forked from WhymustIhaveaname/TransformerAsOn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_beta.py
executable file
·83 lines (70 loc) · 2.4 KB
/
gen_beta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#! /usr/bin/env python3
import os
import json
import numpy as np
os.environ["VLLM_LOGGING_LEVEL"] = "ERROR"
import torch
import torch.distributed as dist
from datasets import load_dataset
from vllm import LLM, SamplingParams
# export HF_DATASETS_OFFLINE=1
# ds = load_dataset("sentence-transformers/simple-wiki")
ds = load_dataset("parquet", data_files="/home/youran/.cache/huggingface/datasets/sentence-transformers__simple-wiki/pair/train-00000-of-00001.parquet")
# export model_name="Qwen/Qwen2.5-0.5B"
# export model_name="Qwen/Qwen2.5-1.5B"
# export model_name="Qwen/Qwen2.5-3B"
# export model_name="Qwen/Qwen2.5-7B"
# export model_name="Qwen/Qwen2.5-14B"
# export model_name="Qwen/Qwen2.5-32B"
model_name = os.getenv("model_name")
print("using %s"%(model_name))
if not model_name[0].isalpha():
model_name = os.path.expanduser(model_name)
llm = LLM(
model=model_name,
trust_remote_code=True,
max_model_len = 2048,
# tensor_parallel_size=torch.cuda.device_count(),
# dtype="float16"
)
def gen_with_T(T, max_tokens = 1024):
T = float("%.4f"%(T))
params = SamplingParams(
n = 1,
temperature = T,
max_tokens = max_tokens,
min_tokens = max_tokens-1,
seed = 42,
skip_special_tokens = True
)
model_family = model_name.split("/")[-2]
file_perfix = model_name.split("/")[-1]
fname = "data/%s/%s-T%s.json"%(model_family, file_perfix, T)
if not os.path.exists("./data/%s"%(model_family)):
os.makedirs("./data/%s"%(model_family), exist_ok=True)
print("created ./data/%s"%(model_family))
if os.path.exists(fname):
print("%s already exists, skipping"%(fname))
return
try:
outputs = llm.generate([i for i in ds['train']['text']][::1000], params)
data = []
for output in outputs:
prompt = output.prompt
generated = output.outputs[0]
data.append({
"prompt": prompt,
"generated": generated.text
})
with open(fname, "w") as f:
json.dump(data, f, indent = 4, ensure_ascii=False)
print("saved to %s"%(fname))
finally:
# or there will be some warning from torch
if dist.is_initialized():
dist.destroy_process_group()
if __name__=="__main__":
for T in np.linspace(0,10,11):
gen_with_T(T)
for T in np.linspace(0,2,21):
gen_with_T(T)