forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.yml
51 lines (47 loc) · 1.91 KB
/
docker-compose.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
version: "3.8"
services:
yolo:
container_name: yolo
image: humansignal/yolo:v0
build:
context: .
args:
TEST_ENV: ${TEST_ENV}
environment:
# specify these parameters if you want to use basic auth for the model server
- BASIC_AUTH_USER=
- BASIC_AUTH_PASS=
# set the log level for the model server
- LOG_LEVEL=DEBUG
# any other parameters that you want to pass to the model server
- ANY=PARAMETER
# specify the number of workers and threads for the model server
- WORKERS=1
- THREADS=8
# specify the model directory (likely you don't need to change this)
- MODEL_DIR=/data/models
- PYTHONPATH=/app
# Specify the Label Studio URL and API key to access
# uploaded, local storage and cloud storage files.
# Do not use 'localhost' or '127.0.0.1' as it does not work within Docker containers.
# Use prefix 'http://' or 'https://' for the URL always.
# Determine the actual IP using 'ifconfig' (Linux/Mac) or 'ipconfig' (Windows).
# or you can try http://host.docker.internal:<label-studio-port> if you run LS on the same machine
- LABEL_STUDIO_URL=http://host.docker.internal:8080
- LABEL_STUDIO_API_KEY=
# YOLO parameters
# Allow to use custom `model_path` in labeling configurations
- ALLOW_CUSTOM_MODEL_PATH=true
# Show matplotlib debug plot for YOLO predictions
- DEBUG_PLOT=false
# Default score threshold, which is used to filter out low-confidence predictions,
# you can change it in the labeling configuration using `model_score_threshold` parameter in the control tags
- MODEL_SCORE_THRESHOLD=0.5
# Model root directory, where the YOLO model files are stored
- MODEL_ROOT=/app/models
ports:
- "9090:9090"
volumes:
- "./data/server:/data"
- "./models:/app/models"
- "./cache_dir:/app/cache_dir"