-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrun_sr_experiment.py
134 lines (116 loc) · 4.27 KB
/
run_sr_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
import os
import datetime
import multiprocessing
DATASET_DIR = "chesapeake_data/"
OUTPUT_DIR = "results/results_sr_epochs_100_0/"
_GPU_IDS = [0, 1, 2]
NUM_GPUS = len(_GPU_IDS)
JOBS_PER_GPU = [[] for i in range(NUM_GPUS)]
# pylint: disable=redefined-outer-name
def run_jobs(jobs):
print("Starting job runner")
for (command, args) in jobs:
print(datetime.datetime.now(), command)
output_dir = os.path.join(args["output"], args["exp_name"])
os.makedirs(output_dir, exist_ok=True)
os.system(command + " > %s 2>&1" % (os.path.join(output_dir, args["log_name"])))
# process = subprocess.Popen(command.split(" "), stdout=subprocess.PIPE,
# stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True)
# with open(os.path.join(output_dir, args["log_name"]), 'w') as f:
# while process.returncode is None:
# for line in process.stdout:
# f.write(line.decode('utf-8').strip() + "\n")
# process.poll()
TRAIN_STATE_LIST = [
"de_1m_2013",
"ny_1m_2013",
"md_1m_2013",
"pa_1m_2013",
"va_1m_2014",
"wv_1m_2014",
]
TEST_STATE_LIST = [
"de_1m_2013",
"ny_1m_2013",
"md_1m_2013",
"pa_1m_2013",
"va_1m_2014",
"wv_1m_2014",
]
GPU_IDX = 0
for train_state in TRAIN_STATE_LIST:
for test_state in TEST_STATE_LIST:
if not os.path.exists(
os.path.join(
OUTPUT_DIR,
"train-hr_%s_train-sr_%s/final_model.h5" % (train_state, test_state),
)
):
gpu_id = _GPU_IDS[GPU_IDX]
args = {
"output": OUTPUT_DIR,
"exp_name": "train-hr_%s_train-sr_%s" % (train_state, test_state),
"TRAIN_STATE_LIST": train_state,
"val_state_list": train_state,
"superres_state_list": test_state,
"gpu": gpu_id,
"data_dir": DATASET_DIR,
"log_name": "log.txt",
"learning_rate": 0.001,
"loss": "superres",
"batch_size": 16,
"model_type": "unet_large",
}
command_train = (
"python landcover/train_model_landcover.py "
"--output {output} "
"--name {exp_name} "
"--gpu {gpu} "
"--verbose 2 "
"--data_dir {data_dir} "
"--training_states {TRAIN_STATE_LIST} "
"--validation_states {val_state_list} "
"--superres_states {superres_state_list} "
"--model_type {model_type} "
"--learning_rate {learning_rate} "
"--loss {loss} "
"--batch_size {batch_size} "
).format(**args)
JOBS_PER_GPU[GPU_IDX].append((command_train, args))
args = {
"test_csv": "{}/{}_extended-test_tiles.csv".format(
DATASET_DIR, test_state
),
"output": "{}/train-hr_{}_train-sr_{}/".format(
OUTPUT_DIR, train_state, test_state
),
"exp_name": "test-output_{}".format(test_state),
"gpu": gpu_id,
"log_name": "log_test_{}.txt".format(test_state),
}
command_test = (
"python landcover/testing_model_landcover.py "
"--input {test_csv} "
"--output {output}/{exp_name}/ "
"--model {output}/final_model.h5 "
"--gpu {gpu} "
"--superres"
).format(**args)
JOBS_PER_GPU[GPU_IDX].append((command_test, args))
args = args.copy()
args["log_name"] = "log_acc_{}.txt".format(test_state)
command_acc = (
"python compute_accuracy.py "
"--input {test_csv} "
"--output {output}/{exp_name}/"
).format(**args)
JOBS_PER_GPU[GPU_IDX].append((command_acc, args))
GPU_IDX = (GPU_IDX + 1) % NUM_GPUS
else:
print("Skipping %s-%s" % (train_state, test_state))
POOL_SZ = NUM_GPUS
POOL = multiprocessing.Pool(NUM_GPUS + 1)
POOL.map(run_jobs, JOBS_PER_GPU)
POOL.close()
POOL.join()