forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
170 lines (149 loc) · 6.12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import logging
import os
from uuid import uuid4
from typing import List, Dict, Optional, Any
from label_studio_ml.model import LabelStudioMLBase
from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper
from langchain.callbacks.base import BaseCallbackHandler
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI
from label_studio_ml.utils import match_labels
logger = logging.getLogger(__name__)
try:
search = GoogleSearchAPIWrapper()
except Exception as e:
logger.error(f'Error initializing GoogleSearchAPIWrapper: {e}. '
f'You will not be able to use the search tool.')
search = None
class SearchResults(BaseCallbackHandler):
def __init__(self):
super().__init__()
self.snippets = []
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> Any:
"""Run when tool starts running."""
self.snippets = []
def on_tool_end(self, output: str, **kwargs):
"""Run when tool ends running."""
for snippet in output.split('...'):
snippet = snippet.strip()
if snippet:
self.snippets.append(snippet)
class LangchainSearchAgent(LabelStudioMLBase):
PROMPT_PREFIX = os.getenv('PROMPT_PREFIX', 'prompt')
RESPONSE_PREFIX = os.getenv('RESPONSE_PREFIX', 'response')
SNIPPETS_PREFIX = os.getenv('SNIPPETS_PREFIX', 'snippets')
PROMPT_TEMPLATE = os.getenv('PROMPT_TEMPLATE', '{prompt}{text}')
def setup(self):
self.set("model_version", f'{self.__class__.__name__}-v0.0.1')
def get_prompt(self, annotation, prompt_from_name) -> str:
result = annotation['result']
for item in result:
if item.get('from_name') != prompt_from_name:
continue
return '\n'.join(item['value']['text'])
return ''
def predict(self, tasks: List[Dict], context: Optional[Dict] = None, **kwargs) -> List[Dict]:
""" Write your inference logic here
:param tasks: [Label Studio tasks in JSON format](https://labelstud.io/guide/task_format.html)
:param context: [Label Studio context in JSON format](https://labelstud.io/guide/ml.html#Passing-data-to-ML-backend)
:return predictions: [Predictions array in JSON format](https://labelstud.io/guide/export.html#Raw-JSON-format-of-completed-tasks)
"""
from_name, to_name, value = self.get_first_tag_occurence('Choices', 'Text')
from_name_prompt, _, _ = self.get_first_tag_occurence(
'TextArea', 'Text', name_filter=lambda s: s.startswith(self.PROMPT_PREFIX))
from_name_response, _, _ = self.get_first_tag_occurence(
'TextArea', 'Text', name_filter=lambda s: s.startswith(self.RESPONSE_PREFIX))
from_name_snippets, _, _ = self.get_first_tag_occurence(
'TextArea', 'Text', name_filter=lambda s: s.startswith(self.SNIPPETS_PREFIX))
search_results = SearchResults()
if not search:
tools = []
else:
tools = [Tool(
name="Google Search Snippets",
description="Search Google for recent results.",
func=search.run,
callbacks=[search_results]
)]
llm = OpenAI(
temperature=0,
model_name='gpt-3.5-turbo-instruct'
)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
max_iterations=3,
early_stopping_method="generate",
)
labels = self.parsed_label_config[from_name]['labels']
predictions = []
if context:
prompt = self.get_prompt(context, from_name_prompt)
else:
prompt = self.get(from_name_prompt)
if not prompt:
return []
logger.debug(f'Prompt: {prompt}')
base_result = {
'id': str(uuid4())[:4],
'from_name': from_name_prompt,
'to_name': to_name,
'type': 'textarea',
'value': {
'text': [prompt]
}
}
for task in tasks:
text = self.preload_task_data(task, task['data'][value])
full_prompt = self.PROMPT_TEMPLATE.format(prompt=prompt, text=text)
logger.info(f'Full prompt: {full_prompt}')
llm_result = agent.run(full_prompt)
output_classes = match_labels(llm_result, labels)
snippets = search_results.snippets
logger.debug(f'LLM result: {llm_result}')
logger.debug(f'Output classes: {output_classes}')
logger.debug(f'Snippets: {snippets}')
result = [base_result.copy()] + [{
'from_name': from_name,
'to_name': to_name,
'type': 'choices',
'value': {
'choices': output_classes
}
}, {
'from_name': from_name_response,
'to_name': to_name,
'type': 'textarea',
'value': {
'text': [llm_result]
}
}]
if snippets:
result.append({
'from_name': from_name_snippets,
'to_name': to_name,
'type': 'textarea',
'value': {
'text': snippets
}
})
predictions.append({
'result': result,
'model_version': self.get('model_version'),
})
return predictions
def fit(self, event, data, **kwargs):
logger.debug(f'Data received: {data}')
if event not in ('ANNOTATION_CREATED', 'ANNOTATION_UPDATED'):
return
prompt_from_name, prompt_to_name, value_key = self.get_first_tag_occurence(
'TextArea', 'Text',
name_filter=lambda s: s.startswith(self.PROMPT_PREFIX))
prompt = self.get_prompt(data['annotation'], prompt_from_name)
self.set(prompt_from_name, prompt)