-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·332 lines (289 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# -*- coding: utf-8 -*-
"""
MultiOT - Optimal Transport in Multilayer networks (https://github.com/cdebacco/MultiOT)
Licensed under the GNU General Public License v3.0
Note: docstrings have been generated semi-automatically
"""
from argparse import ArgumentParser
from time import time
import os
import numpy as np
from src.dijkstra import fit_dijkstra
from src.dynamics import fit
from src.dynamics_sp import fit_dyn_sp
from src.filtering import filtering_sp
from src.initialization import multiot_init
from src.tools import get_array_from_string, serialize
def main():
"""
MultiOT.
Parameters:
- topol: Type of network topology, can be 'synthetic' or 'real'.
- Ns: Number of nodes in each layer.
- betas: Critical exponents in each layer.
- ws: Inverse velocity for all layers (also referred to as alpha for effective lengths).
- p: Monocentric/random inflows of mass for synthetic networks.
- V: Verbose flag for additional output.
- Vtimestep: Frequency when to print algorithm metadata.
- relax: Relaxation of Laplacian pseudoinverse.
- delta: Discrete time step.
- delta_filtering: Discrete time step for filtering.
- tot_iterations: Maximum iteration limit for the algorithm.
- epsilonmu: Convergence threshold for conductivities/capacities.
- epsilonJ: Convergence threshold for OT cost.
- epsilonmu_filtering: Convergence threshold for conductivities/capacities in filtering.
- epsilonJ_filtering: Convergence threshold for OT cost in filtering.
- tau_filtering: Threshold to trim fluxes in dynamics filtering.
- seedG: Seed for random graph generation.
- seedmu: Seed for random noise initialization of conductivities.
- seedS: Seed for random choice of sources/sinks.
- dynamics_flag: Flag to run multi-commodity dynamics.
- dynamics_sp_flag: Flag to run shortest path dynamics.
- dijkstra_flag: Flag to run multi-source multi-sinks Dijkstra's algorithm.
- filtering_flag: Flag to run filtering.
- ifolder: Input folder containing data.
- ofolder: Output folder for storing results.
"""
pars = ArgumentParser()
pars.add_argument("-topol", "--topol", type=str, default="synthetic")
pars.add_argument("-Ns", "--Ns", type=str, default="10 10")
pars.add_argument("-betas", "--betas", type=str, default="1.0 1.0")
# Car, Bikes coeff for effective lengths. Smaller ws yield shorter effective length, hence more favorable edges.
pars.add_argument("-ws", "--ws", type=str, default="1.0 1.0")
pars.add_argument("-p", "-p", type=float, default=0)
pars.add_argument("-V", "--V", type=lambda x: bool(int(x)), default=False)
pars.add_argument("-Vtimestep", "--Vtimestep", type=int, default=20)
pars.add_argument("-relax", "--relax", type=float, default=1e-10)
pars.add_argument("-delta", "--delta", type=float, default=0.9)
pars.add_argument("-delta_filtering", "--delta_filtering", type=float, default=0.9)
pars.add_argument("-tot_iterations", "--tot_iterations", type=int, default=100)
pars.add_argument(
"-epsilonmu", "--epsilonmu", type=float, default=1e-1
) # 1e-1 copenhagen
pars.add_argument(
"-epsilonJ", "--epsilonJ", type=float, default=1e-1
) # 1e-1 copenhagen
pars.add_argument(
"-epsilonmu_filtering", "--epsilonmu_filtering", type=float, default=1e-3
)
pars.add_argument(
"-epsilonJ_filtering", "--epsilonJ_filtering", type=float, default=1e-3
)
pars.add_argument("-tau_filtering", "--tau_filtering", type=float, default=1e-12)
pars.add_argument("-seedG", "--seedG", type=int, default=0)
pars.add_argument("-seedmu", "--seedmu", type=int, default=0)
pars.add_argument("-seedS", "--seedS", type=int, default=0)
pars.add_argument(
"-dynamics_flag", "--dynamics_flag", type=lambda x: bool(int(x)), default=False
)
pars.add_argument(
"-dynamics_sp_flag",
"--dynamics_sp_flag",
type=lambda x: bool(int(x)),
default=False,
)
pars.add_argument(
"-dijkstra_flag", "--dijkstra_flag", type=lambda x: bool(int(x)), default=False
)
pars.add_argument(
"-filtering_flag",
"--filtering_flag",
type=lambda x: bool(int(x)),
default=False,
)
pars.add_argument(
"-ifolder", "--ifolder", type=str, default="./data/input/real-data/"
)
pars.add_argument(
"-ofolder", "--ofolder", type=str, default="./data/output/synthetic/"
)
args = pars.parse_args()
topol = args.topol
seedG = args.seedG
Ns = np.array(get_array_from_string(args.Ns), dtype=int)
M = 0
if topol == "synthetic":
M = np.sum(Ns)
p = args.p
ws = np.array(get_array_from_string(args.ws), dtype=float)
seedmu = args.seedmu
betas = np.array(get_array_from_string(args.betas), dtype=float)
seedS = args.seedS
delta = args.delta
delta_filtering = args.delta_filtering
relax = args.relax
tot_iterations = args.tot_iterations
epsilonJ = args.epsilonJ
epsilonmu = args.epsilonmu
epsilonJ_filtering = args.epsilonJ_filtering
epsilonmu_filtering = args.epsilonmu_filtering
tau_filtering = args.tau_filtering
V = args.V
Vtimestep = args.Vtimestep
ifolder = args.ifolder
ofolder = args.ofolder
dynamics_flag = args.dynamics_flag
dynamics_sp_flag = args.dynamics_sp_flag
filtering_flag = args.filtering_flag
dijkstra_flag = args.dijkstra_flag
results = dict()
time_dyn_end, time_dyn_start = 0, 0
time_dyn_sp_end, time_dyn_sp_start = 0, 0
time_dijkstra_end, time_dijkstra_start = 0, 0
time_filtering_end, time_filtering_start = 0, 0
# Initialization.
G, weff, w, mu, S = multiot_init(topol, seedG, Ns, ws, seedmu, p, seedS, ifolder)
# Dynamics with effective lengths.
if dynamics_flag is True:
if V is True:
print("** Dyn")
time_dyn_start = time()
results = fit(
G,
Ns,
betas,
delta,
weff,
mu,
S,
relax,
seedmu,
tot_iterations,
epsilonJ,
epsilonmu,
topol,
V,
Vtimestep,
)
time_dyn_end = time()
# Shortest path dynamics.
J_dyn_sp = 0
J_sp_dyn_sp = 0
J_dyn_sp_real = 0
F_dyn_sp = np.zeros((G.number_of_edges(), M))
J_sp_dyn_sp_filtered = 0
J_dyn_sp_filtered = 0
J_dyn_sp_real_filtered = 0
F_dyn_sp_filtered = np.zeros((G.number_of_edges(), M))
if dynamics_sp_flag is True:
if V is True:
print("** Dyn sp")
if topol != "synthetic":
M = S.shape[1]
mu_tiled = np.tile(mu, (M, 1)).transpose()
time_dyn_sp_start = time()
if filtering_flag is True:
time_filtering_start = time()
J_sp_dyn_sp, F_dyn_sp, J_dyn_sp, J_dyn_sp_real = fit_dyn_sp(
G,
M,
Ns,
seedmu,
betas,
delta,
weff,
w,
mu_tiled,
S,
relax,
tot_iterations,
epsilonJ,
epsilonmu,
topol,
V,
Vtimestep,
)
time_dyn_sp_end = time()
if filtering_flag is True:
if V is True:
print("** Filtering")
(
J_sp_dyn_sp_filtered,
F_dyn_sp_filtered,
J_dyn_sp_filtered,
J_dyn_sp_real_filtered,
) = filtering_sp(
topol,
G,
weff,
w,
S,
M,
Ns,
betas,
V,
F_dyn_sp,
tau_filtering,
seedmu,
delta_filtering,
relax,
tot_iterations,
epsilonJ_filtering,
epsilonmu_filtering,
Vtimestep,
)
time_filtering_end = time()
# Dijkstra.
J_sp_dijkstra = 0
J_dijkstra = 0
J_dijkstra_real = 0
F_dijkstra = np.zeros((G.number_of_edges(), M))
if dijkstra_flag is True:
if V is True:
print("** Dijkstra")
if topol != "synthetic":
M = S.shape[1]
time_dijkstra_start = time()
J_sp_dijkstra, F_dijkstra, J_dijkstra, J_dijkstra_real = fit_dijkstra(
topol, G, weff, w, S, M, Ns, betas, V
)
time_dijkstra_end = time()
# Serialization.
net = dict()
net["G"] = G
net["w"] = w
net["weff"] = weff
params = dict()
params["topol"] = topol
params["betas"] = betas
params["ws"] = ws
params["S"] = S
params["delta"] = delta
params["Ns"] = Ns
params["M"] = M
params["relax"] = relax
params["tot_iterations"] = tot_iterations
params["epsilonJ"] = epsilonJ
params["epsilonmu"] = epsilonmu
params["seedG"] = seedG
params["seedmu"] = seedmu
params["seedS"] = seedS
if dynamics_flag:
elapsed_time_dyn = float(time_dyn_end - time_dyn_start)
results["time_dyn"] = elapsed_time_dyn
if dijkstra_flag:
results["J_sp_dijkstra"] = J_sp_dijkstra
results["F_dijkstra"] = F_dijkstra
results["J_dijkstra"] = J_dijkstra
results["J_dijkstra_real"] = J_dijkstra_real
elapsed_time_dijkstra = float(time_dijkstra_end - time_dijkstra_start)
results["time_dijkstra"] = elapsed_time_dijkstra
if dynamics_sp_flag:
results["J_sp_dyn_sp"] = J_sp_dyn_sp
results["F_dyn_sp"] = F_dyn_sp
results["J_dyn_sp"] = J_dyn_sp
results["J_dyn_sp_real"] = J_dyn_sp_real
elapsed_time_dyn_sp = float(time_dyn_sp_end - time_dyn_sp_start)
results["time_dyn_sp"] = elapsed_time_dyn_sp
if filtering_flag:
results["J_sp_filtering"] = J_sp_dyn_sp_filtered
results["F_filtering"] = F_dyn_sp_filtered
results["J_filtering"] = J_dyn_sp_filtered
results["J_filtering_real"] = J_dyn_sp_real_filtered
elapsed_time_filtering = float(time_filtering_end - time_filtering_start)
results["time_filtering"] = elapsed_time_filtering
serialize(net, ofolder, "network.pkl")
serialize(params, ofolder, "params.pkl")
serialize(results, ofolder, "results.pkl")
if __name__ == "__main__":
main()