-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaptive_avgmax_pool.py
79 lines (67 loc) · 3.14 KB
/
adaptive_avgmax_pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# From https://github.com/rwightman/pytorch-planet-amazon/blob/master/models/adaptive_avgmax_pool.py
# SPDX-License-Identifier: Apache-2.0
""" PyTorch selectable adaptive pooling
Adaptive pooling with the ability to select the type of pooling from:
* 'avg' - Average pooling
* 'max' - Max pooling
* 'avgmax' - Sum of average and max pooling re-scaled by 0.5
* 'avgmaxc' - Concatenation of average and max pooling along feature dim, doubles feature dim
Both a functional and a nn.Module version of the pooling is provided.
Author: Ross Wightman (rwightman)
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def pooling_factor(pool_type='avg'):
return 2 if pool_type == 'avgmaxc' else 1
def adaptive_avgmax_pool2d(x, pool_type='avg', padding=0, count_include_pad=False):
"""Selectable global pooling function with dynamic input kernel size
"""
if pool_type == 'avgmaxc':
x = torch.cat([
F.avg_pool2d(
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad),
F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
], dim=1)
elif pool_type == 'avgmax':
x_avg = F.avg_pool2d(
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
x_max = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
x = 0.5 * (x_avg + x_max)
elif pool_type == 'max':
x = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
else:
if pool_type != 'avg':
print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type)
x = F.avg_pool2d(
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
return x
class AdaptiveAvgMaxPool2d(torch.nn.Module):
"""Selectable global pooling layer with dynamic input kernel size
"""
def __init__(self, output_size=1, pool_type='avg'):
super(AdaptiveAvgMaxPool2d, self).__init__()
self.output_size = output_size
self.pool_type = pool_type
if pool_type == 'avgmaxc' or pool_type == 'avgmax':
self.pool = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size), nn.AdaptiveMaxPool2d(output_size)])
elif pool_type == 'max':
self.pool = nn.AdaptiveMaxPool2d(output_size)
else:
if pool_type != 'avg':
print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type)
self.pool = nn.AdaptiveAvgPool2d(output_size)
def forward(self, x):
if self.pool_type == 'avgmaxc':
x = torch.cat([p(x) for p in self.pool], dim=1)
elif self.pool_type == 'avgmax':
x = 0.5 * torch.sum(torch.stack([p(x) for p in self.pool]), 0).squeeze(dim=0)
else:
x = self.pool(x)
return x
def factor(self):
return pooling_factor(self.pool_type)
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ 'output_size=' + str(self.output_size) \
+ ', pool_type=' + self.pool_type + ')'