forked from flodebarre/covid_vaccination
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEPCI.Rmd
539 lines (394 loc) · 18.7 KB
/
EPCI.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
---
title: "EPCI"
author: "FD"
output:
html_document:
code_folding: hide
toc: TRUE
toc_float: TRUE
self_contained: no
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
rm(list = ls())
```
```{r, include = FALSE}
dlData <- FALSE
# Whether to download the data again
```
```{r, results = 'hide', warning=FALSE}
#install.packages("plotly")
library(plotly)
library(RColorBrewer)
```
# Initializations
## Load data
### Niveau de vie par EPCI (2018)
Source <https://www.insee.fr/fr/statistiques/5009236?sommaire=5009255&q=revenu+epci#dictionnaire>
<!--
Code géographique ;
Libellé géographique ;
Nombre de ménages fiscaux ;
Nombre de personnes dans les ménages fiscaux ;
Médiane du niveau de vie (€) ;
Part des ménages fiscaux imposés (%) ;
Taux de pauvreté-Ensemble (%) ;
Taux de pauvreté des ménages dont le référent fiscal a moins de 30 ans (%) ;
Taux de pauvreté des ménages dont le référent fiscal a de 30 à 39 ans (%) ;
Taux de pauvreté des ménages dont le référent fiscal a de 40 à 49 ans (%) ;
Taux de pauvreté des ménages dont le référent fiscal a de 50 à 59 ans (%) ;
Taux de pauvreté des ménages dont le référent fiscal a de 60 à 74 ans (%) ;
Taux de pauvreté des ménages dont le référent fiscal a 75 ans ou plus (%) ;
Taux de pauvreté des ménages propriétaires de leur logement (%) ;
Taux de pauvreté des ménages locataires de leur logement (%) ;
Part des revenus d'activité (%) ;
dont part des salaires, traitements (%) ;
dont part des indemnités de chômage (%) ;
dont part des revenus des activités non salariées (%) ;
Part des pensions, retraites et rentes (%) ;
Part des revenus du patrimoine et des autres revenus (%) ;
Part de l'ensemble des prestations sociales (%) ;
dont part des prestations familiales (%) ;
dont part des minima sociaux (%) ;
dont part des prestations logement (%) ;
Part des impôts (%) ;
Rapport interdécile 9e décile/1er decile ;
1er décile du niveau de vie (€) ;
9e décile du niveau de vie (€).
-->
```{r, results = 'hide'}
dat.revenuEPCI <- read.csv("data/insee/cc_filosofi_2018_EPCI-geo2021.CSV", sep = ";")
head(dat.revenuEPCI)
```
### Vaccination par EPCI
Source <https://datavaccin-covid.ameli.fr/explore/dataset/donnees-de-vaccination-par-epci/download/?format=csv&timezone=Europe/Berlin&lang=fr&use_labels_for_header=true&csv_separator=%3B>
```{r, results = 'hide'}
# Download did not work on 2021-07-19
# had to manually download
dataFile <- paste0("data/donnees-de-vaccination-par-epci_2021-08-06.csv") # name file with today's date
if(dlData){
URL <- "https://datavaccin-covid.ameli.fr/explore/dataset/donnees-de-vaccination-par-epci/download/?format=csv&timezone=Europe/Berlin&lang=fr&use_labels_for_header=true&csv_separator=%3B"
download.file(URL, dataFile) # download file from repo
}
dat.vaccinationEPCI <- read.csv(dataFile, sep = ";", stringsAsFactors = FALSE, dec = ",")
head(dat.vaccinationEPCI)
```
### Composition communales
Pour les infos sur les départements
Source <https://www.insee.fr/fr/information/2510634>
```{r}
composition <- read.csv("data/EPCI_composition-communale.csv", encoding = "UFT-8")
```
```{r}
departements <- read.csv("data/departement2020.csv")
dic.depname <- departements$libelle
names(dic.depname) <- departements$dep
```
## Clean data
```{r}
# Get week
wks <- sort(unique(dat.vaccinationEPCI$semaine_injection))
beginWeek <- seq(as.Date("2020-12-21"), as.Date("2021-12-31"), by = 7)
names(beginWeek) <- wks
endWeek <- as.Date(beginWeek) + 6
names(endWeek) <- wks
beginWeek["2021-26"]
endWeek["2021-26"]
dat.vaccinationEPCI$beginWeek <- beginWeek[dat.vaccinationEPCI$semaine_injection]
dat.vaccinationEPCI$endWeek <- endWeek[dat.vaccinationEPCI$semaine_injection]
dat.vaccinationEPCI$week.DD <- paste(dat.vaccinationEPCI$beginWeek, dat.vaccinationEPCI$endWeek, sep = "_")
# Final week in the data
maxWeek <- max(unique(dat.vaccinationEPCI$semaine_injection))
```
Merge the two datasets -- all times
```{r, results = 'hide'}
# Number of different EPCI in the two datasets
c(vaccin = length(unique(dat.vaccinationEPCI$epci)), revenu = length(unique(dat.revenuEPCI$CODGEO)))
# Compare EPCIs
# Some vaccin are not included in revenu
any(!is.element(unique(dat.vaccinationEPCI$epci), unique(dat.revenuEPCI$CODGEO)))
# All revenu are included in vaccin
any(!is.element(unique(dat.revenuEPCI$CODGEO), unique(dat.vaccinationEPCI$epci)))
# Find unmatched EPCIs
notmatched <- which(!is.element(unique(dat.vaccinationEPCI$epci), unique(dat.revenuEPCI$CODGEO)))
# Print unmatched EPCIs (in vaccin but not in revenu)
unmatchedEPCI <- unique(dat.vaccinationEPCI)[notmatched, c("epci", "libelle_epci", "reg_code")]
unmatchedEPCI
```
```{r, results = 'hide'}
# Merge datasets bu EPCI code
dat.all <- merge(dat.vaccinationEPCI, dat.revenuEPCI, by.x = "epci", by.y = "CODGEO")
# Compare numbers of lines in the different datasets
nrow(dat.vaccinationEPCI)
nrow(dat.revenuEPCI)
nrow(dat.all)
head(dat.all)
```
Add region information
Source region codes <https://www.data.gouv.fr/en/datasets/regions-de-france/>
```{r, results = 'hide'}
# Load region codes
reg <- read.csv("data/regions-france.csv")
reg
# As dictionnary
reg.dic <- c(reg$nom_region)
names(reg.dic) <- reg$code_region # !! Name has to be in quotes
# Use first region only when the EPCI is over two
dat.all$reg_code1 <- floor(dat.all$reg_code)
unique(dat.all$reg_code1)
# Get region name
dat.all$libelle_region <- reg.dic[as.character(dat.all$reg_code1)]
unique(dat.all$libelle_region)
# Add shorter name
dat.all$reg_shortname <- NA
dat.all[which(dat.all$libelle_region == "Île-de-France"), "reg_shortname"] <- "IDF"
dat.all[which(dat.all$libelle_region == "Provence-Alpes-Côte d'Azur"), "reg_shortname"] <- "PACA"
dat.all[which(dat.all$libelle_region == "Bretagne"), "reg_shortname"] <- "BRE"
dat.all[which(dat.all$libelle_region == "Auvergne-Rhône-Alpes"), "reg_shortname"] <- "ARA"
dat.all[which(dat.all$libelle_region == "Hauts-de-France"), "reg_shortname"] <- "HDF"
dat.all[which(dat.all$libelle_region == "Grand Est"), "reg_shortname"] <- "GE"
dat.all[which(dat.all$libelle_region == "Occitanie"), "reg_shortname"] <- "OCC"
dat.all[which(dat.all$libelle_region == "Normandie"), "reg_shortname"] <- "NOR"
dat.all[which(dat.all$libelle_region == "Bourgogne-Franche-Comté"), "reg_shortname"] <- "BFC"
dat.all[which(dat.all$libelle_region == "Pays de la Loire"), "reg_shortname"] <- "PDL"
dat.all[which(dat.all$libelle_region == "Nouvelle-Aquitaine"), "reg_shortname"] <- "NAQ"
dat.all[which(dat.all$libelle_region == "Centre-Val de Loire"), "reg_shortname"] <- "CVL"
dat.all[which(dat.all$libelle_region == "Corse"), "reg_shortname"] <- "COR"
# Outre-Mer
dat.all[which(dat.all$libelle_region == "Guadeloupe"), "reg_shortname"] <- "GDP"
dat.all[which(dat.all$libelle_region == "Martinique"), "reg_shortname"] <- "MAR"
dat.all[which(dat.all$libelle_region == "La Réunion"), "reg_shortname"] <- "REU"
table(dat.all$reg_shortname, useNA = "ifany")
table(dat.all$libelle_region, useNA = "ifany")
```
Departement information
```{r}
# Information about departement in which the different EPCI are
# Some are across multiple departements: keep the information by collating them with "_"
agg_nbdep <- aggregate(composition$DEP, by = list(composition$EPCI), FUN = function(i) paste(sort(unique(i)), collapse = "_"))
table(agg_nbdep$x)
# Dictionnary of departement(s) associated to EPCI
dic.dep <- agg_nbdep$x
names(dic.dep) <- agg_nbdep$Group.1
# Add the dep information to our data
dat.all$dep <- dic.dep[as.character(dat.all$epci)]
# Add the libelle information
dat.all$dep_libelle <- dic.depname[as.character(dat.all$dep)]
```
Remove NAs
```{r, results = 'hide'}
dat <- dat.all[which(!is.na(dat.all$effectif_cumu_1_inj) & !is.na(dat.all$effectif_cumu_termine) & !is.na(dat.all$population_carto)), ]
nrow(dat)
nrow(dat.all)
dat$taux_cumu_1_inj <- as.numeric(dat$taux_cumu_1_inj)
dat$taux_cumu_termine <- as.numeric(dat$taux_cumu_termine)
```
Dictionary of age classes
```{r, results = 'hide'}
dic.ages <- as.character(unique(dat$classe_age))
names(dic.ages) <- unique(dat$libelle_classe_age)
dic.ages
```
FINAL: select data of the last week
```{r}
dat.final <- dat[dat$semaine_injection == maxWeek, ]
```
## Plot settings
Region colors and pch
```{r}
# Define colors, joining palettes
manycols <- c(brewer.pal(name = "Set2", 8), brewer.pal(name = "Set1", 8))
# Region colors
colRegion <- manycols[1:length(unique(dat$reg_shortname))]
names(colRegion) <- unique(dat$reg_shortname)
# Region pch
pchRegion <- 14 + 1:length(unique(dat$reg_shortname))
names(pchRegion) <- names(colRegion)
```
Age colors
```{r}
ages <- unique(dat.all$classe_age)
colAge <- brewer.pal(name = "Dark2", n = length(ages))
names(colAge) <- sort(ages)
```
# Some checks
Compare MED18 and PIMP18
```{r}
tmp <- dat.final[dat.final$classe_age == "TOUT_AGE", ]
plot(tmp$PIMP18, tmp$MED18, xlab = "PIMP18, Part de ménages fiscaux imposés", ylab = "MED18, revenu médian")
```
```{r, eval = FALSE}
plot_ly(data = tmp, x = ~PIMP18, y = ~MED18, hoverinfo = 'text', text = ~paste(reg_shortname, libelle_epci), type = "scatter", mode = "markers")
```
# Model and plot
## Final week only
### All regions together, PIMP18
```{r}
mdlFinal.1D.PIMP.0 <- glm(cbind(effectif_cumu_1_inj, population_carto - effectif_cumu_1_inj) ~ PIMP18 + as.factor(classe_age) + PIMP18 * as.factor(classe_age) + PIMP18 * as.factor(reg_shortname) + as.factor(reg_shortname), family = binomial(link = "logit"), data = dat.final[dat.final$classe_age != "TOUT_AGE", ])
mdlFinal.1D.PIMP.noregion <- glm(cbind(effectif_cumu_1_inj, population_carto - effectif_cumu_1_inj) ~ PIMP18 + as.factor(classe_age) + PIMP18 * as.factor(classe_age), family = binomial(link = "logit"), data = dat.final[dat.final$classe_age != "TOUT_AGE", ])
summary(mdlFinal.1D.PIMP.0)
car::Anova(mdlFinal.1D.PIMP.0)
summary(mdlFinal.1D.PIMP.noregion)
car::Anova(mdlFinal.1D.PIMP.noregion)
```
```{r}
# Essai en version GLMM, effet mixte sur EPCI
#
library(lme4)
# mdlerFinal.1D.PIMP.noregion <- glmer(cbind(effectif_cumu_1_inj, population_carto - effectif_cumu_1_inj) ~ (1|epci) + PIMP18 + as.factor(classe_age) + PIMP18 * as.factor(classe_age), family = binomial(link = "logit"), data = dat.final[dat.final$classe_age != "TOUT_AGE", ])
# Warning messages:
# 1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
# Model failed to converge with max|grad| = 1.58061 (tol = 0.002, component 1)
# 2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
# Model is nearly unidentifiable: very large eigenvalue
# - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
# - Rescale variables?
# ndt.noregion$prd1D.mer <- predict(mdlerFinal.1D.PIMP.noregion, newdata = newdata.noregion, type = "response")
```
### France entiere
```{r plotFranceEntiere, fig.height=6.5}
par(xpd = TRUE, las = 1)
par(mar = c(4, 4, 4, 4))
par(mgp = c(2, 0.5, 0), tck = -0.01)
tmpAll <- dat.final[dat.final$classe_age != "TOUT_AGE", ]
themaxpop <- max(tmpAll$population_carto)
tmpAll$relsize <- tmpAll$population_carto / themaxpop
tmpAll$relsize.transfo <- 5*(tmpAll$relsize*3)^(1/3)
plot(tmpAll$PIMP18, 100*tmpAll$taux_cumu_1_inj,
col = adjustcolor(colAge[tmpAll$classe_age], 0.5),
pch = 16, cex = tmpAll$relsize.transfo,
ylim = c(0, 100), xlim = c(15, 85),
frame.plot = FALSE, yaxs = "i", #xaxs = "i",
xlab = "Part des ménages fiscaux imposés dans l'EPCI en 2018 (%)", ylab = "Taux de vaccination 1 dose au moins (%)",
type = "n"
)
par(xpd = FALSE)
for(i in seq(0, 100, by = 10)){
abline(h = i, col = gray(0.8), lty = 1)
}
legend("topleft", col = colAge[-length(colAge)], legend = names(colAge[-length(colAge)]), pch = 16, bty = "n")
axis(4)
points(tmpAll$PIMP18, 100*tmpAll$taux_cumu_1_inj,
col = adjustcolor(colAge[tmpAll$classe_age], 0.5),
pch = 16, cex = tmpAll$relsize.transfo,
)
newdata.noregion <- expand.grid(PIMP18 = seq(min(dat.final$PIMP18), max(dat.final$PIMP18), length.out = 100), classe_age = names(colAge[-length(colAge)]))
ndt.noregion <- newdata.noregion
ndt.noregion$prd1D <- predict(mdlFinal.1D.PIMP.noregion, newdata = newdata.noregion, type = "response")
lwd.pred <- 2
for(age in ages[ages!="TOUT_AGE"]){
# Get predicted data for this age class (no region)
subd <- ndt.noregion[ndt.noregion$classe_age == age,]
lines(subd$PIMP18, 100*subd$prd1D, col = colAge[age], lwd = lwd.pred)
}
convertDate <- function(x) format.Date(as.Date(x), "%d/%m")
mtext(side = 3, paste0("France entière\nDonnées ", "au ", convertDate(unique(tmpAll$endWeek))), line = 1.)
```
### Par region
```{r plotParRegion, fig.height=6.5}
plotFrance <- TRUE
for(rsn in sort(unique(dat.final$reg_shortname))){
par(las = 1)
par(mar = c(4, 4, 4, 4))
par(mgp = c(2, 0.5, 0), tck = -0.01)
tmpReg <- dat.final[which(dat.final$classe_age != "TOUT_AGE" & dat.final$reg_shortname == rsn), ]
tmpReg$relsize <- tmpReg$population_carto / themaxpop
tmpReg$relsize.transfo <- 5*(tmpReg$relsize*3)^(1/3)
# Initialize plot
plot(tmpReg$PIMP18, 100*tmpReg$taux_cumu_1_inj,
col = adjustcolor(colAge[tmpReg$classe_age], 0.5),
pch = 16, cex = tmpReg$relsize.transfo,
ylim = c(0, 100), xlim = c(15, 85),
frame.plot = FALSE, yaxs = "i", #xaxs = "i",
xlab = "Part des ménages fiscaux imposés dans l'EPCI en 2018 (%)", ylab = "Taux de vaccination 1 dose au moins (%)",
type = "n"
)
for(i in seq(0, 100, by = 10)){
abline(h = i, col = gray(0.8), lty = 1)
}
if(plotFrance){
# Add values for France entiere
colBgFrance <- gray(0.85)
points(tmpAll$PIMP18, 100*tmpAll$taux_cumu_1_inj,
col = adjustcolor(colBgFrance, 0.5),
pch = 16, cex = tmpAll$relsize.transfo)
for(age in ages[ages!="TOUT_AGE"]){
# Get predicted data for this age class (no region)
subd <- ndt.noregion[ndt.noregion$classe_age == age,]
lines(subd$PIMP18, 100*subd$prd1D, col = colBgFrance, lwd = lwd.pred)
}
}# end ifPlotFrance
par(xpd = FALSE)
legend("topleft", col = colAge[-length(colAge)], legend = names(colAge[-length(colAge)]), pch = 16, bty = "n")
axis(4)
points(tmpReg$PIMP18, 100*tmpReg$taux_cumu_1_inj,
col = adjustcolor(colAge[tmpReg$classe_age], 0.5),
pch = 16, cex = tmpReg$relsize.transfo,
)
# Model fit
mdlReg <- glm(cbind(effectif_cumu_1_inj, population_carto - effectif_cumu_1_inj) ~ PIMP18 + as.factor(classe_age) + PIMP18 * as.factor(classe_age), family = binomial(link = "logit"), data = tmpReg)
newdata.noregion.Reg <- expand.grid(PIMP18 = seq(min(tmpReg$PIMP18), max(tmpReg$PIMP18), length.out = 100), classe_age = names(colAge[-length(colAge)]))
ndt.noregion.Reg <- newdata.noregion.Reg
ndt.noregion.Reg$prd1D <- predict(mdlReg,
newdata = newdata.noregion.Reg,
type = "response")
lwd.pred <- 2
for(age in ages[ages!="TOUT_AGE"]){
# Get predicted data for this age class (no region)
subdReg <- ndt.noregion.Reg[ndt.noregion.Reg$classe_age == age,]
lines(subdReg$PIMP18, 100*subdReg$prd1D, col = colAge[age], lwd = lwd.pred)
}
mtext(side = 3, paste0(tmpReg[1, "libelle_region"], "\nDonnées", " au ", convertDate(unique(tmpReg$endWeek))), line = 1.)
}
```
### Just during the week
```{r justWeek, fig.height=6.5}
par(xpd = FALSE, las = 1)
par(mar = c(4, 4, 4, 4))
par(mgp = c(2, 0.5, 0), tck = -0.01)
tmpAll <- dat.final[dat.final$classe_age != "TOUT_AGE", ]
themaxpop <- max(tmpAll$population_carto)
tmpAll$relsize <- tmpAll$population_carto / themaxpop
tmpAll$relsize.transfo <- 3*(tmpAll$relsize*3)^(1/3)
tmpAll$taux_1_inj <- as.numeric(tmpAll$taux_1_inj)
plot(tmpAll$PIMP18, 100*tmpAll$taux_1_inj,
col = adjustcolor(colAge[tmpAll$classe_age], 0.5),
pch = 16, cex = tmpAll$relsize.transfo,
ylim = c(0, 1.1*100*max(tmpAll$taux_1_inj, na.rm = TRUE)), xlim = c(15, 85),
frame.plot = FALSE, yaxs = "i", #xaxs = "i",
xlab = "Part des ménages fiscaux imposés dans l'EPCI en 2018 (%)", ylab = "Taux de vaccination 1 dose au moins au cours de la semaine (%)",
type = "n"
)
par(xpd = FALSE)
for(i in seq(0, 100, by = 10)){
abline(h = i, col = gray(0.8), lty = 1)
}
legend("topleft", col = colAge[-length(colAge)], legend = names(colAge[-length(colAge)]), pch = 16, bty = "n")
axis(4)
points(tmpAll$PIMP18, 100*tmpAll$taux_1_inj,
col = adjustcolor(colAge[tmpAll$classe_age], 0.5),
pch = 16, cex = tmpAll$relsize.transfo,
)
newdata.noregion <- expand.grid(PIMP18 = seq(min(dat.final$PIMP18), max(dat.final$PIMP18), length.out = 100), classe_age = names(colAge[-length(colAge)]))
convertDate <- function(x) format.Date(as.Date(x), "%d/%m")
mtext(side = 3, paste0("France entière\nDonnées de la semaine du ", convertDate(unique(tmpAll$beginWeek)), " au ", convertDate(unique(tmpAll$endWeek))), line = 1.)
```
## Plot interactif
Plot interactif BFC
```{r, eval = FALSE}
plot_ly(data = dat.final[which(dat.final$classe_age != "TOUT_AGE" & dat.final$reg_shortname == "BFC"), ], x = ~PIMP18, y = ~taux_cumu_1_inj, hoverinfo = 'text', text = ~paste0(reg_shortname, ", ", libelle_epci, " (", dep_libelle, ")", ",\n", "au ", endWeek, " dans la classe d'âge ", libelle_classe_age, " :\n", 100*taux_cumu_1_inj, "% (", effectif_cumu_1_inj, " sur ", population_carto, ")"), type = "scatter", mode = "markers", color = ~libelle_classe_age)
```
Plot interactif ARA
```{r, eval = FALSE}
plot_ly(data = dat.final[which(dat.final$classe_age != "TOUT_AGE" & dat.final$reg_shortname == "ARA"), ], x = ~PIMP18, y = ~taux_cumu_1_inj, hoverinfo = 'text', text = ~paste0(reg_shortname, ", ", libelle_epci, " (", dep_libelle, ")", ",\n", "au ", endWeek, " dans la classe d'âge ", libelle_classe_age, " :\n", 100*taux_cumu_1_inj, "% (", effectif_cumu_1_inj, " sur ", population_carto, ")"), type = "scatter", mode = "markers", color = ~libelle_classe_age)
```
Plot interactif GE
```{r, eval = FALSE}
plot_ly(data = dat.final[which(dat.final$classe_age != "TOUT_AGE" & dat.final$reg_shortname == "GE"), ], x = ~PIMP18, y = ~taux_cumu_1_inj, hoverinfo = 'text', text = ~paste0(reg_shortname, ", ", libelle_epci, " (", dep_libelle, ")", ",\n", "au ", endWeek, " dans la classe d'âge ", libelle_classe_age, " :\n", 100*taux_cumu_1_inj, "% (", effectif_cumu_1_inj, " sur ", population_carto, ")"), type = "scatter", mode = "markers", color = ~libelle_classe_age)
```
Tout le monde
```{r}
plot_ly(data = dat.final[which(dat.final$classe_age != "TOUT_AGE"), ], x = ~PIMP18, y = ~taux_cumu_1_inj, hoverinfo = 'text', text = ~paste0(reg_shortname, ", ", libelle_epci, " (", dep_libelle, ")", ",\n", "au ", endWeek, " dans la classe d'âge ", libelle_classe_age, " :\n", 100*taux_cumu_1_inj, "% (", effectif_cumu_1_inj, " sur ", population_carto, ")"), type = "scatter", mode = "markers", color = ~libelle_classe_age)
```