forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCITATIONS.bib
364 lines (344 loc) · 12 KB
/
CITATIONS.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
The proposed feature of each article is described in the "annote" field.
Please cite a article if any feature is used
@article{Wang_ComputPhysCommun_2018_v228_p178,
annote = {general purpose},
author = {Wang, Han and Zhang, Linfeng and Han, Jiequn and E, Weinan},
doi = {10.1016/j.cpc.2018.03.016},
year = 2018,
month = {jul},
publisher = {Elsevier {BV}},
volume = 228,
journal = {Comput. Phys. Comm.},
title = {
{DeePMD-kit: A deep learning package for many-body potential energy
representation and molecular dynamics}
},
pages = {178--184},
}
@article{Zeng_JChemPhys_2023_v159_p054801,
annote = {general purpose},
title = {{DeePMD-kit v2: A software package for deep potential models}},
author = {
Jinzhe Zeng and Duo Zhang and Denghui Lu and Pinghui Mo and Zeyu Li and
Yixiao Chen and Mari{\'a}n Rynik and Li'ang Huang and Ziyao Li and Shaochen
Shi and Yingze Wang and Haotian Ye and Ping Tuo and Jiabin Yang and Ye Ding
and Yifan Li and Davide Tisi and Qiyu Zeng and Han Bao and Yu Xia and
Jiameng Huang and Koki Muraoka and Yibo Wang and Junhan Chang and Fengbo
Yuan and Sigbj{\o}rn L{\o}land Bore and Chun Cai and Yinnian Lin and Bo
Wang and Jiayan Xu and Jia-Xin Zhu and Chenxing Luo and Yuzhi Zhang and
Rhys E A Goodall and Wenshuo Liang and Anurag Kumar Singh and Sikai Yao and
Jingchao Zhang and Renata Wentzcovitch and Jiequn Han and Jie Liu and Weile
Jia and Darrin M York and Weinan E and Roberto Car and Linfeng Zhang and
Han Wang
},
journal = {J. Chem. Phys.},
volume = 159,
issue = 5,
year = 2023,
pages = 054801,
doi = {10.1063/5.0155600},
}
@article{Lu_CompPhysCommun_2021_v259_p107624,
annote = {GPU support},
title = {
{86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million
atoms with ab initio accuracy}
},
author = {
Lu, Denghui and Wang, Han and Chen, Mohan and Lin, Lin and Car, Roberto and
E, Weinan and Jia, Weile and Zhang, Linfeng
},
journal = {Comput. Phys. Comm.},
volume = 259,
pages = 107624,
year = 2021,
publisher = {Elsevier},
doi = {10.1016/j.cpc.2020.107624},
}
@article{Zhang_PhysRevLett_2018_v120_p143001,
annote = {local frame (loc\_frame)},
author = {Linfeng Zhang and Jiequn Han and Han Wang and Roberto Car and Weinan E},
journal = {Phys. Rev. Lett.},
number = 14,
pages = 143001,
publisher = {APS},
title = {
{Deep potential molecular dynamics: a scalable model with the accuracy of
quantum mechanics}
},
volume = 120,
year = 2018,
doi = {10.1103/PhysRevLett.120.143001},
}
@incollection{Zhang_BookChap_NIPS_2018_v31_p4436,
annote = {DeepPot-SE (se\_e2\_a, se\_e2\_r, se\_e3, se\_atten)},
title = {
{End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for
Finite and Extended Systems}
},
author = {
Zhang, Linfeng and Han, Jiequn and Wang, Han and Saidi, Wissam and Car,
Roberto and E, Weinan
},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {
S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N.
Cesa-Bianchi and R. Garnett
},
pages = {4436--4446},
year = 2018,
publisher = {Curran Associates, Inc.},
url = {https://dl.acm.org/doi/10.5555/3327345.3327356},
}
@article{Wang_NuclFusion_2022_v62_p126013,
annote = {three-body embedding DeepPot-SE (se\_e3)},
author = {Xiaoyang Wang and Yinan Wang and Linfeng Zhang and Fuzhi Dai and Han Wang},
title = {
{A tungsten deep neural-network potential for simulating mechanical
property degradation under fusion service environment}
},
journal = {Nucl. Fusion},
year = 2022,
volume = 62,
issue = 12,
pages = 126013,
doi = {10.1088/1741-4326/ac888b},
}
@article{Zhang_NpjComputMater_2024_v10_p94,
annote = {DPA-1, attention-based descriptor},
author = {
Duo Zhang and Hangrui Bi and Fu-Zhi Dai and Wanrun Jiang and Xinzijian Liu
and Linfeng Zhang and Han Wang
},
title = {
{Pretraining of attention-based deep learning potential model for molecular
simulation}
},
journal = {Npj Comput. Mater},
year = 2024,
volume = 10,
issue = 1,
pages = 94,
doi = {10.1038/s41524-024-01278-7},
}
@article{Zhang_npjComputMater_2024_v10_p293,
annote = {DPA-2},
author = {
Duo Zhang and Xinzijian Liu and Xiangyu Zhang and Chengqian Zhang and Chun
Cai and Hangrui Bi and Yiming Du and Xuejian Qin and Anyang Peng and
Jiameng Huang and Bowen Li and Yifan Shan and Jinzhe Zeng and Yuzhi Zhang
and Siyuan Liu and Yifan Li and Junhan Chang and Xinyan Wang and Shuo Zhou
and Jianchuan Liu and Xiaoshan Luo and Zhenyu Wang and Wanrun Jiang and
Jing Wu and Yudi Yang and Jiyuan Yang and Manyi Yang and Fu-Qiang Gong and
Linshuang Zhang and Mengchao Shi and Fu-Zhi Dai and Darrin M. York and Shi
Liu and Tong Zhu and Zhicheng Zhong and Jian Lv and Jun Cheng and Weile Jia
and Mohan Chen and Guolin Ke and Weinan E and Linfeng Zhang and Han Wang
},
title = {{DPA-2: a large atomic model as a multi-task learner}},
journal = {npj Comput. Mater},
year = 2024,
volume = 10,
number = 1,
pages = 293,
doi = {10.1038/s41524-024-01493-2},
}
@article{Zhang_PhysPlasmas_2020_v27_p122704,
annote = {frame-specific parameters (e.g. electronic temperature)},
author = {
Zhang, Yuzhi and Gao, Chang and Liu, Qianrui and Zhang, Linfeng and Wang,
Han and Chen, Mohan
},
title = {
{Warm dense matter simulation via electron temperature dependent deep
potential molecular dynamics}
},
journal = {Phys. Plasmas},
volume = 27,
number = 12,
pages = 122704,
year = 2020,
month = 12,
doi = {10.1063/5.0023265},
}
@misc{Zeng_2023_TTMDPMD,
annote = {atom-specific parameter (e.g. electron temperature)},
author = {
Zeng, Qiyu and Chen, Bo and Zhang, Shen and Kang, Dongdong and Wang, Han
and Yu, Xiaoxiang and Dai, Jiayu
},
title = {{Full-scale ab initio simulations of laser-driven atomistic dynamics}},
publisher = {arXiv},
year = 2023,
doi = {10.48550/arXiv.2308.13863},
}
@article{Zhang_PhysRevB_2020_v102_p41121,
annote = {fit dipole},
title = {{Deep neural network for the dielectric response of insulators}},
author = {
Zhang, Linfeng and Chen, Mohan and Wu, Xifan and Wang, Han and E, Weinan
and Car, Roberto
},
journal = {Phys. Rev. B},
volume = 102,
number = 4,
pages = {041121},
year = 2020,
publisher = {APS},
doi = {10.1103/PhysRevB.102.041121},
}
@article{Sommers_PhysChemChemPhys_2020_v22_p10592,
annote = {fit polarizability},
title = {
{Raman spectrum and polarizability of liquid water from deep neural
networks}
},
author = {
Sommers, Grace M and Andrade, Marcos F Calegari and Zhang, Linfeng and
Wang, Han and Car, Roberto
},
journal = {Phys. Chem. Chem. Phys.},
volume = 22,
number = 19,
pages = {10592--10602},
year = 2020,
publisher = {Royal Society of Chemistry},
doi = {10.1039/D0CP01893G},
}
@article{Zeng_JChemTheoryComput_2023_v19_p1261,
annote = {fit relative energies},
author = {Jinzhe Zeng and Yujun Tao and Timothy J Giese and Darrin M York},
title = {{QD{\pi}: A Quantum Deep Potential Interaction Model for Drug Discovery}},
journal = {J. Chem. Theory Comput.},
year = 2023,
volume = 19,
issue = 4,
pages = {1261--1275},
doi = {10.1021/acs.jctc.2c01172},
}
@article{Zeng_PhysRevB_2022_v105_p174109,
annote = {fit density of states},
author = {
Qiyu Zeng and Bo Chen and Xiaoxiang Yu and Shen Zhang and Dongdong Kang and
Han Wang and Jiayu Dai
},
title = {
{Towards large-scale and spatiotemporally resolved diagnosis of electronic
density of states by deep learning}
},
journal = {Phys. Rev. B},
year = 2022,
volume = 105,
issue = 17,
pages = 174109,
doi = {10.1103/PhysRevB.105.174109},
}
@article{Zhang_JChemPhys_2022_v156_p124107,
annote = {DPLR, se\_e2\_r, hybrid descriptor},
author = {
Linfeng Zhang and Han Wang and Maria Carolina Muniz and Athanassios Z
Panagiotopoulos and Roberto Car and Weinan E
},
title = {{A deep potential model with long-range electrostatic interactions}},
journal = {J. Chem. Phys.},
year = 2022,
volume = 156,
issue = 12,
pages = 124107,
doi = {10.1063/5.0083669},
}
@article{Zeng_JChemTheoryComput_2021_v17_p6993,
annote = {DPRc},
title = {
{Development of Range-Corrected Deep Learning Potentials for Fast, Accurate
Quantum Mechanical/molecular Mechanical Simulations of Chemical Reactions
in Solution}
},
author = {
Zeng, Jinzhe and Giese, Timothy J and Ekesan, {\c{S}}{\"o}len and York,
Darrin M
},
journal = {J. Chem. Theory Comput.},
year = 2021,
volume = 17,
issue = 11,
pages = {6993--7009},
doi = {10.1021/acs.jctc.1c00201},
}
@article{Wang_ApplPhysLett_2019_v114_p244101,
annote = {Interpolation with a pair-wise potential},
title = {
{Deep learning inter-atomic potential model for accurate irradiation damage
simulations}
},
author = {Wang, Hao and Guo, Xun and Zhang, Linfeng and Wang, Han and Xue, Jianming},
journal = {Appl. Phys. Lett.},
volume = 114,
number = 24,
pages = 244101,
year = 2019,
publisher = {AIP Publishing LLC},
doi = {10.1063/1.5098061},
}
@article{Zhang_PhysRevMater_2019_v3_p23804,
annote = {model deviation},
title = {
{Active learning of uniformly accurate interatomic potentials for materials
simulation}
},
author = {Linfeng Zhang and De-Ye Lin and Han Wang and Roberto Car and Weinan E},
journal = {Phys. Rev. Mater.},
volume = 3,
issue = 2,
pages = 23804,
year = 2019,
publisher = {American Physical Society},
doi = {10.1103/PhysRevMaterials.3.023804},
}
@article{Lu_JChemTheoryComput_2022_v18_p5555,
annote = {DP Compress},
author = {
Denghui Lu and Wanrun Jiang and Yixiao Chen and Linfeng Zhang and Weile Jia
and Han Wang and Mohan Chen
},
title = {
{DP Compress: A Model Compression Scheme for Generating Efficient Deep
Potential Models}
},
journal = {J. Chem. Theory Comput.},
year = 2022,
volume = 18,
issue = 9,
pages = {5555--5567},
doi = {10.1021/acs.jctc.2c00102},
}
@article{Mo_npjComputMater_2022_v8_p107,
annote = {NVNMD},
author = {
Pinghui Mo and Chang Li and Dan Zhao and Yujia Zhang and Mengchao Shi and
Junhua Li and Jie Liu
},
title = {
{Accurate and efficient molecular dynamics based on machine learning and
non von Neumann architecture}
},
journal = {npj Comput. Mater.},
year = 2022,
volume = 8,
issue = 1,
pages = 107,
doi = {10.1038/s41524-022-00773-z},
}
@article{Zeng_EnergyFuels_2021_v35_p762,
annote = {relative or atomic model deviation},
author = {Jinzhe Zeng and Linfeng Zhang and Han Wang and Tong Zhu},
title = {
{Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential
GENerator}
},
journal = {Energy \& Fuels},
volume = 35,
number = 1,
pages = {762--769},
year = 2021,
doi = {10.1021/acs.energyfuels.0c03211},
}