-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_video.py
314 lines (244 loc) · 11 KB
/
demo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import argparse
import cv2
import torch
import numpy as np
from model import SCNN
from model_ENET_SAD import ENet_SAD
from model_SEENET_SAD import SEENet_SAD
from utils.prob2lines import getLane
from utils.prob2lines.lane_detection_funtions import roneld_lane_detection
from utils.transforms import *
import time
from multiprocessing import Process, JoinableQueue, SimpleQueue
from threading import Lock
img_size = (800, 288)
#net = SCNN(input_size=(800, 288), pretrained=False)
net = ENet_SAD((800,288), sad=False)
seenet = SEENet_SAD((800, 288), sad=False)
# CULane mean, std
mean=(0.3598, 0.3653, 0.3662)
std=(0.2573, 0.2663, 0.2756)
# Imagenet mean, std
# mean=(0.485, 0.456, 0.406)
# std=(0.229, 0.224, 0.225)
transform_img = Resize(img_size)
transform_to_net = Compose(ToTensor(), Normalize(mean=mean, std=std))
pipeline = False
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--video_path", '-i', type=str, default="experiments/Zhejiang_cloud_crude_20201103175630_cruve.mp4", help="Path to demo video")
parser.add_argument("--weight_path", '-w', type=str, default="experiments/exp1/exp1_best.pth", help="Path to model weights")
parser.add_argument("--weight_path1", '-x', type=str, default="experiments/exp2/exp1_best.pth", help="Path to model weights")
parser.add_argument("--visualize", '-v', action="store_true", default=False, help="Visualize the result")
args = parser.parse_args()
return args
def do_canny(frame):
# Converts frame to grayscale because we only need the luminance channel for detecting edges - less computationally expensive
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
# Applies a 5x5 gaussian blur with deviation of 0 to frame - not mandatory since Canny will do this for us
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# Applies Canny edge detector with minVal of 50 and maxVal of 150
canny = cv2.Canny(blur, 50, 150)
return canny
def do_segment(frame):
# Since an image is a multi-directional array containing the relative intensities of each pixel in the image, we can use frame.shape to return a tuple: [number of rows, number of columns, number of channels] of the dimensions of the frame
# frame.shape[0] give us the number of rows of pixels the frame has. Since height begins from 0 at the top, the y-coordinate of the bottom of the frame is its height
height = frame.shape[0]
# Creates a triangular polygon for the mask defined by three (x, y) coordinates
polygons = np.array([
[(150, 200), (580, 200), (350, 100)]
])
# Creates an image filled with zero intensities with the same dimensions as the frame
mask = np.zeros_like(frame)
# Allows the mask to be filled with values of 1 and the other areas to be filled with values of 0
cv2.fillPoly(mask, polygons, 255)
# A bitwise and operation between the mask and frame keeps only the triangular area of the frame
segment = cv2.bitwise_and(frame, mask)
return segment
def calculate_lines(frame, lines):
# Empty arrays to store the coordinates of the left and right lines
left = []
right = []
print("lallalalalal",lines)
# Loops through every detected line
for line in lines:
# Reshapes line from 2D array to 1D array
x1, y1, x2, y2 = line.reshape(4)
print(x1, y1, x2, y2 )
# Fits a linear polynomial to the x and y coordinates and returns a vector of coefficients which describe the slope and y-intercept
parameters = np.polyfit((x1, x2), (y1, y2), 1)
slope = parameters[0]
y_intercept = parameters[1]
# If slope is negative, the line is to the left of the lane, and otherwise, the line is to the right of the lane
if slope < 0:
left.append((slope, y_intercept))
else:
right.append((slope, y_intercept))
# Averages out all the values for left and right into a single slope and y-intercept value for each line
left_avg = np.average(left, axis = 0)
right_avg = np.average(right, axis = 0)
# Calculates the x1, y1, x2, y2 coordinates for the left and right lines
left_line = calculate_coordinates(frame, left_avg)
right_line = calculate_coordinates(frame, right_avg)
return np.array([left_line, right_line])
def calculate_coordinates(frame, parameters):
slope, intercept = parameters
# Sets initial y-coordinate as height from top down (bottom of the frame)
y1 = frame.shape[0]
# Sets final y-coordinate as 150 above the bottom of the frame
y2 = int(y1 - 50)
# Sets initial x-coordinate as (y1 - b) / m since y1 = mx1 + b
x1 = int((y1 - intercept) / slope)
# Sets final x-coordinate as (y2 - b) / m since y2 = mx2 + b
x2 = int((y2 - intercept) / slope)
return np.array([x1, y1, x2, y2])
def visualize_lines(frame, lines):
# Creates an image filled with zero intensities with the same dimensions as the frame
lines_visualize = np.zeros_like(frame)
# Checks if any lines are detected
if lines is not None:
for x1, y1, x2, y2 in lines:
# Draws lines between two coordinates with green color and 5 thickness
cv2.line(lines_visualize, (x1, y1), (x2, y2), (0, 255, 0), 5)
return lines_visualize
# The following frees up resources and closes all windows
def network(net, img):
seg_pred, exist_pred = net(img)[:2]
seg_pred = seg_pred.detach().cpu()
exist_pred = exist_pred.detach().cpu()
return seg_pred, exist_pred
def visualize(img, seg_pred, exist_pred):
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
lane_img = np.zeros_like(img)
color = np.array([[255, 125, 0], [0, 255, 0], [0, 0, 255], [0, 255, 255]], dtype='uint8')
coord_mask = np.argmax(seg_pred, axis=0)
for i in range(0, 4):
if exist_pred[0, i] > 0.5:
lane_img[coord_mask == (i + 1)] = color[i]
# points_list = [(150, 200), (580, 200), (350, 100)]
#
# for point in points_list:
# cv2.circle(img, point, 40, (0,0,255))
img = cv2.addWeighted(src1=lane_img, alpha=0.8, src2=img, beta=1., gamma=0.)
return img
def pre_processor(arg):
img_queue, video_path = arg
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
if img_queue.empty():
ret, frame = cap.read()
if ret:
#frame = cv2.rotate(frame, cv2.ROTATE_90_COUNTERCLOCKWISE)
frame = transform_img({'img': frame})['img']
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
x = transform_to_net({'img': img})['img']
x.unsqueeze_(0)
img_queue.put(x)
img_queue.join()
else:
break
def post_processor(arg):
img_queue, arg_visualize = arg
while True:
if not img_queue.empty():
x, seg_pred, exist_pred = img_queue.get()
seg_pred = seg_pred.numpy()[0]
exist_pred = exist_pred.numpy()
exist = [1 if exist_pred[0, i] > 0.5 else 0 for i in range(4)]
print(exist)
for i in getLane.prob2lines_CULane(seg_pred, exist):
print(i)
if arg_visualize:
frame = x.squeeze().permute(1, 2, 0).numpy()
img = visualize(frame, seg_pred, exist_pred)
cv2.imshow('input_video', frame)
cv2.imshow("output_video", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
pass
def main():
args = parse_args()
video_path = args.video_path
weight_path = args.weight_path
weight_path1 = args.weight_path1
if pipeline:
input_queue = JoinableQueue()
pre_process = Process(target=pre_processor, args=((input_queue, video_path),))
pre_process.start()
output_queue = SimpleQueue()
post_process = Process(target=post_processor, args=((output_queue, args.visualize),))
post_process.start()
else:
cap = cv2.VideoCapture(video_path)
save_dict = torch.load(weight_path, map_location='cpu')
net.load_state_dict(save_dict['net'])
net.eval()
save_dict1 = torch.load(weight_path1, map_location='cpu')
seenet.load_state_dict(save_dict1['net'])
seenet.eval()
#net.cuda()
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
out = cv2.VideoWriter('output_cv.mp4', fourcc, 20.0, (800, 288))
out1 = cv2.VideoWriter('output_cv11.mp4', fourcc, 20.0, (800, 288))
while True:
if pipeline:
loop_start = time.time()
x = input_queue.get()
input_queue.task_done()
gpu_start = time.time()
seg_pred, exist_pred = network(net, x)
gpu_end = time.time()
output_queue.put((x, seg_pred, exist_pred))
loop_end = time.time()
else:
if not cap.isOpened():
break
ret, frame = cap.read()
if ret:
loop_start = time.time()
#frame = cv2.rotate(frame, cv2.ROTATE_90_COUNTERCLOCKWISE)
frame = transform_img({'img': frame})['img']
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
#img_black = np.zeros([288, 800, 3], np.uint8)
x = transform_to_net({'img': img})['img']
x.unsqueeze_(0)
gpu_start = time.time()
seg_pred, exist_pred = network(net, x)
gpu_end = time.time()
start = time.time()
seg1_pred, exist1_pred = network(seenet, x)
end = time.time()
seg_pred = seg_pred.numpy()[0]
exist_pred = exist_pred.numpy()
seg1_pred = seg1_pred.numpy()[0]
exist1_pred = exist1_pred.numpy()
exist = [1 if exist_pred[0, i] > 0.5 else 0 for i in range(4)]
print('enet lane exist: ', exist)
exist1 = [1 if exist1_pred[0, i] > 0.5 else 0 for i in range(4)]
print('se-enet lane exist: ', exist1)
for i in getLane.prob2lines_CULane(seg_pred, exist):
print(i)
for i in getLane.prob2lines_CULane(seg1_pred, exist1):
print(i)
loop_end = time.time()
if args.visualize:
img = visualize(img, seg_pred, exist_pred)
img1 = visualize(img, seg1_pred, exist1_pred)
cv2.imshow('enet_output_video', img)
cv2.imshow("seenet_output_video", img1)
# write the flipped frame
out.write(img)
out1.write(img1)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
print("enent_runtime: ", gpu_end - gpu_start, "se_enet runtime; ", (end - start))
print("total_runtime:", loop_end - loop_start, "FPS:", int(1 / (loop_end - loop_start)))
cap.release()
out.release()
out1.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()