-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetfuzzyenfeat.m
66 lines (51 loc) · 1.44 KB
/
getfuzzyenfeat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
%
% GETFUZZYENFEAT Gets the Fuzzy Entropy feature.
%
% feat = getfuzzyenfeat(x,globaltolerance,winsize,wininc,datawin,dispstatus)
% Inputs
% x: columns of signals
% winsize: window size (length of x)
% wininc: spacing of the windows (winsize)
% datawin: window for data (e.g. Hamming, default rectangular)
% must have dimensions of (winsize,1)
% dispstatus:zero for no waitbar (default)
function feat = getfuzzyenfeat(x,globaltolerance,winsize,wininc,datawin,dispstatus)
if nargin < 5
if nargin < 4
if nargin < 3
if nargin < 2
winsize = size(x,1);
end
wininc = winsize;
end
datawin = ones(winsize,1);
end
dispstatus = 0;
end
datasize = size(x,1);
Nsignals = size(x,2);
numwin = floor((datasize - winsize)/wininc)+1;
% allocate memory
feat = zeros(numwin,Nsignals);
if dispstatus
h = waitbar(0,'Computing HFD features...');
end
st = 1;
en = winsize;
% if dispstatus
% waitbar(i/numwin);
% end%alttaki for dongusunun icine gomulebilir.
for i = 1:numwin
curwin = x(st:en,:).*repmat(datawin,1,Nsignals);
% feat(i,:) = sqrt(mean(curwin.^2));
dim = 2;
r = globaltolerance;
% r = 0.2 * std(curwin);
tau = 1;
feat(i,:) = FuzzyEn( dim, r, curwin, tau );
st = st + wininc;
en = en + wininc;
end
if dispstatus
close(h)
end