self.A.sum()
def get_url_to_node( self, nodeid, proj_opts, printflag=True, zoomlevel = 0 ):
ur = ci.get_catmaid_url(
proj_opts,
self.nodeloc[nodeid],
nodeid=nodeid,
skid = self.id,
zoomlevel=zoomlevel)
if printflag:
print( ur )
return
else:
return ur
def find_end_nodes(self):
# Returns a list of node ids that are end nodes (have no children)
y = np.where(self.Ab.sum(0) == 0)[1]
return [self.nodeids[ind] for ind in y]
def find_branch_points(self):
# Returns a list of node ids that are branch points (have multiple children)
y = np.where(self.Ab.sum(0) > 1)[1]
return [self.nodeids[ind] for ind in y]
def minimal_paths(self):
# Returns list of lists, the minimally overlapping paths from each end
# point toward root
D = dist_to_root(self)
ids_end = self.find_end_nodes()
ends_sorted = [ids_end[ind] for ind in np.argsort(
D[[self.node2ind[id] for id in ids_end]])[::-1]]
not_visited = [True] * len(self.nodeids)
min_paths = []
for start_nd in ends_sorted:
nd = start_nd
min_paths.append([nd]) # Start a new list with this end as a seed
while not_visited[self.node2ind[nd]] and (self.nodeparent[nd] is not None):
not_visited[self.node2ind[nd]] = False
nd = self.nodeparent[nd]
min_paths[-1].append(nd)
return min_paths
def strahler_number(self):
# Computes strahler number for a neuron
paths = self.minimal_paths()
sn = {}
for nid in self.nodeids:
sn[nid] = 0
for path in paths[::-1]:
sn[path[0]] = 1
for ii, nid in enumerate(path[1:]):
if sn[nid] == sn[path[ii]]:
sn[nid] = sn[path[ii]] + 1
else:
sn[nid] = sn[path[ii]]
return sn
def split_into_components(self, nids, from_parent=True):
# Return n-component list, each element is a list of node ids in the component.
# nids is a list of child nodes that will be split from their parent node.
# if from_parent is toggled false, parents divorce childen and not the
# default.
Ab_sp = copy.deepcopy(self.Ab)
if from_parent:
for id in nids:
nind = self.node2ind[id]
Ab_sp[:, nind] = 0
else:
for id in nids:
nind = self.node2ind[id]
Ab_sp[nind, :] = 0
ncmp, cmp_label = csgraph.connected_components(Ab_sp, directed=False)
cmps = list()
for cmp_val in range(ncmp):
comp_inds = np.where(cmp_label == cmp_val)
cmps.append([self.nodeids[ind] for ind in comp_inds[0]])
cmp_label_dict = {self.nodeids[ind]:cmp for ind,cmp in enumerate(cmp_label) }
return cmps, cmp_label_dict
def dist_to_root(self):
# Returns distance to root for each node in nrn as an array
D = csgraph.shortest_path(
self.A.transpose(), directed=True, unweighted=False, method='D')
return D[self.node2ind[self.root]]
def split_by_tag( self, tag_str ):
nids = self.tags[ tag_str ]
cmps, cmp_label = self.split_into_components( nids )
return cmps, cmp_label
def msc_json_import( filename ):
with open( filename, 'r' ) as f:
project_data = json.load( f )
proj_name = project_data['project_name']
export_date = project_data['export_date']
neurons_info_list = project_data_to_neuron_info( project_data )
neurons = { neuron_info['id']: NeuronObj( neuron_info ) for neuron_info in neurons_info_list }
return proj_name, export_date, neurons
def project_data_to_neuron_info( project_data ):
# Neuron data vs neuron info is super confusing, change.
neuron_info_list = []
for id_str in project_data['neuron_info']:
neuron_data = project_data['neuron_info'][id_str]
neuron_info = { 'id': int( id_str ),
'name': neuron_data['name'],
'tags': neuron_data['node_annotations']
}
neuron_info['nodeids'] = []
neuron_info['nodeloc'] = {}
for row in neuron_data['morphology']['node_properties']:
neuron_info['nodeids'].append(row[0])
neuron_info['nodeloc'][ row[0] ] = row[1:]
neuron_info['nodeparent'] = {}
for row in neuron_data['topology']['edge_list']:
neuron_info['nodeparent'][ row[0] ] = row[1]
neuron_info['radius'] = {}
if neuron_data['morphology']['node_property_list'] is not None:
if 'radius' in neuron_data['morphology']['node_property_list']:
rad_ind = neuron_data['morphology']['node_property_list'].index('radius')
for row in neuron_data['morphology']['node_properties']:
if row[rad_ind] > 0:
neuron_info['radius'][ row[0] ] = row[rad_ind]
else:
neuron_info['radius'][ row[0] ] = None
else:
for row in neuron_data['morphology']['node_properties']:
neuron_info['radius'][ row[0] ] = None
else:
for row in neuron_data['morphology']['node_properties']:
neuron_info['radius'][ row[0] ] = None
conn_post_ids = [ row[1] for row in neuron_data['connectivity_post'] ]
connector_data_post, connector_locs_post = dict_to_connector_data( conn_post_ids, project_data )
conn_pre_ids = [ row[1] for row in neuron_data['connectivity_pre'] ]
connector_data_pre, connector_locs_pre = dict_to_connector_data( conn_pre_ids, project_data )
neuron_info['inputs'] = InputSynapseListObj( connector_data_post, connector_locs_post, neuron_info['id'] )
neuron_info['outputs'] = OutputSynapseListObj( connector_data_pre, connector_locs_pre, neuron_info['id'] )
neuron_info_list.append( neuron_info )
return neuron_info_list
def dict_to_connector_data( connector_list, project_data ):
connector_data = []
connector_locs = {}
for conn_id in connector_list:
conn_dat = project_data[ 'connector_info' ][ str( conn_id ) ]
connector_locs[conn_id] = conn_dat['node_properties'][1:]
conn_dict = {}
conn_dict['postsynaptic_to'] = [ row[1] for row in conn_dat['connectivity_post'] ]
conn_dict['postsynaptic_to_node'] = [ row[0] for row in conn_dat['connectivity_post'] ]
conn_dict['presynaptic_to'] = conn_dat['connectivity_pre'][1]
conn_dict['presynaptic_to_node'] = conn_dat['connectivity_pre'][0]
connector_data.append( [conn_id, conn_dict] )
return connector_data, connector_locs
def msc_json_export( neurons, filename, proj_opts, project_name=None, datestr=None, morpho_columns=None, topo_columns=None ):
if datestr is None:
datestr = datetime.datetime.now().strftime('%c' )
if project_name is None:
project_name = proj_opts['baseurl']
neuron_info = msc_neuron_info(neurons, proj_opts, morpho_columns, topo_columns)
connector_info = msc_connector_info( neurons, proj_opts )
annotation_info = msc_annotation_info( neurons, proj_opts )
# Write all the info.
f_list = open( filename, 'w')
json.dump( {'project_name':project_name, 'export_date':datestr, 'neuron_info':neuron_info, 'connector_info':connector_info, 'annotation_info':annotation_info}, f_list )
f_list.close()
def msc_connector_info( neurons, proj_opts ):
connector_list = []
connector_location_list = {}
for neuron in neurons.values():
connector_list = connector_list + neuron.inputs.conn_ids + neuron.outputs.conn_ids
connector_location_list = {**connector_location_list,**neuron.inputs.locs,**neuron.outputs.locs}
connector_list = list(set(connector_list))
connector_info = {}
conn_dat = ci.get_connector_data( connector_list, proj_opts )
for conn in conn_dat:
connector_info[ conn[0] ] = {}
connector_info[ conn[0] ]['connector_annotation'] = None
connector_info[ conn[0] ]['node_properties'] = [conn[0]] + connector_location_list[conn[0]]
connector_info[ conn[0] ]['topology'] = None
connector_info[ conn[0] ]['connectivity_pre'] = (conn[1]['presynaptic_to_node'], conn[1]['presynaptic_to'])
connector_info[ conn[0] ]['connectivity_post'] = list( zip(conn[1]['postsynaptic_to_node'], conn[1]['postsynaptic_to']) )
return connector_info
def msc_neuron_info(neurons, proj_opts, morpho_columns=None, topo_columns=None):
neuron_info = {}
for nid in neurons:
neuron_info[nid] = {} # Unique object id for the neuron.
neuron = neurons[nid]
neuron_info[nid]['name'] = neuron.name # Neuron name, string
nrn_annos = na.annotations_from_neurons( {nid: neurons[nid]}, proj_opts)
neuron_info[nid]['neuron_annotations'] = list( nrn_annos.keys() ) # A list of annotation ids
# Morphology is everything related to nodes
if morpho_columns is not None: # Morpho columns needs to be dict of dicts. First, property name, second node id.
node_properties = [ [id]+neuron.nodeloc[id]+[morpho_columns[prop][id] for prop in morpho_columns ] for id in neuron.nodeloc ]
node_property_list = [prop for prop in morpho_columns]
else:
node_properties = [ [id]+neuron.nodeloc[id] for id in neuron.nodeloc ]
node_property_list = None
neuron_info[nid]['morphology'] = {'node_properties': node_properties, 'node_property_list': node_property_list}
# Topology is everything related to how nodes connect within a neuron
topology = {}
edge_list = [ [node_id, neuron.nodeparent[node_id]] for node_id in neuron.nodeparent ]
edge_property_list = None
# if topo_columns is not None:
# edge_list = [ [ node_id, neuron.nodeparent[ node_id ] ] + [ topo_columns[prop][ ( node_id, neuron.nodeparent[node_id] ) ] for prop in topo_columns] for node_id in neuron.nodeparent ]
# edge_property_list = [ prop for prop in topo_columns ]
# else:
# edge_list = [ [node_id, neuron.nodeparent[node_id]] for node_id in neuron.nodeparent ] ]
# edge_property_list = None
neuron_info[nid]['topology'] = {'edge_list': edge_list, 'edge_property_list': edge_property_list}
# Connectivity is how synapses and other connections between neurons relate to anaotmy
neuron_info[nid]['connectivity_pre'] = []
for conn_id in neuron.outputs.from_node_ids:
neuron_info[nid]['connectivity_pre'].append( ( neuron.outputs.from_node_ids[conn_id], conn_id) )
neuron_info[nid]['connectivity_post'] = []
for conn_id in neuron.inputs.target_node_ids:
for node_id in neuron.inputs.target_node_ids[conn_id]:
neuron_info[nid]['connectivity_post'].append( (node_id, conn_id) )
neuron_info[nid]['connectivity_undirected'] = None
neuron_info[nid]['node_annotations'] = neuron.tags
return neuron_info
def msc_annotation_info( neurons, proj_opts ):
anno_dat = na.annotations_from_neurons( neurons, proj_opts)
annotation_info = {}
for anno in anno_dat:
annotation_info[anno] = {'anno_string': anno_dat[anno]['str'], 'ids': anno_dat[anno]['skids'] }
return annotation_info