forked from fogleman/primitive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.go
149 lines (132 loc) · 3.55 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
package main
import (
"flag"
"fmt"
"log"
"math/rand"
"os"
"path/filepath"
"strings"
"time"
"github.com/fogleman/primitive/primitive"
"github.com/nfnt/resize"
)
var (
Input string
Outputs flagArray
Background string
Number int
Alpha int
InputSize int
OutputSize int
Mode int
Workers int
V, VV bool
)
type flagArray []string
func (i *flagArray) String() string {
return strings.Join(*i, ", ")
}
func (i *flagArray) Set(value string) error {
*i = append(*i, value)
return nil
}
func init() {
flag.StringVar(&Input, "i", "", "input image path")
flag.Var(&Outputs, "o", "output image path")
flag.StringVar(&Background, "bg", "", "background color (hex)")
flag.IntVar(&Number, "n", 0, "number of primitives")
flag.IntVar(&Alpha, "a", 128, "alpha value")
flag.IntVar(&InputSize, "r", 256, "resize large input images to this size")
flag.IntVar(&OutputSize, "s", 1024, "output image size")
flag.IntVar(&Mode, "m", 1, "0=combo 1=triangle 2=rect 3=ellipse 4=circle 5=rotatedrect")
flag.IntVar(&Workers, "j", 0, "number of parallel workers (default uses all cores)")
flag.BoolVar(&V, "v", false, "verbose")
flag.BoolVar(&VV, "vv", false, "very verbose")
}
func errorMessage(message string) bool {
fmt.Fprintln(os.Stderr, message)
return false
}
func check(err error) {
if err != nil {
log.Fatal(err)
}
}
func main() {
// parse and validate arguments
flag.Parse()
ok := true
if Input == "" {
ok = errorMessage("ERROR: input argument required")
}
if len(Outputs) == 0 {
ok = errorMessage("ERROR: output argument required")
}
if Number == 0 {
ok = errorMessage("ERROR: number argument required")
}
if !ok {
fmt.Println("Usage: primitive [OPTIONS] -i input -o output -n shape_count")
flag.PrintDefaults()
os.Exit(1)
}
// set log level
if V {
primitive.LogLevel = 1
}
if VV {
primitive.LogLevel = 2
}
// seed random number generator
rand.Seed(time.Now().UTC().UnixNano())
// read input image
primitive.Log(1, "reading %s\n", Input)
input, err := primitive.LoadImage(Input)
check(err)
// scale down input image if needed
size := uint(InputSize)
input = resize.Thumbnail(size, size, input, resize.Bilinear)
// determine background color
var bg primitive.Color
if Background == "" {
bg = primitive.MakeColor(primitive.AverageImageColor(input))
} else {
bg = primitive.MakeHexColor(Background)
}
// run algorithm
model := primitive.NewModel(input, bg, OutputSize)
primitive.Log(1, "iteration %d, time %.3f, score %.6f\n", 0, 0.0, model.Score)
start := time.Now()
for i := 1; i <= Number; i++ {
// find optimal shape and add it to the model
model.Step(primitive.ShapeType(Mode), Alpha, Workers)
elapsed := time.Since(start).Seconds()
primitive.Log(1, "iteration %d, time %.3f, score %.6f\n", i, elapsed, model.Score)
// write output image(s)
for _, output := range Outputs {
ext := strings.ToLower(filepath.Ext(output))
saveFrames := strings.Contains(output, "%") && ext != ".gif"
if saveFrames || i == Number {
path := output
if saveFrames {
path = fmt.Sprintf(output, i)
}
primitive.Log(1, "writing %s\n", path)
switch ext {
default:
check(fmt.Errorf("unrecognized file extension: %s", ext))
case ".png":
check(primitive.SavePNG(path, model.Context.Image()))
case ".jpg", ".jpeg":
check(primitive.SaveJPG(path, model.Context.Image(), 95))
case ".svg":
check(primitive.SaveFile(path, model.SVG()))
case ".gif":
frames := model.Frames(0.001)
check(primitive.SaveGIFImageMagick(path, frames, 50, 250))
}
}
}
}
}